Public reponting burden for this collection of information is estimated 10 aversge 1 hour per /epones, including the time for reviewing instructions, searching exisiing de
umw':nmw.ummmmuw Send aommaents regarding this burden estimete or any other aspedt of this aoliedtion of information, including
suggestions lor reducing this burden, 10 Washingion MHeadquarters Service, Dirsciorate for information Operations and Reports, 1215 Jefterson Devis Highway, Sulle 1204, Arington, VA
22202-4302, end to the Otfice of iniormation and Regulstory Aliaire, Offios of Management end Budget, Washington, DC 2080S.

1. AGENCY USE (Leave

REPORT DOCUMENTATION PAGE_ [z~ (29)

(4. TMILEAND §. FUNDING

.VADS Sun4d =) MIPS R4000/VAda-110-40630, Version 6.2, Host:
Sun SPARCstation 2 , Target: SGI Indigo XS4000

930901W1.11324 AD_A273 719
| T

Authors:

Wright-Patterson AFB

.] (S) -
Ada Validating Facility, Language Control Facility ASD/SCEL |ORGANIZATION
Bldg. 676, Room 135
Wright Patterson AFB, Dayton OH 45433

) i _ NG AGENCY) - 0. SPONSORING/MONTTORING 1 .
Ada Joint Program Office ‘ AGENCY
The Pentagon, Rm 3E118 :
Washington, DC 20301-3080 k
(11, SUPPLEMENTARY
122 IBUTION/AVAILABIL 125. DISTRIBUTION

Approved for public release; distribution unlimited

13, (Maximum 200
VADS Sund4 =) MIPS R4000/VAda-110-40630, Version 6.2, Host: Sun SPARCStation 2 under
Sun0S 4.1.2, Targe: SGI indigo XS4000, ACVC 1.11

14, SUBJECT 15, NUMBER OF T
Ada programming language, Ada Compiler Val. Summary Report, Ada Comp‘w -

A&gf MTE:sFBPih gltyAJ¥ 1. Testing, Ada Val. Office, Ada Val. Facili*y')
7715&&6577""""1"""Té%ﬁﬁﬁﬂﬂf? 10. SECURITY agLﬁﬁfZTEEFEF?""""

CLASSIFICATION . CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN

Prescribed by ANSI K.

98

AVP Control Number:
Date VSR Completed:

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 930901wl.11324
Verdix Corporation

AVF-VSR-571.0893
September 28, 1993
93-07-23-VRX

VADS Sun4d => MIPS R4000/VAda-110-40630, Version 6.2

Sun SPARCstation 2 under SunOS 4.1.2 =)
SGI Indigo XS4000 (bare board)

(Final)

Prepared By:
Ada validation Facility
645 C CSG/sCSL
Wright-Patterson AFB OH 45433-6503

Accesion For

NTIS CRA&I g
DTIC TAB
Unannounced |
Justification

By

Dist:ibution [

Availability Codes

. Avail and|or
Dist Special

A-

DTIC QUALITY INSPECTED 3

12 13 054 93-30204

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 1, 1993.

Compiler Name and Version: VADS Sund => MIPS R4000/VAda-110-40630, Version 6.2

Host Computer System: Sun SPARCstation 2
under SunOS 4.1.2

Target Computer System: SGI Indigo XS4000 (bare board)
Customer Agreement Number: 93-07-23-VRX

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
930901w1.11324 is awarded to Verdix Corporation. This certificate expires
two years after MIL-STD-1815B is approved by ANSI,

This report has been reviewed and is approved.

Sl € e o

Wacxlif&

Dale E.

Technical Director

645 CCSG/SCSL

Wright-Patterson AFB OH 45433-6503

Institute for Defense Analyses
Alexandria VA 22311

L A~
Joint Program Office
M. Dirk Rogers, Major, USAF
Acting Director
Department of Defense
Washington DC 20301

ATTACHMENT I

DECLARATION OF CONFORMANCE
Customer: Verdix Corporation
Ada Validation Facility: ASD/SCEL, WPAFB OH 45433-6503
' ACVC Version: 1.11

Ada Implemeantation:

Compiler Name and Version: VADS Sun4 => MIPS R4000, Version 6.2,
VAda-110-40630

Host Computer System: Sun SPARCstation 2, SunOS 4.1.2

Target Computer System: SGI Indigo XS4000
(used as a MIPS R4000 bare board)

Customer’s Declaration:

[I/we], the undersigned, declare that [I/we] have no
knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation
listed above.

(\ . ' ‘

Yol ,
M \ (\\\-\\c 1 I 1
Date |

Customer Signatidre -

~

TABLE OF CONTENTS

(]

-.....-.......-......1—2

m..-...-....-.---.l-z

nmorm..............a.l-3

wmswmmmmol.ooool-l

4%

-“NMme
L] L] * L]
) 4 4 4

m mlnmmo e & o 6 o o o o & ® e o o o o @ 2-3

WITHDRAWN TESTS . . < ¢ o ¢ o » o o o a o o o o s o 2=1
MImm.............--..z-l

IMPLEMENTATION DEPENDENCIES

-aNm
L] L] *
N NN

SUMMARY OF TEST RESULTS . . « ¢« ¢ « o o « s« o o o o« 3=1
mmw...-...-;.---......%z

PROCESSING INFORMATION
mmm * L L] L . L * L L] L L] * L] L L] L] 3.1

-Nm
e e o

;

MACRO PARAMETERS

APPENDIX A

APPENDIX B

COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

APPENDIX C

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90]) against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[{Pro90]). A detailed description of the ACVC may be found in the current
ACVC User'’s Guide [UGS89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[{Ada83) Reference Manual for the Ada Pr ,
’ ruary -1987.
(Pro90) Ada iler Validation Procedures, Version 2.1, Ada Joint
Program ESI!Icc. August 1990.

