AD-A272 948
AU ORR AT

Scheduling for Locality
in Shared-Memory Multiprocessors

Evangelos Markatos

Technical Report 457 g ; E C
May 1993 T
» 4_)\1.5H93
93-28302

LT

UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

Scheduling for Locality in Shared-Memory

Multiprocessors
by

Evangelos Markatos

Submitted in Partial Fulfillment
of the
Requirements for the Degree

DoCTOR OF PHILOSOPHY

Supervised by
Thomas J. LeBlanc

Department of Computer Science
College of Arts and Science

University of Rochester
Rochester, New York

1993

V11C QUALITY INSPECTED 8

Accesion for

NTIS CRA&I g
OTIC TAB
Un.announced O
Justif.cation

e deeaecccimanaean—— s—

By

Dist ibuition |

Availetility Codes

. Avail andfor
Dist Special

A

Form approved
REPORT DOCUMENTATION PAGE OME No. 07060188
Pulling rOBUTING BUNIOR far they ot anto - 0 JveTege | NOW SO ") T e tOr g g St
o g ane 9 e Gota e q ang ¥ q tne o 11Ormaton Sewe ¢ g A Brten ST SapETt O the
vy ,. Suren 1204, "y mxommmvmﬂm' e Susget. 'NW&QM|‘\'W 3':"'»-‘.;""'"""
1. AGINCY USE ONLY (Leave blank) [2. AEPORT DATE 3. REPORT TYPL AND OATES COVERID
Mav 1993 technical report
<. TITLL AND SUSTITLE S. FUNDING NUMBERS
Scheduling for Locality in Shared-Memory Multiprocessors ONR/DARPA NO0N14-92-
J-1801
AU $)
Evangelos Markatos
7. PERFORMING ORGANG) L PERFORMING ORGANIZA NON
mm« NAME(S) AND ADORESS(ES) REORMING OAGANIZA
Computer Science Dept.
734 Computer Studies Bldg. TR 457 .

University of Rochester
Rochester, NY 14627-0226

S. SPONSORING / MONITORING AGENCY NAME(S] AND ADORESS(ES) 10. SPONSORING / MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Information Systems
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVARLABILITY STATEMENT 126. OSTRIBUTION COOE

Disteibuticn of this documen*t 1s uniimited.

S —
13. ABSTRACT (Maximum 200 words)

The last decade has produced enormous improvements in processor speed without
a corresponding improvement in bus or interconnection network speeds. As a result.
the relative costs of communication and computation in shared-memory multiprocessors
have changed dramatically, and many parallel applications do not execute efficiently
on today's multiprocessors. In this dissertation we quantify the effect of this
trend -in architecture on parallel proaram performance, explain the implications of
this trend on popular parallel programming models, and propose system software to
efficiently map parallel programs and programming models to modern shared-memory
multiprocessors. We propose new decomposition and scheduling algorithms that signi-
ficantly reduce communication overhead. Our experiments over a wide variety of
shared-memory multiprocessors demonstrate that the performance benefits of our
scheduling-for-locality algorithms are significant, improving performance by up to
60% for some applications. We conclude that communication overhead need not dominate
performance, given an appropriate programming model, multiprogramming scheduling
policy, and user-level decomnosition and scheduling algorithms.

4. SURIECT TERMS 15. NUMBER OF PAGES
shared-memory multiprocessors; architecture trends; loop 110
scheduling; lightweight thread scheduling; multiprogramming 16. PRICE COOE
m N — e Tt o~y ————
17, SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. UNNTATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ARSTRACT
unclassified unclassified ynclassified ut
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Sragcriond Dv ANY Sta I19-18

jii

Curriculum Vitae

Evangelos Markatos was born in ApyootéAe (Argostoli), Greece on February 22 1966.
After finishing High School in 1983, he entered the University of Patras from which he
graduated in 1988 with a diploma in computer engineering. His senior thesis (joined

with Catherine Chronaki) was on performance evaluation of schedulers for database
systems.

In September 1988, Evangelos started graduate school at the Computer Science
Department at the University of Rochester from which he received his M.S. degree in
1990. His research deals with several areas of computer science such as parallel oper-
ating systems, real-time systems, parallelizing compilers, synchronization, scheduling,
databases systems, graph theory, and lower bounds. Although it was not easy for him to
choose, Evangelos finally decided to focus his research in parallel processing and write
this dissertation about Scheduling for Locality in Shared-Memory Multiprocessors.

Evangelos has accepted a Research Associate position with the Computer Science
Institute in Crete, Greece.

iv

Acknowledgments

First, I would like to thark Tom LeBlanc, my advisor, for his helpful guidance, inspiring
discussions, and his constant contributions to the research described here. Tom is always
available to talk to, and has the unique ability to take us out of the dark holes that
research was always getting us into.

The two research groups that Tom and I participated in, the Coschedulers (Mark
Crovella, Prakash Das, and Cezary Dubnicki) and the Predictors (Mark Crovella and
Ricardo Biancini) were always a constant encouragement for creation and constructive
discussion. Most of the work described in chapter 3, is the result of the cooperation
with the Coschedulers.

I would also like to thank Michael Scott, Robert Fowler and Bruce Arden, the other
members of my dissertation committee, for their interest and feedback on my work.

I would like to thank Catherine Chronaki for the few but precious evenings we spent
studying and doing research together.

Finally, I would like to thank Evangelia Melissinou, who has always been a definition
of courage and dignity for me, and Pavlos Markatos for those wonderful afternoons of
youth that shaped my personality.

This research was supported under NSF CISE Institutional Infrastructure Program
Grant No. CDA-8822724, NSF Research Grant No. CCR-9005633, and ONR Contract
No. N00014-92-J-1801 (in conjunction with the DARPA HPCC program, ARPA Order
No. 8930).

Abstract

The last decade has produced enormous improvements in processor speed without a
corresponding improvement in bus or interconnection network speeds. As a result, the
relative costs of communication and computation in shared-memory multiprocessors
have changed dramatically. An important consequence of this trend is that many paralle]
applications, whose performance depends on a delicate balance between the cost of
communication and computation, do not execute efficiently on today’s shared-memorv
muitiprocessors.

In this dissertation we quantify the effect of this trend in multiprocessor architec-
ture on parallel program performance, explain the implications of this trend on popular
parallel programming models, and propose system software to efficiently map parallel
programs and programming models to modern shared-memory multiprocessors. Our
experiments with application programs on bus-based, cache-ccherent machines like the
Sequent Symmetry, and large-scale distributed-memory machines like the BBN Butter-
fly, confirm that applications scale much better on previous-generation machines than
on current machines due to the rising cost of communication. Qur experiments also sug-
gest that shared-memory programming models, which can be implemented efficiently
on the machines of yesterday, do not readily port to state-of-the-art machines. As a
solution, we propose new decomposition and scheduling algorithms that significantly re-
duce communication overhead. Our scheduling algorithms, which apply equally well to
run-time libraries and parallelizing compilers, attempt to co-locate processes and data,
assigning processes to processors based on the location of the data they will access.
Our experiments over a wide variety of shared-memory multiprocessors demonstrate
that the performance benefits of these scheduling-for-locality algorithms are significant,
improving performance by up to 60% for some applications on modern machines. We
conclude that communication overhead need not dominate performance on present or
future multiprocessors, given an appropriate programming model, multiprogramming
scheduling policy, and user-level decomposition and scheduling algorithms.

vi
Table of Contents
Curriculum Vitae ii1
Acknowledgments iv
Abstract v
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 TheProblem« e 1
1.2 The Solution e 2
1.3 Contributions e 4
1.4 Related Work 6
1.5 Outline e e e 7
2 Architecture Trends vs. Software Trends 8
2.1 Imtroduction i i i e e e e e e
2.2 Architectural Trends 10
23 Software Trends v . i i it e e e e e e e e e 12
2.4 Performance Impact of Hardware and Software Trends 13
2.5 Implications for Software 21
26 Conclusions e e e 22
3 Operating System Process Scheduling 23
3.1 Imtroduction i e e e e 23
3.2 Multiprogramming Techniques 24
3.3 User-Level Programming Models 26
® ® ® ® o { J

»

-

vii
3.4 Multiprogramming Implementations 30
3.5 Evaluation of Multiprogramming Policies 34
3.6 The Effect of Frequent Synchronjzation on Space-Sharing Policies 38
3.7 Conclusions e e e 48
4 Thread Scheduling 49
4.1 Introduction. 49
4.2 Performance Implications of Memory-Conscious Scheduling 50
4.3 Simulation Results 56
4.4 Conclusions e 60
5 Loop Scheduling 63
5.1 Introduction. e 63
5.2 Affinity Scheduling o o o 66
5.3 Analytic Evaluation L. L 0 L L L. 7
5.4 Experimental Evaluation 7!
55 RelatedIssues 99
5.6 Conclusions e 100
6 Conclusions and Future Work 102
Bibliography 105

-

viii

2.1
2.2

4.1

5.1
5.2

5.3
5.4

5.5

List of Tables

Comparison of different shared-memory multiprocessors

Minimum completion time (in secs) and number of processors needed to
achieve this time for the Dirichlet problem.

Execution time (in seconds) of fine-grain parallel applications.

Load imbalance and affinity characteristics of the application suite. . . .

Execution time (in seconds) of simple, balanced loop program with non-
uniform start times.

Number of synchronization operations for SOR (N=512).

Number of synchronization operations for transitive closure on a skewed
640-node graph. L

Number of synchronization operations for adjoint convolution N = 75. .

10

17

52

92
92

e s e o

S+ UREE VO —

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2

3.3

3.4

3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

ix
List of Figures

Trends in Variation in Ratio of Bandwidth to Processing Power 11
Speedup of (oarse-grain Gaussian elimination 14
Speedup of fine-grain Gaussian elimination 15
Gauss elimination on shared-memory multiprocessors 16
Speedup of the Dirichlet program 18
Transitive Closure 20
Execution timeof MP3D oo 21
Gauss with 16 threads and barriers on hardware partitions. 37
Relative slowdown introduced by a multiprogramming level of 2 for dif-
ferent scheduling policies and different programming models 39
Measured execution time of tree versus centralized spinning barriers: 16
processes on 15 processors: quantum size = 20 ms. 42
Measured execution time of spinning versus blocking tree barriers for 1¢
processes on 15 Processors.o 44

Measured overhead of blocking tree barriers for 16 processes on 8 processors. 13

Measured overhead of blocking combination barriers for 16 processes on

8 PrOCESSOTS. . .« . v o i v e et e e e e e e e e e e e e e e e 46
Effect of the number of processors on completion time (16 processes). . 47
Gaussian elimination of a 640 by 640 matrix 53
Grassfireona 512by 512 matrix 54
Merge sort of 2 millionintegers 55
The effect of number o processors on memory-conscious sche 'uling. . . 56
Locality Model 1. 61
Locality Model 2. e 61
Locality Model 3. i 61
Locality Model 1. 61

T

«@ .

4.9
4.10

5.1
5.2
5.3
5.4
5.5

5.6

5.7
5.8

5.9
5.10

5.11

5.12

5.13
5.14
5.15
5.16

5.17

Locality Miodel 2.
Locality Model 3.

Pseudocode for affinity scheduling
Structure of the L4 application
Performance of loop scheduling algorithms for SOR.
Performance of loop scheduling algorithms for Gaussian elimination. . .

Performance of loop scheduling algorithms for transitive closure (random

Performance of loop scheduling algorithms for adjoint convolution.

Performance of loop scheduling algorithms for adjoint convolution {re-
verse index scheduling). oo 00000000

Performance of loop scheduling algorithms for application L4.

Performance of loop scheduling algorithms on the Butterfiy under trian-
gular workload.

Performance of loop scheduling algorithms on the Butterfly under de-
creasing parabolic workload. oo o oo

Performance of loop scheduling algorithms on the B tterfly when load is
in first 10% of iterations.

Performance of loop scheduling algorithms on the B™N Butterfly.
Gaussian elimination on the Sequent Symmetry.
Gaussian elimination on the KSR-1.

Transitive closure on the KSR-1. (1024 node graph, where 409 of them
formaclique).

SOR on the KSR-1. (1024 by 1024, 128 iterations)

90
97

]

1 Introduction

1.1 The Problem

Recent devrlopments in processor technology have boosted the performance of pro-
cessors more than two orders of magnitude over the last decade. The evolution of
floating point co-processors. and the advent of RISC processors were the main reasons
for the significant improvement in processor speed. Unfortunately, these impressive im-
provements in processor technology were no. accompanied by a similar improverment
in memory or interconnection network technology. This discrepancy has resulted in a
(relative! increase of the communication cost compared to the computation cost. Gen-
erally, processo: speeds have improved by more than two orders of magnitude, while
memory and interconnection network speeds have improved by no more than one order
of magnitude over the last decade. This fact implies that communication is about an
order of magnitude more expensive (relative to computation) than it was a decacc ago.
Such an increase in the communication cost Las fundamental implications in the design
and implementation of applications for parallel processors. The performance of parallel
applications depends on a delicate balance between communication and computation
in each multiprocessor or on the communication to computation (¢/c) ratio of the
multiprocessor. An increase of an order of magnitude in the relative cost of commu-
nication implies that the importance of communication is significantly enhanced. 1f
for example an application would suffer about 5% communication overhcad in previous
generation multiprocessors, the same application would now suffer about g;xfﬁ—d = 34%
communication overhead. which is generally considered rather high. Such an increase in
communication overhead will increase bus and memory contention, which i1n turn will
result in even higher communication overhead. Most programmers might be willing to
tolerate a 5% overhead, especially if it enables the use of a simple high-level program-
ming model. However, when the overhead approaches 35% or more, the performance
degradation may become too high to tolerate. Even when programmers are willing
to tolerate such overheads, the multiprocessor is heavily underutilized and it may not
Jjustify its cost.

While architects were making communication more expensive, paraliel software de-
signers were proposing programming models that make heavy use of the communication
medium (e.g. snared memory). Lightweight process libraries [5, 11, 71] encourage users
to use large numbers of threads, without attempting to reduce the communication cost

L]

associated with those threads. These programming models were successful in previ-
ous generation multiprocessors that employed slow CISC processors, and relatively fast
(compared to the processor used) interconnection networks. The communication over-
head in those programming environments was no more than 5%, which is rather modest.
Applications that used to scale almost linearly in previous generation shared-memory
multiprocessors are not able to use more than 2-3 processors in modern multiprocessors.
For example, figure 2.7 shows a parallel rarefied hypersonic flow simulator, a member of
the SPLASH suite of applications. This code scales very well on an Encore Multimax
multiprocessor (a rather slow previous generation architecture), but cannot use more
than 2 processors on a recent bus-based cache-coherent multiprocessor (a RISC based
architecture). Figure 2.3 plots the speedup of Gaussian elimination, an application
from numerical analysis, on several shared-memory multiprocessors. We see that the
application has almost linear speedup on older multiprocessors (like the BBN Butter-
fly I, the Symmetry, and the Multimax), wkile it has very poor speedup on modern
multiprocessors (like the KSR-1, the Butterfly TC2000 and the SGI Iris).

The reason applications do not scale as well as they used to is that most programming
models for shared-metnory multiprocessors ignore communication as a significant source
of overhead. Up to a few years ago, shared-memory multiprocessors used such slow
processors that even if applications made heavy use of the communication medium.
the effect of communication in the total completion time of the program was almost
pegligible. The evolution of fast processors however, changed this picture drastically.
Communication in current shared-memory multiprocessors is so visible, it becomes the
dominant overhead factor in most parallel applications.

In this dissertation we quan:ify the extent of the communication overhead incurred
by parallel applications and contrast it to the overhead the same applications incurred
in previous-generation multiprocessors. Qur study includes bus-based cache-coherent
multiprocessors and large-scale NUMA {both cache-coherent and non-cache-coherent)
multiprocessors. We explain the implications of this overhead for the parallel pro-
gramming models used, and which of those models are obsolete. We proposc novel
system software support for popular programming models on modern shared-memory
multiprocessors. Our system software is in the form of decomposition and scheduling
algorithms for operating systems, thread libraries, and compilers. We test our propos-
als on several shared-memory multiprocessors, including the Butterfly family of NUMA
multiprocessors, the KSR-1 large-scale cache-coherent multiprocessor, and some small-
scale bus-based cache-coherent multiprocessors like the Sequent Symmetry, the Encore
Multimax, and the SGI Iris.

1.2 The Solution
The thesis that drives this dissertation is:

Communication is becoming a dominant source of overhead in shared-
memory multiprocessors. Novel decomposition, scheduling and synchro-

nization algorithms are needed to reduce the ever-increasing communication
overhead incurred by parallel applications in modern multiprocessors.

Because -communication quickly became one of the dominant overhead factors in
-shared-memory multiprocessors! our research will focus on reducing communication in
paralle! applications whenever possible. In order to do that we use novel scheduling
and decomposition algorithms that give particular attention to this emerging overhead
dimension, without ignoring the traditional overhead dimensions of synchronization and
load imbalance. We believe that scheduling and decomposition mechanisms should be
implemented in two levels: the operating system kernel level and the user level. which
hosts the run-time system and the compiler. There are two primary reasons why we
believe a two-level approach is appropriate:

¢ The operating system kernel has limited information about the paralle] applica-
tion, as opposed to the compiler, or the run-time system which has lots of infor-
mation available. Instead of the compiler trying to communicate this information
back to the operating system, it is easier to leave some system decisions to be
made by the compiler or other system software above the operatiug system.

