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EXECUTIVE SUMMARY

This report contains the research done by Berkeley Research Associates under contract
DNA-001-88-C-0006. The focus of the work is on theory and computation for the pulse
power elements in existing and future DNA flash x-ray simulators, in particular DECADE.
The pulse power for this machine is based on inductive store technology, which depends
on an opening switch. Despite much work over the last 10 years, many details in the
operation of the opening switch are known incompletely, preventing extrapolation from
the experimental data on existing switches to DECADE. Switch opening improves with a
low-impedance load, such as the Plasma Filled Diode or the Plasma Radiation Source...

The following nine sections discuss the Reflex switch, the consequences of dirty elec-
trodes, a zero-dimensional, two one-dimensional, and a two-dimensional treatment of the
Plasma Filled Diode, design computations on the Plasma Opening Switch, the Plasma Ra-
diation Source, and a detailed description of a code especially developed for this research.
Appendices contain published papers, and some further code details.

Section 1 is the first dynamic study of the Reflex Switch, a device developed by Physics
International. Previous Reflex Switch theories were stationary, and therefore missed im-
portant dynamical features that were discovered here. Physics International’s scientists
used these considerations in further experimental work on the Reflex Switch.

Section 2 warns against contamination from electrode material blown off by the plasma
injected into the opening switch. The blown-off material modifies the intended plasma
density and therefore affects opening switch operation. As expected, in experiments; at
Physics International the reproducibility and opening speed improve with cleaning of the
electrodes.

Sections 3, 4, and 5 discuss different types of theory and modeling of the Plasma
Filled Diode, while Section 6 presents fully two-dimensional computations of the switch
that contain many features of the simpler theories and computational models. Although it
is clear from the essential two-dimensional nature of the plasma dynamics in the diode that
one-dimensional approximations can not be accurate, the one dimensional computations
show especially clearly the instabilities between fast electrons and the plasma. During the
conduction phase the instabilities produce a voltage internal to the plasma that can be
many times the applied voltage. The two-dimensional modeling maintains this and other
features of the one-dimensional computations.

Section 7 discusses the use of the ANTHEM code for modeling opening switches.
This code is intended for the time and density regime associated with the intermediate
density plasma opening switches. However, the code has many parameters to be selected
by the user, and it is necessary to gain confidence in the code’s predictions by careful
benchmarking. In addition, the code must be augmented with the experimentally relevant
boundary conditions. This work points to the need for another code having many of
ANTHEM?’s features, and the possibility of adding hitherto ignored physics.

Section 8 contains the work on the Plasma Radiation Source, in the form of the papers
published over the contract period. These include a review paper summarizing the state of
tae art of the Plasma Radiation Source, and a review paper on radiative collapse. Other
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papers discuss the current outside a z-pinch, and the Pease-Braginskii current. In addition,
the Proceedings of the 2"¢ International Conference on High-Density z-pinches were edited.
Section 9 describes the code REFLEX: this code contains many features of general interest
to pulse power theory.

In the course of this work we have been in frequent and fruitful interaction with
the experimental groups developing opening switches (especially at Physics International),
Plasma Filled Diodes (especially at Maxwell Laboratories), and the Plasma Radiation
Source (especially at the Naval Research Laboratory).
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CONVERSION TABLE

Conversion factors for U.S. customary to metric (SI) units of measurement

To Convert From To Multiply
angstrom meters (m) 1.000 000 X E-10
atmosphere (normal) kilo pascal (kPa) 1.013 25 X E+2
bar kilo pascal (kPa) 1.000 000 X E+2
barn meter? (m?) 1.000 000 X E-28
British Thermal unit (thermochemical) Joule (J) 1.054 350 X E+3
calorie {thermochemical) jouie (J) 4.184 000
cal (thermochemical)/cm? mega joule/m3(MJ/m?) 4.184 000 X E-2
curie giga becquerel (GBq) 3.700 000 X E+1
degree (angle) radian (rad) 1.745 320 X E-2
degree Fahrenheit degree keivin (K) tas{t’l + 459.671/1.8
electron volt Joule (J) 1.602 19X E-19
erg Joule (J) 1.000 000 X B-7
erg/second watt (W) 1.000 000 X E-7
foot meter (m) 3.048 000 X E-]
foot-pound-force Joule (J) 1.355 818
gallon (U.S. liqusd) meter’ (m¥) 3.783 412X E-3
mch meter (m) 2.540 000 X E-2
Jerk Joule (J) 1.000 000 X E+9
Joule/kilogram (J/Kg) (radiation dose
absorbed) Gray (Gy) 1.000 000
kilotons terajoules 4.183
kip (1000 1bf) newton (N) 4.448 222 X E4+3
kip/inch? (ks1) kilo pascal (kPa) 6.804 757 X E+3
ktap newton-second/m? (N-s/m?) 1.000 000 X E+2
micron meter {m) 1.000 000 X E-8
mil meter (m) 2.540 000 X E-S
mile (international) meter (m) 1.609 344 X E+3
ounce kilogram (kg) 2.834 952 X E-2
pound-force (Ibf svoirdupots) newton (N) 4.448 222
pound-force inch newton-meter (N-m) 1.120 848 X E-)
pound-force/tnch newton/meter (N/m) 1.751 268 X E+2
pound-force/foot? kilo pascal (kPa) 4.788 026 X E-2
pound-force/inch? (pst) kilo pasca) (kPa) 6.804 757
pound-mass (Ibm avotrdupois) kilogram (kg) 4.535 924 X E-1
pound-mass~foot? (moment of tnertia) kilogram-meter? (kg-m?) 4214011 X2-2
pound-mass/foot® kilogram/meter? {hg/m?) 1.801 848 X E+)
rad {radiation dose abgorbed) Gray (Gy)* 1.000 000 X E-2
roentgen coulomb/kilogram (C/kg) 2.579 760 X E-4
shake second (s) 1.000 000 X E-8
slug kilogram (kg) 1.459 390 X E+1
tort (mm Hg 0°C) kilo pascal (kPa) 1.333 22 X E-1

*The becquerel (Bqi ts the SI unit of radioactivity-
**The Qray (Gy) Is the SI unit of absorbed radiation.
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SECTION 1

REFLEX SWITCH

Physics International’s Reflex Switch,! a viable opening switch candidate at the be-
ginning of this program, is investigated with two different models. The first model uses
the two-dimensional particle code ELECTRA. The computations show features that seem
qualitatively correct, but they do not exhibit the expected dynamical behavior. The sec-
ond model employs the one-dimensional particle code REFLEX developed specifically to
perform dynamical computations of the reflex switch. REFLEX contains an inductive
circuit and an approximate but realistic foil scattering component. This code is able to
dynamically attain the expected equilibrium. The time to reach equilibrium is a function
of the ionic mass and the anode-cathode gap spacing. Instabilities are evident through all
phases of reflex switch operation. The time to opening of the switch depends on removal
of ions from the primary gap. '

1.1 INTRODUCTION.

The reflex switch! is an opening switch concept developed by the Physics International
Company (PI) for use with magnetic energy storage. Figure 1 illustrates the geometry of
a reflex switch. The device is a triode with a positively charged thin foil anode placed
between a primary cathode connected to the pulse power generator and an electrically
floating secondary cathode. An externally applied magnetic field maintains axial electron
flow.

_O,O,O,O,O,,,,,, G

—
.o e o8 88w

K1 A K2
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Figure 1. Configuration of the reflex switch. A thin foil anode, A is placed between the
primary cathode K1, and a floating secondary cathode K2.
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The anode is a thin metallic or plastic foil a fraction of an electron range in thickness.
During a high-voltage discharge the foil is covered by a plasma of sufficient density to allow
ion emissicn. The essential feature of the reflex triode is that electrons emitted from both
cathodes lose energy traversing the anode foil and are reflected by the opposite cathodes.
Electrons continue to “reflex” through the anode until their kinetic energy is small enough
for them to be absorbed.

Normalized current density

2 4 6 8 10 12

N (average number of transits)

Figure 2. Electron and ion current densities (normalized to the bipolar Child-Langmuir
value) versus number of transits 5 through the reflexing foil anode. Theoretically

the current densities become arbitrarily large at a critical value of  (from Ref.
4).




In connection with an experiment involving double diodes, Smith? developed a model
showing that multiple reflections of electrons combined with the flow of positive ions from
the anode could produce a large increase in current over the usual Child-Langmuir value®
for a given gap voltage. Likewise, the reflex triode would be expected to achieve an
impedance much lower than a diode of comparable gap spacing and potential. Prono,
et al.* developed a one-dimensional, steady-state theory of reflex triodes demonstrating
the existence of such low-impedance equilibrium states. These equilibria depend crucially
on the distribution of electrons in the vicinity of the the anode foil and therefore on the
average number of transits through the anode, n. Figure 2 shows how the equilibrium
current depends on the reflexing parameter 7. Theoretically, there is a critical value of 5
at which the current becomes arbitrarily large, i.e., the dynamic impedance drops to zero,
although in a real device the circuit would keep the current finite.

Figure 3 gives examples of the potential profile in one of the gaps at equilibrium and
shows how the profile changes with 5. Note that as  increases, the potential tends more
and more to resemble a sheath. Thus the effective gap becomes narrower consistent with
reduced impedance. During this stage, the voltage drop across the anode-cathode gap
remains approximately constant. This voltage is determined by the electron energy gain
necessary to maintain the reflexing electron population. Generator voltage in excess of
the reflexing voltage yields a corresponding increase in switch current flowing through the
inductor. The reflex switch operates in a high current, low voltage “closed” mode.

Equilibrium theory has been helpful in understanding the basic characteristics of the
reflex triode. However, the steady-state model does not address the dynamics. For exam-
ple, it is unclear how the triode attains a steady state, and whether the steady state is
stable. While experiments indicate that low-impedance states of the reflex triode may be
obtained,! experimental diagnostics are inadequate to characterize the local electric fields
in the switch, let alone the microphysics of the electron and ion distributions. Therefore,
dynamical calculations, using particle simulations as a model, can be helpful in under-
standing the physics of the reflex triode.

Switch opening is thought to begin when a plasma fills the secondary cathode-anode
gap. This gap is usually smaller than the primary gap, and therefore it should fill up with
plasma first. The plasma effectively shorts the secondary cathode to the anode potential.
When this occurs the electrons stop reflexing: they move to the secondary cathode where
they are absorbed. The vacuum inductance tries to maintain the current achieved in the
reflexing mode, but there are insufficient electrons. As a result, the voltage across the
diode must rise sharply.

Once the switch has opened the impedance of the primary gap should correspond to a
bipolar Child-Langmuir diode. However, the ion population in the reflexing state is larger
than in a bipolar diode. It takes an ion transit time before the excess ions are cleared from
the gap. Thus the opening time should scale with the ion transit time.

1.2 SIMULATION OF THE CONDUCTION PHASE.

The first attempts at modeling the reflex switch utilize an existing two-dimensional
particle code, ELECTRA.> ELECTRA uses an electrostatic, magnetostatic formulation
for the electromagnetic fields in a cylindrical r-z coordinate system. Particles are advanced

3




Normalized potential

n=10.94

0 0.2 0.4 0.6 0.8 1.0
Normalized distance

Figure 3. Potential profiles (normalized to the anode potential) as solutions to the steady
state reflex triode problem. As 5 approaches the critical value, the profiles begin
to resemble that of a sheath (from Ref. 4).

in time using the relativistic Lorentz force equations. Particle emission based on Gauss’s
law is allowed from conformal surfaces of internal conductors. Features of ELECTRA
relevant to this problem are an ad hoc foil scattering module, external magnetic fields, and
a floating conductor. Additional options include a variable spaced mesh and color graphics
post-processing.

The simulation parameters are taken from the MOSES I experiment operated by
Physics International.” In MOSES I, two Marx banks separately charge the anode and




cathode up to 100 kV for a net 200 kV maximum difference in potential across the elec-
trodes. The anode foil normally used in MOSES I consists of 2um Kimfol whose main
component is carbon. Optimal gap spacings are 8 cm for primary gap and 6 cm for sec-
ondary gap. The cathode has rollpins or needles on its front face to enhance electron field
emission.

During these experiments, the Reflex Switch operated at a conduction phase voltage
of 60 kV and current densities hundreds of times higher than bipolar Child-Langmuir. The
switch opens to over 500 kV. An electron could be expected to reflex 10-15 times.

Humphries and Xu® investigated the time-dependent behavior of the Reflex Switch
using a one-dimensional nonrelativistic particle code. Their study proceeds in two stages.
In the first stage, the secondary cathode is placed at the same potential as the primary
cathode. The simulation is evolved forward in time until an equilibrium is reached. The
secondary cathode is then switched to the anode voltage to observe the opening process.
In equilibrium most of the voltage drop occurs near the anode and a smaller drop near
the cathode, with an approximately constant voltage in the remainder of the gap. In their
computations, the opening time is proportional to the square root of the ion mass, i.e.,
proportional to the ion transit time.

The simulations here use the same methodology. The voltage difference between the
anode and cathode during the conduction phase is given by

_ | Vosin(nt/2T7) O0<t<T, _
V(t)_{v0 t>1 . (1-1)

{ After the initial ramp, the voltage is kept constant. This situation would apply if the
device were connected to a parallel capacitor.

The simulation comes to an equilibrium with a reflexing electron population when the
secondary cathode charges up and reflects subsequent electrons. Ions are then emitted from
the anode and after a longer time depending on the ion mass the simulation again comes
to an equilibrium. The simulation is stopped at this point in order to set the secondary
cathode to the anode potential by external intervention. This procedure is designed to
mimic the shorting of the secondary anode-cathode gap by processes taking place in the
high-density plasma that are outside the simulation. The simulation is then restarted to
¢ observe the opening dynamics.

The configuration of the simulations is similar to Figure 1. Typical values for simu-
lation parameters are: a primary cathode radius of 3 cm, a anode inner radius of 5 cm, a
primary gap spacing of 8 cm, and a secondary gap spacing of 6 cm. The voltage risetime
is & ns with a maximum voltage between the primary electrodes of 60 kV to 200 kV. The
foil thickness is varied to allow from 0 to a maximum of 15 reflexes. Either carbon ions,
s hydrogen ions, or artificial ions with sub-protonic mass are emitted from the foil assuming
space-charge limited emission. The external magnetic field strength is 5 kG.

Qualitatively the simulations reproduce what is expected from the stationary theory.
1 For example, Figure 4 shows the voltage for a run with maximum applied voltage of 60 kV
and foil thickness of 2um. Hydrogen ions are emitted from the anode. The potential con-
T tours are concentrated near the anode as expected. There is very little current carried in the
1 region above the cathode shank. The magnetic field keeps the electron flow well-confined.
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Figure 4. Contour plot of the electric potential in reflexing equilibrium. The labels on
the contours are in volts with the values ranging from 0-60 kV. The contours
of constant potential are tightly clustered near the anode foil particularly at the
cathode radius.

The current found by the simulation in the reflexing state is 2.4 kA. However, this value
is an order of magnitude higher than a bipolar Child-Langmuir diode, but twenty times
below the currents achieved , : *he experiment. Moreover, the two-dimensional variations
seen in the code make a purely one-dimensional model seem suspect.

Several cases were run varying the scattering model, voltage, and foil thickness. In all
cases, the simulation current is more than an order of magnitude below the experimental
results. There is a discrepancy between what the theory predicts and the experiments
measure and what the simulations are able to achieve. One possibility is that discrete
effects in the simulation overwhelm the relevant physics. This is tested by increasing the
resolution of the simulation. The number of particles was varied by a factor of three and the
grid resolution was also varied by a factor of 2.5 without suvstanti:l change in the current
or equilibrium profiles. The simulations with ELECTh A are voltage driven. With the
voltage drop held fixed, the simulatior * .nahle to adjust itself to find the low-impedance
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state. This suggests that the switch must be modeled as part of a circuit.

REFLEX is a one-dimensional electrostatic particle-in-cell (PIC) simulation of a pla-
nar triode coupled to a circuit model developed expressly for studying the reflex switch.
REFLEX is discussed more thoroughly in Section 9 of this report. The self-consistent
coupling of electron and plasma dynamics to a circuit model is an unusual feature of the
simulations described in this study. It is nonetheless an essential requirement for following
the dynamics of the reflex triode as it seeks an impedance consistent with its interaction
within the circuit as a whole. REFLEX extends the PIC-circuit simulations pioneered
by Lawson®® to the complex situation demanded by the reflex switch application. An
additional feature is the electron-foil interaction via a Monte Carlo module described in
Appendix C which scatters electrons in angle and degrades their energies as they pass
through the foil.

The one-dimensional simulation demonstrates how a reflex triode can attain a low-
impedance state. The parameters in the simulation match the circuit parameters of the
first EYESS experiments at Physics International.!® Each power supply is charged to 800
kV, discharging into transmission lines with length 1.25 m, inductance 130 nH and a
capacitance 130 pF, connected to a circuit with L=500 nH, R=0.2  and C=1 uF. The
impedance of the transmission line is approximately 30 0. The area of the plates is 570
cm?: this choice is needed to match the impedance of the diode to the transmission line
during the initial high-impedance bipolar Child-Langmuir phase. Both diode gaps are 4, 6,
or 8 cm and the anode is assumed to be 2 um mylar foil. Each gap is resolved by 80, 120,
or 160 cells, hence the simulation grid size Az = 0.05 cm, and the timestep is At = 1.5 ps.
This ensures that electrons with energies up to 800 keV will move less than a single cell
per timestep. Electrons are field-emitted from the primary and secondary cathodes. lons
with an artificial mass ratio of m;/m, = 100 or with the hydrogen value of m;/m. = 1836
are emitted from both sides of the foil anode.

Figure 5(a) is the voltage as a function of time, Figure 5(b) is the the current, and
Figure 6 is the time-averaged voltage. Initially, the voltage rises rapidly to a value close
to the capacitor bank voltage, exhibiting oscillations that are too fast to be seen in an
experiment. The voltage then declines as the conduction phase is reached. During this
time the current rises steadily as the impedance decreases. After hitting a minimutn at
170 ns, the voltage slowly increases again as the current continues to rise.

Figure 7 clearly shows on an expanded scale that the oscillations in the voltage are
regular, and on the scale of the electron transit time as expected from a fundamental mode
of the triode. Close examination of particle data shows that the mode comes from the
collective motion of electrons “sloshing” back and forth across the foil anode, alternately
pushing the voltage in the gaps up and down.

Movies of the electron phase space provide fascinating insight in the dynamical be-
havior of the reflex switch, but this section can only show a few typical snapshots. In
the earliest time before the start of the oscillations at 7 ns electrons from both cathodes
accelerate toward the foil. They penetrate the foil, and disperse in phase space through
directional scattering and energy loss (not shown). The beams remain symmetric until
some streaming instability mixes the beams together. The instability creates the space-
charge bunch seen in Figure 8(a). The bunch rotates: moving up and down in phase space
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Figure 6. Time-averaged voltage versus time for the simulation of a symmetric triode with
4 cm gaps and with protons as the ionic species.

is directly related to energy oscillations of the electron. Therefore, the rotation of the
bunch is correlated with the rapid voltage oscillation in Figures 7 and 5(a). Eventually the
system relaxes to the state shown in Figure 8(b) in which electrons are accelerated across
a small cathode sheath, drift across the neutral region, and are accelerated in the small
effective gaps near the anode.

By 50 ns (not shown) the sloshing mode still continues but causes the entire phase
space to oscillate up and down in what appears to be a standing wave pattern. The phase
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Figure 7. Expanded view of the fast oscillations of Figure 5(a) during the first 15 ns. The
oscillation period closely matches the transit time of electrons across the gap.

space in both halves of the triode move together indicating that the oscillation in one
gap is 180° out of phase with the other gap. As the voltage decreases and concentrates
near the anode, the phase space oscillations begin propagating from the anode to the
cathode. The wavelength decreases as the voltage decreases until ~ 150 ns. Figure 8(b)
shows the little sprays of electrons that are accelerated by these waves. The oscillations
are born in the anode sheath and move towards the cathode opposite in direction to the
motion of unscattered electrons. These waves quickly saturate in amplitude in propagating
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from the anode to the cathodes. The waves in the first gap and secondary gap start out
uncorrelated, but are later on coupled by electron space charge oscillations through the
foil.

The transition between high and low-impedance states is evident from the electric
field profiles of Figure 9. Figure 9(a) shows a field profile typical of an ordinary diode.
However, during the low-impedance state, seen in Figure 9(b), the profile has changed dra-
matically. Now there is a region essentially free of electric field over most of the diode gap,
and a thin sheath with strong electric fields near the anode across which the electron flow
is space-charge limited. The narrowing of the space charge region is consistent with the
lowered impedance. It should be noted that the accelerating regions near the electrodes
do not exhibit bipolar Child-Langmuir flow. Near the anode, the electrons have a much
larger space charge than in bipolar Child-Langmuir flow due to their multiple reflections,
and this increases the ion current.

The ion phase space in Figure 10(a) shows that early in the simulation the ions are
accelerated over most of the diode gap. As the low impedance equilibrium is established,
the ions in Figure 10(b) are accelerated by the narrow anode sheath and drift across the
remainder of the gaps. Neutral plasma formed by the electron and ion beams now fills
most of the gaps. In this region we can see plasma waves with features similar to the
well-known two-stream instability.’? Determination of the relative electron-ion drift in the
neutral regions and of the plasma wavelengths seen in the figure are consistent with the
dispersion relation for these unstable waves.

The principal characteristics of the various runs done for different parameters are
summarized in Table 1. R,, is the ion to electron mass ratio. The time t,;, is time at
which the voltage experiences a minimum when approaching the low impedance state and
Vinin is its value. I,,;, is the value of the current at this time. The last entry in the table
is the time at which the voltage decreases to 240 kV after hitting its initial peak. The data
indicate that the time to approach the low impedance state is independent of the ion mass
in the ranges investigated. The time for the minimum in the € cm case is about 1.5 times
longer than the 4 cm cases, linear with the gap spacing. For an 8 cm gap, the voltage had
not achieved a clearly identifiable minimum during this simulation run. For the artificially
light ions and protons, the time to attain 240 kV appears to be ~ 30 ns/cm times the gap
spacing. Thus the time to reach the low impedance state appears to be roughly linear with
the gap spacing.

Table 1. Parameters and results from four REFLEX runs.

Gap(cm) Rn tmin (nS) Vin (kV) I(kA)@t,nin t(ns)@240 kV
4. 1836. 170. 150. 120. 130.
4. 100. 170. 150. 160. 110.
6. 100. 230. 170. 170. 180.
8. 100. ? ? ? 240.
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1.3. REFLEX SWITCH OPENING

In the computations the reflexing state described above would persist, but the ex-
periments contain additional phenomena that trigger switch opening. The opening of the
reflex switch is believed to occur when the secondary gap is completely filled with plasma.
The secondary gap is shorted by the plasma and upsets the reflexing equilibrium which
causes the impedance to rise in the primary gap. The plasma is believed to be created by
either expansion of electrode plasmas or by ionization of fast charge-exchange neutrals.!!!
Whatever processes create plasma in the secondary gap will also be at work in the pri-
mary gap, but the secondary gap is smaller and shorts first. In the simulation the plasma is
added to the secondary gap in an ad hoc fashion which is not intended to accurately model
plasma closure in the experiments: its sole purpose is to elucidate the opening dynamics
of the reflex switch.

In order to save computation time, a run with a floating conductor is not started from
scratch. Instead the run is restarted at time 450 ns with a new circuit for the secondary
gap. The charge across the secondary circuit capacitor is set to zero and the secondary
circuit resistance is increased to 1.0 x 10'? Q, effectively isolating the secondary cathode
from ground. This run proceeds for 30 ns. Figures 11(a) and 11(b) show the time averaged
current and voltage for the primary gap, and Figure 11(c) shows the time-averaged voltage
in the secondary gap. The voltage across each gap increases to ~ 460 kV. The current in
the primary gap remains approximately the same: the current through the 1 TS resistor
in the secondary gap drops to virtually zero. An equilibriuin is established very similar to
the old one as can be seen from the electron and ion phase space plots in Figure 12.

For the next 10 ns after this time, 480 ns, a plasma consisting of protons and electrons
with a spatially uniform density increasing at 103 cm™2/ns, is artificially added ir.to the
secondary gap. By 10 ns the plasma in the secondary gap has a density of 10'* cm=3. The
purpose of this plasma is to electrically short the secondary gap.

Figure 13 gives the current and voltage of the primary gap, and the voltage of the
secondary gap, for the next 60 ns. The current in the primary gap during this time drops
from 360 kA to 180 kA, while the energy from the vacuum inductance is being transferred
to the diodes. During the first nanosecond the voltage in the primary gap decreases to near
zero. During the next 12 ns the primary voltage increases sharply to 3 MV after which
time it drops more slowly to 2 MV by the end of the run. The voltage in the secondary
gap, which also drops to zero during the first nanosecond, starts to rise again, and drops
back towards zero where it remains noisily shorted for the remainder of the run.

During the first nanosecond, the reflexing equilibrium is upset by the plasma in the
secondary gap. The electron density in the vicinity of the anode foil drops dramatically.
The anode sheath collapses to a small size, with a corresponding decrease in the voltage
because this is no longer needed to maintain the current across the smaller anode sheath.
The decrease in electron space charge near the anode decreases the ion emission from the
anode. The evolution of the opening event are highlighted in four electron phase space
plots of Figure 14 at 3, 6, 9, and 12 ns after the beginning of plasma creation, and in four
ion phase space plots for these same times in Figure 15.

The phase space plots in Figures 14(a) and 14(b) at 3 ns show the anode sheath
expanding towards the primary cathode, with neutral plasma filling the bulk of the primary
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y Figure 14. Electron phase space plots at (a) 3 ns, (b) 6 ns, (c) 9 ns, and (d) 12 ns after the
introduction of plasma into the secondary gap. The velocity axis is expressed in
dimensionless code units. The electrons are accelerated by an expanding anode
sheath: oscillations are suppressed.

; gap. A larger voltag- is seen across the anode sheath while the voltage across the cathode
sheath remains abcit the same. At 6 ns, the ions in the gap are moving at about half
of the speed that ion: were at the beginning of the opening. lons accelerated across the
anode sheath pile up against flowing plasma, creating the dips at x=2.5 cm seen in both
the electron and ion phase spaces in Figures 14(b) and 15(b). A larger cathode sheath
1 is forming as the cathode sheath starts expanding at a rate which is still slower than the
anode sheath expansion. The ions in the gaps prior to the initiation of the opening event
continue to mainly free stream towards the cathodes. The ion emission from the anode
f is unable to replenish the density of ions that are leaving. In the primary gap, the anode
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Figure 15. Ion phase space plots at (a) 3 ns, (b) 6 ns, (c) 9 ns, and (d) 12 ns after the
introduction of plasma into the secondary gap. The velocity axis is expressed
in dimensionless code units. The opening time depends upon sweeping the ions
from the gap.

sheath expands towards the cathode following the stream of original ions. The inductance
in the circuit tries to maintain the same current. An increased voltage drop is required
to maintain the electron current across the widening anode sheath. By 9 ns, most of the
original plasma is gone from the gaps. The cathode sheath is accelerating the removal of
the ions in the gap. No neutral plasma is left in the primary gap by 12 ns as can be seen
from Figures 14d and 15d. The ion and electron phase plots at this time show a bipolar
Child-Langmuir flow in the primary gap. The primary gap acts like an ordinary vacuum
diode thereafter.
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1.4 DISCUSSION.

The early attempts at simulating the reflex switch utilized the existing PIC code
ELECTRA. Some of the features of the simulation appeared qualitatively correct. How-
ever, it clearly did not achieve the low-impedance state predicted by the theory. This led to
the development of the REFLEX code, described in Section 10. REFLEX self-consistently
includes the effects of an inductive circuit attached to the simulations necessary for finding
the low-impedance phase. REFLEX is able to establish a low-impedance phase, explore
its dynamics, and simulate an opening event.

The first feature revealed by the REFLEX simulations is the fast electron transit-time
oscillations that pervade all runs. These oscillations only occur when the primary and
secondary diodes are coupled by a transparent foil. When the foil is made opaque, the
voltage does not oscillate. The simulation diagnostics, including movies of the electron
phase-space having good time resolution, show that these oscillations occur after natural
perturbations growing out of the interpenetrating electron beams begin to push substantial
electron space charge back and forth across the foil. These electrons transit the gaps,
impact the cathodes, and increase the voltage. The increased voltage sends electron clouds
back across the foil producing steady oscillations.

The interesting plasma/circuit modes discussed above are linked with electron turbu-
lence in the simulations. The turbulence mixes the electron beams and quickly destroys
the early symmetric spiral patterns of electrons in phase space. Steady-state models have
assumed that the electron distribution in the vicinity of the foil results solely from elec-
tron beams repeatedly scattered by the thin foil. Collective interactions among beams are
usually neglected. However, according to the simulations the stationary assumption is an
oversimplification of the electron distribution. Instead the dynamical behavior has impli-
cations for the validity of such models if they are sensitive to the details of the electron
energy spectrum near the foil.

Simulations with various ion masses indicate that the time to establish equilibrium
does not depend on the ion mass (between the artificial mass ratio 100 and 1836 for
hydrogen). Runs with higher mass particles would be needed to extend this result, but
these runs are quite expensive computationally. The ion mass could come in when the ion
transit time across the gap is larger than the time to establish equilibrium by the relaxation.
This time increases linearly with the electrode gap spacing in the computations.

The simulations clearly show the sequence of events during opening. In a previous run
stopped at an equilibrium configuration the secondary gap is shorted by artificial loading
with plasma. Subsequently, the reflexing electron equilibrium is destroyed very quickly.
This leads to the collapse of the anode sheath and drop in the voltage. The ions continue
their streaming motion from the anode to the cathode. The subsequent ion emission is
insufficient to replace the ions streaming away. The anode sheath expands with the ion
motion with the resulting increase in voltage. Most of the opening event involves ions
free streaming with some erosion from an expanding cathode sheath later on. The gap is
completely open when all vestiges of plasma are gone and the primary gap behaves like a
vacuum diode.

The computations suggest that the opening time is controlled by the rate at which ions
are removed from the primary gap. Thus it becomes desirable to minimize the amount of
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ions in the primary gap just prior to opening. The opening of the reflex switch is believed
to be caused by shorting of the secondary gap by plasma which is caused by either electrode
plasma expansion or by the ionization of fast charge-exchange neutrals. Whatever process
creates plasma in the secondary gap will be at work in the primary gap as well. This
issue is not addressed in these simulations. Switch opening should occur mainly by anode
sheath expansion, at least when the ion density is largely uniform throughout the primary
gap.

The simulations described above are performed in order to probe the dynamical be-
havior of a reflex switch. Simulations are primarily an intuition building exercise whose
aim is to facilitate the development of more complete theories and the design of critical 1
experiments. Compromises with reality are inevitable, e.g., the simulations are purely
one-dimensional and electrostatic. It is not known how electromagnetic effects or the
additional degrees of freedom available to three-dimensional systems would modify the
phenomena. Oscillations tend to be coherent in one-dimensional systems, while in real
three-dimensional systems the phase of oscillations at locations transverse to the axial
direction could become mixed. It is quite possible that the effects of the instabilities en-
countered in these simulations are mitigated by the inclusion of electromagnetics as well
as by higher dimensionality.
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SECTION 2

ACCUMULATION OF NEUTRALS IN PLASMA OPENING SWITCHES
FROM PLASMA BOMBARDMENT OF ELECTRODES

Plasma injected into a Plasma Opening Switch hits the electrodes, where it drives
off surface contaminants into the vacuum, mostly as neutrals. The spatial and energy
distribution of the neutrals is estimated using the Monte Carlo computer code TRIM.SP.!*
These neutrals can increase the density of the injected plasma twofold (or more), which
can significantly affect the behavior of the opening switch. The purpose of this work is to
quantify the unintended plasma from electrode blowoff, in order to stimulate measurements
and any remedial action that may be fruitful.

2.1 OPENING SWITCHES AND ELECTRODE PLASMAS.

Pulse compression and voltage multiplication in pulsed-power systems can, in princi-
ple, be done efficiently by storing electrical energy in a current-carrying inductor followed
by an interruption of the current. The crucial component of this inductive energy stor-
age technique is the opening switch. It has proven to be difficult to develop an opening
switch with a long conduction time (~ 1-10 us) that opens rapidly (in ~ 10-50 ns) at high
currents (MA’s). Ongoing research aims to increase the conduction time, to increase the
conduction current, and to reduce the opening time.

Opening switch concepts such as the Plasma Erosion Opening Switch, the Density
Controlled Opening Switch and the Plasma-Filled Diode, conduct the current through a
plasma injected between the metal electrodes. Longer conduction times generally require
more plasma, which can be provided by leaving the plasma sources on longer. Then
the injected plasma interacts longer with the electrodes. Plasma-electrode interaction
effects, such as material blowoff, are likely to be greater for long conduction time switches.
Obviously, both the conduction and opening phases should be strongly affected by the
initial state of the plasma. Here we show that the initial plasma density can be strongly
affected by blow-off from the electrodes.

In a Plasma Opening Switch the plasma is usually injected from the anode to the
cathode with either a plasma gun or a flashboard. These sources produce a plasma plume
that consists mostly of singly and doubly ionized carbon with a density of 10'3/cm® to
10'® /cm®, and a drift velocity from 4 to 20 cm/us. Typically, in a moderate (10-* —10~°
Torr) vacuum an electrode is covered with ~100 monolayers of hydrocarbon adsorbates.
High-speed ions that hit these weakly bound adsorbates can splatter atoms and molecules
out of the monolayers back into the gap. More than 90 % of the particles that leave the
surface can be neutrals with energies significantly less than the incident ions. Therefore,
the density of blown-off neutrals can be an order of magnitude higher than the density of
the incoming plasma. The neutrals can be ionized by collisions with the incoming plasma,
substantially modifying the intended plasma density.

Some aspects of plasma-wall interactions have been studied extensively in the nuclear
fusion community, especially the effect on single elemental materials in a clean environ-
ment from impact by energetic ions (above 1 keV). Computer simulations using Monte
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Carlo methods reproduce the experimental data. The data presented below are obtained
with such a computer code (the TRansport In Materials code TRIM!>4), which is ap-
propriate for the amorphous surfaces formed by the adsorbates on the electrode surfaces.
For crystalline suzfaces, a slower computer code MARLOWE!® is more applicable. The
various codes also give insight in the dynamics of sputtering phenomena.'® However, our
purpose is principally to make the DNA community aware of the expected magnitude of
the unintended plasma from electrode blowoff in order to stimulate measurements, and
possibly remedial action.

Subsection 2.2 contains a brief discussion of TRIM, including reasonable estimates for
the (badly characterized) parameters, the composition and binding energies of the dirty
surfaces encountered in pulsed-power environments. Subsection 2.3 presents results, such
as the number of atoms entering the vacuum per incident ion as function of energy and
angle of the incident ions, for different composition and binding energies of the surface. In
the absence of quantitative data for surfaces encountered in typical pulse power vacuums,
the quantitative numbers generated by this investigation are probably correct in magnitude
but not accurate. However the trends and conclusions should be correct.

2.2 MONTE CARLO TRANSPORT IN MATERIALS CODE TRIM.

TRIM.SP'314 is a Monte Carlo computer program that follows the interaction of
energetic particles with individual target atoms. With a given atomic density N the
atoms are £ = N~1/3 apart, on average. In TRIM the target atoms’ positions are related
through a randomly generated impact parameter, which ranges from 0 to a maximum value
of £/x'/2. Also the impact angle is chosen randomly, as appropriate for an amorphous
material. TRIM simulates composite materials by random selection of the target ions, and
simulates layered structures by using target ions that depend on the penetration depth of
the ion.

For a given incident energy and angle, each ion and the subsequent recoil atoms are
followed through their slowing-down processes until their energy falls below a predeter-
mined level or until they have moved back through the surface. In each collision the ion
energy is reduced as a result of nuclear and electronic energy losses. Whenever a new recoil
atom is created, a certain amount of energy, the binding energy, is subtracted from the ion
energy, and whenever the recoil atom leaves the surface, the surface energy is subtracted.
These energies are two important parameters in TRIM.

An ion can interact with a surface in three conceptually different ways, viz., backscat-
ter, sputtering, and desorption. An incoming ion that interacts with a material interface
is likely to acquire neutralizing electrons. The incident ions that come back from the sur-
face, mostly as energetic neutral atoms, are backscattered. However, most frequently the
incoming ion burrows itself into the material, dislodging other atoms in the process. When
atoms from the crystalline substrate leave the surface the process is called sputtering, when
surface contaminants leave the surface the process is called desorption. Experimentally it
is possible to distinguish backscattered atoms from sputtered atoms when the incoming
ion is a different species than the target material (although the code tracks the incom-
ing ion and sputtered atom separately even when they are the same species). Sputtering
and desorption involve the same physical processes, viz., the loosening of atoms from the
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solid. In the absence of good data on electrode surfaces in pulse power systems, we do not
distinguish between sputtering and desorption.

Sputtering generally dominates over backscatter. In Plasma Opening Switches the in-
cident ion is the same species as a principal contaminant, carbon. Therefore the sputtering
yield, the number of neutral atoms coming back per incident ion, will refer to the total
emitted neutral atoms without distinguishing between the sputtered and backscattered
atoms. Again, the semi-quantitative information we seek is unaffected by not distinguish-
ing between backscatter, sputtering, and desorption.

TRIM calculates the sputtering yields of each component, i.e., both the total number
of reflected ions and the distributions of the sputtered particles in energy and in angles.
TRIM also provides detailed information on primary and secondary knock-on atoms, the
deposition depth profiles of the incoming ions, and similar quantities useful for ion implan-
tation studies (but not of interest here).

A crucial input parameter in TRIM is the total binding energy, which is the sum of the
binding energy of the atoms to the surface, the surface energy, and the binding energy of
the atoms inside the material, the bulk binding energy. Theoretically,'® in an intermediate
range of incident energy around 1 keV the sputtering yield should be inversely proportional
to the surface binding energy. However, for elemental surfaces the sputtering yield turns
out to depend!* only on the total binding energy. For convenience the bulk binding energy
is set to zero, and the sole rcinaining parameter is the surface binding energy.

For the present study the surface binding energy is chosen in the range of 1 to 5 eV per
atom. Values like these are obtained for one or two monolayers on simple surfaces. When
the surface is composed of solid compounds whose components are also solids, the surface
binding energy is the heat of formation of the compound minus the heat of sublimation
of the components. This is typically hundreds of kJ per gram-molecule, or a few eV per
atom. For water a similar line of argument gives the total surface binding energies for the
hydrogen and oxygen atoms in the water molecule, A Esgg (H;0), to be equal to the heat of
formation of water, AE;(H;0), minus the heat of formations of the hydrogen and oxygen
molecules from their atomic states, AEsgg (H20) = —AE;(H:0)+ AE;(H;)+AE;(0,).
This gives for the surface binding energy of hydrogen and oxygen atoms in water about
4-5 eV, in the same range.

For more complicated contaminant molecules such as hydrocarbons this way of esti-
mating the surface binding energy is less appropriate, because the component atoms of
these large molecules are usually sputtered one atom at a time. Therefore, the binding
energy of these atoms to the molecules is more accurately prescribed by the bond strength
between the atom and the molecule. Hydrocarbons have bond strengths for the different
C-H bonds around 4 eV. For water the bond strength should be an equally good repre-
sentation of the surface binding energy: the bond strengths of O-HO and O-H bonds are
also in the range of 4-5 eV. The different components of a compound have different bond
strengths and hence they should have different surface binding energies. Our version of
the TRIM.SP code uses only a single binding energy, which we justify by noting that the
surface binding energy for all of the carbon, oxygen and hydrogen atoms are close to 4 eV.
These considerations suggest a reasonable value for the surface binding energy to be a few
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eV. To see what the effect the surface binding energy has on the calculation, the surface
binding energy is varied from 1 to 5 eV in the computations.

Another variable is the chemical composition of the surface. Hydrocarbons and water
are the most prevalent, i.e., mixtures of hydrogen, carbon, and oxygen. Fortunately, the
exact composition of the rurface contaminants has a minor influence on the results.
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Figure 16. Total emission coefficient C7(a) as a function of the incident angle « for incident
carbon ions with 2.2 keV and an assumed binding energy of 5 eV.

The remaining variables belong to the incoming ion, viz., the energy £ and the angle
of incidenc~ a. The drift speed of the plasma is usually greater than the ion thermal
speed. Therefore the ions have basically a single energy at a given point. The energy is
largest early in the injection pulse, and decreases later. A typical velocity for an injected
carbon plasma into a plasma opening switch is measured to be around 10 cm/us, which
corresponds to an energy £ ~ 650 eV. The computations are therefore done for £ from a
few hundred eV up to a few keV.

2.3 RESULTS AND DISCUSSIONS.

TRIM provides the total number of emitted neutral atoms per incident ion, the sput-
tering yield Y,, as functions of the incident energy £ and of the incident angle a. However,
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for a given incoming flux the incoming ions are spread over an area inversely proportional
to cos a. Therefore, the sputtering yield Y, must be multiplied by cos a to normalize to
the ion flux. This results in the total emission coefficient, Cr(a) =Y, cosa.
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Figure 17. Total emission coefficient C1(60°) as function of incident ion energy.

Figure 16 shows the total emission coefficient Cr(a) as a function of incoming angle
a for carbon ions of 2.2 keV and a surface binding energy of 5 eV. The total emission
coefficient C7(a) increases from about 0.1 at @ = 0° to a maximum of about 1.0 at an
incoming angle a ~~ 70°. Since the plume from a plasma gun or flashboard has an angular
spread and since the electrode surfaces are normally curved, the total emission coefficient
involves an appropriate average over angles. In a Monte Carlo computation the statistical
uncertainty of the results are lowest with the most particles emitted. Computationally, the
most convenient angle gives the most particles, therefore a = 60° is chosen as the standard
incident angle.

The carbon ions in the plasma opening switch are injected with a velocity in the range
of 4x10° to 20x10° cm/s. A typical velocity of 10" cm/s corresponds to a kinetic energy
of 0.65 keV. Figure 17 shows the total emission coefficient Cr(60) at a = 60° as function
of the incident ion energy €. The number of particles emitted increases as the incident ion
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Figure 18. Sputtering yield Y,(60°) as function of binding energy and incident energy.

energy increases by a factor of three from 0.1 keV to 1 keV and remains approximately
constant thereafter.

It seems surprising that Cr depends quite weakly on energy at higher energies. This
is due to the deeper penetration of the faster ions, which makes it more difficult for the
sputtered ions to escape from deeper inside the material.

Figure 18 shows the sputtering yield Y,(a = 60°) as function of the surface binding
energy £,;, for an incoming carbon ion with impact energy £ of 0.65 keV, 1.5 keV, and
2.2 keV. More than one neutral atom comes back for each impinging ion irrespective of
the surface binding energy. The sputtering yield Y, is approximated reasonably well by
Y, ~ 2/€;, , where the exponent s is between 0.7 for the smaller impact energy, and 0.5 for
the higher impact energy. This dependence agrees with expectations.!*

The sputtering yield depends weakly on the exact composition of the surface. For the
same surface binding energy, £, = 4 eV, but different concentrations of oxygen, carbon
and hydrogen, the sputtering yield is highest around 40% oxygen and no carbon, Y, ~ 1.4,
and lowest with 40% carbon and no oxygen, Y, ~ 0.95. Thus, sputtering is 40% higher
when water is the only surface contaminant than with pure hydrocarbons on the surface.
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These and other computations show that the flux of neutrals from the surface is com-
parable to the flux of ions hitting the electrode in the plasma opening switch, irrespective
of the exact parameters of the incoming plasma or the electrode surface. When the neu-
trals are ionized they become part of the plasma, changing the intended plasma density
and affecting opening switch behavior.
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Figure 19. Normalized velocity distribution of the neutral atoms coming off the surface,

assuming a binding energy of 5 eV.

Ion impact creates neutral atoms that flow away from the electrode back into the
gap with velocity v, at an angle 8. The returned neutral density distribution n,(v,,f) is
given by the differential sputtering coefficient C(v,, v;, 8, @): the total sputtering coefficient
shown in Figures 16-18 is Y, cosa = Cr(v;,a) = [ dBdv,C. In terms of C the incoming
and returned ion densities are related by

v, cos fn, (v,, B) = C(v,, v, B, a)n;v;.
The distribution of the returned ions can be found given the incident ion velocities

and angles. Assume that the incident ions come in at 10 cm/us (0.65 keV) with an
isotropic angular distribution. Then Figure 19 shows the normalized velocity distribution
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function of the emitted neutral atoms, n, (v, S)/n;, as a function of the velocity v, cos 8
perpendicular to the surface. The velocity distribution of the neutral atoms looks very
much like a Maxwellian, with a thermal velocity of around 1 cm/us, an order of magnitude
slower than the incoming ion. The energy of the sputtered ions corresponds to about 9
eV. '

These cold neutral atoms can be ionized through direct ionization by the incident 4
plasma, but the dominant process is charge exchange: the cross section of ionization is
about 10-® cm? while the charge exchange cross section is about 10! c¢m?.
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Figure 20. Density of the desorbed plasma as function of distance to the electrode surface
after 0.5 us long ion bombardment.

To calculate the density of cold ions formed in the charge exchange process the density
profile of the neutral atoms must be known. If the neutrals freely expand, the density of
neutral atoms with normal velocity v at a distance z and at time t is the same as the
density very near the surface (z = 0) at a time t — z/v earlier. Of course, there are no
atoms beyond z = vt. Therefore, the total density at = and ¢t is

n(z,t) = /ooo f(z,v,t)dv = /: f(z =0,v,t — z/v)dv.
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If the neutral density distribution at the surface remains the same throughout the bom-
bardment, then

n(z,t) = /s: f(z = 0,v)dv.

Figure 20 shows the density as function of distance from the surface after 0.5 us ion
bombardment. The bulk of the neutral atoms have migrated about 0.5 cm away from the
cathode surface. The neutral atom density on the surface is about five times the incident
ion density n;. With n; = 10" cm~3 and using 10~!® cm? for the cross section of charge
exchange processes about 25% of the neutral atoms becomes ionized. This gives a cold ion
density of 1.25x10'* cm~3, comparable to the density of incident energetic ions.

2.4 CONCLUSION.

The emitted neutral atoms have two orders of magnitude lower energies than the
incoming ions, and they build up to a substantial density close to the surface, in roughly
a self-similar profile. The neutral atoms are ionized by the incident energetic ions through
charge exchange. The density of the resultant cold plasma is a substantial fraction of the
incident carbon plasma: in these computations the density increases by a factor of two.
The principal conclusion from these computations is that the sputtering affects the density
of the plasma, an effect that should be taken into account in theoretical studies of plasma
openings switches.

In addition to sputtering, chemical desorption could occur from the heating of the
wall surfaces due to bombardment with the energetic ions. Molecules, instead of atoms,
may be released and the molecules are capable of transforming into cold ions through the
same process of charge exchange. These processes, which have not been considered here,
strengthen the conclusion from this work: there could be lots more plasma than you think.

These computations, which were substantially completed in 1989, have been corrob-
orated by experiment. In part inspired by our work researchers at Physics International
have cleaned the electrode surfaces in their Plasma Erosion Switch, by using higher vacu-
ums than customary and by applying discharge cleaning. As a result, their opening switch
improved its opening characteristics and its reproducibility. More recently, measurements
of the plasma density in the Plasma Opening Switch on the HAWK machine at the Naval
Research Laboratory have shown a substantial gradient in the plasma density close to
the (negative) electrode. The plasma density at the cathode is many times higher than
expected from the plasma guns alone.
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SECTION 3
OPENING MECHANISMS OF THE PLASMA-FILLED DIODE

In the early days of plasma-filled diode research three different mechanisms were sug-
gested to explain the diode’s behavior. These are the formation of a vacuum region filled
with space charge, the implosion of the current channel, or an increase in the bulk resis-
tance of the plasma due to turbulence. Simple estimates using electrical and radiation data
point to the formation of a space-charge gap as the opening process. This analysis, done
early in the performance period, has been borne out by the two-dimensional computations
presented in Section 5: it is included here as an example of the considerations that form
the background to the computational work.

3.1 INTRODUCT! 3N.

The plasma-filled diode (PFD) is intermediate between a vacuum bremsstrahlung
diode and a plasma opening switch (POS). In the PFD plasma sources inject plasma
between the electrodes of the vacuum diode. With sufficient plasma the diode becomes
almost perfectly conducting in the early part of the current pulse, and the voltage across
the PFD is small. However at some point, the diode impedance rises rapidly. When the
current is maintained by a large inductance the diode voltage increases. The high voltage
accelerates electrons in the diode region for bremsstrahlung x-ray production.

The PFD can be used as a single stage opening switch, or as the last stage switch in
tandem with a plasma opening switch. Compared to a plasma opening switch spatially
separated from the electron beam diode, which has inductance between switch and load, the
PFD has minimal inductance between the opening switch and beam diode since they both
occupy the same space. The PFD also helps establish magnetically insulated electron flow
to the diode by providing a low-impedance load, yielding better power coupling between
a plasma opening switch and the diode.

Physics International tested this device using the EYESS bank. Available measure-
ments include systems parameters like the capacitance, charge and inductance of the bank,
the inductance and geometry of the transmission line, the charging circuit and delays of the
plasma sources, and the geometry of the diode. Current and voltage monitors recorded
the current and the inductively corrected voltage of the diode, and thermoluminescent
detectors recorded the x-ray dose. These data and details of the EYESS generator, all
graciously provided by Physics International,!” are discussed in Section 3.2.

Early on it was difficult to evaluate the different models directly because the available
diagnostic information does not include detailed plasma measurements such as the location
and density of the plasma fill, or on the location and magnitude of the current density.
Such data have become available only recently. However, even with limited data it is
possible to discriminate between the models. This is done in Section 3.3 for the PFD
experiments at Physics International.

In the PFD a plasma column connects the electrodes, except perhaps in a localized
gap region. The three opening mechanisms have different features indicated in Figure 21.
With gap formation the plasma is presumed to remain a perfectly conducting cylinder,
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but the gap has space-charge limited (Child-Langmuir) flow. With implosion there is no
gap: instead, magnetic pressure implodes a one-dimensional current sheath on the outside
of the plasma. An inductive voltage V = d(LI)/dt then forms across the inductance L,
which increases during the implosion at the rate L. In the third mechanism the plasma
becomes bulk resistive during conduction due to e.g., plasma turbulence. Obviously, in
reality the different mechanisms may act simultaneously: here the point is to see which
one dominates.

anode cathode
/j plasma
g n(t)
y ¢
! R(t)

D(t)

Figure 21. Cartoon of the PFD showing the space-charge gap, the plasma cylinder, and the

parameters of the three models.

3.2 EXPERIMENTAL DATA.

The EYESS generator is a 0.96 uF Marx capacitor bank with 520 nH inductance
connected to a vacuum transmission line and load. The transmission line has a 33 Ohm
impedance with 130 nH inductance. The quarter cycle time for a shorted load is 1.25 us.
The cathode is a cylindrical rod with radius 7.6 cm, with a flat plate facing the anode.
The anode is recessed, with an outer radius of 12.8 cm. The gap spacing is typically 10
cm. Four plasma guns inject plasma into the diode. The experiment is easily changed
from a single stage PFD into a tandem POS-PFD with an array of flashboards that can
inject plasma into a POS region of the transmission line.

Figure 22 shows the current and inductively corrected voltage for two shots provided
by Physics International,’” one for a single stage PFD and the other for a tandem POS-
PFD. Each shot exhibited close to optimum performance for its configuration. Both shots
show similar features. Early in time the voltage is small while the current is linearly
increasing. When the current reaches a maximum the voltage begins to rise, i.e., the
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Figure 22. Voltage and current for the PFD and the tandem POS-PFD obtained from the
EYESS generator at Physics International.

PFD opens. The current decreases while the voltage increases, reaches a maximum and
subsequently decreases. When the voltage is small again, the current resumes a linear rise.

Each shot defines a resistance R(t) = V/(t)/I(t), or an inductance by L(t) =
fot V(t')dt'/I(t). Figure 23 shows the resistance R(t) for the two shots. The diode resis-
tance rises, reaching 2-6 Ohms during opening. The POS-PFD tandem gives the shorter
opening time and the larger voltage gain. The difference between PFD and POS-PFD tan-
dem may be due to the different plasma densities in these two cases. For the single stage
PFD shots, the plasma guns are discharged longer prior to the arrival of the generator
pulse than in the tandem experiments, because the single stage PFD needs to conduct the
current longer to reach the same current as the POS-PFD tandem. The opening mecha-
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Figure 23. The resistance V/I corresponding to the voltage and current traces of Figure 22.

nism for the PFD apparently slows down with increasing plasma density. As a consequence
the voltage gain during the opening event also decreases.

3.3 ANALYSIS OF OPENING MECHANISMS.

3.3.1 Gap Formation.

With this mechanism the plasma is perfectly conducting, and all the voltage is dropped
across a gap between an electrode and the plasma surface, or possibly between two plasma
surfaces.’® The current is quasistationary and the current density is constant across the
plasma, and the electric fields at both boundaries are zero. In the gap flows the bipolar
Child-Langmuir current, given by

I(kA) Mzm) Lo (MV) V32 (MV)
*R?(c )—'335[1""/ /Z “D?(cm) (3-1)

where R is the plasma radius, D is the gap spacing, m, is the electron mass, M; is the
ion mass, and Z is the charge state of the ions. Even though electrons attain relativistic
velocities, the nonrelativistic version of bipolar Child-Langmuir flow is adequate for this
simple model.

Assuming a constant radius R= 8 cm, the the voltage and current traces give the gap
spacing D(t) shown in Figure 24(a) for the single stage PFD, and in Figure 24(b) for the
tandem POS-PFD. The gap spacing goes up to about 1.5 centimeters for the single stage
PFD and to about 2.25 centimeters for the tandem PFD. After attaining the maximum
the gap spacing and the voltage decrease while the current continues to increase. The
standard explanation of this behavior is gap closure by plasmas coming off the electrodes.
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Figure 24. The gap spacing corresponding to bipolar Child-Langmuir flow inferred from the
current and voltage traces of Figure 22.

Apparently, gap erosion predicts a reasonable values for the gap spacing, and gap erosion
is a viable opening mechanism.
3.3.2 Implosion Model.

The implosion model assumes that the voltage pulse comes exclusively from the in-
crease in inductance due to the the contraction of a uniform pinch. The current is restricted
to a sheath on the outside of the plasma channel. The magnetic field is

By = pol 21, (3-2)

outside the plasma radius r, while inside the magnetic field vanishes.
The inductive voltage is

poD d
2x dt

where D is the electrode gap spacing. Solving Eq. 3-3 for the radius r(t) yields

V() = 22 L1 n("E) (3-3)

r(t) = Rexp[ DI(t) / V(t’)dt’] . (3-14)

Figure 25 shows r(t) for an electrode gap D = 10 cm and an initial radius R = 8 cm.
Clearly, the current channel is unrealistically small, 3 x 10-1° ¢cm for the PFD tandem and
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Figure 25. The radius of the current shell computed according to the implosion model from
the voltage and current traces of Figure 22.

down to 5 x 10~ cm for the single stage PFD. Therefore the opening process can not be
primarily inductive.

3.3.3 Resistivity.

An increase in bulk resistivity of the plasma has also been advanced as an opening
mechanism in the PFD. Turbulent plasmas contain large electric field fluctuations, which
perturb the electron trajectories and provide friction to the electron flow. For an estimate,
the plasma is assumed to remain a cylinder of constant radius R with homogeneous resis-
tivity . The resistivity is given by the diode impedance V/I (see Figure 23) multiplied
by a geometrical factor,

n(t) = (xR /D) V(t)/1(t). (3-3)

Again taking R = 8 cm and D = 10 cm the maximum resistivity in the single stage switch
is about 50 Ohm-cm, and the maximum resistivity in the tandem is about 90 Ohm-cm.
In contrast, Spitzer resistivity for a plasma with an electron density of 10’2 cm~2 and an
electron temperature of 10 eV is 0.054 Ohm-cm. If the electron density is increased to
5 x 10" cm™3, Spitzer resistivity has the value 0.07 Ohm-cm. The resistivity needed for
the PFD is about 3 orders of magnitude larger than expected from Coulomb collisions.
Can plasma turbulence change the picture? The PFD has ample sources of free energy
to drive various instabilities (two-stream, Buneman, ion-acoustic). All eventually saturate,
leading to an order of magnitude estimate for the maximum effective collision frequency
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of v < 0.4wy,. The resistivity n = m,/ne?v then becomes
7(Ohm — cm) = 8 x 10" /V/ n(cm-3). (3-6)

For a plasma density of 10'® cm~?, this expression yields a resistivity of 25 Ohm-cm, 7
consistent with a reasonable values for the pinch resistance. {

Although opening by anomalous resistivity agrees with the electrical data, it disagrees
with the observed bremsstrahlung.!® Resistivity prevents electrons from accelerating to
high energies, a necessity for bremsstrahlung production. Therefore bulk resistivity can 4
not open the PFD.

3.4 CONCLUSION. 1

According to these estimates only the appearance of a space-charge filled gap in the l-
diode is consistent with the electrical and radiation data obtained with the PFD on EYESS.
However, this conclusion does not imply the absence of the other processes, implosion and
anomalous resistivity. Instead, the expected dominance of gap formation gives added
confidence in computations that ignore resistivity in favor of space charge phenomena,
such as particle in cell codes. The next section discusses some of these computations.
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SECTION 4

ONE DIMENSIONAL PARTICLE IN CELL SIMULATIONS
OF A PLASMA FILLED DIODE WITH AN EXTERNAL CIRCUIT

The validity of the classical bipolar model for the operation of a planar, plasma filled
diode (PFD) is examined using a one dimensional, electrostatic particle in cell simulation
of a PFD coupled to an external LC driver circuit. While the high voltage opening phase
of operation in the PFD is correctly described by the bipolar model, the low voltage
conduction phase is not. In the low voltage conduction phase the unstable interaction
between the emitted electron beam and the diode plasma creates internal states of the
diode which are far from the bipolar equilibrium state hypothesized by the classical model.
As a result the simulation’s scaling predictions for the operation of the PFD differ from
those of the classical model.

4.1 INTRODUCTION.

In its most frequently encountered form a plasma filled diode (PFD) is a high power
cold cathode vacuum diode which consists of a pair of plane parallel electrodes whose
anode-cathode gap has been prefilled with a fully ionized low density plasma. Plasma fill
densities of the order of 10'® cm—3 are typically employed in such devices and the fill plasma
is often injected into the diode gap with a net drift velocity of several cm/us through a
semitransparent screen anode. An axial magnetic field may be applied to inhibit pinching
of the fill plasma that might occur in the self magnetic field of the diode current. When
a high voltage pulse is applied to the diode, explosive electron emission and formation
of a cathode plasma rapidly takes place at the surface of the cold cathode so that the
cathode quickly becomes a space charge limited (SCL) electron emitter. Plasma filled
diodes have frequently been employed in the pulsed power community as high current,
relativistic electron beam sources.??

Recently, interest in these devices has focussed on their important application as
multimicrosecond conduction time, fast opening switches?*:?? for use with inductive energy
storage systems. Experiments?' employed a PFD embedded in a strong externally applied
axial magnetic field as a plasma opening switch (POS). In these experiments when current
was applied to the magnetized PFD, a low voltage conduction phase up to 2.5 us in
duration was observed followed by a rapid opening phase generating a high voltage pulse
with risetimes less than 150 ns. These experimental observations have motivated the
theoretical work in this section: understanding the plasma processes that control the
conduction time and opening rate is essential to opening switch technology.