(UG89) Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for s purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Tlass C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the

resulting compilation listing is examined to verify that all violations of

the Ada Standard are detected. Some of the class B tests contain legal Ada

acgde whic!fx zst not be flagged illegal by the compiler. This behavior is
so verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVP. This customization consists of making the modifications described in
the guccd:lng ragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UGBY]).
In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Aa Compiler The software and any needed hardware that have to be added
to a given host and target computer systea to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ma Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
“alidation rocedures required to establish the compliance of an Ada
Facility (Aavr) lementation.

Ada The part of the certification body that provides technical

validation guidance for operations of the Ada certification system.
(()tganization
AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
- System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0
LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

validation

withdrawn
test

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section).<subsection>:<paragraph>.”

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erronecus or illegal use of the Ada programming

language.

1-4

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C355081 C355080
C35508M C35508N C35702A C357028 B41308B C43004a
C45114a C45346a C45612A C456128 C45612C C45651A
46022 B49008A B49008B A74006A C74308A B83022B
B83022H B830258 B83025D C83026A B830268 C83041A
B85001L C86001F C94021A Cc97116a C98003B BA2011A
CB7001A CB7001B CB7004A CC1223a BC1226A Cccl2268
BC30098 BD1B02B BD1BO6A AD1B0SA BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2AJ1E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CDS111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD900SA CD900SB CDA201E
CE21071 CE2117A CE2117B CE21198 CE2205B CE240S5A
CE3lllc CE3116a CE3l18Aa CE34118 CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the IS0 and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as

appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L..Y (14 tests)
C45524L..Z (15 tests)
C45641L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..Z (15 tests)
C45321L..Y (14 tests)
C45521L..Z2 (15 tests)
C45621L..Z (15 tests)
C46012L..2 (15 tests)

The following 20 tests check for the predefined type LONG INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C c45412C
€45502C €45503C C45504C C45504r C45611C
C45613C C45614C C45631C C45632C B52004D
CSSBO7A BSSB0SC B86001W C86006C co7101r

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
. implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floati int operations 1lie ocutside the range of the base
type; for this ementation, MACHINE OVERFLOWS is TRUE.

' B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION’S base type that are outside the
range of type DURATION; for this implementation, the ranges are the
m.

CD1009C checks whether a length clause can specify a non-default size
tgr a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2AS4E, CD2AB4I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

2-2

IMMTIW DEPENDENCIES

CE2102D CREATE IN FILE SEQUENTIAL_IO
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE IN FilE DIRECT I0
CE2102J CREATE oUT FILE DIRECT 10
CE2102N OPEN IN FiLe SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL_IO
CE2102P OPEN OUT FILE SEQUENTIAL_IO
CE2102Q RESET OUT FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT IO
CE21028 RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FilE DIRECT 10
CE2102U RESET IN FILE DIRECT IO
CE2102v OPEN oUT PILE DIRECT 10
CE2102W RESET OUT PILE DIRECT 10
CE3102E CREATE IN FILE TEXT_I
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE —ee TEXT 10
CE31021 CREATE OUT FILE TEXT 10
CE31023 OPEN IN FILE TEXT 10
CE3102K OPEN OUT FILE TEXT_I0.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict

file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify "an Inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this Implementation, the value of
COUNT’LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 22 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
8850886 B85008H BC1303F BC30058 BD2B03A BD2D03A
BD4003A

2-3

IMPLEMENTATION DEPENDENCIES

CD1009A, CD1009I, CD1CO3A, CD2A22J, CD2A24A, and CD2A31A..C (3 Tests) were
graded passed by Evaluation Modification as directed by the AVO. These
tests use instantiations of the support procedure LENGTH CHECK, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instances of LENGTH CHECK—i.e, the allowed Report.Failed messages have the
general form:

" * CHECK ON REPRESENTATION FOR <TYPE ID> FAILED.”

AD9001B was graded passed by Test Modification as directed by the Avo.
This test checks that no bodies are required for interfaced subprograms;
among the procedures that it uses is one with a parameter of mode OUT (line
36). This implemenation does not support pragma INTERFACE for procedures
with parameters of mode OUT. The test was modified by commenting out line
36 and 40; the modified test was passed.

2~-4

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Corey Ashford

Verdix Corporation

1600 N.W. Compton Drive
Alcha, OR 97006-6905

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming

Language Standard, whether the test is icable or inapplicable;
otherwise, the Ada Implementation fails ACVC [Pro90].

Por all pror~ssed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the mumber of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3809

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 65
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 266 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun Workstation and copied over Ethernet
to the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect
- Suppress warning diagnostics.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UGB9]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximm input-line length, which is
the value for $MAX IN LEN—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximm input-line

length.