¢ Trends in operating system research suggest that most of the resource allocation
and process management software should be moved out of the operating system
kernel [46, 4, 53], and implemented in user-level servers instead. The operating
system only provides the basic mechanisms to tie the system together. while the
servers provide the policies, which may vary from one system to another.

Kernel Scheduling

We will first examine what kind of scheduling policy is most appropriate for the oper-
ating system kernel. Although there exist many different scheduling policies. they all
fall under the two broad categories of space sharing and time sharing. Under space
sharing, some number of processors is dedicated to each application for a relatively long
interval of time. Under time sharing, a processor may be multiprogrammed among dif-
ferent applications. Space sharing has good performance properties, but time sharing
may be easier to implement, as it is a direct derivative of uniprocessor time sharing
policies. The difference between these two approaches is most apparent when a new
application arrives in the system and a reconfiguration decision has to be made. Space
sharing accommodates the new application by reducing the number of processors avail-
able to existing applications, thereby reducing the physical parallelism available to those
applications. Time sharing does not reduce the physical parallelism available to any ap-
plication; it reduces the frequency with which physical parallelism is made available
to each application. Although this difference between space sharing and time sharing
may seem unimportant, it turns out to be the most influential factor in a comparison
between the two families of policies, and this factor favors space sharing.

1We should note however, that communication has always been a dominant source of overhead in
distributed memory multiprocessors and distributed systems.

Even if we settle on space sharing as the operating system scheduling policy. the
compiler and run-time system are still ieft to solve a significant part of the scheduling
and decomposition problem. We will examine this problem in the realm of thread
libraries and parallelizing compilers.

Thread Library Scheduling

Thread libraries help programmers create many units of parallelism inexpensively. Al-
though in such environments it is the user who decides the appropriate decomposition
of the problem (or the number of threads used), the thread scheduling problem must
be solved by the scheduler associated with the thread library. Many elaborate and
scalable thread schedulers have been proposed [5, 71], but they all have one thing in
common: they attempt to minimize load imbalance among processors, while keeping
queue manipulation to a minimum. We believe that this emphasis on load balancing
is not appropriate on modern multiprocessors. Instead. the goal of scheduling should
be to minimize the total completion time of the application (which in turn maximizes
throughput), which requires that we devote special attention to issues such as commu-
nication overhead and data partitioning policies. Qur approach to thread scheduling.
called memory-conscious scheduling, assigns threads to processors based on the loca-
tion of the data that each thread will access. This approach minimizes communication
overhead first, and then deals with load imbalance. and only if it actually occurs (i.e., a
processor is idle during execution). Our experiments (in section 4) show improvements
of up to 60% over the traditional approach which tries to minimize load imbalance. We
are able to achieve such substantial performance improvements because our scheduling
method reduces communication overhead along with other overhead dimensions, while
previous methods ignored communication in most cases.

Compiler Loop Scheduling

Finally we consider the role of communication in compilers, and especially in the loop
scheduling problem. Loop scheduling is the assignment of the iterations of a completely
parallelizable loop to the processors of a multiprocessor. We show that traditional
methods of loop scheduling focus on minimizing load imbalance while keeping synchro-
nization overhead low. In our approach, we first try to reduce communication and then
try to balance the load, while still keeping synchronization overhead down.

1.3 Contributions

The main contributions of this dissertation are:

o We identify the increasing tmportance of communication overhead in modern
shared-memory multiprocessors. We show that application programmers should be
concerned about the frequency of communication and the overhead of communica-
tion operations in all kinds of shared-memory multiprocessors, including bus-based

cache-coherent multiprocessors and large-scale NUMA multiprocessors. 2 Our ex-
periments suggest that current shared-memory multiprocessors dou’t resemble the
ideal PRAM model, where all memory locations are equidistant from all proces-
sors. Older bus-based multiprocessors were so close to the ideal PRAM model
that they were called UMA (Uniform Memory Access) multiprocessors. Modern
multiprocessors (both small and large scale) however, suffer from high non-local
memory access costs, much more so than their UMA predecessors. This change
in the importance of communication over the past few years makes it difficult
to apply known research results for UMA machines in modern multiprocessors,
especially if the results depend on assumptions about the frequency and cost of
communication.

¢ We show that from the two major families of multiprogramming policies (space
sharing and time sharing) space sharing (when coupled with appropriate synchro-
nization primitives) ts preferable to time sharing even in small-scale multiproces-
sors. Space sharing enables paralle] applications to exploit any locality of reference
they may exhibit by avoiding frequent migration of processes, and improves uti-
lization since applications are generally able to make better use of a few fast
processors, rather than many slower ones. Frequently synchronizing applications
may suffer under space-sharing however, as synchronization between running and
ready processes may require several context switches. We show that appropri-
ate blocking primitives designed for multiprogrammed environments reduce this
overhead significantly.

e We propose a thread scheduling algorithm that assigns a thread to a processor
based on the location of the data it will access. We also propose a loop scheduling
algorithm for parallelizing compilers that assigns iterations of a parallel loop to
processors based on the location of data. While the thread scheduler relies on
user intervention to place threads close to their data, the loop scheduler uses a
heuristic assignment of iterations to processors that usually places iterations close
to their data. We experiment with both algorithms on several shared-memory
multiprocessors, including the Butterfly family of parallel processors. the Sequent
Symmetry, and the SGI Iris shared-memory multiprocessors. We show (in chap-
ter 5) that although our algorithms improve performance only slightly (5-10%)
on the previous generation of shared-memory multiprocessors, they can improve
performance by up to 60% on modern shared-memory multiprocessors.

o We show that, as currently implemented, the popular shared-memory programming
models are not appropriate for shared-memory multiprocessors. Shared-memory
programming models were initially designed for use on multiprocessors where com-
munication was relatively inexpensive. The assumption of cheap communication
is embedded so deeply in shared-memory programming models and their imple-
mentation that it is difficult to eradicate. For example, most operating systems for

?Large-scale shared-memory multiprocessors like the BBN Butterfly are often referred to as NUMA
{Non Uniform Memory Access) multiprocessors because they employ a deep memory hierarchy where
the cost of accessing non-local data is significantly higher than the cost of accessing local data.

bus-based shared-memory multiprocessors use a central work-queue and place all
processes in the same queue. This results in processes being moved fro.u processor
to processor each time they block and resume. Most thread libraries and language
run-time systems also use a central work queue as a place where all tasks reside.
-Mesgage-passing programming models on the other hand, usually incur lower com-
munication overhead and offer better performance (even on shared-memory mul-
tiprocessors), since they do not make this same assumption. So programmers of
shared-memory multiprocessors should either abandon the shared-memorv pro-
.. gramming model (along with its conceptual clarity and attractive load balancing
properties), or system software designers should use methods like our proposed
affinity scheduling and memory-conscious scheduling to efficiently support the
shared-memory programming model on shared-memory multiprocessors.

1.4 Related Work

Hardware designers have dealt with the exploitation of deep memory hierarchies using
several different methods. Caching[7)is one method of bringing data close to processors.
It has been successfully used in uniprocessor and multiprocessor systems in all levels of
the memory hierarchy. Caching is usually implemented in conjunction with prefetching.
Prefetching brings data close to a processor before it is actually needed, and has the
benefit of amortizing the cost of a data transfer over several data items. Prefetching
hides the latency of the interconnection network (bus), and increases its utilization.

Multiple contezts (2] have also been proposed as a way to tolerate latency in multi-
F-ocessor systems. In traditional systems. a processor does nothing else while it waits
for a cache miss to be satisfied, thereby lowering processor utilization. If the processor
could rapidly switch to another computation stream while waiting for a reference to
be satisfied, processor utilization would increase substantially. Multiple context proces-
sors implement a fast context switch in hardware when the currently executing context
blocks waiting for data. The transfer of data over the interconnection network proceeds
in parallel with the execution of another context, just as computation may proceed in
parallel with 1/O on multiprogrammed uniprocessors.

Operating system designers have addressed the memory hierarchy by implementing
software caching in multiprocessors with local and non-local memory. These operating
system implementations either use daemons [39] or page faults [17, 15, 20, 43, 44, 42)
to migrate and replicate pages based on reference behavior. That is, when a processor
starts referencing data tha :s not local, the data is brought into local memory by the
operating system. In effect, uperating systems research in locality management deals
with software caching and coherency in multiprocessors that do not have support for
hardware caching and coherency. Qur research on the other hand does dot assume the
existence of caching or coherency at a specific level in a shared-memory multiproces-
sor, but is instead mainly concerned with the development of appropriate scheduling
algorithms that co-locate processes and data and avoid any unnecessary inter-processor
communication.

Both operating systems and hardware-based coherency schemes improve locality
by bringing data close to processars as efficiently as possible. In this dissertation we
will show that significant performance improvements can also be achieved by bringing
processes close to data. There have been some initial attempts at solving this problem
(14, 58, 61, 77] but most of the previous research focuses primarily on the complexity
of the problem, while we focus on finding robust heuristics that deliver most of the
performance benefits. Software policies for scheduling, placement, and data allocation
are particularly suitable to this approach.

We view our approach as complementary to hardware and operating system tech-
niques for improving locality of reference. While previous methods (like multiple-
contexts and software caching) reduce the (average) cost of each non-local memory
access, our work represents an attempt to use scheduling policies to reduce the number
of non-local memory accesses.

1.5 Outline

The next chapter presents a more detailed introduction to the problem bv examining
the performance of several applications on several multiprocessors. We examine the per-
formance and scalability of applications, and evaluate the extent of the communication
overhead in previous generation and modern shared-memory multiprocessors. Chapter
3 presents a comparison between time sharing and space sharing. Chapter 4 presents the
memory-conscious thread scheduling method we propose. Chapter 5 presents the affin-
ity loop scheduling policy that can be used in parallelizing compilers. Finally. chapter
6 presents a short summary of our work and our conclusions.

2 Architecture Trends vs. Software
Trends

2.1 Introduction

Shared-memory multiprocessors consist of processors, memory, and an interconnection
network or bus. In bus-based, cache-coherent machines like the Sequent Symmetry,
there is a single global memory attached to the bus. Each processor has a local cache,
which brings data from the global memory as needed; cache coherence is maintained
in hardware. In large-scale shared-memory machines like the BBN Butterfly family of
multiprocessors, each processor has a local memory, but may access the local memory
of another processor using the interconpection network. Large-scale, cache-coherent
multiprocessors like the ring-based Kendall Square KSR-1 have only cache memory,
which is kept coherent in hardware.

Most shared-memory multiprocessors employ off-the-shelf microprocessors. The last
decade has produced enormous improvements in microprocessor speeds due to advances
in VLSI and RISC technology. These improvements in processor speed can be expected
to produce a corresponding improvement in application performance. However, just as
increased integer performance does not produce a corresponding improvement in oper-
ating system performance [6, 57], an increase in computational power in shared-memory
machines does not guarantee a corresponding improvement in application performance.
Without a corresponding improvement in bus or interconnection network speeds, it may
not be possible for parallel applications to realize the full benefits of any increase in com-
putational power. As a result, many parallel applications which depend on a delicate
balance between the cost of communication and computation, do not execute efficiently
on today’s shared-memory multiprocessors. In some cases, two orders of magnitude
improvement in processor performance produce only a factor of 5 improvement in appli-
cation performance. Much of the problem stems from the fact that the tradeoffs made
by system and application programmers on shared-memory machines of the recent past
are no longer appropriate on current or future multiprocessors. We will first quantify
the architectural trends, and then consider a few of those tradeoffs.

10

Machine Int FP Bandwidth | Nodes | MB/sec/proc | Release
BBN Butterfly I 1 0.05 1024 256 1-4 1981
Sequent Balance 8000 2 2.7 40 12 2.2-3.3 1984
Sequent Balance 21000 2 2.7 40 30 0.9-1.3 1986
BBN Butterfly Plus 8 2.4 1024 256 1-4 1986
Encore Multimax 5 4.2 100 20 5 1987
Sequent Symmetry 10 3.67 80 30 1.8-2.7 1987
BBN TC2000 62 54.5 19456 512 2.5-10 1990
SGI Power Series 98 147 64 8 8 1990
KSR 1 123 109 32768 1088 30 1991
SGI Challenge Series | 300-600 | 440-880 1228 36 34 1993

Table 2.1: Comparison of different shared-memory multiprocessors

2.2 Architectural Trends

Table 2.1 summarizes the performance characteristics of up to three generations of
shared-memory multiprocessors produced by several vendors. The first column con-
tains the name of each machine. Column 2 (“Int”) indicates the relative performance of
integer arithmetic; Column 3 (“FP”) indicates the relative performance of floating point
arithmetic. ! Column 4 (“Bandwidth”) lists the maximum total bandwidth (in MB/sec)
of the largest possible configuration of each multiprocessor. Column 5 (“Nodes™) in-
dicates the number of processors in the maximum-size corfiguration supported by the
architecture. Column 6 (“MB/sec/proc™) lists the bandwidth available to each pro-
cessor in the maximum-size configuration; a range represents the sustained and peak
bandwidth for each processor. The final column (“Release”) indicates the year of release
for each multiprocessor.

From table 2.1 we can calculate the ratio of available bandwidth to computational
power for each machine by dividing the bandwidtk available to each processor (column
6 in the table) by the processing power of each processor (column 2 or 3 in the table).
High values for this ratio, caused by slow processors or high bandwidth, imply that com-
munication is inexpensive, and therefore applications should scale well on the machine.
Small values for this ratio imply that the processors are too fast (or too numerous)
for the available bandwidth, which will probably cause poor scalability in many par-
allel applications. Figure 2.1 illustrates how these ratios have varied over time within
architecture families. 2

Figure 2.1 suggests that the relative costs of communication and computation have

1The arithmetic performance figures were computed by executing a 64x64 uniprocessor implementa-
tion of Gaussian elimination on each multiprocessor, and normalizing the results using integer arithmetic
on the Butterfly I as a baseline. The figures for the Sequent Balance 8000 and 21000, and the SGI Chal-
lenge Series were estimated based on published performance figures for these machines.

3The figure uses integer arithmetic as the measure of processing power. Where the bandwidth is
represented by a range in table 2.1, we plotted the mid-point of that range in the figure.

-

11

3 1 1 | T | L
2.5 BBN ©— -
Sequent ——
. Encore €~ -
R SGI ¢«
a KSR ©—
t 1.5 -
i
)
1pF -
0.5 -

0 i 1 | 1

1982 1984 1986 1988 1990 1992
Date

Figure 2.1: Trends in Variation in Ratio of Bandwidth to Processing Power

changed dramatically over the last ten years, prix. rily due to enormous improvements
in integer and floating point performance. In bus-based, cache-coherent machines the
ratio of (peak) bus bandwidth to processor speed has been on a downward trend from
1:1 in the Encore Multimax to 1 : 12 in the Silicon Graphics Power Series. Large-
scale multiprocessors like the Butterfly exhibit the same trend, from a ratioof 4 : 1
in the Butterfly I to 1 : 6 in the TC2000. Although there are exceptions (such as
the KSR-1), this general trend persists despite increases in communication bandwidth.
The bus bandwidth of the SGI Challenge Series is 1.2 GB//sec, which is an enormous
improvement over the 64 MB/sec bus in the Power Series. However, the increase in
bandwidth is completely offset by a 3 to 6-fold improvement in processor speed, and a
4-fold increase in the maximum number of processors.

Some cache-coherent machines attempt to address this trend with ever larger caches.
The 8 KB local caches in the Balance grew to 64 KB in the Symmetry. The Power Series
has a 64 KB first-level cache and a 1 MB second-level cache. The KSR-1 has a 256 KB

first-level cache and a 32 MB second-level cache (which is actually the local memory).-

While these larger caches can substantially improve the performance of a time-sharing
job mix, the effect on parallel program performance is unclear.

Based on these trends, we cannot assume that a program that executes efficiently on
the Symmetry will perform as well on a member of the Power Series. Similarly, programs
that ran well on the Butterfly I and even the Plus might not run well on the TC2000.
It is difficult to predict how well programs might port from a large-scale Butterfly to a
small-scale member of the Power Series, or from the TC2000 to the Multimax.

12

2.3 Software Trends

Parallel programming environments and applications must strike a delicate balance
between the costs and benefits of parallelism. The potential benefits include faster
execution due to parallel hardware, and better load balancing properties due to a fine-
grain decomposition of work. The costs include the overhead of process management,
synchronization, and communication. A significant change in any of these costs affects
-the decision about the appropriate granularity of parallelism in an application.

In the early half of the 1980°s, the overhead due to process management was a dom-
inant factor in the decision of how best to decompose a parallel application. Kernel-
implemented processes, each with a separate address space, were simply too expensive
to use as a building block for parallel programming. For example, process creation in
Sequent’s DYNIX operating system took over 25 ms. [5], effectively precluding fine-
grain parallel programming. In an attempt to support parallel programming, Mach [1]
separated the kernel abstractions for address spaces and threads of control, so that a
parallel program could be constructed using multiple threads within a single, shared
address space. In order to avoid the overhead of entering the kernel for thread op-
erations, several thread packages were implemented entirely in user space [12, 23, 69].
These thread libraries represent an extension of operating system functionality into user
space for performance reasons. This trend continued to the point where a typical thread
operation might take no longer than 10 procedure calls [5].

Very cheap threads enable fine-grain parallel programming, which in turn exposes
additional sources of overhead. Synchronization, both at the application level and in
the implementation of threads, became another source of concern. Syncbromnization
often introduced significant overhead, especially when using spin-locks in cache-coherent
machines. The development of efficient and scalable synchronization primitives (see [55])
dramatically reduced the cost of synchronization to the point where it need not be a
significant factor in most applications.