The generation of high voltages and the acceleration of the electron beam in PFD’s
have long been thought to result from the rapid expansion of a cathode sheath into the body
of the low density fill plasma. A simplified analytic treatment of the problem of ion sheath
growth near a negatively biased, non-emitting electrode in contact with a low density
plasma was first presented by Sander.?® This treatment was later extended by Widner and
Poukey?* and applied by Miller, Poukey and Wright?® to the problem of sheath growth
and electron beam generation in a high power PFD. In the model of Miller?® et al. it is
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assumed that the impedance of the PFD is controlled by a bipolar sheath at the interface
between the cathode and the low density fill plasma across which all of the diode voltage
is dropped. The space charge limited electron and ion currents, J. and J;, flowing across

this sheath are given by the classical bipolar relations,?® viz.,

4 9 1/2 Va/z
Ji = 18636 (-mi) - (4-1)
J.JJ; = (mifm. )2, (4-2)

Here Vp is the diode voltage and z is the sheath thickness. The time evolution of the
sheath thickness z is determined by the differential equation

en%‘tE = J; — enuy, (4-3)
where n and up are the density and mean velocity of the ions entering the sheath from the
body of the plasma. As long as the ion current J; is less than enug the sheath remains small
and low voltage conduction is obtained. However, when the ion current J; demanded at
the cathode exceeds enuy Equation (4-3) shows that the sheath rapidly expands to supply
the required ion flux and a high voltage develops across the diode. The onset of this high
voltage opening phase will occur when the diode current I increases to the point where,

e\ 112
I~] = (—-i) enug A, (4-4)

me

where A is the area of the diode. This model is a direct generalization of Sander’s original
treatment of ion sheath growth near a non-emitting cathode to the case in which the
cathode is a space charge limited electron emitter. The fundamental assumption is the
replacement of the positive ion sheath for the non-emitting case by a bipolar sheath for
the SCL case. The explicit numerical calculation to follow shows that this assumption is
only partially correct and in fact misses much of the important physics of the PFD.

This section treats a planar PFD self consistently coupled to an external LC driver
circuit. The electron flow is explicitly assumed to be one dimensional so that an electro-
static treatment of the problem is adequate. The model presented here might be expected
to correctly describe the behavior of the PFD in the case where the By self field of the
diode current is much smaller than the external applied B, field, and the electrons are
effectively one-dimensional. Thus, the model describes a magnetized PFD or POS of the
type described in reference [2] where the electron flow may be regarded in some approxi-
mation as one-dimensional. This approximation is not valid for the plasma erosion opening
switch (PEOS)!® where magnetic insulation of the electron flow and other essentially two-
dimensional effects play a significant role. Nevertheless, the results of the one-dimensional
electrostatic model may be expected to provide some interesting insights into the processes
taking place in the PEOS.

The investigation is done with a version of the computer code PDW1 originally de-
veloped by Lawson?’ et al, a particle in cell (PIC) model of the one-dimensional PFD
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coupled to an external LC circuit. Both electrons and ions are treated by the PIC method
and phenomena on the time scale of an electron plasma period and Debye length scale are
explicitly resolved. The code thus provides a fully self-consistent solution for the simul-
taneous behavior of the plasma and the external driver circuit. In this section the code
is used to solve a simple PFD problem that represents a scale model version of a POS
experiment.?' The model problem is solved numerically for two different cases, one with-
out electron emission at the cathode, the other with space charge limited (SCL) electron
emission.

The case without emission recovers the results of earlier investigators, e.g., the sheath
theory of the PFD as discussed by Widner and Poukey. The computation therefore provides
a correct description of the impedance evolution of the diode under study. However, turning
on SCL emission gives a substantially different result. In this case, the acceleration of the
emitted electron beam by the growing cathode sheath leads to the development of a strong
beam-plasma instability. This instability rapidly evolves to a non-linear state, which is
characterized by a large potential maximum near the center of the diode gap, with a
relatively small net voltage drop and significant trapping of electrons out of the emitted
beam. This low-voltage conduction phase of the PFD is essentially different than the
bipolar equilibrium hypothesized by Miller?® et al.

Eventually, this low voltage phase terminates and a high voltage opening phase ap-
pears which is characterized by the expansion of a large bipolar sheath at the cathode that
sweeps the remaining ions out of the diode gap. Hence, while a bipolar sheath is indeed
responsible for the generation of high voltages in the PFD, the details of this process differ
substantially from those of the classical sheath theory and lead to a variety of new scaling
relationships for the conduction time and conducted current in a 1D POS model.

The remainder of Section 4 is organized as follows. Section 4.2 describes the computa-
tional model implemented in the PDW1 code, and the choice of parameters for the model
POS problem to be solved. Section 4.3 examines the numerical solution without electron
emission from the cathode surface. Section 4.4 describes the general phenomenology of
the results for the SCL emission case. Section 4.5 discusses some detailed scaling results
for the SCL emission case which illustrate how the conduction time, conducted current
and other parameters of interest scale in our simple 1D model POS. Finally, Section 4.6
summarizes the discussion and indicate the direction of future work in this area.

4.2 COMPUTATIONAL MODEL

Figure 26 illustrates the model POS problem solved by the PDW1 code. It consists
of a planar diode gap of spacing d and area A coupled to an external driver circuit with
inductance L and capacitance C. The diode gap is pre-filled with a thermal Maxwellian
plasma of electrons and ions with temperatures T, and T; respectively. The initial fill
plasma has a spatially uniform density and no net drift motion. Hence, the present dis-
cussion treats only the simple case wherein the fill plasma is stationary and is not renewed
by continuing injection of plasma into the diode gap. The more complex case of injecting
a drifting thermal plasma is treated later. The anode is assumed to be a non-emitting
cold wall. Two different cathode emission conditions are considered, no emission and SCL
electron emission. For SCL electron emission the emitted electrons are given an initial
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thermal spread of velocities corresponding to the flux distribution vf(v) where f(v) is a
half Maxwellian whose temperature is the same as that of the fill plasma.

Cathode

Figure 26. Plasma Filled Diode with circuit.

The calculation is one-dimensional and electrostatic. Hence, all quantities depend
only on z, the coordinate across the diode gap, and the electric field is obtained explicitly
from the solution of Poisson’s equation in the region between the electrodes. Both electrons
and ions are treated as one-dimensional macroparticles by the particle in cell method. To
self-consistently solve for the simultaneous behavior of the plasma and the external circuit
the code must integrate the equations of motion for all the macroparticles, together with
the following system of equations for the circuit and the diode:

22+ 2w, (4-3)
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subject to the boundary conditions

¢(0a t) = 0, (4 - 8)
0¢ o
%] --Z (4-9)
and
Vo(t) = é(z=d,t). (4 - 10)

Here o is the net surface charge density on the right hand electrode and Jpiasma is the net
current density from the plasma into the right hand electrode boundary. Equation (4-5)
above is just the circuit equation for the external driver circuit including the voltage drop
Vp across the diode gap. Equation (4-6) simply states that the rate of change of the net
charge on the right hand electrode is determined by the balance between the net current
supplied by the plasma and the current drawn off by the external circuit. Equation (4-7)
is Poisson’s equation for the potential distribution in the region between the electrode
boundaries subject to the boundary conditions on ¢ given in Equations (4-8) and (4-9).
The potential is solved on a finite spatial grid in the z direction, with grid spacing Az.
The spacing is sufficiently small so that a single Debye length of the plasma is explicitly
resolved. At any given time step the potential ¢; is known at each of the points jAz (from
j = 0to j = N). By convention, the potential ¢ = 0 at the left hand boundary, and the
initial value of Q is taken to be positive. Then the right hand electrode is always the anode
as shown in Figure 26.

The algorithms used in the PDW1 code and their implementation?” are as follows.
The calculation typically begins at t = 0 with the initial distribution of electron and ion
macroparticles ia the diode gap, the external capacitor charged to some initial voltage V;,
zero current in the external circuit and zero voltage drop across the diode gap.

At time step n the potential ¢(z,t,) is known, together with the positions of all
the macroparticles of the plasma. The electric fields are obtained from the potential ¢ by
center differencing. The electric field is used to push the particles via the standard leapfrog
algorithm. The circuit quantities are simultaneously advanced by this same method. The
surface charge value of o is then adjusted to account for the charge carried by plasma
particles that may have been absorbed from the plasma during the timestep, as well as
the charge that has been drawn off by the external circuit. The charge density on the
spatial grid at step n + 1 is then obtained by weighting the particles to the grid using
linear weighting. Given o and p at step n + 1 Poisson’s equation is solved by a simple
finite difference method to yield ¢(z,¢n4+1 ), thus completing the time step. This process is
repeated many times to obtain the time evolution of the coupled plasma-circuit system.

Parameters can be chosen to mimic the POS experiment, while at the same time
providing an economical computational model for study. The fill plasma is a thermal
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hydrogen plasma with density n; = 10> cm™2 and T, = 5eV, T; = 1 eV. In this case the
Debye length \p = 5.25x10~* cm, and the grid cell must be on this order. To avoid an
excessive number of grid cells, the diode gap must be much smaller than the experimental
value. It is also desirable to have many tens of macroparticles per grid cell in order to
avoid noise. In the model of Figure 26 the A-K gap spacing is d = 1 mm, with 128 grid
cells across the gap. The grid cell is then Azp ~ Ap, which provides adequate spatial
resolution with a reasonable number of grid cells. For most model calculations a plasma
pre-fill of 8320 macroparticles of each species is loaded uniformly into the diode gap, giving
about 65 particles per cell. The initial charge voltage V; on the external capacitor must
be scaled down to 1 kV in order to preserve the typical?! vacuum electric field in the diode
gap of 10 kV/cm. The scaling with gap width is addressed further in Section 5.

The behavior of the PFD as a circuit element can vary between that of a short circuit
and that of an open circuit with vacuum capacitance Cp = € A/d, where Cp is typically
very much smaller than the capacitance of the external driver C. The timescale of the
external circuit is defined by the relatively long VIC time associated with the external
inductance L and capacitance C of the driver if the PFD acts as a short. In the oppo-
site limit when the PFD acts as an open circuit the effective capacitance of the series
combination of C and Cp is CCp/(C + Cp) = Cp, so that the timescale becomes
the much shorter /ICp time defined by the vacuum capacitance Cp of the diode gap.
Realistic values for these timescales must be preserved in the modeling, which determines
the remaining model parameters L, C and A. Thus, L = 1 pgH and C = 1 uF, and the
quarter cycle time matches the experiment, 1.6 us. Similarly, to get /IZCp =~ 3.3 ns the
diode area is chosen as A = 0.314 cm? (or 7/10), maintaining the current density of the
experiment with a much smaller diode.

Sections 4.3 and 4.4 below use the basic model parameters discussed above and ex-
amine the effect of varying the electron emission at the cathode surface on the impedance
history of the diode. Section 4.5 focuses on the SCL emission case and examines the effect

of model parameters such as fill density on the conducted current and other properties of
our model POS.

4.3 CATHODE WITHOUT ELECTRON EMISSION.

Consider first a PFD without electron emission from the cathode. As already discussed
the calculation starts at ¢ = 0 with a spatially uniform fill of neutral hydrogen plasma with
density 10" cm~3, 1 kV on the external capacitor, and zero current. The evolution of the
diode impedance in this case is controlled by the rapid growth of a large positive ion sheath
at the cathode surface which expands into the fill plasma at several times the ion acoustic
speed C, = V' T./m;. Sheath growth near a negatively biased non-emitting electrode in
contact with a low density plasma is treated in the literature.?3?#?® The computations
exhibit this process in some detail, and agree with earlier investigations.

Figures 27(a) and (b) show the time history of the diode current and total diode
voltage drop during the first 80 ns of time development. Figures 27(c) and (d) show
corresponding plots of the cathode sheath thickness and the velocity of the sheath edge as
a function of time for the same period. The sheath thickness, defined as the distance from
the cathode surface to the sheath edge where £ = 0, is measured in grid cell units: the
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full width of the diode gap d = 1 mm corresponds to 128 grid cells.

Almost immediately after the onset of current flow a significant voltage drop begins
to develop corresponding to a rapid growth of the cathode sheath. By ¢ = 4 ns the sheath
edge has reached a peak expansion velocity of 2.2 C, or about 6 cm/us. At this same time
the total diode voltage drop Vpp exceeds the 1 kV charge voltage on the external capacitor,
sc that dI/dt must change sign in accordance with the circuit Equation (4-5). Then the
diode current begins to drop, together with the velocity of the sheath edge. By ¢t = 6.8 ns
the velocity of the sheath edge has fallen below C,. Pre-sheath electric fields now penetrate
out ahead of the sheath at velocity C,, and they begin to accelerate ions back into the
sheath from the body of the plasma. As a result the sheath has slowed almost to a halt by
t = 8 ns. This situation does not persist indefinitely because the supply of plasma is finite.
At about t = 20 ns the sheath begins to accelerate again, until by t = 30 ns it has attained
a relatively constant velocity of 1.25 cm/us. This motion is maintained until the sheath
has penetrated the full width of the gap and the plasma has been completely eroded away
by t = 75 ns.

In lieu of the movie, Figure 28 illustrates the detailed evolution of the cathode sheath
with a sequence of snapshots at different times of interest. Figure 28 shows from top to
bottom the electron phase space, the potential distribution ¢(z) in the diode gap, the ion
phase space, and the electron and ion charge density distributions p.(z) and p;(z). In
the phase space plots all velocities are in scaled units normalized to Az/At. The position
z across the diode gap is measured in grid cell units from = = 0 at the cathode on the
left to £ = 128 at the anode on the right. The potential ¢ is given in volts and all
charge densities are in Coulombs/m®. Figure 28(a) for t = 0 illustrates the initial spatially
uniform distribution of Maxwellian electrons and ions with charge density 1.6 C/m3 from
the plasma density 10! ¢cm™3. The potential distribution is identically zero across the
diode gap.

The fast timescale for the external circuit is the LCp time, which is about 3.3 ns. For
shorter times the PFD has not charged up, and the system behaves like a plasma in contact
with two cold metal walls. On the scale of a few hundred picoseconds both cathode and
anode charge rapidly negative due to the thermal flux of electrons until stable Langmuir
sheaths are formed at both electrodes with a floating potential of about!?

$r = —Eezln[(‘zr%i—:) (1 + ;)] ~ 137V (4 —11)

Figure 28(b) is a snapshot taken at ¢t = 1 ns. The potential distribution clearly
shows the Langmuir sheaths at cathode and anode with a floating potential of the correct
magnitude. The slight asymmetry in the size of the sheath potentials is due to the action
of the external circuit which by ¢ = 1 ns has just begun to charge up the diode. In the
ion phase space plot of Figure 28(b) the flux of ions to both electrodes due to the sheath
electric fields can be easily seen at each end of the gap.

Figure 28(c) shows the situation at ¢t = 4 ns corresponding to the time of peak sheath
velocity. By this time the cathode sheath voltage has grown to about 1 kV, dwarfing the
anode sheath potential on the scale of the potential distribution plot in Figure 28(c). On
the left hand side of the ion phase space plot, the cathode sheath can be seen rapidly
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T

propagating to the right at several times C, into the undisturbed plasma. On the right

hand side of the ion phase space, the anode side, ions are accelerated toward the anode

from the body of the plasma. This is the developing pre-sheath associated with the small

Langmuir sheath at the anode. The edge of this pre-sheath region propagates to the left

with a measured velocity of C,. The anode pre-sheath region is also clearly visible on

right hand side of the charge density distribution plot as a quasi-neutral region of reduced )
plasma density.

Figure 28(d) shows the situation at ¢ = 10 ns, well after the sheath velocity has
dropped below C, and the sheath edge has come almost to rest. Here the left side of
the ion phase space shows a developing pre-sheath region propagating out ahead of the
cathode sheath toward the right at a measured velocity of C,. In this cathode pre-sheath
region ions are being accelerated back toward the sheath-plasma interface by the pre-
sheath electric fields. The anode pre-sheath is also visible on the right. The charge
density distribution plot again shows these developing pre-sheaths as quasi-neutral regions
of reduced plasma density. The developing cathode pre-sheath is just the ion acoustic
rarefaction wave reported by Widner?® et al. in their discussion of sheath motion near a
negatively biased electrode.

At t = 14 ns shown in Figure 28(e) the edge of the anode pre-sheath propagating to
the left and the cathode pre-sheath propagating to the right meet at about z = 70. To
the left the average ion velocity is toward the cathode while to the right the average ion
velocity is toward the anode. Figure 28(f) shows the situation at a later time ¢t = 25 ns
corresponding to the period during which the cathode sheath again begins to accelerate to
the right. The ion phase space clearly shows the cathode sheath on the left and the cathode
and anode pre-sheath regions continuously joined together at about z = 70. Figure 28(g)
shows the situation at ¢ = 50 ns as the expanding cathode sheath moving at about 1.25
cm/ us slowly erodes away the remaining fill plasma. Finally, Figure 28(h) shows the state
of the system at ¢ = 70 ns shortly before the fill plasma has been completely eroded away.

Much of the phenomenology observed in the simulation can be understood in terms
of an analytic relationship between the sheath velocity, the current in the external circuit
and the ion density and mean velocity at the sheath edge first discussed by Sander.?®
This relationship follows from conservation of charge and the assumption of a sharp edge
for the sheath. Figure 29 shows the region near the surface of the non-emitting cathode,
separated from the neutral plasma region on the right by a positive ion sheath. The sheath-
plasma interface is depicted in Figure 29 as a relatively sharp boundary, i.e., the plasma
electron density falls off so rapidly at the sheath-plasma interface that the plasma electron
contribution to the total charge of the sheath region can be neglected. This becomes a
good approximation when the potential drop across the sheath becomes greater than a
few times the floating potential ¢, so that even the most energetic thermal electrons from
the plasma can no longer penetrate more than a few Debye lengths into the sheath region
before being turned back by the sheath potential.

In the theoretical considerations that follow, the density and mean velocity of the
ions at the sheath-plasma interface are n, and u, respectively, the total positive ion space
charge per unit area in the sheath is @, , the negative electron surface charge per unit area
of the cathode is 0., and the magnitude of the current per unit area of electrons delivered
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to the cathode by the external circuit is Je;¢(t). The time rate of change of Q, can be
written as the sum of three contributions,
. dz
—d-—z—- = - Jic + cn'E - eﬂ,u’- (4 - 12)
The first term on the right hand side is the current of ions lost from the left of the
sheath region by absorption at the cathode surface. The second and third terms represent

the current of ions which enter the right hand side of the sheath region from the neutral
plasma at the moving sheath-plasma interface. Similarly, do./dt is given by

idati = J.' - J,,g. (4 - 13)
The change in surface charge do. /dt is a balance between the charge deposited by ions
from the sheath and the electrons from the external circuit. Notice that do./dt contains
no electron current contribution due to the thermal electron flux from the plasma, under
the assumption that the sheath potential is sufficient to turn back any thermal electrons at
the sheath-plasma interface. Now applying Gauss’s Law to the region indicated in Figure
29 yields
o. = -Q,. (4-14)

Differentiating with respect to time and substituting dQ,/dt and do./dt from Equations
(4-12) and (4-13) gives

Jet(t) = en,(%f- — ). (4 -15)

Equation (4-15) states that the rate at which electrons are delivered to the cathode by the
external circuit is equal to the rate at which ions enter the moving sheath from the plasma.

Equation (4-15) is an exact consequence of Gauss’s Law and charge conservation when
the sheath edge is sufficiently sharp to neglect the contribution of the plasma electrons to
the total charge density of the sheath region. An approximate form of Equation (4-15)
often discussed in the literature?®>?* may be obtained by making two additional approxi-
mations. First, the so called “displacement current” must be neglected. In other words,
do./dt << J.: so that from Equation (4-13) Jic = J.r¢ in Equation (4-15). If in
addition the sheath velocity is sufficiently small so that the sheath does not expand very
much during the time required for a plasma ion to transit the sheath, the ion current J;c
is given approximately by the stationary Child-Langmuir space charge limited ion current.
Hence, the approximate form of Equation (4-15) becomes

dz 4 2\ V32
eny, (5 - u,) = '9-60(;:) -322-—’ (4—16)

as used by Widner and Poukey.?
Equation (4-15) provides a useful consistency check on the simulation results. Dividing
both sides of Equation (4-15) by J..; shows that en,(£ — u,)/Jez¢ =~ 1 when the sheath
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potential becomes greater than a few times ¢;. During the computation this ratio is
determined using the local values of n, and u, at the moving sheath-plasma interface as
well as the corresponding simulation values of # and J,,;,. After an initial period before
t = 2 ns during which the sheath potential grows rapidly to about 7 ¢y, the ratio drops to
1 and remains at this value out to ¢ = 75 ns, the point at which all the plasma has been
removed from the gap so that n, approaches zero.

Equation (4-15) also provides a convenient basis for understanding the general char-
acter of the sheath evolution observed in Figure 28. Consider a sheath propagating into an
undisturbed plasma of uniform density n, with a velocity dz/dt > C,. Thenu, = G0,
and Equation (4-15) shows that the velocity of the sheath edge is proportional to the
current in the external circuit. Hence, the rising current in the external circuit drives the
initial rapid penetration of the sheath observed during the first 8 ns of conduction. Sim-
ilarly, the limitation of the current in the external circuit by the growing sheath voltage
drop is responsible for the sheath velocity falling below C, at about ¢ = 6.8 ns.

4.4 CATHODE WITH SPACE-CHARGE LIMITED EMISSION.

Space-charge limited (SCL) electron emission from the cathode changes PFD behavior
due to the additional presence of an electron beam that can interact with the background
plasma. In the simulation below all parameters are unchanged except for the emission of
electrons from the cathode such that the electric field vanishes. Now a well defined bipolar
sheath develops at the cathode. The emitted electrons are accelerated across this sheath
and stream through the fill plasma with some mean velocity v,. A strong beam-plasma
instability develops once the sheath potential has grown sufficiently so that v, exceeds
v = V2T, /m. . In the initial stages of the interaction unstable electrostatic waves are
launched from the edge of the cathode sheath and propagate toward the anode growing
spatially in amplitude until they begin to trap the beam at some distance away from the
cathode. The character of the beam-plasma interaction is largely determined by the value
of the parameter = n;/n,., the ratio of the beam electron density to the total electron
densityn, = n, + n,. The weak beam limit << 1 in spatially infinite systems has been
extensively studied since the 1960’s and is well described by single wave trapping theory.3
The linear theory of the beam-plasma instability in this limit can easily be obtained from
the Bohm-Gross dispersion relation for the one-dimensional beam-plasma system,

(wp + gk’vfh)/w’ + wf(w - kw) = L (4-17)

Applying the expansion technique of O’Neill and Malmberg®! to Equation (4-17) with ve,
in the range 0 < vy, /vy < 0.2 yields a maximum spatial growth rate for the unstable waves

of
V3 (n ‘/3(%)2/3%
=G R (4-18)

with wavenumber

2 1/3 2/3
ko= [1+%(’l") +%(g) (—””-) 2 (4 - 19)




The weak beam linear theory illustrates some important trends. As the voltage across
the cathode sheath increases so does the beam velocity The wavelength of the instability
then increases according to Equation (4-19) while the spatial growth rate is reduced. Beam
trapping then begins further away from the cathode boundary. However, the results from
linear theory are only qualitatively relevant for the present investigation. In the PFD sim-
ulations 7 ranges between 0.15 and 0.35 during the conduction phase so that the observed
beam-plasma interaction always lies far outside the weak beam regime.

According to Morey and Boswell,®? the beam-plasma interaction in a bounded, one-
dimensional system with arbitrary 7 is classifiable into a linear regime for 0 < n < 0.05,
and into two nonlinear regimes with 0.05 < n < 0.3 and 0.3 < n < 0.7. The PFD in our
simulation always operates in the nonlinear regimes, which are characterized by strong
non-linear heating of the plasma and variety of other non-linear effects. These are clearly
seen in the simulations presented below.

Figure 30 shows the diode current and voltage during the first 80 ns in a diode with
SCL emission. In contrast to Figure 27 without SCL emission, where the voltage develops
immediately, the voltage in Figure 30 has a 34 ns long low-voltage conduction phase,
followed by a sudden opening phase that generates a peak diode voltage about 4.8 times
that of the charge voltage. Without SCL emission the current reaches an early peak of
3 A (10 A/cm?), while with SCL the current increases until opening to over 30 A (or
100A /cm?)

In lieu of the movie, Figure 31 illustrates the detailed evolution of the phase space,
potential and charge density distributions for the PFD with SCL emission. The initial
state in Figure 31(a) is identical to Figure 27(a), except that the scales are different to
accommodate the subsequent development. Figure 31(b) at ¢ = 10 ns shows that the
potential distribution within the diode gap is essentially flat and the diode acts as a short
circuit. This situation is typical of the internal state of the diode for the first 18 ns of
conduction, the period prior to the formation of the bipolar sheath.

As the conduction phase progresses a well defined bipolar sheath begins to develop at
the cathode starting at about ¢ = 18 ns. The voltage across this sheath quickly exceeds the
thermal energy kT, ~ 5 eV, and the instability turns on almost immediately thereafter at
about ¢t = 20 ns. Figure 31(c) shows the state of the system at a slightly later time ¢ = 23
ns. A 20 V bipolar sheath is present on the left hand side of the potential distribution
in Figure 31(c) with the unstable waves visible to the right of the sheath. These waves
are launched from the sheath edge and propagate toward the anode on the right, growing
spatially as they move away from the cathode until they trap the beam. The electron
phase space plot in Figure 31(c) shows beam trapping beginning at about x = 45. Most of
the trapped beam electrons are carried along by the waves. However, some are scattered
out of the waves and are left behind to become part of the plasma electron distribution.
Conversely, the waves trap not only beam electrons but also plasma electrons leading to
the formation of electron holes like the ones visible in the electron phase space of Figure
31(c). These holes can propagate all the way across the gap as coherent structures and may
provide an efficient mechanism for rapidly removing plasma electrons from the diode gap.
The electric fields of the waves also accelerate the remaining plasma electrons leading to
the rapid heating of the plasma electron distribution which is already visible in the electron.
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Figure 30. PFD with hydrogen plasma fill n; —= 10'® cm~2 with space-charge limited electron
emission from cathode surface.

phase space plot of Figure 31(c). The net voltage drop at the instant of the snapshot in
Figure 31(c) happens to be about 31 V, but in fast this value is rather arbitrary because
the potential at the anode boundary oscillates at the plasma frequency with a maximum
amplitude determined by the beam-plasma interaction. The amplitude is sufficient to cause
reflection of some beam electrons at the anode boundary.

As the heating progresses the hot plasma electrons escape from the diode faster than
the more massive ions, resulting in an increasing net positive charge for the plasma and
the corresponding potential hump in the diode gap. Figure 31(d) shows the state of the
system at ¢ = 28 ns. The construction of this potential hump is well underway and the
heating of the plasma electron distribution is readily apparent. The wave behavior of
the interaction becomes more chaotic and the time average point in space at which beam
trapping begins tends to move toward the right, away from the cathode toward the anode
boundary. Corresnondingly, the structure of the electron holes becomes less coherent and
the holes less prominent.

As the process continues the amplitude of the potential hump grows while trapping
tends to occur further and further toward the right. Wave trapping gives way to a state
in which much of the trapping occurs due to reflection of the beam by the oscillating
potential at the anode boundary. Figure 31(e) shows the situation for ¢ = 33 ns at the
very end of the conduction phase. Here the potential plot shows a distribution for ¢(z)
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densities p(z) and p;(z) at selected times: space-charge limited electron emission
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Figure 31. Electron phase space, potential ¢(z), ion phase space, and electron and ion charge
densities p.(z) and p;(z) at selected times: space-charge limited electron emission
at cathode (continued).
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Figure 31. Electron phase space, potential ¢(z), ion phase space, and electron and ion charge
densities p.(z) and p;(z) at selected times: space-charge limited electron emission
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with a maximum of 222 V (or 2.2 kV/cm) near the center of the gap, even though the
diode voltage is only about 30 V (or 0.3 kV/cm). At this point all of the beam trapping is
taking place at the anode boundary as can be seen in the electron phase space plot. The
ion phase space plot in Figure 31(e) shows that the potential hump accelerates the ions,
creating a significant enhancement of the ion current to both cathode and anode. As a
result the ratio of emitted electron current to ion current at the cathode is substantially
lower for this state than the classical value v/ m,,?me ~ 43 for a simple bipolar sheath
with hydrogen ions. In Figure 31(e) the ratio of electron to ion current is about 27.

At t = 34 ns the conduction phase ends and a rapid transition to a high voltage
opening phase begins. This transition is characterized by the termination of electron
trapping and the formation of a large bipolar sheath at the cathode. The sheath expands
rapidly and sweeps the remaining ions out of the diode gap. Figure 31(f) shows the state
of the system at t = 36 ns. The conduction phase potential distribution of Figure 31(e)
has made an extremely rapid transition to the bipolar distribution shown in Figure 31(f).
The total diode voltage in Figure 31(f) has already reached nearly 1 kV as the bipolar
sheath expands and grows. The phase space plot shows that electrons accelerated across
this sheath no longer interact with the remaining plasma.

The bipolar sheath expands very rapidly to the right reaching a peak sheath velocity
of about 23 cm/us. By t = 38 ns shown in Figure 31(g) the sheath edge has already
reached the anode. All of the plasma electrons have left the diode at the anode side and
the remainder of the ions are being removed at the cathode. Finally, Figure 31(h) shows
the state of the system at t = 43 ns after all of the ions have been swept out of the
diode gap. The diode now operates as a simple SCL electron diode with the characteristic
Child-Langmuir z4/3 potential distribution.

The overall effect of the beam-plasma interaction on the plasma electrons is the result
of a balance between two processes. On the one hand the heating of the plasma electrons
and the transport of plasma electrons to the anode by propagating electron holes tend to
deplete the plasma electrons. On the other hand trapping of electrons out of the emitted
beam adds to the plasma electrons. On balance the plasma loss processes dominate. Figure
32 illustrates this point. The lower curve represents the time history of the total charge in
the emitted beam. The middle curve is the total charge in the plasma electron distribution.
The upper curve is the sum of the two, the total electron charge in the diode. An electron
is considered to belong to the beam if it was emitted from the cathode and has not turned
around. An electron is considered to belong to the plasma electron distribution if either
it was present in the initial fill plasma or it was emitted from the cathode but has turned
around once or more. Figure 32 shows that after the instability turns on at ¢ = 20 ns, the
plasma electron population is rapidly depleted until the total charge in the plasma electron
distribution equals the total charge in the beam at about the time that opening begins.
Hence, the net effect of the beam-plasma interaction during the conduction phase is that
the emitted electrons increasingly provide for the neutralization of the plasma ions.

Comparison of the -esults for the SCL emission case discussed above with the no
emission case of Section 3 clearly illustrates the fundamental difficulty with the classical
PFD model.2®* With SCL emission the system evolves through a series of states which are
far from the bipolar equilibrium state hypothesized by the classical model. As a result,
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Figure 32. Total beam electron charge (lower), total plasma electron charge (middle) and
total (beam + plasma) electron charge (upper) for SCL emission case. Values are
normalized to the total electron charge present in the initial fill plasma at ¢t = 0.

the scaling predictions for conduction time, conducted current and other quantities must

be modified substantially.

4.5 SCALING IN THE SIMULATIONS.

This Section discusses the scaling of conduction time and current in the computations
with model parameters such as the initial d//dt, plasma density, gap width and ion mass.
The conduction time , t., is defined as the time interval from the onset of current flow at
t = 0 to the time at which a significant net diode voltage drop begins to develop. The
conducted current, I, is the corresponding diode current at time ¢.. During the conduction
phase the diode acts as a short circuit (Vp = 0). Then the initial current risetime dI/dt
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is Vo/L where V; is the initial charge voltage on the external capacitor and L = 1 uH is
the circuit inductance. Hence, the scaling of I. and ¢. with initial dI/dt can be found by
varying Vo while keeping L and the other model parameters held fixed.

Figures 33 and 34 show how I, and the corresponding value of ¢. scale with V, and
hence initial dI/dt for three different initial plasma densities n; = 10'? cm=3, 10! ¢m=3
and 10'* cm~3. The plotted points are simulation results. The simulation results for I, and
t. versus V; lie roughly on a straight line on this log-log plot, suggesting an approximate
power law dependence for these quantities. The solid curves are least squares fits to the
simulation data for a given density assuming a power law dependence for I, and ¢, on Vj.
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Figure 33. Conduction current I, versus V; for fill densities n; = 102 cn™3, n;, = 1013
cm~?, and n; = 10 cm~3. Solid curves are least squares fits to a power law
Vi

The scaling from the simulations for I, with dI/dt is in sharp contrast to the classical
PFD model. The classical model predicts that switching occurs at a current threshold that
is completely determined by the properties of the fill plasma, but completely independent of
the initial dI/dt. Figure 33 shows that the simulation result for I, increases with increasing
dI/dt to a power ~ 0.5 that depends slightly on initial plasma density. For example, at
n; = 10" cm3 I is fitted well by (dJ/dt)°463. The optimum exponent varies slowly
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Figure 34. Conduction time ¢, versus V; for fill densities n; = 10'? cm=3, n; = 10'® cm™3,
and n; = 10 cm™3. Solid curves are least squares fits to a power law V{.

with density from 0.396 at n; = 10'?2 cm~2 t0 0.581 for n; = 10'* cm~2 Correspondingly,
t. scales like d1/dt to about the —0.5 power, again with a slight variation of the exponent
with density. The variations in the power law exponent for I. and t. with density are, of
course, related since the ratio I./t, must always be proportional to dI/dt.

Figure 35 shows how the conduction current I, scales with initial plasma density n;
for fixed current risetime dI/dt obtained by setting Vo = 1 kV and Vj = 10 kV. The solid
curve is a power law least squares fit with the initial capacitor voltage Vo = 10 kV (or an
initial dI/dt = 10 kA/us). The result is that I, scales as (n;)%%. For n; = 10" cm™®
and below the simulation data for V5 = 1 kV show similar power law dependences, but
above n; = 10! cm™3 scaling curves flatten out, showing that the power law dependence
is only approximate.

In the classical model?® I, does not vary with gap width d, but the simulations give
a different result. Figure 36 shows t. versus the gap width d from a series of simulation
runs with n; = 10! cm™2 and V; held fixed at V, 1 kV. The solid curve is least squares
fit indicating a scaling of ¢, as d®%2. This prediction should be easily testable in an
experiment.
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Figure 35. Conduction current I, versus n; for Vo = 1 kV and 10 kV. Solid curve is a least
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squares fit to a power law n;

Voltage amplification during opening V,/Vo is particularly relevant. Figure 37 shows
the peak value V, of the voltage compared to the initial voltage on the capacitor Vg, as a
function of V;, and hence the initial current risetime dI/dt at three different initial plasma
densities n; = 10" cm~3, n; = 10'® cm~3, and n; = 10" cm~3. The decrease of V,/V,
with increasing dI/dt at fixed density is readily apparent. It should be noted that for
each density there is a value of dI/dt (or Vp) above which no net voltage amplification is
obtained. Correspondingly, at fixed dI/dt, V,/V, increases with increasing fill density.

All of the scaling results discussed above were obtained using a hydrogen fill plasma.
How do these change with mass of the plasma ions? Figure 28 is a log-log plot of the ratio
of emitted electron current to ion current into the cathode at the onset of opening, J./J;,
as function of the ion mass m; normalized to the proton mass m,. The initial voltage V,
is held fixed at 1 kV, and n; = 10'® cm.~® The solid curve is a least squares fit to an
assumed power law dependence for the simulation data. Apparently J./J; at the onset of
opening scales like (m; /m,)"/2. Hence, even though the value of J,/J; is not simply given
by v/m;/m,. as would be the case in the classical bipolar model, the simulation result still
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Figure 36. Conduction time ¢, versus gap width d for n; = 10" cm~3, V5 = 1 kV. Solid
curve is a least squares fit to a power law d’.

shows that,
Jc/Ji = «a \/mi/me, (4—20)

where @ = 0.63 for n; = 10'® cm~3 as shown. The dashed line in Figure 38 shows the
bipolar value v'm;/m, for comparison. Note that Figure 38 contains physically unreal-
izable ion masses up to 10*m,, approaching the limiting case of infinite ion mass to be
treated elsewhere.

Figure 39 shows the simulation results for ¢, versus m;/m,, from runs with V; at 1
kV, and densities n; = 10'2 cm™2 and n; = 10'3 cm™3. For both densities ¢, scales like
m?-32. However, for n; = 10'? cm~2 and beyond m; /m, = 100 the ¢, scaling curve flattens
out and approaches a constant limiting value ¢, = 40.8 ns shown by the horizontal dashed
line. For the higher density, n; = 10'® cm,~3 the data suggests a much higher limiting
value for ¢., and a much larger value of m;/m, for the onset of saturation. Theoretical
considerations elsewhere suggest that the saturation value of ¢, is should be about 2.2 us.

Saturation of ¢, with m; demonstrates a surprising result, namely, that a low voltage
conduction phase exists even for infinitely massive ions. Since the ions can not move the
system never relaxes to a bipolar equilibrium state during the opening process. Research
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Figure 37. Voltage amplification (V,/V, versus Vo: Vo = LI) for fill densities n; = 10'?
cm~3, n; = 10® cm3, and n; = 10" cm™3.

on the PFD with immobile ions, presented elsewhere, clarifies the conduction process for

the PFD studied here.

4.6 CONCLUSIONS.

This section demonstrates by an explicit numerical example why the classical bipolar
model®® incorrectly describes the conduction phase of a magnetized PFD or POS. This
failure arises from violation of the bipolar equilibrium state assumed to exist during the
conduction phase. Instead the low voltage conduction phase is characterized by the growth
of a large potential maximum near the center of the diode gap, while the voltage across the
diode remains small, and a J./J; ratio that is substantially lower than the bipolar value
vm; /m.. This state is maintained by the nonlinear interaction of the emitted electrons
with the plasma fill. The onset of the opening phase is characterized by the termination of
electron trapping and the rapid transition to a bipolar equilibrium state. These processes
take place even if the ions are infinitely massive. If the particle ions are replaced by
a stationary uniform background of positive charge, the system still has a low voltage
conduction phase followed by an opening phase in which a significant diode voltage drop
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Figure 38. Value of J./J; at the onset of opening versus m;/m, n; = 10" cm=3, V; =1
kV. Solid curve is a least squares fit to a power law m{. The dashed curve is the
bipolar value v'm;/m,.

develops. This infinite mass ion case is smoothly obtained from the case of finite ion mass
as m; increases.

The model for the operation of a magnetized PFD outlined above makes a variety
of testable predictions. For example, with fixed plasma fill and increasing V; the current
conducted before opening increases roughly like 1/V,, while the classical model?® predicts
a constant current. The present model also predicts ions on the anode side of the diode
with energies significantly greater than the diode voltage during the conduction phase.
These ions betray the presence of the growing potential hump during conduction. Finally,
the rapid oscillation of the potential near the anode during the conduction phase might be
expected to generate electromagnetic noise near the plasma frequency. Hence, a PFD with
plasma fill of n; = 10" cm~3 should produce roughly 28 GHz microwave noise during
the conduction phase.

Perhaps the simplest and most distinguishirg prediction of the simulations is the
effect of an initial ion drift. According to the classic model*® the ion drift affects the
low-voltage current, while in the present model the ion drift is virtually irrelevant. Recent
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Figure 39. Conduction time t. versus m;/m, for fill densities n; = 10'> cm=3 and n; = 103

cm™? with ¥, = 1 kV. Upper solid curve is a least squares fit of the form m?.
The lower solid curve is a least squares fit for m;/m, < 100. The dashed curve
is the limit of ¢, for n; = 10'%2 ¢cm™—3.

experiments®? seem to support this prediction. In these experiments the fill plasma was
created in situ in the diode gap by ionization of a low pressure gas instead of being injected
at trans-sonic velocities as happens with plasma guns. In these experiments there is a low
voltage conduction phase of about 50 ns followed by a rapid opening. This behavior
disagrees with the classical model?® but agrees with the simulations presented here.
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SECTION 3

THEORY OF THE PLASMA FILLED DIODE WITH IMMOBILE IONS

This chapter discusses the Plasma Filled Diode (PFD) coupled to an external LC
driver circuit in the limit of infinite ion mass.3* In this limit the immobile ions act as a
fixed spatially uniform background of positive charge. Although jon motion was thought
to be essential to PFD opening, the simulations with immobile ions still show a low voltage
conduction phase with a characteristic potential hump, followed by a high voltage opening
phase. An analytic theory for the potential hump agrees with the simulation, especially
when trapped electrons are included. The considerations are extended to the PFD with
mobile ions.

5.1 INTRODUCTION.

The previous section considers a planar Plasma Filled Diode (PFD) coupled to an
external LC circuit, as in Figure 26 of Section 4. During the conduction phase the PFD
has a bipolar sheath at the cathode, which accelerates electrons to velocities in excess
of the electron thermal speed of the background plasma, causing a strong beam-plasma
interaction. The effect of this interaction is to drive the plasma electrons out of the diode
on a timescale faster than the response time of the ions. As a result, the plasma charges
up, and a potential hump develops in the diode gap, with a peak potential much larger
than the voltage drop. The surprise in Section 4 was that conduction and opening phase
persist even when the plasma ions are infinitely massive.

This section is a detailed investigation of the PFD with infinitely massive ions, which
act as a constant uniform background of positive charge. This situation has analytic solu-
tions, which provide a quantitative explanation for the conduction and opening processes
observed in simulations, even for the case of mobile ions. Section 5.2 presents a typical
simulation of a PFD with space-charge limited emission of electrons and immobile ions.
Section 5.3 contains the analytical solution for the space charge flow problem. Section 5.4
shows the agreement of these solutions with the simulations. Section 5.5 adds the effects
from trapped electrons, which further improves the agreement with simulations. Section
5.6 discusses how the insight gained from the analytic theory in the immobile ion limit
provides a quantitative explanation for the operation of the PFD with mobile ions.

5.2 PFD SIMULATION WITH IMMOBILE IONS.

Figure 40 shows the diode current and voltage obtained from the simulation code
PDW!1 (see Section 4.2) for a PFD with an initial plasma fill of immobile ions with con-
stant density n; = 10'> cm~2 and an equal density of plasma electrons. The initial charge
voltage on the external capacitor is Vo = 1 kV, and the remaining model parameters are
as in Section 4. Space-charge limited (SCL) electron emission is allowed from the cathode
surface. The diode voltage of Figure 40 has a 41 ns long low voltage conduction phase
followed by an opening phase with a significant diode voltage. The voltage increases mono-
tonically to V; during the opening phase, in marked contrast to the voltage amplification
factor ~ 2.3 observed with mobile hydrogen ions at the same fill density in Section 4.
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Figure 40. Diode voltage and current with density n; = 10'? cm™2 of spatially immobile

ions, and SCL electron emission from cathode surface.

Figures 41(a) through (h) are a sequence of snapshot plots done at selected times
during the first 150 ns of the simulation. At each time indicated the figure shows the
electron v, versus z phase space and the potential distribution ¢(z) in the diode gap. In
the phase space plots all velocities are in scaled units normalized to Az/At. The position
z across the diode gap is measured in grid cell units from z = 0 at the cathode on the left
to z = 128 at the anode on the right. The potential ¢ is given in Volts.

The initial state is a spatially uniform distribution of Maxwellian electrons with T,
= 5 eV and the fixed background of immobile ions with number density n = 102 cm~3.
The potential distribution is initially identically zero across the diode gap. As the current
begins to flow in the external circuit the initial plasma electrons are rapidly replaced by
beam electrons emitted off the cathode. By ¢t = 8 ns this replacement is 95 % complete.
Figure 41(c) shows the state of the diode at this time. The potential plot of Figure 41(c)
shows a series of potential humps in the diode gap. Initially these humps have a small
spatial scale and very small amplitude. Figures 41(c) through (f) are snapshots taken at 2
ns intervals irom ¢ = 8 ns out to ¢t = 14 ns which demonstrate how these potential humps
evolve as time progresses. The hump nearest the cathode grows rapidly in both spatial
width and amplitude at the expense of the humps to its right until by ¢ = 14 ns it spans
the full width of the diode gap. The electron phase space plot in Figure 41(c) shows that
trapping of electrons out of the emitted beam is taking place due to oscillations of the
potential minimum on the right hand side of each of the humps, with most of the trapping
taking place at the right hand side of the hump nearest the cathode. By t = 14 ns the
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Figure 41. Electron phase space v, versus z, potential ¢(z), and electron and ion densities

p.(z) and p;(z) at selected times for an immobile ion density n; = 10'? cm™3.
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(continued).
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hump nearest the cathode spans the full width of the gap and all trapping takes place by
the oscillation of the potential at the anode.

As the conduction phase proceeds the amplitude of the potential hump continues to
grow even though the total diode voltage drop seen by the external circuit remains small.
Figure 41(g) shows the state of the diode at the end of the conduction phase at t = 40 ns.
By this time the potential maximum has grown to 634 V. Most of the trapped electrons
are lost and they are no longer being renewed by further trapping of electrons out of the
beam.

As the opening phase progresses the total voltage drop slowly grows. Figure 41(h)
shows the state of the diode late in the opening phase at ¢ = 150 ns. By this time the total
voltage drop has reached 994 V while the potential maximum is 1254 V. The maximum is
not located at the center of the diode gap but at x = 87.3 A instead. Even in the final open
state there still remains a potential hump whose amplitude is significantly greater than the
total voltage drop, and a small population of electrons that is permanently trapped inside
this hump.
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Figure 42. Potential distribution after opening for different ion densities.

The spatial position z,, and amplitude of the potential maximum ¢m in the final
state are strong functions of the density of the immobile ion background. Figures 42(a)
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through (d) show the potential distribution in the diode gap after complete opening, for
four ion background densities n;. Figure 42(d) shows that for n; = 4 x 10'? cm~3 the final
amplitude of the potential maximum is 3893 V, nearly 4.5 times the total voltage drop,
and the position of the maximum is at z,, = 69, near the center of the diode gap at z = 64.
As n; decreases, ¢, decreases while z,, moves toward the anode. Figure 42(a) shows the
distribution at n; = 5 x 10! cm=3. Here ¢,, =1016 V, only slightly greater than the total
voltage drop of 1 kV, and z,, =108.7, near the anode at r = 128. For n; = 3 x 10*!
cm~3, not shown in Figure 42, the potential maximum is at the anode, and for n; below
3 x 10! ¢cm~3 no potential maximum is present. As the ion density vanishes the potential
distribution ¢(z) in the final state looks increasingly like the z*/3 distribution for SCL
electron flow in the absence of ion space charge.

Figure 43 shows the simulation results for the conduction time ¢, as function of the ion
density n; (points), fitted by a power law ¢, ~ n¢, where § ~ 1.8. Extrapolating this scaling
to ion densities exceeding 10'* cm™3 gives t. = 2.2 us, too long for the computations to
observe opening.
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Figure 43. Scaling of the conduction time t., which is proportional to the conduction current
I. at opening, with n; for simulations with immobile ions. The solid curve is a
least squares fit of the form nf, with § ~ 1.8.
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5.3 ANALYTIC CONSIDERATIONS.

The simulations discussed above find that the propagation of an SCL electron beam
in a fixed ion background leads to the formation of quasiperiodic potential humps in the
diode gap. This observation suggests that the humps might be computable analytically by
considering the time independent flow of a space-charge limited electron beam in a fixed,
spatially uniform background of positive charge. In the dynamical simulation the humps
are unstable and oscillations in the potential minima between humps lead to trapping of
electrons out of the beam. In the first approximation trapped electrons are ignored, as
discussed earlier.3*?¢ Neglecting trapped electrons is appropriate for the late conduction
and opening phase when the trapped electrons have decreased in importance. Trapped
electrons are added below in Section 5.5.

The space charge in the diode has two contributions, the charge density p = en; from
the background ions, and the charge density from the electrons emitted at the cathode:
the background electrons have disappeared. Electrons are emitted with zero velocity from
the cathode, at £ = 0 with potential ¢ = 0. Conservation of energy and current for the
electrons gives

%msvbz_e¢=01 (5—1)
Je = eny(z)v.(z) = constant. (5 -2)

Combining Equations (5-1) and (5-2) with Poisson’s equation gives

52
a_zf = 7le¢-1/2 - %, (5—3)
where ) 12
]C me
e = (g) (5-4)

and 7; = en;/e. Multiplying both sides by 0¢/dz, integrating and imposing the SCL
boundary condition that 3¢/0z = 0 at the cathode gives

1(9¢)\?
E(a_i) = 29.4'% - nig. (5 —5)

At the potential maximum ¢ = ¢,, the derivative 3¢/3r = 0. Combining this with
Equation (5-5) above yields
=4l (5-6)

Since 7, #/? is the electron charge density at the potential maximum Equation (5-6) simply
says that the electron charge density is half the background ion density there. Recalling
the definition of 1, Equation (5-6) becomes

b = 2me(je)2. 5-1)

e en;
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Equation (5-7) gives a relation between the amplitude of the potential maximum, the
electron beam current and the background ion density.

Equation (5-5) can be rewritten using the normalized potential ¢ = ¢/¢n in the
region between z = 0 to the position of the potential maximum at z,, as

_ -4 [2’7: o _ ]1/2, (5 -8)

where the positive square root must be taken since 3¢ /dz > 0. Integrating Equation (5-8)
from z = 0 to z,, yields

1Y
’/u1 [y1/2 dlp,b]llﬁ = [%]123'"‘ (5-9)

The integral is easily evaluated to yield = so that Equation (5-9) becomes

1/2
2,"] (5 - 10)

Combining this result with Equation (5-7) gives

/2 . .
Ty = W(Cozme) de - T2 (5-11)
e?n; en; wp en;

Equation (5-11) relates the half width of the potential hump to the electron beam current
and the ion charge density.
Equation (5-8) becomes when using Equation (5-10)

W _ LT [y o
= =t [z — o] " (5 -12)

This equation describes the solution for the potential in the region 0 < z < zn.
Integrating from 0 to i gives an implicit equation for ¥(z) of the form,

v
/ oy d¢¢»] 77 = sin ' [291/2 — 1] — 2[y'? —¢]'? 4+ x/2=x (xi) . (6-13)
° - m

Similarly, the potential in the region z,, < z < 2z,, to the right of z = z,, is also
described by Equation (5-12) if the plus sign is replaced by a minus, since dy/3z < 0in
this region. Integrating the resultant equation again leads to an implicit equation for ¥(z)
similar to Equation (5-13):

sin~[2¢'? — 1] — 2% —y]'? +x/2=x (2 - ;i) : (5-14)

m
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Figure 44. Analytic solution for ¢(z) for a space-charge limited electron beam in a fixed
spatially uniform background of positive charge, without trapped electrons.

Equations (5-13) and (5-14) can be solved numerically to yield the complete solution
for 1(z) over the region from the cathode z = 0 to the point where ¥ again vanishes at
z = 2z,,. Figure 44 plots the resultant solution. Note that the solution is symmetric
about the point z = z,,. Further, the point z = 2z,, is completely equivalent to z = 0
since ¢ = Gy/0z = 0 there. Hence, the solution for the potential to the right of the point
z = 2z, is a spatially periodic repetition of the solution for 0 < = < 2z,,. To emphasize
this point Figure 44 contains two repetitions of the solution.

The conclusion is that the time independent solution for a SCL electron beam in a
spatially uniform fixed ion background is a series of spatially periodic potential humps.
Equations (5-7) and (11) show that the amplitude ¢,, is proportional to the square of the
beam current j2, while the hump width 2z,, is proportional j.. The current for which a
single hump fills the entire diode is a critical value j.,, given by

. 1 2e 12 3/2
Jer = 2‘/2—160 ; LA d. (5—15)

Any increase in j. beyond this critical value will make the width of the hump larger than
the physical gap width d and thus will drive up the voltage at the anode. This is precisely
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what happens in the simulation late in time during the opening phase when the trapped
electron contribution to the potential can be effectively neglected.
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Figure 45. The potential maximum ¢, in the analytic theory compared with the value in
the simulations.

In these considerations the trapped electrons are ignored. However, during most of
the conduction phase the trapped electrons are important. The dynamical simulation
suggests that the virtual cathode represented by the potential minimum inside the diode
near r = 2z, is unstable. The virtual cathode oscillates, which causes trapping of electrons
out of the beam. Section 5.5 further discusses the trapped electrons and their role in the
evolution of the potential during the conduction phase.

5.4 COMPARISON WITH SIMULATION.

The analytic solutions obtained above can be used to predict the position and ampli-
tude of the potential maximum late in the opening phase when the virtual cathode has
moved beyond the anode, when 2z,, > d. Define the normalized diode po ential ¢y as

Vo

Yo = 3> (5 - 16)
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Combining Equations (5-10) and (5-14) gives

3n/2 — sin~'2yp”? — 1] + 2Awp? — w2 _ (2_'1_) " (5-17)

1/2
0/ ¢°

Equation (5-17) determines the I-V characteristic of the diode. Given the total voltage
drop Vp, the gap width d and background ion density n;, Equation (5-17) determines the
value of ¥ and hence ¢,,. Inserting ¢,, into Equation (5-7) then yields the corresponding
value of the diode current. Also, ¢,, determines z,, via Equation (5-10).

1.0 7 T v T T T

ZTm/d

+ simulation

analysis —

n;/10'? cm™3

Figure 46. The width of the potential hump z,, in the analytic theory compared to the
simulations.

Figure 45 compares the analytic value of ¢,, predicted by Equation (5-17) with the
maximum voltage observed in the simulations (using ¢o measured in the simulation instead
of ¢p = 1kV). Figure 46 compares the (normalized) position z., of the potential maximum
with the simulation, andFigure 47is the final current. The agreement between analysis
and simulation is clearly excellent. The deviations apparent in these figures arise from two
effects not included in the above analysis, viz., the trapped electrons already mentioned,
and also the finite energy of electron emission as discussed further in Section 5.5.
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Figure 47. Final diode current Iy, in the analytic theory compared to the simulations.

5.5 TRAPPED ELECTRONS.

The analytic solution for the potential obtained in Section 5.3 assumes that all the
electron space charge in the diode comes from the beam. However, in the simulation the
minima between the potential humps become unstable and form oscillating virtual cathodes
which trap electrons out of the beam. Figure 48(a) shows the amplitude of the potential
minimum on the right hand side of the potential hump nearest the cathode as a function
of time early in the conduction phase, corresponding to the snapshot plots of Figure 41(b)
through (e) between 6 and 12 ns (for n; = 10!'? cm~3). The amplitude initially executes
regular oscillations with a period about equal to the plasma frequency. The oscillations
become increasingly chaotic as the time evolution progresses. Figure 48(b) is a plot of
the spatial position of this minimum versus time for the same period. This shows an
average motion of the minimum toward the anode corresponding to the expansion of the
potential hump, with an oscillation on top. This type of behavior is very reminiscent of the
oscillations in both position and amplitude of the virtual cathode formed by an electron
beam injected into a vacuum region between two grounded parallel conducting planes.3

This section discusses the inclusion of trapped electrons analogous to their treatment
in the reflex triode.3® The model assumes that the transit time of a trapped electron across
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Figure 48. Amplitude (a) and spatial position (b) versus time of the potential minimum
nearest to the cathode in a simulation with immobile ion density n; = 102
cm~3. The time interval 6 to 11 ns corresponds to Figures 41(b) to near 41(e).
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the potential hump is much shorter than the time for a change in the hump’s amplitude,
so that at each instant the system is approximately in a steady state. Similarly, the energy
E of a trapped electron remains constant as it reflexes back and forth inside the potential
hump, with a velocity according to m.v*/2 = E + e¢. Following Creedon,*®

Y e
TdE (5 —18)

is the number of trapped electrons per unit area per unit time traveling in the negative
z direction at £ = z,, with total energy between E and E + dE. In a stationary state

this number is constant. The density of negative going trapped electrons with total energy
between E and E + dE follows by dividing the flux by the local velocity,

-1/2

in = dE[-g—(E + ¢)] (5 — 19)

The total electron density then becomes

Y - A R 5-)

€

The factor of 2 in front of the integral reflects that in steady state the negative going flux
of trapped electrons at every point is equal to the flux of positive going trapped electrons.

Equation (5-20) expresses the spatial density of trapped electrons in terms of the
energy spectrum df /dE of the trapped electrons at z = z,,. This spectrum is determined
by the details of the trapping process, which are hard to account for analytically but easily
seen in the simulation. Therefore, with some assumptions about the form of df/dE it is
possible to use the simulation to approximate the effect of the trapped electrons on the
potentials.

Using Equation (5-21) into Poisson’s equation, multiplying by 8¢/0z, and integrating
with the additional boundary condition 8¢/3z = 0 at ¢ = ¢,,, gives the generalization of
Equation (5-6),

1/2 (O
27’e¢3n/2 - Nidm + Ci(mc) / (E + C(ﬁm)l/2 de = 0. (5-21)
0

—-edm

To proceed further the energy spectrum for the trapped electrons must be defined.
The simplest is to assume that the trapped electrons at z = z,, are uniformly distributed
throughout the allowed range of total energy, i.e., df /dE is a constant independent of E.
This assumption simplifies the analysis because all the integrals involved can be done in
closed form. However, a constant energy spectrum is not a very good approximation to
the trapped electron distribution observed in the simulation. The actual distribution is
strongly peaked at its low energy end (at E = —eg,, ), and falls off rapidly with increasing
E. Fortunately, the details of df /dE appear in lower order, and are therefore qualitatively
unimportant in computing the correction for the effect of the trapped electrons.
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The trapped electron energy distribution is normalized by

Y dE 4 ! ( )

where 4 = 4f; /3 is proportional to the current j; in trapped electrons compared to the total
electron current j. emitted from the cathode, f; = ji/j.. ‘rhis normalization condition
and the assumption of a constant spectrum gives

f 3 Je _
dE T degm € (5-23)

Substituting Equation (5-23) into (5-21) and solving for ¢,, gives

bo = e () gy (5 - 24)

e en;

Equation (5-24) is the extension of Equation (5-7) including the trapped electron con-
tribution in the case of a constant energy spectrum. Equation (5-24) can be rewritten
as

1/2 1/2
m Ty 2m, ) ) _
i ( p 1+~). (5 -25)

The potential maximum ¢,, increases as expected from the addition of the trapped elec-
trons to the total beam current.
In analogy to Section 5.4 the potential for 0 < z < z,, satisfies

W _ 2n; 1/2 / 3/2] /2
3 = [m] [$'7 — (1 + 9 + w2 T, (5 26)

where ¢ = ¢/¢,,. Integrating Equation (5-26) from z = 0 to z = z,, gives

1 . & 2, 12
=F\TTT N m- 527
/0 [$1/2 - (1 + 7y + 2] 'V? (¢m(1 + 7)) ‘ (5-27)

The integral on the left is a combination of elliptic integrals of the first and second kind,

4 x .1
1) =217 (3.v4) - B(3.v3)]. (5-28)
Finally, solving for z,, in Equation (5-28) with Equation (5-24) for ¢,, gives
: 3/2
2, = 1&.[(1 + 7) ’(7)], (5 — 29)
wp en; n
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Figure 49. The correction factors for z,, and ¢,, as function of the trapped electron param-
eter 7. The trapped electrons have equal energy.

where w, is the plasma frequency w? = e?n;/eom.. Equation (5-27) is the analogue of
Equation (5-9) where the expression in square brackets is the multiplicative correction for
the trapped electrons.

Integrating Equation (5-26) yields an implicit equation for ¥(z) in terms of elliptic
functions that must be solved numerically. With a constant energy spectrum for the
trapped electrons, Figure 49 shows that for 4 = 1 the potential maximum ¢,, approaches
4¢,, in the absence of any trapped electrons (¥ = 0) while the location of the maximum
Z,, diverges. The meaning of this result is clarified in Figure 50, which illustrates the effect
of varying v on the solution for the potential ¢(z). In Figure 50 ¢ and = are normalized
to the values of ¢, and z,, for ¥ = 0. As v approaches the critical value 4., = 1, the
spatial period of the solution increases while ¢, approaches 4 times the amplitude of the
potential maximum in the absence of any trapping. For v very close to 1 the location of
the maximum z,, approaches infinity. At the same time there appears an extended spatial
region around z = z,, in which ¢ ~ ¢,,: then the potential distribution looks increasingly
like that of a sheath at the edge of a quasi-neutral plasma.
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Figure 50. The potential in the diode as function of the trapped electron parameter 4. The

potential ¢ and the position of the maximum z are normalized to ¢,, (v = 0) and
Z, (v = 0) without trapped electrons.

Figure 51 shows the effect of 4 on the density of the beam electrons n;, the trapped
electrons n, and the total electron density n, = ny, + n, at the position z = z,». In the
limit v = 1 the total electron density n. = n; is at z = z,,. Note that for 4 = 1 the density
of trapped electrons is 3/4 the total electron density while the beam electrons contribute
only 1/4. In this limit the system does indeed look very much like a beam in a plasma.