Macro Parameter Macro Value
$MAX IN LEN 499 — Value of V
$BIG_ID1 (1..V=1 => 'A’, VY => ']’)
$BIG_ID2 (1..V-1 => 'A’, V @ *27)
$BIG ID3 (1..V/2 => "'A’) & '3’ &
(1..v-1-V/2 => 'A’)
$BIG_ID4 (1..V/2 => 'A’) & '4’ &
(1..V=1-V/2 => 'A’)
$BIG_INT LIT (1..v-3 => 70’) & "298"
$BIG REAL LIT (1..v=5 => 70’) & "690.0"
$BIG_STRINGL "G (L..V/2 => 'AY) & '
$BIG_STRING2 " g (1..V-1-V/2 => 'A’) & "1’ & '"°
$BLANKS (1..v=20 => * 7)

$MAX_LEN INT BASED LITERAL
"2:" & (1..V=5 => 70’) & "11:"

SMAX_LEN REAL BASED LITERAL
"163' & (1..V—7 .> 'o') & "P.E:"- -

A-1

$MAX STRING LITERAL '"’ & (1..V-2 => 'A’) & '"’

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

SACC_SIZE
SALIGNMENT
$COUNT_LAST
SDEFAULT MEM SIZE
$DEFAULT_STOR UNIT
$DEFAULT SYS_NAME
$DELTA DOC
$ENTRY_ADDRESS
SENTRY_ADDRESS1
$SENTRY ADDRESS2
$FIELD LAST
$FILE_TERMINATOR
$FIXED NAME
$FLOAT NAME
$FORM_STRING
$PORM_STRING2

32

4

2 147 483 647
16_777_216

8

SUN4_CROSS_R4000B
0.0000000004656612873077392578125
SYSTEM. "+" (164404)
SYSTEM. "+" (164804)
SYSTEM. "+" (1641004)
2_147 483 647

'

NO_SUCH_TYPE
NO_SUCH_TYPE

"CANNOT_RESTRICT FILE CAPACITY"

$GREATER THAN DURATION

100_000.0

SGREATER THAN DURATION BASE LAST

T0_000_000.0

mmmmm

1.8E+308

S$GREATER THAN FLOAT SAFE LARGE

9.0E37

A2

SGREATER THAN SHORT FLOAT SAFE LARGE
9.0E37

SHIGH PRIORITY 99

SILLEGAL EXTERNAL FILE NAME]
¥/illegal/tile_name/2}]%2102c.dat"”

$ILLEGAL EXTERNAL FILE NAME2
¥/illegal/file name/CE2102C*.dat"

smmm_m_mfm

SINAPPROPRIATE PAGE_LENGTH

SINCLUDE _PRAGMAL
SINCLUDE_PRAGMA2
$INTEGER FIRST
$INTEGER _LAST
$INTEGER LAST PLUS 1
SINTERFACE_LANGUAGE
$LESS_THAN DURATION

-1
PRAGMA INCLUDE (“A28006D1.TST*)
PRAGMA INCLUDE ("B28006D1.TST")
-2_147_483_648

2 147 483 647

2_147_483 648

c

~-100_000.0

$LESS_THAN DURATION BASE FIRST
-17_000_000.0

$LINE_TERMINATOR ASCII.LF & ASCII.FPF

$LOW_PRIORITY

0

S$MACHINE OODE_STATEMENT

$MAULINE CODE_TYPE
$MANTISSA_DOC

$MAX DIGITS

$MAX INT

$MAX_INT PLUS 1
$MIN_INT

SNAME

CODE 0’ (0P => NOP);
CODE 0
31
15
2 147 483 647
2 147 483 648
-2 147 483 18
TINY_INTEGER
A-3

SAME_LIST

SNAME_SPECIFICATIONL
SNAME_SPECIFICATION2

$NAME_SPECIFICATION3

$NEG_BASED INT
$NEN_MEM SIZE
SNEN_STOR UNIT
$NEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME

$TASK_SIZE
$TASK_STORAGE SIZE

$VARIABLE ADCRESS
$VARIABLE_ADDRESS1
~ SVARIABLE ADDRESS2
$YOUR_PRAGMA

SUN4_CROSS_R4000B
/rc/vads6.20/test_suites/acvcl.ll/c/e/X2120A
/rc/vads6.20/test_suites/acvel.ll/c/e/X21208
/rc/vads6.20/test_suites/acvcl.ll/c/e/X3119A
164ro00000E#

16_777_216

8

SUN4_CROSS_R4000B

ASCII.FF

RECORD SUBP: OPERAND; END RECORD;

CODE_0

32

1024

0.01

VAR_1'ADORESS

VAR 2'ADDRESS

VAR_3'ADDRESS

PRAGMA PASSIVE

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
X, are provided by the customer. Unless specifically noted
rwise, references in this appendix are to compiler documentation and
not to this report.

Syntax
ada [options] [source file)... [object file.o]...
Arguments

ocbject_file.o non-Aa object file names. These files will be passed
on to the linker and will be linked with the specified
Aa object files.

options options to the compiler. These are:

-A (disassemble) Disassemble the units in the source file after
iling them. -A can be followed by arguments that further
c-l:f ne t.l;o disasseambly display (e.g., -Aa, -Ab, -Ad, -~Af,
¢ —AS).

Add hexadecimal display of instruction bytes to
disassembly lis .