Load imbalance was always a concern, both in small-scale, bus-based machines and
large-scale machines. The two sources of load imbalance, a poor allocation of compu-
tation to threads and a poor allocation of threads to processors, were addressed using
lightweight threads and a central work queue. Lightweight threads made fine-grain de-
composition practical, so no one thread was responsible for a large percentage of the
work to be performed. With a central work queue, no processor remains idle as long
as there are threads on the queue; a thread always runs on the next available proces-
sor. Most thread packages on the Sequent and Encore machines, task bags in Linda
[3], and the Uniform System library [9) on the Butterfly, are all based on these ideas.
Even though central work queues have been criticized for introducing synchronization
overhead (for access to the queue) [5], most systems still use this approach to load
balancing.

As a result of these software trends, many paralle] applications on shared-memory
multiprocessors are written using a shared-memory programming model. Lightweight
threads are used to represent fine-grain parallelism. Shared data is stored in a single
shared address space. Efficient synchronization primitives minimize the need for non-

Y -

«@R.

13

local references. Load imbalance is avoided by scheduling fine-grain threads using a
central work queue. Every cost is under control except communication.

Communication costs refer to information transfer between processors or between a
processor and memory. Cache misses, non-local memory accesses, and bulk data transfer
are all communication operations in shared-memory multiprocessors. These operations
have become relatively more expensive due to hardware trends, and relatively more
frequent due to software trends.

2.4 Performance Impact of Hardware and Software
Trends

To investigate the impact on parallel program performance we executed several paral-
lel applications on six different shared-memory machines. The machines in our study
include a 26 processor Sequent Symmetry S81, a 20 processor Encore Multimax, an &
processor Silicon Graphics 4D/480GTX Iris, a 58 node Butterfly I, a 26 node Butterfly
Plus, a 36 node TC2000, and a 64 node KSR-1. Our applications were chosen to rep-
resent various degrees of communication overhead, load imbalance, and programming
effort. The issues we consider here include a comparison of fine-grain and coarse-grain
decompositions, parallel versus serial communication, the effect of load imbalance, and
the ease of programming in a shared-memory style.

2.4.1 Tradeoffs in Parallel Decomposition

An appropriate parallel decomposition of an application must balance several factors,
including process management overhead, communication costs, the potential for load
imbalance, and the ease of matching the decomposition to the algorithm. We illustrate
these tradeoffs with a program to solve a system of linear equations using Gaussian
elimination.

In the coarse-grain decomposition, there are P processes on P processors. and each
process is allocated a subset of /P rows in an N X N matrix. Each process performs
O(N?/P) computations between successive communication operations. In the fine-
grain decomposition, a process is created for each matrix element to be eliminated.
Each process performs a vector addition between the pivot row and the row containing
the element to be eliminated. If the rows are not in the local memory (or cache), a
communication operation is required.

As seen in figure 2.2, the coarse-grain decomposition scales almost linearly on every
machine, with the exception of the TC2000 and the KSR-1. The program performs
well on most machines because there is little need for communication: each process
executes O(N?/P) arithmetic instructions before each communication operation of size
O(N) (bring an entire row to local memory). Since the ratio of communication to
computation is small in the application (unless P is nearly equal to V), communication
overhead is not a significant factor in performance.

14

v > LA A B | L LA AN S S A g |

Sequent —e—
SGI =+—
Bfly Plus ——
Encore ~»—
Bfly TC2000 ==
KSR —-—

U S Y

e

10

cTeEQacaTn

1 10 100
Processors

Figure 2.2: Speedup of coarse-grain Gaussian elimination

Communication is a significant problem for this application on th TC2000 and
the KSR-1. The application requires that multiple processors access a pivot row seri-
ally, thereby reducing the effective bandwidth of the entire machine to the sustained
bandwidth of a memory-to-memory transfer. The measured bandwidth of a memory-to-
memory transfer in the TC2000 is about 10 MB/sec, and not the 38 MB/sec computed
by dividing the total bandwidth in the machine by the size of the maximum configura-
tion. On the KSR-1 the effective bandwidth between any pair of processors is around 30
MB per second [24], but the KSR-1 employs faster processors. Thus, both the TC2000
and KSR-1 perform poorly when the application requires that processors access the
same data serially.

As seen in figure 2.3, the fine-grain decomposition scales extremely well on the But-
terfly 1, and reasonably so on the Symmetry and Multimax. This same program does
not perform well on more recent machines however, reaching maximum speedup on 4
processors on the SGI Power Series machine, 6 processors on the TC2000, and 4 pr ces-
sors on the KSR-1. The problem is not the cost of creating and synchronizing processes
(which is insignificant in this implementation), but is instead the cost of communica-
tion. Communication overhead depends on how much non-local data a process accesses
compared to the time the process spends computing with the data. In the fine-grain
decomposition of Gaussian elimination, each process performs a small constant num-
ber of operations on each matrix element brought in from non-local memory, whereas
the coarse-grain decomposition performs a linear number of operations on each matrix
element.

A comparison of the minimum achievable completion time on the BBN Butterfly

&

« @+

&

) §

15

100 —— ————rrr—

Sequent —o—]
SGl ~— |
Bﬂ)‘ | =
Bfly Plus ~— |
Encore ~—
Bfly TC2000 ~— |
KSR ——

Ty

10

v oooWn

Ambedederdd- a P S SR R WP |

1 10 100
Processors

Figure 2.3: Speedup of fine-grain Gaussian elimination

(1981) and KSR-1 (1991) is particularly revealing. The coarse-grain implementation
achieves a minimum completion time of 45.133 seconds on 54 processors ou the Butter-
fly I, and 2.6 seconds on 12 processors on the KSR-1 (as seen in figure 2.4), which is a
factor of 17 improvement over the Butterfly. Thus, a decade’s improvement in processor
speed of over two orders of magnitude improved application performance by only one
order of magnitude. The situation is even worse in the case of the fine-grain imple-
mentation, where the KSR-1 improved the minimum completion time by a factor of 4.5
over the Butterfly. This and other similar applications, which performed well on earlier
generations of multiprocessors, simply cannot exploit modern machines efficientlyv.

2.4.2 Parallel Vs. Serial Communication

Both implementations of Gatssian elimination require communication that cannot be
parallelized: multiple accesses to the same pivot row must execute serially. This need
for serial communication is the limiting factor on the TC2000. The Dirichlet problem,
which is similar in structure to other well-known iterative computations on matrices
such as successive over-relaxation (SOR), does not require serial communication, and
therefore can exploit the paraliel communication hardware of the Butterfly switch.

As seen in figure 2.5, the Dirichlet problem scales zimost lincarly on the Symmetry
and Multimax, scales poorly on the TC2000, and reaches saturation on ? processors
on the SGI. On the SGI, processor efficiency is higher for Gaussian elimination than
for the Dirichlet problem, since both involve comparable communication, but Gaussian
elimination has more computation. There is po distinction between the inherently serial
communication in Gaussian elimination and the parallel communication in the Dirichlet

\

- @-

Sequent Butterfly 1 ®
L] T L L) : 1 1 1 § T ¥ <
! Coarse —] H Coarse — 1
Fine — [Fine — |
100 3 ! y
Time » 5 Time ®
L 1 100 r
b L E E
10 il L - | L [1 1 1 L L]
0 5 10 15 20 25 0 10 20 30 40 50 60
Processors Processors °
Multimax Rutterfly Plus
L) | i LB
100 b
Time 100 Time [®
1 | B T | 1 1 1 10 1 1 [l 1
2 4 6 8 10 12 14 16 18 0 5 10 5 20 25
Processors Processors d
Iris TC2000
100 E T 1 4 1 T L
‘ e
Time { Time 10F
s : r
1 1 L i I (] L 1 i L 1 1 1) S
1 2 3 4 5 6 7 8 0 5 10 15 20 25 30 35 1
Processors Processors
KSR-1
®
Time F
1 L 1 Il I 1 A] 1 .
0 5 10 15 20 25 30 35 40 45
Processors
Figure 2.4: Gauss elimination on shared-memory multiprocessors °
® ® ®] ® ® ®

Machine Time | Processors
Encore Multimax | 29.54 20
Sequent Symmetry | 12.39 24
SGI Power Series | 5.34 6

BBN TC2000 2.92 36

Table 2.2: Minimum completion time (in secs) and pumber of processors needed to
achieve this time for the Dirichlet problem.

problem on the SGI since both forms of communication employ serialized access to the
hardware bus. On the TC2000, processor efficiency is slightly better for the Dirichlet
problem than for Gaussian elimination; the additional computation in Gaussian elimi-
nation is offset by the serial communication, while the communication in the Dirichlet
problem can be performed in parallel by the Butterfly switch in the TC2000.

Comparisons based on processor efficiency and speedup are somewhat misleading
however, since completion time is the primary metric of interest. Table 2.2 presents
the minimum completion time (in seconds) achieved for the Dirichlet problem and the
number of processors required to achieve the minimum completion time. As seen in the
table, the TC2000 is able to execute this program faster than the SGI Power Series ma-
chine, even though the SGI has more powerful processors. Unlike Gaussian elimination,
the Dirichlet program, with fully parallel communication, is able to utilize 36 proces-
sors on the TC2000, which is why the TC2000 was able to produce a lower minimum
completion time (albeit using 6 times as many processors).

Table 2.2 also shows that a factor of two increase in integer performance from the
Multimax to the Symmetry produced a comparable improvement in application per-
formance. A factor of 20 increase in integer performance from the Multimax to the
SGI produced a factor of 5.5 increase in application performance. A factor of 12.5 im-
provement in integer performance from the Multimax to the TC2000 produced a factor
of 10 increase in application performance. Although neither the SGI nor the TC2000
produced the full benefits of improvements in processor speed, the TC2000 was very
close in this case.

2.4.3 The Effects of Load Imbalance

One reason programmers choose a fine-grain parallel decomposition is to facilitate load
balancing. For those applications with the potential for large load imbalances, a fine-
grain decomposition with many small pieces of work can be distributed more evenly
than a coarse-grain decomposition with a few large pieces of work. In choosing a de-
composition, The programmer must tradeoff load balancing properties and commuri-
cation overhead. Transitive closure is an application that illustrates this tradeoff. The
structure of the program is:

for i =1 to N do

31

3.4.1 Time-Slicing

e e el

18

LA S S . ¢ v - Ty

Sequent ~o—
SGI =+
Encore ~-=—

TC2000 ~—

10F

veEQ.esTWnN

P S S S Y

14 : ——
1 10 100
Processors

Figure 2.5: Speedup of the Dirichlet program

forall j = 1 to N do
if (M(j,i)) then
for k = 1 to N do
if (M(i,k)) M(j,k) := true

The value of the input determines whether the innermost loop is executed. Thus
assigning the same number of iterations to each processor does not necessarily guarantee
an even distribution of the load among processors. Assuming each iteration of the
parallel loop is assigned to a different process, or some set of iterations of the parallel
loop is assigned to a single processor, then the potential for load imbalance is quite
high. In particular, if the input to the program is a graph of N ncdes, with the first
N/4 nodes forming a clique and the rest of the nodes having no connections, then most
of the computation is contained in the first Nj4 iterations of the parallel loop. Any
static assignment of iterations to processors is likely to produce a huge load imbalance
for some inputs.

The tradeoff between a coarse-grain and fine-grain decompositions of transitive clo-
sure is unclear, since it depends on the relative impact of load imbalance and commu-
nication overhead. Load imbalance (as a percentage of the total completion time) is a
property of the application and the particular schedule used to assign work to proces-
sors. Communication overhead, on the other hand, is a property of the architecture.
Since communication costs have risen while the effects of load imbalance remain a con-
stant percentage of the total execution time, any performance benefits associated with
a fine-grain decomposition are likely to be greater on older machines than on current
machines.

19

Figure 2.6 shows the performance of fine-grain and coarse-grain decompositions for
transitive closure. The fine-grain implementation performs slightly better than the
coarse-grain implementation on the Butterfly I, and significantly better on the Sym-
metry. Communication is relatively cheap in both of these machines, so the benefits
of load balancing dominate communication overhead. The situation is reversed on the
SGI, TC2000, and KSR-1, where the coarse-grain decomposition nearly always performs
better. On the SGI, the effects of load imbalance are comparable to the communica-
tion overhead; on the TC2000 and KSR-1, communication costs dominate beyond 6-8
ProCessors.

This application illustrates how an increase in the cost of communication relative
to computation has important ramifications for parallel applications. When communi-
cation was relatively cheap, as was the case throughout much of the 1980’s, scheduling
techniques that balanced the load while increasing communication (such as the central
work queue model found in most lightweight thread packages) were beneficial. Now,
even in cases where significant load imbalance is likely, communication overhead domi-
nates, and only extreme cases of load imbalance justify incurring extra communication.

2.4.4 Ease of Programming

An important dimension that separates bus-based (Uniform Memory Access) machines
from scalable (NonUniform Memory Access) machines is ease of programming. The
shared-memory programming model is easy to use, and is implemented efficiently by
thread libraries on most UMA machines. Earlier studies have shown that programs
written for UMA machines do not execute efficiently on NUMA machines with software
coherence [16]; the same holds true when porting programs from an early generation of
UMA machine to the current generation of UMA machines. MP3D, a rarefied hypersonic
fiow simulator from the SPLASH suite of applications [64], is an example of a program
that scales well on the previous generation of UMA machines, but scales very poorly on
current UMA machines.

Figure 2.7 presents the completion time of MP3D on the Encore Multimax and SGI.
As expected, the uniprocessor version of MP3D on the SGI is about 20 times faster
than the uniprocessor version on the Multimax. However, the minimum completion
time that the application achieves on the SGI is only a factor of two improvement over
the minimum completion time on the Multimax. Although the SGI processors are an
order of magnitude faster than the Multimax processors, the minimum completion time
of the application does not improve by more than a factor of two. Previous studies of this
application [19, 64] have shown why: the miss ratio of the application greatly increases
with the number of processors. Since cache misses are quite costly on the SGI (relative
to the speed of the processors), it is unable to execute this program efficiently. An
increase in the relative cost of communication from the Multimax to the SGI produces
a dramatic reduction in the speedup of the application. Thus, even though the Multimax
and SGI are both bus-based, cache-coherent multiprocessors (ie., UMAs), they must be
programmed using two very different styles.

20

Symmetry Butterfly I
1 i] T 1] | LI 1 L)
Coarse —
100 - I Fine ——
Time 1 Time
100 -
1 1 L Ny Il L I}] 1 D N]
0 5 10 15 20 25 15 20 25 30 35 40 45 50 55 60
Processors Processors
Iris TC2000
10 1 ¥ T Lil 1] 1 Ll 1 1 | | 1 |]
[Coarse — Coarse —
[Fine — 1 L Fine — 1
Time K/_J Time
[—
1) [] 1 1 1 10 (] i 1 |
1 2 3 4 5 6 7 8 0 2 4 6 8 10 12 14 16
Processor., Processors
KSR-1
100 F—r—T—T—T7TTTT7
ﬁ Coarse —
g Fine = j
Time
1 iy | Lol 1 L 'l 1
0 5 10 15 20 25 30 35 40 45
Processors
Figure 2.6: Transitive Closure
® ® ® ® o [v o

2]

180 T T T T T T T
160 | 5GI —— -

Encore =—
-

140 |
120 |-
100 -
30 I
60 I
40 |
20 -

Time

0 2 4 6] 10 12 14 16 18
Processors

Figure 2.7: Execution time of MP3D

2.5 Implications for Software

We have argued that the overhead associated with the ever increasing cost of communi-
cation is severe and getting worse. We believe the solution lies in recognizing the extent
of the problem, and modifying system and application software to reduce the need for
communication.

Parallelizing Compilers

Traditional approaches to loop scheduling in parallelizing compilers attempt to dis-
tribute the computation in a parallel loop as evenly as possible, while minimizing the
number of synchronization operations required [59]. The standard loop scheduling al-
gorithms, which tradeoff synchronization costs and the effects of load imbalance, do not
consider communication costs. As a result, loop scheduling algorithms that produced
excellent results on the previous gemeration of multiprocessors suffer from excessive
commurication overhead on current multiprocessors.

H parallelizing compilers are to be practical for shared-memory machines, new loop
scheduling algorithms that take into account the rising cost of communication are
needed. Assumptions regarding the relative impact of synchronization, communica-
tion, and load imbalance need to be reconsidered. Chapter 5 describes our experiences
with loop scheduling algorithms on the Iris and *he XSR. Traditional loop scheduling
algorithms in these multiprocessors lead to significant performance degradation. Qur
proposed loop scheduling algorithms, instead, lead to performance improvement by more
than a factor of three in some cases.

Even when there is significant load imbalance among the iterations, our strategy
improves performance by 15% or more.

Thread Packages

Thread packages leave the choice of decomposition to the programmer, but are respon-
sible for assigning threads to processors. Our results clearly indicate that a central work
queue approach, when coupled with fine-grain threads, introduces significant overhead
on modern shared-memory multiprocessors. Since there is no a priori association be-
tween processors and threads when using a central work queue, the data a task will
access is not likely to be in the local cache. The problem is not contention for the single
work queue, but is instead the time needed to load data into the local cache each time
a thread begins execution. With fine-grair threads, the percentage of execution time
spent loading data into the cache is too high, up to 60% of a thread’s execution time
for some programs on the Iris. In several cases it is possible for the system to know
where the data a thread accesses reside and it can place each thread to execute on a
processor close to its data. We have used this technique (described in chapter 4) to
improve the performance of fine-grain parallel programs by 30% on the Butterfly Plus
and 60% improvement on the Iris.