Equation (5-29) indicates that the trapped electrons increase the width of the potential
hump compared to the potential with the same beam current without trapped electrons
given in Equation (5-11). The simulations indeed show this effect. The upper curve in
Figure 52(a) shows the position of the potential maximum for the jump nearest the cathode
in the simulation of Figure 42, with immobile ions at density n, = 10'? cm~3. The lower
curve is the value of z,, predicted in the absence of trapping using the value of j. measured
in the simulation. Comparison of the two curves shows that the potential hump in the
simulation initially expands much more rapidly than it would have without trapping, until
the potential hump spans the full width of the gap so that z,, is located near the gap
center at £ = 64A. This situation persists until trapping stops and opening begins at
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Figure 51. Density of beam electrons n;, trapped electrons n; and total electrons n. =
n, + n; as function of v at ¢ = r,,,. All curves are normalized to n;.

about ¢ = 40 ns. Then z,, increases until it relaxes to a final position slightly greater
than that predicted by Equation (5-11) (with j. from the simulation). The middle curve
in Figure 52(a) is the prediction of Equation (5-29) including the approximate effect of the
trapped electrons. The value of f; and hence v used in Equation (5-29) is measured directly
in the simulation and plotted in Figure 52(b). Figure 52 shows that even the relatively
crude approximation of a constant energy spectrum for the trapped electrons results in a
significant improvement in the agreement between the prediction of the analytic theory
and the simulation for the expansion of the potential hump as a function of time.
Equation (5-25) allows some rather general statements concerning the effect of the
trapped electrons on ¢,, for an arbitrary spectrum df/dE. In non-dimensional form

df o _ ¢ Je
35 9E = £ F(O) &, (5-30)

where £ = E/ed,, is the normalized energy and F(¢) is the normalized distribution func-
tion, with f‘,l F(€)d¢ = 1. As before, the influence of the trapped electrons is defined by
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Figure 52. (a) Position of the potential maximum z,, versus time in the simulation with
immobile ions of density n; = 10'> cm~3 (upper curve). Lower curve is the
prediction of Equation (5-11). The middle curve includes the trapped electrons
according to Equation (5-29). which approximately includes the correction due
to the trapped electrons. Figure 51(b) is the trapping fraction f; used (from the
simulation).
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the parameter v, which is for arbitrary F(¢)

0
v=2f 0+ Oo"FO (5-31)

This is always non-negative: therefore the trapped electrons always increase the potential
maximum ¢,, .

The effect of the trapped electrons on ¢,, is easily seen by comparing the computations
with trapped electrons with the analytical theory without trapped electrons. It turns out
that the theory in Section 5.3 must be augmented with a finite emission velocity of the
electrons. Although the electrons in the simulation are emitted with a distribution of initial
velocities, it is sufficient for the theory to consider electrons with a single initial velocity
vo. Instead of Equation (5-1) energy conservation becomes

-;-m,vf(z) - ed(z) = %m,vé = Ey. (5-32)

The equation for the maximum potential ¢,, becomes

bn = 2&(}_)2[(1 + i"_)m _ (.:_;)1/2]1/2. (5-33)

e \en Pm

This equation differs from its counterpart for vo = 0, Equation (5-7), in the presence of
the square brackets. This factor is less than unity for 0 < ¢; /¢ < 1, showing that a finite
initial velocity vp > 0 reduces the maximum value of the potential. A similar calculation
shows that a non-zero initial velocity does not change the position z,, of the maximum
potential.

Figure 53 compares ¢,, from Equation (5-29) (with the appropriate initial energy
m.v3/2 = 3.48 eV) to the actual ¢,, value observed in the simulation. The simulation’s
value for ¢,, is always greater than the analytic value from Equation (5-29) without trapped
electrons, because trapped electrons tend to increase ¢,, over the value without trapping.

5.6 CONCLUSIONS.

This section examines the PFD in the limit wherein the background of mobile ions
is replaced by a fixed spatially uniform background of positive charge. This limiting case
still exhibits all of the essential features of the conduction and opening process described
in Section 4. The potential hump follows the analytic solutions discussed in Section 5.3,
especially just before opening when trapped electrons have disappeared. These solutions
provide a simple explanation for the high voltage opening phase. To repeat, the spatial
width of the potential hump is proportional to the beam current j.. At first the diode
gap accommodates multiple potential humps, but as the external inductor continues to
drive the diode current up the potential hump becomes too wide for the diode gap. Then
the diode voltage increases, and the diode opens. Section 4 already showed essentially
the same scenario for mobile ions. In this case, however, the ion density is continually
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Figure 53. The analytic value for ¢,, including trapped electrons and initial electron velocity
compared with the simulations.

decreasing during the conduction phase and during opening the mobile ions can relax to a
bipolar distribution. The role of non-equilibrium ion distributions in the conduction phase
of plasma opening switches has been suggested by Grossmann3® et al. based upon analysis
of two dimensional simulations of the Plasma Erosion Opening Switch using the MASK
code.

Section 5.5 demonstrated how to account for trapped electrons in the potential dis-
tribution during the conduction phase. This treatment explicitly points out the parallels
between the PFD and the reflex triode. It does not, however, provide a complete analytic
theory of the simulations since the shape and normalization for the spectral distribution
of the trapped electrons is not specified a priori but must be provided as an input to the
analysis. These quantities are determined by the trapping process itself, which must be
better understood in order to achieve a completely satisfactory analytic theory of PFD
operation in the immobile ion limit.
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SECTION 6

TWO DIMENSIONAL SIMULATIONS OF PLASMA FILLED DIODES

Electron beam diodes initially filled with a low-density plasma are used for prepulse
supppression and as opening switches. In these plasma filled diodes (PFDs), the impedance
is initially very low because the initial plasma fill is a good conductor. Subsequently the
diode impedance increases somewhat as space-charge limited electron flow is established
across a cathode sheath. At some later time the impedance of the diode begins to rise
rapidly, i.e., the PFD opens. The voltage across the PFD rises, and the diode produces
bremsstrahlung.

During the low impedance phase the self magnetic field of the electron beam bends
electrons towards the main body of the plasma. The time over which the plasma filled
diode can remain in a low impedance state is controlled by electrostatic gap formation
and by hydrodynamic motion of the plasma bulk. Under certain conditions hydrodynamic
forces dominate the opening time. In contrast to earlier models, which predict that cathode
sheath erosion dominates the opening process, the particle simulations in this section show
that sheath formation at the anode also plays an important role.

6.1 INTRODUCTION.

Originally, prepulse suppression'®3® motivated prefilling an electron beam diode with
plasma. The plasma filled diode (PFD)!7324° has also been used for inductive energy
storage, the primary interest here, by itself or combined with a plasma opening switch.
The importance for this application is that the plasma filled diode minimizes the inductance
between the switch and the bremsstrahlung load.

One of the earliest experiments on plasma prefilled electron beam diodes! used the
NEREUS and HYDRA generators. Plasmas with density 10'3-10'* cm=2 traveling at
approximately 1.3 cm/us were produced by a vacuum arc across a ceramic surface coated
with oil. Two regimes of electron flow were identified, depending on the strength of the
self-magnetic field of the electron beam. When the current is low such that the electron
gyroradius is substantially larger than the anode-cathode gap spacing, the behavior of the
PFD is controlled by a plasma sheath that forms at the cathode. The current across the
sheath follows the bipolar Child-Langmuir*! relations for one-dimensional space-charge
limited ion and electron flow. However, higher-dimensional effects become important as
current or gap spacing increase, and the electron gyroradius in the self-magnetic field of the
beam becomes comparable to the gap spacing. By reversing the polarity on the electrodes,
it was determined that the plasma drift motion was inconsequential.

In subsequent experiments®® on PROTO I the PFD is filled with a 10'? cm~2 carbon
plasma traveling at 5-7 cm/us produced by plasma guns. The plasma fill reduces the
prepulse from a 700 ns oscillatory waveform with peak amplitude of ~ 30 kV to a 150
ns triangular pulse with 20 kV peak. The prepulse is now sufficiently short to prevent
cathode turn-on prior to the main voltage pulse. Other beneficial effects of a plasma prefill
are 1) the anode-cathode voltage increases faster than the voltage at the insulator stack, 2)
transients at the cathode are suppressed, and 3) prior to cathode turn-on magnetic energy.
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is stored between the cathode and wall. This article®® suggests that the PFD could be used
as an opening switch for inductive energy storage applications in pulsed power generators.

Widner and Poukey?* examine further the ion sheath motion in the PFD when the ion
transit time across the sheath is fast compared to the expansion rate of the sheath. They
conclude that the sheath does not expand until the ion current necessary for bipolar Child-
Langmuir flow exceeds the flux of ions to the cathode. Subsequently the sheath expands
until the sheath velocity drops below the ion acoustic speed, at which point a rarefaction
propagates into the plasma. lons are accelerated into the sheath by the rarefaction wave,
and the sheath slows down.

Bailey?® et al. study the possible use of a PFD for electron beam injection into
a tokamak. The diode is the load of a magnetically insulated transmission line (MITL)
coupled to the Pulserad TM 225W generator. The diode is inserted into a chamber prefilled
with hydrogen plasma created by titanium washer guns. Plasma densities range from
5x%10'2-2x10' cm™3. An external axial magnetic field of 1.5 kG guides the electron beam
down the chamber. This PFD couples very well to the MITLs. At the higher densities a
cathode sheath erosion model?> shows reasonable agreement with the data. However, at

densities below 3x10'® cm~3, the diode remained in a low impedance state much longer
than predicted.

Subsequent opening switch research*?** emphasizes plasma injection into the vacuum
transmission line located between the vacuum interface and the load. However, a PFD
combined with an opening switch was successfully tested on the GAMMA accelerator.??
The plasma fill allowed the diode to conduct in a low impedance state for ~ 1 us. When
the switch opens at currents above 200 kA, the voltage increases to ~ 2 MV, 1.7 times the
peak voltage delivered to a diode load. Similar results are reported by Goyer'? et al. on
the EYESS generator. Using the PFD as the only switching stage, 500 kA is conducted
in 0.5 us, a peak voltage of 1 MV corresponding to a voltage gain of 1.4. The voltage
gain increases to 2.2 when the PFD is used as the last stage switch in tandem with a
plasma opening switch (POS) located in the vacuum transmission line. In addition, with
this tandem POS-PFD the power pulse becomes narrower. Also Bluhm et al.*® find the
shortest pulse width with a POS coupled to a PFD, with almost 100 % current transfer to
the diode.

Systematic experiments on long conduction time PFDs are reported by Bugaev*! et
al. using the GIT-4 generator. In related work, Bastrikov!® et al. show that as much as
30% of the current may be carried by ions (with a spherical cathode).

This section discusses computer modeling of PFDs with two-dimensional particle-in-
cell (PIC) codes, and compares the results with analytic approaches, and one-dimensional
computations®=4 of PFDs (similar to Sections 4 and 5). The two-dimensional PIC simu-
lations are presently limited to low density plasma fills (< 5x10'? cm~3) and short conduc-
tion times (< 40 ns). In the two-dimensional PIC simulations most of the early current is
carried by the ambient electrons, and the magnetic field penetrates a few collisionless skin
depths into the plasma. A space charge sheath develops that turns on space-charge limited
electron emission from the cathode. As the current increases, electron emission from the
cathode carries an increasing fraction of the current. In contrast to the 1-D computations,
the self magnetic field of the electron beam bends the electrons into the main body of
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the plasma. The magnetic field is able to follow the emitted electron stream and chews
a path into the plasma towards the anode. During this time the magnetic field continues
to accelerate electrons towards the axis. An ambipolar electric field drags the ions along
with the electron current channel imploding on axis. The implosion seems to trigger the
opening process for the parameter regimes of these simulations.

The 2-D PIC simulations are compared in this section with computations for the same
parameters using the one-dimensional code REFLEX. Another model to mimic specifi-
cally the opening process through plasma implosion is a hydrodynamic snowplow model
connected to an identical driving circuit, in the FREYA circuit code. FREYA agrees
reasonably well with the implosion times observed in the 2-D simulations.

Prior two-dimensional plasma opening switch (POS) simulations*®~5 have examined
a coaxial geometry where the plasma is injected in the vacuum transmission line rather
than in the diode. Although the PFD behavior*?*3 is similar in many aspects to these
simulations there are also significant differences. The principal difference is that the PFD
carries all the current, while in a coaxial POS the current can also flow through a down-
stream load.

Section 6.2 discusses the assumptions and the appropriate parameter regimes for each
of the different simulation models. Section 6.3 compares the physical effects and the results
from three different simulations. Section 6.4 discusses the results and the implications for
PFD design, and suggests further work.

6.2 SIMULATION MODELS.

The r.imary simulation model is the particle-in-cell (PIC) code ISIS** developed by
Mike Jones at LANL. This code solves the full set of Maxwell’s equations on a computa-
tional grid. An exact charge conserving method®® interpolates particle information for the
current density J, , which is used to advance Maxwell’s equations forward in time. Particles
move according to the relativistic Newton-Lorentz equations of motion. ISIS is operated
ina?21/2D (z,r,v,,v,,v9) mode with explicit differencing of Maxwell’s electromagnetic
field equations as done in many PIC codes.36-38

ISIS has several features necessary for modelling the PFD; perfectly conducting sur-
faces, particle injection, space charge limited particle emission, and an electromagnetic
power pulse driving the simulation. Limitations on computer time keep a reasonable run
below ~ 40 ns.

Figure 54 shows the cylindrical r — z geometry used in the 2-D simulations. The
computational grid is uniform with Az = Ar. The mesh spacings range from 0.125-0.2 cm,
or around 50-100 grid points in each direction. Particles are absorbed on the electrodes,
assumed to be perfect conductors. The r=0 boundary is the symmetry axis: particles
crossing r=0 are specularly reflected back into the simulation region. The cathode, at the
left of the figure, has a radius of 7.6 cm., while the anode, at the right, has a radius of
12.8 cm. The anode-cathode gap spacing is 10 cm. The geometry closely resembles the
configuration of the EYESS experiments at Physics International.

A uniform plasma with an average of 4-9 macroparticles per cell is initialized between
the electrodes, with subsequent particle injection from the anode. The electron densities
range from 1 x 10'? to 5 x 10'?> cm~3. Most plasma sources used for PFDs produce
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Figure 54. The simulation geometry is cylindrically symmetric around the z-axis. The cath-
ode is the cylinder with radius 7.6 cm in the lower left of the figure, with z = 0
at the flat front face of the cathode. The anode is at z = 10 cm. The shaded
regions indicate the extent of the two plasma fills in the computations.

principally C**. Therefore, the ion charge to mass ratio in the simulations is the electron
charge to mass ratio divided by 11,020 (6 x m,/m.). The drift velocity has been varied
from 0 to 10 cm/ps, but the drift speed does not play a significant role in these simulations.

The electron temperature in the diode plasma is typically in the range of 1-10 eV.
The minimum spatial scale lengths of plasma phenomena are on the order of the Debye
length Ap. However, the minimum spatial scale that can be resolved in the simulation is
the grid spacing A. The electrons in the simulation heat up via the grid instability until
the Debye length is comparable to the grid spacing. Resolving realistic Debye lengths
is prohibitively expensive in 2-D simulations. Since the grid instability saturates when
Ap =~ 0.3A, the electron temperature ranges from 6.5 keV to 13 keV for the simulation
parameters. Sheaths that develop at the electrodes will establish voltage drops of tens of
kilovolts just from the electron temperature. Therefore the simulation does not contain
short wavelength instabilities and instabilities requiring low electron temperatures, which
is a common problem in 2-D PIC simulations of plasma filled devices. These limitations
could have a significant effect on the quantitative features of the simulations, but it is
expected that most qualitative features remain unaffected.
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When a user-specified electric field criterion is exceeded, electrons are emitted from the
cathode using space-charge limited emission. Typically, an electric field ~ 100-300 kV/cm
is necessary for the formation of surface plasmas from which the electrons are drawn. In a
plasma opening switch, it is likely that a surface plasma is formed in the interaction of the
injected plasma with the electrode surfaces. For this reason, a low threshold of 1 kV/cm
is used for electron emission in regions where the plasma contacts the cathode. In other
regions the simulation uses a threshold electric field of 100 kV/cm. Ion emission from the
anode has been allowed, without affecting the results. :

The simulation is started with a linearly ramped transverse electromagnetic (TEM)
wave traveling forward axially at the speed of light through the gap at the top left of Figure
54. The phase velocity for outgoing waves is set to the speed of light. Thus electromagnetic
waves reflected from the plasma opening switch travel back unattenuated as if the gap were
attached to a vacuum transmission line extending to infinity. The voltage and current at
the inlet gap are the sum of the incoming power pulse and the outward reflected waves.
The TEM wave is linearly rising at a rate of 8.2 kA/ns (8.2 x 10'? A/s) into a matched
load. The plasma opening switch has a lower impedance load than the transmission line,
and part of the TEM wave is reflected. The result is that the current rises as much as a
factor of two faster than for a matched load.

As described above, the limitations inherent in 2-D PIC simulations place severe re-
strictions on the parameters that can be modeled. One restriction is to low density uniform
plasmas with high temperatures in a diode that is perfectly axisymmetric, another is that
particles are completely absorbed by surfaces rather than possibly reflected. Also, electron
emission from the cathode is from an infinitely thin, very dense surface plasma that does
not expand from the cathode into the gap. Thus the simulations should not be viewed as a
predictive replication of existing experiments. The purpose of the simulations is to gain in-
sight into the behavior of the PFD and to make predictions as to what physical phenomena
are most important and what scalings of physical parameters might be expected.

The 2-D PIC computations are compared with two simpler models. One is the code
REFLEX*®, one-dimensional electrostatic particle code described in Section 9. The results
from REFLEX should most closely match the ISIS runs when the gap spacing is small
relative to the electrode size and when self-magnetic field effects are not important.

Another comparison is with the zero-dimensional circuit code FREYA. FREYA con-
tains an RLC generator circuit attached to a transmission line terminated by a z-pinch
plasma. The z-pinch model assumes that the entire current runs in a sheath at the plasma
surface, and that the plasma mass gathers into the same sheath as the J x B force pushes
the plasma radially inward. Then the equation of motion for the sheath radius R(Z) is

d v dR]  pel() )
zil(Bo- R (t))I] = T TringMR(D)’ (6-1)

where Ry is the initial sheath radius, / is the diode current, ng is the ion number density,
and M; is the ion mass. For a linearly rising current, the equation can be written with a
normalized radius x = R/R, and normalized time 7 = tvy/ Ry as

2
d—%[(l - x2(t) %] = —-T;, (6 — 26)
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where

I‘Oia 1/4
o= lrmi]

4xngM; (6 - 26)

The normalized time for the plasma to implode on axis is 7; ~ 1.5, and the implosion time
t; = 7, Ry /v, scales as v;'. A corresponding scaling relation holds for the opening time of
the PFD if opening is triggered by plasma implosion on axis.

6.3 SIMULATION RESULTS.

This section discusses the results of the 2-D computations, and compares them with
computations using the 1-D code REFLEX and the 0-D code FREYA. Magnetic field
penetration into the plasma is discussed first, followed by a description of the opening
characteristics of the plasma filled diode. The first simulation has a plasma radius of 5
cm and electron density of 5.0x10'? cm~3. The two other runs shown later have a larger
plasma radius of 8.6 cm, one with the same electron density (5.0x10'? cm~3) and the
other with a much lower density (1.0x10'? em~3). These runs give very similar results.

It is impossible to show the detailed dynamics visible in the computer movie. Instead,
the few figures that can be shown may be supplemented with a description that is inspired,
in part, by the additional information gleaned from the movie.

Figure 55 shows the situation early in time, at 2.5 ns. Starting at ¢ = 0, a linearly
rising transverse electromagnetic (TEM) wave propagates from the inlet to the plasma at
the speed of light, see Figure 55(b). The plasma is conductive, and the plasma bulk is
shielded by currents in a thin layer at the plasma surface: Figure 55(a) shows the direction
of the current opposite to the electron flow. Equivalently, the electromagnetic fields in
Figure 55 show that the radial penetration is over a couple of collisional skin depths,
6 = c/wpe. When enough current has flowed to remove most of the electron charge from
the first cell adjacent to the cathode, a sheath forms at the cathode. The minimum size of
the sheaths in these simulations is determined by the grid spacing. Initially the sheath is
also a few collisionless skin depths in radial extent but the sheath spreads until it covers
the entire cathode surface.

The time 7 for the sheath to spread over the whole cathode surface comes from
setting the total charge in the sheath Q ~ pAAz equal to the total charge carried by
the current during its linear rise with rate I, Q ~ I72/2. Here p is the electron charge
density and A is the area of the cathode surface contacting the plasma. Then for this case,

T~ \/ 2pAAz/I ~ 1.8 ns, which, when the light transit time is also considered, agrees well
with the data from Figure 55.

During the low-impedance phase the current and the magnetic field penetrate into the
plasma, which acquires a net negative space charge from the electrons gyrating radially
inwards. The same phenomenon is reported in plasma opening switches.*®*3 As the current
increases further a current channel forms that transports the electrons from cathode to
anode through their E x B drift velocity. The E x B drift velocity is parallel to the
cathode surface close to the cathode, because the electric field is perpendicular to the
cathode surface. Figure 56(a) shows the current vector J at 12 ns, over the plasma portion
of the diode only, while Figure 56(b) is the electric field at the same time. The current
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Pigure 55. (a) The the current density vector J and (b) electric field vector E at time 2.5
ns. The electromagnetic wave has penetrated the plasma only over a few skin
depths, except for a sheath at the cathode.

J ~ n.eE x B/ B? in the electron flow is largely perpendicular to the electric field in Figure
56(b). The current in Figure 56(a) is mostly from electrons emitted from the upper part
of the cathode. These electrons are focussed towards the E x B channel that is parallel to
the axis below about =3 cm. Upon reaching the anode, the electrons move parallel to the
anode towards the r=0 axis, again because the electric field is perpendicular to the anode.

Besides the electron flow in the direction opposite to the current flow there is an
additional, slower, motion radially downwards towards the axis throughout the full diode
gap. Figure 57(a) shows the ion positions at 12 ns, and Figure 57(b) shows the ion phase
space r — p, of radial jon momentum versus radial position. At this time the ions have
not yet moved much from their original positions except near the cathode at the outside
of the plasma where field-emitted electrons enter the plasma, and away from the anode:
no new jons are emitted in this computation. Phase space ([Figure 57(b)] shows that the
jons outside the plasma are accelerated radially away from the plasma due to the plasma’s
net positive space charge. The strong electric fields in Figure 56(b) accelerate most other
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Figure 56. (a) The the current density vector J and (b) electric field vector E at time 12
ns over the central part of the diode. The current channel between anode and
cathode corresponds to the region of non-zero electric field.

ions inward, especially the ions in the current channel at r ~ 3 cm. The plasma is pulled
radially inwards similar to the implosion of a z-pinch: some ions initially close to the axis
have already crossed the axis and are moving radially outward through other ions that
started farther away.

Figure 58(a) is the current vector J and Figure 58(b) is the electric field slightly later,
at t = 15.5 ns. At this time the plasma first hits the axis, approximately 3 cm away from
the cathode. Figure 59(a) shows the position of the ions at ¢ = 15.5 ns, and Figure 59(b)
is the r — p, radial phase space. The current implodes with the plasma as can be seen in
Figures 58 and 59. The current channel is now clearly reflected in the ion density: the
outer layer of the ions, with r > 3.5 cm, has remained relatively stationary, while the
innermost ions are swept up by the electric field of the current channel. Other diagnostics
show that the implosion point moves forwards axially, hitting the axis 2 ns later near the

anode.
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Figure 57. lon z — r configuration space (a) and ion r — p, phase space (b) at 12 ns, just
before the plasma channel hits the axis.

Voltage and current are shown in Figure 60. In Figure 60 the voltage is the line
integral of the axial electric field component V(t) = — [ E,(z,r)dz along a path parallel
to the axis at a given radius r. The solid line is at r ~ 0.4 cm near the axis.

In general the voltage between two points “1” and “0” has two components. The
electrostatic component is [, ‘E.df = —(¢, — ¢o), which vanishes when the integral is
taken around a closed loop, i.e., when point “1” is the same as point “0”. The inductive
component is the remainder. Around a closed loop of area S the electric field satisfies
[ E.df = —3(f B-dS)/at, which is not necessarily zero. The inductive part of the voltage
is therefore the difference between the electric field integrated around two different paths
between two conductors.

The integral of the electric field at r ~ 0.4 cm is computed close enough to the r =
0 axis that the inductive component (proportional to the area |S|) can be ignored. This
integral approximates the electrostatic voltage. The dash-dot line is the integrated electric
field at r ~ 5.4 cm, near the plasma edge: the difference between these curves is the
inductive voltage.

Opening of the PFD at t = 15 ns is visible in a rapid increase in the electrostatic
voltage (at r = 0.4) followed by large excursions as the plasma bounces around the axis.
At r = 5.4 cm outside the plasma the voltage increases more gradually. The two voltages
track each other, on average. Therefore the PFD opens electrostatically. The current rises
more slowly during PFD opening. The fast wiggles in voltage and current ip Figure 60

98

PPN

Lo ms -

. et cthscscondi. b,




pTy—

-

......................

...............
P
NN e s pm - e

A e g

B e B e S I

~ — -, s s [IPL Y
~ N n\.-.,\\h..

:

.‘ls\\\l\.-__..\ll-l\. -““:'\::'l:l\ll\\v
R TR R e ".‘::

R AR ‘0\‘ St
o | EL g e
0 z (cm) 10

Figure 58. (a) The the current density vector J and (b) electric field vector E at time 15.5

ns over the central part of the diode, just before the ions hit the axis. The current
channel between anode and cathode corresponds to the region of non-zero electric
field where E x B is substantial.

come from Fourier smoothing of the data. The raw voltage and current vary on the intrinsic
time scale of the computation, much faster than can be observed in an experiment.

Figure 61(a) shows the current vector J and Figure 61(b) shows the electric field
vector E at t = 22.5 ns, the time of the second rapid increase in the voltage on axis.
Most of the current is carried by electrons that come off the cathode shank and the upper
portion of the cathode face. These electrons move radially inwards parallel to the cathode
until reaching the axis around z ~ 3 cm. Then the electrons flow mostly parallel to the
axis through the imploded z-pinch material until they pinch for the last time near the
anode. The axial electric field component E, is largest in the current channel parallel to
the cathode: most of the voltage drop occurs across this sheath.

The sheath is also visible in the the position of the ions, Figure 62(a), and the position
of the emitted electrons, Figure 62(b), at time ¢ = 22.5 ns. The ions form an anode gap
near the axis and a gap near the top of the cathode. In the center of the gap, the ions are
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Figure 59. Ion z — r configuration space (a) and ion r — p, phase space (b) at 15.5 ns, just
before the ions hit the axis.

mostly cleared away by the implosion of the plasma. The positively charged plasma at the
upper radii funnels the electron beam flow toward the axis after opening.

Which aspects of the full two-dimensional dynamics are captured by the simpler mod-
els? Figure 63 gives the voltage and current computed for the same parameters with the
one-dimensional code REFLEX, which contains axial dynamics but ignores radial struc-
ture. In REFLEX the PFD exhibits a longer conduction time. As discussed more fully in
other sections, the voltage drop across the diode begins when the driven current exceeds
the thermal current I > 0.5enqv; A. Here v; is the electron thermal velocity and A is the
electrode area. A potential hill develops in the simulation that accelerates ions to both
electrodes. The width of the anode and cathode sheaths increases as the current in the
diode increases. The anode develops a negative space charge as the plasma in the gap
develops a net positive space charge. The sheaths increase as the interaction between the
diode electron beam with the plasma gradually decreases the plasma electron population.
When the number of plasma electrons pulled out of the plasma decreases dramatically, the
diode impedance rises rapidly.

Electron phase space z — v, in Figure 64(a) at 20 ns shows that the emitted electrons
are accelerated by a cathode sheath, interact in a coherent fashion with the trapped plasma,
and decelerate somewhat across an anode sheath. The ions in Figure 64(b) accelerate
towards the cathode, coast through the central plasma, and accelerate further towards the
anode. The start of the opening event, at 22.8 ns in the one-dimensional simulations, is
correlated with a decrease in the anode electric field. At this point the difference between
the maximum voltage in the simulation and the diode voltage starts decreasing. The
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Figure 60. The voltage V(r) = — [ E,dz at r = 0.4 cm (solid line) and at r=5.3 cm near the
plasma edge (dash-dot), on the left scale. The current (dashed) is on the right
scale.

L b

opening in the one-dimensional calculations is driven by expansion of the cathode sheath
as can be seen in Figure 64(c) and Figure 64(d) at 30 ns.

] There are significant qualitative differences as well as quantitative differences between
the one-dimensional and the two-dimensional simulations. Most of the differences can be
attributed to bending of the electron flow by the self magnetic field of the electron beam
in the two-dimensional computations, which is absent in one dimension, and the streaming
instabilities that are enhanced in one dimension but not prominent in two dimensions. For
example, only a remnant of the positively charged plasma and potential hill in the one-
dimensional simulations is observed in the positively charged plasma above the current
after the £ x B channel is established in the two-dimensional simulations. This potential
hill focuses the electron flow below the positively charged plasma as well as shedding ions
towards the cathode. The electric field structure responsible for accelerating the electron
beam during opening of the two-dimensional PFD computation is located near the cathode
for larger radii and near the anode for smaller radii, with a complex shape in between.
The electron beam in the YREFLEX simulation is accelerated across a cathode sheath.
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Figure 61. (a) The the current density vector J and (b) electric field vector E at 22.5 ns.
The current moves radially inward at the cathode sheath to 3 cm and then focuses
on the axis near the anode.

The hydrodynamic radial motion important in two dimensions is missing in the REFLEX
simulations.

The two-dimensional simulations suggest that the opening process is determined by
the pinching of the plasma in the certral part of the diode. Pinching should be reproducible
with a simple zero-dimensional model as iraplemented in FREYA. The particle plots of
Figures 59 and 62 indicate that the plasma above r=3.5 cm is not driven towards the axis.
Therefore the initial radius Ry for FREYA is chosen as Ry = 3.5 cm rather than the 5
cm radius of the initial plasma fill. Figure 65 shows the voltage and current generated
by FREYA for the same parameters and circuit model as the two-dimensional and one-
dimensional computations. The plasma hits the r=0 axis »: 15.7 ns, in agreement with
the two-dimensional simulations. It should be noteq that the voltage in Figure 65 is purely
inductive, although this computa.'; ... ov restimates the inductive effects by the assumption
that the plasma implodes at the same time over the entire axis, in contrast to the two-

dimensional simulations that show considerable two-dimensional structure. Despite the.
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Figure 62. Ion r— z configuration space (a) and electron r — z configuration space (b) at 22.5
ns, just before the ions hit the axis. The plasma at the top right side is positively
charged. The electron flow is through the low-density region below this plasma.

agreement in the implosion (opening) time the values of current and voltage generated in
FREYA do not agree with the two-dimensional simulations.

Two other 2-D PIC computations serve to illustrate that the 2-D dynamics seen above
are fairly typical of a PFD. The first is for electron density 5.0 x 10'? cm™3, as before.
However, the initial plasma position in the diode is now out to a radius of 8.6 cm, 3.6 cm
beyond the previous plasma limit at r = 5.0 cm. In addition, the plasma extends 3 cm to
the left of the cathode face as shown by the widely spaced dashes in Figure 54. The total
amount of plasma in the diode has increased threefold.

Figure 66 shows the ion position and the radial phase space r — p, at opening, which is
26.5 ns in ihis case. The same qualitative features are seen as in the corresponding Figure
59. The principal difference is a second region of higher ion density, at 3.5 cm, when the
first jons collide on axis. The electric field (not shown) is again largest in a sheath parallel
to the cathode for the larger radii (r > 3 cm), and therefore the current pinches at the
anode starting from a larger radius, r =~ 4 cm.
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Figure 63. Voltage and current for the PFD modeled with the one-dimensional code RE-
FLEX. Opening begins at 22.8 ns, significantly later than the ~ 15 ns opening
time for the two-dimensional ISIS run.

The voltages in Figure 67 are the line integrals — [ E,dz close to the center at r =
1.9 cm (dash-dot line) and at the edge of the cathode at r = 7.6 cm (solid line). The
electrostatic voltage at r = 1.9 cm is now always much smaller than the voltage at 7.6 cm.
Therefore the PFD opens, between 20 and 30 ns, through an inductive mechanism. The
ions close to the anode in Figure 66 show evidence of an electrostatic sheath region close
to the axis (for r< 1 cm), but not at larger radii. The current in Figure 67 rises smoothly
throughout the run, decreasing in slope as the voltage increases.

The total ion density appears to be a principal parameter that affects the opening
mechanism. The final ISIS computation in this section is with the plasma in the larger
region (see Figure 54) but at reduced density, 1.0x19'? cm™3. Figure 68 shows the ion
locations at 12.5 ns, 18 ns, 22 ns (at opening), and 25 ns. At 12.5 ns the current channel
is forming toward the outside of the plasma, compare Figure 57. At 18 ns the current
channel is established across the diode to the anode and is moving towards the r=0 axis.
At 22 ns, the ions are just hitting the axis, and the PFD opens as seen from the voltage in
Figure 69. The voltages at r=1.9 cm (dash-dot) and r=7.6 cm (solid line) correlate closely
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Figure 64. Electron (top) and ion (bottom) z—v, phase space plots from the one-dimensjonal
code REFLEX, before opening at 20 ns (left) and after opening at 30 ns (right).
Before opening, emitted electrons are accelerated by the cathode, interact with
the trapped plasma, and are decelerated by the anode. Before opening the ions are
accelerated towards both electrodes. After opening the plasma is characterized
by a rapid expansion of the cathode sheath.

as the ions approach the r=0 axis before opening at ¢ = 20 ns, and also for later times.

Thus the voltage is largely generated by an electrostatic space charge gap.

Our computations show that the current in the two-dimensional simulations is always
smaller than the current in the one-dimensional REFLEX simulations, while the voltage
and impedance in the two-dimensional simulations are always larger than the voltage and
impedance in the one-dimensional simulations. Thus the one-dimensional simulations sug-
gest a limit on the conduction time and conduction current in a PFD. The self magnetic
field of the electron beam increases the impedance of the PFD over the one-dimensijonal
limit, because the self-magnetic field bends the electron trajectories radially inwards, de-
creasing the area available for conduction.
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Figure 65. Voltage (solid line) and current (dashed line) computed by FREYA. With an
initial radius Ry = 3.5 cm the imploding plasma hits the axis at the same time
as in the two-dimensional ISIS calculations.

When the implosion time for the plasma is less than the sheath erosion time for the one-
dimensional REFLEX model, the conduction time of the two-dimensional ISIS simulations
is similar to the implosion time predicted by a simple zero-dimensional implosion model.
The implosion time in this case can be scaled with parameters directly from the analytical
expressions used in the computations, Equations (1) and (2). The implosion time is ¢ ~
1.5Ry /vg with

vo = (po/4xnoM;)/4 13, (2b)

In a PFD in an inductive circuit the current rises linearly during most of the conduction
phase, and I is a well-defined parameter. Then conduction time should approximately
scale as the initial radius Ry and the fourth root of the plasma density (n‘/ *), and as the
inverse square root of the rate of current rise (/-/?). The conduction current I, would
scale as the current rate of rise multiplied by the implosion time, or as the square root of
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Figure 66. Ion z — r configuration space (a) and ion r — p, phase (b) at 26.5 ns, just before
the ions hit the axis, in a two-dimensional ISIS run with plasma extending out
to 8.6 cm and initial density 5.0 x 10'? cm—3.

the rate of current rise (I. o /'/?). Scaling with density is the same as for the implosion
time, I, oc Ron'/4.

For a PFD in the hydrodynamic limit a doubling of the plasma density increases the
conduction time and current by only 19%. For the two computations that can be directly
compared, the extended plasma fill with 5.0 x 10'? cm~3 and 1.0 x 102 ¢cm~3, the scaling
is even slower than n'/4. This is because the electron current channel penetrates deeper
into the plasma at the higher density, which decreases the initial radius of the implosion.

Without experimental information about the proper initial conditions for the simu-
lations it is difficult to match the simulations with the experiments. Moreover, the two-
dimensional simulations must be run with artificially low plasma densities, because the runs
are too expensive for realistic parameters. Instead, extrapolation from the two-dimensional
computations must be done with either the simpler zero-dimensional snowplow model or
the one-dimensional PIC model.
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Figure 67. Voltage V(r) = — [ E,dz at r = 1.9 cm (dash-dot line) and at r=7.6 cm (solid
line) near the plasma edge, on the left scale. The current (dashed line) is on the
right scale.

With this approach the agreement with experiment is reasonable. For example, the
data from the GIT-4 generator*! indicates that the conduction current I, depends weakly
on the rate of current rise, I, o 192, at least for for a delay time of 4.5 us between firing
the plasma guns and the main generator pulse. For a delay time of 5 us, the conduction
current depends more strongly on the rate of current rise, I, o /%35, These scalings are
comparable to the /%% scaling of the one-dimensional simulations. More plasma should
be in the PFD when the delay time is increazed. Thus the PFD at the delay time of 5 us
may be moving into the regime where hydrodynamic effects limit the conduction time.

Scaling with the number of plasma guns indicates that the conduction current de-
pended on the square root of the plasma density n!/2. This scaling data agrees more with
one-dimensional REFLEX simulations than with a hydrodynamic model. Thus it is likely
that the PFD in their experiments are more limited by sheath erosion processes than by
hydrodynamic implosion of the plasma. However, the geometrical differences between the
experiments and the simulations may influence these results.
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Figure 68. lon r — z configuration plots at times of (a) 12.5 ns, (b) 18 ns, (c) 22 ns, and (d)
25 ns for an extended plasma fill with density 10> cm™2 in a two-dimensional
ISIS computation.

6.4 CONCLUSION.

This section presents results from two-dimensional PIC simulations of plasma filled
diodes for low plasma densities and short conduction times, and compares these with
simpler one- and zero-dimensional models. In the two-dimensional computations the diodes
consist of a solid cylindrical cathode inside a hollow cylindrical anode with flat faces for
the anode and cathode. The plasma is a single ionic species, C*+, initially uniform out
to a defined radius. Several phases of PFD behavior are identified. Early in time, the
magnetic field and electron current penetrate along the cathode but are shielded from
the plasma interior elsewhere. The electrons pinch towards the axis when they are near
the anode surface. The ions near the anode are accelerated towards the cathode by the
excess electron space charge in the plasma. The self magnetic field of the electron beam
eventually bends electrons into the plasma. An E x B current channel forms in the plasma.
The plasma above the channel is charged positively and the plasma below the channel is
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Figure 69. Voltage V(r) = — [ E,dz at r = 1.9 cm (dash-dot line) and at r=7.6 cm near
the plasma edge (solid line), on the left scale. The current (dashed line) is on the
right scale. Opening occurs at about 20 ns.

charged negatively. The channel implodes towards the axis by its own J x B force. Most
but not all of the ions are swept along the with the current channel towards the axis. For

the parameters examined here, the implosion of the plasma determines the conduction
time of the PFD.

The opening of the PFD is more complicated than the cathode sheath models?® de-
scribed elsewhere. The opening combines erosion of ions from the plasma near the upper
part of the cathode with the acceleration of ions near the lower part of the anode into
the plasma to create a gap there with ions swept out by the current channel in between.
The voltage generated by the opening event can have a substantial inductive contribution
from the implosion of the current channel as well as an electrostatic contribution from gap
formation.

The two-dimensional electromagnetic PIC simulations (ISIS) compare reasonably well
with the two simpler models, a one-dimensional electrostatic PIC simulation (REFLEX)
and a zero-dimensional snowplow model (FREYA). Each of the simpler models is connected
to the same circuit as the two-dimensional simulations. These models are far cheaper ta
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run computationally than the two-dimensional PIC simulations. However, effects such as
an initially non-uniform plasma density with several ionic species, or electrode plasmas,
can be included in the simpler models relatively quickly to assess their effect on PFD
performance.

For the parameters examined in this paper, the implosion time from the snow-plow
model is either less than or comparable to the conduction time from the one-dimensional
models, and in closer agreement with the conduction time of the two-dimensional PIC sim-
ulations. The one-dimensional PIC simulations yield an upper limit to PFD performance.
The conduction time and current in the one-dimensional simulations should be larger than
the conduction time and current in an actual PFD. Comparisons of the conduction time
of the one-dimensional model with the snow-plow model indicate which physical effect
dominates the conduction time, sheath erosion or bulk implosion. If the conduction time
is hydrodynamically limited, as in the two-dimensional PIC simulations, the scalings for
the conduction time are comparable to experimental data.
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SECTION 7
OPENING SWITCH STUDIES WITH ANTHEM

ANTHEM?®?, a computer code developed by R. Mason at Los Alamos National Lab-
oratory, is one of the few computational models potentially capable of simulating long
conduction time plasma opening switches. At this time the code is still experimental and
has not been thoroughly examined with a variety of problems and applications. This sec-
tion contains some tests with the code to see how well it can simulate the behavior of
plasma opening switches. A problem in the way ANTHEM computes current should be
fixed with a minor adjustment of the boundary conditions. To date, the ANTHEM simula-
tions have all run in an exclusively fluid mode. However, the particle option of ANTHEM
needs to be used to describe the motion of electrons from the cathode.

7.1 INTRODUCTION.

Development of an opening switch is a critical element in the application of inductive
energy storage technology to the DECADE simulator. The leading opening switch candi-
dates, such as the plasma erosion opening switch (PEOS), the plasma-filled diode (PFD),
and the density-controlled opening switch (DCOS) rely on the behavior of a plasma injected
between electrodes in vacuum. Opening switches currently available in the laboratory do
not operate at the power levels required for DECADE. Moreover, these devices are not
well enough understood to confidently design a plasma opening switch for DECADE.

Several phenomenological models are used for extrapolating experimental data, in-
cluding simply fitting curves to the data. These models generally fall into three categories,
sheath erosion models, hydrodynamic models, and diffusion models. None of the simple
models are derived from first principles by a series of approximations. Instead, a rea-
sonable mechanism is postulated to dominate in a highly simplified geometry. Then the
consequences of these assumptions are evaluated more or less rigorously, and the results
compared to experiment. What survives the comparison is accepted as the working model,
at least until further work shows discrepancies, or a more rigorous  approach becomes pos-
sible.

Alternatives are large computations based on first principles. Particle codes have had
success in yielding insight into the behavior nf opening switches at low densities (10'2 - 103
cm™? electron number density) and short conduction times (< 100 ns). One computational
model potentially capable of simulating high-density, long conduction time switches is the
multi-fluid code ANTHEM, developed by Rod Mason at Los Alamos National Laboratory.
ANTHEM employs an advanced implicit formulation of the electromagnetic field equations
coupled with a set of fluid equations to describe the electron and plasma behavior. However,
this code has not yet acquired the level of confidence and reliability that comes with careful
testing and successful application to a range of problems.

At DNA'’s request, Jim Geary from BRA and John Grossman from NRL’s Code 4770
have collaborated in evaluating ANTHEM for its use in long conduction time switch prob-
lems. The eventual goal is the development of ANTHEM into a reliable tool for studying,
and possibly for designing, plasma opening switches for DECADE and beyond. The eval-
uation is done in two phases. The first is confirming that the computational model is
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implemented correctly, i.e. essentially debugging the code. This involves running AN-
THEM on a set of test problems where known solutions exist and comparing ANTHEM’s
predictions with these solutions. The other phase is examining whether the model, or
more specifically, the set of equations that ANTHEM is based upon, is adequate to predict
plasma opening switch performance. The second phase is more subtle and difficult.

The remainder of this section is subdivided into the following subsections. The code
model is discussed in Section 7.2. The fluid equations are derived, with special attention to
the assumptions that go into ANTHEM’s equations. Section 7.3 investigates the accuracy
of the code model as it currently stands. For the first test, ANTHEM is configured as a
shorted vacuum transmission line for examining vacuum electromagnetic wave propagation.
In much the same geometry, the next test produces planar Child-Langmuir flow across a
vacuum gap. The final test examines the behavior of a plasma in a shorted transmission
line. This test reveals a problem near the upper radial conductor in the presence of charged
particles. Section 7.4 discusses the adequacy of the model for long conduction time plasma
opening switches, in particular the applicability of the present model under various plasma
conditions. Some suggestions are made that might improve ANTHEM’s performance on
this problem. ANTHEM’s performance on a short conduction time, low density plasma
opening switch is compared with the predictions from the explicit particle code MASK.
Section 7.5 describes the RLC generator circuit model attached to a transmission line that
has been added to ANTHEM, and the test results. Section 7.6 discusses the results and
conclusions of the work, and sets out directions for tie future.

7.2 SIMULATION MODEL.

The ANTHEM code utilizes a fluid description of the behavior of the plasma electrons,
plasma ions, and electrons emitted from the cathode. A separate set of fluid equations is
solved for each of these species. These fluid equations coupled with Maxwell’s equations
for the electric and magnetic fields comprise the heart of the model. The derivation of the
complete fluid equations will be reviewed in this subsection following Braginskii.® AN-
THEM uses a simplified set. The approximations employed and their physical implications
are also discussed. Throughout the particle motion is assumed to be nonrelativistic.

A plasma can be described by a Boltzmann equation for the distribution function f,
of each particle species (electrons and ions) and of each neutral species,

0fu (&, )
ot

where C, is the collision term describing the interaction of species a with all the other
species and the boundaries. The distribution function is normalized such that

+5-Vu(Z,0)+ 3V, folF,5) = Ca, (7-1)

na(@,8) = [ fa(@,5,0)d5,

where n, is the number density of species a. The acceleration @ of a charged particle of
species a with charge ¢, and mass m, is given by the Lorentz force law,

a(z,1) = 2 [B(z,6)+5x B(z,1)] - (7-2)
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The derivation of the Boltzmann equation can be found in many texts on plasma physics.®!
The left hand side of Equation 7-1 describes the conserved motion of the kinetic fluid
through an (£, §) phase space. The right hand side of Equation 7-1 describes changes from
particles of species a colliding with particles from all other species. Clearly, the collision
term C, hides a great deal of the physical complexity.

The electric field £ and the magnetic field B are determined by Maxwell’s electro-
magnetic field equations,

%=_in§, (7 - 3a)
.:;%E=_,,oj’+VxB’, (7 — 3b)
V-E=£, (7~ 3¢)
and
V.-B=0. (7 - 3d)

The charge density p is given by the sum of the charge times the number density of the
various charged species,

p(Z,t) = E 9ana(Z, 1),

and the current density 7 is given by the sum of the charge times the flux density of the
various charged species,

7@ =X a [ 9a(5 5,045
a

Maxwell’s electromagnetic field equations and the Boltzmann equations for the par-
ticle species comprise a complete set of equations for describing the behavior of most
plasma systems. This set of equations is too complicated to solve analytically for all but
the simplest plasmas: the full Boltzmann equation is six-dimensional, and a numerical
solution would require a 6-dimensional grid. With one hundred grid cells in each direc-
tion, the six-dimensional grid would consist of one trillion grid points. However, plasma
opening switches may have a symmetry that simplifies the problem. Azimuthal symmetry
reduces the problem to a four-dimensional phase space, which would require on the order
of one hundred million grid points. Thus direct numerical integration of these equations
is extremely impractical.

One way to reduce the computational requirements is to use the velocity moments of
the Boltzmann equation, at the cost of an increase in the complexity of the formulation.
The fluid equations are obtained by multiplying the Boltzmann equation by the velocity
to an integer power and integrating over all velocity space. A complete description of
plasma phenomena is recovered by an infinite set of these equations. In many cases a
good description of plasma behavior can be obtained from only a few of the fluid-moment
equations. ANTHEM uses the reduced versions of the first three fluid equations given
below.
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The lowest moment (integrating v°f = f ) gives number conservation,

on, _ _
-3t—+V-n.ﬂ',_ o) (7 4)

where 4, is the bulk streaming velocity of the fluid defined by
N, = / Ofa(%,7,t) dv.

Here S,, given by
5. = [ a2, 0145,

describes the sources and sinks of particles, i.e., how one species of particles converts
into other species. Equation 7-4 says that the change in the number of particles in a
given volume over time is equal to the number of particles that enter or leave through the
surface plus or minus the number particles that are freed or absorbed. If the collisions
leave the number of particles of species a unchanged, then S, =0. Collision processes such
as charge-exchange between different ionic species and ionization would lead to a nonzero
S.

The momentum conservation equation is obtained by integrating the momentum m, ¢
times the Boltzmann equation over all velocity space. It is conventional to define a new
velocity variable, W(%,t) = ¥ —#(%,t): 4(Z,t) is the streaming velocity of the fluid, while w
represents the random particle motion. With this definition, the fluid momentum equation
becomes

om,n, i,

E2 4V P 4 V- (manaiafla) - gama (B+d, x B) = moitySo + R (7-5)

where the thermal pressure tensor P is defined as
P, =m, / Do By fad?.

The vector % is the rate of momentum gain or loss per unit volume for species alpha due
to collisions wiin all other particles, defined by

R‘a =/m¢,tb‘aCadb‘.

In the collisionless limit, B = 0. The continuity Equation 7-4 can be combined with the
momentum Equation 7-5 to yield

-
-y

mana%+manaﬁ‘a-Vﬁ',+Vpo,+V~ﬁa—qana (E+d, xB) =R., (1-6)
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where the scalar pressure p is defined equal to one-third of the sum of the diagonal elements
of the pressure tensor,

1 2
Pa = sm. / w, fodb.
In terms of the scalar pressure, the thermal pressure force becomes
V. ? = Vp +V. ﬂ,

where the stress tensor 1T accounts for the anisotropic part of the pressure tensor. The
the stress tensor is zero if the thermal velocity distribution has the same functional form
in all three velocity directions. The terms proportional to Vp and V - 1T accelerate or
decelerate the fluid depending on the direction of fluid flow compared to the pressure
gradient. The terms proportional to the electric and magnetic fields are bulk acceleration
from electromagnetic fields.

The third moment equation is formed by integrating m, v? times the Boltzmann equa-
tion over velocity space to yield

38?0 amGnau: 3 -t
iat + ot +—V-(p°,U)+V (

+V. h — QaNa il -

man.,,u g

)+ V- (i, - Pa)

ma

iz‘a“‘Qa (7—7)

This equation expresses conservation of energy of species a. Here Ro is the flux density of
heat carried by thermal motion of particles of species a,

=/ '"°2"’: @, fodF,

and Q, is the heat generated or lost due to collisions with all other particles defined by

2
My, W, -
Qa =/ -T‘-'—C,dv.

The temperature is linearly related to the pressure and density by p, = n, kT, where k is
Boltzmann’s constant.

Using the continuity Equation 7-4 and the momentum Equation 7-5 transforms Equa-
tion 7-7 into

3 3pa

2 m +5 V (pﬁua)+pav gy +(ﬁ V) ua+V h Qa- (7—8)

This equation describes change of internal energy. The terms proportional to pV - & and
(ﬁ - V) . @ describe how the fluid is heated when it is compressed. The ma.gnetic field
does not change the fluid energy, while the electric field only affects the energy in the fluid
motion, not the internal energy. The term V . h is the heat flow from thermal motion.
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Changes in internal energy from diffusion of hot particles to a cooler region is described
by this term.

Unfortunately, the time advancement of a fluid variable in a moment equation requires
knowledge of a higher order moment, such as @ for the continuity equation or P for the
momentum equation. Three moment equations are insufficient: an exact solution requires
solving the infinite set of moment equations.

For practical purposes in plasmas (and for good reasons in collisional fluids) the third
moment equation is truncated. For a plasma Braginskii®® derives the friction force R,
the anisotropic pressure tensor ﬁ, the heat flux A, and the heat exchange term Q in
terms of the density n, the drift velocity @, and the temperature T for a plasma species
in a collision dominated regime when the collisions are elastic using the Chapman-Enskog
expansion. This assumes that all macroscopic quantities vary slowly in space and time. If a
plasma is collision dominated, the local distribution function is approximately Maxwellian.
The total distribution function is linearly expanded into a Maxwellian zero order function
and a first order perturbed function f = f° + f!. The Maxwellian distribution function
J° is completely specified by n, T, and #. The linearized Boltzmann equation can be
solved for the perturbed distribution function f'. The quantities R, i, %, and Q can
be directly computed from f!. Braginskii®® has calculated approximate expressions for
various coefficients for a strong magnetic field 7 > 1, and for a weak magnetic field
ir & 1 where 2 = ¢B/m is the gyrofrequency.

ANTHEM solves the following reduced set of fluid equations:

on,

5 + V. n,i, =0, (7-9)
aaﬂ - - - o
m"'""'—a—{' + mgng iy - Vig + Vps — qana (E+ua X B) =0, (7-10)
3apa 3 - - g
'2'7+5V'(paua)+pav'ua+v'ha‘- . (7—11)

Braginskii’s®® coefficients are used for the heat flux k in Equation 11. These equations

are implemented for three particle species, which are: 1) “hot” electrons emitted from the
cathode, 2) “cold” electrons initially present in the injected plasma, and 3) a single ionic
species of the injected plasma. The use of a single ionic species of course neglects the
possibility of multiple ionic species and neutrals.

The anisotropic part of the thermal pressure tensor is neglected in ANTHEM’s en-
ergy and momentum equations. This makes the assumption that the plasma is collision
dominated. It is a consequence of Boltzmann’s H-theorem that collisions tend to make the
distribution function Maxwellian

falZ,5,1) = na(Z, t)(—=2-) & [_M]
7 7 2xkT, 2kT, )
However, electromagnetic forces and boundary effects can significantly distort the distri-
bution function away from a Maxwellian, especially when the plasma is strongly driven as
it is for plasma opening switches. The plasma can have a locally Maxwellian distribution

117




function when the collisional mean free path is shorter than other spatial scales and when
the collision time is much shorter than other time scales. The anisotropic pressure tensor
and the heat flux A are zero for a symmetric distribution function like a Maxwellian.
Thus the adequacy of this approximation depends under what conditions the electromag-
netic forces generate a significant pressure tensor T1. This will be discussed in more detail
in Section 7.4. )
The effects of collisions between species are neglected in ANTHEM’s formulation. Any
collision process that changes one species particle into znother is ignored in the continuity
equation. As a consequence the ionization of neutrals is ignored, changes in the charge state
of particles are ignored, and charge-exchange effects are ignored. The effects of friction
and heat-exchange between different species is also ignored: there is no Joule heating.

7.3 ACCURACY OF IMPLEMENTATION.

This subsection describes three different tests checking the accuracy of the model. The
first is checking the accuracy of the implicit electromagnetic field solver by examining vac-
uum electromagnetic wave propagation for axial and radial transmission lines. The second }
is verifying Child-Langmuir current flow between the electrodes of a coaxial transmission
line. The third category investigates the behavior of an ambient plasma in a transmission
line. Most of these tests were performed on the “ANIX” version of ANTHEM.

The boundary condition on the current at the generator side launches a transverse
electromagnetic (TEM) wave into the simulation region which is configured as an axial
transmission line with a radial gap (as shown in Figure 70), or as a radial transmission 4
line with an axial gap. The accuracy of the implicit electromagnetic field solver will be
tested when plasma source terms are not present. The axial transmission line exercises r
the (E,,By) mode set and the radial transmission line exercises the (E,,By) mode set. 4
The linear nature of Maxwell’s equations indicates that testing these mode sets separately
should be sufficient for the general case where all three field components are present. For
these tests the downstream circuit is a shorted load. The results from ANTHEM with
different time steps will be compared with a circuit code FREYA designed to solve the
relevant transmission line equations. These tests assume that the transmission line walls
are perfect conductors.

For a uniform axial vacuum transmission line, the electromagnetic field equations

educe t
reduce to B, 10E, -
8z ¢ at’
d
N OF. _ 0B, (713
9z ot

The current I in the metal can be related to the magnetic field in the vacuum by
_ bl -
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Figure 70. The schematic of the original generator and load circuit models and ANTHEM
simulation region in an axial geometry.

where r is the radial position. The voltage drop V at a given axial location between the
transmission line surfaces is

Visy=— [ Edrztdr,

Tmin

where rmin and rmac are the inner and outer radii of the conducting surfaces. Integrat-
ing Equations 7-12 and 7-13 over r from rmar t0 Tmin Yyields the lossless Telegrapher’s
equations,

oV 1901
nd al 19V

where C and L are the capacitance and inductance per unit length given by
C = 2r¢p/ In(rmaz [Tmin )s

L= (”0/21) ln(rmu' /rmiﬂ )

The characteristic impedance of the transmission line Z=v/(L/C) is 60In(rmas /Tmin)
Ohms.
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A similar analysis can be performed for the radial transmission line. In this case the
voltage drop V is defined as

Vi) == B2tz
The equivalent of the lossless Telegrapher’s equation for a radial transmission line is
o D a1

B Tareg O (1-17)
e o __2er oV o1
Bt - }loD 61' ’

where D is the axial gap spacing. The characteristic impedance Z changes as a function
of radius and is given by 60D /r Ohms.

The transmission line modules solve either Equations 7-15 and 7-16, or 7-17 and 7-18
depending on whether the transmission line is axial or radial. These equations are finite-
differenced by an explicit leapfrog scheme that is second-order accurate in both space
and time (see Section 7.5). The time step is Courant limited 6§t < cfz by this scheme.
ANTHEM’s implicit differencing of the field equations is stable for time steps larger than
the Courant limit. The circuit code FREYA can be run with arbitrarily fine resolution in
time and space to obtain an accurate benchmark. The benchmark can then be compared
with ANTHEM'’s results, and ANTHEM’s time step can be varied to see how the accuracy
of the solution is affected.

An axial transmission line is examined first. The external voltage is set at 1.0 MV,
and the generator inductance is 100 nH. The inner radius of the transmission line is 10
cm and the outer radius is 20 cm. The axial length is 30 cm. The radial grid spacing
is 0.5 cm and the axial grid spacing is 1.0 cm. For these parameters, the inductance
per unit length is 13.9 nH/cm, the capacitance per unit length is 97.7 pF/cm, and the
characteristic impedance is 41.56 Ohms. The total inductance of the generator and the
simulation transmission line is 141.56 nH.

Fluid codes have difficulty resolving regions where the density is zero. As a result,
ANTHEM is always operated with some small background density everywhere in the sim-
ulation. This background plasma will behave like a vacuum as long as the collisionless
skin depth c/w,. is large compared to the size of the simulation. The background electron
density used for the “vacuum” test runs is 1x10% cm~3. The collisionless skin depth for
this density is 5.3 meters with is much larger than the simulation length of 0.3 m.

The current coming from the inductor will initially be linearly rising at a rate of
10 kA/ns. As the current in the simulation region increases, the voltage seen by the
inductance increases due to the characteristic impedance of the transmission line. The
voltage rise decreases the rate at which current rises. After one nanosecond, the pulse
will propagate down the transmission line and encounter the conducting wall. The radial
electric field is shorted at the wall and reflects the pulse back towards the generator section.
The pulse continues to bounce back and forth every 2 ns. Qver a time which encompasses
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many bounces, the current should rise at an average rate of 7 kA /ns, which is the voltage
divided by the total inductance of the circuit and the transmission line.

First examine the behavior after 6 ns in which time the wave has made three transits
up and down the transmission line. In Figure 71, the current and voltage at the inlet
of the transmission line and the current at the shorted end of the transmission line are
plotted for three cases, viz., 1) the well resolved circuit code with dt=0.1 ps and dz=0.1
mm, 2) the circuit code with dt=10 ps and dz=1 cm and 3) ANTHEM with dt=10 ps and
dz=1 cm. These plots show that the circuit code and ANTHEM with the same spatial
and temporal resolution have about the same error. The errors in the generator and load
current are quite small. The error in the generator voltage is a little larger. The solutions
from ANTHEM are smoother and round discontinuities caused by the reflected wave. The
smoothing behavior is expected and is what allows ANTHEM to run at large time steps.
The same test for a ten times longer timestep gives the results in Figures 72 and 73. The
currents plotted in Figure 72 agree very well for the load and the generator currents. In
Figure 73, the voltages in the coarse FREYA run and the ANTHEM run match in phase
very well and lag in phase for the voltage for the highly resolved FREYA run. This implies
that the propagation speed is just under the speed of light. However as time passes, the
oscillation amplitude of the ANTHEM voltage around its mean value decreases as time
increases.