Disassemble the t (default).

Print the data section (if present) as well.

Use the alternative format for output.

Put the disassembly output in file "file name.das”
Disassemble the unit spec.

- o

-a file name
(archive) Treat file name as an object archive file created
ar. Since some archive files end with .a, -a is used to
stinguish archive files from Ada source files.

-Bgtatic/dynamic (SPARCompiler Ada only)
(static) 1f static is indicated, the Ada program is compiled

B-1

COMPILATION SYSTEM OPTIONS

and linked statically. The default is dynamic.

-C suppress the control messages generated when pragme PAGE
and/or pragma LIST are encountered.

-D identifier tﬁo
(define) Define an 1d-ntiﬁcr of a specified type and value.

-d (dependencies) Analyze for dependencies only. Do not do
semantic analysis or code generation. Update the lihan
marking any defined units as uncompiled. The -d option is
used by a.make to establish dependencies among new files.
This option will at to do imports for any units
referenced from outer libraries. This should reduce
relocation and reduce user disk space usage.

-E

-E directory
(error output) Without a directory argument, ada processes
error messages using a.error and directs a brief message to
standard output; the raw error messages are left in
source file.err. If a directory name is given, the raw error
output is placed in directory/source_file.err. The file of
raw error messages can be used as input to a.error. Only
one -e¢ or ~-E option should be used.

-e (error) Process compilation error messages using a.error and
send it to standard output. Only the source lines containing
errors are listed. Only one -e or -E option should be used.

-Eferror_file source file
(error) Process source file and place any error messages
in the file indicated by error_file. Note that there is
no space between the -Ef and error_file.

-El

-El directory
(error listing) Same as the -E option, except that a source
listing with errors is produced.

-el (error listing) Intersperse error messages among source
lines and direct to standard output.

-Elferror_file source file
(error listing) Same as the -Ef option, except that a source
listing with errors is produced.

-ev (error vi(l)) Process syntax error messages using a.error,
embed them in the source file and call the environment editor
ERROR EDITOR. If ERROR EDITOR is defined, the environment
variable ERROR PATTERN should also be defined. ERROR PATTERN
is an editor search command that locates the first occurrence
:f ‘###’ in the error file. If no editor is specified, vi(l)

s invoked.

B-2

COMPILATION SYSTEM OPTIONS

The valus of the environment variable ERROR TABS, if set,
is used instead of the default tab settings (8).

-F (full DIANA) Do not trim the DIANA tree before output to
net files. To save disk space, the DIANA tree will be
trimmed so that all pointers to nodes that did not involve
a subtree that define a symbol table will be nulled
(unless those nodes are part of the body of an inline or
generic or certain other values needing to be retained for
the debugging or lation information). The trimming
generally removes tial values of variables and all
statemsnts.

-G (GVAS) Display suggested values for the MIN GVAS ADDR
and MAX GVAS ADDR INFO directives.

=K (keep) Keep the intermediate language (IL) file produced
by the compiler front end. The IL file will be placed in
the .objects directory with the file name Ada source.

=L library name
. (1ibrary) Operate in VADS library library name.
(Default: current working directory)

-1file abbreviation (VADSself only)
(1Ibrary search) This is an option passed to the 1d(1)
linker, telling it to search the specified library file.
(No space between the -1 and the file abbreviation.)

-M unit name
(maln) Produce an executable program by linking the named
unit as the main program. unit_name must already be
compiled. It must be either a parameterless procoduto or
a parameterless function returning an integer. The
executable program will be named a.ocut unless overridden
with the -o option.

-M source file
(main) Produce an executable program by compiling and
linking source file. The main unit of the program is
assumed to be the root name of the file (for foo.a the
unit is foo). Only one file may be preceded by -M. The
executable program will be named a.out unless overridden
with the -o option.

-N (no code sharing) Compile all generic instantiations
without sharing code for their bodies. This option
overrides the SHARE BODY INFO directive and the SHARE CODE
or SHARE BODY pragmas.

-0[{0-9]
(optimize) Invoke the code optimizer. An optional digit
(there is no space before the digit) provides the level of .

B-3

COMPILATION SYSTEM OPTIONS

optimization. The default is -Od.

full optimization

no optimization (use for debugging)

copy pr tion, constant folding, removing
dead variables, subsuming moves between scalar
variables

add common subexpression elimination within
basic blocks

add global common subexpression elimination
add hoisting invariants from loops and address
optimizations

add range optimizations, instruction scheduling
and one pass of reducing induction expressions

change

one more pass of induction expression reduction
one more pass of induction expression reduction
one more pass of induction expression

reduction and add hoisting expressions common to
the then and the else parts of if statements

Boisting from branches (and cases alternatives) can be slow
and does not always provide significant performance gains so
it can be suppressed.

3238 2 £& 8 &g

BERS

-0 executable file

~P

(output) This option is to be used in conjunction with
the -M option. executable file is the name of the executable
rather than the default, a.out (self) or a.vox (cross).

Invoke the Ada Preprocessor.

~R VADS library

(recompile instantiation) Force analysis of all generic
instantiations, causing reinstantiation of that are out
of date. VADS library is the library in which the
recompilation Is to occur. If it is not specified, the
recompilation occurs in the current working directory.