Although a library package cannot in general know which data will be accessed by
a thread, we have found that this information is readily available in BBN's Uniform
System [71] programs. The necessary information can also be provided by the runtime
system, as in Mercury [30], which uses object location information to schedule threads.

2.6 Conclusions

Over the last ten years, dramatic improvements in processor speeds have produced both
a quantitative and qualitative change in the relationship between communication and
computation in shared-memory multiprocessors. Processor speeds have improved by two
orders of magnitude, while the communication bandwidth available to eack processor
has improved by at most one order of magnitude. If current trends continue, it will
be increasingly difficult for parallel applications to utilize large-scale multiprocessors
effectively.

One way to address these problems is to recognize the dominant role of communica-
tion in current systems, and to adopt techniques for reducing communication in parallel
programs. Such techniques can be applied in operating system process scheduling, in
user-level thread scheduling, and in loop scheduling for parallelizing compilers. We will
consider each level of scheduling and its interaction with locality management in turn,
in the following chapters.

23

3 Operating System Process
Scheduling

3.1 Introduction

Multiprocessors are an expensive resource that must be shared. Sharing requires a del-
icate balance between fairness and resource utilization that is usually achieved through
multiprogramming. In order for multiprogramming to be effective however, multipro-
gramming overhead must be minimized. There are several potential sources of overhead
in a multiprogrammed multiprocessor environment, and each can significantly affect
system performance.

Context switch overhead is introduced when processes share a processor. Even
though many multiprocessor thread packages provide a user-level context switch that
does not require kernel intervention, there may still be a need for several kernel pro-
cesses to share a processor. The frequency of context switching through the kernel. and
therefore the amount of overhead, depends on the quantum size (when processes share
a processor using time-slicing) and the frequency of communication or synchronization
(which may cause one process to block and another to run).

A second source of overhead is due to preemption in multiprogrammed systems
that use time-slicing. If a process is preempted while inside a critical section or while
computing some condition on which other processes depend, then processes may waste
their quantum waiting for the preempted process to run. If processes spin while waiting,
then many processor cycles are wasted by spinning. Even if processes block during
synchronization, they must context switch and lose the remainder of their quantum.

A third source of overhead is the cost of cache reload, remote memory references,
and migration incurred when a process is moved from one processor to another. During
execution, a process builds state on a processor, either in the cache of a bus-based cache-
coherent (BBCC) multiprocessor, or in the local memory of a large-scale nonuniform
memory access (NUMA) multiprocessor. If the process is then assigned to another
processor, it must reload the cache on a BBCC, and issue remote references or migrate
the contents of memory on a NUMA. Even if a process is not moved to a different
processor, other applications can corrupt the cache while it is preempted, forcing a
cache reload. If the cache miss penalty is high, the associated overhead can have a
serious impact on performance.

[

24

A fourth source of overhead, and one that has not received much attention, arises
whenever parallel applications share processors. Every parallel program strikes a balance
between the benefits of parallel execution and the overhead of parallelism in the absence
of processor-sharing. When a multiprogramming policy causes applications to share a

-processor, the overhead of parallelism remains, but the effective speed of the processors
appears to decrease. As a result, the balance between effective parallelism and overhead
embodied in a program can be upset by the multiprogramming policy, which results in
inefficient execution. In particular, an application with nonlinear speedup will prefer
a small number of dedicated processors to a larger number of shared processors, even
when the aggregate processor time the application receives is the same in both cases.

It is extremely difficult to find a single multiprogramming policy that can maximize
processor utilization, ensure fairness, and simultaneously address all of these sources of
overhead. The costs associated with a particular policy depend on the underlying archi-
tecture: the cache miss penalty, the remote access penalty, and the cost of migration.
The performance implications of a policy depend on the characteristics of the applica-
tions: the number of processes per application, the amount of state associated with a
process, and the frequency and type of synchronization. Due to the complexity of the
problem, many of the tradeoffs inherent in multiprogramming have been examined only
in the context of specific architectures and programming models, and in many cases us-
ing simulations. There has been little experimental comparison of the various solutions
in the presence of applications with varying degrees of parallelism and synchronization.

In this chapter we experimentally compare the performance of three different mul-
tiprogramming schemes: time-slicing, coscheduling, and dynamic hardware partitions.
We modified an existing operating system to implement the three different schemes.
and then implemented several applications that vary in degree of parallelism, and the
frequency and type of synchronization. Our experiments were performed on a NUMA
multiprocessor without caches, but most of our results apply equally well to both BBCC
architectures and multicomputers such as the Hypercube. Qur results show that in most
cases coscheduling is preferable to time-slicing. Our results also show that although
there are cases where coscheduling is beneficial, dynamic hardware partitions do no
worse, and will often do better. We conclude that under most circumstances, hardware
partitioning is the best strategy for multiprogramming a multiprocessor, no matter how
much parallelism applications employ or how frequently synchronization occurs.

3.2 Multiprogramming Techniques

Many different multiprogramming schemes have been proposed or implemented on mul-
tiprocessors, but most are derived from one of three basic approaches: unsynchro-
nized time-sharing (time-slicing), synchronized time-sharing (coscheduling), and space-
sharing (hardware partitions).

o]

= .

X

3.2.1 Time-Slicing

Time-slicing a multiprocessor is a straightforward adaptation of uniprocessor time-
slicing, and is frequently employed in operating systems derived from uniprocessor sys-
tems. Although a single ready queue is a useful technique for balancing load across
the applications in a system, multiprocessor time-sharing can suffer severe performance
penalties. Since there is no guarantee that an application’s processes will run at the
same time, processes may be blocked while waiting for a preempted process or may be
required to context switch after every synchronization operation. Several studies have
shown that this effect can lead to severe performance degradation {45, 48, 49, 72]. For
this reason, some systems incorporate a special mechanism to avoid preemption while
in a critical section [4, 28, 53]

In addition, Squillante and Lazowska {66, 67] have shown that by ignoring the affinity
that may have been created between a process and a processor, a centralized ready
queue can introduce a performance penalty close to a factor of two. This penalty
is attributed to cache reload costs and increased bus traffic and contention overheads.
They propose a scheduling mechanism that avoids migrating processes unless significant
imbalance occurs. However Vaswani and Zahorjan [74] show that affinity is generally not
worth its performance benefits in current multiprocessors, and is expected to have only
modest performance improvements in future multiprocessors. This seemingly apparent
contradiction is based on the fact that Squillante and Lazowska were experimenting
with time-sharing schedulers, while Vaswani and Zahorjan were experimenting with
space-sharing schedulers (see section 3.2.3). Space-sharing schedulers migrate much less
frequently than time-sharing ones, and affinity scheduling does not seem to increase
their performance significantly.

3.2.2 Coscheduling

Coscheduling was originally proposed by Ousterhout [56] to address the overhead related
to synchronization. With coscheduling, the processes in an application all run at the
same time. There are two important advantages to coscheduling: no process is forced to
wait for another that has been preempted; and processes may communicate without an
intervening context switch. There are also disadvantages, however. If there are several
applications in the system, the machine must cycle through each of them, during which
time the caches can be expected to lose any contents related to an earlier execution
[72]. Also, utilization may suffer if applications have a variable amount of parallelism,
or if processes cannot be evenly assigned to time-slices of the machine. Feitelson and
Rudolph [29] addressed some of the problems by implementing coscheduling in a scalable
way.

Leutenegger {45] used simulation to evaluate the performance of several different
policies, including coscheduling. He showed that for programs with very frequent com-
munication, a policy that schedules the processes of an application to run at the same
time performs significantly better than a policy that does not have this property. This
study did not consider cache or memory affinity, or programs with a variable amount
of parallelism.

26

3.2.3 Space-Sharing

When space-sharing (hardware partitions) is used, no two applications share a processor.
A set of processors may be dedicated to an application for a relatively long fixed interval
[13] or for the entire duration of the application [10]. Within its own hardware partition,
each application may choose to allocate one process per processor, thereby avoiding
entirely the overhead attributed to multiprogramming. However, to ensure fairness and
to efficiently utilize the processors, the number of processors assigned to an application
might have to change when another application arrives or departs [72], or when the
degree of parallelism changes within an application [54, 81]). Unless an application can
easily adjust the number of processes it employs during execution, several processes
from the same application may have to share a processor, introducing context switching
and other related sources of overhead.

Tucker and Gupta [72] proposed a combination of dedicated processor scheduling
and a programming model that dynamically adjusts the number of processes in an appli-
cation to equal the number of processors in the partition. Their experiments show that
having one process per processor results in a significant performance improvement when
compared to a time-slicing policy. Subsequent work by Gupta et al.[33] investigated the
effects of different scheduling policies and synchronization primitives on an UMA mul-
tiprocessor using simulation. They showed that coscheduling and hardware partition
policies are better than traditional round-robin prioritized polices due to their high
cache-hit ratio and low synchronization overhead. Moreover, hardware partitions along
with process control [72] typically outperform coscheduling because hardware partitions
usually achieve higher processor utilization.

Unfortunately, not all applications can easily adjust the number of running processes
on demand. Although the programming model used by Tucker and Gupta is widely used.
their work does not characterize the effects of multiprogramming on applications that
do not adhere to the model.

Zahorjan and McCann [81] simulated the performance of hardware partitions with a
workload containing programs that change their parallelism frequently. They concluded
that a dynamic hardware partition policy is the best choice, since such a policy can
reallocate unused processors immediately. Subsequent experimental work by McCann,
Vaswani, and Zahorjan [54] on a Sequent Symmetry confirms this conclusion. The
same argument may not be valid for a NUMA multiprocessor however, since processor
reallocation may be too expensive to perform every time an application changes the
amount of parallelism it employs. In addition, applications with a fixed amount of
parallelism that synchronize very frequently may prefer coscheduling over hardware
partitions, since a small hardware partition may force them to incur context switch
overhead on every synchronization operation.

3.3 User-Level Programming Models

There are many different parallel programming models in use today. Our goal is to
explore the interactions between the programming model employed by an application

and the multiprogramming policy implemented by the operating system. Rather than
attempt to cover all parallel programming languages and packages, we focus on a set of
general attributes shared by many models curreatly in use.

We assume an application consists of a relatively large number of threads that are
mapped to a relatively small number of virtual processors. Threads represent potential
concurrency, while virtual processors are intended to represent true parallelism. An ap-
plication has control over the number of threads used. We assume that an application is
given at most one virtual processor per physical processor, but a single virtual processor
may execute many threads concurrently. ! Depending on the mapping between threads
and virtual processors, threads may each have their own address space (heavyweight
processes), share a single address space (lightweight processes or threads). or operate
within overlapping address spaces. We assume that a context switch between threads
in the same application is implemented in user space by the runtime environment of the
programming model, and therefore is reasonably efficient. Context switching between
virtual processors is implemented by the kernel.

The attributes of an application most directly related to multiprogramming are the
ability of virtual processors to adapt in number, the number and type of threads used,
and the frequency and type of synchronization.

3.3.1 Virtual Processors

Virtual processors are scheduled by the kernel. They may correspond one-to-one with
physical processors, as is required in Tucker and Gupta’s multiprogramming solution
[72]. Alternatively, there be many more virtual processors than physical processors, as
in coscheduling and time-slicing for example, wherein virtual processors from different
applications share a physical processor. Some form of processor-sharing is required
whenever the number of virtual processors in the system exceeds the number of physical
processors.

In some applications the number of virtual processors required for execution is fixed
at the time the program is written. Static parallelism is normally used to represent the
functional parallelism in a program. Typically, the granularity of functional parallelism
is large, and the number of virtual processors required to represent functional parallelism
in a program is small. These programs are not included in our comparison.

Most applications, especially those that do not significantly vary their paralielism
during execution, can be designed so that they are capable of adapting to the multipro-
cessor environment at the time the program begins execution. In this case the operating
system can tell the application how many processors are available, and the program can
create one virtual processor per physical processor. 2 No two virtual processors from
the same program need share a processor, although processors might have to be shared

!We could multiplex several virtual processors from a single application on one physical processor,
but to do so would introduce unnecessary context switching in the kernel. Because of this assumption,
our measurements of the overhead of multiprogramming are conservative.

2Since virtual processors correspond to kernel processes, there is nontrivial overhead associated with
their creation, and little reason to create more than one per physical processor.

28

with other applications. Ounce execution begins, these programs cannot easily adapt
to fewer virtual processors, since to do so may require migration of threads from one
virtual processor to another, and multiplexing of threads on a single virtual processor.

Some applications can adapt the number of virtual processors in use dynamically
during execution, without requiring that we multiplex threads on a single virtual pro-
cessor. For example, the task queue model used in Multilisp [36}, Qlisp [31], BBN's
Uniform System {71}, Brown’s thread package {23}, and Chores [27], does not depend on
the number of available virtual processors. Parallelism in an application is represented
by tasks in the queue, which can be mapped to any number of virtual processors. The
number of virtual processors can vary during execution, so long as no virtual processor
is halted while executing a task.

Each class of application may exist simultaneously within a multiprogrammed mul-
tiprocessor, and will be affected to different degrees by the multiprogramming policy.
Applications that can easily adapt the number of virtual processors in use may prefer
dedicated processors over processor-sharing, so as to remove all multiprogramming over-
head. Applications that cannot easily adapt the number of virtual processors in use, and
are forced to multiplex threads on a single virtual processor, may prefer coscheduling or
time-slicing over dedicated processors, so as to avoid excessive thread context switching
that might arise in a small partition. The total overhead introduced by multiprogram-
ming depends on the extent to wiich the affected applications are well-matched to the
policy in place.

3.3.2 Tkhreads

We assume that virtual processors are scheduled by the system and are subject to mul-
tiprogramming; threads are created and managed in user space by a thread package.
and therefore are not directly under control of the operating system. Nonetheless, the
number and type of thread used in an application can have an impact on multiprogram-
ming. In particular, the costs of moving threads from one processor to another depend
in part on the type of thread used in an application. In addition, the lifetime of a thread
determines how cheaply we can adapt the number of virtual processors in use.

Fine-grain threads, which are typically used to represent the natural grain of parallel
activity in an application, are short-lived and relatively stateless. Coarse-grain threads,
on the other hand, execute longer and build up state in the cache and the local mem-
ory. As a result, a program based on fine-grain threads offers more opportunities for
adaptation in a multiprogrammed environment.

Fine-grain threads come and go frequently, so any virtual processor that must give
up its physical processor (either <ue to preemption or partition) can wait for a thread
to terminate before doing so. The existence of such a clean point greatly simplifies
multiprogramming with dynamic hardware partitions [72), and can be used to minimize
the overhead caused by preemption during synchronization.

Coarse-grain threads do not share these characteristics. Once a coarse-grain thread
creates its state on a processor, it cannot be cheaply moved to another one. If such a
thread is executing when preemption occurs, there are few options to avoid the overhead

29

associated with preemption in the presence of synchronization. lf a repartition of the
physical machine is required, the cost of migration will be high.

3.3.3 Synchronization

One important source of overhead in multiprogrammed systems is due to preemption
in the presence of synchronization. There are several different types of synchroniza-
tion however, and each type has several implementations. The overhead introduced by
preemption varies both with the type of synchronization used and the implementation.
For example, preemption of programs that use spin locks could seriously affect perfor-
mance, whereas preemption might not significantly affect programs that use blocking
semaphores. Similarly, preemption has less impact on programs that use centralized
barriers instead of tree barriers [52]; there is only one synchronization point in a cen-
tralized implementation, whereas there are two or more synchronization points in a tree
barrier implementation.

The amount of overhead due to synchronization also depends greatly on the fre-
quency of synchronization. In the worst case, an application may require a schedul.ng
decision at every synchronization point in the program because of multiprogramming.

There are three classes of synchronization: mutual exclusion, condition synchroniza-
tion, and barriers. We do not consider mutual exciusion in our experiments; it has been
shown that for small critical sections that are not already a bottleneck. preemption
does not impose undue overhead. The reason is that nearly all programs that use spin
locks have small critical sections with low utilization, in order to scale to large numbers
of processors. This implies that the probability of a process be,i.g preempted inside a
critical region is rather small, and the cost associated with other processes waiting for
the preempted process to complete is usually under 5% and rarelv is more than 30%
[80]. In addition, blocking or spinning for a short interval and then blocking if necessary,
reduces the cycles lost to spinning while waiting for a preempted thread. and performs
as well as pure spinning in the absence of preemption.

Our primitive for condition synchronization uses 2-phase blocking [48], where a
process spins for a short while and then blocks if the condition is not satisfied, yielding
the processor to another thread in the same application. This primitive has most of the
performance advantages of spinning, but suffers much less in the presence of preemption.
We use a tree barrier implementation that yields the processor to another thread on the
same virtual processor if it exists, and spins otherwise. Although both of these primitives
work well with an arbitrary number of threads, they can waste cycles spinning when
applications share a processor.

3.3.4 Example Programs

Our experiments were performed using two different applications: Gxussian elimination
and sorting. We chose Gaussian elimination because it has several different decompo-
sitions that allow us to measure the impact of the programming model and multipro-

%,

30

gramming on the same basic application. We chose odd-even sort because . uses ver:
frequent synchronization.