When the time step used by ANTHEM increases above the Courant limit of 33 1/3
ps, the solutions for the load and generator currents remains reasonably accurate as can be
seen from Figure 74 for time steps more than 15 times the Courant limit. For the largest
time step of 500 ps, the TEM wave would physically travel half of the transmission line
length in one time step. All of the ANTHEM runs tend towards a constant voltage at the
inlet as time increases as can be seen in Figure 75. The larger the time step, the faster the
amplitude of the voltage oscillation is damped. ANTHEM’s implicit field solver averages
away oscillations. The constant voltage found by ANTHEM is within 0.02 % of the voltage
predicted by the ratio of the transmission line inductance to the total inductance times
the generator voltage. The agreement degrades if the time step is varied and chosen by
ANTHEM as is seen in Figure 76. The average value of the voltage is too small by 12%.
The time step increases from 100 ps to 10 ns by the end of the run.

The axial transmission line case is examined next. The external voltage is again set
at 1.0 MV and the generator inductance is again 100 nH. The TEM wave is launched at
a radius of 40 cm, with the transmission line being terminated into a conductor at 10
cm. The electrode gap spacing is 10 cm in the axial direction. The radial grid spacing
is 1.0 cm and the axial grid spacing is 0.5 cm. The capacitance and inductance of the
radial transmission line is 40.1 pF and 27.7 nH respectively. The total inductance of the
generator and the simulation transmission line is 127.7 nH. With a time step of 10 ps, one
short simulation of 6 ns and one longer simulation of 60 ns were performed. The results
shown in Figure 77 again demonstrate that the accuracy of the ANTHEM field solver is
comparable to an explicit leap-frog scheme for the same grid spacing and time step. The
behavior is nearly identical to the axial transmission line runs with the phase lagging as
before and the amplitude of the ANTHEM voltage reflections declining as time increases.
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Figure 71. Results for an axial vacuum transmission line for a run time of 6 ns, with a highly
resolved run using FREYA (solid lines), ANTHEM (dotted) and FREYA with
the same spatial and temporal resolution as ANTHEM (dashed). The top figure
is the load current, the middle figure is the generator current and the bottom
figure is voltage at ANTHEM’s inlet.
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Figure 72. The solutions for an axial vacuum transmission line are shown for a run time of
60 ns, ten times longer than Figure 71. The top figure is the load current and
the bottom figure is the generator current. The line types are the same as the
previous figure. The solutions for the currents agree very well.
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and grid lag in phase with the accurate solution implying a vacuum

propagation speed just below the speed of light. The oscillation amplitude of the

voltage about its mean value decreases for the ANTHEM run.

plots in Figure 72. The solutions agree fairly well. Both runs with the coarser
P

The voltage drop at the inlet to ANTHEM is shown here for the same run as the

time ste

Figure 73.
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Figure 74. As the time step is increased beyond the Courant limit (33 1/3 ps), the solutions

for the load and generator currents continue to be accurate.
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Figure 75. The voltage oscillations produced by reflection from the shorted transmission
line are damped more rapidly as the time step increases. The average value of
the voltage agrees quite well with treating the transmission line as a lumped
inductance.
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Figure 76. If ANTHEM is allowed to pick its own time step, the accuracy of the solution
degrades. The average voltage is too small by 12% which causes the current to
rise too rapidly.
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Figure 77. The solutions for a radial vacuum transmission line are shown for a run time of
60 ns. The legends are the same as for Figure 71. The solutions agree very well
and resemble the axial transmission line cases.
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If the linear current rise is the dominant effect of the circuit model, ANTHEM does
an excellent job of predicting the average current rise as long as the time step is not above
half of the one way transit time. When the time step gets too large, the accuracy of the
solution degrades. For plasma opening switch problems, the time step should probably
not exceed one half of the light transit time from the inlet to the plasma. If the details of
the reflection in a transmission line are important, the time step will have to remain small
enough to resolve the waves.

Several tests have been performed to examine how closely ANTHEM reproduces an-
alytic predictions of space charge limited emission. The tests were run in cylindrical
geometry, but the cathode (inner radius) was chosen to be rx = 100.0 cm while the
anode-cathode gap spacing was typically less than 0.5 cm, so that the geometry can be
treated in analytic comparisons as essentially Cartesian. In the simulations, a fixed voltage
source drives current through an inductor and then the radial diode, which are in series.
A resistor terminates the transmission line/diode region. For tests of the emission physics,
the currents driven in the diode region are small enough that the electrons are unmagne-
tized. Three different types of tests were run. The first test checks the emission of electron
flow into a vacuum anode-cathode gap. The second checks the bipolar emission with an
initial plasma fill. The third tests emission physics for the case where ANTHEM uses a
high density electrode plasma as a charge emitter rather than the space charge limited
boundary conditions used in the first two tests. In this third case, the anode-cathode gap
is a vacuum.

The results of these tests were in general very positive. Excellent agreement with
analytical predictions were found even when the anode-cathode gaps were poorly resolved
with four or even two mesh points in the gap. Certain inconsistencies were found when the
top surface was used as the emitter rather than the bottom horizontal surface. Also, when
a dense wall plasma is used for the anode conductor, electrons from the anode wall plasma
propagated into the interelectrode gap for no obvious reason. These problems should be
relatively easy to fix by improving the algorithms at the anode surface.

The last test in this subsection examines certain aspects of plasma behavior near a
plasma-wall interface and near a plasma-vacuum interface. A cartoon of the simulation is
shown in Figure 78. An ambient hydrogen plasma is placed between the electrodes of a
shorted transmission line. The initial ion and electron temperatures are 1.5 keV and the
initial density is 10'? cm~3. The grid spacing in both the radial and axial directions is
0.5 mm, which is twice the Debye length of 0.23 mm. The simulation is 8 cm in length
and extends from a radius of 20 cm to a radius of 22 cm. The simulations are connected
to a transmission line whose impedance matches the simulation vacuum impedance (5.71
) and whose delay time (20 ns) is equal to the run times of the simulation (20 ns). Two
simulation runs were performed. One had a fixed time step of 1 ps and the other run used
a variable time step. The results from both simulations exhibited only minor differences.

When a plasma is in contact with a metal wall, some of the electrons and ions will
impact the wall and recombine. These particles are lost from the plasma. Since the
electrons are lighter and have a higher thermal velocity, more electrons are lost to the
walls than ions and the plasma will have a positive potential with respect to the wall.
Most of the potential difference between the walls and the plasma is dropped across a thin
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Figure 78. Sketch exhibiting a uniform plasma initialized between the electrodes of a shorted
axial transmission line.

layer called a sheath. The sheath electrostatically confines the electrons while accelerating
the ions to the wall. The voltage of the sheath adjusts itself such that there are equal
fluxes of electrons and ions to the walls. With a constant source of plasma, which is not
the case in the present simulation, an equilibrium will be established where there are equal
numbers of ions and electrons going to the wall. The equilibrium state of the sheath is
sensitive to the details of the electron distribution function. If the plasma is Maxwellian,
the voltage drop across the sheath will become 3-4 times the electron temperature.

Similarly for plasma expansion, the lighter electrons will move into the vacuum faster
than the ions. The electron space charge will accelerate the ions to a velocity faster than
what they would achieve from just thermal expansion. The electrons are slowed down from
their thermal expansion by the retarding force of the electric field. The thermal energy of
the electrons provides the free energy for the plasma expansion. As the ions move forward,
more electrons from the plasma interior move to the edge and continue to accelerate the
plasma.

The fluid equations from ANTHEM assume a Maxwellian-like distribution function
but do not move individual electrons and ions around. A plasma sheath will only form at
the walls if there is a pressure gradient there. The electrons are lighter and will flow into
the conducting walls much faster than the ions. The electrostatic retarding fields for both
the plasma expansion problem and the sheath problem significantly modify the electron
distribution function from a Maxwellian. It is not obvious how much of this distortion can
be described by ANTHEM'’s fluid formulation. At the lower conducting surface (cathode),
the differencing at the first cell should create a voltage drop that is twice the electron
temperature.
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The solutions presented in the literature for both problems take the electrons to be in
equilibrium,
ne(z’ t) = Ro exp(—ec#(z)/T,), (7 - 19)

assuming that the electrons are described by Maxwell-Boltzmann distribution function.
However, it is not obvious that ANTHEM’s fluid equations reproduce this density distribu-
tion except under restricted conditions. For example, the stationary momentum equation
in one dimension reduces to

3dp. 3, dn. _ d¢ _
Chr P §Te-d7 = -mc(z)dx (7-20)

if the electron flow velocity and temperature are constant. Integration of the above ex-
pression yields the Boltzmann distribution. However, the electron temperature does not
remain constant in the sheath, because the electrons cool as they enter the sheath and as
they expand into the vacuum. At this time it is not known what the analytical solutions
to both problems should be. This is a subject for future exploration.

A feature similar to a sheath is seen Figure 79 in near the conducting walls. How-
ever, the voltage drop across the sheaths remains approximately equal to the electron
temperature, while a kinetic model would predict much higher (3-4 times) temperature.
Unfortunately, the grid is too coarse for the sheath. Note also that electrons have expanded
into the vacuum region. The features seem qualitatively reasonable within the context of
the model but do not match actual sheaths.

In summary, the vacuum field solver used in ANTHEM performs quite well. A time
step smaller than one-half the transit time from the simulation inlet to the plasma edge
guarantees a good representation of the time-averaged behavior. The tests of Child-
Langmuir emission similarly were very good. The simulations show a sheath near the
cathode. However, the simulated sheath differs from the Bohm sheath. This should not
be a problem when the voltage drop across the sheath is much larger than the electron
thermal velocity.

7.4 APPLICABILITY OF MODEL.

How applicable is ANTHEM to the problem of interest here, the plasma opening
switch in a coaxial transmission line commonly known as a Plasma Erosion Opening Switch
(PEOS)? Ideally, the code contains the three different scenarios (diffusion, hydrodynamics,
and erosion) that have been advanced to explain opening switch behavior, but is the
plasma collision dominated or collisionless? Under likely operating conditions in long
conduction time plasma opening switches the various plasma components may demand
different approximations. The weaknesses of ANTHEM’s model and possible improvements
will be discussed. These include implementing a particle option for electrons emitted from
the cathode.

The erosion models are variants of the first theoretical description of the plasma
opening switch. Erosion models assume that switch behavior is dominated by a cathode
sheath. Ion and electron flow in the sheath is assumed to be quasistationary, i.e., the flow
depends solely on the sheath conditions at the present time. The current density across
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Figure 79. Vector plot of the electric fields produced by ANTHEM at 1 ns when a neutral
plasma is placed inside a transmission line. A sheath forms near the lower radial
(cathode) surface and near the upper radial (anode) surface. Plasma expands
into the vacuum region.

the sheath is then a variant of the Child-Langmuir current density. The opening occurs
from the rapid expansion of the cathode sheath. Opening is greatly aided by magnetic
insulation of the electron flow. The magnetically insulated electrons are unable to transit
the sheath and follow orbits close to the electrode.

Hydrodynamic models

62,63

assume_that magnetic pressure plays an important role

during the conduction phase. The J x B forces sweep the bulk of the plasma into a front
that propagates towards the load. Opening occurs when the plasma reaches the end of the
switch. This model’s drawback is the lack of an identifyable opening mechanism. There
is no reason why the plasma could not keep moving towards the load while continuing to
conduct the current. However, hydrodynamic forces may aid in the creation of a voltage
sheath, e.g., because the plasma moves more in some radial positions than others from
geometrical effects or from plasma inhomogeneities. Then the plasma density in some

channel may decrease enough for magnetic insulation of electrons.
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Diffusion models®* assume that bulk plasma resistivity plays the dominant role during
the conduction phase. If the plasma is collisional enough, the current flow can be described
by an Ohm’s Law E = 5J where 7 is the resistivity. The current penetrates at the rate
at which collisions disrupt the electron flow and kick some of the electrons downstream
towards the load. The opening process commences when the current has penetrated the
full length of the plasma. The load will carry most of the current when the switch re-
sistance is much larger than the load resistance. However, the resistivity from Coulomb
collisions is insufficient to explain the observed conduction times, although some other
mechanism might provide the required resistivity. As the current rises, the electron drift
speed exceeds the thermal velocity, and kinetic microinstabilities become possible. The
microinstabilities contain turbulent electric fields that interrupt the motion of particles, or
additional (turbulent) resistivity.

In summary, hydrodynamic motion of the plasma bulk, electrode sheath physics, mag-
netically insulated electron flow, Coulomb collisions, and turbulence from microinstabilities
are the physical effects thought to be important in plasma opening switches. Further ef-
fects that might be important are neutrals traveling from the plasma source and neutrals
coming from the electrodes. The next part of this subsection examines how well ANTHEM
describes these various processes.

Discussed earlier are ANTHEM’s results for two different kinds of sheaths, the Child-
Langmuir sheath (where electron temperature can be neglected), and the Bohm sheath
(where the electron energy is about thermal). The Child-Langmuir solution is well repre-
sented since kinetic effects are unimportant. A Bohm-like sheath exists in the ANTHEM
simulations but its structure is significantly different from the Bohm sheath. The difference
is attributed to ANTHEM’s inability to represent the non-Maxwellian electron distribu-
tion that exists in the Bohm sheath. In plasma opening switches the sheath is probably
a mixture between the two types of sheaths. When the voltage drop across the sheath is
many times the plasma temperature, ANTHEM should be capable of quantitatively de-
scribing the cathode sheath behavior. However, if the sheath width is much smaller than
the switch plasma the computational demands of resolving the sheath may be too large
for ANTHEM or any other two-dimensional code to resolve. A conservative rule of thumb
is that ~ 10 grid points are needed to resolve a sheath, although in practice 4 or even
fewer grid points can successfully model the sheath. Additional physics must be added to
ANTHEM if details of electrode sheath behavior are important, as a boundary condition
or as a sub-grid analytical model for the first cell.

Hydrodynamic motion of the plasma is described by the fluid Equations 7-9 to 7-11
for ANTHEM. As discussed in Section 7.2, ANTHEM assumes that each species is collision
dominated, but it neglects the effects of collisions between species. Let us examine more
closely what is meant by a collision dominated plasma. It is assumed that the collisions in
plasmas are dominated by small angle scattering binary Coulomb collisions. Large angle
scattering events are relatively rare. The collision times are a measure of the average time
it takes for a particle to change its direction by 90.° For a plasma with just one ionic
species where the electron and io:i: temperatures are approximately equal, the electron and
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ion collision times are%®

"

7. = 3.83 x 10° —y (s), (7 - 21a)
"

T = 2.09 x lofm (8), (7 - 216)

where the density is in units of cm~2 and the temperature is in units of eV, where Z is
the ionic charge state, and InA is the Coulomb logarithm. Figure 80 shows these collision
rates as a function of density for temperatures of 1 eV, 10 eV and 100 eV. Collisional
approximations are valid if a characteristic timescale for the electrical fields, 7, is much
longer than the ion collision time 7; (7. € 7;), i.e., 7 » 7;. It is also assumed that the
particle mean free path A = v;7 is much smaller than gradient scale lengths and electrode
dimensions. In Figure 81 the ion and electron mean free paths are plotted as a function of
density for three different temperatures.

The estimates and measurements of the background plasma density used in plasma
opening switches range from 10'2-10'®* cm~3 and the temperatures range from 2-10 eV.
The estimates of plasma density for the long conduction time (~1 us) plasma opening
switches are generally between the upper 10'? to the low 10'®* cm~3. The collisional mean
free paths and collision frequencies are sensitive to both the density and the temperature.
The collision cross-section decreases as particle energy increases. Plasma opening switches
can operate in either collisional or collisionless regimes, or in between. As can be seen
from Figures 80 and 81, high temperature plasmas (> 100 eV) are mostly collisionless in
this density range. The low temperature plasmas (< 1 eV) can be largely collisional for
densities (A > 0.1 cm) greater than 2.x10' cm™3 given that the electrode spacings are on
the order of a couple of centimeters.

Let us pick a specific electron density of 2x10' cm~3 that might exist in the long
conduction time switches and examine the implications. The ion and electron mean free
paths are less than 1 mm. when the electron and ion energies are below 3 eV and 7 eV
respectively. Similarly the electron and ion mean free paths are greater than 10 cm when
the electron and ion energies are above 35 eV and 80 eV respectively. The electrons and
the ions in the injected plasma are probably adequately described initially by collisional
approximations. However, when the current starts flowing the plasma does not remain
collisional. Electrons coming from the cathode get out of the collisional regime when the
voltage drop across the cathode sheath exceeds ~ 10 Volts, and when the voltage drop
gets above 50 Volts the electrons enter the a collisionless regime. Electrons emitted from
the cathode are not adequately described by collisional fluid equations.

The self magnetic field of the current in the switch exerts a force on the particles
perpendicular to their flow. In a coaxial geometry the magnetic field at a radius r can
be found (ignoring the displacement current) from Equation 7-14. For simplicity, it is
assumed that ions are unmagnetized. The nonrelativistic electron gyroradius is given by

vy, m.vy 2xrm.v; _eTVL
= e— = = 2. —_— —22
Pe o, B "y, 2.84 x 10 7 (7 )

where p and r are measured in cm, v, is the velocity perpendicular to the magnetic field
measured in cm/sec, and I is measured in kiloAmperes (kA). For a strongly magnetized
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Figure 80. Collision time for small angle Coulomb collisions for a range of plasma densities
and three different plasma temperatures, 1 €V, 10 eV, and 100 eV. The top figure
is the ion collision time and the bottom figure is the electron collision time.
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Figure 81. The mean free path for a range of plasma densities and three different plasma
temperatures, 1 eV, 10 eV, and 100 eV. The top figure is the ion mean free path
and the bottom figure is the electron mean free path.
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plasma, the collisional mean free path is greater than the gyroradius A\, > p,, or equiva-
lently,

I(kA)T? (eV)
r(em)In A,

Thus, the electrons in a plasma with a temperature of eV and with a number density of
2x10' cm=? at a radius of 20 cm, are strongly magnetized by a current much larger than
2.4 kA.

The approximations of ANTHEM to the full set of fluid equations fall into two cate-
gories. One is the neglect of collision terms such as the change in the numbers of particles
Sa, the viscous drag ﬁa, and the collisional heat exchange Q.. Another is the neglect of
the anisotropic pressure tensor. Ignoring S, the rate of particle production or loss, is prob-
ably adequate except for electrode plasmas. For the injected plasma, there is not enough
information to know the densities of the various ionic species and neutrals. More diagnos-
tics are needed to make an informed judgment. For the long conduction tirae switches,
it is quite likely that there is a significant population of neutrals produced near the elec-
trodes from plasma bombardment and from explosive emission. At this time it is probably
best not to change the code until more diagnostic information becomes available. Since it
might be anticipated that injected plasma ions and electrons are initially close to the same
temperature, the heat exchange between the plasma ions and electrons will be small at
first. The collision mean free path between the electrons and the ions ;. is approximately
smaller than the electron mean free paths shown in Figure 81 by the square root of the
electron to ion mass ratio. The same considerations for the viscous drag R indicate that
it can also be neglected for the strongly driven opening switch plasmas. It is more likely
that the energy exchange and viscous drag between the plasma electrons and the emitted
electrons will occur through the action of microinstabilities. The streaming of electrons is
expected to generate lots of turbulence. Resistivity caused by microinstabilities has been
modeled by supplementing the electron equations of motion with a Krook-like friction
term, with a local collision frequency based on the past and present current density.

By the time the power pulse has arrived, the plasma has had time to establish a
Maxwellian distribution function for the ions and electrons. Initially the anisotropic piece
of the pressure tensor should be quite small. The neglect of the anisotropic pressure may
well be justified for low temperature, high density plasmas. If the plasma density is low or if
the plasma temperature increases, collisions will not force anisotropies that develop in the
distribution function back into a locally Maxwellian. In any case it is probably not a good
assumption for the electrons emitted from the cathode. These electrons will be accelerated
by a cathode sheath that can easily push them into a collisionless regime. The interaction
of the electron motion with the self magnetic field of the beam will create a distribution
function that will be anisotropic and not a Maxwellian. This will be especially true during
the opening process when it is expected that the electron flow will become magnetically
insulated.

Comparisons have been made between MASK and ANTHEM simulations of low den-
sity, short conduction switches. Both codes find that a potential hill structure develops
at the cathode which in some regimes controls the the conduction and opening of PEOS.
The codes disagree on the amount of the magnetic field penetration into the body of the

1.35 x 10*®

> L (7-23)
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plasma above the potential hill region. ANTHEM predicts higher levels of magnetic field
penetration. While the field penetration is in agreement with certain experimental obser-
vations, it is unclear whether the mechanism for the penetration is physical or whether it
is due to differences between the numerical models used in ANTHEM and MASK.

Agreement with an experimental observation should be attributable to some physical
model. Such models include the nonlinear skin effect theories proposed in the Soviet liter-
ature, the Hall resistivity effect proposed by some US and Israeli scientists, and anomalous
resistivity effects. Both MASK and ANTHEM resolve the first two effects, and should treat
the plasma as effectively collisionless in the short conduction time regime, so it is unclear
why they give different results. It is important to rule out the possibility of numerical
errors or errors associated with the underlying models employed by the two codes.

To this end, the codes are tested on a problem in which there is a well known analytic
solution, viz., magnetically insulated electron flow in a vacuum transmission line. This
problem is chosen because the two codes’ results differ most obviously in the electron flow
patterns. Although the results are preliminary, it appears that magnetically insulated
electron flow seen in MASK matches theory significantly better than the flow seen in
ANTHEM. One explanation is that ANTHEM takes the pressure tensor to be a scalar, i.e.,
the diagonal terms of the pressure tensor are equal. However, in magnetically isolated flow
it is well-known that the diagonal terms of the pressure tensor are distinctly different. A
solution of this problem would be to use particles to represent the emitted electrons species
in ANTHEM. Unfortunately, the implementation of this feature is not yet complete.

The most important approximations in ANTHEM are the neglect of collision terms
and certain pressure terms. There is not enough diagnostic data to determine whether the
collision terms need to be added for opening switch plasmas. The neglect of the pressure
terms is not a good approximation for electrons emitted from the cathode and may lead to
incorrect behavior for magnetic insulation. One possible way to more accurately represent
the largely collisionless behavior of the emitted electrons is to treat them as particles. The
background injected plasma ions and electrons should be represented reasonably well by a
fluid formulation which also should be computationally cheaper. Some way of incorporating
trapped particles into the plasma electron fluid may be needed to maintain computational
efficiency in case the injected particles become trapped in the background plasma. It would
be necessary to examine the properties of implicit particle moving algorithms, especially
for establishing magnetic insulation.

7.5 IMPROVEMENTS.

Some of the designs for DECADE incorporate long transmission lines between the
generator and the opening switch and between the opening switch and the load. As
was described in Section 7.3, the incoming electromagnetic pulse sees the the plasma
and reflects back up the transmission line. If the time for reflection up and down the
transmission line is a sizable fraction of the opening time, it is conceivable that these
reflections would be a significant effect. While it is possible to increase the simulation
volume to include the long transmission lines, a more efficient method is to incorporate a
transmission line into the simulation.
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One of ANTHEM’s original circuit models consists of a fixed voltage into an inductor
for the generator circuit and consists of a fixed resistor for the load circuit. An additional
option has been added to ANTHEM that substitutes a series RLC generator circuit con-
nected to a transmission line which then would drive the simulation region as shown in
Figure 82. The transmission line model solves the Telegrapher’s equation described earlier.
The transmission line and circuit modules use an explicit, second-order accurate, leapfrog
scheme to advance in time. The RLC circuit equation is

Qcap al
C. +IR. + L, 5

= Vin, (7 - 24)
where Q.q, is the capacitor bank charge, I is the current, V,, is the voltage feedback
from transmission line, switch, and load regions, and C., R., and L. are the capacitance,
resistance, and inductance respectively of the generator. It is differenced into the form

A b P [ P (7-25)
2L, C.
with the charge updated by .
Q' = Q" + I"t1 6t (7 - 26)

Similarly the transmission line equations are finite differenced in the form.

n n-— 6t
R 5~ V) (7 — 27a)

J

Vel = Vi 4 o (G - I, (7 — 278)

C 6 TR
This matches the boundary conditions for driving the current into ANTHEM. Voltage
feedback from ANTHEM is used to drive the generator circuit models.

The new transmission line and circuit models were tested against the original AN-
THEM code on a problem of electromagnetic wave propagation into a shorted transmis-
sion line. After the modifications were made, ANTHEM used the original circuit model
on this problem and the results agreed to within machine precision with the results from
unmodified ANTHEM. Thus if these new modules are not invoked, ANTHEM performs as
before. Next the RLC circuit model was first computed separately and compared with the
original ANTHEM circuit model. The capacitor of the generator was set to a large enough
value such that it remained at a virtually fixed voltage for the run time of the simulation.
The voltage on the capacitor and the circuit inductance matched corresponding values
in the original ANTHEM generator model. The two cases agree to within four decimal
places. The last test compares the behavior of original ANTHEM simulation of a shorted
transmission line with a new version where half of the original simulation transmission line
is replaced with the transmission line model. As can be seen in Figure 83, the current in
the shorted load agrees very well for both cases.
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Figure 82. A schematic exhibiting the new generator circuit model consisting of a RLC
circuit connected to a transmission line which then drives current into the main
ANTHEM simulation region.

7.6 CONCLUSIONS.

This section contains the evaluation of ANTHEM and its applicability for long con-
duction time switch studies. A principal question is the ability of ANTHEM to model a
collisionless fluid in the presence of magnetic fields. The electrons emitted off the cathode
are likely to gain enough energy such that their motion will not be significantly affected
by collisions. The emitted electrons may require a particle model to adequately represent
their motion. The existing fluid model should be adequate for the injected plasma elec-
trons and ions. If the details of a spatially small sheath in the vicinity of an electrode are
important, the physics of that interaction will have to be added as a boundary condition
or as a subgrid model in the first cell adjacent to the electrode.

Some improvement has already begun with the upgrade of the ANTHEM generator
model to include 2 RLC circuit model attached to a transmission line. A similar upgrade
is planned for the load model, which will likely consist of a transmission line attached to
a time-varying resistance. However, the first problem to be addressed is the boundary
condition near the upper radial conducting surface in the presence of plasma. This prob-
lem causes a local violation of Maxwell’s equations that could harm the integrity of the
simulation.

It will probably be necessary to implement a particle option for electrons emitted
from the cathode. Such a capability is supposed to currently exist in ANTHEM but it
remains to be tested in opening switch simulations. The particle option should be exercised
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in the current version of ANTHEM, tested carefully, and then applied to opening switch
problems. It would be much easier to make improvements if the code were streamlined for
applications to the opening switch problem. ANTHEM’s structure preserves its history of
development on different applications such as laser-plasma interactions. Modifications to
ANTHEM are best done with the aid of the code’s author, Rod Mason.
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SECTION 8
PLASMA RADIATION SOURCE

A pulse power generator discharging through an evacuated diode produces photons
around 100 keV. These hot x-rays serve to test electronics. Surface effects testing needs cold
x-rays, with photon energies around 1 keV. These x-rays can be produced with basically the
same pulse power generator by using a small amount of material to connect the electrodes.
This is the plasma radiation source (PRS).

In PRS research BRA has cooperated closely with J. Davis of the Radiation Hydro-
dynamics Branch (Code 4720) of the Naval Research Laboratory. Their charter is detailed
modeling of the PRS. Therefore we have done the complementary work of summarizing
and reviewing the state of the art in PRS research.

These efforts include a review paper on the PRS,% editing of the Proceedings of the
2" International Conference on High-density z-pinches,5” and a review paper on radiation
collapse.®® As intended, these efforts have provided a common baseline for much of the
PRS research sponsored by DNA. The review papers are contained in Appendix A.

Topics treated in more detail relate to the mechanism of current conduction in the
PRS. The study of leakage current on the outside of the PRS was started during the
preceding contract, but only finalized recently.®® Radiative collapse is related to the Pease-
Braginskil current, for which Reference 70 gives an expression in terms of the atomic cross
sections and the fundamental Alfven current. Appendix B contains copies of References
69 and 70.
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SECTION 9

A ONE-DIMENSIONAL PIC-CIRCUIT CODE
FOR SIMULATING A REFLEX TRIODE

This section describes the computer model developed during the contract period to
simulate an idealized one-dimensional reflex triode. Charged particle motion and electron
scattering by a thin foil are calculated self-consistently with the response of an external
circuit. The code has been used for the research reported in some sections of this report:
its methods are useful for many other applications in pulse power physics.

9.1 INTRODUCTION.

Charged particle beams or plasmas are integral components of many high-power
devices used in pulse power physics for such varied purposes as bremsstrahlung X-ray
production,” particle beam injection,”® microwave generation,”* and switching.!

The plasma or beam is usually coupled to an external circuit. Compared to the exter-
nal circuit by itself, the combined system is much more complicated due to the interaction
with the circuit element that represents the nonlinearities and the many degrees of free-
dom typical of a plasma. The results of this interaction can be surprisingly nonintuitive.”™
Thus, even though examples of successful analytical descriptions can be found in the
literature,”®"” simulation and modeling are often essential in order to advance under-
standing.

Simulations of bounded plasmas have become more commonplace in recent years as the
need to handle domains of practical interest has arisen. However, to limit the complexity of
the models, most of the boundary conditions assumed have been either constant or given
functions of time. For example, in contemporary multidimensional simulations of high-
power diodes™ " part of the boundary is used to drive an electromagnetic wave into the
simulation region to mock up the effects of a pulse from a capacitor bank. Self-consistent
treatments of plasma-circuit systems are rare because of the difficulty in matching the
time-integrated equations of the circuit to the simulated plasma at the computational
boundaries. These difficulties arise in part from the disparate timescales on which circuits
and plasma collective effects evolve as well as from the lack of an established methodology.

Lawson®? has addressed these issues using a one-dimensional model of a diode coupled
to an LRC circuit. His code called PDW1 (PDW is an acronym for the University of
California at Berkeley’s 1983 Plasma Device Workshop) has become a useful testbed for
developing such techniques within a deceptively simple one-dimensional framework. This
work has been extended by others to include circuit elements®® and atomic processes.®!

This section describes an extension of Lawson’s work to DNA-relevant applications
in pulse power. The simulation code must match a one-dimensional simulation of a reflex
triode to a pair of driving circuits each made up of an LRC-type power supply coupled
to the triode through a transmission line. The inclusion of a transmission line model and
the addition of electron scattering represent significant advances over the existing PDW1
code. This section describes the model in detail: another section uses the code in a test
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case, the evolution to a low-impedance steady state of a reflex triode driven symmetrically
by a capacitive discharge.

The code is designed to calculate, from first-principles, charged particle motion and
electron scattering by a thin foil together with the response of an external circuit. It
has three major components shown in Figure 84: An electrostatic one-dimensional (1-D)
particle in cell (PIC) model of a reflex triode, a Monte Carlo model of electron scattering
and a module that integrates the differential equations for the circuit. The connection
between these modules is illustrated in the figure. Advancement of the complete system
is time-split between the particle-field advance and the circuit advance with the output of
one providing input for the other. At the beginning of a given cycle, the voltage drops
across the primary and secondary diode gaps allow the circuit equations to be integrated
forward in time. The charges of particles impinging on the foil and the cathode surfaces
are accumulated and, together with the charge flowing in the circuits, specify surface
charge densities on the diode and foil. The surface charges provide electric field boundary
conditions permitting calculation of the electric field and potential values within the diode.
The calculated voltage drops are stored for the next step in the circuit advance and the
particles are moved in the fields.

-— D W T R R T L W TR R D W W T R R R R W YR P TR TR WL WD TR 4n Sk G R Wk W WS W G T W W e e T W SR YR R W W W g

Triode model

PIC simulation foil model

circuit model

Figure 84. A schematic of the reflex triode code. The code is comprised of a PIC simulation

of the diode gaps and a Monte Carlo simulation of electron scattering by a thin
foil. These are coupled with modules to advance the circuit model. The arrows
indicate the feedback between the modules.

Particles enter the simulation either through a space-charge-limited emission algorithm
or by injection. Within the particle push, electrons entering the foil are passed to a
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foil-scattering routine which decrements energy and performs momentum scattering as a
function of the incident energy. Each of these components is described in detail below.

9.2 CIRCUIT MODEL.

The circuit for the code is shown in Figure 85. It is comprised of twin power supplies,
each segment consisting of an LRC-type circuit feeding into a transmission line. The two
circuits are linked by the foil and by transiting electrons. This general circuit can emulate
many different experimental arrangements by suitable choice of parameters.

——N;\——l——l“l—#—/v;\ﬂ
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Figure 85. A diagram of the circuit for the reflex triode. Two power supply modules made
up of LRC-type circuits with an external voltage supply are fed into transmission
lines.

The power supply circuit assumes an inductance L, capacitance C' and resistance
R connected in series. In addition, an external series voltage source V. is included.
The current I and charge Q flowing through the power supply circuit obey the standard

equations:%3 ;
1
L—dt+31+%+vm=vp., (9-1)
dQ
a =" ®-2

where V,, is the voltage drop across the inlet of the transmission line where it meets the
power supply. The above equations can be integrated to second order accuracy using a
simple leapfrog scheme in which Q and V,, are given at time level n and I is given at n+ 1,
ie.

w2' n n n At
rify=rodf -2 - (Va - V)T 9-3)
Qn+l = Qn + I"+*At, (9 _4)

146




where At is the timestep and
., A

“’n=fc—n (9-5)
,=%, (9-6)
f*=1¢§. ©-1)

One recognizes 7 as the decay time and w,, as the oscillation frequency of the circuit, each
normalized to the timestep. Numerical stability of the leapfrog scheme®® requires that
wys < 2.

The voltage drop V}, across the power supply is matched to a transmission line model
which is constructed as follows: The well-known equations for a lossless transmission line

.81
ares oI, 18VrL
o "l o -8)
il 1901
N il ®-9)

where £ and c are the inductance and capacitance respectively of the transmission line per
unit length. These may be combined to produce equivalent wave equations for the voltage
or the current, e.g.:

#Vry _ lca‘erL
az? ~ 7 a8 -
One must take care in discretizing and integrating these equations to avoid the ef-
fects of numerical dispersion. The normal dispersion relation for the wave equation above
is k = wVc where k is a wavenumber in the transmission line and w is its frequency.
Straightforward discretization of the transmission line into N segments using the leapfrog
scheme yields

(9 - 10)

n i} At ,

o =ri - -y de@,..m), (9-11)
n. - n At ﬂ+* ”+* ;

Vi =Vpr - Azt — L2t ) (9-12)

where the current and voltage grids have been interleaved to achieve second-order accuracy
in the spatial derivatives (the T'L subscript is dropped for simplicity of notation). The
dispersion relation for the system 9-11 to 9-12 is

\/t_csinig-t- = sin k:;_z_ (9-13)

Thus the numerical system is highly dispersive although the physical transmission line is
nondispersive. The manifestation of this dispersion is the propagation of small wavelength
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modes which ring through the system ahead of the main pulse. Note that for a give At
there is a special value Az = At/V/Ic which makes the numerical dispersion relation exact,
but it is nice to have the ability to choose Az and At more freely.

To counter the effects of dispersion some artificial dissipation may be added to the
equation for the current which then becomes

ot~ tor oz

where the value of the coefficient v is chosen ad hoc so as to give the minimum required
damping. The dissipative term has a 1/k? dependence on the wavenumber — a desirable
feature as it damps high-k modes much more than low-k modes. However, this term
produces an additional complication owing to its diffusive nature. The diffusion equation
is known to be unstable to explicit time integration, and so the diffusion term is integrated
using implicit (Crank-Nicholson type®®) differencing. The equation for the transmission
line current then takes the form

ot i i 2 _vry+ 2A e L S e d) 9 —15)

i+ T i+ tA ( 41 2Az?
Here D? is the finite difference approximation to the second derivative defined by

(D*9)i+4 = is3 — 20544 +95_4» (9 - 16)

where g is an arbitrary function defined at half-integer grid points. The update for the
current at points on the transmission line therefore requires the inversion of a tridiagonal
matrix which is done by the familiar Thomas algorithm.%¢

To complete the algorithm for the transmission line it is necessary to specify the
location of sample points for the current and voltage, and match the boundary conditions
appropriately to the power supply and the diode. A suitable leapfrog grid is pictured in
Figure 86. To center the boundary conditions “ghost” points are added to the current grid
on the power supply side and to the voltage grid on the diode side. In the model, the
plasma diode simulation determines the voltage across the gap and this feeds back on the
circuit equations which respond with a value of current in the power supply for the next
cycle. Thus the current grid point at j = 1 is matched to the power supply current while
the diode voltage is identified with the voltage grid at j = N. Vy,; is extrapolated from
adjacent values at j = N and j = N — 1.

A test of the transmission line is performed by replacing the diode with a small
capacitor and discharging the main capacitor in the power supply. Figure 87 shows the
voltage oscillation on the output of the transmission line. Figure 87(a) without dampins
(v = 0) exhibits high-frequency oscillations caused by numerical dispersion. Figure 87(L
with an appropriately chosen value of v displays the correct voltage signal without the
high-frequency component.

9.3 TRIODE MODEL.

This section describes the triode model which is made up of a PIC simulation and a
Monte Carlo simulation of electron scattering by a thin foil.
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Figure 86. The leapfrog finite-difference grid for a transmission line. The current grid is
evaluated at intermediate times and intermediate spatial locations with respect
to the charge grid. “Ghost” points are added to center the boundary conditions.

9.3.1 Field Solution.

The fields acting on the simulation particles are the electrostatic field E; and a con-
stant magnetic field B, which may be inclined at an arbitrary angle ¥ to the x-axis in the
x-z plane. Figure 88 illustrates the geometry of the triode simulation region. K1 and K2
are the primary and secondary cathodes respectively while A is the foil anode.

The solution of the potential is obtained from a second-order finite-difference approx-
imation to Poisson’s equation:

_p=z) _
V24(z) = . (9-17)

The electric field is computed by centered differencing to approximate the gradient of the
potential
d¢

E, =-2. (9 - 18)

The boundary conditions on the potential are obtained from the flow of charges to the
electrodes and to the foil and within the circuit. Because of the presence of the foil, the
integration of Poisson’s equation is done in two steps: First the net charge deposited on K2
is converted to a surface charge ox; which determines the boundary value of the electric
field Ex; = —0ok2/€o. The net charge is the sum of the charges collected by the foil minus
the charge carried away or contributed by the circuit. The potential is integrated from K2
to the position of the anode foil assuming an arbitrary value of ¢x2. Integration from the
foil to K1 may proceed once the appropriate boundary values are determined. To obtain
the electric field boundary value on the opposite side of the foil, we must first determine
the distribution of surface charge on each side of the foil. Because of Gauss’s law, the fields

Ex, and E“') are not independent, but must be consistent with the solution for ¢ on the
plus-side of the foil. Thus E(H determines the surface charge o' » () Given the net charge
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Figure 87. An example showing how dispersive oscillations are suppressed in the transmission
line through the addition of a dissipative term with a 1/k? spectral dependence:
(a) in the absence of dissipation (v = 0), a long wavelength mode with dispersive
ripples results; (b) appropriate dissipation has eliminated the unwanted mode.
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Figure 88. The basic geometry of the one-dimensional diode simulation. K1 and K2 are the
primary and secondary cathodes respectively. A is the foil anode. A constant
magnetic field B, may also be specified.

on the foil 04, the surface charge on the minus-side of the foil is o) = Oa — df:') . This
provides the electric field to the left of the foil and integration of the potential proceeds to
the primary cathode. Afterwards the potential is normalized such that ¢(0) = 0.

The potentials and fields obtained in the electrostatic solution are used to advance
the particles. The solution for the potential also provides the voltage drops Vp, and Vp;
across the primary and secondary gaps which are matched to the ends of the transmission
lines.

9.3.2 Particle Motion.
The equation of motion of charged particles in the triode is the familiar relativistic
Lorentz force equation:
dymv
dt

with ¢ the charge, m the mass and ¥ the velocity of the particle. The relativistic factor 4
is

= q[E + [¢ x B, (9-19)

7:::\/1—%:—. (9 —20)
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Equation 9-19 is integrated numerically by the standard Boris method.®” Rather than
integrating the particle velocity @, it is more convenient o solve the equation for the
normalized momentum @ = 49,

di _ ¢ 2« B -
= = |E +ix B/, (9-21)

with v related to the momentum by

u2

po)
Integravion of @ in Equation 9-22 is accomplished by splitting into acceleration and
rotation steps. The method exactly conserves kinetic energy in the absence of accelerating
forces and is time-reversible.
It is worthwhile to point out the code follows only a single dimension in space, but all
three velocity components. Formulations of this kind are commonly referred to as l%D.

Y=1+ (9-22)

9.3.3 Particle Emission and Injection.

Particles enter the simulation either by space-charge-limited emission or by injection.
Here injection is distinguished from emission in that injected particles are loaded from
a given distribution at a fixed rate independent of the surface electric field wherees in
emission the particle flux depends directly on the local field.

The algorithm for space-charge-limited emission is based on a common phenomenolog-
ical model.8 At a surface where emission takes place, the normal e:_ctric field is checked
to see if it exceeds some threshold value. In this case a surface charge is calculated that
neutralizes the electric field at the surface. The required charge is obtained by applying
Gauss’s law to the surface of the half-cell at the boundary:

Q=e«FE,S - %ch, (9-23)

where E, is the value of the normal component of the electric field, S is the surface area
of the electrodes, p is the charge density in the boundary cell and V. is the computational
cell volume; i.e. V, = SAz. The charge Q is distributed among a fixed number of particles
which are loaded into the simulation just outside the emitting surface. The electric field is
subsequently corrected prior to particle advancement to reflect the emitted surface charge.

Injected particles are sampled from some given distribution — usually a Maxwellian
of a given temperature T with mean velocity v, directed away from the surface, or a
half-Maxwellian. The particles are placed at positions consistent with their having been
injected at equal subintervals with velocity vy during a single timestep.

9.3.4 Electron Scattering Model.

The scattering of real electrons by a thin foil is a complicated atomic process. Electron
interactions with material media are usually modeled by Monte Carlo techniques with spe-
cialized codes such as ITS.%® However, highly detailed calculations such as these are far too
expensive to implement in a particle simulation running for thousands of timesteps. Pre-
genzer and Morel® introduced a simplified approximation that reproduces with reasonable
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accuracy the average momentum and energy changes undergone by electrons encountering
various materials. The scheme uses data extracted from a data base of particle ranges and
values of forward momentum transfer. These data are tabulated as functions of energy
and path length using a variety of models. Figure 89 schematically illustrates the nature
of the approach. The actual path of a particle through a foil is idealized as a series of small
rectilinear path increments. For each path step, interpolated values from the table for a
given incident energy are converted into an average energy decrement and scattering angle
cosine. The energy is decremented at the end of each path-step and an angle transforma-
tion is performed. The algorithm proceeds along the path of the incident particle until it
exits the material.

Figure 89. A schematic illustration of the approximate path of electrons (solid lines) assumed

in schemes like those of Pregenzer and Morel (ref. 90). In this paper the path
through the thin fo is simplified further to become a single straight-line path
(dashed line).

The foil scattering module incorporated in our simulations is based on this idea, but is
simplified further by additional assumptions. As discussed in Appendix III, the principal
approximations are that the energy decrement and the scattering angle may be obtained
independently, that incident energies and foil thicknesses are such that the electrons are
always in the multiple scattering regime,®! and that a simple form of the Moliere®*%3

angular distribution for multip'y scattered electrons can be employed.
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Figure 90. The local spherical coordinate system for an individual particle used in scattering
angle transformations.

Using a spherical coordinate system in which the polar axis is aligned with the incident
direction as in Figure 90, the distribution expresses the probability of an electron scattering
into an angle 4 as

£(6)0d0 = ©d0{2exp(—06?) + B! f1)(©) + B-2 f®(©) +-..}, (9 —24)

© is a reduced angle given by
© =0/(x.B), (9-25)

and x. and B are parameters that depend on the material and the thickness of the foil.
The functions f(*) are given by the theory and may be tabulated numerically from ana-
lytical expressions. The distribution given by Equation 9-24 is basically a Gaussian with
modifications to extend the tails. The parameter B is always greater than one and often
considerably greater, so for most purposes the expansion is terminated after the second
term. The Gaussian term reflects that many small-angle scatterings of a single electron
tend to produce a normal distribution for the final scattering angle (the central limit
theorem), with a half-width that depends on the material, the thickness and the incident
energy. Formulas for the parameters and other details of the theory are given in the review
paper by Bethe.??

154

aa —




L S ahmes o st 4

e w

. 4 —yYTyT——yyT——vr

T

—ea—y-

The code employs the simplest form of the distribution, using only the Gaussian term.
This approximation is less accurate than the two-term distribution, but more accurate than
many other Gaussian scattering models (see references in Ref. 93.)

The scattering angle is often a sensitive function of energy. Therefore it is usually
necessary to approximate the scattering process as a sequence of simpler scattering events,
as shown in Figure 6, in such a way that the relative changes in energy or angle in any
one segment of the path are limited, say to 10 %. However, the thin foils of interest allow
the simplifying assumption that only one such segment is needed. This should be good for
all particles except those few that barely make it out of the foil. For code operation it is
important that particle scattering can now be vectorized easily.

After transiting the foil, the energy of electrons is degraded by reference to a standard
table of energy loss versus incident energy (e.g. Berger and Seltzer®) for a given material
derived from the continuous slowing-down approximation. A polar scattering angle 8 is
sampled from the Moliere distribution and an azimuthal scattering angle ¢, uniformly
distributed in the interval 0 < ¢ < 27, is also obtained. The angle scattering is completed
when electrons are rotated in the particle frame (Figure 90) and transformed back to the
simulation frame. The computational speed of these operations is important. The fastest
way to perform the rotations is as follows.

Each electron is referred to a local spherical coordinate system illustrated in Figure
90 where the polar angle 8 and azimuthal angle ¢ are the scattering angles. The incident
particle momentum in this frame is simply 4 = (0,0, uy) where the components are those
in the local Cartesian coordinate directions (z’,y’, z’). Clearly the rotated components are
given in this frame by

#; = (ug sin @ sin @, ug sin 8 cos ¢, ug cos 6). (9 — 26)

The transformation back to the laboratory frame is constructed by elementary meth-
ods of vector analysis.?®% The unit vector % in the particle frame is taken to be the
incident direction in the laboratory frame. An orthogonal unit vector is then

A
=, (9-27
7 )
where .
A=3-(5-2)7. (9 - 28)
The third unit vector must be orthogonal to the other two, i.e.,
' xz
¥=%xi= . (9-29
a ’

The unit vectors (z’, %, 2’) may be expressed in terms of the direction cosine (%-2') =

cos 7, e.g.:

AP =1—(2-%)? =1 —cos’ vy =sin?~. (9 -30)

Thus X sy .
po iz, ExE (9 -31)

sin y sm 7y
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Figure 91. A comparison of TIGER with the simplified foil scattering model using the par-
allel energy spectra (distribution of kinetic energy normal to the foil surface) for
a 35kV electron beam normally incident on a 2y carbon foil.

The desired transformation matrix is given by

( $2-¥ z.§ £.7 \
\37 & -9 3]-2’}. (9 -32)
2.3 :.4y 2.7
After some algebra this becomes
1 { —Upz Uox 'uOIuOy IuO.L |u0::
iu “u l \ —Upz Uoy _|u0|u0: luO.L |u0y } ) (9 - 33)
oli%oL o |2 0 |uo s |uo:
where -
fuor| =V Juol? — ud, = Juo|sin . (9 34)

Multiplication of the components in 9-26 by the matrix in 9-33 performs a fast scattering
angle transformation.
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To gauge the accuracy of this simplified procedure, the code was benchmarked against
the one-dimensional TIGER member of the ITS code package (version 2.1). The test
problem is 35kV electrons that are repeatedly scattered through a 2u carbon foil until
they are absorbed. Figure 91 compares the resultant distributions of parallel kinetic energy
(the component normal to the foil or parallel to the incident beam). The comparison is
evidently favorable and gives confidence that the model will work for scattering of electrons
in the foils encountered in the reflex switch. In addition, timings show that the module is
able to process over a million particles in approximately 2 seconds on a Cray XMP. Thus
the algorithm can perform well within a PIC simulation.

9.4 CONCLUSION.

Some of the computations in earlier sections have been done with a code that follows
the dynamics of a system of coupled one-dimensional diodes separated by a reflexing foil
and their driving circuits. This code builds on the previous efforts of Lawson and extends it
to a more complex system that is rich in phenomena of interest in pulse power applications.
We have used the code in our example to simulate the complex behavior of a reflex triode
approaching a low-impedance state.

The computer code described above can be a testbed for developing an understanding
of such coupled diode/circuit devices. It is useful for studying basic phenomena in 1D.
In principle these techniques may be extended to higher dimensions and more realistic
geometries. Self-consistent electromagnetic formulations should also be possible. We hope,
with these efforts, to lay the groundwork for more ambitious computations in the future.
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X rays from z-pinches on relativistic electron-beam generators
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This review summarizes recent experimental data on imploding z-pinches and their radiation
output, and gives an overview of theoretical issues concerning radiation production in the
pinch plasma. A z-pinch plasma is created when the current from a fast, powerful electrical
generator compresses and heats a small amount of material between the electrodes. The hot,
dense plasma emits copious amounts of radiation extending from the visible to the x-ray
region. With a 10-TW electrical discharge the radiative power may be a few TW, with an
energy per pulse of up to tens of kilojoules. Our interest is mainly in the photons with energy
around 1 keV, which are useful in x-ray lithography, microscopy, surface studies, and other

applications.
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I. INTRODUCTION

The bluish light flash signaling the demise of the fila-
ment in a light bulb is produced by about 100 W of house-
hold power. X-ray producing z-pinches are high-power ver-
sions of blowing up filaments. The electrical power input
reaches 1 TW (10'> W) or even higher, with currents mea-
sured in megaamperes (MA) and voltages in megavolts
(MYV). The current’s magnetic pressure along the cylindri-
cal axis of symmetry between two electrodes compresses the
filament, hence the name z-pinch.

The temperature in a light bulb filament is about 3000 K
or ~0.3 eV. Onincreasing the power input the filament tem-
perature should increase: assuming a (temperature)* rela-
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tion like that of a blackbody radiator, an increase in power by
a factor 10" extrapolates to a temperature on the order of
0.3 eV X (10'9)"/* =100 ¢V; temperatures in this range are
indeed obtained in z-pinches. The high power can be sus-
tained only during a short time, perhaps 100 ns.

A hot, dense plasma can be created by exploding a single
wire, but multiple parallel wires offer better energy effi-
ciency. The paralle] currents in the wires attract each other
and the wires accelerate toward the center, storing electrical
energy as kinetic energy of implosion. The kinetic energy is
thermalized in the collision of the oppositely directed wires,
resulting in a hot, dense plasma on axis. The plasma energy
from the implosion is augmented by joule heating during
implosion, which ionizes wires, and by continued heating
during stagnation. The same effect is obtained by smearing
out the wire mass in a hollow cylindrical shell.

Imploding z-pinches are efficient x-ray producers. Typi-
cally more than 50% of the plasma energy appears as sub-
keV radiation. Perhaps about 10% is radiated in soft x rays
between 1 and 10keV, usually from localized “bright spots.”
Sometimes minor amounts of high-energy bremsstrahlung
are generated, typically less than 19%. The remaining energy
goes into magnetic field energy of the vacuum surrounding
the pinch and into the thermal energy of the plasma; this
energy appears as kinetic energy of the expanding plasma,
i.e., the explosion of the pinch after the radiation pulse.

This review discusses the imploding z-pinch for its use as
an x-ray source. We emphasize imploding plasmas because
in the United States this configuration is the most common.
Early examples are the hollow cylinder proposed by Turchi
(1973), the multiple wires (Stallings, 1976), and a cylindri-
cal or annular gas shell (Shiloh, 1978). Single exploding
wires are mentioned where appropriate. For typical early
results on exploding wires see Mosher (1973, 1975). Much
work on single wires is continuing in the Soviet Union, see
c.g., Zakharov (1983), Baksht (1983, 1987), or Aranchuk

(1986).

Not reviewed here is the imploding liner research on the
large capacitor bank at AFWL, which is well documented in
a series of papers (Baker, 1978; Degnan, 1981; Roderick,
1983). Another summary is the z-pinch work at Imperial
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College (Dangor, 1986). Much lower-temperature (~ 1
eV) VYUYV emitting pinches were extensively reviewed by
Finken (1983). Not related to x rays are applications of z-
pinches for the generation of large magnetic fields (e.g.,
Felber, 1985; Wessel, 1986), and as a focusing device in
high-energy particle accelerators (e.g., Dothan, 1987).
Quite related but still omitted is the use of z-pinches for x-ray
laser research (for a review, see Davis, 1988), and the hydro-
gen z-pinch for thermonuclear fusion. This approach to fu-
sion is discussed by Haines (1982): for recent experimental
results see Sethian (1987), and for a review of neutron pro-
duction mechanisms see Vikhrev (1987) and Trubnikov
(1987). A complete bibliography on z-pinch fusion is avail-
able from Robson (1987).

Peripheral topics of interest are the pulse power technol-
ogy needed for driving the pinch (sece Camarcat, 1985) and
x-ray diagnostic techniques: for quantitative aspects seee.g.,
Kiihne (1985), Eidmann (1986b), and especially Henke
(1984a, 1984b).

X-ray sources similar to the z-pinches are vacuum
sparks, the plasma focus, and laser-produced plasmas. Al-
though they fall outside this review their x-ray characteris-
tics are sufficiently similar to the z-pinches to merit explicit
mention.

In a vacuum spark the current that is passed through an
extremely small amount of material that is blown off an elec-
trode, either spontaneously or in a controlled manner with a
laser. This gives a hot but perhaps nonthermal plasma with
“temperature” of 1-30 keV at various times during the
pulse. The x rays come out in multiple bursts (e.g., Burhenn,
1984; Secley, 1984; Negus, 1979; Cilliers, 1975; Lee, 1975/
1974/1971). Vacuum sparks were reviewed by Korop
(1979) and by Negus (1979).

In a plasma focus the discharge must find its own path
through an initially homogeneous gas fill, leading to a some-
what erratic pinch. The z-pinch configuration, wherein the
current can only go where sufficient material is deliberately
introduced, makes the discharge more reproducible. Most
plasma focus work is directed toward thermonuclear fusion
or pulsed neutron production, not to efficient x-ray genera-
tion.

Plasmas are created in the focus of optical lasers, with a
typical fluence around 100 TW/cm?. The plasma may reach
a temperature in the neighborhood of 1 keV (e.g., Glibert,
1980; Nicolosi, 1981; Pepin, 1985; Gerritsen, 1986; Mochi-
zuki, 1986; Eidmann, 1986a; Kodama, 1986; Phillion,
1986). The x-ray output per pulse is usually modest, even
with a high (~50%) conversion efficiency from optical
light to XUV and soft x rays. The world’s largest laser, Nova
at LLNL (Campbell, 1986), produces up to ~ 100 kJ/pulse
in the optical, and should yield comparably impressive x-ray
pulses. A laser-produced plasma is particularly convenient
in many applications because the pulse power is far away
from the plasma, while in other applications the potential
rep-rate capability of the laser is important (see, e.g., Nagel,
1984; Michette, 1986: also small conventional bremsstrah-
lung sources can be repetitively pulsed, see, e.g., Davanloo,
1987).

A completely different x-ray source is synchrotron radi-
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ation, generated by wiggling GeV electrons. The electrons
are accelerated in bunches, and as a consequence the radi-
ation comes out in a continuous train of polarized XUV or
soft x-ray bursts with low instantaneous but high average
power (see, e.g., Winick, 1980; Koch, 1983; Attwood, 1985,
Brown, 1986). The special qualities of these x rays come at a
price: a large multiuser facility may cost on the order of
$100M. In contrast, a small z-pinch that produces 10 J/shot
of incoherent keV-like x rays costs perhaps ~ $100 000, and
the hardware fits in a laboratory corner.

Figure 1 summarizes the parameter regime of the out-
put generated with the various techniques. The z-pinch oper-
ates in the 1-10 TW regime with a plasma temperature of
0.1-1 keV. The total energy per pulse depends on the desired
photon energy, and obviously on the machine size. Figure 1
suggests a typical power range for neon and argon gas puffs,
where ~ 50% of the photons come out in a single or at most a
few narrow lines. Photon energies in between come from
elements with intermediate atomic number, or in broadband
radiation from higher atomic number elements such as nick-
el. Laser-produced plasmas (LPP) provide less power at
comparable photon energies, and vacuum sparks much less
power but in more energetic photons. The x rays are incoher-
ent, and the average power is typically low because most are
single-shot devices. Laser-driven x-ray lasers promise a
short high-power burst of coherent photons with energy be-
low ~ 100 eV, but not more energy per pulse (right scale).

The lasers on the left-hand side attain enormous powers
in coherent light close to the visible, below at most Av ~ S eV;
frequency multiplication can give higher photon energies at
rapidly decreasing powers. Synchrotron-produced photons
are available over a wide energy region, but as always with
decreasing power the higher the photon energy.
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FIG. I. Typical peak power and energy per shot for the z-pinch, laser-pro-
duced plasma (LPP}), and vacuum spark x-ray sources as function of a typi-
cal photon energy; the vertical lines are the photon energies for the X lines of
neon and argon. Sources of coherent x rays are the x-ray lasers, whose very
short pulse length is refiected in the relatively high peak power. Synchro-
tron radiation consists of short pulses at high repetition rates, with average
power (in watts) on the right scale. Optical lasers are shown for comparison
(upper left).
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A final note: our references are almost exclusively limit-
ed to the archival literature over the last decade. This choice
is most helpful to the reader, while still representative of the
available data. We apologize to our colleagues whose work is
inadequately highlighted by this admittedly restricted data
base. We welcome suggestions for improvements, additions,
and especially corrections, for eventual incorporation into
an updated version of the review.

A. Applications of z-pinch x rays

A most exciting application of flash x rays is microlitho-
graphy and x-ray microscopy. In these applications the total
energy per pulse is less important than the spectral range of
photon energies. Lithography, using x rays with Av around 1
keV (and a wavelength around 1 nm), can produce sharply
defined features of less than 0.1 um width on electronic ma-
terials, due to the small wavelength and to the strongly local-
ized absorption of the photon energy in the photographic
resists. Resist exposure takes only 1-3 shots with a small
(~50 kJ electrical) z-pinch (Peariman, 1981/1985a/b;
Weinberg, 1986a/b) (or plasma focus; see Kato, 1986). Be-
fore z-pinch x rays can be used for routine production of
microchips (Pearlmann, 1985a/b) it is neces- wry to resolve
difficult problems; these include reducing the size of the x-
ray emitting spot, increasing the repetition rate, and protect-
ing the lithographic masks from z-pinch debris.

Contact microscopy with soft x rays (Howells, 1985;
Kirz, 1985) produces excellent contrast because their pho-
ton energies overlap the K edges of the low atomic number
elements that constitute living matter. A photon energy just
above the X edge of a given element is attenuated effectively,
while a photon with energy just below the K edge is relatively
unaffected. Hence, the soft x-ray source can be tuned to look
at a particular clement, obviating the need to enhance con-
trast by staining with heavy elements that might killacell. A
10-ns long flash of x rays from a z-pinch has caught a bacter-
fum’s activities live (e.g., Bailey, 1982a; Feder, 1984; Wein-
berg, 1985b). Similar results can be obtained with radiation
from laser-produced plasmas.

X-ray spectroscopists use the highly charged ions pres-
ent in copious quantities in the z-pinch for basic atomic phys-

_ics studies (see, ¢.8., Striganov, 1983) and, in particular, as a
rich source of emission lines (e.g., Burkhalter, 1878, 1979a,
1979b). Highly ionized ions can be made with exploding
wires (Dozier, 1977), or vacuum sparks, or by shooting ions
through foils; however, the z-pinch is unique in its large x-
ray output per shot. At present, much ongoing research is
devoted to increasing the z-pinch x-ray output without soft-
ening the x-ray spectrum, or to hardening the spectrum
without sacrificing x-ray yield.