(recreate) Recreate the library’s GVAS_TABLE file. This option
reinitializes the file and exita. This allows recovery from
"GVAS exhausted" without recompiling all the files in the library.

(suppress) Apply pragma SUPPRESS to the entire compilation
for all suppressible checks.

-sh (show) Display the name of the tool executable but do not

-T

-v

execute it.

(timing) Print timing information for the compilation.
(verbose) Print compiler version number, date and time of
compilation, name of file compiled, command input line,
total compilation time and error summary line. Storage usage

B4

COMPILATION SYSTEM OPTIONS

information about the object file is provided.
-w (warnings) Suppress warning diagnostics.
source_file name of the source file to be compiled.
Description

The ada commend executes the Ada compiler and compiles the named Ada
source file. The file must resids in a VADS library diroctm The
ada.lib file in this directory is modified after each Ada is

compiled.

By default, ada produces only object and net files. If the -M
is used, the compiler automatically invokes a.ld and builds a complete
program with the named library unit as the main program.

For cross systems, the compiler generates cbject files compatible with
the host linker in VOX format. The VOX format is discussed in
Appendix A of the Programmer’s Guide.

Non-Ada object files (.o files produced by a compiler for another
language) may be given as arguments to ada. These files will be
on to the linker and will be linked with the specified Ada cbject files.

Cc.lnand line options may be gpecified in any order but the order of
compilation and the order of the files to be passed to the linker can
be significant.

Several VADS compilers may be simultaneously available on a single
:rtu. Because the ada command in any VADS location/bin on a system

11 execute the correct compiler components based visible
library directives, the option -sh is provided to print the name of
the components actually executed.

Program listings with a disassembly of mchine code instructions
are generated by a.db or a.das.

NOTE: If two files of the same name from different directories are
compiled in the same ada library using the -L option (even if the
contents and unit names are different), the second compilation will
overwrite the first. For example, the ilation of
/ust/directory2/foo.a -L Jfust/vads/test will overwrite the
compilation of Susr/directoryl/foo.a ~L /usr/vads/test in the

VADS library Jusr/vads/test.

Diagnostics

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer to the RM. Each RM reference includes a
section number and optionally, a paragraph number enclosed in
parentheses.

B-5

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Apperdix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

Syntax
a.1d [options] unit name [linker options]
Arguments

linker options
arguments after unit name are sed to the linker.
library abbreviations or object files.

options options to the a.ld command. These are:

-DO (objects) Use partially linked objects instead of archives
as an intermediate file if the entire list of objects cannot
be passed to the linker in one invocation. This option is
useful because of limitations in the archiver on some hosts
(including ULTRIX, HP-UX and System V). (VADSself only)

-DT (time) Displays how long each phase of the prelinking process
takes. (VADSself only)

=Du unit list

(units) Traces the addition of indirect dependencies to the named
units. (VADSself only)

-Dx (dependencies) Displays the elaboration dependencies used each
time a unit is arbitrarily chosen for elaboration. (VADSself only)

-DX (debug) Debug memory overflow (use in cases where linking
a large number of units causes the error message "local
symbol overflow” to occur). (VADSself only)

-E unit name
(elaborate) Elaborate unit name as early in the elaboration
order as possible.

-F (files) Print a list of dependent files in order and suppress
linking.

=K (keep) Do not delete the termorary file containing the list of
object files to link. This file is only present when many object
files are being linked. (SGI only)

-L library name

B-6

COMPILATION SYSTEM OPTIONS

(library) Collect information for linking in library name instead
of the current directory. However, place the executable in the
current directory.

-0 executable file
(output) Use the specified fielname as the name of the output
rather than the default a.out (self) or a.vox (cross).

~sh (show) Display the name of the tool executable but do not
execute it.

-T (table) List the symbols in the elaboration table to standard
output.

-U (units) Print a list cf dependent units in order and
suppress linking.

-v (verbose) Print the linker command before executing it.
=V (verify) Print the linker command but suppress execution.
-w (warnings) Suppress warning messages.

unit name
~ name of an Ada unit. It must name a non-generic subprogram.
If unit name is a function, it must return a value of the
type STANDARD.INTEGER. This integer result will be passed back
to the shell as the status code of the execution.

Description

a.1ld collects the object files needed to make unit name a main
program and calls the 1d(1) linker to link together all Ada and

other 1 ge objects required to produce an executable image in
a.out (self) or a.vox (cross). The utility uses the net files produced
by the Ada compiler to check dependency information. a.ld produces

an exception mapping table and a unit elaboration table and passes
this information to the linker. The elaboration list generated by
a.ld will not include library level packages that do not need
elaboration. Similarly, packages that contain no code that can raise
an exception will no longer have exception tables.

a.ld reads instructions for generating executables from the ada.lib
file in the VADS libraries on the search list. Besides information
generated by the compiler, these directives also include WITHn
directives that allow the automatic linking of object modules
compiled from other languages or Ada cbject modules not named

in context clauses in the Ada source. Any number of WITHn
directives may be placed into a library but they must be

numbered contiguously beginning at WITH1. The directives are
recorded in the library’s ada.lib file and have the following form.

WITH1:LINK:object file:
WITH2:LINK:archive file:

B-7

COMPILATION SYSTEM OPTIONS

WITHn directives may be placed in the local Ada libraries or in
any VADS library on the search list.