We implemented four different versious of Gaussian elimination, representing differ-
-ent .parallelizat.ons of row elimination. The first impler -*ation uses stateless threads
and condition (neighbor) synchronization. The main p.v, m distributes the problem
matrix among the memories of the machine, creates one virtual processor per physical
processor, and then creates a global queue of threads, which are assigned to virtual
processors. Each thread eliminates some number of entries in the matrix. Before elimi-
nating an entry, the thread checks to see if the condition flags associated with the pivot
row and the entry are set. If so, the two rows are copied into the local memory, the
computation is performed, and the result is copied back into the original matrix. When
a thread terminates, a virtual processor is assigned a new thread. This program is
analogous to the task queue model.

The second implementation is similar to the first, except that it uses barrier synchro-
nization. The threads that eliminate entries in a single column of the matrix synchronize
using a barrier upon completion. Then, a new set of threads is generated for the next
column. The copy costs are the same in both versions.

The third implementation uses coarse-grain threads and condition synchronization.
The main program creates one virtual processor per physical processor, and assig..s a
single thread to each virtual processor. The rows of the matrix are di-tributed among
the threads in a round-robin fashion. Each thread eliminates all the entries in sev-
eral rows. There is less synchronization than in the earlier version based on condition
synchronization, since only synchronization with the pivot row is necessary. In addi-
tion, there is unlikely to be much spinning. since the elimination of the givot row is
the first computation performed in each phase of execution. Most important. there are
many fewer row copy operations performed with coarse-grain threads; O(A'?) instead
of O(N3).

The final implementation of Gaussian elimination uses coarse-grain threads with
barriers. Each thread eliminates some elements in a single column of the matrix. syn-
chronizes with the other threads using a barrier, and then proceeds to the next column.

The sort program creates one virtual processor per physical processor, and assigns
one thread to each virtual processor. The array to be sorted is divided among the virtual
processors in the application. Each thread performs N/P/2 comparisons in each phase,
and then synchronizes with the other threads using a barrier. The length of a phase is
a few milliseconds for an array of several thousand elements on 16 nodes.

In the following section we describe the results of our experiments using these pro-
grams to compare three multiprogramming policies.

3.4 Multiprogramming Implementations

We implemented our multiprogramming experiments on a BBN Butterfly mu:tiproces-
sor. We modified an existing operating system for time-slicing among applications to
implement coscheduling and hardware partitions.

31

3.4.1 Time-Slicing

The operating system we used in our experiments on the Butterfly, Psyche {53, 62, 63].
implements a straightforward extension of uniprocessor time-slicing. Users may create
processes (represented by kernel processes) and bind them to physical processors. The
kernel time-slices among the processes on a processor. Processes are never migrated.

Each processor has a ready queue that is sorted by process priority. Within a priority
level, processes are served in a round-robin fashion. Each process gets a fair share of
the processor; as in Urix, a user with many processes can get more cycles than a user
with few processes.

3.4.2 Coscheduling Implementation

We implemented coscheduling using an adaptation of Qusterhout’s matrix algorithm
[56] and the time-slicing kernel described above. We chose this approach for simplicity,
and to address two specific problems that arise when coscheduling is used in a system
with priorities and blocking processes.

Kernel processes block for a variety of reasons. including while waiting for 1/0 or for
communication with another kernel process. When a kernel process blocks. the selection
mechanism used to fill unused slots in the scheduling matrix could be invoked to select
another user-level process to execute the remainder of the quantum. However, if the
blocked process is unblocked during the same coscheduled quantum, we would like to
return the processor to that process, without overly complicating the scheduler.

We would also like to maintain the system of priorities used to implement kernel
processes. Priorities are used in many operating systems to implement a fair allocation
of resources and to ensure that critical operations, such as I/0, proceed immediately.
We need to integrate priority scheduling and coscheduling in the same implementation.

Previous algorithms for coscheduling [29, 56] did not consider the effects of priorities
or blocking kernel processes. For example, in Ousterhout’s matrix algorithm. there is
no efficient way to implement priorities without scanning the entire matrix on each
scheduling decision. Similarly, there is no notion of whether a process is runnable or not,
so the concept of yielding the processor to a runnable process is difficult to implement.
For this reason, we adapted the priority-queue implementation of time-slicing to include
coscheduling.

The priority range implemented in the kernel is separated into immediate, cosched-
uled, and background ranges. The highest priority processes are in the immediate range,
and are assigned to kernel processes that implement I/O handlers. At any one time, the
coscheduled priority range is occupied by at most one process on each processor. The
background range implements a round-robin set of runnable applications.

At each quantum boundary, a single process on each processor is elevated to the
coscheduled range, while the previously coscheduled process is demoted to the back-
ground range. In addition. a matrix is maintained of all jobs in the system. just as in
traditional coscheduling. This matrix does not determine which processes run however,

45

attributed to synchronization overhead. The overhead is plotted as a function of the
time between two successive barriers. exoressed in multioles of the context switeh time.

32

it only directs the promotion of processes to the coscheduled priority range. All pro-
‘cesses occupy some place in the matrix, so no process will starve. Both priorities and
process blocking are handled as in the time-slicing system. However, if a coscheduled
process blocks for communication which completes before its quantum is up, that same
process will receive the rest of its quantum automatically, since the coscheduled priority
range is higher than the background priority range.

Coscheduling requires that process preemption be synchronized on all processors. In
our implementation we use quantum of 100 ms. To ensure that all processors begin a
new quantum simultaneously, we embed a tree barrier [78] in the clock handler of each
processor. Qur implementation uses a 4-way tree to combine the notification of arrivals
to the barrier. Each processor is represented by a node in the tree. Each interior node
waits for all its children to arrive at the barrier, and then informs its parent that it has
also arrived at the barrier. When the root is so informed, it releases its children. and
these in turn release their children, until all the leaves are released. Our combining tree
is a 4-way tree because each processor can pack the information about its four children
in one word, and with one comparison can determine if all four children have reached
the barrier. The releasing tree is a binary tree.

The time required to synchronize 16 processors using this tree barrier is about 200
us; the additional time required to make a scheduling decision using coscheduling is
between 50 and 200 us, depending on the number of applications. Without coscheduling
the clock handler normally consumes about 200 us each quantum, including the time
to save state and make a scheduling decision. Our revised clock handler takes about
500 ps each quantum, or 0.5% of the quantum.

We also added two system calls to the kernel interface to support coscheduling. The
first call reserves some number of slots in the coscheduling matrix for processes that
are soon to be created. This call returns a handle for the application, so that when
processes are created they can be added to the appropriate row of the coscheduling
matrix. The second call creates a new process and places it in the coscheduling matrix
in the given row.

3.4.3 Hardware Partitions

Our implementation of dynamic hardware partitions is similar to that described in [72],
except that ours, being on a NUMA multiprocessor, also supports explicit migration.
Our implementation requires cooperation between the operating system kernel and the
library packages that implement the various programming models. The allocation of
processors to applications is done in the kernel. Migration, which must occur when
a partition grows or shrinks due to the departure or arrival of a new application, is
implemented by the library package.

When a new application arrives or departs the system, the kernel notifies each appli-
cation about changes in its hardware partition using a signal mechanism. If the partition
shrinks so as to exclude a processor, the runtime library on that node may choose to
either suspend the currently executing virtual processor and migrate the corresponding
thread, or finish the thread and not allocate another to the virtual processor. The latter

33

option is used in conjunction with the task queue model; explicit migration is used in
all other cases. If a thread is migrated, the underlying virtual processor is suspended,
the memory object of the thread is moved to a processor in the smaller partition, and
the thread is placed on the ready queue of a virtual processor in that partition.

Several system calls were added to the kernel to support hardware partitions. The
register and unregister system calls are used to request and release processor partitions.
A parameter to the register call indicates whether or not the application (or program-
ming model) is prepared to adapt the number of processes in use if a smaller partition
is provided. This information is used by the kernel when processors are allocated. The
kernel tries to assign each application a fair share of processors, but no more than re-
quested. In addition, if an application is unable to dynamically adjust the number of
virtual processors in use, and the kernel cannot provide all the processors requcsted,
then an attempt is made to balance the work across a partition. In particular, if at most
z processors are available to satisfy a request for y processors, then z processors are al-
located, where z is the smallest integer less than or equal to z such that: [y/z] = [y/z].
In this way, the ready queues on the processors in a partition remain roughly in balance,
even when the application cannot adjust the number of virtual processors in use [52].

A partition system call returns the identity of the processors currently assigned to an
application. When a thread package receives a signal from the kernel that the processor
partition has changed, it uses this call to determine whether the executing processor
is still in the partition. If not, it can migrate its thread to another processor in the
partition.

A migrate system call allows for the migration of a memory object to a specified
processor. The object is locked during migration, causing processors that access the
object to fault, and wait until the end of the migration operation. Only thread state is
ever migrated; code is replicated among the nodes in the partition, and isn’t removed
from a node until the associated program terminates. Also, migration can proceed in
parallel on several nodes. For example, if a partition shrinks from 16 processors to 8, 8
threads can be migrated simultaneously to the remaining processors in the partition.

We currently migrate a minimum of one memory object (8K bytes) during migration.
Each migration operation takes about 25 ms per memory object, which includes the
cost of copying the memory object containing the state of the thread, unmapping the
object in one address space and mapping it into another. In the worst case scenario
we measured, we saw the cost of dynamically changing a system during execution from
one 16-processor partition to two 8-processor partitions to be about 700 ms, where each
process to be migrated contained 24K bytes of data.

Migration is fairly expensive in any system, and our implementation is no different.
In addition, migration introduces enormous switch contention. QOur implementation
is sufficient for our experiments however, since (a) migration to a new partition only
occurs when an application arrives or departs the system, a relatively infrequent occur-
rence, and (b) even relatively efficient migration is generally not helpful for short-term
scheduling decisions [25].

34

3.5 Evaluation of Multiprogramming Policies

We ran the four different implementations of Gaussian elimination on a 16 processor
BBN Butterfly in order to show how a particular programming model performs under
different multiprogramming policies, and to see if there is a single multiprogramming
policy that behaves best in most cases.

For each scheduling policy, we ran the four programs under two different scenarios:
(1) under ideal conditions where only one application is in the system, and (2) under
multiprogramming, with an application in the background. Our multiprogramming
experiments incorporate a compute-bound application in the background that consumes
any cycles it is given. Qur experimental results focus on the execntion time of the parallel
portion of an application; the serial portion, consisting of program loading and creation
of virtual processors, is not included in the timing figures.

3.5.1 Time-Slicing

Our main concern in these experiments is the overhead introduced by preemption. We
first ran the two implementations of Gaussian elimination that use coarse-grain threads
on a 512x512 matrix under a time-slicing policy. The running time (in seconds) of these
programs on 16 processors is given in the following table:

with
standalone | background| slowdown
. application
coarse-grain threads, | g 79 64.19 3.43
barrier synch
coarse-grain threads, | ¢ 39.10 2.16
condition synch

We would expect an application to take twice as long when the machine is shared
with another application. In fact, a multiprogramming level of 2 introduces a slowdown
of 3.43 on the program with barrier synchronization. Barrier programs are very sensitive
to the effects of preemption, since the preemption of any one thread delays all threads.

The program based on condition synchronization is not adversely affected by multi-
programming. With a multiprogramming level of two, it experienced a siowdown factor
of 2.16, very close to the expected. The reason that preemption does not distort this
execution is that a thread does not depend on every other thread making progress dur-
ing a short interval of time, as is true with barriers. Only the thread computing the
next pivot row can delay other threads when preempted.

The running time (in seconds) of the fine-grain implementations is given in the
following table:

35

with
standalone | background} slowdown
application
fne-grain threads, 38.4 97.3 2.53
barrier sxg%h o
ne-grain threads, 24.35 49.1 2.01
condition synch

We first note that thread creation time dominates in our fine-grain thread implemen-
tation. In addition, the communication costs associated with the fine-grain implemen-
tation are much higher than in the coarse-grain implementation. The barrier program
experiences a slowdown of 2.5 in this case, compared with 3.4 earlier. The reason for this
apparent improvement is that both programs have the same number of barriers (and
hence the same opportunities for problems with preemption), but the duration of the
fine-grain thread program is greater. As a result, there are three barriers per quantum
in the coarse-grain program, and fewer than 1.5 barriers per quantum in the fine-grain
program. It is the frequency of barriers in the coarse-grain program that produces the
difference in slowdown.

Under condition synchronization both the execution time and the slowdown of the
two versions are comparable. In the case of fine-grain threads, we see once again that
condition synchronization is not frequent enough in our programs for preemption to
significantly affect the execution time.

None of these versions of Gaussian elimination synchronize extremely often; even the
finest-grain implementation must eliminate an element between synchronization points,
and that takes several milliseconds. As a result, the implementation with barriers only
executes a barrier about once every 50 ms. Much worse cases of slowdown are possible
with smaller matrices. In particular, a 256 x256 matrix problem slows down by a factor
of 8 in the presence of one background application.

We used our implementation of odd-even sort to measure the effect of multiprogram-
ming on programs that synchronize very frequently. On a dedicated machine, sorting an
array of 512 elements takes 286 ms. The same program run with a job in the background
takes 103 seconds, a slowdown factor of 366! The problem is caused by a combination
of barriers, frequent synchronization (every 500 us), and preemption. If we modify the
implementation of barriers to yield the processor to another application rather than
spin, giving up the rest of the quantum but receiving the next quantum sooner, we see a
slowdown of 540; yielding the processor ensures that almost no barrier is ever completed
within a quantum.

3.5.2 Coscheduling

In order to measure the costs of coscheduling, we ran the coarse-grained Gaussian elimi-
nation programs with varying levels of processor sharing. The program used a 256 x256
matrix, and was run on four processors. Processor-sharing was introduced by injecting

- background applications that consisted of four coscheduled threads each. The results
are shown below.

-

o

36

Number of | Running | Slowdown
Processes Time
(secs.)
1 9.8 1.00
2 19.6 2.01
3 29.5 3.01
4 39.3 4.01

This table shows that as the degree of multiprogramming rises, the execution time
of a single application rises linearly, despite its need for synchronization. This behavior
is in contrast to the case of time-slicing.

Next we considered whether unused slots in the processor-time matrix are of any
use. That is, when an application is given extra cycles for one of its threads during
a time when the other threads are not coscheduled, does this improve the running
time of the application? To answer this question, we ran the Gaussian elimination
program with a background application that only used half the processors. This scenario
creates a timeslice during which the Gaussian elimination program runs half its threads,
followed by a timeslice in which all its threads run. The running time of the application
in this case was 19.4 sec, as compared to 19.6 sec when sharing the machine with
an application that uses all the processors during its quantum. This small difference
suggests that unused slots do not contribute much to system throughput in the presence
of synchronization. Ousterhout’s simulations [56] show that coscheduling is typically

. 80% effective (measured in terms of the percent of processor time spent coscheduled);
our result suggests that the effectiveness isn’t improved by utilization of empty slots in
the scheduling matrix.

3.5.3 Hardware Partitions

Our main concern in these experiments is the overhead introduced by multiplexing
several threads on a single virtual processor and the cost of migration. To measure
the overhead of multiplexing threads, we ran the Gaussian elimination program for a
512x512 matrix with 16 coarse-grain threads and barrier synchronization on 16,8,4. and
2 processors. We observed the slowdown due to having fewer processors than threads;
the results are shown in figure 3.1.

We would expect the execution time of the program on 8 processors to be at least
double the time on 16 processors. The additional overhead of multiplexing threads
should make the time on 8 processors even more than double the time on 16 processors.
Nonetheless, as shown in figure 3.1, the time required to execute the program with 16
threads on 8 processors is less than double the time used on 16 processors. These same
results were observed for the program that uses condition synchronization. One reason
for the better than expected performance on 8 processors is that there is significant
contention for the pivot row on 16 processors, and much less on 8. Another reason is
due to a slight imbalance ir the computation, due to tail effects in the division of work
in the matrix. In general, applications can utilize 8 processors better than 16 processors
because the speedup of an application is typically sublinear.

v

200 -

180

160 —

140 —

Completion 190

Time

(in seconds) 100 —
80 -1

60 —

40 -

20 -

O_.

- —— e ——— -

-=

: '

r=i 1 :
|16l 1 8,
| N | L-.

measured time
expected time

]

e

(-

-

2]

Number of Processors

[ainatialidiedha i |

with
standalone | background| slowdown

_application
coarse-grain
threads, 18.7 36.9 1.97
barrier synch
coarse-grain
threads, 18.1 35.5 1.96
condition synch

e - -

Figure 3.1: Gauss with 16 threads and barriers on hardware partitions

37

These experiments do not include the costs of migration. For those applications that
cannot easily adapt the number of virtual processors in use, we must migrate threads
when the hardware partition changes. To measure the effects of dynamic hardware
partitions, we started the Gaussian elimination program on 16 processors and then
immediately introduced a background application. The arrival of the second application
causes the operating system to divide the machine into two 8-processor partitions. The
Gaussian elimination application migrates 8 threads from the larger partition into the
new smaller partition. To isolate the costs of migration, no computation was performed
by the Gaussian elimination program while holding 16 processors. The completion times
of the application (in seconds) are shown below.

These results show that even with the one-time cost of migration, and the recurring
cost of multiplexing threads on a virtual processor, a hardware partition of 8 processors
takes less than twice as long as a 16 processor partition. Clearly the lack of linear
speedup in the application dominates the other sources of multiprogramming overhead.

|

(l,.{ ‘

ar

38

Based on this observation, we would expect the benefits of using hardware partitions to
exceed the costs in most cases.