B. Qualitative description of z-pinch radiation sources

Our z-pinch plasmas are usually driven by a capacitor
bank with a total stored energy of 1 kJ—10 MJ. The capacitor
bank is discharged either directly or through a pulse-shor-
tening network to produce a current peaking at 100 kA-10
MA: the current rise time is typically between 10ns and 1 us.
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Table I contains characteristic parameters for a representa-
tive sclection of machines used in z-pinch work.

A typical z-pinch implosion goes roughly as follows. Ini-
tially cold material is located a few centimeters away from
the diode axis. In the first few nanoseconds of the current
pulse the material heats up and ionizes. The resulting pres-
sure expands the plasma, unhindered toward the axis on the
inside but constrained by the magnetic field pressure on the
outside. Therefore, the plasma accelerates toward the axis.
During the implosion the plasma is heated by ohmic and
compressional (shock) heating to perhaps ~20 eV. Some-
times the imploding shell is unstable. When the plasma stag-
nates on axis and the kinetic energy is thermalized the tem-
perature increases steeply, producing a plasma column of
~ 100 eV or higher. This bulk plasma emits a major fraction
of the softer x rays.

After stagnation the pinch disassembles. The plasma
can expand unhindered if at disassembly time the current is
small. However, if the current is appreciable the stagnated
plasma is magnetically confined, with additional ohmic
heating, and possibly non-ohmic effects such as accelerated
electron beams. In addition, a magnetically confined plasma
column is hydrodynamically unstable to sausage and kink
modes. The sausage mode results in localized “bright spots,”
which emit the bulk of the harder x rays. Section II contains
a selection of the experimental data on which this descrip-
tion is based (bright spots are shown in Fig. 10).

Section IIT summarizes the theoretical models some-
times used in prediction and interpretation of experiments.
The radiative properties of one-dimensional plasma implo-
sions can be computed with some confidence as long as the
plasma remains in various kinds of simplifying equilibrium.
Under development but still beyond the state of the art are
more complicated effects, notably the nonequilibrium plas-
ma physics of the pinch and the pinch’s two-dimensional
evolution. Unfortunately, these principal problem areas in-
clude x-ray production in the bright spots.

H. EXPERIMENTAL DATA

Experiments with plasma radiation sources (PRS) over
the last 10 years have produced an abundance of measure-
ments, much of which remains partly analyzed and unpub-
lished. This section contains a selection of experimental data
intended to illustrate particular aspects of the behavior of the
z-pinch and its radiation output. Abundant data exist in the
soft x-ray regime, with photon energy v above ~0.8 keV,
because mar. 7 experiments are motivated by increasing the
soft x-ray production, and because these photons are easier
to analyze and to measure. Quantitative data in the extreme
ultraviolet, here defined as Av below ~0.8 keV, are relatively
sparse. The parameter space of the data is very large, with
four independent output variables (viz., axial and radial po-
sition, time, and photon energy); additional variables are the
atomic number Z of the z-pinch material, load parameters
(mass per unit length and initial geometry). In addition, the
pinches depend on parameters such as current rise time,
peak current, and pulse length related to the pulse power
generators, mostly large relativistic electron-beam ma-
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chines. Qualitative trends in the data are noted where possi-
ble: quantitatively, these trends are not necessarily rigorous,
proven theoretically, or accepted by all the workers in the
field.

Table 1 summarizes the parameters of the various ma-
chines that supply much of the available data on the PRS.
The names of some larger facilities express the speculative
nature of the pulse power designs. The machines with the
largest power levels are water-filled pulse-shortening lines
energized by a high-voltage Marx generator (see Camarcat,
1985). Smaller machines may use a less expensive, lower
voltage technology, discharging a single stage of 20-50 kV
capacitors into a parallel-plate transmission line insulated
with a solid dielectric. The various machines are character-
ized in Table I by their pulse rise time, the maximum electri-
cal power available to a short-circuit load in the diode, and
the peak current. The numerical values are illustrative and
will change with machine configuration and diode load even
for the same charging voltage; moreover, occasional over-
hauls and upgrades sometimes increase machine param-
eters. Reliable operation usually requires usage at less than
full power.

Energy delivered to the plasma load is converted into
optical (vacuum), ultraviolet, x-ray ultraviolet (XUV), and
soft x-ray radiation. At a given power, load geometry, and
mass, the higher atomic number elements radiate profusely
in the VUV and XUV, with much less output of soft x rays.
This radiation, generally below ~ 10 keV, is sometimes ac-
companied by small amounts of harder x rays.

The XUY radiation pulse is typically much wider than
the soft x-ray pulse. For example, the XUV radiation pulse
from a krypton gas shell implosion on the Proto II generator

ARBITRARY UNITS

] « 80 120 1680 200
TIME ins)
FIG. 2. Pulsc shape for XUV radiation measured with a filtered x-ray diode
(XRD) and for soft x rays (measured with a filtered p-i-a diode) for a

krypton implosion on Proto I at SNL (from Spiciman, 1985a). The softer
the radiation the longer the radiation pulse.

at Sandia National Laboratory (Spielman, 1985a), Fig. 2,
has a 30-ns-wide precursor followed by a large 30-ns pulse,
compared to the ~ 10-ns soft x-ray pulse. As usual, the oper-
ational definition of XUV is determined by the detector
used, here an x-ray diode with'an aluminum cathode and a 2-
pm-thick Kimfol filter. This cathode filter combination has
a peak response near 270 eV. The soft x-ray signal is mea-
sured with a p-i-n diode filtered with 25 gm of aluminum; the

TABLE I. Nominal parameters for some pulse power generators used for imploding z-pinches, and a typical value for the radiative energy per pulse in the x-
ray lines specified. The data are indicative of but not necessarily equal to the optimum performance: lower values are often used in z-pinch research. AFWL:
Air Force Weapons Laboratory, Albuquerque, NM. CEA: Commission a I'"Energie Atomique, France. IColl: Imperial College of Technology, Londoa,
England. KI: Kurchatov Insitute, Moscow, USSR. LANL: Los Alamos National Laboratory, Los Alamos, NM. LLNL: Lawrence Livermore National
Laboratory, Livermore, CA. MLI: Maxwell Laboratories, San Diego, CA. NRL: Naval Research Laboratory, Washington, DC. PI: Physics International,
San Leandro, CA. SNL: Sandia National Laboratory, Albuquerque, NM. UCI: University of California, Irvine, CA.

Nominal
Nominal Nominal x-ray

Machine power f . yield
name Location (TW) (MA) (43)) Reference
Double Eagle PI 8 3 15 (NeKX) Dukart, 1983
Blackjack 5 MLI 10 4.6 50 (Ne K) Gersten, 1986
Pithon P1 5 3 Stallings, 1979
Proto 11 SNL 3 9 23(Krl) Spiciman, 1986
Supermite SNL 2 2 (Ne K) Hsing, 1987
Blackjack 3 MLI 1 1 Riordan, 1981
Gamble 11 NRL 1 1.5 4 (NeK) Stephanakis, 1986
Oowl 11 PI 1 1 Stallings, 1976
Sidonix CEA 0.5 >0.5 (Al K) Gazaix, 1984
Shiva AFWL i 10 <4 (AlK) Roderick, 1983
ZAPP LLNL 0.2 (Ar K) Stewart, 1987

LANL 0.2 0.6 Kania, 1984

1Coll 0.3 Dangor, 1986
Lexis MLI 0.6 002 (Kr L) Pearlman, 1985

ucCl 03 Shiloh, 1979

KI 1.0 Ivanenkov, 1986
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peak response of this detector is near 1.5 keV. Other x-ray
ranges can be selected by the proper choice of the cathode
combined with filter material and thickness (e.g., Young,
1986).

With a sufficiently powerful generator the soft x-ray
emission from low atomic number materials is dominated by
line radiation from the X shell. For example, Fig. 3 shows
three soft x-ray spectra from different axial positions in a
neon implosion on Gamble II (Mechiman, 1986). The domi-
nant atomic lines are the Ne 1x (He-like) Hea 15%-152p at
hv = 0.92 keV and the Ne x (H-like) Ha 1s-2p resonance
line at Av = 1.02 keV: in the center of the pinch, Fig. 3(b),
429% of the energy is in these lines. Relatively little energy is
emitted in the other lines [ ~9% for Fig. 3(b)] and in the
free-bound continuum with Av >1.36 keV. The energy in all
continuum radiation between 0.9 and 1.6 keV is about 50%
of the total (2.5 kJ for this shot). The relative strength of the
lines can be used to estimate the plasma conditions in the
pinch. For this pinch the temperature is ~ 100 eV.

How the spectrum looks qualitatively remains un-
changed with a larger generator. Figure 4(a) shows a neon
spectrum (Rodenburg, 1985a) measured for an implosion
on Double Eagle at ~ 10 times the power of Gamble II. Now
the pinch reaches a higher temperature, ~300 eV, as evi-
denced by the spectrum. Now the Hex line is much weaker
than the Ha line, which contains over 509 of the soft x-ray
energy (total ~15kJ).

. In contrast to the neatly separated lines for neon, the
implosion of high atomic number elements produces a tan-
gle of overlapping lines. For example, Fig. 4(b) is the spec-
trum from a nickel wire array on Double Eagle (Rodenburg,
1985b), largely consisting of L-shell lines from Ne-like and
higher ionization stages of nickel. About 50% of the energy,
in total ~44 kJ, occurs in a band between 1.0and 1.12keV.
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FIG. 3. Experimental soft x-ray spectra at different axial positions in a neon
pinch on Gamble I1. (a) Near the cathode, (b) midgap between cathode
and anode, and (c) near the anode (from Mehiman, 1986).
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FI1G. 4. (a) Experimental soft x-ray spectrum for neon with dominant X-
line emission (Double Eagle, from Rodenburg, 19853). (b) Experimental
soft x-ray spectrum for nickel. The individual lines, largely from the L shell,
are no longer separated but have merged 10 a quasicontinuum (courtesy of
Dr. R. Rodenburg).

The cotal energy radiated per shot in soft x rays (in a
desired energy band) is an important figure of merit. The
maximum value of the yield is often preferred over the typi-
cal yield. This practice tends to minimize the shot-to-shot
variation, which is typically ~ 59—10% for the current, but
much larger for the radiation output: similar shots can differ
in yield by a factor ~2. The radiation yield data are typically
for optimized experimental parameters and include an un-
specified spread. The radiation output is usually determined
from the fluence over a small detector, and converted to a
total yield under the assumption that the photon fluence is
isotropic. However, measurement of the yield versus polar
angle  on a small neon and argon pinch shows that the
fluence varies approximately as 1 4+ ¢ cos 6, with €~0.25-
0.5. Consequently, the fluence perpendicular to the pinch
(8 = 0) is twice to four times that along the pinch (6~90"),
although the fluence ratio is not very reproducible from
pinch to pinch (Stormberg, 1987).

The yield from various z-pinches issumma- " »«din Fig. 5
(Pearlman, 1985a). The best radiation yield X for K-line
photons as function of peak current [ is reasonably well ap-
proximated by ¥, o I*. Thescaling of yield with current can
be understood easily from the implosion dynamics (Wong,
1982).

The K-line yield decreases rapidly with increasing atom-
ic number Z or with increasing photon energy hv~Z?. Ap-
proximately, theyield variesas ¥, = const(J/hv)*or ~1*/
Z*. The strong scaling with Z can be explained from micro-
scopic physics under reasonable assumptions (Apruseze,
1984b).

Other pulsed plasma devices show comparably strong
dependencies on the current. For example, the neutron yield
from a plasma focus device could vary even more strongly, as
1%, and the neutron yield in a solid deuterium z-pinch even
goes as I'° (Sethian, 1987). Improvements in pulse power,
with corresponding increases in peak current, are bound to
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FIG. 5. Optimized radiation yield in neon K lines and krypton L radiation
vs peak current 7 on various pulse power machines (Table I). The yield is
proportional to 1* for both types of radiation (after Peariman, 1985a).

pay off handsomely in yields from all manner of pulsed pow-
er driven plasmas.

Although it is itaportant for x-ray source development
to maximize photon output per shot it is equally interesting
to pursue alternative goals, e.g., a uniform, linear pinch with
controlled plasma conditions for x-ray laser studies (e.g.,
Dukart, 1983; Wong, 1984; Spielman, 1985b; Stephanakis;
1986). Ease of operation and a moderate price are additional
requirements for routine or commercial application (Pearl-
man, 1985a). Some of the best data on z-pinches has come
from innovative diagnostics on smaller machines character-
ized by high shot rate, ease of modifications, .:2d resources
for analysis (e.g., Shiloh, 1978; Marrs, 1983; Kania, 1984;
Jones, 1985; Bailey, 1986; Choi, 1986; Stewart, 1987).

A. Z-pinch creation

While PRS diodes differ between machines and applica-
tions, the canonical diode for a plasma radiation source con-
sists of a cylindrical rod with a ~ 1-5 cm radius as the cath-
ode, placed a similar distance from the anode. The cathode
sticks out of the pulse line plane such that the UV light from
the pinch does not reach the insulators that separate the di-
ode vacuum from the pulseline dielectric. Sketches of actual
diode geometries usually accompany the experimental pa-
pers (e.g., Stephanakis, 1986; Bailey, 1986; Clark, 1982b/c;
Kania, 1984b; Pearlman, 1981; Stallings, 1976). The diode is
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evacuated to a moderately low pressure, ~ 107 Torr (0.01
Pa) or less: with appreciably higher diode pressure the gas
may break down spontaneously, and becomes more like a
plasma focus discharge.

The essential feature of the z-pinch radiation source is
the deliberate introduction of the material at the desired lo-
cation in sufficient quantity to avoid the vacuum spark re-
gime. There is of course a continuous transition between the
ultrafast z-pinch and the vacuum spark as the number of
clectrons per unit length N increases. A value for N may be
estimated as follows. In a z-pinch the electrical current [ is
thought to be collision dominated, while curreat conduction
in a vacuum spark may be dominated by anomalous pro-
cesses (plasma instabilities leading to high microscopic elec-
tric fields, turbulence, etc.). To avoid instabilities the elec-
tron thermal velocity v, should be larger than a typical
clectron drift speed v,, with Nev, = I. In the z-pinch re-
gime, therefore, the number of electrons/length N> I /ev,,
~1/[ecy(T(keV)/500) ], which is 6X 10" electrons/
cm X J(MA) (for T~0.5 keV).

As the number of electrons per unit length decreases,
the vacuum spark gradually transforms into an electron di-
ode. The smallest number of pinch electrons per unit length
N, that can carry a current I occurs when all electrons
travel with the velocity of light ¢, ie, I=N_ ec or
Npin (/cm®) = 2X 10" I(MA). If the number of pinch elec-
trons per unit length N is less than N, the pinch electrons
must be supplemented by other electrons, presumably emit-
ted from the cathode. For still smaller N, the bulk of the
current is carried by these emitted electrons, as in a pure
clectron diode. In the process, the character of the discharge
changes from a resistive diode to a space-charge-dominated
diode.

Whether the discharge material is initially a solid, a gas,
or a plasma appears to be unimportant for the radiation out-
put of the pinch provided the electrical breakdown is suffi-
ciently uniform. In all cases the material becomes a plasma
early into the discharge. However, the initial mass distribu-
tion differs for the various phases, and this may be the most
important factor in pinch behavior. Connecting the elec-
trodes with thin wires is convenient. However, this restricts
the load material to solids such as plastic, Al, Ti, or Fe. A
practical problem with wire loads in their replacement after
cach shot, which usually involves a time-consuming opening
of the diode, although this could be avoided by loading the
wires in the vacuum under electrostatic guidance (Kania,
1984a).

Six or more wires are theoretically stable (Felber, 1981)
against perturbations that destroy cylindrical symmetry.
The symmetry in the implosion is apparently important in
the production of radiation. With the same load impedance
or initial radius and the same mass per unit length, the out-
put from four wires is indeed smaller than with six wires
(Stallings, 1976). Experiments to increase the radiation by
using 12 or even 24 wires fail to give a substantial improve-
ment. Therefore, six wires are most common, because this
minimizes the difficult handling of fragile wires. When the
mass/length can be substantial it is unnecessary to use indi-
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vidual wires. Instead, thin cylindrical foils can be used (Ba-
ker, 1978).

The dominant alternative to wires is the pulsed injection
of gas (Shiloh, 1978), often a noble gas but sometimes a
molecular compound or a mixture of gases (Bailey, 1982b),
and even a fine powder carried in the gas stream. How much
material is injected can be varied by changing the pressure
behind the pulsed valve, or the time difference between open-
ing the gas valve and firing of the main pulse. Other ways to
provide a load include a discharge through a capillary in an
insulator (NaF), which injects a solid plasma plume in the
diode (Young, 1986). A hollow cylindrical ring of plasma
can be shot into the diode using an auxiliary discharge in a
metallic foil (Gazaix, 1984). This technique results in mass
distributions with well-defined edges in the radial direction.
To obtain a uniform mass density in the azimuthal direction,
the auxiliary discharge should be sufficiently well behaved.

For a wire load the cathode and anode can be solid con-
ductors, but for a gas puff load one electrode, typically the
cathode, contains the gas nozzle and the puff valve. After
opening the puff valve the gas pressure slowly builds up tc
the proper value, but the tenuous leading edge of the gas,
streaming at Mach 4-8 (about 0.1 cm/us) could still be
around. To counteract nonuniform gas buildup in the diode
the anode should pass this gas into a larger vacuum vessel.
Therefore, the anode cannot be a solid plate. Instead, the
anode may consist of rods that intercept the gas stream,
wires stretched between posts, a conductive mesh, or a hon-
eycomb (e.g., Wessel, 1986).

The amount of gas in the diode is often unknown, al-
though it is sometimes inferred from the implosion time of
the pinch material (assuming: *' material is swept up). Mea-
surements of the gas density after injection, but before the
current pulse has arrived, indicate that the initial gas profile
is a cone of gas, expanding radially as it moves away from the
nozzle (Smith, 1982/1985). The peak density is ~ 10"
ions/cm® (Smith, 1982/1985; Gazaix, 1984). Once the gas is
ionized the electron density is measurable with laser interfer-
ometry (Shiloh, 1979).

With wires the initial amount of material is known;
however, even with wires the mass per unit length participat-
ing in the implosion may differ from the initial value. For
example (Benjamin, 1981), an outer layer may blow off the
wire and implode during the initial part of the pulse, leaving
less mass for the main implosion. The mass cannot be deter-
mined unambiguously from the acceleration in the implo-
sion and the measured diode current, because an unknown
part of the diode current is contained in the blown-off mate-
rial. Conversely, electrode material can end up in the z-
pinch. When wire and clectrode material differ, the addi-
tional material is visible through its characteristic radiation,
but when electrode and pinch are the same clement (e.g.,
aluminum) the increased mass is hardly noticeable, the only
indicator being the difference in behavior of the pinch close
to the electrodes as compared with that in the center. Then
another electrode material may be tried (Choi, 1986). Also,
material from the current return posts may get mixed in with
the load gas. Finally, instabilities in the pinch cause flow of
material along the axis out of the compressed region, modi-
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fying the mass/length still further.

If the material connecting cathode and anode is conduc-
tive, metal, or plasma, the current starts to flow as soon as
the electrical pulse arrives, and the voltage between the elec-
trodes is largely inductive. However, if the matenal is non-
conductive, sometimes plastic wires but commonly a gas, the
voltage between the electrodes builds up rapidly until the
material breaks down. Self-breakdown tends to give sparks
that evolve into random current channels, possibly affecting
the implosion symmetry. Preionization of the gas by external
means then improves the implosion. Preionization with UV
flashboards is common. Initially the flashboard’s UV spec-
trum peaks at 70 ¢V, decreasing to 30 ¢V as the pulse pro-
ceeds. The UV is readily absorbed in the gas shell. Also,
preionization with rf waves is used. Preionization may be
superfluous if the pulse power generator has a sizeable pre-
pulse. Then the ionization from the prepulse appears to have
time to spread throughout the gas, as evidenced by a suffi-
ciently symmetric behavior of the implosion.

Additional control over the initial condition of the
pinch is obtained by injecting low-energy electrons along the
diode axis through a ring in the anode. The effect is seen
experimentally in a reduced amplitude of instabilities, and
an improved implosion (Ruden, 1987).

After the pulse the diode is filled with an exploding plas-
ma no longer contained by the magnetic field from the cur-
rent. Anything to be exposed to the x rays must be protected
from this blast. Thin foils stop the hot gases but transmit a
varying fraction of the x rays. Pressure buildup in the diode
can be avoided by careful design of the outer conductor. X-
ray diagnostics are typically so far away that fast closing
valves can be used in addition to the slits needed in the diag-
nostics. Additional magnets block the electrons.

It is possible to get a radiating region with special prop-
erties by providing special load configurations. X-ray laser
studies with z-pinches need a linear, homogeneous plasma
region that remains moderately hot during a 0.1-1 ns period.
A gas column (Sincerny, 1985) or a foam cylinder (Spiel-
man, 1985b) on axis in addition to the standard load im-
proves the homogeneity of the imploding gas shell. The con-
verse effect is reached by connecting the electrodes with
crossed wires, the “x-pinch” (Kolomensky, 1983; Faenov,

1985; Ivanenkov, 1986; their data are summarized by Zak-
harov, 1987). The intent is to concentrate the available pow-
er in a single point, and generate on a small ( ~ 10-GW elec-
trical) generator the plasma conditions usually seen on
terawatt machines.

B. A sampling of z-pinch resuits

This subsection contains a sampling of diagnostic re-
sults available in the literature to illustrate particular aspects
of the z-pinch. Table II contains many of the available data.
Besides these published results there are many more, but
qualitatively similar, data available in internal reports out-
side the limits of this review.

Usually, soft x rays are the intended product of the PRS,
and their energy per pulse is commonly measured on each
shot. Also available are the overall electrical parameters of
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TABLE 11. Some data obtained with z-pinches. In the second column the ® indicates quantitative data, a ¢ theoretical spectra, a w data from wires, and an x
data from the x-pinch. Spectra are from the given clement (SS is stainless steel). The last column indicates a time or spatially resolved spectrum.

Soft x-ray Xuv Resolved
Reference Pinhole spectrum spectrum spectrum
Aranchuk, 1985 w
Baker, 1978 Al
Benjamin, 1981 ss
Bleach, 1982 Ar Ne,Ar,Kr,Xe
Bruno, 1983 Al
Burkhalter, 1978 . Fe Fe
Burkhalter, 19792 . Al ALSL,Ti ALSS
Burkhalter, 1979 . ArKr Ne,Ar,Ke
Choi, 1986 Ar
Clark, 1986 t Ne
Clark, 1982 AlLCaTi
Clark, 1983 Ar Ar Ar Ar
Dozier, 1977 w Pt Cu,Ag.Au
Dukart, 1983 Kr Kr Kr
Duston, 1981 ] Ar Ar
Duston, 1984 Ne,Ar,Kr
Gersten, 1981 Ti
Gersten, 1985 Al(?) Al
Golts, 1986 Kr
Hammel, 1985 Ar
Hares, 1985 Ar Ar
Ivanenkov, 1986 x ALPd,W Mo
Mazxon, 1983 t Ar
Mehiman, 1986 . Ne Ne Ne
Mosher, 1973 w LW Ti
Peariman, 1981 Ar Kr Kr
Riordan, 1981 C,ALSS, W AlSS Kr CALSS Kr,W
Shiloh, 1977 Ar
Shiloh, 1978 Ar,Kr
Spiclman, 1984 Kr,Xe Kr,Xe
Stallings, 1976 Al Kr,Xe
Stallings, 1979 Ar
Stephanakis, 1986 Ne Ne
Stewart, 1987 Ar Ar Ar
Zakharov, 1983 ALW Al Al

the machine, ¢.g., the current at the entrance to the diode
and the voltage at the vacuum insulator. Spatially resolved
x-ray pinhole pictures simply show the spatial location of the
emission, without being quantitative in the radiation output.
The same is true of streak and framing photography, which
provide both time and spatial resolution. Optical or x-ray
filters are used with these techniques to give rough spectral
discrimination.

Complete and detailed measurements so coveted by
theorists are very hard to obtain and seldom published.
These measurements include time and spatially resolved
XUY and soft x-ray spectra on the same shot, the last col-
umn in Table II. Even much simpler diagnostics, e.g., time
and spatially averaged but quantitative x-ray spectra such as
Figs. 3 and 4, are available on relatively few shots. Table I1
marks these with a star (*). Most often the spectra are given
qualitatively in terms of film density versus photon energy.

From the spectrum much can be inferred about the
average plasma properties. Most often the spectrum is mea-
sured for the whole length of the pinch, and contains infor-
mation about the bulk plasma mixed with the bright spots.
Slits are used to restrict the axial field of view. However,
because the spectra contain time-averaged emission along a
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line through the pinch, it is still impossible to determine the
local plasma state without further data on where and when
the plasma emits the radiation of interest. For example, even
the single bright spot diagnosed by Hares (1985) is embed-
ded in a blanket of cooler plasma.

The radiation output per pulse increases strongly with
generator power and peak current. More power in the geaer-
ator allows more plasma to be compressed to a higher den-
sity and/or a higher temperature, increasing the x-ray out-
put from the bulk of the pinch plasma, but this is not
necessarily the reason for the increased yield. Instead, the
increased radiation output appears to be primarily related to
more and bigger bright spots, or sometimes to a larger den-
sity and temperature in each individual bright spot. These
statements are anecdotal and will surely need to be modified
as more systematic studies are done.

1. Implosion dynamics

Early on in the pulse the z-pinch material is ionized and
emits visible light. As the pinch progresses and the material
gets hotter the photon energy increases until soft x rays are
emitted at stagnation. Visible light is conveniently mea-
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sured, and thus is an easy way to follow the implosion. Fig-
ure 6 is an optical framing photograph of a hollow gas puff z-
pinch imploded on the Lexis capacitor bank (Peariman,
1985a). Although light cannot be emitted without heated z-
pinch material there is no definite relation between light and
material, and material and current. For example, the whisps
or flares visible in the middle frames do not necessarily indi-
cate that the current flows in the whisps. Also, the fact that
the edge of the pinch appears sharp and well defined in
frames (a)-(c) does not imply that the current path is thin
but results from the emission integrated along the chord.
However, visible light, material, and current are often relat-
ed on the assumption that the pinch material is swept up by
the magnetic pressure, as in a snowplow.

In the snowplow model frame (a) suggests a slightly
flared gas shell with current running on its outside. The irre-
gularities close to the anode at the bottom appear to result
from the gas stream hitting the anode rods. As time goes on,
axial perturbations in the pinch edge become more prevalent
and the pinch shows deviations from axisymmetry [com-
pare frames (b)-(d)]. Subsequently, the perturbations
evolve into the flares of frames (d) and (e). The pinch im-
plodes at all axial locations irrespective of the axial struc-
ture, stagnating first close to the cathode and only later close
to the anode. This phenomenon is called “zippering.”

Not much radiation is emitted until the pinch stagnates
[frames (¢) and (f) ]. Optical radiation in frame (e) comes
from the cathode, where a sheath of leftover gas or plasma
seems to participate in the current conduction. A dark gap
separates the cathode from the uniformly radiating central
part of the pinch. A pair of flares is still present close to the
anode, which is also emitting light. The flares have disap-
peared in frame (f) but the gap is still present: it pops up
again during pinch disassembly, shown in frames (g) and
(h). This final stage consists of a beadlike helix as could be

H (o)

{g)

FIG. 6. Implosion sequence of a gas puff z-pinch measured in optical light
(from Pearlman, 1985a). The anode-cathode gap is 3 cm, the interframe
time is 50 ns.
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expected from an advarnced stage of hydrodynamic sausage
instability superposed on a kink mode (Bateman, 1978).

Is the dynamics of the implosion consistent with all the
mass being swept up by the current as if the magnetic pres-
sure were a snowplow (Katzenstein, 1981)? If this were the
case, the radial position of the gas sheath as a function of
time should be consistent with the acceleration from the
I X B force, and a constant mass per unit length. This can be
done by taking an axial slice of the pinch, avoiding axial
nonuniformity. For example, Fig. 7 shows the time evolu-
tion of a slice perpendicular to the axis in the middle of an
argon pinch on a 10-TW pulseline with 100-ns rise time
(Clark, 1982c). The “radius of the pinch,” both the plasma
edge and the current sheath, is then identified with the light
emission.

At the beginning of the main current pulse, 50 ns before
stagnation, the plasma already has an inward radial velocity
obtained from the prepulse. As the pulse progresses the lu-
minosity sheath (arbitrarily defined by the transition be-
tween dark and light blue) implodes and thickens at the
same time. Stagnation occurs at ¢ = 0 ns as defined by the
green curve intersecting the axis, but already 10 ns earlier
some precursor plasma (light) has reached the axis. For the
purpose of comparison with the implosion model the plasma
position is defined as the brightest radius in dark blue until
25 ns before implosion, when it changes to the light blue and
the green. The comparison is favorable (see Fig. 8): the mea-
sured radius () is in good agreement with the acceleration
determined from the force uof(t)/2nr(t) and a constant
mass per unit length, which is considered as an adjustable
parameter. The pinch dynamics has been corroborated in a
similar fashion in many other experiments (e.g., Degnan,
1981; Clark, 1982a/b; Bruno, 1983; Bogolubskii, 1986). Use
of the mass as an adjustable parameter is aimost unavoid-
able: the mass per unit length of the gas is very hard to mea-
sure, and even the mass per unit length of a wire load is
uncertain. The value of the current is typically more reliable,
even though the current is seldom measured close to the
pinch: the magnetic field in a z-pinch can be measured with
Faraday rotation (Veretennikov, 1985).

It is important to note that the radiation output cannot
be optimized simply by choosing the stagnation time at the
peak of the current pulse (Gersten, 1986).

After implosion the pinch at the axial location of the
streak radiates strongly for 30 ns in the visible (red in Fig.
7), but the soft x-ray radiation pulse from this particular
axial location is much shorter. The soft x-ray pulse from the
whole pinch has a full width at half maximum (FWHM) of
~20 ns, compare Fig. 2.

2. Spatial features

Some visible light is generated from the start of the cur-
rent pulse, while XUV radiation is emitted in a fairly wide
pulse around the stagnation time. The spatially averaged soft
x-ray pulse is still shorter, Fig. 2, but soft x rays from a given
location in the pinch come in an even sharper pulse. For
example, Fig. 9 is an x-ray framing photograph of a krypton
pinch designed to be linear with minimal zippering ( Dukart,
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1983). A typical axial location strongly radiates soft x rays
(blue) during only 2 ns, with the exception of the pinch close
to the cathode, where the radiation persists for 10 ns. The
total emission from the pinch lasts for about 15 ns. Proper
design of the gas nozzle to minimize the zippering can reduce
the pulse width from 10 to 4 ns (Hsing, 1987).

Much of the kinetic energy accumulated in the pinch
material during run in is converted into optical and XUV
photons irrespective of the details of the pinch. In contrast,
the soft x radiation is typically emitted by localized bright
spots; this radiation is sensitive to the pinch conditions such
as current level and atomic number of the load. This point is
illustrated in Fig. 10, which compares two sets of pinhole
pictures, one in the XUV with photon energy Av around a
few 100 eV, and the other in soft x rays with Av over 1 keV.
The left picture is an aluminum pinch (Z = 13), and the
right is a tungsten pinch (Z = 74) (Riordan, 1981). Apart
from the atomic number, the pinch conditions were similar,
¢.g., the same maximum current ( ~ 1 MA) and an optimum
mass per unit length for soft x-ray production (~ 150 ug/

8

CURRENT (MA)

NORMALIZED RADIUS

eodane

o L
100 200 300
TIME (ns)  gTREAK PHOTO
START TIME

FIG. 8. Measured and calculated load current compared to the measured
and calculated radius of the imploding argon pinch in Fig. 7. The K-line x-
ray pulse (arbitrary scale) starts 230 ns into the pulse at stagnation (Black-
Jack S, after Clark, 1982c).
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FIG. 7. Optical streak photograph (color plate)
showing the radial collapse of argon z-pinch. The
picture starts at 170 ns after the beginning of the
electrical pulse (see Fig. 8). This initial part of the
pulse gives a small initial velocity to the gas; the
strongest acceleration occurs just before stagnation.
During the contraction the luminosity shcath has a
finite width; the final pinch size is about 1 mm.
Strong optical emission accurs during about 40 ns
(bottom scale) (courtesy of Dr. J. Peariman: for an
uncolored version of this photograph see Clark,
1982¢).

t (ns)

PITHON SHOT 2588

0-2

911
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1517

18-20

TIME-RESOLVED X-RAY PINHOLE PHOTOGRAPHS OF A
KRYPTON Z-PINCH PLASMA

{2 ns/FRAME EXPOSURE, 3 ns BETWEEN FRAMES)

FIG. 9. Time-resolved pinhole photograph in ~ 1.6-keV x rays of a krypton
gas puffl plasma (Pithon; courtesy Dr. S. L. Wong: for an uncolored version

7§f this photograph see Dukart, 1983).
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cm). The XUV emission in both shots comes more or less
uniformly from a neighborhood of the axis, but the differ-
ence in soft x-ray output is striking, with the hot spots much
more pronounced for tungsten. For both materials there is
also a weak correlation between the bright spots in the soft x
rays and a slight structure in the XUV output.

Similar behavior is seen when the atomic number of the
load remains the same but other pinch parameters vary
(Riordan, 1981). At the same peak current, increasing the
mass per unit length m/! from the optimum for soft x-ray
production reduces the number and size of the bright spots,
but increases the optical and XUV emission. The pinches
still differ even if the implosion time is kept the same by
reducing the initial radius r, and increasing the mass per unit
length to keep ms2/[ constant. Figure 11 compares x-ray
pinhole pictures under these circumstances for an aluminum
pinch (Gersten, 1986). The largest mass per unit length and
the smallest initial radius produce a narrow, dense, and
strongly radiating pinch, panel (a). Increasing the initial
radius by a factor of 2 and decreasing the mass per unit
length fourfold gives the wide, tenuous pinch in panel (c).
Theintermediate case, panel (b), has about half the mass per
unit length. The radiation yield decreases from 20 kJ for
panel (a) and 4.5 kJ for panel (b), to 0.45 kJ for panel (c).
The yields depend somewhat on the pinch temperature, but
mostly on the peak density obtained in the pinch. The strong
decrease of radiation yield with mass is understandable in
part by premature heating of the plasma, which prevents
compression to a high density.

The radiation generated by atomic processes in a pinch
is sometimes accompanied by detectable amounts of unin-
tended harder radiation, apparently produced by 10-100

A¢ w

FI'5. 10. Time-integrated emission in XUV (inner) and soft x rays (outer)
for a 164-ug/cm aluminum pinch and a 141-ug/cm tungsten pinch. The
anode-cathode gap is 3 cm, and the nominal current is | MA (Blackjack 3,
from Riordan, 1981).
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keV or even higher energy electrons. These can be generated
in the stagnation phase by an (resistive or inductive) electric
field along the pinch axis (e.g., Putnam, 1979; Warren,
1987). This bremsstrahlung energy increases with machine
power but is never strong enough to dominate the pinch en-
ergetics. Moreover, it can be avoided almost completely by
increasing the amount of pinch material beyond a critical
value. Quantitatively, for a shot with an estimated K-line
yield of 20 kJ the bremsstrahlung energy from a thick alumi-
num anode is estimated at <20 J per pulse (Clark, 1982a).
The current in the fast electrons (assumed ~ 1 MeV) is then
something like <60 kA, as compared to a ~3 MA total cur-
rent through the pinch.

In addition to bremsstrahlung generated at pinch time, a
short burst of bremsstrahlung can appear at the start of the
current pulse. This phenomenon may be related to the front
edge of the magnetically insulated space-charge sheath that
carries power to the diode.

A ~20-keV electron beam in the axial direction has
been observed directly with differentially filtered Faraday
cups (Kania, 1984 b). These fast electrons carry a small
fraction (~20 kA) of the total current (~600 kA). The
atomic radiation excited by these nonthermal electrons
could dominate the harder part of the radiation output
(Hammel, 1984; Dangor, 1986), but whether this happens
in all pinches is an open question at the moment. Spectral
diagnostics on a single bright spot shows beam-generated
radiation in some cases (Hares, 1985): electron beams accel-
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F1G. 11. Contour plots of time-integrated pinhole pnotographs in soft x
rays exceeding | keV from aluminum pinches designed to stagnate at the
same time during the pulse by changing the intial radius r, and the mass per
unit length m/1 but keeping mrl /! constant. Normalized initial wire array

radii 7, are: (a) 0.5; (b) 0.85; and (c) 1.0 (Blackjack 5, from Gersten,
1986).
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erated in the neck of an x-pinch (Zakharov, 1987) produce
radiation only in the plasma downstream (between neck and
anode). While in z-pinches most of the radiation is excited
by thermal electrons, the converse seems to be true in vacu-
um sparks where most of the radiation output is apparently
generated by nonthermal electrons.

Changes in the shape of the current pulse driving the
implosion may influence pinch behavior. An example is the
use of a plasma erosion opening switch (PEOS) to provide a
faster rising current pulse. Figure 12 compares the x-ray
emission from a neon gas puff without a PEOS with a similar
puff using a PEOS, increasing the current rise time from
2% 10'* A/s twofold to 4 10" A/s (Stephanakis, 1986;
Mehlman, 1986). With the PEOS the bright region is more
uniform, even in the individual spectral lines. Moreover, the
pinch radius is smaller and there are fewer flares. Other dif-
ferences in pinch parameters include a smaller mass per unit
length for the PEOS case demanded by the shorter time for
acceleration, and by the smaller peak current. (1.2 MA vs
0.8 MA).

In shots where stagnation and peak current coincide,
the bright spots seem to dominate the soft x-ray emission. In
contrast, the bright spots are much less prevalent when stag-
nation occurs much after peak current. An extreme example
is the lack of bright spots in the PEOS shots. There is no
systematic study of this phenomenon, but the observation
appears consistent with the suspected origin of the bright
spots, viz., a sausage instability in the plasma column.

3. XUV radiation

Unlike soft x rays, XUV radiation (e.g., 50-800 ¢V)
shows little structure in space or energy. Emission is typical-
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FIG. 12. X-ray pinhole photograph of a neon gas puff implosion without
and with the PEOS (Gamble 11, from Stephanakis, 1986). The top photo-
graph is spectrally integrated; below these are the spectrally dispersed lines
as indicated. Without the PEOS the pinch emits more energetic x rays close
to the cathode. The PEOS improves the pinch uniformity.
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ly from a relatively homogeneous column of plasma, without
bright spots. The spectrum is rich in lines on top of a contin-
uum. Figure 13(a) compares densitometer traces of a neon
XUV spectrum with a krypton XUV spectrum, obtained
from the center of the pinch with a grazing incidence spec-
trometer (many features in these spectra were identified by
Bleach, 1983). The continuum consists of merged and
broadened lines from different diffraction orders superposed
on a background of free-bound continuum radiation. The
spectrum becomes smoother with increasing atomic number
2Z, in part because of the larger number of overlapping lines
(Riordan, 1981).

Although the details differ from shot to shot, the XUV
emission is qualitatively the same for the different regions of
the plasma. Even for different load materials on the same
machine the XUV emission is quantitatively similar: for ex-
ample, the XUV output per shot for krypton (~30 kJ) is
about twice that of neon. Other data on XUV production
show comparable features (see Table I1).

Quantitative XUV spectra from grazing incidence spec-
trographs are hard to obtain and therefore rare. Part of the
difficulty is the instrument efficiency: in addition, absolute
calibration of x-ray film is relatively recent (Henke, 1984a/
b; Eidmann, 1986b). However, if only the overall features of
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FIG. 13. (a) Densitometer trace of time-integrated XUV spectra at the cen-
ter of the pinch taken with a grazing incidence spectrometer for neon and
krypton (from Bleach, 1983). This reference identifies some of the spectral
lincs. (b) Time-resolved XUV spectrum from a krypton pinch unfolded
from a filterd XRD array (from Bailey, 1986).

175

N. R. Pereira and J. Davis R12




the energetics are desired, the spectrum can be determined
by the unfolding of differentially filtered x-ray diodes. Fig-
ure 13(b) is a time-resolved spectrum of a krypton pinch
(output ~0.3 kJ) obtained by this method (Bailey, 1983/
6). Note that the radiation is dominated by the XUV below
500 eV, with little radiation above 1 keV.

C. The pinch plasma

With suitable theoretical models, the XUV and soft x-
ray spectra can be used to infer average values for the density
and temperature of the pinch plasma. These averages are not
necessarily an accurate characterization of the plasma when
the plasma changes rapidly in time and/or when the plasma
is nonuniform, as is usually the case. Axial inhomogeneities,
in particular the bright spots, can be diagnosed separately
from the bulk plasma with axially recolved spectroscopy
(Hares, 1985). The short lifetime of the bright spot can af-
ford some time resolution. However, the spectra are always
averaged over the line of sight, and their interpretation yields
some radial average. Different spectral features may suggest
average plasma parameters that are inconsistent: sometimes
inconsistencies can be resolved by assuming that a central
core is denser than the surrounding plasma (Gersten, 1986).
The following highlights some typical determinations of the
plasma parameters.

Laser interferometry followed by Abel inversion (Shi-
loh, 1979; Bailey, 1982b; Smith, 1985) can be used to mea-
sure the electron density as a function of radius during the
implosion. For example, Fig. 14 shows that the electron den-
sity in the midplane of an argon pinch increases with time as
the implosion proceeds, while the shell thickness decreases
little. The electron line density N remains constant (at
~6X 107 electrons/cm) until the stagnation point, when N
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FIG. 14. Time evolution of the radial electron density profile and the elec-
tron line density between — 100 ns and stagnation at O ns, in 20-ns steps
(taken on different shots). The line density remains constant during the
pulse. At stagnation the line density decreases, indicating an axial outflow
of material consistent with the sausage instability (from Shiloh, 1978a).
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decreases to ~2 X 10'"/cm: the electron density itself peaks
at ~ 10'® electrons/cm>. The ion density is not determined
by this diagnostic because the ionization fraction is un-
known.

The plasma parameters reach their highest value when
the material has assembled on axis at and after stagnation.
For example, Fig. 15 (Clark, 1983) shows a temporally
averaged but axially resolved argon pinch similar to Fig. 6.
The radially resolved x-ray emission (lower panel) suggests
two bright spots on the anode side of the pinch, and a
broader structure on the cathode side. The bright spots,
about 2 mm in length and 1 mm radius, appear less pro-
nounced in the radially integrated x-ray emissivity, or in the
size of the apparent pinch size in He- and H-like x rays (mid-
dle panels). Temperature and density inferred from these
data are shown in the top panel: the bright spot is perhaps
twice as dense as the adjacent plasma, while the temperature
varies relatively little along the pinch. In this case it is rea-
sonable to characterize the plasma by its averaged param-
eters.
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FIG. 15. (a) Contour plot of a pinhole photograph in soft x rays exceeding |
keV for an argon pinch similar to Fig. 7. (b) Emissivity vs axial distance,
(c) time-uveraged pinch size for the heliumlike and hydrogenlike argon
ions, and (d) axially resolved electron density and temperature from spec-
tral data. The bright spots, at 1/5 and 2/5 of the pinch length close to the
anode, show the highest density but unexceptional temperatures (after
Clark, 1983, courtesy M. Gersten).
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Quite often the bright spots differ substantially from
their surroundings, and it is important to diagnose them
properly in the light of their dominance in the K-line emissi-
vity. The time-integrated K-line spectrum of a single bright
spot in an argon pinch given by Hares (1985) allows a local
determination of the bright spot parameters. This bright
spot, defined by the strong emission of Ar xvii photons, is
~0.1 mm in diameter and 0.6 mm long, much smaller than
the bright spot in Fig. 15. There may be a similar amount of
material in the two bright spots, because the smaller size is
compensated by a much higher electron density,
n, ~3X10*'/cm?; electron temperatures are comparable,
T,~1 keV. Only 2.5% of the initial line density is in the
bright spot: the remainder presumably forms a cooler plas-
ma blanket out to some larger radius, or may have flowed out
in the axial direction. A cold core surrounded by a hot plas-
ma is found in exploding wire experiments (Aranchuk,
1986), but here the core radiates little.

The Doppler shift of some XUV spectral lines in a simi-
lar argon pinch indeed indicates axial plasma flow, with a
flow velocity proportional to the ionic charge state (Stewart,
1987): the peak velocity, 2 X 107 cm/s, is comparable to but
smaller than the radial velocity before stagnation [also mea-
surable with Doppler broadening or splitting (Perez,
1980) ]. Later in timne the pinched plasma develops instabili-
ties and bright spots that emit soft x rays.

Sometimes, but not always, the K lines from heliumlike
argon are accompanied by radiation from the X shell of
neonlike argon. This unlikely mixture of lines implies the
presence of a hot region for the generation of the radiation
from the stripped ions, and a cooler region for the generation
of inner-shell Ka's. In the experiment by Hares (1985) part
of the Ka radiation from neonlike argon comes from plasma
~0.3 mm closer to the anode than the bright spot where the
He-like argon is located. Another source of Ka lines could be
radially outside the bright spot but at the same axial location,
or at the bright spot location but at a different time. In addi-
tion to the plasma parameters Hares (1985) gives a partial
energy balance for this bright spot, including an estimate for
the energy in the nonthermal electron component. Similar
considerations can be found in Jones (1985).

A systematic and comprehensive determination of the
dominant physical processes in the bright spot remains to be
performed. Challenging questions include: (i) Is the bright
spot in energetic equilibrium? (ii) What is the role of axial
mass loss? (iii) How important are runaway electrons? (iv)
Why are bright spots comparable in size to the bulk of the
pinch for low atomic number Z, but become progressively
smaller as Z increases (e.g., Fig. 10)? These and other ques-
tions continue to make the radiating z-pinches a fascinating
subject.

Hl. THEORETICAL MODELING

The only theoretical consideration commonly used in
pinch experiments is the snowplow model, which predicts
the time of implosion from the machine parameters, the load
mass, and initial radius. In this model the imploding plasma
is assumed to remain an infinitely thin cylindrically symm :t-
ric shell. The shell's position r(¢) is given by integrating in

time the acceleration of a shell element. The magnetic force
is the current through this element d/(1) multiplied by the
magnetic field B(r) = u/(1)/2nr divided by the constant
mass per unit length dm/I. The current I (1) is determined by
acircuit model for the generator coupled to the time-varying
inductance of the z-pinch load. One way to avoid the diver-
gence in pinch energy, velocity, and magnetic field at radius
r =0is to cut off the computation when the plasma sheath
reaches ~1/10 of the initial radius (e.g., Katzenstein,
1981). The factor 1/10Q is inspired by experimental data and
accounts for the expansion of the shell in an approximate
way. The snowplow model is successful in determining the
implosion time and the kinetic energy at stagnation, but of-
fers little about the radiation output (Gersten, 1986): obvi-
ously, better predictive modeling is mandatory.

Roughly speaking, the two theoretical approaches are
(i) global estimates of pinch dynamics, stability, and radi-
ation using simplified models as in the early days of plasma
physics, and (ii) radiation production and transport compu-
tations with detailed ionization dynamic models characteris-
tic of modern astrophysics. The marriage between these two
approaches is progressing nicely, but it will be clear from
what follows that much remains to be done.

The more sophisticated radiation models are needed to
interpret the radiation spectrum in terms of the plasma den-
sity, temperature, presence of (nonthermal) electron beams,
and other phenomena. This can be done reasonably well
with stationary plasma models without hydrodynamic
flows. The ultimate goal, to predict the pinch characteristics
in detail from first principles, demands time-dependent hy-
dromagnetic models including the radiation energetics.

When the pinch remains cylindrical, the radiation-hy-
drodynamic models do a very credible job in predicting the
total radiation output, including spectral details (Clark,
1986). In contrast, existing models for the “bright spots” are
inadequate for an accurate prediction, although some quali-
tative features can be explained (Vikhrev, 1982).

A typical z-pinch plasma (see Table IV) may be 10
times ionized at 300-¢V electron temperature. The energy
stored in a 10-times ionized (H-like) ion is ~4000 eV, com-
parable to the thermal energy of the 10 electrons. Moreover,
the power into the plasma, compressional and joule heating,
is of the same magnitude as the radiative power output. The
ionization balance and the radiative power output for z-
pinch plasmas are complicated quantities that oftentimes are
inadequately approximated by simple models.

Radiation from z-pinches may be heavily influenced by
opacity effects, i.c., the multiple absorption and subsequent
reemission or destruction of photons before they escape the
plasma. Therefore, neither an optically thin (no radiation
absorption) nor the blackbody model (equilibrium between
the radiation and emitters) applies for the plasma’s entire
history. Then the proper treatment is to account for all rel-
cvant ionization states, the detailed configuration of the
plasma, by solving the coupled set of appropriate atomic rate
equationsincluding the effects due to photons in conjunction
with their transport. There is also the issue of the time scales
for the various atomic processes (Kononov, 1977). These
tend to be shorter than the hydrodynamic time scale ( ~ 1-
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10 ns), suggesting that the plasma should be in collisional-
radiative equilibrium (CRE) for much of its history. There-
fore, the CRE approximation is a reasonable choice over
much of the plasma’s evolution. Details of density and opa-
city effects on the radiation are shown below.

For typical z-pinch parameters the plasma is highly
collisional, with a typical electron-electron collision time
Tee ~0.1-1 ps. The collision time is much shorter than the
time scale for thermodynamic quantities such as tempera-
ture and density, and the bulk of the electron energy distri-
bution is close to a Maxwellian. The plasma transport quan-
tities arc moments of the distribution function as given by
the standard Braginskil expressions (as corrected by Epper-
lein, 1986). Likewise, the ionic rates are integrals over cross
sections and the Maxwellian electron distribution function
that can be determined as functions of temperature.

Deviations from a Maxwellian distribution function are
simple to compute, because in the first term expansion of the
distribution function a difficult electron-electron collision
term can be ignored for a high-Z plasma. This is because the
cross section for large-angle Coulomb collisions for elec-
trons with the Z~ 10X charged ions is Z? larger than the
clectron-electron collision cross section, and the collision
frequency nvo is Z X larger. Hence, most electron collisions
are with the almost stationary ions. The distribution func-
tion tends to be isotropic and Maxwellian. The transport
coeflicients for such a Lorentz plasma are available analyti-
cally (Epperlein, 1984). However, the radiation from the
plasma, connected to the electrons by inelastic collisions,
tends to reduce the amount of energetic electrons. For a neon
plasma some radiative rates decrease by 50% or more (Per-
cira, 1988).

The plasma models are not unique to the z-pinch: simi-
lar modeling is done wherever strongly radiating plasmas
occur. Outstanding examples are laser fusion studies and x-
ray laser development. Obviously, each application has its
characteristic set of applicable approximations. For exam-
ple, in laser plasmas the time scales are shorter than in z-
pinches, while spatial gradients and plasma densities are
usually larger. Features that are specific to those circum-
stances, ¢.g., transport cocfficients in high-density plasmas
(Lee, 1984), or nonlocal heat conduction in large gradients
(e.g., Holstein, 1986), may be relevant in limited domains of
the z-pinch.

A. Kinematics

Gross properties of the pinch implosion, such as the im-
plosion time or the kinetic energy at stagnation, can be com-
puted reasonably well in a zero-dimensional approximation.
The pinch is approximated as either a sheath or a uniform
cylinder. Variables may be the plasma radius, and perhaps
average plasma parameters such as temperature, density,
and pressure. In this section we mention only the kinematic
aspects: issues related to the radiation emission appear in
Sec. III C.

1. Snowplow model

The radius r = r(¢) of a z-pinch of length / with total
mass m carrying a current J = I(t) uniformly distributed
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over a cylindrical shell satisfies
mdir ol
! dr? 20(2r)

The acceleration can be considered as the Lorentz forceon a
current clement d6, say at azimuthal angle 8 = 0, by all oth-
er current elements. Only the opposite current element, at
8 = 7 and a distance of 27, gives a force through the center.
The force from all other elements is not toward the center,
but their off-center component vanishes by symmetry; the
remaining central force shows an effective distance 27 (see
also Waisman, 1979).

Typically the current has a maximum [/, I = I_f(r),
where 7 =1t /t,_, and ¢, is a characteristic time. The initial
pinch radius is 7,,, and r = r_, R(r). Then

d’R _ (ﬂoli.t.‘.)f’
dr*"  \2mm/I2. )R’

which contains a single parameter (in parentheses) that can
be set to unity, thereby defining the characteristic time 1,,.
Once f{7) is given R can be found, seldom analytically but
always numerically. The radius R(r) starts at R=1.
R(7,) = 0 defines the implosion time 7, which is finite.
Time 74 can be bounded from above by keeping R = 1 in the
magnetic force term. Particularly when the implosion veloc-
ity and the current are initially zero this upper bound is a
good estimate for the implosion time, because in this case the
wires spend most of the implosion time getting up to speed.

During the rise time of the pulse the current is often
roughly proportional with time, f{r) = . Then the implo-
sion radius R(r) behaves as in Fig. 16 (solid line, left scale):
the dashed lines include the second and third term in the
analytical approximation R =1 — 7*/12 - 72/672 + ... .
Clearly, the approximate radius, and therefore the implosion
time, are nearly exact. Unfortunately, the energy per unit
length W /1= (mr;,/2)R?, on the right scale, is not given

Ty Ty Iy TrTrrrrrrrrr}3
1.0 E
.
—t12
- “1 ]
L
i I
—1
Y4
=
ty
- 0.1 —» ‘\-
o‘ollllllll lllllllo
0.0 1.0 20

FIG. 16. Pinch radius (left scale) and kinetic energy (right scale) for a
snowplow implosion with linear current rise. The solid line is the exact solu-
tion, the dashed lines are the two approximations.
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accurately by the approximate formulas because much of the
pinch energy is acquired toward the end of the implosion.
When the current is not given a priori but determined with a
circuit model it may be advantageous to use circuit param-
eters in defining the implosion time scale (Katzenstein,
1981). Analytical solutions of the coupled equations are
then no longer possible, even though numerical solution is
straightforward. However, the moment of inertia per unit
length mr%, /! always appears in the normalizations, and
when this quantity is kept constant the implosions should
pick up the energy per unit length, irrespective of the details
in the electrical circuit.

The pinch is a time-dependent circuit element with in-
ductance per unit length L(r,1)/l. The pinch force per unit
length F /I is also the derivative of the inductive energy, F/
1 = (AL /3r)(1%/2]). Integrating over time at constant cur-
rent leads to an upper bound on the energy transfer,
ALJI? /2, where AL is the change in inductance between the
initial and final pinch radius. This relation reflects that the
powerinput,/ X ¥ = I X dL /dt,consists ofapower with vol-
tage dL /3t I, expressing energy transfer to the pinch, and an
inductive power with voltage L 37 /3t corresponding to the
increase of magnetic energy in the diode.

The final pinch radius in the snowplow model is zero but
here the model obviously breaks down. Instead, one often
assumes that the final pinch radius is 1/10 of the initial radi-
us. The inductance change is then on the order of 4.6 nH/
cm, and the energy bound for 1-MA peak current is 2.3 kJ/
cm. Besides the kinetic energy in the implosion, the pinch
acquires energy from joule heating, a term R/ in the circuit.
Typically R«¢JL /at.

Snowplow models are not only useful in defining the
approximate mass per unit length needed for a good implo-
sion on a given machine, but also for bringing out the scaling
with parameters as stated above. A sobering note is the ex-
perimental reality (Gersten, 1986): the radiation output de-
pends less on the kinetic energy of implosion than on the
average density at stagnation. A simple formula for the stag-
nation density in a z-pinch does not exist. A value for the
average density can be obtained from the radially resolved
density profile computed with a hydrodynamics code, but
once such detailed data are available it is silly to revert to the
simpler models.

2. Kinematic stabllity

In practice the individual wires in a multiple wire implo-
sion are never identical or mounted symmetrically, and this
asymmetry could spoil the implosion when the perturbation
is unstable. Felber (1981) finds that perturbations in radial
displacement are stable for six or more identical wires, with
growth rate @0 (or perhaps marginally stable when
@ = Q). Perturbations in the axial direction are unstable, but
this simply means that the wire parts closer to the center
implode faster than those parts of the wire farther away from
the center. Introducing an additional current-sharing wire in
the center between the wires tends to destabilize the implo-
sion.

The growth rate of perturbations tangential to the (sym-
metric) reference position is iw. Consequently, tangential
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perturbations are marginally stable, or unstable. Fortunate-
ly, tangential displacements of the wires do not affect the
magnetic force on the wires, and therefore the implosion
toward the center is not affected.

Multiple wires are a discrete version of an infinitely thin
current sheath; the instability of a current sheath to sausage
and kink modes is familiar from hydromagnetic consider-
ations (e.g., Bateman, 1978). The multiple-wire analog of
these instabilities becomes important only when the inter-
wire forces are large, i.e., when the wires are close together
toward the end of the run-in.

While typical wires remain thin compared to the diode
size, the wires expand and contract during the pulse
(Bloomberg, 1980). Initially, the resistivity is high enough
for the current to penetrate, whence the wire expands. Subse-
quent heating and ionization of the wire material reduces the
resistivity and leads to a skin current: the wire contracts. The
interaction between the skin current of one wire with the
magnetic field from the other wires may describe the blow-
off and separate implosion of material observed with heavy
wires (Clark, 1982a; Ivanenkov, 1986).

Each wire can pinch by itself while it is accelerating
toward the center. Because the instability of a single wire is
fast, each individual wire may have pinched before the wires
mect on axis, resulting in an inhomogeneous plasma column.
Consequently, wire implosions are often less uniform than
gas puff implosions.

Blow-off from wires and instability of a single wire both
depend on the magnetic field in the wire’s immediate neigh-
borhood. In contrast to the magnetic field around an annular
conductor, B, (r) = uol(r)/2ur, the field around multiple
wires is far from simple, B, (7,6) depending strongly on radi-
us and on 6. For symmetric wires the magnetic field is simply
a sum over the field from each individual wire if the current
is stationary, and the current density in each wire is constant.
The opposite case, a rising current in infinitely conducting
wires, is found by Waisman (1979). The most interesting
case, where the current penetrates the wire during the cur-
rent rise, remains to be treated.

B. Plasma models

Plasma conditions in z-pinches are often assumed to
vary with the radial coordinate in a prescribed way, with one
of these a constant. Temperature, density, and radiation out-
put are then, theoretically, functions of time only. This sec-
tion discusses some of the available models along these lines.

1. Stationary pinch equilibrium

The basic concept is the Bennett pinch, wherein the ra-
dial gradient of the (scalar) pressure compensates the Lor-
entz force (Vp + j X B), = 0; the Bennett pinch is station-
ary. Integrating this relation,

over radius gives an exact relation between the current /, the
average el>ctron (ion) temperature 7T, , and the number of
electrons (ions) per unit lengthpN

e(i)
179

N. R. Pereira and J. Davis R16




/l"l. = Z:J‘dr’[nik(n + 27".)]
4

fdrm kT,

NkT,
when ignoring the ion pressure #,kT,. Here n,;, the electron
(ion) density, and the line density is N, = 2§ drrn,. The
average electron temperature is kT,
= §drrmkT,/§drrm,, and Z = Z(T,) is the number of
electrons per ion. The plasma is quasineutral, N, = ZN,.
Numerically, (N,/10"cm™*) X (T, /keV)~6
X (1 /MA)*. The relation between electron and ion tempera-
ture is not always clear, and usually not important. If the
electron and ion temperatures are on the same order, the ion
pressure is small compared to the electron pressure because
typically Z~ 10, much larger than unity. Collisions due to
ions are unimportant for the ionization equilibrium because
the pinch plasma has many more electrons than ions, and
moreover the ion velocity vanishes compared to the electron
velocity.

An isolated radiating pinch is stationary only on a time
scale which is short compared to the cooling down time, i.e.,
the pinch energy divided by the radiative power. However,
the pinch can be rigorously stationary when the energy loss
is compensated by energy input from an external source.
Power equilibrium was first studied for hydrogen pinches
using optically thin bremsstrahlung as the sole radiation loss
and joule heating with Spitzer resistivity as the sole energy
input. The resulting equilibrium current is known as the
Pease-Braginskii current J 5.