A WITHn directive in a local VADS library or earlier on the
library search list will hide the same numbered WITHn directive
in a library later in the library search list.

Use the tool a.info to change or report library directives in
the current library.

For VADSself on Silicon Graphics Computer Systems, the
USE_LAST LINK INFO directive speeds relinking by retaining a list
of units, thelr types, seals and dependencies.

VADS location/bin/a.ld is a wrapper program that executes the
correct executable based upon directives visible in the ada.lib
file. This permits multiple VADS compilers to exist on the same
host. The -sh option prints the name of the actual executable file.

Files

a.out (self), a.vox (cross) default ocutput file

.nets Ada DIANA net fil2s directory
.objects/* Ada object files

VADS location/standard/* startup and standard library routines

Diagnostics

Self-explanatory diagnostics are produced for missing files,
etc. Additional messages are produced by the ld linker.

APPENDIX C
APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY INTEGER is range -128 .. 127;

"type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;

type SHORT FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;

type LONG FLOAT is digits 15 range -1.79769313486232E+308 ..
1.79769313486232E+308;

type DURATION is delta 0.0001 range -214748.3648 .. 214748.3647;

end STANDARD;

Cc-1

APPENDIX F OF THE Ada STANDARD
APPENDIX F. Implementation-Dependent Characteristics

l. Implementation-Dependent Pragmas
1.1. INLINE ONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma
INLINE, indicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space. If a user erroneously makes an INLINE ONLY subpro-
gram recursive a warning message will be emitted and an
PROGRAM ERROR will be raised at run time.

1.2. INITIALIZE Pragma

Takes one of the identifiers STATIC or DYNAMIC as the single
argument. This pragma is only allowed within a library-
level package spec or body. It specifies that all objects
in the package be initialized as requested by the pragma
(i.e. statically or dynamically). Only library-level
objects are subject to static initialization; all objects
within procedures are always (by definition) dynamic. 1If
pragma INITIALIZE(STATIC) is used, and an object camnot be
initialized statically, code will be generated to initialize
the object and a warning message will be generated.

1.3. BUILT IN Pragma

The BUILT IN pragma is used in the implementation of some
predefined Ada packages, but provides no user access. It is
used only to implement code bodies for which no actual Aada
body can be provided, for example the MACHINE CODE package.

1.4. SHARE CODE Pragma

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before

any subsequent compilation unit. _

When the first argument is a generic unit the pragma applies
to all instantiations of that generic. when the first argu-
ment is the name of a generic instantiation the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE the compiler will try to
gshare code generated for a generic instantiation with code

Cc-2

APPENDIX F OF THE Ada STANDARD

generated for other instantiations of the same generic.
When the second argument is FALSE each instantiation will
get a uni cq:hyaof the generated code. The extent to
which is red between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has the same effect as SHARE CODE. It is
included for compatability with earlier versions of VADS.

1.5. NO_IMAGE Pragma

- The pragma suppresses the generation of the image array used
for the IMAGE attribute of emmeration types. This elim-
inates the overhead required to store the array in the exe-
cutable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and PROGRAM ERROR raised at run time.

"1.6. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or
variable defined in Ada and allows the user to specify a
different external name that may be used to reference the

" entity from other 1 ges. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.7. INTERFACE NAME Pragma

The INTERFACE NAME pragma takes the name of a a variable or
subprogram defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all
occurrences of variable or subprogram name with an
external reference to the second, link argument. The pragma
is allowed at the place of a declarative item in a package
specification and must apply to an object or subprogram
declared earlier in the same package specification. The
object must be declared as a scalar or an access type. The
object cannot be any of the following:

a loop variable,

a constant,

an initialized variable,

an array, or

a record.

1.8. IMPLICIT CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the

Cc-3

APPENDIX F OF THE Ada STANDARD

compiler be allowed or disallowed. A warning is issued if

OFF is used and any implicit code needs to be generated.

The default is ON.

1.9. OPTIMIZE CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-

ment. This pragma is only allowed within a machine code
rocedure. It specifies whether the code should be optim-
ged by the compiler. The default is ON. When OFF is
specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas

2.1. COONTROLLED

'R&s pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE
?dua. pragaa is implemented as described in Appendix B of the
RM.

2.3. INLINE
' Eia' pragma is implemented as described in Appendix B of the
m.

2.4. INTERFACE

This pragma supports calls to 'C’ and FORTRAN functions. The
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYSTEM.
All paramesters must have mode IN. Record and arr objects
can passed by reference using the ADDRESS attribute.

2.5. LIST

;ldnias pragma is implemented as described in Appendix B of the
RM.

2.6. ¥EMORY_SIZE

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.7. NON_REENTRANT

This pragma takes one argument which can be the name of
either a library subprogram or a subprogram declared immedi-

C-4

APPENDIX F OF THE Ada STANDARD

ately within a library package or body. It indicates
to the compiler that the rogram will not be called
recursively allowing the compiler to perform specific optim-
izations. The pragma can be ied to a subprogram or a
set gd;vorload.d subprograsa within a package spec or pack-
age .

2.8. NOT_ELABORATED

This pragas can only £ in a libra reluqo ifica-
tion. It indicates t the package will not be ¢ rated
because it is either cg::t of the RTS, a eonﬁguntim pack-
age or an Ada package that is referenced from a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZE

'l‘lés pragma is recognized by the implementation but has no
effect.