In the case of fine-grain threads, no migration or thread multiplexing is necessary.
Instead, currently running threads (if any) are allowed to finish execution before remov-
ing a processor from a partition. The completion times of the application (in seconds)
under dynamic hardware partitions is presented below.

with
standalone | background| slowdown
application
ﬁne-gram threads, 38 56 1.47
barrier synch
fine-grain threads,
> . 25 45 1.8
__condition synch

We see that, once again, the measured slowdown is much less than 2. In fact, in the
case of fine-grain threads with barrier synchronization, the siowdown is only 1.47.

3.5.4 Comparison

A comparison between the three scheduling policies for each version of the Gaussian
elimination program is presented in figure 3.2. Each graph contains the execution time
of the program for each policy in the presence of a background application.

It is evident from these graphs that in most cases time-slicing results in slowdown
much higher than the expected factor of 2. Coscheduling’s slowdown is uniformly slightly
higher than 2. Hardware partitions incur slowdown less than 2, and in one case sub-
stantially less than 2.

In summary, time-slicing introduces preemption, which can have enormous impact
on a program, particularly programs that use barriers. Programs that don’t use barri-
ers, or synchronize infrequently are immune to the effects of time-slicing. Coscheduling
has a cheap implementation and can remove the overhead due to preemption. Unfortu-
nately, it has a built-in effectiveness of 80% or so, and performs poorly with unbalanced
computations. Hardware partitions can be created fairly quickly, even when migration is
required, and introduce minimal overhead due to context switching within a partition.
Most important, hardware partitions allow an application to optimize its implemen-
tation for the percentage of the machine it is allocated. For this reason, hardware
partitions are preferable to the other forms of multiprogramming.

3.6 The Effect of Frequent Synchronization on Space-
Sharing Policies

In the previous section we showed that hardware partitions (space sharing) favor ap-
plications with sublinear speedup compared to time-sharing methods like coscheduling.
It is possible however, that frequently synchronizing applications (especially programs

Coarse grain-threads, barrier synch Coarse grain-threads, condition synch
3.6 3
3.4 Fo==== _
3.2~ ! : 2.8
3 - \ } 2.6 —
g.g— ! : 2.4
0™] -
2.4 ; ! 2271 ro--os
2.2 \ 1 : Sy 1
lg_ \ : 18_ . ' :
8 . 1.6 7 o
1€ L : 1.4 x :
1.2 S: : 1.2 1: :
lq L S SO | 1 A I
Fine grain-threads, barrier synch Fine grain-threads. condition synch

3_ 3-—4
2.8 2.8
2.6 - fmm——- 2.6
2.4 — i N 2.4
2.2 : 1 2.2

g e X : 9 SRTLREE PR
1.8 : . 1.8 : X |
1.6 ! \ 1.6 _ s .
1.4 — ' ! 1.4~ : o :
1.2 ' ' 1.2 : o i
1 WV—J cmenal 1 U B

hardware partitions
............. coscheduling
------- time-slicing
Figure 3.2: Relative slowdown introduced by a multiprogramming level of 2 for different -
scheduling policies and different programming models

40

that use barrier synchronization) suffer adverse effects under hardware partitions. In
.particular, as processors come and go, it is not always possible to match the number
of processes with the number of processors. When processes share a processor, one
process may have to context switch at a synchronization point so as to synchronize with
another, preempted process. If these context switches happen frequently enough, the
effect on performance could be substantial. In this section we will study the extent of
this performance degradation.

3.6.1 Barrier Types

Our study is based on application programs that synchronize using barriers. There
are many different implementations of barriers however, and our experience has shown
that the specific barrier used can affect performance. For this reason, we consider
both centralized and tree barriers, and spinning and blocking implementations of each.
Centralized barriers use a global counter. Each process that arrives at the barrier
increments the counter, and waits for the other processes to reach the barrier. When
the counter is equal to the number of processes that participate in the barrier, all
processes are free to proceed.

Tree barriers are representative of a large class of barriers whose completion time
is logarithmic in the number of participants. This class includes tree barriers, [55, 78],
tournament barriers [50], and butterfly barriers [18, 38]. Each process is represented by
a node in the tree. Each interior node waits for all its children to arrive at the barrier,
and then informs its parent that it has also arrived at the barrier. When the root is so
informed, it releases its children, and these in turn release their children, until all the
leaves are released. Our barrier combining tree is a 4-way tree. To minimize the time

to wake up processes, we use a binary tree to propagate barrier completion information
to the children.

Combination barriers (8] were originally suggested as a way to minimize the number
of locks needed in the implementation of a tree barrier. Combination barriers incorpo-
rate both tree and centralized barriers. A centralized barrier is used for synchronization
among the processes on a single processor; a tree barrier is used for synchronization
across processors. If an application has as many processors as processes, then combina-
tion barriers behave exactly like tree barriers. If there are more processes than proces-
sors, then all processes on the same processor participate in a local centralized barrier.
The last process on each processor to reach the local centralized barrier participates in
a tree barrier with the other processors. After the tree barrier has been completed, all
the waiting processes on each processor are released from the local barrier.

Centralized barriers are easy to implement and are particularly efficient in the ab-
sence of contention. Access to the counter serializes execution however, and can cause
significant performance degradation in the presence of contention. Tree barriers are
more complicated and less efficient for a small number of participants, but they do
- not serialize execution, and their performance scales logarithmically with the number
of processors [55]. Combination barriers use the efficient implementation of centralized

b7

%)

~

41

barriers on a single node, where there is no contention, and the scalable implementation
of tree barriers across processors, where there is likely to be contention.

- Spinning vs. Blocking: While a process waits for others to reach a barrier, it can

either spin or block. In the case of spinning barriers, a process periodically checks to
see if all other processes have reached the barrier. A process will continue to spin until
all processes reach the barrier or until it is preempted because of quantum expiration.
In the case of blocking barriers, when a process needs to wait for an event, it yields the
processor to another process of the same application running on the same processor.
As an optimization, a process might yield the processor only if there is another process
with which it shares the processor, spinning otherwise.

3.6.2 Barrier Performance Under Processor Deprivation

Our goal is to quantify the eflect on application performance of a multiprogramming
policy that allocates a barrier program fewer processors than it needs. The results
depend both on the frequency of synchronization within the program and the number
of processors allocated by the scheduler.

The Effects of the Frequency of Synchronization

In order to investigate the additional overhead introduced by processor deprivation (that
is an application is given fewer processors than needed), we constructed an artificial
program that creates M processes on top of P(M > P) processors and schedules them
according to a round-robin policy with local ready queues. All processes compute for
the same amount of time, synchronize through a barrier, and then repeat the process.
The code fragment for a process is:

for (int i = NUM_BARRIERS ; i>0 ; i--) {
for (int j = MAX_DELAY ; j>0 ; j-=) ;
barrier_synchronization() ;

}

We vary the MAX_DELAY variable to change the frequency of synchronization. We vary
the implementation of the barrier.synchronization function to reflect the different
types of barriers.

We chose to have all the processes compute for the same time between successive
barriers because balanced computations of this form are a worst-case scenario for a
hardware partition scheduler (when compared to coscheduling). While balance in par-
allel programs is usually preferred, programs with imbalance in the computation can
overlap computation with synchronization, reducing the effects of processor deprivation,
and thereby favoring hardware partitions over coscheduling.

%)

42
- 1 L) L] L] L § L] -
120 tree barriers —>—
100 b centralized barriers — i
Average 80| - —afo—ao—i -
completion
timeof g0k -
a'barrier
(in ms) 49 -
0 _-_/ -
0 '} ! L I} 1 I3 q J|

0 5 10 15 20 25 30 35 40 45
Time between two succesive barriers (in ms)

Figure 3.3: Measured execution time of tree versus centralized spinning barriers; 16
processes on 15 processors; quantum size = 20 ms.

Spinning Barriers Figure 3.3 plots the performance of an application with 16 pro-
cesses on 15 processors for both tree and centralized spinning barriers. The data for
figure 3.3 were produced by parallel execution of our example program on the Butterfly.
The vertical axis shows the average completion time of a barrier (i.e, the average time to
execute the spin loop that simulates computation in our sample program plus the time
to synchronize through one barrier). We use this normalized measure of running time
because it does not depend on the number of barriers a program has, but only on the
frequency of synchronization and the type of barrier used. The horizontal axis shows the
computation time between barriers (i.e, the time to execute the spin loop that simulates
computation in our sample program). Figure 3.3 suggests that centralized barriers are
better than tree barriers in nearly all cases. This result is somewhat surprising since, in
the absence of processor deprivation, tree barriers perform better than centralized bar-
riers when more than a few processors are involved [55]. This anomaly can be explained
by considering the implementation of tree barriers. Tree barriers have more than one
synchronization point, corresponding to the internal nodes of the tree. Information is
passed up the tree as processes arrive at a barrier, and passed down again as processes
are released from the barrier. Each node in the tree is effectively a barrier for its chil-
dren, which must be completed before a node higher up in the tree can be notified. If a
process within the tree is not running due to processor deprivation, no other process on
the path up to the root can participate in the barrier. Processes close to the root may
have to spin while waiting for processes lower in the tree to receive a quantum. This
delay, which could be as much as a whole quantum, can be introduced between every

&

@

*

43

level in the tree.® Since we use a 4-way tree to pass information upwards, there are
three levels in the tree used for our 16 process application, and therefore two context
switches can occur between levels. Figure 3.3 shows that even if the computation time
between two successive barriers is very small, the time to complete a tree barrier is still
40 ms (two quanta). When the time between two successive barriers is less thau the
quantum size, most of the quantum is spent spinning. If we slightly increase the amount
of useful work done between two successive barriers, then less time is spent spinning,
but the completion time of the program (in terms of quanta needed) is the same. In
general, if the quantum is Q and the time between barriers is T, it takes P processes
[log, P] x [g] quanta to complete a tree barrier.4

A centralized barrier, on the other hand, takes only 20 ms (one quantum) to com-
plete when the computation time between two successive barriers is less than half the
quantum. Since a centralized barrier contains only one synchronization point, the last
process to reach a barrier can continue on to the next barrier within the same quantum.
After the first quantum of execution, a barrier is completec every quantum.

Figure 3.3 suggests that tree barriers are better than centralized barriers when the
time between two successive barriers is a little less than a multiple of the quantum size.
In our simulation results [52], tree barriers are never better than centralized barriers,
but the difference in performance is close to zero when the time between two successive
barriers is a multiple of the quantum size. Our simulation results do not completely
agree with our experimental results because the simulator does not model two important
factors in the implementation of centralized barriers:

1. The time to complete a centralized barrier is assumed to be zero in the simulation.
Thus, the simulation does not accurately model the linear-time complexity of
centralized barriers.

2. The simulator does not model memory contention, which is much greater with
centralized barriers than with tree barriers.

Both of these factors cause centralized barriers to perform worse in our experiments
than in our simulation.

Blocking Barriers Blocking barriers can be used to avoid the unpredictable perfor-
mance of spinning barriers in a multiprogrammed environment. With blocking barriers,
a process that waits at a barrier yields the processor to another process of the same
application.

3Adaptive tree barriers [35] do not introduce a delay at every level in the tree because all processes
reside at the leaf nodes. The implementation of adaptive tree barriers in [35] would not be efficient on
a NUMA machine however, since it involves excessive locking and remote spinning.

*In the case of 16 processes on 15 processors, the particular assignment of processes to Processors is
not important, since at most two context switches will be required to release at least one of the processes
sharing a processor. However, if more processes or fewer processors are involved, the assignment of
processes to processors can affect the number of context switches per barrier. To minimize context
switching, interior nodes {or nodes close to the root of the tree) should not share a processor.

| ®

44

Tree Barriers: Figure 3.4 shows the results of running our test program with 16
processes on 15 processors using blocking tree barriers. Unlike spinning barriers. the
performance of blocking barriers is a smooth function of the frequency of synchronizu-
tion. This figure quantifies the expected superiority of blocking over spinning under
processor deprivation.

L L Li L L L L L}
140 spinning tree barriers —»— -
blocking tree barriers ——
120 I -
Average 100 | -
completion
time of "~ e .
a barrier
(inms) 60T .
40 -
20 r- / -
0 1 1 B [) 1 L 1

0 5 10 15 20 25 30 35 40 45
Time between two succesive barriers {(in ms)

Figure 3.4: Measured execution time of spinning versus blocking tree barriers for 16
processes on 15 processors.

It is not surprising that blocking barriers perform much better than spinning barriers
under processor deprivation. However, blocking barriers introduce overhead in the form
of context switching. The context switch overhead may vary from as little as 10 20 us
to several hundred us or more, depending on many factors, such as whether or not a
kernel trap is required, queue manipulation overhead, the cost of saving and restoring
registers, and the speed of the processors. If a single context switch is expensive,
and an application synchronizes frequently, then the overhead introduced by processor
deprivation could be high.

To quantify the importance of context switch overhead for blocking barriers, we
ran our example program with 16 processes on 16 processors and then on 8 processors.
(The results for 4, 2 and 1 processor are similar.) On 16 processors, no context switch
overhead is incurred. On 8 processors, there is a context switch at every barrier. Absent
context switch overhead, we would expect 8 processors to take twice as long as 16
processors to complete the program.® Any additional time can be attributed to context
switch overhead. Figure 3.5 shows the percentage of the application’s completion time

50Qur program exhibits linear speedup, and does not adjust the number of processes to match the
number of processors.

45

attributed to synchronization overhead. The overhead is piotted as a function of the
time between two successive barriers, expressed in multiples of the context switch time.

T] L] A R 1] L) L L)
100 ¢ execution —— -
simulation ——
80 10% overhead — |
Overhead 60 -
(percentage)
40 b
20 -
0 \'— i I 1 "

0 200 40 60 80 100 120 140 160 180 200
Time between two succesive barriers(in multiples of context switch time)

Figure 3.5: Measured overhead of blocking tree barriers for 16 processes on 8 processors.

We see from figure 3.5 that, as expected, the overhead of synchronization is inversely
proportional to the computation time between barriers (i.e., the frequency of synchro-
nization). More precisely, the overhead is proportional to the number of barriers a
program has, the number of levels in the barrier tree, and the context switch cost. As
shown in figure 3.5, when the time between two successive barriers is more than 20
times the cost of a context switch, the overhead incurred by context switching within
blocking barriers is less than 10% of the total execution time of the program. For a
typical thread package with 1 context switch overhead of 100us or less, this means that
the time between two successive barriers has to be less than 2 ms for the overhead to
be more than 10%.

Combination Barriers: The overhead introduced by blocking tree barriers is pro-
portional to the number of levels in the tree since, in the worst case, a context switch
may be required at each level. As we saw in figure 3.5, if synchronization is very fre-
quent, or if the cost of a context switch is high, the overhead incurred due to context
switching can be quite high, as much as 158% in extreme cases. Centralized barri-
ers induce fewer context switches, bt suffer from overhead introduced by contention.
Combination barriers offer a comprumise solution, without the contention problems of
centralized barriers, or the additional context switching of tree barriers.

59

e Model §: The shared data a thread will access is evenly divided among three,
randomly selected, memory modules.

46

To measure the overhead of context switching with combination barriers, we again
ran our example program with 16 processes on 16 processors and then on 8 processors,
this time using combination barriers. As in figure 3.5, we plotted the percentage differ-
ence in the completion time of the application on 8 processors and 16 processors. The

-results are shown in figure 3.6.

40 Y T T
35k -
30

Synch.
overhead 20
(percentage) 15

10

——

0 5 10 15 20
Time between two succesive barriers (in multiples of context switch time)

Figure 3.6: Measured overhead of blocking combination barriers for 16 processes on &
Processors.

The results are similar to those in figure 3.5, but the scale is quite different. Since
combination barriers have many fewer context switches than tree barriers (in the worst
case), the synchronization overhead of combination barriers is much smaller than the
synchronization overhead for tree barriers. In fact, the overhead of combination barriers
drops very quickly towards zero as the frequency of synchronization decreases. Figure
3.6 shows that if the time between two successive barriers is as little as 4 times the
cost of a context switch, then the synchronization overhead is still less than 10%. If the
time between two successive barriers is 20 times the cost of a context switch, then the
synchronization overhead is practically zero. In contrast, the overhead of tree barriers
is 10% when the time between barriers is 20 times the cost of a context switch, and 39%
when the time between barriers is only 4 times the cost of a context switch.

Figures 3.5 and 3.6 allow us to draw some conclusions about the benefits of coschedul-
ing, particularly in comparison to hardware partitions. In figure 3.6 we see that if the
time between two successive barriers is less than the time to perform a context switch,
then the overhead due to synchronization can be as high as 30%. In such cases coschedul-
ing may be preferable to hardware partitions. If we use combination barriers, and the
time between two successive barriers is more than 3 times the cost of a context switch,
then the synchronization overhead is rather small. Therefore, we see that the synchro-

e

47

250 1 | 4 |) hj 3 A
tree barriers —
200 centralized barriers ~o— _
Average
completion 190 [T
time of
a'burier 100 b .
(in ms)
50 | -
0 Ny - i L [[] Il 1
0 2 4 6 8 10 12 14 16

number of processors

Figure 3.7: Effect of the number of processors on completion time (16 processes).

nization overhead for medium- and coarse-grain parallel programs, which represent the
majority of current parallel applications, is negligible. For example, a 512x512 Gaus-
sian elimination program (which has 512 barriers) on 16 processors synchronizes every
45 ms on a BBN Butterfly Plus, which is more than 450 times the thread context switch
overhead. Applications such as Dijkstra’s shortest path algorithm and odd-even sort
synchronize every 5-10 ms on a BBN Butterfly for reasonable input sizes. Thus, it seems
that although there are cases where coscheduling could have an advantage over hard-
ware partitions (namely, very fine-grain synchronization, linear speedup applications),
those cases are quite rare. For most applications, hardware partitions do not impose
noticeable overhead, provided that appropriate blocking barriers (such as combination
barriers) are used.