For a homogeneous plasma of radius r and average
charge state Z with a c?pstant current densityand total cur-
rent J, the power gain,per unit length is # /1 =1?Z1n A/
0o(T /eV)**nr; here the Spitzer conductivity is oo(7/
eV)¥2/ZIn A, with 0, = 100 2~ ' cm~" and In A~ 10 the
Coulomb logarithm. The power density in bremsstrahlung
(free-free radiation) is Py (W/cm®) = Xgn,n,, where Xy

= C, Z*(T/eV)'"?, electron and ion densities incm ~>, and
C=1.4X10"2W cm? (e.g., Allen, 1973; Book, 1983). The
radiative power/length is 77°P,.

Balancing these powers in Bennett equilibrium gives

1%, ~14MA,

independent of atomic number, pinch radius, or temperature
(except through the Benr~tt relation). When the electron
density n,(r) and current density j(r) are no longer con-
stant, a correction factor of order unity comes in:

1%, ~(14 MA)Z[( fd”iz)'n ””’f]
fdrm? fdro
(compare Shearer, 1976). In a partly ionized plasma the
bremsstrahlung is much weaker than the (free-bound and
bound-bound) atomic radiation. The Pease—Braginskii cur-
rent for a pinch dominated by atomic radiation is therefore
much smaller than in a hydrogen pinch, or a hydrogenlike
pinch at sufficiently high temperature. In addition, the T />
temperature dependence of bremsstrahlung no longer com-
bines with the 7"*/2 Spitzer conductivity to give a unique
current. For an iron plasma Fig. 17 compares the power
coefficients X = P /n_n; for bremsstrahlung and total radi-

~N, kT, X
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FIG. 17. Bremstrahlung radiation vs temperature (lower linc) compared
with atomic radiation (free-bound and bound-bound) for iron in the opti-
cally thin limit. Atomic radiation dominates in the temperature region of
interest (after Jacobs, 1977). The Pease-Braginskil current /g for an iron
pinch is a weak function of the temperature around 0.1 times the Pesse-
Braginskii current [ P for hydrogen (right scale).

ation as a function of temperature. At 500 eV the atomic
radiation is 100X the bremsstrahlung value; at much higher
temperatures » 10 keV bremsstrahlung again becomes ap-
preciable. Radiation emission estimates for many high Z but
tenuous plasmas are given by Post (1977) and Jensen
(1977).

For comparisons with the Pease-Braginskii current it is
convenient to express the total radiation (bound-bound,
bound-free, and free-free) by a temperature-dependent func-
tion K(T), which for an optically thin plasma is
K(T) = (Py, + Py + P¢)/Py (Vikhrev, 1977, 1983).
Then Iy =1 §5/[Z(THK(T)]"2 As an example, the up-
per line in Fig. 17 is 7,5 /I &, for iron. Obviously, for a radiat-
ing pinch the Pease-Braginskii current is much less than 1.4
MA, typically ~ 100 kA.

The Pease-Braginskii current /4 says nothing about
the pinch radius because joule heating and optically thin
radiation vary with plasma density in the same way. Cur-
rents exceeding /pp would not allow power balance and a
stationary pinch would not be possible. Instead, the pinch
would suffer radiative collapse. The collapse speed depends
on the effectiveness of radiative cooling (e.g., Shearer,
1976). In equilibrium the radial profile can be determined
from a balance between the heat conductivity, joule heating,
and radiative loss [ Bobrova, 1987; Scudder, 1983 (for a gas-
embedded hydrogen pinch)].

Experimentally the pinches have no problem carrying
all the current offered to them by the pulse power, which can
exceed 100X ] pg . For dense pinches the current could main-
ly be carried by a small fraction of the mass outside 2 cool
core, i.e., the mass and current density profile gives a large
correction factor (as claimed for an exploding wire, Aran-
chuk, 1986). For less dense pinches it is more likely that
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radiative cooling is too slow for the collapse to occur during
the pinch lifetime. A contributing factor may be that radia-
tive cooling is less than expected because the plasma is not in
ionization equilibrium (Faenov, 1985). Radiative collapse
may be modified by other effects also, e.g., the Bennett pinch
condition changes due to electrostatic forces from a net
space charge in the pinch (Meierovich, 1982/4).

Without violating the Bennett condition or invoking
nonstationary effects, the bright spots (or micropinches) are
treated by Vikhrev (1983) using plasma parameters inspired
by vacuum sparks. His bright spot model includes the effect
of opacity on the radiation, and the contribution of some
anomalous resistivity model on the ohmic heating. These
mod 4cations introduce a dependence of the Pease-Bra-
ginskii current on pinch radius; power equilibrium then de-
fines an equilibrium pinch radius for any current. For an
iron pinch at 150 kA the equilibrium radius has a minimum
of radius ~ | um at an ion line density N; ~ 5 X 10'S/cm, cor-
responding to a Bennett temperature T =1 keV. Micro-
pinches form only in a limited range of line densities: when
the initial line density is outside this range the micropinches
may form when the line density enters into the contraction
regime. Theoretical work emphasizing the final state of the
plasma after radiation collapse is discussed extensively by
Meierovich (1982/4/6).

Micropinches are frequently quoted in vacuum sparks
and z-pinch experiments in the Soviet Union, but perhaps
due to different pinch parameters (Gol'ts, 1986] the z-pinch
bright spots are not commonly seen in this light in the US.
However, it seems likely that bright spots in z-pinches could
be described by Vikhrev's radiative contraction model even
though the initial line density may be too large: plasma flow-
ing axially out of the neck of an unstable sausage mode re-
duces the initial line density.

Another basic model is heating under pressure balance,
including joule heating but without radiation loss. For a hy-
drogen pinch with Spitzer resistivity 5, /T >/? this condition
determines a specific rise in the current versus time I = I(¢)
(Haines, 1960): for a pinch with atomic number Z> | the
current rise would differ somewhat because the degree of

ionization Z(T) and the resistivity constant 7, = Z(T)y,,
increase with temperature. However, for a radiative pinch
such a result is less relevant because radiation losses cannot
be ignored.

How close are real z-pinches to these theoretical con-
structs? The Bennett relation is generally believed to be val-
id, but the experiments with the best spectroscopic measure-
ments generally do not contain data on the electrical part
and vice versa. Table 111 gathers data from some interesting
experiments. The Bennett current /, as computed from the
measured density, radius, and temperature is always smalier
than the peak current, but they agree to within a factor ~3.
The discrepancy is probably due to measurement errors, and
to differences between reality and the models. In particular,
density and temperature in the pinches vary with radius.
Differences remain even when nonuniformity is taken into
account by splitting the pinch into a homogeneous core re-
gion surrounded by a homogeneous corona, as done by Ger-
sten (1986). None of the pinches satisfy the Pease—Bra-
ginskil condition, except the micropinch (Faenov, 1985)
with much higher density than the other pinches. For this
pinch the parameters in the experiment appear to agree with
theory. The bright spot (Hares, 1985) needs additional heat-
ing from an clectron beam to explain its parameters. In one
model (Jones, 1985) this beam consists of runaway elec-
trons.

2. Simple pinch dynamics

Besides being in stationary equilibrium the z-pinch can
support self-similar oscillations. In these somewhat artificial
but exact solutions to the equations of ideal MHD, the plas-
ma density, temperature, and magnetic field keep their radi-
al dependence, and all time variation is through the plasma
radius. When total current and plasma pressure are not in
equilibrium initially the pinch radius oscillates in time (e.g.,
Felber, 1982), but when bremsstrahlung losses are included
the oscillations damp until the pinch degenerates into radia-
tive collapse (Meierovich, 1985). Self-similar dynamics of z-
pinches are discussed extensively by Liberman (1986).

TABLE III. Measured data for some well-diagnosed z-pinches. Density and temperature estimates are typically uncertain to a factor ~2. Included are the
nominal and measured values for one case from Gersten (1986) and the measurements for another. The data from Hares (1985) apply to the bright spot only.
Below the line are the same data for a longer pulse micropinch plasma (Faenov, 1985). The Pease-Braginskil current / py is estimated from the optically thin,

low-density plasma emissivity (Jensen, 1977; Post, 1977).

Atom n, Temperature Diameter _ N, 1. 1,
Reference z 10" /cm? (keV) (mm) b4 10" /cm (MA) (MA) I,
Mehiman (1986) 10 500 0.15 09 8.7 1.0 14 0.5 0.06
Gersten (1986)
(No.2) 13 40 0.65/0.3 1.2/3.0 1 0.45/2.4 38 LS 0.07
(nom) 0.43 17 38 40
Gersten (1986)
(No. 4) 13 7 1.5/0.75 1.3733 1t 0.1/0.5 39 1.1 0.08
Hares (1985) 18 3000 beam 0.1 8(7) 1.0 0.25
Faenov (1985) 13 5000 0.3 0.03 11 0.04 0.15 0.16 0.1
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R18 J. Appt. Phys., Vol. 64, No. 3, 1 August 1988 N. R. Pereira and J. Davis R18




Self-similar oscillations are purely one-dimensional
nonequilibrium states representing an axially uniform plas-
ma that contracts and expands in the radial direction only.
However, the equilibrium state which supports the oscilla-
tions is itself unstable to axial perturbations. In the early
days of thermonuclear fusion research with z-pinches these
instabilities destroyed plasma confinement, and much effort
has gone into determining pinch stability ( Bateman, 1978).
For radiative pinches, however, the axial plasma flow due to
the m = 0 sausage mode seems related to the bright spots,
and the sausage model’s growth rate becomes interesting:
nevertheless, most resuits in this area are for idealized
pinches, certainly without radiation effects.

For an idealized pinch with infinite conductivity the
current density cannot penetrate the plasma, and remains in
an infinitely thin sheath on the outside. For this case the
well-known growth rate is y=C,/r,I', where
C,. = (B*/ugp)'?is the Alfven speed, r, is the pinch radius,
and the normalized growth rate T’ = I' (k) ~O(1) is a func-
tion of the perturbation wave number k = 7oA. In a resistive
pinch, however, the current diffuses into the plasma and
forms a current sheath with finite thickness (Hussey, 1981).
Differences between planar and cylindrical geometry are mi-
nor when the current sheath thickness is small compared to
the pinch radius (Roderick, 1986). Hwang (1987) treats
instabilities in the sheath including the effects of accelera-
tion.

With increasing thickness of the current density sheath
the normalized growth rate for the sausage mode decreases
(Pereira, 1984), and when the current density is constant
throughout the pinch the sausage model is neutrally stable.
The kink (m = 1) perturbation remains unstable. This in-
stability is of minor interest for radiating pinches, largely
because it does not change the mass per unit length in the
pinch.

In nonideal MHD the growth rate may be modified by
other effects, such as resistive diffusion of the current sheath
while the instability is growing, a finite Larmor radius of the
ions (Coppins, 1984a, 1984b), and by radiation losses. No
definite conclusion is known, although it seems reasonable
that radiation losses would increase the sausage growth rate
by counteracting an increase in the plasma temperature.

C. Radiation

The theoretical considerations above are valuable for
their qualitative insight and guidance into the relevant areas
of z-pinch physics. Quantitative prediction of z-pinch behav-
ior, however, is much more demanding, and still in progress.
One-dimensional pinch models including hydrodynamics
and radiation are in reasonably good shape but of limited
use. Remember that the most interesting radiation comes
from the bright spot, which is at least two-dimensional.
Worse, if electron beams are present the bright spot plasma
violates the thermodynamic equilibrium assumptions inher-
ent in the hydrodynamic approximation.

Comprehensive modeling of z-pinch hydrodynamics in-
volves a heavy dose of atomic physics and radiation trans-
port, including related effects such as determination of line
profiles. Good introductions are Mihalas (1978) or Cannon

R19 J. Appl. Phys_, Vol. 64, No. 3, 1 August 1988

(1985). Sobelman (1981) is a relevant research monograph
on collisions in plasmas. Recent reviews by DeMichelis
(1981, 1984) emphasize radiation from tokamak plasmas
but include many references to review articles on specific
topics of interest.

The z-pinch plasmas are sufficiently similar to some la-
ser-produced plasmas and x-ray laser media so that many
physics issues are the same for both. Much recent literature
on the modeling of laser-produced plasma radiation (e.g.,
Duston, 1980; Apruseze, 1981; Duston, 1983a/b; Duston,
1985b) or x-ray lasers (e.g., Hagelstein, 1983; Apruzese,
1985a; Cochran, 1986; Davis, 1987, 1988) is highly relevant
to z-pinches.

1. Fundamentals

In the corona model, describing a low density, optically
thin plasma, the ionization fractions f, are functions of tem-
perature only. This is because each f, = n,/n, (n, is the
density of ions in a specific ionization state g, n, is the origi-
nal ion density) is given by a balance between collisional
excitation (including ionization) and radiative decay (in-
cluding radiative recombination), whose rates depend only
on temperature. Consequently, the power lost by the plasma
in radiation is simply P = X(T)n, n, times the plasma vol-
ume, where the power coefficient X(T) depends only on
temperature. This is no longer true with increasing density,
when the decay rate of the excited states must include colli-
sional processes such as collisional recombination. Ulti-
mately, a reasonably complete model for the radiation
should be coupled to the implosion hydrodynamics and the
instability development in a self-consistent manner. This
section discusses the radiation aspects of z-pinches in some
detail. Radiative processes are particularly relevant to radi-
ating z- ‘nches. Typically, the plasma density in a z-pinch
(see Table IV) is high enough to modify the ionization frac-
tions from their low density limit. Moreover, the plasma
thickness is sufficiently large to make opacity important for
the K-shell resonance lines, and certainly for many L-shell
lines.

As an example, Fig. 18 shows the power coefficient X,
for line emission from a homogeneous aluminum plasma
(Duston, 1981). At n, €10'*/cm® the power coefficient
peaks around 80 eV (for L-shell radiation); K-shell radi-
ation is maximum around the'1/10 lower second peak
around 900 ¢V. For a typical z-pinch density, #; = 10'%/cm’,
the L-shell peak is comparable to the K-shell peak, which at
this density barely changes. At higher densities >10*'/cm®
relevant to laser-produced plasmas the power coefficient de-
creases even more, eventually approaching local thermody-
namic equilibrium (LTE). Below ~0.8 keV the power coef-
ficient X, varies approximately as ~ T, reminiscent of a
blackbody. However, for a typical z-pinch plasma at
n; ~10"/cm® the power coefficient X, estimated in the LTE
approximation is unreliable, 30X too large at 0.2 keV and
10X too low at 1.0 keV. Argon shows a similar decrease in
power coeflicient with increasing density ( Duston, 1982).

For a homogeneous plasma cylinder of 0.05-mm radius
and 10" ions/cm?, see Fig. 19, the added inclusion of opa-
city gives a threefold reduction in power density PZ(T.)n?
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TADLEIV. Plasmap

I pinch, and estimates for the microscopic length and time scales in this plasma. Parameters for other z-pinches

may differ an order of magnitude from the values given, and the ordering of length and time scales may reverse.

Symbol Equation (MKS) Typical value
Mass/length I 30 ug/cm
Radius r i mm
Current 1 1 MA
Pulse length T, 20ns
lons/length® N, #X2N, 10"*/cm
lonic charge z 10
Charge/length eN, =2 N, 1.6C/cm
Electron temperature T, 300 eV
lon temperature T, 300 eV(Y)
Electron density a, 3 10%cm’
Ton density n, 3X10"/cm’
Magnetic field (edge) B pol /251 200T
Plasma frequency Wy (n,/egm)'? 10'"/s
Gyrofrequency @y eB/m 3Ix10%/s
e-¢ collision time Tee 0.5ps
«-i collision time To 1./Z 0.05ps
«-i energy exchange T, (M/m)r, 2ns
Collisionality o7, 300
Collisionality (edge) 1} o, T, 20
Thermal velocity Uy, (T,/m)'"? 7x10" cmv/s
Drrift velocity Vg I/eN, 10* em/s

* Avogadro’s aumber N, = 6 10* electrons/g.

10-2

10~26

10-2

POWER COEFFICIENT (W - cmY)

10-28

10-2

10

at 0.1 keV, but little effect at 1 keV (in contrast to the pre-
vious figure this figure includes, besides the lines, the contri-
bution from the continuum). Increasing the cylinder radius
to 0.5 mm does not further reduce the power density (the
power per unit length would increase 100X ). The K-line
emission power, at ~1 keV, is unaffected by opacity, al-
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FI1G.19. Radiative power density for a plasma cylinder with 10'® aluminum

FIG. 18. Line emission power coefficient for aluminum (in the optically
thin limit), showing the effect of electron density. Collisional deexcitation
reduces the power coefficient around the L-shell peak by an order of magni-
tude {from Duston, 1981).
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ions/cm’ in the optically thin limit, and with inclusion of opacity for 50 um
and 0.5 mm radius. Opacity gives a factor J reduction in emission at ~ 200
eV. Blackbody emission would be much stronger, according to the straight
lines at left (from Dustin, 1981).
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though the linewidth increcases. The power emitted by this
partially trarsparent plasma is alw::vs much less than the
equivalent power density for a blackbody, i.c., the power
from the blackbody’s cylindrical suiface divided by the vol-
ume 204, T4/r (0gp = 10> W/cm? eV* is the Stefan—Boltz-
mann constant). Below the L-shell ;eak a blackbody radi-
ates only one or two orders of magnitude more strongly: at
higher temperature the discrepancy is even larger. Opacity
effects are invoked to explain the azimuthal dependence of
the radiation from a bright spot: the radiation fluence per-
pendicular to the pinch is perhaps four times larger than the
radiation along the pinch, because in the perpendicular di-
rection the photons encounter less plasma (Stormberg,
1987). .

Other quantities of interest show corresponding
changes from their tenuous and optically thin values, nota-
bly the line ratios used as diagnostics of the plasma param-
eters. Any temperature diagnostic that depends on ionic
fractions, such as the Hea to Lya line ratio, tends to be
affected by density effects. For z-pinch parameters a good
temperature diagnostic is provided by the dielectronic satel-
lites on the low-energy side of the strong K lines (as in Fig.
3). How this ratio varies for the most prominent satellite line
of Lya for an aluminum plasma is shown in Fig. 20 (Apru-
zese, 1986); the density has little influence over this line ratio
at typical z-pinch densities. How the plasma opacity affects
this diagnostic remains to be studied.

Insight into opacity effects can be used to advantage, as
demonstrated by Fig. 21, the X-shell power/cm emitted by a
uniform plasma cylinder of varying composition but pre-
scribed temperature, radius, and density (Apruzese, 1986).
The plasma constituents, neon and sodium, vary such that
the total ion density is constant. The neon and sodium K-line
photons differ in energy (except for a near-coincidence of
the He-line Ne 1-2 with He-like Na 1-4 photons essential toa
photopumped x-ray laser). Therefore, the neon K-line opa-
city decreases as the sodium fraction increases, and cach
neon photon escapes more easily. Although the number of
photons decreases with the number of neon atoms, the de-
crease is less than proportional due to the opacity effect. On

0.3 - 2.0 mm, 400 oV, W0 3

K-SHELL POWER (Twicm)

00 025 050 o 10
FRACTION OF SODIUM IONS

FIG. 21. K-shell radiation power from a sodium-ncon plasma vs fractional
abundance of sodium for 250- and 400-cV temperature, and for two radii,
1.4 and 2.8 mm. Reduction of opacity increases the radistive power (from
Apruseze, 1985b).

balance, the power/cm is maximum for an intermediate
plasma composition of around 60% sodium. This result sug-
gests that the radiation output of a z-pinch could be in-
creased by using a mixture of similar elements in order to
counter the photon trapping effects from opacity. This as-
sumes that the plasma mixture in an actual pinch reaches the
same conditions irrespective of composition.

As an example, a calculation (Duston, 1985a) on mix-
tures such as He/Kr, with disparate atomic numbers, shows
that the high-Z component dominates the radiation yield
already when only 109 of the mass is in krypton. The theo-
retical suggestions are only partly corroborated in experi-
ment (Bailey, 1983/6); a He/Kr pinch with 25% mass in
krypton emits less but harder radiation than a pure krypton
pinch. Moreover, in the implosion the helium outruns the
krypton and stagnates earlier, as explained by Barak (1982).

Fairly rough radiation models can give reasonable re-
sults for gross quantities like yields, but the more accurate
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models are indispensable when comparing the details of
computed spectra with those in experiments. Sometimes the
theoretical model must be extended to include radial gradi-
ents. A temperature measurement using two line ratios and
the continuum temperature produced three somewhat dif-
ferent values when assuming the plasma is a homogeneous
cylinder; satisfactory matching of the experimental with a
computed spectrum is obtained when the plasma consists of
a central hot core surrounded by a colder tenuous corona
(Gersten, 1986).

2. One-dimensional radiation hydrodynamics

Many of the important effects mentioned above have
been combined into models for the dynamic behavior of z-
pinches (Maxon, 1984; Spiclman, 1984; Clark, 1986). All
are based on the stendard hydrodynamic equations; major
differences between the models exist in the radiation physics,
which is continuously being refined by the various groups.

The one-dimensional computations give satisfactory re-
sults when the z-pinch implodes uniformly along the axis.
This happens when stagnation is late in the current pulse,
and current-driven instabilities have no time to grow into
bright spots. An example is a recent computation by Clark
(1986). In this work the initial state is a 1-cm-long neon gas
shell with uniform density 5 X 10~ g/cm?> between an inner
radius of 0.55 cm and an outer radius of 1.95 cm. Instead of
imploding the shell with magnetic pressure the gas has an
initial velocity around 3 X 10’ cm/s. This average velocity
might be reached late in the current pulse, although in reality
the density will be highly nonuniform.

Figure 22 shows the time history of the plasma kinetic
energy and the radiative energy for a neon pinch. Plasma
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FIG. 22. Temporal development of the kinetic and radiative energy fora 1-
cm-long neon shell stagnating on axis according to two different radiation
models. The solid lines are from Clark (1986) using a simple model with 27
neon lines, the dashed lines are for a model with over 100 lines (from Clark.
1988). At 70 ns, stagnation, the pinch energy is completely transformed
into 1onization and thermal encrgy. or has been radiated. Less than 173 of
the initial energy is left in pinch disassembly.

R22 J. Appl. Phys_, Vol. 64, No. 3, 1 August 1988

ionization and radiation starts already at around 20 ns, when
the plasma heats up to ~0.3 keV as the inner edges come
together on axis. As the piasma continues to arrive on axis
the pinch radiaties at an increasing rate, until at about 60 ns
into the pulse the kinetic energy has almost completely dis-
appeared into radiation and ionization energy, with the re-
mainder in plasma thermal energy. After stagnation the
plasma expands and cools. Slightly more than half the initial
energy is radiated away; 30% is left for the kinetic energy of
the plasma expansion, and about 10% for thermal and ioni-
zation energy.

The radiation spectrum during stagnation in Fig. 23 is
dominated by the neon K-shell lines. The radiation yield in
these lines is about 800 J, against ~400 J from the L shell
and the continuum each, for a total of 1600 J. It is satisfying
that the relative radiation yields in this computation are sim-
ilar to those obtained in experiments with neon puffs, even
though the parameters differ (e.g., Fig. 3; Mehlman, 1986;
Stephanakis, 1986).

Quantitative agreement between experiments and com-
putation is claimed by Spiclman (1984) between their rare
gas implosions and various computational models available
to their group. Instead of mocking up the early stage of the
implosion by an inwardly coasting plasma, as in Fig. 22, they
follow the implosion in time using the experimental current.
Possible difficulties with radiative collapse are avoided when
including time dependence in the ionization dynamics
(Kononov, 1977). Another computation (Maxon, 1984)
employed a general-purpose radiation-hydromagnetics code
with atomic models that proved insufficiently specific for
direct comparison with experiment.

3. Two-dimensional implosion hydromagnetics

Hydrodynamic instabilities during the run-in can des-
troy the quality of thin foil implosions, but do not affect the
implosion of the thicker gas shells. These instabilities and
other features of thin foils have been studied mainly in con-
nection with the relevant experiments that are reviewed else-
where (e.g., Roderick, 1983). A unique feature of these
studies is their two-dimensional hydromagnetic computa-
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F1G. 23. Neon emission spectrum at 40 ns just before stagnation. Qualita-
tively the spectrum changes little in time during the implosion, although the
power increases with the stagnating volume (from Clark, 1986).
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tion of the Raleigh-Taylor instability, its nonlinear satura-
tion, and related problems such as the wall instability (e.g.,
Hussey, 1980, 1981; Kloc, 1982; Kohn, 1983; Roderick,
1984, 1986b). However, this work omits or underspecifies
the radiation physics which is emphasized in this review.
Two-dimensional radiation-hydromagnetics models includ-
ing a satisfactory radiation package are currently being de-
veloped, and we look forward to the results.

D. Outlook

This review emphasizes the interplay between the hy-
drodynamics coupled to the generation and transport of ra-
diation. Certain aspects of radiative z-pinches are well un-
derstood in principle, notably various aspects of the
radiation modeling of moderately dense and optically thick
homogeneous plasmas in collisional-radiative equilibrium;
even the time-dependent problem of approach to equilibri-
um should pose no unsurmountable problem. The hydro-
dynamics of imploding plasmas can then be considered, in-
cluding the important effect of energy loss and redistribution
due to the radiation. It is no surprise that reasonably com-
plete computations are difficult because of the vast amount
of detail that is required.

Basic to these computations are the ionization dynamics
and their atomic rates. These depend heavily on the deter-
mination of ionic levels and cross sections in a plasma envi-
ronment, an active area of research in atomic physics: we
mention the effect of plasma density on the ionic energy lev-
els, and the computation of the dielectronic recombination
cross section.

Next in importance to the cross sections is the electron
distribution function f{v): generally f{v) is thought to be
Maxwellian, except perhaps along the pinch axis where a
small minority of runaway (or beam) electrons may domi-
nate the production of K-line radiation from the bright spots.

Much is known about plasma hydrodynamics without
radiation, including the growth rates of axial instabilities in a
pinched or imploding plasma, and the self-similar oscilla-
tions around the radial equilibrium. The relevancy of these
results to radiating z-pinches remains to be evaluated by ex-
tending the considerations to include radiation. A similar
comment applies to the hpdromagnetics of radiative z-
pinches: how exactly the current penetrates into the plasma
is not completely understood.

The major challenge to the theory of radiation z-pinches
is to unravel the physics of the bright spot. Apart from any
complications with the distribution function the bright spot
is certainly two dimensional. Anomalous resistivity due to
plasma turbulence (e.g., Papadopoulos, 1977) is often
quoted as important in bright spots, but a satisfactory analy-
sis of anomalous processes in the context of a radiative z-
pinch does not yet exist. In this we are not alone: theories
attempting to model the production of fusion neutrons
struggle with similar problems (Vikhrev, 1985, 1986; Trub-
nikov, 1986).
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Plasma points and radiative collapse in vacuum sparks

K. N. Koshelev

Institute for Spectroscopy. USSR Academy of Sciences, 142092 Troitsk, USSR

N. R. Pereira

Berkeley Research Associates, P. O. Box 852, Springfield, Virginia 22150
(Received 2. April 1990; accepted for publication 5 February 1991)

This review discusses the intense x-ray emitting regions, calied plasma points, that appear in
low-inductance vacuum sparks and other high-current discharges. Accurate x-ray
spectroscopy indicates the existence of two types of plasma points with different plasma
parameters. One type is extremely small ( ~microns), dense ( ~ 10*/cm?), and hot ( 2 1 keV),
while the second type is an order of magnitude less extreme. A dynamic model (Vikhrev
1982a) based on radiation cooling with axial outflow of plasma predicts a radiative collapse
that is consistent with many features of the plasma points.

I. INTRODUCTION

The high voltage vacuum discharge was proposed
more than 70 years ago as a spectroscopic source (Millikan
1918). The original apparatus operated at high voltage
with a relatively modest current, typically 100 kV and less
than 100 kA. In the mid-sixties (Cohen 1968) the power of
the trigger electrode was increased, the inductance was
reduced to less than about 100 nH and the voltage to
~20-50 kV, while the capacitance was increased to
~10-20 uF. The resulting apparatus is the “low-induc-
tance vacuum spark.”

The peak current in the low-inductance vacuum spark
is more than 100 kA, and the trigger injects a significant
amount of material in the interelectrode vacuum. Both the
higher current and the presence of material between the
electrodes are needed to make the low-inductance vacuum
spark into an intense source of x-rays from highly ionized
ions. The low-inductance vacuum spark is now a widely
used research tool and an intensively studied research ob-
ject. The discharge has many interesting features that are
easily observed qualitatively but were unanticipated theo-
retically, e.g., pulsed x rays, multiply ionized atoms, and
electron and ion beams. -

It is relatively easy to produce hot, highly ionized
plasma despite the low-inductance vacuum spark’s modest
energy ( ~3-30 kJ). Already the first experiments (Cohen
1968) measured spectra of He- and H-like ions of titanium
and iron (Ti xx1-xxit; Fe Xxv-Xxvi); somewhat later
(Beier 1978) observed the resonance transition of the He-
like ion Mo XL1 (A = 0.69 A). In pinhole photographs the
K-line radiation appears to come from small, pointlike re-
gions in the plasma that are called plasma points, bright
spots, or hot spots. The relative simplicity and high shot
rate of the low-inductance vacuum spark allow a thorough
study of the formation dynamics of the plasma point and
the properties of its plasma.

This review describes experimental investigations of
the plasma point in low-inductance vacuum sparks. In ad-
dition, the review interprets many aspects of the plasma
points with the radiative collapse model (Vikhrev 1982a;
Koshelev 1985). The literature contains alternate models
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that we mention but do not discuss because, in our opinion,
they are not far enough developed for comparison to ex-
periment. Likewise, we do not discuss in detail the bright
spots that occur in more powerful discharges because their
analysis emphasizes bulk x-ray production by implosion
(Pereira 1988b). However, plasma points and bright spots
appear to be related, and insight in plasma points could
become useful in understanding bright spots.

It should be emphasized that the plasma point is by its
very nature a dynamic phenomenon with constantly
changing parameters. For example, during its development
the temperature of the plasma point changes from tens of
electron volts to several kilovolts. The size and density of
the plasma point also change significantly, e.g., from 1 mm
to less than 10 um and from 10'*/cm® to 10”/cm’. More-
over, the plasma point must have spatial gradients in tem-
perature and density that cannot always be resolved exper-
imentally. Therefore it is necessary to keep in mind that a
particular measurement may apply only to a specific phase
in the development of the plasma point. This realization
may help eliminate disparities between experimental re-
sults, resulting in an improved description of the plasma
point.

A previous review (Korop 1979) summarizes the first
ten years of research on the low-inductance vacuum spark.
The devices used in various laboratories (e.g., Cilliers
1975; Turechek 1975; Golts 1975; Kononov 1977; Vereten-
nikov 1981; Negus 1979; Morita 1983) have capacitances
of 10-30 uF charged to 10-20 kV, with a circuit induc-
tance of 50-100 nH. The discharge current is typically a
damped sinusoid with peak amplitude /7, ~150-200 kA
and pulse length = 1.5-2 us. The discharge is ignited by an
electrical trigger in the cathode or by irradiating the anode
with a powerful laser (Lee 1974; Koloshnikov 1985).

With an electrical trigger the initial stage of the dis-
charge is characterized by an erratic initial current and an
x-ray pulse from the anode, and by the formation of plasma
jets from the electrodes (e.g., Epstein 1970). The trigger
pulse forms the cathode plasma: the anode plasma is pro-
duced by bombardment of the anode surface by a beam of
electrons from the cathode plasma accelerated in the elec-
tric field between the electrodes. The anode and cathode
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plasmas move toward cach other with velocities = 10°
c¢m/s. The initial phase is complete when plasma bridges
the vacuum gap: the voltage across the gap ¥, drops to
V‘ = L, di/dr (L, is the inductance of the current chan-
nel).

In the next phase of the discharge the current increases
as prescribed by the circuit voltage ¥ and inductance L of
the circuit, dI/dt = V/L. On top of the smoothly rising
current there appear short (<100 ns) single or multiple
dips in the current. These current dips are accompanied by
intense bursts of x rays. The dips have a random character,
although many authors have noted that they depend on
discharge initiation, circuit parameters, and the material
and shape of the electrodes (e.g., Cilliers 1975; Negus
1979).

The current dips are correlated with the appearance of
plasma points. The plasma point principally emits x-ray
lines from ions of the anode material; radiation from cath-
ode material is weak. However, the trigger to the cathode
must be sufficiently strong for a plasma point to develop
(Sidel'nikov 1982a).

Triggering the low-inductance vacuum spark by irra-
diating the anode with a laser produces the anode jet di-
rectly. The erratic initial current is now absent, and the
current starts slightly after the laser pulse. After this initial
stage the discharge develops as described above (Kolosh-
nikov 1985).

The x-ray pulses correlated with the dips in the current
and the formation of plasma points contain photons with a
wide range of energies, typically Av~5-150 keV (e.g., Co-
hen 1968; Lee 1974; Cilliers 1975; Veretennikov 1981).
The x-ray spectrum contains information about the plasma
in the plasma point. The name “plasma point” is particu-
larly apt when looking at photons with Av< 10 keV, corre-
sponding to resonance transitions in He- and H-like ion-
ization states of moderately heavy ions (nuclear charge
Z,<30); the points are often less than 10 zm in size.

Higher energy photons may appear to be less localized.
Typically, the x-ray spectrum below v~ 150 keV is emit-
ted from a plasma with electron temperature T,~ 10 keV.
For the relatively few photons with Av> 150 keV the spec-
trum decreases with photon energy according to a power
law (Cilliers 1975; Fukai 1975). Some discharges show
even more energetic quanta with energies Av>500 keV
(Lee 1974).

This review is principally concerned with the two types
of plasma points (Aglitskii 1986; Antsiferov 1989) that
appear in low-inductance vacuum sparks. The first type
consists of a minute region of ions stripped to the K-shell,
with size around ~ 10 pm or less as shown below in Fig. 1.
According to the radiative collapse theory a type-1 plasma

point is a short stage in the radiative collapse of a pinch:’

the collapse process is called micropinching, and a type-1
plasma point is sometimes called a micropinch. A type-2
plasma point is an order of magnitude larger and radiates
few (or no) resonance lines: its radiation is insufficient for
a full collapse, and is sometimes referred to as a hot (or
bright) spot.

Not all localized regions of intense x-ray emission in
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FIG. 1. Plasma point size vs photon energy 1 < Av < 10 keV of the reso-
nance line (the corresponding clement is on top). The bracket is the size
of an iron plasma point measured with softer photons exceeding 1 keV,
the line around 0.1 keV is the size scen with softer photons.

other types of vacuum sparks or other pulse power devices
can be classified in these two categories. For example, some
generators of short electrical pulses used in exploding wire
research have a sizable prepulse. The prepulse could resalt
in a hollow cylinder of plasma surrounding the wire (e.g.,
Aranchuk 1986), and develop into striations that cadiate x
rays. There structures fall outside the present review.

Intense soft x-ray emission from small regions is also
common in radiative z-pinch discharges on relativistic elec-
tron beam generators (Pereira 1988b). These z-pinches dif-
fer from vacuum sparks in their higher currents (~1 MA)
and shorter pulse times (~ 100 ns); moreover, z-pinches
have ample material between the electrodes before the start
of the electrical pulse. In the context of z pinches these
regions are called *“bright spots” {or sometimes hot spots):
their diameter is quoted as 50-100 um (Stallings 1979;
Burkhalter 1979; Riordan 1981). Com to the ex-
tremely high electron densities (n,~102/cm’) in low-in-
ductance vactum sparks, the x-ray spectra in z pinches
indicate much lower electron densities, even in the bright
spots (n,~10*': e.g., Deeney 1989). Perhaps these lower
values reflect the spectral features used in the interpreta-
tion. However, when a single group looks at both vacuum
sparks and z pinches the bright spots in z pinches seem
identical to plasma points (Alikhanov 1984; Gol'ts 1986;
Gol'ts 1987). They document a 1-MA discharge through a
gas puff in Kr (Z, = 36) and Xe (Z, = 54), with plasma
points of S5 um diameter in He-like Kr and Xe. At this
time we believe that bright spots in z pinches are similar to
plasma points in vacuum sparks, at least in part (e.g., Sop-
kin 1990). The same is true for the bright spots seen in the
plasma focus, but this device, used mostly for thermonu-
clear fusion research, falls outside this review.

il. THE PLASMA POINT: EXPERIMENTAL DATA

This section describes the experimental results on the
formation of the plasma points, their size, and the plasma
parameters temperature and density. In the older literature
these parameters have a confusingly large range of values.
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One reason is the existence of two types of plasma points.
Another reason is that plasma points are dynamic entities,
wherein the plasma parameters change rapidly over a large
range of values. Plasma thermometry or densitometry ap-
plies to a limited range of plasma parameters, and therefore
cach measurement method gives a value characteristic of
the method’s range of applicability. Section 111 below de-
scribes the radiative collapse model that gives a coherent
description of plasma points.

A. Plasma point size

Already the first investigators of low-inductance vac-
uum sparks noted that very small regions in the plasma
produce the bulk of the x rays. In pinhole pictures these
regions show up as bright spots or points, whence their
name plasma points. The plasma points are elongated: for
example, in discharges of titanium and iron the size of the
plasma point perpendicular to the discharge axis was esti-
mated as <34 um (Schwob 1972; Klapisch 1977), or
< 10 um (Morita 1983; Veretennikov 1985) to 20-50 um
(Lee 1975). Along the pinch axis the size is 3-10 times
larger. These size measurements are typically carried out
with pinhole cameras with filters that pass the resonance
and characteristic lines of the respective elements (and the
few available higher-energy photons). These measure-
ments will be called “K measurements,” because most pho-
tons originate in the K-shell of the element.

It became clear later that there are two types of K
measurements. The first type of K measurement looks at
the resonance lines, and characterizes the plasma point in
the stage wherein the plasma consists of ions stripped to
the K shell. The second type of K measurements sees char-
acteristic lines of low-multiplicity ions. These lines are
probably excited by suprathermal electrons or electron
beams in a much cooler plasma.

The two types of K measurements define two types of
plasma points: the plasma points of the first type are an
order of magnitude smaller than the plasma points of the
second type. Much confusion in published measurements
was clarified by the recognition of these two types of
plasma points (Aglitskii 1986; Antsiferov 1989; and be-
fow). For a wide range of elements they measure the K size
of the plasma point from its magnified image through a
square pinhole. The blurring of the edge determines the
length and width of the plasma point even when the pin-
hole is relatively large.

A pinhole image gives an overestimate of the plasma
size. When the pinhole is small compared to the x-ray
source the source size is the size of the image divided by
the magnification, but when the pinhole is large compared
to the source the image reflects the size of the pinhole
irrespective of the dimensions of the source: a point source
still produces an extended image. However, a point source
gives an image with sharp edges, while the image is blurred
with an extended source. The width of the blurring is the
magnification times the source size if the effects from dif-
fraction and film grain size are suppressed.

Fresnel diffraction smears out the image over a dis-
tance §, ~ VAR, where 4 is the x-ray wavelength and R
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is the distance betwecn plasma point and the pinhole. For
iron with A~0.2 nm and a typical distance R=2 cm the
Fresnel diffraction gives a contribution of =2 um. The
contribution from film grain size can be suppressed by us-
ing sufficient magnification: the grains are ~ 10 gm, and
their influence is reduced to below 2 um when the magni-
fication exceeds ~ 5. The total effect from Fresnel diffrac-
tion and grain size is therefore less than ~2 pm. In addi-
tion, any motion of the source smears out the image and
adds to the blurring of the edge, but this does not seem to
be a problem (see below).

The plasma point size was measured carefully (Antsif-
erov 1989) in the resonance lines of He- and H-like iron,
with 5 magnification. Fresnel diffraction is eliminated by
putting the pinhole close to the source, 1<R<S. Parallel
and perpendicular sizes are measured simultancously by
orienting the square pinhole along the axis of the dis-
charge. The plasma point blurred the edge of the image less
than 15-20 um perpendicular to the axis and 25-50 um
along the axis. Thus, the perpendicular size d of the plasma
point for this iron plasma is d<2 um, and the aspect ratio
a~3-5. Analogous measurements carried out for plasmas
of aluminum (Z, = 13) give d ~20-30 um, for a plasma of
sulfur (Z, = 16) and calcium (Z,=20) d~10-15 um,
and d<2 pm for all heavier elements (Fe, Z, =26; Cy,
Z,=129; Zn, Z, = 30). The four right-most points in Fig.
1 give these K measurements for the size of the plasma
point with the different elements as indicated.

The filter in front of the pinhole can be chosen to
transmit the x rays from the L shell of moderately heavy
elements, i.e.,-photons with Av~1 keV. The plasma point
seen in this light is larger than indicated by the K mea-
surements. For example, the perpendicular size of the
plasma point in the L shell light for an iron pinch
(Veretennikov 1985) is ~30 um, and the aspect ratio is
~3-5. Figure 1 gives this point by the rectangle around
hv~1 keV.

Churilov et al. (1990) measured the plasma points size
for iron in a broad range of the VUV spectrum, from 5 nm
(0.25 keV) to 20 nm (0.08 keV), using a spatially resolved
VUV spectrum from a grazing incidence spectrograph.
Spatial resolution in the direction perpendicular to the dis-
charge axis is possible with an additional slit. The blur in
the edge of the spectrum allows the determination of the
effective size of the source of emission for each of the wave-
lengths separately, similar to the size measurement with a
square pinhole. The left-top line in Fig. 1 gives the results.
The size of the iron plasma point decreases with wave-
length, from 420450 um for A = 20 nm to about 300 um
for A=S5 nm.

The existence of certain x-ray lines gives a rough indi-
cation of the plasma temperature. Therefore it is possible
to correlate plasma point size with plasma temperature.
How to determine the plasma point temperature is dis-
cussed in the next subsection.

B. Plasma point temperature

A stationary blob of plasma with uniform temperature,
density, and size emits a complicated spectrum that is fully
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characterized by these three parameters. In principle, only
three spectral features suffice to determine the three pa-
rameters. The remainder of the spectrum can serve as a
consistency check. However, determining the parameters
for a real plasma point from a measured spectrum gives
different values depending on which part of the spectrum is
used.

Obvious reasons for this discrepancy are spatial gradi-
ents and time dependence. Spatial gradients are unavoid-
able when hot plasma is sitting in colder surroundings.
Unfolding gradients from spectra measured along a line of
sight is difficult, and therefore rarely done (Gersten 1986)
despite the importance of gradients in virtually all plasma
points.

In a plasma point the temperature changes over one or
two orders of magnitude in such a short time (~30 ps)
that only time-integrated spectra have been taken up to
now. The time-integrated spectrum contains the signature
of the various stages in the plasma point evolution. Each
stage contributes principally to a specific spectral region,
but with substantial overlap between the regions. Measure-
ments of the plasma parameters could differ substantiaily,
depending on the spectral region used for the measure-
ment.

Additional problems arise if the plasma is not in ion-
ization equilibrium as it heats up or cools down. Ionization
equilibrium can only be obtained if the plasma goes
through each ionization stage slowly, staying longer than a
time 7 that depends on the electron density, the element,
and its ionization state (Kononov 1977, and below). For
example, for a Ne-like iron plasma to reach the He-like
ionization state n,r must exceed 10! cm®/s. Sometimes a
beam of electrons creates additional radiation. Given these
complexities extreme caution is needed in unfolding exper-
imentally measured spectra from plasma points (or any
plasma). Much confusion in the published values of
plasma parameters is due to insufficient appreciation of the
complicated nature of piasma point spectra.

Consider the plasma point temperature. In the first
experiments an electron temperature 7,5 1-2 keV was in-
ferred from the K-line spectra of iron and titanium. On the
other hand, measurement of the spectral distribution of
more energetic photons in the continuous spectrum by dif-
ferential filters (Lee 1974) (for photon energies Av<150
keV) indicated electron temperatures T, 10 keV in the
same plasma. That the inferred temperature increases with
hardness of radiation is to be expected, but these measure-
ments do not lead to a reasonable temperature for the
plasma point. Spectral methods should be sufficient to dis-
tinguish plasmas with thermal, Maxwzllian electron distri-
butions from those with nonthermal but isotropic distribu-
tions (Pereira 1988a), or from thermal plasmas with an
admixture of directional electron beams.

1. Temperature diagnostics with satellites of
resonance lines

The plasma temperature can be found from the x-ray
spectrum in various ways. Some methods use the continu-
ous part of the spectrum, others employ line intensities of
R24 J. Appl. Phys., Val. 69, No. 10, 15 May 1991
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highly stripped ions. For a transient plasma, such as the
plasma point, on should select a method that is unaffected
by time variation in plasma properties. The relative inten-
sities of resonance lines and their dielectronic satellites
{Gabriel 1972a) depend on temperature but not on ioniza-
tion equilibrium in the plasma. Thermometry with this
method, often used for the H- and He-like lines, is there-
fore ideal for transient plasmas, provided that the electron
distribution is still Maxwellian.

For a “‘coronal” plasma the radiative decay of the res-
onant levels dominates over all types of collisional deexi-
tation. The intensity of the resonant line /, in a coronal
plasma is then proportional to the collisional excitation
rate of the process 152 + e— 1s2p + ¢'. Often the principal
channel for excitation of the satellite is dielectronic capture
of a free electron by a He-like ion in the ground state,
1% 4 e~ 152e2¢’. Then both the resonant line and the sat-
ellites are excited from the same ground state, 15, and the
relative intensity I,,./1, of the satellite line does not depend
on the ionization state of the plasma. In addition, this ratio
does not depend on the electron density (in the coronal
case), and is most suitable to determine the electron tem-
perature of the plasma.

Another excitation mechanism for doubly excited He-
like ions is collisional excitation of the inner-shell of a
Li-like ground state, 1521+ e—1s2R2F 4+ ¢. When this
mechanism dominates the intensity ratio of satellites to the
resonance line gives information on the ionization state of
the plasma, more specifically about the relative population
of Li- and He-like ions. The temperature of the plasma
obtained in this case is called the “ionization temperature”
T, (Gabriel 1972b). In stationary equilibrium T, = T',. For
most real sources the values T, and T, differ, which sug-
gests that plasmas are typically not in equilibrium. The
inequality T, > T, indicates that the plasma is ionizing,
while T, < T, indicates a recombining plasma (Bhalla
1975).

In general the satellites are excited through both exci-
tation channels, and it requires special effort 0 separate the
contribution of each channel to the line intensity. When
the lines strongly overlap, as usual for spectra from plasma
points, it is still more difficult to determine the weight of
each channel. Figure 2 contains two samples of realistic
spectra to be analyzed later.

An eclaborate fitting procedure (Kononov 1983;
Kononov 1985) is necessary to obtain diagnostic informa-
tion from strongly broadened and superposed spectra of a
group of satellite transitions. This procedure constructs the
spectrum from theoretical data for each of the excitation
channels, taking into account the superpositions of the
lines. The relative contributions needed to match the ex-
perimental spectrum then determines T, and T,. In high-
density plasmas the collisional transfer between autoion-
ized states 152/2F causes further distortions of the spectral
profile (see below). In turn these distortions can be used to
determine the electron density.

The spectra from plasma points in sulphur, in Fig.
2(a), and from nickel in Fig. 2(b), are used as examples of
this procedure in the next section.
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FIG. 2. Spectrum around the resonance line of (a) sulphur; and (b)
nickel.

2. Measurements of T, and T, for elements from Mg
to Cu

Kononov et al. (1985) used a fitting procedure to find
the electron temperature for different compositions of the
plasma points in a low-inductance vacuum spark with peak
current ~200 kA. Spectra of the He- and H-like ions of
Mg (Z,=12), Al (Z,=13), and § (Z, = 16) were ob-
tained using the 001 plane of a mica crystal (2d = 19.9 A);
for elements from Ca (Z, = 20) to Cu (Z, = 29) the crys-
tal was the quartz 1011 plane, with 2d = 6.68 A. The in-
strumental line width was 3310~* A around 5-9 A (for
Al, Mg, and S), and 8% 10~* A in the region 1-3 A (for
Ca to Cu). These spectra are from up to 100 shots using a
focusing crystal spectrograph in Johann geometry.

Figure 2(a) shows the spectrum (solid line) close to
the resonance line of He-like S, and Fig. 2(b) gives the
spectrum around the He-like resonance line of Ni. The
unmarked dashed line gives the best fit; also shown are the
contributions of some of the individual transitions in the
marked dashed lines: “1” indicates the resonance line
12('Sp) — 1s2p('P,), and “2” the intercombination line
12('So) — 1s2p(*P;). The broad structure “3” is the su-
perposition of different satellite lines excited by diclec-
tronic recombination, of which the */ satellite is the
strongest. The dashed line “4” is the intensity of the satel-
lites due to collisional excitation of the K shell of the Li-
like ground state, while “5” is the diclectronic satellite with
principal quantum number 2 of the spectator electron n>3,
(19l — 1s2pnl). Their intensitics are needed because
these transitions form a strong long-wavelength wing to
the resonance line, and may contribute significantly to its
intensity. The calculated position (Vainshtein 1978) of the
most intense satellites on the long-wavelength side of the
resonance line (at 5.037 A) for S, and 1.587 A for Ni are
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FIG. 3. Plasma point temperatures vs atomic number (or element). The
ratio, and the dashed lines from the continuum (see text).

shown above the figure in the designation of Gabriel
(1972b).

The spectra of Fig. 2 illustrate the complexity that can
be treated. For other atoms, such as magnesium and alu-
minum, the satellite and resonance lines overlap little, and
the electron temperature T, can be obtained immediately
from the relative intensity of the *j satellite.

The bars in Fig. 3 give the electron temperature T, as
measured for many different elements (Kononov 1985).
Within experimental error (about 109% due to densitome-
try and 20% from uncertainties in atomic modeling), the
dependence of T, on the nuclear charge Z, is well de-
scribed by

Z, =4.5%X Z(eV). (IL1)

The circles in Fig. 3 give the ionization temperature T,
determined by the relative abundance of Li- and He-like
ions, T,(Li/He). For all elements T, turns out to be con-
siderably smaller than the electron temperature inferred
from the satellites to the resonance line of the He-like ion
T.(He). As already noted, T,> T, suggests that the
plasma point is being heated and ionized.

The electron temperature can also be determined from
the relative intensity of satellites to the resonance line of
the H-like ion. The electron temperature 7,(H) for iron
turns out to be 7,(H)~=4.5 keV (Kononov 1977), much
larger than the value T,(H) = 1.7 keV measured with sat-
ellites to the helium-like resonance line. The relative inten-
sities of the resonance transitions for H- and He-like ions,
Iy/Iy,, also gives an ionization temperature for the ioniza-
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tion equilibrium betwcen these two ionization states,
T.(He/H). However, in these experiments the electron
temperature T,(H)=4.5 keV agrecs with the ionization
temperature T,(He/H)=4 keV (Kononov 1977), and
with values from other investigators, T,(He/H) =4.3 keV
(Negus 1979), and T,(He/H) =4 keV (Schwob 1972).
The older results are generally obtained using multiple
overlapping spectra from many (typically 100) different
shots. However, when comparing different single shots it
turns out that /y/Iy. varies much more from discharge to
discharge than other intensity ratios used for diagnostics
(Schultz 1989). The disparity between the results obtained
by use of various methods will be considered below in
discussing theoretical ideas on the nature of plasma points.

3. Measurement of the electron temperature with
differential filters

We already noted that an iron plasma point gives a
continuous spectrum up to photon energy Av=150 keV.
The continuous spectrum, often measured through differ-
ential filters, can also be used to define an electron temper-
ature T,(/). For the iron pinch mentioned the continuous
spectrum corresponds to an electron temperature
T(f)=10 keV (Lee 1974; Lee 1975). More recently,
Burhenn (1984) measured the electron temperature in the
plasma point as function of plasma composition. For iron
the measurements give two different temperatures
T.(f) =27 keV and T,(f)==8.5 keV, depending on the
type of discharge. The dashed line in Fig. 3 displays the
cooler temperature as function of the element in the
plasma: it is given quite well by T,(f)=42Z% (eV). The
hotter temperature, the dot-dashed line in Fig. 3, is approx-
imately given by T,(f) =0.32Z3' (eV).

The separate dependence of the temperature on atomic
number suggests that there exist two types of discharges,
each with its own dependence on atomic number. Other
data (Antsiferov 1989) to be discussed later lead to the
identification of two classes of plasma points, small and
large. It turns out that T, ~ Z2 corresponds to the small
plasma points while the T, ~ Z3! dependence reflects the
radiation generated by an electron beam that occurs in a
large plasma point.

C. The electron dengity of the plasma point

It has proven difficult to determine the electron density
in the plasma point, let alone its spatial and temporal de-
pendence. The first estimates, based on Bennett equilib-
rium for the plasma (Lee 1974), suggested n,~10%'/cm?
for an iron plasma. Comparing the x-ray emission of the
plasma point with theoretical calculations of radiation loss
(Negus 1979) pives somewhat higher values,
n,~3X10#-2x 10%/cm’. Further experimental study led
to a reexamination of these estimates. Lee’s 1974 estimate
was based on a plasma point radius r~ 15 um and a plasma
temperature T,~8 keV, but later it became clear that the
radius of a plasma point in a *“normal” regime of pinching
is less than 2 um for iron, and that the electron tempera-
ture T, is about 2 keV (from dielectronic satellites). Using

A26 J. Appl. Phys., Vol. 69, No. 10, 15 May 1991

these data increases Lee’s esimate for n, by two ordeis of
magnitude, to n,~ 102/cm’. The electron density estimate
by Negus (1979) is also based on too large a value of the
plasma point volume, A¥ =4 X 10~ ' cm?, and on too high
a temperature (T,~4.3-7 keV). The improved values for
the plasma point volume and temperature used with the
original radiated power (Negus 1979) now suggests
n.>10%/cm? for iron, in agreement with the more recent
data discussed in this review.

An interesting observation is a peak in optical radia-
tion at A~760 nm (Cilliers 1975). Interpreting this peak
as collective bremsstrahlung radiation at twice the plasma
frequency suggests an electron density n,=5X 10%/cm’.
However, the optical light need not come from the high-
density stage of the plasma point, but may reflect other
stages of the discharge.

Until recently the only spectroscopic measurements of
the electron density of the plasma point were done by
Datla (1978/9), who used Stark broadening cf the Ryd-
berg lines in H-like and He-like magnesium and aluminum.
Using He-like and H-like ions ensures that the information
comes from the high-temperature stages of the evolution of’
the plasma point, when their emission is maximum. The
result was n,~5-10% 10*'/cm®. However, it was realized
later that a significant part of the line broadening is due to
the radial size of the plasma: the corrected value turns out
to be around n,=~2-3x10*'/cm’.

1. The electron density from coliisional redistribution
of satellite transitions

As already noted, some spectral methods give the tem-
perature of a specific phase in the development of the
plasma point. Likewise, the electron density should be
measured only while the plasma is hot. The satellite spec-
trum changes with electron density by collisional transfer
between the autoionizing states 152/27. This effect in Li-
like calcium and titanium was used to determine the elec-
tron density for a plasma point (Kononov 1980). A den-
sity effect was already observed in the satellite spectra of
H-like Al and Mg in a laser-generated plasma (Bayanov
1976; Vinogradov 1977).

In the limit of small densities the population of the
autoionized levels n,; is determined by

n“=n;xm. (I1.2)
Here n}; is the Saha-Boltzmann equilibrium population of
the autoionizing state with respect to the ground state: for
Li-like ions this is the He-like 1s%. Also I'; is the autoion-
ization rate, and 4; = ZAy is the total radiative decay rate,
the sum of all possible decay rates A;; from level i to level
J. For a metastable level (i = 1) the radiative decay rate is
small, 4,4T",, and the population is close to equilibrium,
ny=nf. At the same time, for a level (i=2) with fast
radiative decay, I'y¢4,, the population can be much less
than the equilibrium, n,~n¥ X (I"y/A4,) <nt.

In a plasma with sufficiently high electron density one
must include the transfer of excitation between levels as a
result of electron-ion collisions. In a two-level approxima-
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FIG. 4. Intensity of various satellites of calcium with respect to the res-
onance line, as function of clectron density.

tion this effect leads to (collisional) transfer of an excited
level from a metastable level (1) to a radiating level (2),
which appears as an increased intensity of the correspond-
ing (2) satellite. Calculations show that the “g” satellite is
particularly sensitive to collisional transfer effects, and thus
to the electron density.

Kononov er al. (1980) determine the effect of electron
density on the relative population of the satellites using all
possible collisional transfers between the levels 1525,
15252p, and 152p of calcium. In stationary state this leads
to a system of linear algebraic equations:

'laix( ? Ay+ T+ nX 2}: Cy) - n.x( ; n,ﬁ,)

=(0,-F,.
(IL3)

Here C;; is the rate of collisional transfer from state i to j,
and o; is the statistical weight of the ith state. The sum-
mations are over the number of levels of the 15272/ con-
figuration.

The results in Fig. 4 come from calculations with 16
levels of calcium, at about 1 keV where He-like calcium is
abundant. The figure shows the intensities of calcium’s sat-
ellite lines [T} a.n “d,” . k.n um'n uq’u ur'n and u’» rehtive to
the intensity of the “/” satellite as function of electron
density. In the region of interest, n,~102-102/cm’, only
the “g” and the “d’ satellite depend strongly on electron
density, with a smaller density effect on the “a” satellite.
The *¢” satellite is most useful as a density diagnostic
because the dependence is relatively strong, changing from
1% to about 100% of the intensity of the */* satellite in the
density region of interest. For higher densities the “a” sat-
ellite may also become useful.

The solid line in Fig. 5 gives an experimental spectrum
in the region of the resonance line Ca X1x. The solid linz at
the top of the figure around 3.199 A (marked ) is the
difference between the experimental spectrum and the
computed spectrum without the density effect. The differ-
ence curve is located at the theoretical wavelength for the
“q” satellite. The shape of the difference is reminiscent of
the computed single line profile, which suggests that the
observed difference can be accounted for by increasing the
intensity of the “¢" satellite by ‘ncreasing the electron den-
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FIG. 5. Caicium spectrum (solid line) around the resonance line (W),
the intercombination line (Y), and the satellite lines, with various fits for
different densities (dashed lines): 1: &, < 10%/cm’; 2: x, = 10%/cm?; 3:
n, = 3 10%/cm’; 4: n, = 10""/cm’; Solid line S (on top) is the differeace
between the measured spectrum and the spectrum computed without the
density effect.

sity. The dashed lines in Fig. 5 are the theoretical spectra
computed for electron densities 10%/cm’ (curve 2),
3% 10%/cm’ (curve 3), and 10*/cm’ (curve 4). The best
fit to the ecxperimental spectrum is obtained for
n,5X10%/cm’. Analogous measurements of electron
density were made for a titanium plasma, with similar re-
sults. The density determination using the “g” satellite
(Kononov 1980) was apparently the first direct evidence
for an extremely high electron density in the plasma point,
on the order of 10%/cm’.

For plasma points with heavier elements such as iron
(Z, = 26), nickel (Z, = 28) or copper (Z, = 29) the den-
sity can, unfortunately, not be found from the “g™ satellite,
because for these elements this line with the in-
tercombination line “y” of the He-like ion, the 1s2('Sy)-
152p(P,) transition.

The procedure has been used with other K lines. For
example, the density dependence of the satellites to the
resonance line of the H-like ion Ti XXII (Seely 1984)
gives n,~1.5X10%/cm’, in good agreement with the
above-described measurements. Other measurements show
that the density increases with nuclear charge, from about
3% 10*'/cm? for Al to 10%/cm’ for Ca and Ti, and > 102/
cm? for Fe.

Like the other parameters of the plasma point the den-
sity changes in time. However, each spectral line occurs
only during a specific state in the evolution of the plasma.
Determining both temperature and density from the same
spectral data preserves the proper relation between T, and
n, during the collapse process.