2.10. PACK

This pragma will cause the compiler to choose 2 non-aligned
representation for composite types. It will not causes
objects to be packed at the bit level.

2.11. PAGE

31: pragma is implemented as described in Appendix 3 of the
M.

2.12. PASSIVE
The pragma has three forms :

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task
type declared immediately within a library package spec or
. The pragma directs the iler to optimize certain
ing operations. It is possible that the statements in a
task body will prevent the intended optimization, in these
cases a warning will be generated at compile time and will
raise TASKING ERROR at runtime.

2.13. PRIORITY
This pragma is implemented as described in Appendix B of the
c-5 ‘

APPENDIX ¥ OF THE Ada STANDARD

Ada M.
2.14. SHARED

'ntxis pragma is recognized by the implementation but has no
effect.

2.15. STORAGE UNIT

This pragma is recognised by the implemsntation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that
DIVISION CHECK and in some cases OVERFLOW CHECK cannot be

supressed.
2.17. SYSTEM NAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

3. Implemsntation-Dependent Attributes
3.1. P'REF

Por a prefix that denotes an object, a program unit, a
label, or an entry:

This attribute denotes the effective address of the first of
the storage units allocated to P. For a subprogram, pack-
age, task unit, or label, it refers to the address of the
machine code associated with the corresponding body or
statement. PFor an entry for which an address clause has
been given, it refers to the corresponding hardware inter-
rupt. The attribute is of the type OPERAND defined in the
package MACHINE CODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this
attribute.

(For a package, task unit, or entry, the 'REF attribute is
not supported.)

3.2. T'TASKID

Por a task object or a value T, T'TASK ID yields the unique
task id associated with a task. The value of this attribute
is of the type ADDRESS in the package SYSTEM.

Cc-6

APPENDIX F OF THE Ada STANDARD

4. Specification Of Package SYSTEM
with UNSIGNED TYPES;
package SYSTEN is
pragma suppress(ALL CHECKS);
pragms suppress(EXCEPTION TABLES);
pragma not_elaborated;
type NAME is (sund_cross_rd4000b);
SYSTEM NAME s constant NAME := sund_cross_r4000b;

STORAGE INIT : constant := 8;
MEMORY S1ZE : constant := 16_777_216;

~— System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;
MAX_INT : constant := 2 T47 783 847;
MAX DIGITS : constant := 15;

MAX MANTISSA s constant := 31;

FINE DELTA s constant := 2.0%**(-31);
TICK :+ constant := 0.01;

— Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;
MAX REC SIZE : integer := 1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "+" (I: UNSIGNED_TYPES.UNSIGNED INTEGER) return ADDRESS;

function MEMORY ADDRESS
(I: WSIQEB_T!P!S.WSIM_M) return ADDRESS renames "+";

NO ADDR : constant ADDRESS;

type TASK ID is private;
NO_TASK ID : constant TASK ID;

Cc-7

APPENDIX F OF THE Ada STANDARD

type PASSIVE TASK ID is private;
NO_PASSIVE TASK ID : constant PASSIVE TASK ID;

SIG STATUS T is INTEGER;
SIG_STATUS SIZE: constant := 4;

type PROGRAM ID is private;
NO_PROGRAM ID : constant PROGRAM ID;

type BYTE ORDER T is (
LYTrLE ENDIAN,
BIG_ENDIAN
):
BYTE ORDER: constant BYTE ORDER T := BIG ENDIAN;
type LONG ADDRESS is private;
NO_LONG ADDR : constant LONG ADDRESS;

function "+" (A: LONG ADDRESS; I: INTEGER) return LONG ADDRESS;
function "-" (A: LONG ADDRESS; I: INTEGER) return LONG ADDRESS;

function MAKE LONG ADDRESS (A: ADDRESS) return LONG ADDRESS;

function LOCALIZE(A: LONG ADDRESS ; BYTE SIZE : INTEGER) return ADDRESS;
function STATION OF(A: LONG ADDRESS) return INTEGER;

— Internal RTS representation for day. If the calendar package is used,
- then, this is julian day.

subtype DAY T is INTEGER;

— Constants describing the configuration of the CIFO add-on product.
SUPPORTS_INVOCATION BY ADDRESS : constant BOOLEAN := TRUE;

SUPPORTS PREELABORATION : constant BOOLEAN := TRUE;
MAKE_ACCESS SUPPORTED : constant BOOLEAN := TNUE;

- Arguments to the CIFO pragma INTERRUPT TASK.
type INTERRUPT TASK KIND is (SIMPLE, SIGNALLING);

function RETURN ADDRESS return ADDRESS;

private
type ADDRESS is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO_ADDR : constant ADDRESS := 0;

pragma BUILT IN(">");
pragme BUILT IN("<");
pragma BUILT IN(">=");
pragma BUILT IN("<=");

APPENDIX F OF THE Ada STANDARD

pragma BUILT IN("-");
pragma BUILT IN("+");

type TASK ID is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO_TASK 1D : constant TASK ID := 0;

PASSIVE TASK ID is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO_PASSIVE TASK 1D : constant PASSIVE TASK ID := 0;

type PROGRAM ID is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO_PROGRAM_ID : constant PROGRAN ID := 0;

type LONG ADDRESS is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO_LONG ADDR : constant LONG ADDRESS := 0;

pragma BUILT IN(MAKE LONG ADDRESS);
pragma BUILT IN(LOCALIZE);
pragma BUILT IN(STATION OF);

pragma BUILT IN(RETURN ADDRESS);
. end SYSTEM;

5. Restrictions On Representation Clauses
5.1. Pragma PACK

In the absence of pragma PACK record components are padded
so as to provide for efficient access by the target
hardware, pragma PACK applied to a record eliminate the pad-
ding where possible. Pragma PACK has no other effect on the
stor allocated for record components a record representa-
tion is required.