The Effect of the Number of Processors

We now consider what happens as we vary the number of processors allocated to an
application. Since we do not allow migration, we do not expect the completion time
of an application to be a smooth function of the number of processors allocated to it.
For example, the completion time of an application with 16 processes running on 15
processors is about the same as the completion time of the same application running on 8
processors. Figure 3.7 shows the measured completion time (per barrier) as a function of
the number of processors given to the application, for both blocking centralized barriers
and blocking tree barriers.

Intuition suggests that the completion time of the application does not vary as
we vary the number of processors allocated to the application between two successive

ran ‘/.i

i

48

divisors of the number of processes.® This intuition is not entirely correct however. In
the absence of migration, the completion time of an application changes only when the
maximum number of processes on any processor changes. Figure 3.7 shows there is a
change in completion time for both types of barriers when the number of processors
given to an application changes from 16 to 15, from 8 to 7, from 6 to 5, from 4 to 3,
from 3 to 2, and from 2 to 1. This result can be phrased as follows:

H P processors are to be given to an application that has M processes that
are never migrated, then the completion time of the application would be
.the same if it was given Pps processors where Py is the smallest integer less
than or equal to P such that [M/Py] = [M/P].

This result suggests a need for close cooperation between the kernel and user-level
process management software in order to minimize the completion time of an applica-
tion.

3.7 Conclusions

There are many potential sources of overhead associated with multiprogramming, and
the amount of overhead from any single source depends on the structure of applications.
Given an efficient implementation of context switching in user space, and relatively
infrequent context switching by the kernel, the overhead due vo context switching is not
a serious consideration. Preemption during synchronization is of considerable concern.
and has serious consequences for applications that are time-sliced. This overhead can
be avoided using coscheduling or hardware partitions.

There has not been much experimental evidence showing the relative importance
of overhead due to processor-sharing, in particular with respect to coscheduling. Our
results show that processor-sharing in the context of coscheduling performs significantly
worse than dedicated hardware partitions wherein no processor-sharing occurs. In gen-
eral, there are several reasons why this will be true: (1) coscheduling results in cache
corruption, whereas hardware partitions do not; (2) there are fewer remote references
and less contention when fewer processors are used; (3) there is less imbalance in the
computation when the total amount of work is divided among fewer processors. These
factors are significant enough to more than compensate for the costs of (infrequent)
migration and the additional overhead of blocking synchronization (rather than busy-
waiting) required within a hardware partition when the number of threads exceeds the
number of available processors. Based on our experiences, we believe the best choice
for multiprogramming on a large-scale machine is to use hardware partitions.

In the next chapters we will investigate the kind of scheduling policies that are
appropriate for scheduling within a partition.

$Zahorjan, Lazowska, and Eager [79] suggest that the number of processors given to an application
that uses spinning barriers evenly divide the number of processes in the application, so as to eliminate
spinning. However, perfect balance across processors only eliminates spinning when the time between
two successive barriers is equal to the quantum size, and in any case, does not minimize completion
time.

49

4 Thread Scheduling

4.1 Introduction

Threads are an increasingly popular structuring tool for parallel applications 12, 23,
69, 76]. Many applications decompose naturally into fine-grain units of computation;
threads allow the implementation to reflect this natural decomposition. In addition, a
program with fine-grain threads can run on any number of processors, and can easily
adapt to a change in the number of processors (which might arise due to a repartition
of the machine wien a new application arrives) [72]. Also, fine-grain threads offer many
opportunities to perform load balancing using inexpensive thread (re)placement instead
of expensive (and maybe complicated) thread migration; each time a processor becomes
idle, it can simply execute one of the threads waiting for a processor.

Despite these advantages, the degree of parallelism that can be effectively exploited
by an application depends primarily on the overhead of using threads. Historically, this
overhead has been dominated by the cost of thread creation, destruction, and context
switching. However, recent work has shown that the cost of these thread management
operations can be drastically reduced, so that threads need only be an order of mag-
nitude more expensive than a procedure call [5]. Under these circumstances, threads
should be cheap enough to use for fine-grain parallelism.

Unfortunately, the overhead associated with fine-grain threads is not limited to the
cost of thread management. There is an additional cost to using threads that has not
been explicitly recognized: the cost of bringing data into 5> local memory or cache
where a thread executes. This cost, whether the result of explicit copy operations
between local and remote memory on a distributed-memory machine, or the result of
cache misses on a multiprocessor with coherent caches, can be substantial. On modern
multiprocessors, which have extremely fast processors and relatively slow main memory,
this overhead can dominate the execution time of a thread.

To illustrate the magnitude of this overhead, we implemented both a coarse-grain
and fine-grain decomposition of Gaussian elimination on a Silicon Graphics Iris multi-
processor workstation. Using 6 processors, the coarse-grain decomposition (one thread
per processor) requires 11.7 seconds to process a matrix with 400,000 elements; the
fine-grain decomposition (one thread per element to be eliminated) takes 31.15 seconds
on 6 processors. The factor of 3 difference in performance cannot be explained by the

fl,-/{(

i Aw

cost of creating threads, since it only takes about one second to create, schedule and
destroy all 200,000 threads used in the fine-grain decomposition. Because threads run to
completion there is no additional context-switch overhead to be considered. Thus, the
difference between the performance of the fine-grain and coarse-grain decompositions is
mainly attributed to the time required by each thread to load its data into the local
cache. In the fine-grain decomposition, each thread loads an entire row of the matrix
into the local cache, and references each element of the row only once or twice. The time
spent loading data into the cache in the coarse-grain decomposition is small, because
each processor loads a portion of the matrix into its local cache, and then references
only that portion.

This example illustrates a general problem with fine-grain threads: they do not
execute long enough to amortize the cost of establishing their state in the local memory
or cache. Even though thread operations may be very cheap, an implementation that
uses fine-grain threads will typically perform much worse than an analogous coarse-grain
implementation. As a result, programmers avoid using fine-grain threads, despite the
many benefits of doing so.

In this chapter we propose a new thread scheduling technique, called memory-
conscious scheduling, that reduces the overhead associated with bringing data to
threads. The distinguishing feature of this technique is the priority placed on main-
taining locality of reference. The basic approach is to schedule a set of threads that
reference some of the same data on the same processor. By doing so we guarantee that
only the first thread to run on a processor will have to bring a significant amount of data
into the local memory or cache; other threads will be able to use the data left behind in
the local memory or cache. If this assignment of threads to processors produces a load
imbalance, we migrate threads to balance the load.

Our experiments on the Iris and a BBN Butterfly Plus multiprocessor confirm that
this scheduling technique results in significant performance improvements for applica-
tions using fine-grain threads. In fact, the performance of an application using fine-grain
threads and memory-conscious scheduling is often comparable to that of the correspond-
ing coarse-grain implementation of the same application. Our simulations show that
memory-conscious scheduling is beneficial even in cases where there is a significant vari-
ation in the computation time of threads, when the data a thread will access is spread
over several memory modules, or when the remote-to-local memory access time ratio is

small.

4.2 Performance Implications of Memory-Conscious
Scheduling

In this section we examine the performance implications of memory-conscious scheduling
on two different multiprocessor architectures: a scalable shared-memory machine with-
out caches (BBN Butterfly Plus), and a bus-based, coherent-cache multiprocessor (SGI
Iris). Using an implementation of memory-conscious scheduling on each machine, we

R

« @ .

x

51

quantify the benefits of this scheduling technique, bound any potential improvements,
and compare the results on the two architectures.

4.2.1 DPescription of Application Programs

For our experimental evaluation, we chose application programs whose communrication
patterns are representative of a large class of fine-grain paralle! applications. These
application programs are:

e Gaussian elimination: This well-known algorithm for solving a system of N simul-
taneous linear equations is representative of a large class of scientific applications
that use vector operations. In the fine-grain decomposition, a thread is created for
each element to be eliminated. Each thread adds a multiple of the current pivot
row to the row of the element to be eliminated.

e Merge sort: This standard sorting algorithm is representative of a large class of
divide-and-conquer problems, including convex hull, FFT, factorial, fibonacci, and
the planar closest-neighbor problem. In the fine-grain decomposition, a thread is
created for each recursive subdivision of the input. Each thread merges two sorted
lists.

o Grassfire: This nearest-neighbor algorithm to compute the depth of objects in an
image represented by a binary input matrix is representative of many other paral-
lel algorithms for successive over-relaxation, convolution, edge detection, feature
enhancement, and smoothing. During each iteration, the fine-grain decomposition
creates a new thread for each row in the image.

We implemented three versions of each application: a coarse-grain decomposition, a
fine-grain decomposition with a load balancing policy, and a fine-grain decomposition
under memory-conscious scheduling. The coarse-grain decomposition creates as many
threads as processors, and assigns a part of the data to each thread. Both fine-grain
decompositions create one thread for each natural unit of parallelis:n in the application
(e.g. one thread for each element to be computed in a matrix). Under the load balancing
policy, a thread is assigned to the least loaded processor. ! Under memory-conscious
scheduling, a thread is assigned to a processor containing some of the data it will access.

4.2.2 Performance on the BBN Butterfly

To quantify the benefits of memory-conscious scheduling on the Butterfly, we measured
the execution time of the fine-grain implementations of our applications with and with-
out memory-conscious scheduling. We also measured the execution time of the fine-grain
implementation under the load balancing policy exclusive of inter-processor communi-
cation, so as to place a bound on the benefits of any placement policy. The results (in
seconds) of our experiments on 8 processors appear in Table 4.1.

Ties are broken randomly.

|

¥
)
»
)
)
¥
®
o
°
) o
)
)
)
®
°
° o

52
Application Load balancing | Memory-conscious scheduling | Lower Bound
Gauss elimination 101 71.5 67.3
Merge sort 0.95 0.75 0.6
Grassfire 93 67 59

Table 4.1: Execution time (in seconds) of fine-grain parallel applications.

As can be seen in Table 4.1, memory-conscious scheduling improves the performance
of Gaussian elimination and Grassfire by about 28%, and merge sort by 21%, when
compared against the traditional load balancing policy. Moreover, no other thread
placement policy is likely to do much better, since memory-conscious scheduling is
within 5-20% of the unrealizable lower bound, where communicatior is free. Given
that communication is not free in practice, and also that parallel programs require
some communication, these results suggest that memory-conscious scheduling provides

. nearly optimal thread placement for these fine-grain parallel programs.

4.2.3 Performance on the SGI Iris

In the previous section we showed that memory-conscious scheduling improves appli-
cation performance by 20-30% on the Butterfly, a large-scale shared-memory machine.
This result may not be surprising, in that the Butterfly is a NUMA multiprocessor
(NonUniform Memory Access), where software-based locality management is essential
to good performance. Software locality management has not received much attention
in bus-based cache-coherent multiprocessors like the Iris however, since the existence
of coherent caches creates an illusion of uniform memory access. In this section we
quantify the benefits of using memory-conscious scheduling on the Iris, and show that
in general these benefits depend not on the presence or lack of coherent caches, but
rather on the cost of a remote memory access (or cache miss) relative to the speed of
the processor.

To quantify the benefits of using memory-conscious scheduling on the Iris, we mea-
sured the execution time of the three different versions of each of our application
programs: coarse-grain threads, fine-grain threads with load balancing, and fine-grain
threads with memory-conscious scheduling. The results appear in Figures 4.1-4.3.

Figure 4.1 shows that the fine-grain decomposition of Gaussian elimination under
the load balancing policy is 3 times slower than the coarse-grain decomposition on 7
processors. In addition, the fine-grain decomposition with load balancing is unable to
exploit more than three processors; the extensive bus traffic generated by having every
thread load a row of the matrix into the local cache during its short lifetime limits
the number of processors that can be used effectively. Memory-conscious scheduling
eliminates most of this bus traffic however, so much so that the performance of the fine-
grain decomposition under memory-conscious scheduling is comparable to that of the
coarse-grain decomposition. The only difference between the two is the cost of creating
200,000 threads, or about one second.

<4

-

<@~

53

Figure 4.2 plots the results for Grassfire. Once again, fine-grain threads under
memory-conscious scheduling are comparable to a coarse-grain decomposition. The
improvement over the load balancing policy is not quite as dramatic as in the earlier
example, but is still substantial. Similar results for merge sort are shown in Figure 4.3.

55 T - Y Y T
50 coarse-grain < 4
fine-grain —+—
45 fine-grain MCS 8- 1
40 ¢ -
35 | -
completion 30 F
time
25 F
20
15
10}
5 1 L i 1 1
1 2 3 4 5 6 7

Pprocessors

Figure 4.1: Gaussian elimination of a 640 by 640 matrix

We can draw several conclusions from these examples. First, fine-grain threads
under traditional scheduling policies perform much worse than coarse-grain threads,
not because of the high cost of thread management, but rather because of the cost
of repeatedly loading data into the local cache. Second, memory-conscious scheduling
alleviates most of this performance disparity by scheduling a thread on the processor
containing the data it needs. Third, the benefits of memory-conscious scheduling depend
on the application, and in some cases, on the number of processors.

The performance benefits of memory-conscious scheduling vary across our applica-
tions because each of the applications exhibits a different degree of data sharing among
threads. In Gaussian elimination, each thread modifies a single row of the matrix based
on the contents of the pivot row, which need only be loaded into each cache once. In
merge sort, each thread processes two sorted lists produced by two other threads. In
Grassfire, each thread modifies a single row of the image matrix based on the contents
of two boundary rows. By scheduling a thread on the processor containing the data to
be modified, memory-conscious scheduling eliminates a third of the memory traffic in
Grassfire, half the memory traffic in merge sort, and nearly all the memory traffic in
Gaussian- elimination. The performance results in Figures 4.1-4.3 are consistent with
these observations.

.

@ ;

@~

g

120 T T r - r
110 coarse-grain o—
100 F fine-grain ——
fine-grain MCS &—
90 - -
80 - -

- -

completion 70
time 60

50
of
30 ¢

20+
10

Figure 4.2: Grassfire on a 512 by 512 matrix

The Effect of Number of Processors

Figure 4.1 suggests that the relative benefits of memory-conscious scheduling depend in
part on the number of processors used during execution. There are several reasons why
this is true.

e With a small number of processors, there is a good chance that a random place-
ment of threads produces the desired result of having threads run on the processors
containing their data. For example, with 2 processors there is a 50% chance that
a random placement policy produces the best placement for a particular thread.

¢ As the number of processors increases, so does bus contention, which slows down
every main memory access. By reducing the need for main memory accesses,
memory-conscious scheduling reduces contention, which improves the speed of
any remaining accesses. This effect is particularly important on bus-based multi-
processors such as the Iris, where bus contention is often a problem (see section 2
and [60]).

o As the number of processors increases, 50 does the total amount of available cache
(or local memory) space. Extra cache space decreases the likelihood that data
will be ejected from a cache, which means that a thread’s data will almost always
reside in some cache.

To illustrate these points, we plotted the relative performance improvement of
memory-conscious scheduling over the traditional load balancing policy for each of our

h
v

@

q B

55

35 | 1 T T Y T
coarse-grain ©—
30 fine-grain —+— |
fine-grain MCS 85—
25
completion
time
20 |
15
10 A) 1 Il) | e}
1 2 3 4 5 6 7 8
processors

Figure 4.3: Merge sort of 2 million integers

applications as a function of the number of processors. The results appear in Figure
44.

As can be seen in Figure 4.4, the performance benefits of memory-conscious schedul-
ing increase with the number of processors, although the precise improvement depends
on the application. For example, the percentage improvement of Grassfire rises slowly,
but steadily, with an increase in the number of processors. The improvement of merge
sort rises very quickly up to 4 processors, but then remains constant. Gaussian elim-
ination exhibits dramatic improvements up to 4 processors, and then slow, steady im-
provements thereafter.

Gaussian elimination exhibits a jump in improvement between 3 and 4 processors
because the matrix used in our experiments doesn’t fit in three caches, but does fit
in four. Thus, there are no cache evictions on 4 processors; once the caches contain
the entire matrix, memory-conscious scheduling reduces the need for any main memory
accesses other than those caused by write-sharing.

Performance improvements are still possible even when the matrix does not fit in
the local caches. As long as parts of the matrix reside in the caches long enough to be
used by more than one thread, some main memory accesses are avoided. In Gaussian
elimination, the portion of the matrix that needs to be stored in the caches shrinks as
the matrix becomes triangular, and the computation is centered on higher numbered
rows. During the latter stages of the execution, the data required by the threads will
fit in the local caches, even if the original matrix did not.

The image matrix used in Grassfire fits in two caches, so we do not see much im-
provement as we increase the number of processors from 2 to 4. Even though the input

@.(, *

56
70 ; Y T T T b
gauss O—

60 grassfire —— 1
50 b sorting S~ 4
40 - e— P
percentage i
improvement 30 | T
of MCS 2k .
10 .
o — - — — _

_10 —r L 1 1 N - i
1 2 3 4 5 6 7 8

Processors

Figure 4.4: The effect of number of processors on memory-conscious scheduling.

to merge sort fits in eight caches (but not four), we do not see an improvement in the
relative benefits of memory-conscious scheduling when we move from 4 to 8 processors;
the form of the divide-and-conquer algorithm is such that most of the benefits of locality

management come from the low levels in the tree, which do not require all the data to
be resident in the caches.