D. Investigation of pinch dynamics

The first space-time study of the plasma point in the
low-inductance vacuum spark was done with high-speed
photography in visible light (Lee 1971; Lee 1974). These
experiments showed the beginning stage of the pinching of
the discharge channel after filling the inner electrode space
by high-conductivity plasma. It was shown that the pinch-
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FIG. 6. Temporal characteristics of the Jow-inductance vacuum spark
discharge: (a) rr diagram of the pinching of the plasma in the region of
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current; (c)-() x-ray pulses of the low-inductance vacuum spark in
various energy bands. The time ¢ =0 corresponds to the beginning of
emission of the resonance line Fe xxv, i.e., t0 the moment of formation of
the micropinch.

ing was local, producing a constriction. However, the
space-time resolution of this method is insufficient to ob-
serve compression of the plasma to less than 1 mm. Laser
shadowgraphy with five frames, together with time-corre-
lated observation of the current and x-ray pulses in various
photon energy bands (Veretennikov 1981a; 1981b), gives a
quite complete picture of the compression of the plasma
column up to the formation time of the plasma point and
its breakup.

The shadowgrams typically show an m = 0 Raleigh—
Taylor instability. Ir the early stage of the discharge the
radial velocity v, is ap, ~o¥imately v,~10° cm/s, increasing
to =5%10° cm/s close to the time of minimum radius
when the neck is formed.

Figure 6(a) shows a composit: r ¢ diagram, obtained
from many different shadowgrams of 22 iron piach, with
error bars indicating the temporal and spatial resolution of
1.5 ns and 100 um: note that this measurement does not
resolve the minimum size of the pinch in K light (see Fig.
1). Figure 6(b) is a typical trace of the current derivative
dI/d:t. The current reaches its maximum (dI/dt=0)
around the time of the minimum radius, while dI/d! is
minimum about 25 ns thereafter.

Figures 6(c)-6(f) contain the x-ray pulses from this
pinch correlated to within 0.5 ns ¥, - res~lution with the
current trace of Fig. 6(b). The x-ray is resolved in four
rough energy bands, viz., Fig. 6(c) resonance lines of he-
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lium-like Fe xxv and their satellites (1.84-1.87 ;\); Fig.
6(d): hard x rays with photon energies hv = 25-100 keV;
Fig. 6(¢): K, radiation of ions of low ionization multiplic-
ity (1.93-1.96 A); and Fig. 6(f): hard x rays with Av> 100
keV.

The harder x rays appear from 15 t0 25 ns after the
occurrence of the minimum radius as seen in the shadow-
gram, and the current maximum. This timing indicates
that the plasma point forms about 20 ns after maximum
compression. A scparate x-ray pinhole photograph shows
that the plasma point sits in the neck of the pinch.

The beginning of the characternistic K, radiation from
the partly stripped ions Fe 11 to Fe xvi, Fig. 6(e), coin-
cides with the emission of x rays in the hard x-ray band
hv> 100 keV, Fig. 6(f). However, this pulse starts typi-
cally 3 ns before the beginning of the x-ray pulse in He-like
resonance lines ot Fe xxv stripped to the K shell, Fig.
6(c): this last pulse coincides with the x-ray pulse in the
photon energy range 25-100 keV, Fig. 6(d). These data
are similar but more precise than earlier observations on »
copper pinch (Lee 1974).

The electron temperature and density inferred from
the data in Fig. 6 do not match the spectroscopic measure-
ments. The pinch region in the shadowgram is opaque be-
cause the light frequency wy is less than the plasma fre-
quency o, = Vne'/eyn (Veretennikov 1981a,b). This
leads to a lower limit for the electron density on axis,
n,>10%/cm®. Another estimate is obtained from the pinch
size in VUV light as displayed in Fig. 1. A ~100 um
radius corresponds to 0.5-keV photon energy and 0.2-keV
temperature. The Beanett relation (with =200 kA) then
gives n,:ZXlO"/cm A similar upper limit to the den-
sity, 1,&10?'/cm’, has been obtained by conservation of
line density during compression of an initially tenuous
plasma (Negus 1979). In contrast, spectroscopic measure-
ments using the resonance lines of high-Z (Z, 20-30) el-
ements give densities of n,~10"/cm® and temperatures
T,~2 keV (see Fig. 1).

The different data can be reconciled by a model with
two compression stages. The first stage, the relatively slow
hydrodynamic compression seen by the shadowgraphy,
creates a neck of warm plasma and the conditions for a
second compression. This second compression is consistent
with the radiative collapse model of Vikhrev (1982a) as
described in Sec. 111 below. Radiative collapse creates the
plasma point.

In the hydrodynamic compression stage the plasma
heats up to a moderate temperature consistent with the
occurrence of partly stripped ions like Fe 11 to Fe xvi:
K, radiation from these ions and hard x rays with Av > 100
keV indicates that nonthermal processes occur in addition.
Subsequently, the plasma point develops. This second stage
takes place on a fast, nanosecond-like timescale inside the
plasma neck. Its hot, dense plasma is consistent with the
emissiui of resonance lines of He-like Fe xxv, and with x
rays in the 25-100 keV energy range.

The second compression stage leading to the plasme
point is faster (<100 ps) than the response time of the
diagnostics for Fig. 6. A soft x-ray emission time of 60-100
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ps was estimated with a fast x-ray streak camera, indicat-
ing that the hot phase of the plasma point is comparably
short (Peacock 1968). Aglitski er al. (1985) used high-
resolution spectroscopic equipment for a precise measure-
ment of the line shape and position of the resonance line of
He-like iron. The shape of the lines indicates Doppler
broadening from radial expansion (or contraction) with
velocity v,~2-3X 10’ cm/s, while the Doppler shift sug-
gests a velocity for the total plasma point of less than
v~ 10’ cm/s. From the apparent size of the plasma point,
about 7,~2 um, they conclude that the radiation lasts
about r,/vu,~20 ps.

The remainder of this review describes the radiative
collapse of the plasma into a plasma point in more detail,
principally from the theoretical side but with reference to
experimental data where appropriate.

iil. RADIATIVE COMPRESSION MODEL FOR THE
PLASMA POINT

A successful model for the plasma point must explain
its high (~2 keV) temperature, high (~10*/cm®) elec-
tron density, small ( S 10 um) size, and short (~30 ps)
lifetime. Presently the most developed model for the
plasma point is a radiative collapse theory in the form
proposed by Vikhrev ef al. (1982a). In an approximate
way this theory reproduces the scaling of the plasma point
parameters with the atomic number of the pinch material.
In a radiative collapse the plasma point is heated by com-
pression and Joule heating. Beams of high-energy electrons
are considered a minor influence for the energetics, and
they are not part of the model. Below we discuss the radi-
ative compression model in some detail.

Over the years certain aspects of plasma points have
been explained in different ways. An early theory assumed
that the plasma points are electrode dust ejected and
heated by an eclectron beam (Negus 1979). A plasma
point-sized microparticle with a 0.01 mm diameter is easily
heated by a 100 kA beam of 10 keV electrons, or a fluence
of 10'* W/cm?. Getting to keV-like temperatures demands
no more than ~10'* W/cm’, allowing for a deposition
length of 1 mm along the pinch axis in agreement with the
elongated shape of the plasma point.

However, other observations contradict this model.
Beam heating predicts pancake-shaped plasma points, be-
cause 10 keV electrons penetrate only a fraction of a mi-
cron into 2 solid. Also, a plasma point heated by fast elec-
trons would be the source of the hard x rays, while in
experiments the hard x-ray emission comes from between
the plasma point and the anode. And in gas-puff z pinches
electrode-generated microparticles should not appear, but
the gas-puff pinches do show plasma points.

Other explanations of the plasma point emphasize the
radiation produced by electron beams, i.c., plasmas with
non-Maxwellian and anisotropic electron energy distribu-
tions. There is no doubt that electron beams exist in low-
inductance vacuum spark discharges (Welch 1974; Choi
1987). In other discharges electron beams have been mea-
sured directly (Kania 1984) and inferred from spectro-
scopic data (Hammel 1984; Hares 1985). In the theoreti-
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cal approach we favor, the radiative collapse model, the
electron beams do not cause the plasma point, but the
plasma point could create an clectron beam. Electron
beams are mentioned in this review solely for their effect on
the radiation.

In our opinion the radiative collapse model is the only
reasonably complete approach that accounts for the forma-
tion of plasma points. For this reason we spent the bulk of
this review on an account of this model, and a discussion of
the relevant experimental data.

A. Historical development of plasma point theory

Various aspects of plasma point formation with com-
pression and Joule heating were first formulated in connec-
tion with research on nuclear fusion with deuterium
pinches. In these experiments the dense plasma located on
the axis of the discharge produces soft x rays, accompanied
by neutrons and high-energy ion and electron beams (Fil-
lipov 1983; Trubnikov 1976).

A uniform hydrogen pinch in radial force equilibrium
(Bennett 1934) has a critical current determined by power
between Joule heating and optically thin bremsstrahlung
(Pease 1957; Braginskii 1957). The Pease-Braginskil cur-
rent for hydrogen, Ifp=1.6 MA, applies to fusion-like pa-
rameters with a Coulomb logarithm vInA = 10. For other
plasma parameters /§ changes weakly with the Coulomb
logarithm. Apart from the weak dependence on plasma
parameters through the Coulomb logarithm the Pease-Bra-
ginskil current does not depend on the temperature T be-
cause Joule heating and bremsstrahlung both increase with
temperature as T'2, at least when line density, current,
and temperature are connected by the Bennett relation
NT < I». Likewise, with decreasing radius 7 both Joule
heating and optically thin radiation increases as 1/7, and
the pinch radius drops out of the power balance. Joule
heating and optically thin radiation do not determine an
equilibrium radius.

For atoms other than hydrogen I, is a function of the
nuclear charge of the ions Z through a factor 1 + 1/Z. For
ions with Z_»1 the top lines in Fig. 7(a) show Jpg=~0.8
MA, for In A = 10. In what follows the weak dependence
on the Coulomb logarithm is neglected because its influ-
ence is on the same order as the many other approxima-
tions.

For fusion plasmas bremsstrahlung dominates the ra-
diation loss, but this is not the sole radiation process. In
extremely hot and dense plasmas synchrotron radiation
can be balanced against Joule heating (Korop 1979). The
resulting equilibrium, with J~ 100 kA, is unstable. At suf-
ficiently small plasma radius ( ~1 nm) electron degener-
acy effects appear, synchrotron radiation loss begins to ex-
ceed Joule heating power, and the plasma cools. Cooler
plasma implies reduced pressure, and further contraction
of the plasma: the plasma collapses. In this theory, the
average energy of the particles before the collapse is al-
ready several hundreds of keV, at a plasma density of 10°°/
cm’, and synchrotron radiation emitted during the collapse
is in the hard x-ray regime as observed in x-ray bursts from
plasma points. These considerations and related ideas
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FIG. 7. (a) Power cocficient in iron line radiation vs plasma tempera-
ture. The dashed line are computations by Jacobs, the dash-dot line by
Breton. The solid line is the spproximation used later. Bremsstrahiung (at
bottom) can be ignored. (b) the Pease-Braginskil current based on Ja-
cobs’ power coefficient for iron (dashed line), and for the approximate
model (solid). Approximate values for sulphur and molybderm are also
given. The arrows at left give Jpy for hydrogen, and Jpy for Z>1 in the
limit of complete ionization.

(Meierovich 1984; Meierovich 1986) were important in
clarifying the phenomenon of radiative collapse, although
we now know that plasma turbulence and the associated
anomalous heating prevents the supercompressed state to
be reached from normal physical parameters (e.g.,
n,~102/cm®and T- . keV). Radiative collapse in hydro-
gen pinches continues to be investigated including these
additional effects (e.g., Chittenden 1989; Giuliani 1989;
Robson 1989a).

In plasmas with atoms of higher atomic number
Z,% 10 and thermodynamic parameters relevant to vac-
uum sparks the power loss from bound-bound and free-
bound transitions exceeds the bremsstrahlung power by a
large factor, K(T;Z,). As a result the Pease-Braginskii
current Iy is less than Ifp for hydrogen: Ipp(T:Z,)
= Ify/YR. The function K, which depends on detailed
atomic physics considerations, is available in the literature
(e.g., Post 1977): Ipg(T;Z,) has been computed for some
clements with these data (Shearer 1976; Negus 1979;
Vikhrev 1982a). Figure 7(a) shows /pg ( T.Z,) as function
of temperature for sulphur, iron, and molybdenum
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(Z, =16, 26, and 42).

Reabsorption of radiation turns out to be important in
thevnwumspnkplumthephsmauopuaﬂythnckfor
themelevmtpanmetm T,~1-10keV and n,~10*/cm’
or n;~10%/cm’. A cylinder of tenuous plasma emits opti-

'zythmvolumendnuon.whlchvamwnthndmsn
1/77. In the opposite extreme, blackbody radiation, the ra-
diation depends only on the emitting area. Then the radi-
ation per unit length increases linearly with radius, Ppy/
I= Zm,T‘ (the Stefan-Boltzmann constant ogpe10°
W/cm? eV*). In reality, the total energy loss by radiation
for intermediate plasma radii varies smoothly, from 1/
for large r to a linear increase with radius for small .
However, for our relatively small plasmas the surface ra-
diation loss is still one or two orders of magnitude less than
for an ideal blackbody. Figure 8, to be discussed later,
illustrates the energy loss as function of radius for two
temperatures in iron: the blackbody radiation loss is visible
in the upper left comer (for 700 eV). Unlike optically thin
radiation, the equilibrium between optically thick radiation
with Joule heating does give an equilibrium radius for the
pinch, ., in Fig. 8.

These equilibrium estimates assume that the plasma is
radially uniform in current density, particle density, and
temperature. Of course, none of these is necessarily true in
reality, in part because these conditions are inconsistent
with pressure and energy balance. As an example, radial
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structure changes the radiation output, and affects the re-
sistivity (Robson 1989b). Despite these inconsistencies a
uniform plasma is a frequent approximation that should be
reasonable in many cases (except for plasmas with a dense,
cold core and a tenuous, hot periphery when the opposite
approximation would be more reasonable).

A typical pinch is hydromagnetically unstable to axial
perturbations. The sausage mode creates the conditions for
radiative collapse. The basic idea is that the neck of a
hydromagnetic sausage instability forms a plasma column
of smaller size (Book 1976). Collapse can proceed when
the energy loss from radiation in a characteristic instability
time, 7~r/v, (v, is the Alfven speed at the edge of the
pinch), exceeds the heat content of the plasma (Shearer
1976; Winterberg 1978); equivalently, the radiation power
per unit length of the plasma must be larger than the en-
ergy loss due to expulsion of plasma from the pinch
(Vikhrev 1978a; Vikhrev 1978b). It is important to realize
that the plasma increases the value of 2,7 during compres-
sion (Vikhrev 1977; Vikhrev 1978a). This guarantees that
the radiative power continues to exceed the energy lost by
plasma expulsion, and the plasma column can continue its
radiative collapse.

These concepts, atomic radiation with opacity and ax-
ial outflow of plasma, are the core of a simplified, zero-
dimensional model for the plasma point (Vikhrev 1982a),
the radiative collapse model. The simplifications make it
possible to follow the entire process of radiation collapse in
time, in an approximate way. Although more accurate
modeling can be done for 2D hydrodynamics, opacity, and
ion kinetics in isolation, it is barely possible to integrate all
these aspects into one single computation. The most de-
tailed computations to date either have little radiation
(Lindemuth 1990) or contain a conceptually complete ra-
diation package (but without radiation transport) that is
constrained by computation considerations (Cochran
1990). Eventually, as resources increase these and similar
computations will supersede the abridged models discussed
here.

Vikhrev’s model appears to contain the phenomena
that dominate the life of the plasma point: it successfully
predicts plasma temperature, density, and plasma point
lifetime. In addition there are experimental indications that
plasma outflow is related to the plasma point (Hares 1984;
Stewart 1987).

B. Model for radiation compression of a high-Z
plasma

This section introduces the general ideas of the radia-
tive compression model as well as some quantitative results
from a simple analytical model (Koshelev 1985). This an-
alytical approximation seems to provide a good qualitative
(and for many cases quantitative) description of the pro-
cess. The next section presents results for a more complete
model that includes the hydrodynamics of the plasma and
a more exact form for the radiative energy loss.
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1. Critical current

Force balance in the radial direction (Bennett 1934)
gives a simple relation between the line density for elec-
trons, N, = w’n,, the electron temperature T, and the
total current I. The Bennett relation is

2
B (Za+ DNAT. (HLD)
w

The left-hand side is the linear energy density of the mag-
netic field for a total current 7, and the right hand side is
the linear kinetic energy of the plasma, with N; the number
of ions per unit length, and T the plasma temperature
(assumed equal for ions and electrons): the electron line
density N, = Z¢ N;. In numerical form,

(Zg+ DN, T=3.12X10°12,

where T is the plasma temperature (in eV), N, is the num-
ber of ions per unit length (in cm) and I is the pinch
current (in MA). The Bennett relation applies when ki-
netic and magnetic pressure are the only relevant forces,
and when the radial velocity of the plasma column is small
compared to the sound speed.

Bennett equilibrium deals only with the averaged par-
ticle density, temperature, and current density, and says
nothing about the value of the radius where the plasma
edge is located. Once in equilibrium the external forces on
the plasma are balanced, and the plasma edge would re-
main at the same radial position while the radial profiles of
the thermodynamic quantities continue to evolve.

In a hydrogen plasma column in Bennett equilibrium
the energy loss by bremsstrahlung balances Joule heating
with Spitzer conductivity at the Pease-Braginskil current
Ipp (Pease 1957; Braginskil 1957). A current I with con-
stant current density produces in 28 homogeneous plasma of
radius 7 and average charge state Zg a power Q.. per
unit length / of Qyou./! = I*/0A. The conductivity o = g,
TY%/Z41n A is the Spitzer conductivity, In A is the Cou-
lomb logarithm, and the pinch area 4 = #7*. The constant
0=10002"'cm~"'eV~¥2 Then

(111.2)

2
Oroue/1=3.3% 10° Z‘—,—,w—'" A {z

(II1.3)
where Qy..../! is in W/cm, and I in MA.

As the radius decreases and the density goes up to the
assumptions that lead to Spitzer resistivity are no longer
true. With more realistic models /pp may change a factor
~2 (Giuliani 1989; Robson 1989b), on the same order as
possible dependences on the Coulomb logarithm. Anoma-
lous heating related to current-driven instabilities is more
difficult to estimate, and also more important [see below
Eq. (I11.29)). For the moment Eq. (111.3) is sufficient, and
convenient in future use.

The radiative power density in bremsstrahlung (or
free-free radiation) Py=Xjyn,n, where the free-free
power coefficient Xy=14 X 10~ 2 2L Wcem’. In
Bennett equilibrium the bremsstrahlung power loss per
unit length is
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ch r
10
Qy/=43x10%3n 3. (1iL.4)

for Z > (Qgis in W/cm). This leads to the well-known
value for /Z3=0.27 (In A)"? MA, for a fully ionized
high-Z plasma. Ipy can also be expressed as the Alfvén
current /,==17 kA multiplied by a factor that compares
the cross sections for collisional energy transfer («In A)
and bremsstrahlung (Pereira 1990).

In reality the current is never constant. Typically, /(¢)
has a pulse shape determined largely by the pulse power
machinery, with some details refiecting the dynamics of the
pinch. Assume for the moment that the pinch has reached
equilibrium at a certain current. If the current increases
above /pg without a corresponding change in temperature
the magnetic pressure exceeds the thermal pressure: the
plasma contracts. However, Bennett equilibrium can be
reestablished due to compressional heating, i.e., the con-
version of magnetic ficld energy to thermal energy. In fact,
it is possible to heat the pinch while remaining in Pease-
Braginskil equilibrium if the current increases in time as
I« 1" (Haines 1960; Hammel 1976). The hydrogen pinch
in variants of these zero-dimensional approximations was
discussed recently by Chittenden (1989), Giuliani (1989),
and Robson (1989a,b).

In a plasma of heavy ions it is possible to maintain
Bennett equilibrium during contraction of the pinch. As
the plasma contracts the radiative losses decrease due to
opacity and density effects, and the small difference be-
tween the radiative losses and Joule heating is easily com-
pensated by magnetic field work.

Energy balance based on bremsstrahlung radiation is
relevant to hydrogen plasmas, and to fully ionized high-Z
plasmas. However, the majority of ions is fully stripped
only at exceedingly high temperatures T2 3Z%Ry (e.g.,
Huddlestone 1965: Ry = 13.6 eV is the Rydberg constant).
Usually a pinch with high-Z plasma is only partly ionized,
line radiation dominates over bremsstrahlung, and /2 no
longer defines power balance. Instead, power balance oc-
curs at a critical current I, € I'Zy: I, depends on the ther-
modynamic variables of the plasma but not on the plasma
size, because the plasma is still assumed to be optically
thin.

The critical current I, for a plasma of heavy ions is
obtained easily from the total radiation loss of a plasma in
the form P, = Py X K(T,Z,). The factor K(T,Z,) is a
complicated function of temperature T, and of nuclear
charge Z,. Its computation involves detailed atomic phys-
ics considerations that fall outside this review. Here K(T,
Z,) is considered given by the literature (e.g., Post 1977).

In Bennett equilibrium, and assuming uniform current
density over the pinch,

2, P
= ﬂl.S
R~ P, (IIL.3)

which gives the critical current I, = 0.27 (In A/K)2.
Figure 7(b) compares the temperature dependence of

the power coefficient X g for bremsstrahlung (lower solid

line) with the power coefficient for line radiation Kiine
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= Py/nn, for iron (Z, = 26), in three approximations.
The dashed line comes from the computation by Jacobs
(1977), and the dot-dashed line from Breton (1978). The
two computations are similar in the onset of L-shell radi-
ation (around 0.6 keV) and K-shell radiation (around 4
keV), but the power coefficients differ by a factor on the
same order as the already neglected influence from the
Coulomb logarithm (~2). Bremsstrahlung becomes im-
portant beyond about 5 keV. The solid line is an analytical
approximation to X, (Koshelev 1985):

Z,
Xpine =4X |o-”7, (11L.6)

(where X, is in W cm®). This approximation agrees with
the more accurate computations to within their differences
in the relevant temperature regime (0.3-10 keV). The
power loss per unit length in line radiation for a plasma in
Bennett equilibrium then becomes:

zZr
Cline=1.24X 10"-2ng7. (11L.7)

Balancing radiative' power with Joule heating,
Qine + O = Qoue gives the critical current I, The
dashed line in Fig. 7(a) is the critical current for iron (Fe,
Z, = 26): it reflects the variations with temperature seen in
Jacobs’ power coefficient (dashed line in Fig. 7b).

Bremsstrahlung can safely be ignored up to moderately
high temperatures, when Qy,. > Qg This approximation
gives I, for sulphur (S, Z, = 16), iron and molybdenum
(Mo, Z, = 42). Analytically

Ip=5%1073 fin AT i—? (11L.8)

which is for In A~ 10

Z,
1, ~0.016X T’/‘E‘,? (111.9)

"

(where I is in MA). The deviation from the 7°/* line in
Figure 7(a) comes principally from the inclusion of brems-
strahlung at high temperatures, and to a minor degree
from the (weak) temperature dependence of the effective
atomic number Z_. The Pease-Braginskil current esti-
mated analytically differs by about 50% from the more
accurate approximations.

In the following we continue to illustrate the basic
physics behind the different pinch phenomena with simple
analytical approximations rather than with more precise
numerical results. This is partly for clarity, and partly be-
cause the broad atomic and radiation physics background
falls outside this review. The various estimates that follow
are intended to be semiquantitative. Quantitatively correct
results must await computations that include all the com-
plications inherent in radiation transport commutations:
an accurate computation of optically thick radiation. has
only recently been applied to radiation collapse (Apruzese
1889/1990).
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2. Equilibrium radius

In an equilibrium pinch optically thin radiation losses
vary with radius as 1// only in the low density, “coronal,”
type of plasma. In the coronal approximation the ions are
excited exclusively by collisions with electrons, and all ex-
cited ions de-excite only by radiating a photon which
leaves the plasma. In contrast, for higher densities colli-
sional de-excitation can be significant. Then the excitation
energy is given back to the plasma instead of being radiated
out, and the plasma radiates less. Moreover, the radiation
varies with radius in a different way because collisional
de-excitation depends on density, and therefore on radius.

Consider a plasma wherein the ions have only two
energy levels. The spontaneous radiation rate is W, and
the collisional de-excitation rate by collisions with elec-
trons is n. W, The total de-excitation rate is then W,
+ n,W,compared to W, in the coronal plasma. The radi-
ation coefficient decreases by the factor W./(W,
+ n W, to

Xﬁu=xﬁ“xi‘:—m—/—m. (I11.10)

In a low-density plasma, n,W, € W,, the radiation co-
efficient does not change with density. Then the radiated
power Px n; « n?, and the radiated power per unit length
is Q = 7P. For a pinch in Bennett equilibrium, with cur-
rent J and temperature T and a line density N = #”n that
remains constant with radius the radiated power per unit
length is Qo I'/7, inversely proportional to the cross-sec-
tional area . However, in a denser plasma when n W,
> W, the radiation coefficient X’ ~ W/n, X W, /W, is in-
versely proportional to the electron density n,. Then the
radiated power P is no longer P« n%, but one of the density
factors cancels, and P« n. Although the plasma is still
optically thin, i.c., the photons are not reabsorbed by the
plasma, the radiated power is no longer inversely propor-
tional to 1/, Instead, for a denser but still optically thin
plasma the power loss per unit length of a Bennett pinch
with given line density becomes Q« J2, independent of
pinch radius r.

The coefficient for radiative de-excitation W, scales
with excitation energy, or photon energy hv, as W,
« (hv)? (e.g., Vainshtein 1979). The collisional de-excita-
tion rate W, ~ vo, is proportional to some average electron
velocity v and the de-excitation cross section ¢, which
scales inversely with average electron energy T as o,
~ T~ Therefore, W, « T ~37 Often the average energy
of the photons responsible for most of the plasma radiation
is proportional to the temperature, hv~2kT, and W /W,
~ (hv) =% —~ T~772 The numerical factor in front of
these scaling estimates is approximately constant along the
isoelectronic sequence but differs for different types of ions
(K ions, L ions, ...). For analytical modeling below we use
WJ/W, = 10~ /T2 cm® for both L shell and X shell,
with T in eV.

A photon escapes from the plasma (and the plasma
radiates) if its mean free path /, is much larger than the
plasma radius r. Otherwise, when the optical depth /
1> 1, the photon excites a large number M of ions before it
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reaches the plasma edge: M ~r/l,. When the radius r de-
creases the density of ions in the ground state n; increases
(assuming constant line density N = na/?). The mean free
path /, ~ 1/n; decreases as /. Thus the number of photon-
ion collisions M increases as M ~1/r.

Without collisional de-excitation each of these ions re-
emits the photon in an arbitrary direction. The energy of
the re-emitted photon is random with a probability distri-
bution given by the lineshape. All the radiation escapes,
but in a broader linc. Multiple scattering together with
collisional de-excitation deposits the photon energy back
into the plasma, and reduces the radiation loss.

The decrease in the radiation rate due to opacity 1s
estimated as follows. The probability p that a photon is
re-emitted in one absorption-emission cycle is p = 1/(1 +
nWJ/W,). The probability that the photon escapes the
plasma without being redeposited is then 8 = p™, where M
is the average number of scatterings per photon. For the
case of total frequency redistribution inside a Doppler line
contour an acceptable approximation is M = ar/l, where
the parameter a depends on geometry, optical depth (as
Inr/l,) and line profile: typically a~5 (e.g., Holstein
1951).

The mean free path I, = 1/n,0,, where o, is the cross
section for absorption of the line photon. This cross section
depends strongly on the line width and on the photon en-
ergy, and is proportional to the statistical weight w, of the
ground states of the ions that are likely to be present in the
plasma, e.g., w,~10. Again assuming that T=~2kv and
using n, = Zgn; the mean free path becomes

32732
13
l,=3%x10 —Z7

L] [

(11L.11)

with /, in cm. For a plasma in Bennett equilibrium this
becomes

3/25/2

L=3Xx10-3"Z P

Zk (I11.12)

(with current 7 in MA and r in cm).

Figure 8 shows the radiation per unit length for an iron
pinch as function of radius. Figure 8(a) is a warm pinch
with temperature T =700 ¢V and- electron line density
N,=18X10'%/cm corresponding to Bennett equilibrium
for a current I = 0.2 MA. Figure 8(b) is for a hot pinch
with T=1700 ¢V and reduced mass per unit length
N,=1.3%10"/cm, but approximately the same current
(assuming no change in In A with temperature and den-
sity). For the warm pinch the effective atomic number is
Z. =17, and the linear ion density is N, = 10'%/cm; for
the hot pinch Z_o = 25 and the ion density is 3 X smaller,
N;=0.3x10"%/cm. Note that the warm pinch could
evolve into the hot pinch by axial outflow of material, but
not by compression without outflow.

The solid line is the radiation per unit length for coro-
nal and optically thin radiation, decreasing as 1/7 with
increasing radius. The dashed line shows the reduction in
radiation per unit length due to optical thickness, accord-
ing to the formula Q' = Qp' * . The upper number in the
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box at the 10p of the figure is the probability for collisional
de-excitation p = 1/(1 + n W /W,), which decreases with
radius through the density n, « 1/7. The probability p is
close to unity and the coronal approximation is well justi-
fied up to rather small radius of compression.

The lower number in the box is the number of scatter-
ings M. The large number of scatterings M>» 1 combined
with small deviations from the coronal approximation,
p S 1, strongly reduces the radiation per unit length as the
pinch contracts.

The critical radius 7, indicates where the plasma radi-
ation goes over from volume-like to surface-like. This tran-
sition should occur approximately when a sizeable fraction
of the photons is reabsorbed, e.g., when

P M =1/e=037.

Assuming n W /W €l in p=1/(1 +a,W /W,) gives
p'tY ~ Mn W W, (using M> 1), and this gives a critical
radius

l‘/lzl/G
re=1.2X10° E"”F” (HL13)
off

with r, in cm.

The radiative losses are assumed to be surfacelike for
plasma smaller than the critical radius. Then Q,~ Br. The
coeflicient B can be obtained by setting Q, = Br equai to
the estimate Q' = Qp' * ¥ at the critical radius:

0,=0.02Txrx Z?Z\31*, (I1L.14)

with @, in W/cm. This procedure gives the dash-dot line in
Fig. 8.

Surfacelike radiation from this plasma is much weaker
than blackbody emission. A blackbody cylinder of radius »
radiates Qpp = 277ospT* per unit length, where the Stefan-
Boltzmann constant ogg = 10° W/cm? eV*. This is the
solid line in the left-top corner of Fig. 8(a), but off-scale in
Fig. 8(b). The emissivity Q,/Qgp=4X10~7Z" is about
1/30 for iron.

Estimating the opacity effects with a simple two-level
model is highly approximate but still semiquantitatively
correct. For example, a detailed radiation transport model
with 162 levels and 511 radiation lines (Apruzese 1989/
90) finds an emissivity below ~0.1 for a krypton
(Z,=36) cylinder (with relevant plasma paramecters
n;~5%102/cm® and T =1 keV). Figure 9 shows the
x-ray spectrum for this computation. Many individual lines
have merged together in two broad bands that approach
the blackbody spectrum and account for most of the radi-
ated energy. In this regime, around the transition from
volume to surface radiation, the spectrum exceeds the
blackbody limit for certain photon energies, reficating the
approximations even in this relatively comprehensi e com-
putation.

The different radial dependencies of radiation with the
opacity effects and with Joule heating allow the determi-
nation of an equilibrium radius r.,. Figure 8 shows the
radial dependence of Joule heating in the double solid line,
and the intersection with Q(r) that gives the equilibrium
radius R.,. The equilibrium radius decreases with increas-
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FIG. 9. Computed spectrum (rom a cylindrical krypton plasma of 0.01
cm radius, ion density 4.9 % 10%/cm’, and temperature 1 keV. Spectrum
exceeding Planck limit in two regioas indicates breskdown of approxima-
tion technique (from Apruzese 1989).

ing temperature, from about 6 um for 700 eV iron to about
1 pum for 1700 eV iron. Such behavior has a clear physical
reason. The higher temperature plasma is more coronal,
and at the same time the radiated photons are more ener-
getic and the absorption coefficients are lower. Therefore a
higher compression is needed to reach the surfacelike ra-
diation regime.

Using the analytical approximation for surfacelike ra-
diation Q, [Eq. (IIL.14)], and for Joule heating [Eg.
(IIL.3)] gives an analytical estimate for the equilibrium
radius,

Ilzl/! 173
e ) . (LIL15)

Feq= lo‘(w

where 7 is in cm.

These considerations are valid only if the current is
larger than the critical current I, for which Joule heating
would be balanced by volumelike radiation without opacity
effects. As shown below II1.10 the Joule heating increases
with current as Q//« P2, but radiation increases faster, as
Qraa < I*. Then Joule heating is less than volumelike radi-
ation [as in Figs. 8(a) and 8(b)]}, and equilibrium is ob-
tained with opacity-reduced radiation. In the opposite case
I <I, Joule heating always exceeds radiation losses, and
an equilibrium radius does not exist. The critical current
I, = 0.016T%/* Z_4/Z? increases with temperature: for an
iron pinch I,~0.2 MA for T =3 keV.

The solid line in Fig. 10 shows the equilibrium radius
for an iron plasma with current 0.2 MA, calculated accord-
ing to Eq. (II11.15), as a function of electron temperature.
The lower scale is the ion density corresponding to Cennett
equilibrium with a fixed current. The dashed curve shows
the equilibrium radius 7., calculated with an improved rep-
resentation of W,/ W, that takes into account the transition
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FIG. 10. Equilibrium radius for an iron at 0.2 MA vs temperature or
linear ion density. The approximate power coefficient gives the solid line.
Jacobs® power coefficient gives the dashed line.

from M shell (Ar-like) to L shell (Ne-like). This transi-
tion is responsible for the relatively rapid change in equi-
librium radius rg= 10 um around 0.4 keV. Nevertheless,
the more elaborate result does not differ much from the
rough analytical approximation, because the equilibrium
radius is weakly dependent on the details of the radiation
physics (about as the 1/3 power of the various coeffi-
cients). The equilibrium radius curve ends at the cross, at
T =3 keV, where I, = 0.2 MA and power equilibrium is
no longer possible.

The analytical formula for r,, combined with Bennett
equilibrium gives an estimate for the electron density in the
plasma, viz.,

Reeq=108173Z2T47,

where n,.q is in /em’.

All these formulas were obtained considering only ra-
diative losses and Joule heating with Spitzer conductivity
with In A ~ 10. Other energy gain or loss mechanisms, such
as anomalous resistivity or plasma outflow, give another
value for the equilibrium radius, which is still defined by
Oioute = Q- Vikhrev (1982a) considered . including a
model for anomalous resistivity from current-driven insta-
bilities (see below).

(I11.16)

3. Formation of a micropinch in a vacuum spark

The zero-dimensional equilibrium of the pinch esti-
mated above is hydrodynamically unstable to the sausage
instability (m = 0). The radiative collapse model (Vikhrev
1982a) assumes that the hot spot in a low-inductance vac-
uum spark is caused by a local contraction due to the
plasma outflow from the neck of the sausage, aided by
large radiative energy losses. Such a development is visible
in the experimental data of e.g., Verctennikov (1985),
which shows a sausage-type instability in an iron pinch
with current 0.15 MA, with a plasma radius in the neck
around 0.01 cm and temperature of about 100-150 eV.
These measurements agree with the estimates for the equi-
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librium radius, which is also 7,q~0.01 cm. Other measure-
ments support the existence of plasma outflow: an argon
pinch shows a fourfold reduction of the initial line density,
from 6X10'%/cm to ~1.5x10'/cm (Hares 1985); the
axial velocity of the plasma increases with ionization states
(Stewart 1987), and therefore with temperature.

In the radiative collapse model the outflow of particles
along the pinch axis decreases the line density in the pinch
region. However, during the outflow the pinch plasma re-
mains in quasi-equilibrium, and the equilibrium radius and
associated quantities change along the curve r (N))
shown in Fig. 10. An carlier model (Vikhrev 1977) as-
sumed that the outflow of particles is the sole energy loss
mechanism.

The decrease in the line density due to axial plasma
loss is approximated by the equation:

il (I11.17)

where 7 is a characteristic escape time. A reasonable value
is T=h/c, where h is the height of the sausaging part of the
pinch and ¢, is the sound speed, or r=r/¢, X a, where a is
the aspect ratio of the sausage, a = 4/r. Typically, a is in
the range 1 <a < 10, or about 3.

Using the equilibrium values of radius [Eq. (II1.15)]
and density [Eq. (II1.16)] with initial values for current J,
gives for the temperature

0
T(1) =0 vm? (I11.18)
Here Ty is the initial temperature, and the characteristic
timescale 7, is

0.006 alg” (1I1.19)
To=V.! y -
with 7, in seconds. Equation (III.18) indicates that the
temperature could increase rapidly after a time on the or-
der of 7, Radius and density will behave similarly, because
these are directly coupled to the temperature T'(¢) by Eqgs.
(II1.15) and (IIL16).

The time constant 74 can be taken as the characteristic
lifetime of the micropinch with initial parameters T and
7o For a low-inductance vacuum spark in iron with cur-
rent Iy =0.2 MA the lifetime of the plasma with aspect
ratio @ = 3 is 79=14 ns at temperature T =100 ¢V. This
delay agrees reasonably well with the delay time between
the initia] compression to the equilibrium radius r = 0.01
cm and the high-temperature micropinch stage with K-line
radiation emission (Veretennikov 1981a,b). The calculated
characteristic time for a plasma with temperature T~ 1500
¢V when K ions radiate is about 20 ps, which also agrees
with experimental measurements described above.

The radiative collapse model envisions a pinch in ra-
diative equilibrium that produces a high temperature dur-
ing a radiation-assisted compression with axial outflow of
material. The high temperature ionizes the pinch ions to
the K shell, and the pinch radiates K lines. During the
compression the pinch remains in radiative equilibrium.
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Radiative equilibrium demands that the current /; remain
less than the critical current /. Eq. (111.9). However,
I, increases with temperature as 7%, Eventually I, ex-
ceeds the pinch current I, which remains constant during
the radiative collapse. At this point the pinch can no longer
remain in radiative equilibrium. Once out of equilibrium
the plasma expands, the density decreases, and the radia-
tion stops.

K line radiation starts at a temperature Ty (Z,) that
depends on the nuclear charge Z,. This happens approxi-
mately when Ty = 3 X 1073Z% eV (Breton 1978). The
plasma point can radiate K lines if the critical current
I.(T.Z,) at T¢(Z,) exceeds the pinch current /o Taking
Z~2,~2Z4 gives the maximum atomic number for
which the K shell can be reached:

Zoax =T10X 17, (111.20)

with I in MA. According to this formula He-like ions with
Z, <30 or so can be excited in a micropinch with I, = 0.2
MA. This agrees with experiment: iron (Z,=26) is
stripped to the K shell in a micropinch with [, =0.2 MA,
while in a molybdenum (Z, = 42) pinch the K lines are
very weak.

A similar estimate can be made for Ne-like ions. These
appear when Ty =5X10~* Z¢: therefore, ions with nu-
clear charge Z,,,, S 135X 7"2 can be expected to radiate L
lines. For a pinch with J;=02 MA the estimate,
ZN .55, is in good agreement with experimental obser-
vations (Aglitskii 1986).

Another quantity of interest is the radial size of the
plasma point seen in K line light, and the point’s electron
density. Equation (IIL.15) gives an equilibrium radius
fq =1 pm for an iron plasma at J = 0.15 MA with tem-
perature T = 1700-2000 eV, rq=5 pm for calcium
(Z,=20) at T=100 eV, and 7, =15 um for sulphur
(Z, = 16). These numbers compare favorably with the ex-
perimental observations in Fig. 1. There is also good agree-
ment for the electron densities: for calcium 7, = 10°/cm?
under the circumstances given, and for aluminum
(Z,=13) n,=4Xx10*"/cm® at T =400 eV.

The radiation power of the plasma point is obtained by
multiplying the surfacelike radiation power per unit length
(II1.14) by the micropinch length (aX7.,). This gives for
the radiation power of the plasma point the expression

Quu=2.Ta X P/*Z/Z3%5T'7, (I1L.21a)

with Q,, in MW. With the usual approximations hv~2kT
and Z, ~ Z _qthis becomes

Qi =2.1aI**Z: (hv)'3, (TT1.21b)

which shows a weak (1/3 power) dependence on photon
energy hv. For an iron plasma with a =6 and 7 =0.15
MA the power radiated by the plasma point varies from
Qi = 3 GW for a choice of hv =0.2 keV, to 10 GW for
hv =6 keV.

The total energy € radiated by the point in the region
between /v and 1.5 Av can be estimated multiplying the
power Q,,, by the lifetime =
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£x=TX10a* P ZY}/ (hv)' Y. (111.22)

This estimate gives £=0.02 J for the K-radiation from a
plasma point in an iron plasma. The experimental value is
also 0.02 J. Obviously, this exact coincidence is accidental:
both theory and experiment are only accurate to within a
factor of 2.

Below we discuss the results for a more accurate nu-
merical model of micropinching. However, the simple
physical investigation above already suggests that the
model of radiative compression correctly describes quali-
tatively and quantitatively many aspects of the physical
scaling of plasma points.

C. Zero-dimensional dynamic model of micrapinching

The zero-dimensionai dynamic model of micropinch-
ing (Vikhrev 1982a) discussed below is the first qualita-
tively and quantitatively correct description of many of the
characteristics of plasma points. This model grew out of
the so-called simple model of the plasma focus by adding
radiative energy losses due to line radiation of multiply
charged ions. It gives good results for an iron pinch, which
has been studied in detail.

In the final stage of the hydromagnetic sausage insta-
bility the pinch evolves into a neck with an elongated
shape, with height 4 and radius a (Book 1976). The aspect
ratio @ = h/a, and a~3-10. The center of the neck is at
z=0, and the neck edges are at ##4/2. Density and tem-
perature are taken to be uniform throughout the neck.
During contpression the uniformity is maintained when the
radial speed v,(r) =(r/a)v is linear with radius:
v = v,(a) is the radial velocity at the column edge.

What is the compression dynamics of the neck? Radial
motion follows the equation:

2 2 22T I11.23)
e ] a

Here m is (Le ion mass and p = BY/2y, is the magnetic
pressure at the plasma edge. The change in the line density
N = ma’n is given by

i y I11.24
=T (I11.24)

T
The constant 7 is the characteristic escape time of the
plasma:

1 1 1

—=——, (111.25)

T T, T,
where 7, is the escape time of the plasma through the ends
of the plasma column, and 7, is the radial compression
time. It is given by the growth rate of the hydromagnetic
instability corrected with the aspect ratio a, viz, 7,
= ala/c,), where ¢, is the Alfvén speed (and the ion ther-
mal speed in Bennett equilibrium, vy;).

The velocity of the plasma along the z axis at the edge
of the neck determines the axial escape time 7, = 4/2v,,
where the axial velocity v, is given by
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Here ny and T, are the density and temperature of the
plasma escaping from the pinch. The first term on the right
hand side contains the pressure gradient along the z axis.
The second term describes the decrease of v, due to the
escape of plasma through the ends, under the assumption
that the axial velocity increases linearly with axial distance
z.

The energy per unit length of the plasma column is
€N, with ¢ the average energy per ion. The energy per unit
length develops according to the equation:

d(eN) ) da €N+ walp
dt TP T -2

The first term on the right hand side is the power input by
adiabatic compression, and the second describes the out-
flow of energy associated with the escape of material from
the neck. The last term is the radiation loss.

The pinch current is given by the circuit equation:

(11L.27)

d

i Lo+ L] + RI=0, (111.28)
where L, and L, are the inductances of the circuit and the
discharge channel, respectively, and R, is the resistance of
the neck region in the plasma.

The resistance R, = h/owa’, with o the plasma con-
ductivity. To mock up anomalous resistivity the conduc-
tivity o is taken to be o =rnev/mvg with vq = v,
4+ Venom the effective collision frequency. Spitzer conduc-
tivity comes from elastic collisions between electrons and
ions, with collision frequency v, The coilision frequency
Vanom takes into account an anomalous resistivity related to
plasma instabilities that may be excited by current flow in
the pinch. In the absence of a good model the anomalous
collision frequency is taken as

Veacan = (V0/01) (00 ) 2. (111.29)

Here v) is the drift velocity of the electrons, and the o,’s
are the ion and electron Larmor frequencies. The formula
primarily serves to define a reasonable timescale for a typ-
ical but unspecified current-driven instability in a strong
magnetic field. The important point here is to include an
anomalous resistivity effect: further research is needed to
pin down the appropriate instability, and to replace Eq.
(I11.29) with an updated formula. At this time it is suffi-
cient that an instability threshold is reached (at constant
current) when the plasma escapes from the neck, the line
density V decreases, and the drift velocity vp~Io/N ex-
ceeds the thermal velocity.

The computation shown below (Ivanov 1986) includes
the anomalous resistivity, and a slightly more elaborate
way of computing radiative loss than described here, viz.,
various line broadening effects for calculating the optical
depths of individual lines. These added features allow the
study of fine detail in the compression of micropinches, but
the simple approach for calculatag radiative losses is
quantitatively correct for the basic properties.
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FIG. 11. Zero-dimensional aumerica) modeling of micropinching in an
iron plasma with peak current ~ 150 kA: (a) plasma radius; (b) electron
temperature;. (c) electron density.

Figure 11 shows the temporal evolution of the plasma
parameters during the process of micropinching. A special
logarithmic time difference scale is used to represent all
stages in a single graph. Zero time is the end of the final
compression, usually when the temperature exceeds some
high, but arbitrary value (20-50 keV). The duration of any
stage corresponds to the difference between the ordinates.

The initial conditions for this computation are given
on top of the figure. The distance between the iron elec-
trodes is equal to the initial radius of the plasma, 1 cm, and
an initial line density is ;= 3 X 10'"/cm. The first regime
is a slow compression during the first 920 ns or so, followed
by an hydrodynamic series of compressions and expansions
(similar to Felber 1982) topped off by a fast radiative col-
lapse in the final 1 ns.

At first the plasma compresses hydrodynamically to a
radius 70-80 um, at ~90 ns before the end of the compu-
tation, expands, and compresses again to a radius that de-
creases with each subsequent compression due to radiative
energy loss (Meierovich 1985). These compressions end
with a very small plasma region reminiscent of a plasma
point, with radius around 3 um. The temperature in Fig.
11(b) gets into the region 1-10 keV at this stage. The
electron density in Fig. 11(c) goes up to #,=10"/cm’.

In this computation the plasma is initially uniform
over radius. In this case the formation time of the plasma
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FIG. 12. Intensities of radiation versus temperature for iron: (1) dielec-
tronic satellites of Li-like ions; (2) resonance lines of He-like ions; (3)
resonance lines of H-like ions.

point, taken from the second compression to the end of the
run, is about 20 ns. In other runs, where different radial
distributions are assumed, the formation time varies from
50 to 20 ns. These values agree well with observations of
the dynamics of micropinching.

The stagnation phase, between 20 and 1 ns, is charac-
terized by a plasma radius r=0.1-0.2 mm, electron tem-
perature T=100 eV, and an electron density oscillating
around n,~ 10?'/cm®. These parameters agree reasonably
well with observations of the plasma during hydromagnetic
compression.

In the plasma point region [denoted by “K in the Fig.
12(a)], the plasma contracts to a radius of order 3 um. The
electron density in this compression stage varies from
n~3%105/cm® to n,~(1-2) X 10%*/cm®: the electron
temperature increases from 1.3 to 5 keV. The lifetime of
the plasma point with radius <2 um is shorter than 100
ps. The calculated lifetime of the hot phase of the mi-
cropinch agrees well with the measured values (Aglitskii
1985) of 20 ps.

After the final compression the plasma column ex-
pands rapidly due to the fast loss of plasma from the pinch
and the simultancous appearance of anomalous resistance.
During the expansion the plasma temperature continues to,
‘increase rapidly, reaching tens and more of keV. However,
the expansion phase does not contribute significantly to
K-line radiation due to its short lifetime and the rapidly
decreasing plasma density.

Figure 11 appears to contain the basic phenomena ob-
served in micropinching, including quantitatively correct
results for the plasma parameters of the plasma point. The
model also gives a quantitatively reasonable account of the
plasma point’s disassembly. We conclude that the radiation
compression model captures the principal physics of radi-
ation collapse. In the next section we discuss the scaling of
plasma point parameters with initial parameters such as
nuclear charge Z,, peak current, and initial line density.

V. EXPERIMENTAL RESULTS ON PLASMA POINTS
INTERPRETED WITH THE RADIATION
COLLAPSE MODEL

Section 1I presented the experimental results on
plasma points, and Sec. III gave a computation for radia-
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tion collapse of an iron pinch. This section uses the radia-
tion collapse computation to interpret the experimental re-
sults. An important insight is that in a radiative collapse
the plasma goes through a wide range of temperatures. As
a result, the different measurement techniques for the elec-
tron temperature all give values within their range of va-
lidity. Electron temperature measurements for plasmas of
various compositions corroborate the radiation collapse
scenario. Radiative collapse can evolve in two different
types of plasma points.

A. Electron temperature of plasma points

Computations of radiative collapse suggest that the
plasma point goes through two orders of magnitude in
density and temperature in a sub-ns time. In contrast, the
x-ray spectral measurements are time-integrated, While
their interpretation in terms of density and temperature
usually assumes a stationary plasma. The plasma parame-
ters obtained this way are always somewhere in the sensi-
tivity range of the particular measurement technique. Mea-
surements valid in widely different regimes then give
widely different results corresponding to the regimes of
validity.

Consider first the procedure for measuring the electron
temperature 7, by the relative intensities of dielectronic
satellites to the H- and He-like resonance lines. Figure 12
gives the relative intensity I, for the resonance lines of H-
and He-like iron ions, and for the dielectronic satellite
lines, as function of temperature 7. The intensities are
given as dI./d (log T) to compensate for the logarithmic
temperature scale, so that the total radiation in a specific
line is proportional to the area under the corresponding
curve. The intensities come from the iron pinch computa-
tions of Ivanov (1986), and take into account the changes
in radius and density of the plasma point during its evolu-
tion over the last 200 ps of its life (see Fig. 11). Although
the intensities vary with time it is possible to plot them as
function of temperature, because the temperature increases
monotonically with time.

Singly excited He-like iron is most abundant at a tem-
perature of T,~2.5 keV, and therefore the resonance line
of He-like iron is strongest at this temperature. For the
same reason the resonance line of H-like iron peaks at a
higher temperature 7T,=6 keV. Excitation of Li-like iron
accounts for the satellites of the He-like resonance line,
through dielectronic recombination, which therefore peaks
at the lowest temperature T,=1 keV.

A spectrometer does not see the intensity ratios at each
particular temperature if it is slow compared to the 20 ps
timescale of plasma point formation. Instead, it registers
the time-integrated intensity. The ratio between the time-
integrated intensities corresponds to some intensity ratio
for instantaneous intensities. The intensities of the H- and
He-like resonance lines can be used to measure the tem-
perature between 2.5 and 8 keV. Therefore, the effective
temperature inferred from a time-integrated measurement
with these lines, Tii,4 is some average value, here
T 11=3.8 keV, which depends somewhat on the detailed
time history of the plasma point. Likewise, the effective
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temperature Tie ps=1.9 keV obtained from the ratio of
dielectronic satellites to the He-like resonance line lies in
the region where this temperature measurement is applica-
ble. When the plasma point’s temperature traverses a wide
range of temperatures the measurement technique gives
some arbitrary temperature in the regime of validity.

Similar arguments apply for temperature measure-
ments with bremsstrahlung. In an optically thin plasma
with temperature T, the spectral intensity J(Av) in harder
photons with hv» kT, varies exponentially with photon en-
ergy hv. The temperature defined by this continuous spec-
trum is then kT, = — d(hv)/d[In I{hv)], which depends
on the length of time that the plasma point spends in the
photon energy regime used for the measurement. Therefore
this approach produces temperatures that increase with the
hardness of the radiation used for the measurement (Lee
1974; Burhenn 1984), and that are higher than the tem-
peratures deduced from the line ratios. The computation of
radiation collapse shows that the effective temperature in
the micropinch would be T$5=~7 keV when. measured in
the energy band around Av =30 keV, but would increase to
T8~ 11 keV for the energy band hv=100 keV.

Other computations show that the temperature in-
ferred from bremsstrahlung varies with pinch current in a
qualitatively correct manner. Changing the current from
100 to 150 kA increases the temperature in the computa-
tions from 9 to 11 keV (measured with radiation around
hv=50 keV). Under similar circumstances in an experi-
ment the temperature of the plasma point increases from §
to 7 keV (Bykovskii 1982).

B. Experiments with compound plasmas: Fe/Mo,
Ti/Mo, Ti/Nb

The radiative collapse model predicts that density and
temperature of plasma points increase with the atomic
number of the element used in the pinch. Unfortunately,
time-integrated measurements on the same line for the dif-
ferent elements also give results that increase with increas-
ing atomic number. This problem is resolved by using a
single element selected for diagnostic purposes intermixed
with heavier elements.

Plasma parameters were inferred from the spectra of
He-like iron Fe XXV in a pure iron pinch and a mixed
iron-molybdenum pinch (Vikhrev 1982b; Sidel’nikov
1982b). Figure 13(a) is the spectrum from 100 discharges
with pure iron, Fig. 13(b) from an iron-molybdenum
pinch, with 50% Mo (Z, = 42).

The spectra can be fully interpreted with the spectrum
fitting procedure discussed earlier, but some qualitative
features are obvious. The shape of the long-wavelength
wing of the */ satellite is equally broad in both spectra,
and not through accidental overlap with other lines. Thus
individual lines in both spectra have the same intrinsic
broadening. However, the measured width of the reso-
nance line is due to the overlap with the dielectronic sat-
ellites with principal quantum number n > 3. This width is
4.2x10-3 A for Fe, but decreases to 3.4X10-3 A for
(Fe + Mo), reflecting a smaller contribution of the satel-
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FIG. 13. Spectrum of a plasma point (a) with an anode of pure iron; (b)
with a 50% iron, 50% molybdenum anode.

lites to the long-wavelength wing of the total lineshape due
to the increased temperature of the emitting plasma.

The full fitting procedure shows that the relative inten-
sity of dielectronic satellites in the (Fe + Mo) plasma is
3-3.5 times smaller than the pure iron plasma. The inten-
sity decrease corresponds to an increase in the electron
temperature from 1.4 keV for pure iron to 2.0-2.4 keV for
\he compound (Fe + Mo) plasma.

The spectrum around the resonance line of Fe xxv can
not be used to measure the plasma’s electron density using
the collisional mixing of autoionized states, but this can be
done with spectra of Ti xxX-xx1. Therefore, titanium plas-
mas with various admixtures were diagnosed by using the
resonance line Ti XX1 and its satellites (Sidel’'nikov 1982b).
The electrodes in these experiments varied from pure tita-
nium to a blend of titanium with 209%-509% of molybde-
num and niobium (Z, = 41).

The measurements are not precise enough to see a dif-
ference in the spectrum with a 20% admixture of Mo and
Nb to the titanium, but a 50% admixture of heavy impu-
rities (Mo or Nb) gives a ~20% narrower resonance line
due to a smaller contribution from the intercombination
and dielectronic satellite lines. Full analysis of the spectra
shows that the temperature increases T, from 1.2-1.3 keV
for a pure Ti pinch to T,=1.4-1.5 keV for Ti with a 50%
admixture of heavy impurities. The increase in the density-
sensitive satellite “g” corresponds to an increase in the
electron density by a factor of about 1.5. These careful
estimates of density and temperature for plasma points
with different atomic numbers confirm the expectations
from the radiative collapse model: time-averaged diagnos-
tics give values for density and temperature that increase
with atomic number.

C. Two regimes of micropinching

Many experiments integrate x-ray spectra over many
shots under the assumption that all plasma points are sim-
ilar in character. However, plasma points do not develop
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FIG. 14. Spectrum in chromium (Z, = 24): (a) from a small plasma
point (d<3 pm); (b) from a large plasma point (d= 100 um).

on some shots, and when a plasma point appears it can
have quite irreproducible size and position. What happens
in individual plasma points?

Single-shot spectra must be studied with a highly sen-
sitive spectrometer (e.g., Schultz 1989; Aglitskii 1984).
The measurement technique (Antsiferov 1989) uses a
curved quartz crystal spectrograph with different crystals
(2d =226, 4.91, and 6.68 A) and radii of curvature
R = 300-800 mm. The spectra are amplified by a micro-
channel plate covered by a layer of ZaS doped with Ag
(Aglitskii 1984), and registered photographically. Plasma
size can be correlated with the spectrum on each shot by
using the blurring of the x-ray image’s edge.

These measurements, done with 2 maximum current
I,,~150-200 kA and plasmas of Cr, Mn, and Fe, give two
types of plasma points, large and small. The small plasma
points are a few pm across, the large plasma points are
~0.1 mm in diameter. Both types, large and small, emit
spectra with resonance lines (1£-1s2p'P,) and intercom-
bination lines (15°~152p°P,), and also satellite transitions
in ions of low multiplicity, but obvious differences in the
spectra suggest that the plasma points have quite different
parameters.

The chromium (Cr, Z, =24) spectra in Fig. 14 are
good examples. Figure 14(a) is a spectrum for a small
plasma point, and Fig. 14(b) for a large plasma point. The
spectra contain the same lines, but in quite different pro-
portions: the small plasma point radiates ~ 10X more in
the resonance line (line “W™ at 2.19 A), and the satellite
transitions are relatively less important. In the large
plasma point [Fig. 14(b)] the dominant radiation consists
of K, lines, between 2.1 and 2.9 A, probably excited by
nonthermal electrons of a colder plasma in the L-shell ion-
ization state. The nonthermal electrons could be isotropic,
but they are more likely in the form of a directed beam: the
spectrum is consistent with both possibilities.

Plasma of lighter elements, such as sulphur
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FIG. 15. Spectrum in a calcium (Z, = 20) plasma: (a) {rom a small
plasma point; (b) from a large plasma point. The bars give the positions
and relative magnitudes of the brightest dielectronic satellites.

(Z,=16) and calcium (Ca, Z,=20), show analogous
results, but now the diameter of the small plasma point is
about 10-15 um, while the large plasma point is 0.2-0.3
mm across. Both regimes of micropinching were also found
(Aglitskii 1986) for heavier elements, Cu at Z, =29 and
Zn at Z, = 30. In this case the small points were smaller
than the experimerital resolution (<3 um), while the large
plasma points have diameters ~ 30-50 um. The x-ray spec-
tra of these clements show the same tendencies as in Fig.
14, so that for the large plasma points the resonance lines
are practically abseat.

A characteristic feature of the x-ray spectra from the
large plasma points are dielectronic satellites excited from
Li-like ions by electron-ion collisions, while the satellite
lines in the x-ray spectra of the small plasma points come
from dielectronic recombination. An example is the spec-
trum for a small plasma point in calcium, Fig. 15(a), com-
pared to Fig. 15(b) for a large plasma point. The reso-
nance line “ W™ for the small plasma point is visibly wider
than the same line for the large plasma point, indicating
dielectronic recombination due to the high density (com-
pare the discussion of Fig. 13). The bars in Fig. 15 are the
(relative) strengths of the different lines needed to fit the
spectrum. These agree with predictions from dielectronic
capture. The resonance line in the large plasma point is not
broadened by satellites, and the relative strength corre-
sponds to collisional excitation.

Why are there two kinds of plasma points? In the ra-
diative collapse model the plasma point disassembles due
to anomalous Joule heating connected with the develop-
ment of microturbulence. If the plasma rémains in ‘the
Joule. heating regime during compression a small plasma
point emerges, while a large plasma point is formed if
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FI1G. 16. Micropinching in iron for three linear ion densities N(r,) and
the same initial radius 7y = 3 mm.

anomalous heating exceeds the radiative losses early on in
the compression process. Anomalous heating starts when
the drift velocity vp == I/eN, is on the order of a character-
istic thermal velocity in the plasma such as the ion sound
velocity v, = KT7M, For a Bennett pinch vy, = v,implies
Ng, = M/m, where r, = (¢/mc*)[1/4weg) is the classical
radius of the electron. The critical line density would then
be N,=3M,/mx10'"/cm, corresponding to an initial line
density No~10'“/cm, weakly dependent on the other
pinch parameters such as temperature or the effective
atomic number Z g

According to these considerations the dynamics of mi-
cropinching may depend significantly on the initial line
density in the discharge. The initial line density in a vac-
uum spark arises primarily as a result of evaporation of the
anode by electrons pulled out of the precathode plasma by
the initial voltage. This complicated process is likely to
give different initial line densities from shot to shot. More-
over, the line density of this plasma decreases with increas-
ing distance from the anode, creating different initial con-
ditions fur the development of the pinch along the axis of
the dischargs.