5.2. Size Clauses

PFor scalar types a representation clause will pack to the
mmber of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation
clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause
packing of components only when the component type is a
discrete type. An error will be issued if there is
insufficient space allocated. The SIZE attribute is not
supported for task, access, or floating point types.

5.3. Address Clauses
c-9

APPENDIX F OF THE Ada STANDARD

AMdress clauses are only supported for variables. Since
default initialization of a variable requires evaluation of
the variable address elaboration ordering requirements
prohibit inititalization of a variables which have address
clauses. The specified address indicates the physical
address associated with the variable.

5.4. Interrupts

Interrupt entries are supported with the following interpre-
tation and restrictions:

An interrupt entry may not have any parameters.

A passive task that contains one or more interrupt entries
must always be trying to accept each interrupt entry, unless
it is handling the interrupt. The task must be executing
either an accept for the entry (if there is only one) or a
select statement where the interrupt entry accept alterna-
tive is open as defined by Ada RM 9.7.1(4). This is not a
restriction on normal tasks (i.e., signal ISRs).

An interrupt acts as a “onditional entry call in that inter-
rupts are not queuet (see the last sentence of Ada RM
13.5.1(2) and 13.5.1(6)).

No additional requirements are imposed for a select state-
ment containing both a terminate alternative and an accept
alternative for an interrupt entry (see Ada RM 13.5.1(3)).

Direct calls to an interrupt entry from another task are
allowed and are treated as a normal task rendezvous.

Interrupts are not queued.

The address clause for an interrupt entry does not specify
the priority of the interrupt. 1It simply specifies the
interrupt vector mumber. For pagssive ISRs, the nnn of the
passive(interrupt,nnn) pragma specifies the interrupt prior-
ity of the task.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Entries

Cc-10

APPENDIX F OF THE Ada STANDARD

5.6. Machine Code Insertions
Machine code ingertions are supported.

The general definition of the package MACHINE CODE provides

an assembly language interface for the target machine. It

provides the necessary record type(s) needed in the code

statement, an enumsration type of all the opcode mneumonics,

:m‘\.ti of register definitions, and a set of addressing mode
ctions.

’fhe general syntax of a machine code statement is as fol-
ows:

CODE n’(opcode, operand {, operand});
where n indicates the number of operands in the aggregate.
A special case arises for a variable mumber of operands.

The operands are listed within a subaggregate. The format
is as follows:

CODE_N’(opcode, (operand {, operand}));

For those opcodes that require no operands, named notation
must be used (cf. RM 4.3(4)).

CODE 0’(op => opcode);

The opcode must be an enumeration literal (i.e. it cannot be
an cbject, attribute, or a rename).

An operand can only be an entity defined in MACHINE CODE or
the ’REF attribute.

The arguments to any of the functions defined in
MACHINE CODE must be static expressions, string literals, or
the functions defined in MACHINE CODE. The ‘REF attribute
may not be used as an argqument in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses
Address expressions in an address clause are interpreted as

physical addresses.

c-11

APPENDIX F OF THE Ada STANDARD

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of 1,0 Packages

Instantiations of DIRECT IO use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) when the size
of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is
very large, MAX REC SIZE is used instead. MAX RECORD SIZE
is defined in SYSTEM and can be changed by a program before
instantiating DIRECT IO to provide an upper 1limit on the
record size. In any case the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT IO will raise USE ERROR
if MAX REC SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL IO use the value MAX REC SIZE
as the record size (expressed in STORAGE UNITS) when the
size of ELEMENT TYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMENT TYPE'SIZE
is wvery large, MAX REC SIZE is used ~ instead.
MAX RECORD SIZE is defined in SYSTEM and can be changed by a
program before instantiating INTEGER IO to provide an upper
limit on the record size. SEQUENTIAL 10 imposes no limit on
MAX REC SIZE.

11. Implementation Limits
The following limits are actually enforced by the implemen-

tation. It is not intended to imply that resources up to or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum 1line length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
4,000,000 x STORAGE UNITS. The maximm size of a statically
sized record type is 4,000,000 x STORAGE UNITS. A record
type or array type declaration that exceeds these limits
will generate a warning message.

11.3. Default Stack Size for Tasks

Cc-12

APPENDIX F OF THE Ada STANDARD

In the absence of an explicit STORAGE SIZE length specifica-
tion every task except the main program is allocated a fixed
size stack of 10,240 STORAGE UNITS. This is the value
returned by T’STORAGE SIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T’STORAGE SIZE for an access type T.

11.5. Limit on Declared Objects
There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If

this value is exceeded the compiler will terminate the com-
pilation of the unit with a FATAL error message.

Cc-13

END
~ FILMED |

DTIC

m