The radistive collapse model is sensitive to the initial
line density N,. Figure 16 contains results from three com-
putations on an iron plasma with 150 kA peak current and
initial radius 7y =3 mm, and different line densities given
in the figure (Antsiferov 1989). Shown is the compression
dynamics by plotting the radius r() and ion line density
N{t) in the (r, N)) plane.

In the initial stage of the compression the line density
remains constant for all three cases, indicating no outflow
of plasma. After this initial stage the tenuous case with
N(0) = 10"*/cm loses mass while contracting radially un-
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FIG. 17. The minimum radius of an iron plasma during micropinching as
function of the initial linear jon density N,

til it reaches a minimum of 0.1 mm at N;=10'*/cmn. In
contrast, the pinches with initial line density % 2.5
%10'*/cm contract in an oscillatory fashion also seen in
Fig. 11 (for different initial conditions). The final size is
now much smaller, 7, ~1 sm. Expansion starts at about
the same fine density for all three cases, namely when the
drift speed for the 150 kA current exceeds a thermal ve-
locity.

Figure 17 shows the minimum radius 7., obtained
during the compression as function of the initial line den-
sity. For initial line density N(0) > 10'%/cm the pinch
reaches a minimum radius of 1-2 um, while for an initial
line density N/(0) < 10'/cm the final pinch size exceeds
~0.1 mm. The plot suggests two radiative collapse re-
gimes, one with large final radius for pinches with small
line density, and one with small final radius for more mas-
sive pinches, with a small transition region in between. A
collapse with large final radius is reminiscent of the large
plasma point, while the collapse with small final radius
looks like a small plasma point. This phenomenology is
corroborated by experimental data (Koloshnikov 1985):
for aluminum the transition occurs around 3 10'*/cm
(Ivanenkov 1989).

Other computations, for calcium (Z, = 20) and zinc
(Z, = 30), show the same well-defined transition between
the two micropinch regimes. Moreover, in these computa-
tions the minimum radius decreases with increasing nu-
clear charge Z,, in agreement with experimental results.

The computed radiation output per plasma point
agrees with the experimental value. In the computations
the energy X lines from a small plasma point is about 0.04
J per shot, while the experimental value is about 0.02 J
(Veretennikov 1985). For the large plasma point the com-
puted K-line energy per shot is more than an order of
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FIG. 18. Correlation between the size of d of the plasma point (horizontal
axis), the distance between the anode and the point’s & in the discharge
gap (forward axis), and the intensity of radiation D (vertical axis). The
plasma is titanium (Z, = 22), and the current is 100 kA.

magnitude less, in agreement with experimental data of
Figs. 14 and 15.

The size of the plasma point is correlated with its po-
sition in the discharge gap (Aantsiferov 1989) in a manner
that is consistent with the two regimes of radiative col-
lapse. The measurements were made at 100 kA in a Ti
plasma (Z, = 22), with an experimental resolution of the
vinch size of 5 um. Figure 18 shows the results. The for-
ward pointing axis is the distance to the anode, the hori-
zontal axis is the size of the plasma point, and the vertical
axis is the intensity of the K-line output as gauged by the
film density.

The data show two groups of plasma points. The small
plasma points, with radius 7~ 10 um, are located mainly
close to the anode, while the large plasma points, with
radius 7~0.2 mm, are typically farther away. Moreover,
the film density of the small plasma points is several times
larger than for the large plasma points. These experimental
data are consistent with the results in Figs. 16 and 17
obtained from computations on simple theoretical models.

V. CONCLUSION

The experimental results appear to show a radiative
collapse phenomenon in low-inductance vacuum sparks.
Two types of plasma points have been documented, small
plasma points around a few microns in size, with extreme
values for density n~ 10**/cm’ and temperature 7,2 keV,
and large plasma points with one order of magnitude larger
size and two order of magnitude smaller density. Discrep-
ancies between the values given in the literature over the
years are explained in part by the two different regimes,
and in part by the fact that a plasma point is dynamic: the
plasma’s density and temperature can change drastically
during collapse. In this case the plasma parameters in-
ferred from time-averaged x-ray spectroscopy depend on
the range of validity of the measurement technique.

Many characteristics of the plasma points are success-
fully reproduced by a radiative collapse model (Vikhrev
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1982a). The model’s principal ingredients are the strong
radiative power from the ions as modified by opacity ef-
fects, and the reduction of line density due to axial outflow.
Radiative collapse ends by the onset of anomalous heating.

Other types of discharges with axial symmetry often
show small, bright regions of x-ray emission that appear to
be similar to the plasma points discussed here. For exam-
ple, plasma points appear in experiments with exploding
wires (Burkhalter 1977; Zakharov 1983). For currents up
to 200 kA the parameters of the plasma point are close to
the ones measured in low-inductance vacuum sparks.

Gas pufl z-pinches also show plasma points, generally
called bright spots in the z-pinch literature, whose size,
temperature, and density of plasma appear to vary consid-
erably depending on the type of the apparatus, the current
in the discharge, and the initial conditions. However, it is
possible to have a regime that produces small plasma
points with sizes of several um in a ~1 MA current dis-
charge (Gol'ts 1986/7; Sopkin 1990). The x-ray spectrum
of the He-like krypton and xenon in these experiments
shows plasma points with temperatures of tens of keV, and
n 210" cm’/s.

Similar observations come from plasma focus experi-
ments. Plasma points with size ~ 10 um arise in the second
compression of the focus, when the hydrogen plasma in-
creases its radiation loss through additional anode material
(copper) (Fillipov 1983). Similar phenomena are seen in
experiments on a plasma focus discharge in a mixture of
deuterium and heavy noble gases (Peacock 1969; Volobuev
1988; Koshelev 1988). The x-ray spectra of the heavy im-
purities indicate that the electron temperature reaches
about 700-1000 ¢V in plasma points of about 20 um.

The addition of several percent impurities produces a
significant change in the character of the final pinch in
these and other experiments. In the explosion of CD, wires
(Young 1977) the radiation from carbon ions apparently
leads to small plasma points (Decker 1990). Also the com-
pression of z pinches in deuterium changes drastically with
the admixture of high atomic number elements (Bailey
1986). These experiments again demonstrate the essential
role of radiation loss on the dynamics of many types of
discharges, and especially on plasma point formation.

Micropinches are primarily used as radiation sources
for spectra of multiply charged ions, but in the future mi-
cropinches may become sources of XUV and soft x rays for
technological applications (e.g., Veretennikov 1982), and
for pumping of x-ray lasers (e.g., Finkenthal 1986; Orae-
vskii 1987). For this application it is important that the
short lifetime of a micropinch corresponds to a high radi-
ation power despite the small total energy.
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The Pease-Braginskil current is rederived for a uniform single specics Z pinch. The result
contains the Alfvén current and the ratio between the collisiona) and bremsstrahlung cross

sections.

The Pease~-Braginskil ‘current /,, is a unique value of
the current for a fully ionized hydrogen pinch.’? This cur-
rent corresponds to force equilibrium, expressed by the Ben-
pett relation,’ and, in addition, the power equilibrium
between bremastrahlung loss and Joule heating. The litera-
ture®* typically contains various numerical formulas for
Irg, 8., Iyg (MA) = 0.433 (In A)'/2, where In A is the
Coulombd logarithm; often In A is implicitly taken as~ 10
and Ipy is given as ~ 1.4 MA.

It should be expected that this unique value of the cur-
reat is related in some transparent way to nature’s current
scale, the Alfvén(-Lawson) current /,, . This current scale is
defined by the fundamental constants of nature (¢, ¢, tiq, and
thelike) as I, = ec/7,, where the classical radius of the elec-
tron 7, = (¢*/mc)(1/4we,). Here we rederive the Pease-
Bnpmkﬂcuﬂmtuthemmrdmmtmkl multiplied
by a ratio between the cross sections for multiple collisions
(~81n A) and bremsstrahlung (~aF) [Eq. (6)].

‘The mode] pinch consists of a stationary plasma cylin-
der with uniform temperature 7, clectron density n,, ion
density n, = n,/Z, and single charge state Z. Irrespective of
any radial gradients the total current / is related to the total
line density and temperature by the Bennett relation®

pol 247 = 2N, (1 + 1/2Z)kT, (1a)

where the electron line density N, = g73n, and 7, is the
pinch radius. In terms of the Alfvén current, which can be
written a8 4,/ 3 /4% = mc?/r,, the Bennett relation becomes

( ) =2(1+2)(Z5) .

The Pease-Braginskil current [, in this stationary
pinch is defined by a balance between resistive (or Joule)
heating and bremsstrahlung radiative loss. In the absence of
heat conduction, opacity, and the like (as we shall assume),
both Joule heating and bremsstrahlung loss are local, colli-
sional processes. It is therefore tempting to express these
losses as a local power density of the form P = n,n,00(A¢),
where v is some average velocity, o a typical cross section,
and A€ s typical energy transfer per collision.

In the simplest model of Joule heating an electron is
accelerated by the electric field until a time 1/v,,, when it
suffers a collision and the energy gain is randomized. The
power deposition from Joule heating is P, = 7/, where 7 is
the resistivity and j is the current density. Explicitly,
n=mv,/n,e, with v, =8InA(vad)Zn, (2R/k*.
This useful but nonstandard form is written in atomic units,®
viz., the Bohr radius o, = #/me*[ 47¢,), the atomic veloc-

(1)
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ity vy = ac, where @ = (¢*/ch) [ 1/4w¢,] is the fine structure
constant, and the Rydberg energy 2% = mid = a’mc’.

The Joule power density P, = nf is then

- 22 V| mf
’, u,u,v{BhAo{,Z‘( u_)]( % @
where the characteristic velocity v is defined by mi? = kT.
The energy loss per collision can be identified with the last
term, A¢, = mf'/n}e* = my,, where the drift velocity v,
= j/n_e. Then a collision cross section for Joule heating is
given by the term in square brackets.

The energy loss per collision can be expressed in terms of
the total curvent J and the electron line density N,. For a
uniform pinch / = #73j and N, = wn,7}, and A¢; = ml?/
N3é, which is also

Ag, = (mS/PN3) U/, ). 3

The power density for bremsstrahlung can be written in
a form reminiscent of Eq. (3),

P. = n’a.dzzap. (m)(M/mtz). . (‘)

where the factor F, = (2%/27)"/? in the most accessible der-
ivation,” and slightly different for more complete calcula-
tions. Although bremsstralilung is emitted with a contin-
uous spectrum the energy of a typical bremsstrshlung
quantum is fiw ~ k7. Therefore kT can be identified with the
energy loss per collision Ag, = kT. Then the bremsstrah-
lung cross section is 0, = a3 Z%aF, (2R/kT)* (kT /mc*).

Pease-Braginskil equilibrium adds to the Bennett rela-
tion the condition P, = P,, which corresponds to local ener-
gy balance in the microscopic processes, viz., 0,A¢, =0;
X A¢;. This becomes

a3 Z*aF, (2R)*/mc*

- 2 2R\ mS \? I)’

azzsnm[( )(;N,)( ] (5)
The plasma parameters are grouped in the square brackets.
The atomic cross section a3 can be divided out, and the plas-
ma parameters disappear on using Eq. (1b). The result is the
transparent formula

’I': (““A)mz(w ) (6)

The Pease-Braginskil current is the natural current
scale [, , multiplied by the square root of the ratio between
the cross sections for the collisions that are responsible for
heating, 0, « 8 In A, and energy loss from bremsstrahlung,
U.Cal",.
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Multiple collisions and bremsstrahlung are completely
classical processes, but Eq. (6) still contains an essentially
quantum mechanical quantity, the fine structure constant
a = (e/ch)[1/4n¢€,). This a comes from a lower limit to
the impact parameter in the integration of the bremsstrah-
lung from an electron passing a fixed charge. This cutoff,
which keeps bremsstrahlung finite, was an early triumph of
quantum theory. Interestingly enough, the factor in A also
results from a cutoff, this time from Debye screening at the
upper limit to the impact parameter.

Bremsstrahlung is the only energy loss mechanism in
the Pease-Braginskil current [,y . However, bremsstrahlung
is usually swamped by line radiation and power balance
between line radiation and Joule heating gives rise to a much
smaller equilibrium current. Knowing the ratio X = 0,A¢,/
o, A€, between the cross sections and energy losses for line
radiation and bremsstrahlung gives an estimate for the
Pease-Braginskil current for line radiation, viz., I 4y = Ipg/
K'’2, This same result is obtained by comparing the power
densities.® Likewise, I,y increases with the decrease in radi-
ation as a result of opacity,” and changes by introducing
radial nonuniformities'-*'® and anomalous resistivity."'
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Leakage currents outside an imploding Z pinch
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Leakage currents outside a pulse-line-driven Z pinch are considered in two circumstances. In
the initial stage of the pinch a non-neutrai electron flow can arise before magnetic insulation is
established. The relative importance of such currents is estimated in terms of diode impedance
and pulse-line dimensions. In the later stages of the pinch a neutralized current flow can arise
in any tenuous plasma that may be present in the pinch periphery. The effects of the neutral
current are estimated through self-similar solutions to a gyrokinetic equation. The collisionless
plasma corona can contain an important fraction of the implosion energy.

1. INTRODUCTION

An imploding Z pinch can be used to generate large
amounts of kilovolt x rays.' In the region of interest the yield
in kilovoit x rays is roughly proportional to the fourth power
of the peak current into the diode,? in agreement with theo-
ry." The models assume that the current density in the pinch
is constant, and that all the current that goes into the diode
flows through the pinch. It is very difficult to confirm experi-
mentally that no current flows outside the Z pinch. How-
ever, the strong dependence of x-ray yield on the current
implies that a small current leakage through the pinch pe-
riphery could reduce the pinch’s x-radiation efficiency sub-
stantially.

In this paper we consider the leakage current outsidea Z
pinch in two circumstances. One is a non-neutral electron
flow in the initial stage of the pinch; the other is a neutralized
current flow in a tenuous plasma that may be present in the
pinch periphery.

The non-neutral electron flow at the start of the pulse
comes from the onset of magnetic insulation. For relevant
parameters (e.g., /=1 MA and pinch radius 7= 1 cm) the
magnetic field in the vacuum outside the pinch is approxi-
mately 20 T (200 kG), sufficiently strong to provide mag-
netic insulation. However, magnetic insulation needs some
time to become established. In high-impedance vacuum
transmission lines a small current pulse? is seen at the front
end of the pulse, and a similar transient may have been ob-
served in a low-impedance Z pinch.* Subsequently the cur-
rent becomes sufficiently large to cut off this transient. Ac-
cording to our computer simulations the transient current is
composed of an electron sheath that is captured by the mag-
netic field. When magnetic insulation sets in the electron
sheath rolls up into relatively stable vortices.

The neutralized current flow in the pinch periphery
would take place at a later time, during pinch compression.
In the initial stage of the pulse the material in the diode is
rapidly ionized, a complicated process outside the scope of
this work. The current compresses the bulk of the material,
which becomes a dense collisional plasma that is accelerated
toward the axis. The behavior of this plasma is described by
the resistive radiation-hydromagnetic equations.” However,
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in computations with these equations’ the exterior of the
plasma sometimes becomes to0 conductive in an unphysical
way—the plasma temperature T as computed can exceed
100 keV. In this case the standard Spitzer formula for the
conductivity o in a collisional plasma, o < 72, predicts a
highly conductive pissma in the pinch periphery that pre-
vents the current from entering the Z pinch. The problem
disappears when the currents in the plasma periphery are
computed by keeping account of the transition from a plas-
ma dominated by collisions to a collisionless plasma. For
practical purposes the plasma becomes collisionless when
the electron—electron collision time exceeds a typical hydro-
dynamic time scale.

In the strongly magnetized collisionless exterior plasma
the standard equations of resistive hydrodynamics are not
valid. Instead, the plasma electrons drift in the confining
magnetic field B,(r) and the combined applied and space-
charge electric field E= [E,(z,r),E,(2,r)]. The E. XB,
drift inward generally dominates. The current density J, no
longer satisfies Ohm’s law, but can be derived by setting the
power density J.-E. equal to the change in kinetic energy
density.

The collisional core of the Z pinch implodes differently
than the plasma periphery. In the core the collisions guaran-
tee an isotropic velocity distribution, and an isotropic pres-
sure, but in the periphery the electrons conserve their angu-
lar momentum p, as they travel along the magnetic field
lines around the pinch axis. As the radius r decreases the
electron velocity v, increases as 1/r, and the parallel pres-
sure P, < v;, increases as 1/7°. Also, the magnetic moment
around the magnetic field, u « mv; /B,,, is conserved. There-
fore the perpendicular pressure P, « v; increases linearly
with the magnetic field B, (r), which is proportional to 1/r.
The ratio of parallel to perpendicular components of the
pressere, Py /P, «r ', can become important.

A simple estimate for any peripheral current can be ob-
tained from the Bennett refation applied separately to the
core and the periphery. One has 7 > ~ NT, with / the current,
N the line density of the particles, and 7" the temperature.
Therefore, in order of magnitude 1. /1

mn vowe

~ (N Tt/ N T )72, where N, uny 18 the number
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of particles in the core (peniphery ) of the pach, 7, ., 18
the applicable temperature, and /,,,, = 1, + L,,..

A reasonable mass per unit length for the core of the Z
pinch is perhaps 100 ug/cm. The initial particle density in
the Z-pinch periphery is on the order of n= 10'*/cm* (for
0.1 Paor I mTorr), spread over, perhaps, 100cm’. The mass
per unit length on the outside of the pinch is thus ~0.01
#ug/cm. Setting the typical temperatures about equal sug-
gests a relative current loss of ~ 1% in such an equilibrium,
which is negligible. However, when 7, » T.... after com-
pression of the periphery, and/or when pressure balance is
not applicable, the current loss through the periphery may
become larger.

In Sec. III of this paper we treat current conduction
through the periphery with the gyrokinetic formulation of
Bernstein and Catto.” This model is obtained from the sin-
gle-particle kinetic equation by introducing higher-order ac-
curate invariants in the velocity space and then averaging
over the gyrophase. We employ a current density obtained
from the velocity moment equation of this gyrokinetic for-
mulation, which expresses the momentum balance between
particles and fields. The current density then involves a pres-
sure tensor.

Analogous to self-similar hydromagnetic flows® with
scalar pressure, the gyrokinetic momentum equation also
admits self-similar distribution function solutions that ex-
hibit tensor pressure. If P, #P, these special solutions re-
main separable but exhibit three characteristic frequencies
instead of two, and, when we retain displacement current, a
fourth frequency is added. A particular example from the
self-similar theory is used here toillustrate the effects of peri-
pheral gyrokinetic plasma, future work will discuss these
solutions in more depth.

The retention of displacement current is required for the
energy transport from an external circuit through the vacu-
um region to the plasma load. The principal consequence is
that the well-known plasma dielectric constant
€~ (1 +c/¢3)"? becomes significant (c, is the Alfvén
speed). The plasma dielectric, the radial acceleration of plas-
ma mass, and the two tensor pressure components provide a
four-fold energy sink between the core plasma load and the
external driver circuit.

il. ESTABLISHMENT OF MAGNETIC INSULATION
AROUND A Z PINCH

In the initial stage of the pinch all material is contained
in the conductor, and outside of the conductor is vacuum.
Free electron current in the diode can be computed with a
particle in cell code. One computation uses the geometry of
Fig. 1, which is typical for Z pinches. The cathode is a cylin-
der with radius 3.4 cm, inside an anode with radius 5 cm, and
a 3 cm wide anode-cathode gap forming the diode. The di-
ode is bridged by an ideal conductor that mimics the Z pinch.
The Z pinch radius, 0.6 cm, is representative of multiple wire
loads but substantially smaller than the initial radius of a gas
puff. Electrons can be emitted from the cathode surfaces as
indicated. The emission assumes space-charge limited flow,
i.e., electron emission continues until the normal electric
field vanishes. Ions are ignored in our computations.
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RADIUS (cm)
ANODE

Z (cm)

FIG. 1. Geometry of the Z-pinch diode as used in the computation. The
cathode is a cylinder of radius 3.4 cm at 3 em away from an anode with
radius 5 cm. The Z pinch is mocked up as a 0.6 cm radius conductor that
connects cathode and anode. The clectron emission surfaces are indicated
on the cathode. The voitage source is connected at the entrance of the diode,
6 cm away from the anode plane. Initially the diode vacuum contains no
electrons: The figure shows the electron positions at 4.4 nsec into the simu-
lation.

Figure 2 is the assumed electrical pulse at the diode. The
voltage rises linearly on a 5 nsec time scale toover 1 MV. The
current is quadratic in time in agreement with / = V /L. At
the end of the simulation the current exceeds 100 kA, for a
magnetic field at the Z-pinch edge up to about 4 T (40kG).
The current in free electrons is the lowest line in Fig. 2. The
current starts once the electric field in the diode feed exceeds
the field emission threshold, taken to be 200 kV/cm in the
code. This occurs at about 1.5 nsec.

When the first electrons are emitted the current through
the Z pinch is only 15 kA, insufficient for magnetic insula-
tion. Therefore the free electrons simply cross the diode gap.
Later in time these electrons become trapped by the magnet-
ic field from the Z-pinch current. These intermediate stages
are not shown, but they can be inferred from Fig. 1, which

14—
3| 3
w I =
Z
¢ | i
- [ 4
g I £
g1 3
g T, 4
0// e N 0
0 5
TIME (ns)

FIG. 2. The voltage ¥V and the current 7 of the clectncal pulse at the diode
entrance. The dashed line at the bottom gives the leakage current i free
clectrons coming off the cathode shank.
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shows the distribution of free electrons at the end of the run.
The maguetically insulated space-charge sheath in the cur-
rent feed appears to stream off the cathode into the diode
already filled with electrons emitted previously. The sheath
is clearly unstable, rolling up into vortex-like structures that
persist as they move toward the center conductor.

There is an exact analogy between strongly magnetized
non-neutral electron beams and inviscid fluid flow.">'* In
two-dimensional Cartesian geometry with constant magnet-
ic field B,, the combination of charge density, permittivity,
and magnetic field in the form p/e,B, corresponds to the
vorticity §, = VXX U,, where U, is the two-dimensional
drift velocity. This drift velocity U, can be derived from the
streamfunction ¢ as Uy, = ( — dy/dy,d¢/dx), where
Vg=g..

The exact correspondence breaks down in cylindrical
geometry because the magnetic field varies with radius,
B, = pyl /27r, now

_ 3(1/B,)
VXU, =—£2 —E, .
*Eo €8, or

(n

The last term is small compared to the first, except perhaps
near the central conductor, where the blob size is compara-
ble to the geometrical scale. Hence in our diode the analogy
with inviscid shear flow is largely valid.

The magnetically insulated space-charge sheath coming
off the cathode is then analogous to a vortex sheath. It is well
known that such a sheath is unstable, and that the instability
develops into coherent vortex regions reminiscent of the
space-charge blobs seen in our simulation. It is also known
that the vortex regions are relatively stable, similar to the
persistence of our blobs. Furthermore, interaction between
the blobs can be treated as the motion of two-dimensional
vortex lines.

The electron blobs appear to be self-contained entities,
consistent with £ X B drift motion for the strongly magne-
tized electrons in the blob’s space-charge field. In this case
the blob electrons remain on equipotential lines, since the
drift is perpendicular to the potential gradient,
(ExB)‘E = 0. In a cylindrically symmetric blob the charge
convected by the drifting electrons is then invariant, and the
blob is a stationary entity. Qualitatively similar results are
found in simulations with other parameters, €.g., a slower
voltage rise time, or a smaller Z-pinch inductance more rep-
resentative of a gas puff.

The leakage current in free electrons for the run in Fig. 2
peaks at 15 kA around 3.5 nsec, and decreases thereafter. At
these later times the current is magnetically insulated, and
its magnitude can be estimated by considering the drift cur-
rent in the thin space-charge sheath parallel to the cathode
shank (see Fig. 1). The current in the detached blobs can be
considered equal to that flowing along the cathode shank
since there are no sources or sinks in the detachment region.

In an insulating magnetic field B, the sheath electrons
drift in the axial direction along the cathode shank with drift
velocity U. =~ E, X B,,/B},. The electric field varies through-
out the electron sheath from zero at the metal surface of the
cathode to £ at the top of the sheath, but the magnetic field
is mainly from the central current; hence B, =u,J /2mr,.
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The current in the electron sheath /_is then approximately
I =2mr,oU,. The susface charge density o of the cathode
sheath is 0 = ¢€,E,, where E, is the normal electric field at
the outside of the electron sheath. Since the sheath is thin
compared to the width d of the pulse line, and d is less than
the inner radius 7, the electric field can be approximated by
E, =V /d. Usually the rise time 7 is so fast that the voltage
can be approximated by theinductive voltage V=~ LJ /1, with
L the diode inductance and / the total diode current.

The relative importance of early free electron leakage
current to the total pulse line current then becomes

I, EN (N Zp,
— = —) = —) , 2)
1 cB dJ} \Z,)/2n

where Z, = (uy/€,)"* =pusc =371 O, and Z, = V/I
=L /7 is the total diode impedance. After magnetic insula-
tion is established in the pulse line this leakage current de-
cays away.

The literature on magnetic insulation contains esti-
mates along the same lines as the above. In addition, it is
shown in detail that the single-particle considerations used
here correspond well to a treatment that includes the self-
electric and self-magnetic fields.

A typical Z-pinch diode is about 3 cm wide, and the
inductance L =~ 6 nH. A typical pulse rise time may be = 12
nsec, for a diode impedance of about 0.5 Q. In contrast, the
vacuum impedance Z,/27 = 60 2, and the impedance ratio
is &, The leakage electron current /. is thus always a small
fraction of the total current 1, whence I, can be ignored.

However, for single exploding wires the vacuum current
may become comparable to the conduction current. As an
example, the inductance of a single 25 um radius wire load in
a 3 cm wide diode is about 45 nH. For a fast (10 nsec) rise
time pulse the factor Z,/Z,,=0.1, but a relatively small gap
size partly compensates. When r,/d = 3, forexample, 1./] is
of the order 4. In this case there should be a sizable leakage
current in free electrons, potentially generating a measura-
ble® bremsstrahlung x-ray signal. If corroborated by further
work the bremsstrahlung x-ray signal may be an excellent
indicator for the arrival time of the electrical pulse at the Z
pinch.

14-17

Ill. COLLISIONLESS PLASMA PERIPHERY

Once magnetic insulation has been established, as dis-
cussed in Sec. I1, the current flows principally through the
pinch, and the pinch accelerates inward. Eventually the
pinch stagnates on axis, forming a dense, current-carrying
cylinder of plasma. However, this pinch core could be sur-
rounded by a periphery of collisionless plasma, from Z-pinch
matenal that did not fully implode or from background gas
that was swept in from the outer regions of the diode. In this
section we consider the current that might be carried by such
a plasina.

The peripheral plasma might be different in Z pinches
that start from an injected gas on one hand, and multiple
wires on the other. The injected gas forms a plume with the
highest density opposite the nozzle opening, and wide wings
of decreasing density. The initial breakdown and current
conduction should occur along the spatial contour in the
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diode, which {given the electric tield and material profiles)
is at the minimum of the Paschen curve, and thus should
leave some gas outside the initial current channe). This gas
may be ionized later to form the periphery. With wires the
exterior plasma would come from the early blowoff as the
wire load is heated, or it might not exist at all. The ambient
8as in the diode can be another source of tenuous plasma,
perhaps resulting in ion densities as high as 10'*/cm® (and
electron densities <10'*/cm*).

Ironically, sometimes'" there is current leakage through
a tenuous plasma on axis inside the wires: when the wires are
heavy the outer part of the wire is shed continuously
throughout the current pulse. This plasma implodes on axis
before the original wires have moved, and diverts part of the
current.

More recent wire load implosions'*?' involving Ni ar-
rays indicate a fairly weak inductive current nctch and radi-
ation emission peaking after the plasma starts to expand.
When the diode energy flow is examined the energy input to
the load from classical Ohmic heating and inductance
change is apparently insufficient to account for the total en-
ergy radiated. Some energy must be removed from the vacu-
um magnetic field in order to account for the discrepancy.
Now such an analysis is not supported by an independent
measure of the current distribution in :he pinch; indeed, the
location of the current path is simply taken as the boundary
of luminosity in pinhole photos. Should the current flow
deeper in the plasma so that the peak compression is greater,
then some improvement in the energy discrepancy would be
realized insofar as the effective inductance change would be
larger. Yet it is difficult to account for the energy by this
effe~t alone because the current path would have to be very
deep (=0.01 mm). Such a current filament would be much
thinner, in fact, than the observed (Ni) L-shell emission fila-
ment. If, however, the outer load regions are in a gyrokinetic
coronal limit, as described below, then the work done on the
gyrokinetic plasma would be absorbed from the vacuum
magnetic field and at least partially transferred to the interi-
or pinch after stagnation. In consonance with observation,
such motion would not provide much of an inductive current
notch, because of the ability of this coronal plasma to hold a
more constant current while a load stagnation occurs.

Moreover, comparing theoretical and experimental en-
ergy coupling to Ar gas puffs provides further indirect evi-
dence of exterior energy sinks, which could be tenuous peri-
pheral plasma. The work of Thornhill™* suggests that lower
mass puff loads exhibit radiative K-shell yields lower than
expected if all the energy transferred to the load cavity was,
in fact, coupled to the central plasma load. The experimental
vields were more heavily weighted to the L shell, suggesting
a lower load temperature at stagnation—even though the
puff gas load accepted more generator energy than the hy-
dromagnetic calculations could predict. This is again pre-
cisely what would be expected should an intervening energy
sink arise in the load periphery and “soften” the implosion.

In contrast, more recent gas puff implosions®' show a
fairly pronounced inductive current notches as little as S cm
from the load. The design changes to the gas pufl load were
quite substantial in compur'ison to the experiment studied by
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Fhornhill. In Spielman’s expertment the pult mass was
much larger, the front end inductance was reduced, the neu-
tral flow speed was increased to Mach 8 (rather than Mach
4), and the return current anode plane was both a somewhat
thinner wire mesh and closer to the cathode. It would appear
that the energy transfer was quite efficient, perhaps indicat-
ing that coronal plasma was either absent or if present not
behaving as a strong energy sink. The best data presently
available cannot resolve these possibilities.

Hence there is a good reason to believe that only a de-
tailed examination of the differences in behavior between gas
puffs and imploding wires would contain some direct evi-
dence for current leakage throughout a peripheral plasma.
The differences to be examined must rest upon clear mea-
sures of the load mass in a gas puff, which is not generally
available, and good measures of energy flow in the diode
region. If corona plasma is produced mostly from back-
ground gas, then no major wire/puff differences would be
expected. If the corona plasma in gas puffs is due to an in-
complete sweep-up of the load gas, then wire/puff differ-
ences would depend on the actual puff load mass (and its
distribution) as compared to the extent (and distribution)
of any early wire blowoff.

The remainder of this paper assumes that the Z-pinch
periphery contains a collisionless plasma, with Jensity and
temperature fixed to values within the known experimental
and theoretical limits. For the number and energy densities
one could reasonably associate with such a “test” plasma, a
simple calculation will show how the peripheral plasma car
become important for Z-pinch implosions.

What is the current density in the collisionless periphery
surrounding the current carrying Z pinch? In a dense plasma
the collisions are the dominant influence balancing the mo-
tion of the plasma electrons against the acceleration by the
electric field. The resulting collisional electron drift, and
thus the current density J is proportional to the electric field
E, J = oE. The electrical power input into the plasma ends
up in increased random velocities of the plasma particles,
viz., Ohmic heating.

In the absence of collisions the magnetized plasmain the
Z-pinch periphery can absorb energy from the electrical
pulse. In this case the energy does not go into random mo-
tion of the plasma particles, but instead is put into organized
motion. A strongly magnetized plasma in an electric field is
not accelerated along the field, but drifts perpendicular to
the electric and magnetic fields with a velocity
W =c¢U= — (E/B). For constant E the drift speed re-
mains constant, but when the electric field increases in time
the plasma accelerates. The kinetic energy density
/"~ = pW?/2increases (p denotes the plasma mass density)
and electrical power is absorbed. Likewise, electrons that
E X% B drift into a region of increased magnetic field spin up,
increasing their perpendicular energy w, while the magnetic
moment g ~w, /B stays cons.ant. The increase in w, , or the
increased magnetization, is another power sink. In a cylin-
drically symmetric geometry with B~ 1/r the particle’s an-
gular momentum about the axis, p,, = mrv,,, is conserved;
therefore a drift toward the axis increases the parallel energy
wy as 1/7°. Further details of the description are developed
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in the Appendix, where it is shown how special solutions of
the gyrokinetic equation can be used to model the coronal
plasma.

In particular, the limit of homogeneous compression
and special initial conditions allows the solutions to simplify.
The dependent variables and their derivatives are then func-
tions of the single seif-similar invariant £ = r/r.a(r). Here
r. = r./l,is a dimensionless scale length that arises natural-
ly in the theory with ct,, = /,and 7 = ¢ /1, The time scale 4, is
tied to a particular implosion time scale. The variable a(r)
contains the sole time dependence, eg., U=ar,
DU /Dr = ar, Four primary frequencies arise. The oscilla-
tory frequency is related to the magnetic field pressure;
T, = w. 'isthe transit time of an Alfvén wave with velocity
¢, through the pinch scale length. Two new frequencies,
expressed as ratios of thermal velocities to light speed, are
related to the anisotropy. The parallel pressure frequency is
w;=c;/c’, and the perpendicular pressure frequency,
@} =¢}/c*. The displacement current frequency, 7. = w; '
is a measure of the overall dielectric strength characterizing
any particular flow.

To assess the role of this sort of collisionless current
channel in the evolution of a Z pinch, we select a set of self-
similar profile functions, which is compatible with the (rath-
er sparse) information available on the coronal plasma and
examine the evolution of the special solution. In particular,
what fraction of *new” current is absorbed into such a cor-
ona after it is formed under the magnetizing influence of
early interior currents flowing only in the dense pinch? What
fraction of the incoming energy flow from the driving circuit
is diverted into this corona, and what circuit waveform be-
havior is characteristic of such an external plasma layer?

We can formulate these questions in a realistic context
by specializing the self-similar equation of motion derived in
the Appendix to portray a coronal rundown in a Z-pinch
diode. Each of the four independent frequencies appearing in

wf o o o}

g="L 2 28
a a” a a

can be set to produce a desired result in the solution. In the
example developed here @} and wj are selected to corre-
spond to L(|j) temperatures of 75(60) eV, which is consis-
tent with ionization at a few electron volts and subsequent
Ohmic heating by about a factor 10 before a “collisionless™
state is obtained.>® This leaves wl, ), a radial extent
(£..6. ], and an initial velocity U(£ . ) to be developed.
Since r. = wi/w, = U(£, )/a,, the selection of either a,,
or U(£. ) (=17.33X% 107 cm/sec) is, for fixed r., guided by
the typical collapse time of pinch loads, taken here to be
about 30 nsec over a radial extent of 1.5 cm. In keeping with
common pinch diode dimensions, the radial extent of the
corona is taken to be =4 cm. Hence the values for § and
& willcorrespondtof. = 1.5em/ly.. & =5.5em/lyr.;
I, = 30 cm, since the collapse time is in the nanosecond
range.

The value inferred for r. must be guided by the den-
sities implied for the profile. With an upper limit of 10'*
ions/cm”, suggested by the lower limit of schlieren measure-
ments, values of 7. on the order of [0.25, 0.312] kecp the
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density bounded above by this constraint when the density
scale  n, = (2.366X 10°%/A) [a/U(£. ;) U/} MA)
(cm™*), and the density profile

e (l I?g "‘)

x( 1 _ |
JI-¢&° Jl - g’
are evaluated for

enclosed current
(€)= L (UNT = €7 l/‘ll —ET 4+1) of a few
mega-amperes.
The selection of 7. to set the density leaves arbitrary the
choice of either w;; or w, . For this example the selection of a
moderately strong dielectric coefficient,

(&) eg=1 /T &7 (3b)

(peaking at about 150 €,) implies, together with ., a value
for w, . Similar expressions for the temperature profiles are
easily derived from Eqs. (A9b) and (A9¢c).

Such a group of solutions is shown in Fig. 3. To summa-
rize, initially the interior boundary of the solution domain is
given a velocity of 2.0 X 107 (cm/sec), which corresponds to
a typical peak implosion velocity of Z-pinch loads in ma-
chines of moderate energy. The interior coronal (H* ) ion
density is about 1.04 X 10" cm ~* per MA® of interior cur-
rent; it extends for 4 cm outside the interior radius of 1.5 cm.
[ The factor MA? is obtained from Eq. (3a), in analogy to
the Bennett pinch relation.] The initial coronal conduction
current is 34% of the core current. The density n(£) decays
nearly « l/§ while the perpendicular nearly 4, is nearly
«&; Eq. (A9b) produos a parallel energy profile A, also
nearly «£2. Since ¢, is an azimuthal thermal speed at the
scale radius, and since the thermal speed profile is propor-
tional to the scale radius, the average angular momentum
profileis p, ~ryw, ~¢y&*r.lyso that L §{ ~ & (lr. ey asde-
manded by the self-similarity constraints. The net result is
that the azimuthal component P, = pL | /r’ « ngy; is nearly
independent of radius. The perpendicular component
&P, < Eny? is also weakly dependent on radius.

The initialization conditions required to produce this
sort of energy profile are not precisely known, but the fact

(3a)

2
+n),

Gyrokinetic Profiles : R* = 2.71E-001

N
b 0.5 4
& ni(E)
.02 o4 s R 3
-hy(8)
}-05 4
-&(8)

FIG. 3. Examples of initial sel-similar profiles are shown. As labeled the
curves are normalized o, = LIAX 10" em *MA 1= 1.M4x1 ..
€e=150.h =60cV.and h, = 75 eV,
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that #, ~ ¢ #, 15 consistent with a simple model tor the early
phase. If thin peripheral gas is photoionized and Ohmically
heated while in an azimuthally directed magnetic field, then
it will evolve to a collisionless state principally through elec-
tron-neutral collisions. The conductivity wili smoothly
evolve to a small value as runaway electrons separate in ener-
gy from the bulk electrons that interact readily with the neu-
trals and ions. Since the runaway electrons are captured in a
radial E X B drift they are confined to the r-z components of
the velocity space unless scattered into the 8 component.
The energy dumped into the 7-z motion depends on the time
history of the conductivity and local E, field, but the rate of
scattering into the 8 direction depends on the number of
scattering neutrals and ions available at any radial location.
Since the number of such scattering centers in any azimuthal
flux tube is linear in the radial coordinate, the power divert-
ed to the azimuthai direction increases « r. Hence, for any
particular time history of r-z heating, the final energy
dumped in the & direction will be proportionately greater at
larger radius. The energy density in the r-z component is
deposited in each volume independently, but at a fixed radi-
us scattering in the whole volume swept out by a gyrating
electron diverts energy to the azimuthal component.

Insofar as these self-similar flows fix the (conduction)
current partition between the core and the periphery, they
are only useful as approximate models of the load as it enters
the final rundown and stagnation phase. At this time the
interior load is expected to be hot enough to curtail further
magnetic diffusion, while the peripheral plasma is forced to
conserve flux unless it becomes turbulent as a result of mi-
croinstabilities. Since much of the energy transfer to a Z
pinch is due to the load’s inductance change, a fair fraction of
this energy is transferred in the last phase of the rundown.
The self-similar models can therefore offer a simple treat-
ment of this important phase of the motion by initializing
their parameters to pinch load conditions after the implosion
is well underway.

The dynamic consequences for an imploding load sur-
rounded by a coronal plasma of this sort are shown in Fig. 4.
The final 30 nsec of the rundown are strongly modified by

Gyrokinetic Solution for R* = 2.71E-001

M 1w
a(t)
}0.5 4
10.'0 20‘0 \ w..l) —] ThS]
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FI1G. 4. Time histories of the current /1, /1, exterior clectric field
E($ ). radius (), and absorbed energy E, (1) over a 50 nsec rundown. As
lubeled the curves are normalized W0 /=145%/,, . F =145

MVY/cm MA® E, = 143k)/ecm MA  anda = .
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the coltisionless magnetoplasma corona. As the radial com-
pression ( ~a  ?) reaches its maximum, the exterior elec-
tric field reverses and the peak in the absorbed energy is
obtained. While the conduction current is constant over the
interval, the total current rises slightly and exhibits a very
mild inductive notch. All this time dependence, about a
+ 11% current variation, is due to the displacement cur-
rent, which alternately charges and discharges the plasma
dielectric while a fixed conduction current leaks across the
diode.

If the load were a bare slug, its motional impedance
would become more important in the rundown. Further
power absorption by the Z pinch would be strongly curtailed
and one might expect a 309,-40% “inductive notch” to de-
velop in the current waveform. The gyrokinetic corona has
changed this picture substantially. Now further power ab-
sorption can occur, but most of the energy goes no further
than the corona. The implosion and stagnation occur on a
normal time scale but the interior load current is fixed.
Whereas the coronal conduction current is fixed as well, the
displacement current component can vary in strength from
5%-20% of the core current, depending on the strength of
the plasma dielectric that has been trapped in the periphery.
At fixed interior current the stronger dielectric cases tend to
implode less sharply as a result of the larger mass and slower
Alfvén speeds. The slower time scale implies less displace-
ment current because the accelerations are weak. In con-
trast, the weaker dielectric cases provide a more prominent
displacement current component because the accelerations
are stronger. During the stagnation, energy is deposited in
the coronal fields and matter. The energy given the coronal
plasma is released when the motion reverses, as a resuit of
the recoil of the gyrokinetic plasma from the angular mo-
mentum and magnetization stresses, which build up as the
radius gets smaller and finally cannot be overcome.

In the case illustrated previously (at the time of peak
compression) this diverted energy E, (7) has risen to 143
kJ/cm MA? of interior current. In the absence of any dissi-
pative mechanisms this energy would be released back to the
driving circuit as the plasma expands—it is never coupled to
the dense portions of the load! If we evaluate the peak cor-
onal energy for the currents and load lengths discussed in the
Gamble 11 analysis by Thornhill, the absorption of this cor-
onal energy into the load region would result in much more
additional energy removed from the pulseline, which more
than removes the energy coupling discrepancy between the-
ory and experiment at lower load masses. If anomalous dissi-
pation mechanisms are, in fact, active in these coronal plas-
mas, then this is also the rough magnitude of energy
available to the load as additional heating. Such a channel
would provide a path for conversion of energy in the vacuum
magnetic field to the load without compression of the cur-
rent filament to very small dimensions, as required to ex-
plain the observations of Ref. 19.

IV. SUMMARY AND CONCLUSIONS

Current can be lost in the periphery of a Z pinch by
various mechanisms. Initially the Z pinch carries no current,
and the inductive voltage at the edge of the cathode away
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tfrom the pinch material can drive a current in free electrons.
The free electrons can be the bulk of the current at the very
start. but this current is cut off rapidly once the current starts
flowing through the Z pinch.

The tenuous plasma outside the Z pinch can also carry
current. How much current is shunted through this plasma
depends on the plasma density, and also on parameters such
as the temperature and the magnetic field in the periphery,
i.e., the current in the main Z pinch. The pressure of the
collisionless plasma in the periphery becomes anisotropic as
the plasma contracts toward the axis, as a result of the sepa-
rate conservation of the electron’s magnetic moment, and
the clectron’s angular momentum about the axis. Under
these conditions the plasma can still oscillate in a self-similar
manner for a constant interior Z-pinch current. The con-
straint r “constant interior current is also consistent with the
ideal h romagnetic self-similar flows useful in modeling
the dense interior plasma. Both interior and peripheral plas-
ma are thus modeled in a mutually consistent way. While the
apportioning of current between the interior and the corona
is an important issue, it is beyond the scope of this work.
Here the model is built to describe the motion after the inte-
rior plasma is hot enough to curtail further magnetic diffu-
sion, and thus a fixed interior current is the proper boundary
condition.

In contrast to self-similar hydromagnetic oscillator so-
lutions, the present gyrokinetic oscillators continue to ab-
sorb generator power as they collapse. The coronal plasma
may thus be a common modifying influence on the current
waveform, reducing or removing the “inductive notch™ ex-
pected from simpler treatments. Because of this extra energy
sink, the comparison of theory and experiment is modified in
the right direction and magnitude.

While there are many potential caveats to the develop-
ment presented here as we consider the early time develop-
ment of the corona, the detailed role of transit time effects
and the microstability of the evolving distribution functions,
the collisionless magnetoplasma corona treated here may be
an important ingredient in many plasma radiation sources,
one that deserves close experimental attention.
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APPENDIX: DEVELOPMENT OF SELF-SIMILAR
SOLUTIONS

Because the electrical properties of collisionless plasma
are generally determined by a few moments of the distribu-
tion function, a convenient path to developing the constitu-
tive relation j(E) is to examine the moment relations of the
gyrokinetic equation. Only four parameters are, in fact, re-
quired to determine the response of the system. Each of these
is based on a particular moment of the distribution function.
For example, using the variables of the main text, energy
conservation is expressed by the statement
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J-E:ﬂ. +v.F' (Al)
di
where the pressure forceis F = — V-P, and P is the pressure

tensor. Two of the basic parameters are already obvious in
the two independent pressure tensor components, the others
arise as shown below.

The macroscopic quantities that enter into the fluid
(moment) equations are averages over the particle distribu-
tion function. The distribution functions that solve the gyro-
kinetic equations contain a class of separable functions of the
form g(r,t) F(pup,.r,). Here, instead of writing the distribu-
tion in terms of the velocity components in cylindrical geom-
etry, it is better to use the dynamical invariants, the magnetic
moment 4, and the angular momentum p,,. The two equiva-
lent representations of the gyroaveraged distribution func-
tion are connected by

Sirvg) = [m*r/2aB(r,) in(r,) F(p,p,.r0). (A2)

The factor in [---] is the Jacobian of the transformation
from v to u, p,, and § the gyrophase. Without collisions the
invariants for each particle do not change, and the velocity
function F is constant in time along a guiding center trajec-
tory, r(r,,t). The particle density n(r,t) is no longer part of
F, which is normalized as

m?r,
2 _}ldudp, F Jo) =1, A3
(m“(’“))f bt dpy Fltopura) (A3)

for both electrons and ions. With the assumption of quasi-
neutrality the mass density pis p = (Zm . + m,,)n(rt).

Without collisions the distribution function is not neces-
sarily Maxwellian. Instead, the distribution function should
be computed by modeling the transition between the colli-
sional and the collisionless plasma. While this is a complicat-
ed problem, outside the limited scope of this paper, the gen-
eral result® is a tenfold increase in mean kinetic energy
before the electrons become collisionless. Here the distribu-
tion function is viewed as an input to the problem.

The parallel pressure is defined through the average val-
veof p,,

3

PP, =pL} =pJ'd;l dp, F%, (Ada)

and the perpendicular pressure becomes

(Y

P, =pBM, = pBIdy dp, fmﬁ . (A4b)

Here, and in other moments, the summation over species is
implicit.

The axial current density, defined by averaging of the
axial drift velocity of the guiding center

(nc)(muf, D(E/B) dn B)
nev.= | — + mc -w, —,
) B r Dr ar
is then readily calculated by momentum balance to be
J = pc’ D(E/B) 4 i(pL,'; _ 1 d(rpBM, )) .
) B Dt B

r r ar
(AS5)

The first term is related to the acceleration of the E X B drift
motion, the second comes from angular momentum conser-
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vation, or # . and the third is the magnetization contribu-
tion, from P, . Inthe acceleraiion term the ions dominate; the
electrons are more important for the two pressure-related
terms, without thermal equilibrium between electrons and
ions.

The fluid equation of motion in the radial direction, for
an anisotropic pressure, includes a centrifugal force L ﬁ/r‘
that reflects the conservation of angular momentum,

bU _pLi __]_a(rpBM,)
Dt r r or

_ Anisotropic pressure implies that the collisions are suf-
ficiently frequent to keep the velocity components rando-
mized. The frequent collisions imply a finite conductivity, in
contrast to the assumption of infinite conductivity, in ideal
hydromagnetic theory, which demands a collisionless plas-
ma. One might argue that pressure isotropy has been
reached on time scales longer than those of interest, or as an
initial condition. However, in a cylindrical geometry, as the
plasma gets closer to the axis the pressure P, parallel to the
magnetic field B = B, (r) increases as 1/, while the per-
pendicular pressure P, increases as 1/r. Thus the anisotropy
is intimately connected to the time scale of interest in a colli-
sionless cylindrical plasma.

In this gyrokinetic description the Maxwell-Vlasov sys-
tem, as completed by the momentum balance including the
anisotropic pressure P, can be summarized in the following
equations:

on

—J.B. (A6)

— 4+ V:(nW) =0, (A7a)

ar

%? = VX (WXB), (ATH)

vxp=3™ 1 JE (ATc)
c c ot

The displacement current is retained in the analysis in order
to make connection with external power sources or sinks.
For a cylindrically symmetric geometry the nonvanishing
dependent variables are the fluid density p, the radial com-
ponent of the fluid velocity W, = cU, the axial component of
the current density J. = J, the azimuthal component of the
magnetic field B, = B, and the parallel and perpendicular
moments L. and M.

In the limit of homogeneous compression (U« r), spe-
cial initial conditions in these variables allow the equations
to simplify. The dependent variables and their derivatives
are then functions of the single self-similar invariant
£ =r/r.a(s). Here r. is a dimensionless scale length that
arises  directly in the transformation, viz.,
r.=w,/w, =r./l, with ct, =1, and 7 =t/1, The time
scale 1, is a free parameter only to the extent that a particular
implosion time scale for the core plasma remains arbitrary.
The variable a(7) contains the sole time dependence, e.g.,
U= drﬂl DU/Dr = d’“.

A self-similar oscillation is possible only when the acce-
lerations are proportional to the pinch radius. For an iso-
tropic pressure the proportionality of J_B,/n to radius im-
plies that the magnetic field is proportional to Jp. In the
anisotropic case additional profiles must be defined self-con-
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sistently. Using kq. (A /c) toeliminate J, and separating the
four distinct spatial dependencies that arise, Eq. (A6) be-
comes

3 (A8)
a a’ a a

The oscillatory term related to the magnetic field pres-
sure is — wj /a, where 7, = w, ' is the transit time of an
Alfvén wave with velocity ¢, through the pinch scale length
r.,viz., wj =ci /¢’ = B*/4upc®. As expected this term also
occurs in the corresponding equation for the isotropic ideal
hydromagnetic case. The two new terms related to the ani-
sotropy are the parallel pressure term, with o} =¢}/c*, and
the perpendicular pressure term, with w? =¢? /¢*. The veloc-
ities c,, ¢;, and ¢, are thus alternate measures of the
strengths of the fundamental moments in the theory, serving
to parametrize the corresponding separation constants.
Each dimensionless frequency (w, =7, ') derives from a
separate term in the momentum equation, and the velocity
ratios obtain from the normalization of the moments to the
light speed and the required dimensionality, viz.,
L;~13cihy(€) and BM, ~clh, (£). The final term, pro-
portional to &, arises here only when we keep the full effects
of displacement current; 7 = w;; ' is a measure of the over-
all dielectric strength characterizing any particular flow.

The four frequencies appearing in Eq. (A8) are con-
nected to four constraint relations that define the required
plasma profiles for enclosed current
(&) = (cly. 72)EBy (&), number density nq(£), perpendic-
ular (kinetic) temperature A, (£), and parallel (kinetic)
temperature A, (£). With the dielectric coefficient €(£) giv-
en by

€(£) = 1 + (dam,c*)ny(£)/B,(£) , (A9a)
the constraints are given by
wy = (/A ()1 - 1/E(5)], (A9b)
o} = — (/{1 - 1/€&))/
REn,(6)}9; [£no(E)R, (D) ], (A9¢)
7 = [1 4 £9; In By(£)/€€7), (A9d)
1=[2+£&3; nBy(&))/€. {A9¢)

These equations require ;. <1 to obtain positive definite
number density profiles and offer bounded solutions for each
of the variables, usually over a finite range [£..£. ]. The
spatial range used can be chosen to fit whatever physical
dimensions are imposed because these solutions are simply
following the motion of the single particle gyrokinetic trajec-
tories. In other words, clipping these solutions in radius is
admissible as long as the profile values and derivatives on the
interior of any such domain limit to the proper values as one
approaches the boundary.
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APPENDIX C
ELECTRON SCATTERING FOR CODE IMPLEMENTATION

As discussed in Sections 1 and 9, theories and models of the reflex switch depend
crucially on the electron distribution in the vicinity of the anode foil. Thus, electron
scattering formulas are summarized in this appendix for reference, and for later use in
extensions of the different codes.

The literature contains three basic scattering regimes, depending on the number of
scatterings per electron N. Multiple scattering is roughly characterized by N > 20, for
1 < N < 20, one has the so called plural scattering regime while N < 1 defines the single
scattering regime. This appendix is concerned specifically with the multiple scattering
regime and its associated theories. For a more complete discussion see the review article
by Scott®®.

C.1 The distribution of Goudsmit and Saunderson.

One of the first multiple scattering theories is that of Goudsmit and Saunderson.**%®
This theory is exact for electrons with the same path length, and is valid for all scattering
angles — unlike Moliere’s theory (see below) which assumes small angle multiple scattering.
The essential result of the theory of Goudsmit and Saunderson is the expression of the
scattered electron distribution f(#) in terms of a series of Legendre polynomials. Note
that here the angle 6 is the total deflection from the incident direction.

The general form of f is given by

£(6) sin 048 = Zl;r' Y (2¢ + 1)G¢ Pe(cos 8) sin 8d), C-1)
4

where the G¢’s are expansion coefficients and the P,’s are the Legendre polynomi-
als. Although the Goudsmit-Saunderson theory is considered well suited to numerical
evaluation,!®! it is nevertheless too computationally intensive for the repetitive calculations
required in a particle-in-cell simulation. Theories that result in Gaussian or quasi-Gaussian
distributions are easier to sample from.

C.2 Moliere’s theory.

A frequently used approximation is given by Moliere’s theory: a simpler derivation
leads directly to the Gaussian approximation. Following the derivation by Hughes and
Godfrey,192:203 the distribution function of the electrons changes due to collisions according
to:

(%) , = —2xnvf / o(x)xdx + 2xnv / £ = D)o(x)dx. (C -2)

col
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The subscript coll denotes the collision term and f(,t) is the electron distribution function.

Here n is the density of scattering centers, v is the incident speed of the scattering electron,

o(x) is the scattering cross section as function of angle x, and 8 — ¥ is the direction of the

electron before the last scattering event. In Equation C-2 all scattering angles are assumed

to be small, thus sin 6 ~ 6. The first term on the right hand side of Equation C-2 denotes

scattering out of the angular interval d, while the second term denotes scattering into dé.
Expanding to second order in x gives:

of 2 19f
(%) =1m(EL+ 35, (c-9)

where

() =2em0 [ xPo(x)dx, (C -3q)

0

and the integration is extended to oo assuming that the cross section falls off sufficiently
fast. For a relativistic electron,

2
2ro(x)xdx = ZXK, (C - 3)

o = 4xZ(Z +1)r?  4xZ(Z +1)e!

By (o)
Here r. is the classical electron radius, 8 = v/c (and c is the light speed), Z is the atomic
number of scattering atoms. The factor (Z + 1) takes into account the scattering of atomic

electrons.
The solution to Equation C-3 for perpendicular incidence (f = (v, )) is:

£(8,0) = exp(—6°/(x*)0), (C-4)

(C - 3¢)

where 0
(x?) = 2na? In(-—5).

om in

The length £ = vt is the axial path length traveled by the electron. Thus, for an electron
scattered by a foil, ¢ is the foil thickness. The cutoff angles 0,,,, and 0,,;, , both functions
of Z, are needed to keep the the integral in Equation C-3a finite. Equation C-4 is the
standard Gaussian distribution for electron scattering, indicating that the electron acquires
a Maxwellian distribution perpendicular to the incident direction. Equation C-4 can also
be obtained by purely statistical arguments'®.

Moliere’s treatment of small angle scattering is more accurate. The following gives
the simplier derivation due to Bethe®® and also by Hughes and Godfrey. Again we begin
with the Fokker-Planck Equation, C-2. Expanding the distribution function f by a Fourier
Bessel transform,

£(0,6) = / "~ ndndo(n0)g(n, 0), (C-3)
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where

9.0 =] 0d0Ja(n0)1(6,0) (C - 5a)
0
Using Equations C-5, C-5a and C-2 one can show that
50,00 = [ ndndo(n)exp(=nt |~ a(xdxt - Jalml) (€~6)
[+] )]
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Figure 92. The standard width of the Gaussian distribution for the scattering angle in multi-

ple scattering (Equation C-4) compared to the width according to Moliere (Equa-
tion C-9), as function of incoming electron energy.

According to Bethe, Equation C-6 is valid for any scattering law (i.e., cross section)
assuming the angles are small. Next, assuming the number of collisions is large, one can
make approximations that make Equation C-6 more tractable, In particular, Moliere found
that f can be written as a series of the form: |

£(6)0d0 = ©4O[f)(8) + B-* f1(©) + B~ fD(0) 4 .., (€ - 1) |
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where
f(O) = 2cxp(-ez)r
and f(,i> 0 are derived functions. The angle © is a reduced angle given by

0 =0/x.B"?,

where x? = nla® (see Equation C-3b) and B is a parameter given by the transcendental
equation

exp B/B = x2/1.167)2, (C-28)
with
x5 = x3(1.13 + 3.76a}).
The parameter a; = Za/f, where a is the fine structure coastant. Obviously, for v = ¢
(or 8~ 1), a; << 1 for reasonable Z. The angle xo is the minimum cut off angle given by

Xo = A/2ma, where ) is the DeBroglie wavelength of the electron and a is the Fermi radius
of the atom. Thus, a = 0.885a0Z~!/3 with ag = 5.3 x 10~°cm being the Bohr radius.
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Figure 93. Distribution of scattering angles from Moliere’s theory for different electron en-
ergies.
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It is clear from the definition of x. and x, that B depends on the type of scattering
foil as well as the incident electron energy. Most importantly, B also depends on ¢, the foil
thickness, or the (axial) path length of the electron. Comparing the Gaussian term from
Moliere’s expansion,

f©(6) = 2exp[-6/(x? B)] = exp(—6? /nta’ B), (C-9)

with Equation C-4, the the Gaussian approximation shows a linear dependence of width
on £ compared to the Moliere formula C-9. Moliere’s theory is valid for N >> 1, where
N is again the average number of scatterings. For large N, B will be large, so from C-8
B ~ In(¢) and thus the width of the Gaussian f(°}(8) goes like £In(£), rather than £ as in
C-4.

Figure 92 compares the width of the scattering angle according to the standard Gaus-
sian approximation, Equation C-4, with the width from Moliere’s theory, Equation C-9,
as function of electron enery. The comparisons at very large energies are not strictly valid
since the scattering cross sections become small enough that N << 1 and neither theory
is strictly valid. However, the width according to Moliere should remain larger than the
standard Gaussian width. Figure 93 gives the distribution of scattering angles for different
energies computed with Moliere’s formulas. For larger energies the width of the Gaussian
decreases, again because the scattering cross section decreases with energy.

Moliere’s theory is more accurate than the standard gaussian approximation (see
Scott®® or Hughes and Godfrey'%1%3) and hence a better choice. Calculations with
Moliere’s theory may be simplified by keeping only the f©® term in the scattering model
(i.e. only the gaussian term). Implicit in this assumption is that B >> 1. This is the model
presently implemented in the code. However, for some cases a single term is insufficient.
Therefore, later versions of the code will include more terms.
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