In summary, we conclude that the performance benefits of memory-conscious
scheduling typically increase with the number of processors. The most significant point
in the performance curve usually, but not always, occurs when the number of processors
is large enough so that the data of an application fits in the local caches.

4.3 Simulation Results

In order to explore the relative impact of load balancing and locality management over
a wider range of parameters, including the degree of locality exhibited by an appli-
cation and the cost of non-local references, we simulated the execution of a 32-node
multiprocessor. In our simulation model, main memory is partitioned evenly among the
processors, and is accessible to all. Thus, there is a two-level memory hierarchy. Each
processor has a part of the main memory that is local to it, while the rest of the memory
is remote. Each processor has its own local re2dy queue. The access time penalty for
remote memory is a parameter of the simulatio.. Contention is not explicitly simulated.

We model the execution time of a thread by the number of memory references it
makes. Each thread has a minimum execution time, which is the execution time of

-«

@

the thread when all its references to shared duta are local. We assume that 80% of
the references are to private (local) data, and the remaining 20% of the references
are to shared data, which may or may not be local. These percentages are similar to
those measured in actual programs. The results based on these percentages can be
scaled to yield the corresponding results for programs where the percentage of shared
data references is larger or smaller; the performance of an application with P% private
references on a multiprocessor with remote-to-local access ratio R is the same as the
performance of an application with 80% private references on a multiprocessor with
remote-to-local access ratio of -;I_I;

To introduce imbalance in the workload, we used two different models for the execu-
tion times of threads. In the first model, the execution time of a thread is drawn from a
uniform distribution [0 -- N]. In the second model, the execution time of a thread is a
Bernoulli random variable, where 90% of the threads make /N references, and the other
10% make 100N references.

Threads will typically access shared data from remote memory, and so the actual
execution time of a thread will usually be much larger than its minimum execution time.
For each thread and processor pair, we record the percentage of references by the thread
to the memory of that processor. For non-local references, this percentage is multiplied
by the remote-to-local access time ratio. The time required by each processor is the
sum of the execution times of the threads it runs; the time required by the application
is the maximum time required by a processor.

The parameters in our simulations are the distribution of thread execution times,
the assignment policy, the model of locality, and the remote-to-local access time ratio.
Since the workload is determined using a random number generator. the results of
each experiment are not deterministic; we ran each experiment 50 times and report the
average result. All of our results were within 5% of the average.

In all our experiments we simulated an application with 1000 threads running or a
multiprocessor with 32 processors. (Results of experiments with more processors and
fewer threads were similar to the results reported here.) In each case. we varied the
remote-to-local access time ratio, and plotted the completion time of the program as a
function of this ratio.

4.3.1 Assignment Policies

To compare the effects of load balancing and locality management policies;-we simulated
two different thread assignment policies:

o Load Balancing (LB): A thread is assigned to the processor with the shortest ready
queue. Once execution begins, a thread runs to completion on a single processor.

o Memory-Conscious Scheduling (MCS): A thread is assigned to a processor whose
- local memory contains most of the data the thread will access. Once started, a
thread runs to completion.

58

If the thread assignment policy resuits in load imbalance, then thread reassignment
is needed to keep idle processors busy. Reassignment might produce even greater load
imbalance however, since a slight load irnbalance among threads making local references
--on a processor could result in a huge load imbalance if one of those threads were assigned
- to another processor and forced to make non-local references. We consider the following

reassignment policies:

e Aggressive Migration (AM}: When a processor is idle, it finds the processor with
the longest ready queue, removes the first thread from that queue, and execuies
it.

e No Migration (NM): Once a thread is assigned to a processor, it is never reas-
signed. If a processor is idle with an empty ready queue, it stays idle.

o Beneficial Migration (BM): When a processor is idle, it searches the ready queue
of the processor with the heaviest load, as measured by the computation time of
the threads in the queue. It selects a thread that will lower the execution time of
the application if executed immediately on the idle processor. If no such thread
is found, the processor remains idle. This policy requires complete information
about the data reference patterns and computation times of threads. Because of
the excessive knowledge this policy requires, it is very difficult to implement, but
can serve as a basis for comparison with the other scheduling policies.

AM and NM are endpoints in the spectrum of load balancing policies. NM never
reassigns a thread, even in the presence of load imbalance. AM attempts to balance
the load as soon as a processor becomes idle. Although this is a reasonable approach in
many cases, an aggressive policy can also cause even more load imbalance by increasing
the number of non-local references made by a thread. BM is a compromise policy that
reassigns a thread only if doing so improves the execution time of the application. We
use this unrealizable policy, which requires more information than is generally available,
as a standard to measure the effectiveness of the other policies.

4.3.2 Models of Locality

The effectiveness of locality management is partially determined by the reference be-
havior of threads, and in particular, the degree of sharing exhibited by the program.
If a set of threads share some data, then either all those threads must execute on the
same processor, or some threads will not have the data in local memory. To represent
different degrees of sharing, we simulated three models of locality for shared data:

o Model 1: All the shared data a thread will access reside in a single, randomly
selected, memory module.

o Model 2: Half of the shared data a thread will access resides in one, randomly
selected, memory module. The other half of the shared data resides in a single,
preselected memory module that is the same for all threads.

59

e Model §: The shared data a thread will access is evenly divided among three,
randomly selected, memory modules.

4.3.3 Uniform Execution Times

In our first set of experiments, all threads have uniform minimum execution times. The
results of these experiments are shown in Figures 4.5 - 4.7.

In Figure 4.5, each thread accesses shared data from a single, randomly selected,
memory module. Not surprisingly, MCS performs much better than LB, since the initial
assignment used by MCS ensures all references will be to local memory, while the initial
assignment used by LB will almost always ensure that all references to shared data will
be to non-local memory.

As expected, the longest ready queue under LB has about 32 threads. When using
MCS for thread assignment, the longest ready queue contains about 43 threads. The
resulting load imbalance suggests the need for thread reassigument. Among the thread
reassignment policies, BM and AM perform about the same, and are always better than
NM. BM performs a little better than AM only when the remote-to-local access ratio
is very high.

In Figure 4.6, each thread accesses shared data in two different memory modules.
One memory module is randomly selected, while the other is the same for all threads.
When the references are equally split among two memory modules. MCS randomly
assigns the thread to one of them. Since half the shared references of each thread are
directed to the same memory module, we expect half the threads to be assigned to that
processor. As a result, the longest ready queue under MCS should contain over 500
threads, while the longest ready queue under LB still contains only 32 threads.

Even though the initial thread assignment decision made by MCS produces tremen-
dous load imbalance, the reassignment policy is more than able to compensate for that
decision. As can be seen in Figure 4.6, MCS is generally better than LB. Since there
is one heavily loaded processor in this case, aggressive migration (AM) and beneficial
migration (BM) perform exactly the same, since both policies immediately reassign
threads to idle processors. MCS without migration (NM) is not visible in the graph due
to the lack of a reassignment policy, which causes the performance of this policy to be
out of scale.

In Figure 4.7, each thread accesses a third of its shared data from each of three
randomly selected memory modules. In this case, at least 14% of all references must be
non-local, regardless of where a thread executes. Once again, MCS is better than LB,
since under MCS a third of all references to shared data will be to local memory. Also,
AM and BM still perform about the same.

These simulation results suggest that processor affinity, not load balancing, should
be given highest priority during thread assignment, even when an assignment based on
processor affinity might produce significant load imbalance. The simulation results also
suggest that a simple reassignment policy that requires little effort or knowledge of the
application (AM) works as well as a more sophisticated, and less practical, policy (BM).

73

at most 1/P,, of the remaining work to be done.

60

4.3.4 Geometric Execution Times

In the following experiments, 90% of the threads have a minimum completion time of
1, and 10% of the threads have a minimum completion time of 100. We would expect
.this wide variation in completion times to produce a much greater load imbalance than
before, and highlight the importance of load balancing policies.

Figure 4.8 compares the LB and MCS policies where the shared data accessed by
a thread resides in a single, randomly selected, memory module. In this figure, the
references made by a thread are either all local, or 80% local and 20% non-local. Once
again, MCS with some form of thread reassignment performs better than LB. Also, for
the first time, beneficial migration (BM) is noticeably better than aggressive migration
(AM), up to 20% better when the remote-to-local access ratio is high. BM performs
better in this case because it knows the execution time of threads and can compute the
amount of load imbalance that exists before and after thread reassignment. AM assumes
that thread reassignment to alleviate load imbalance will improve execution time, which
may not be true if a long-running thread is forced to make non-local references as a result
of reassignment.

Figure 4.9 shows the results when the shared data accessed by a thread resides in
two memory modules, one of which is the same for all threads. Again MCS is better
than LB as an assignment policy, while BM is about the same as AM. Since there is only
one overloaded processor, both reassignment polices make the same decisions: move a
thread from the overloaded processor to an idle processor. Once again, MCS without
migration (NM) is off the scale due to the lack of a reassignment policy.

Figure 4.10 shows similar results for the case where the shared data a thread will
access is distributed across three memory modules. MCS without thread reassignment
again performs the worst, since the benefits of processor affinity are small relative to the
potential load imbalance that can result from the large variation in thread execution
times.

Taken together, these simulations confirm that locality management (i.e., processor
affinity) should take precedence during thread assignment, but that load imbalance and
locality must both be considered during thread reassignment. In particular, reassigning
a thread from an overloaded processor to an idle processor is not always appropriate,
especially when there is a high variation in thread execution times, or when the remote-
to-local access ratio is high.

4.4 Conclusions

In this chapter we considered the problem of assigning the threads of a fine-grain par-
allel application to processors in a shared-memory multiprocessor. We showed that
using threads to represent fine-grain parallelism can introduce excessive overhead, be-
cause each thread spends a large percentage of its lifetime bringing the data it needs
into the local memory or cache. To reduce the overhead associated with fine-grain
threads,-we proposed a scheduling policy that places threads close to their data. Ap-
plication performance improved by 20-30% when using memory-conscious scheduling

-

n . ‘&

&

70
LB:AM —~— ' M
60 - MCS:AM -+ - 1
50 + MCS:NM -o - -
MCS:BM - x -
. 40 P
0F
W el - 4o
10 -
0 1 1 1 1

Uniform Execution Times

remote to local access cost

Figure 4.5: Locality Model 1.

100
80
60
Time

40
20

T T Y T
LB:AM —~—

- MCS:AM -+ - -
MCS:NM -o -

~ MCS:BM x - -

remote to local access cost

Figure 4.6: Locality Model 2.

55
50
45
40
Time 35
30
25
20
15

0 2 4 6 8 10

0 2 4 6 8 10

! ¥ ¥]
- LB:AM — P, |
- MCS:AM -+ - .
F MCS:NM o~ -]
- -
L -
- -
i 1 1 A
0 2 4 6 8§ 10

remote to local access cost

Figure 4.7: Locality Model 3.

61

Geometric Execution Times

1200
1000
800
Time
600
400

200

FBAM — ! 4
MCS:AM -+ -
MCS:NM -o -
MCS:BM - =

P B
x"‘t.t. 1

I 1 . 4

2 4 6 8 10
remote to local access cost

Figure 4.8: Locality Model 1.

1400 T T T
LB:AM —~—
1200 F MCS:AM -+ - .
MCS:NM -o -
1000 F MesiBM -« - 7
Time 800} -
600 |- -
400 - -
200 L H 1 L
0 2 4 6 8 10

remote to local access cost

Figure 4.9: Locality Model 2.

2000

1500 -
Time 1000 |-

500

IB.AM —T T
MCS:AM -+ - P
MCS:NM o~ _ -~ 7
MCS:BM,‘ o

#,ﬂ'

1 1 il i

2 4 6 8 10

remote to local access cost

Figure 4.10: Locality Model 3.

x4

62

on the Butterfly, and up to 60% on the Iris. Our experiments on the Iris show that
the benefits of memory-conscious scheduling increase with the number of processors,
and are particularly important when there is contention in the communication network.
Our simulation results show that memory-conscious scheduling is even effective under
varying distributions of data and load imbalance, and when the remote-to-local access
ratio is small.

Based on our experiments, we conclude that current multiprocessors cannot effi-
-ciently support fine-grain threads unless memory-conscious scheduling is used. In some
- cases a coarse-grain decomposition out-performs a fine-grain decomposition of the same
application by a factor of 3. This discrepancy cannot be attributed to thread manip-
ulation, but is instead due to the excessive bus or network traffic associated with the
fine-grain decomposition. This overhead is clearly too great a burden to justify the
convenience of using fine-grain threads.

Under memory-conscious scheduling however, the performance of a fine-grain de-
composition is often comparable to that of a coarse-grain decomposition for the same
program. Memory-conscious scheduling removes much of the network traffic associated
with the placement of fine-grain threads; the remaining difference in performance is due
to the cost of creating and managing a large number of threads.

Our simulation results suggest that memory-conscious scheduling is an appropri-
ate compromise between policies that emphasize locality management and policies that
emphasize load balancing. In most cases memory-conscious scheduling performs better
than either strict load balancing policies or strict locality management policies. Even
in cases where there is a significant load imbalance, memory-conscious scheduling still
manages to perform better than sophisticated load balancing policies. In the few cases
where memory-conscious scheduling does not perform best, it is within 5% of the best
alternative. By using initial placement to reduce the time required to execute a thread.
and by dealing with load imbalance as it occurs, memory-conscious scheduling minimizes
two important sources of overhead sim.itaneously.

e

" ."

¥ 4

63

5 Loop Scheduling

5.1 Introduction

Loops are the largest source of parallelism in most applications. Executing the many
iterations of a loop on different processors enables applications to take advantage of
parallel processors, and thereby reduce their running time. The problem of decomposing
a loop into parallel tasks and executing those tasks on a multiprocessor involves finding
the appropriate granularity of parallelism, so that the overhead of parallelism is kept
small, while the workload is evenly balanced among the available processors. !

Both static and dynamic loop scheduling methods have been used to assign the iter-
ations of a loop to processors. Static methods assign iterations to processors statically,
minimizing run-time synchronization overhead. Dynamic methods defer the assignment
of iterations to processors until run-time, and therefore can achieve better load balanc-
ing in the presence of unpredictable transient loads and variable execution times. The
major difficulty in designing dynamic loop scheduling algorithms involves keeping the
run-time synchronization overhead small, without losing the attractive load balancing
properties.

The simple static scheduling algorithm divides the number of loop iterations among
the available processors as evenly as possible, in the hope that each processor receives
about the same amount of work. This algorithm minimizes run-time synchronization
overhead, but does not balance the load dynamically. If all iterations do not take the
same amount of time, or if processors begin executing loop iterations at different points
in time, then load imbalance may arise, and will cause some processors to be idle, while
other processors continue to execute loop iterations.

The simplest dynamic algorithm for scheduling loop iterations is called self-
scheduling {65, 70]. In this algorithm, each processor repeatedly executes one iteration
of the loop until all iterations are executed. The algorithm relies on a central work queue
of iterations, where each idle processor gets one iteration, executes it, and repeats the
same cycle until there are no more iterations to execute. Self-scheduling achieves almost
perfect load balancing, since all processors finish within one iteration of each other. Un-
fortunately, this algorithm incurs tremendous synchronization overhead; each iteration

!In this chapter we consider non-nested completely parallelizable loops only. The problem of trans-
forming nested loops into non-nested loops has been addressed previously [59).

' ®

(n

(] .)

Y

requires atomic access to the central work queue. This synchronization overhead can
quickly become a bottleneck in large-scale systems, or even in small-scale systems if the
time to execute one iteration is small.

Uniform-sized chunking [41] reduces synchronization overhead by having each pro-
cessor take K iterations, instead of one. This algorithm amortizes the cost of each
synchronization operation over the execution time of K iterations, resulting in less syn-
chronization overhead. Uniform-sized chunking has a greater potential for imbalance
than self-scheduling however, as processors finish within K iterations of each other in
the worst case. In addition, choosing an appropriate value for K is a difficult problem,
which has been solved for limited cases only.

Guided Self-Scheduling [59] is a dynamic algorithm that changes the size of chunks
at run-time, allocating large chunks of iterations at the beginning of a loop so as to
reduce synchronization overhead, while allocating small chunks towards the end of the
loop to balance the workload. Under guided-self scheduling each processor is allocated
1/P,, of the remaining loop iterations, where P is the number of processors. Assuming
all loop iterations take the same amount of time to complete, guided-self scheduling
ensures that all processors finish within one iteration of each other and use the minimal
number of synchronization operations, even if processors start executing loop iterations
at unpredictable times.

Since processors take only a small number of iterations from the work queue at the
end of each loop, guided-self scheduling can suffer from excessive contention for the work
queue. If each iteration takes a short time to complete, then processors spend most of
their time competing to take iterations from the work-queue, rather than executing
iterations. Adaptive guided self-scheduling {26] addresses this problem by using a back-
off method to reduce the number of processors competing for iterations during periods
of contention. This algorithm also avoids assigning all the time-consuming iterations to
one processor, by assigning consecutive iterations to different processors, which reduces
the risk of load imbalance that arises when the execution times of consecutive iterations
vary widely but in a correlated fashion (e.g. if the execution time of iterations decreases
linearly). As a result of these modifications, adaptive guided self-scheduling performs
better than guided-self scheduling in many cases.

In some cases guided-self scheduling might assign too much work to the first few
processors, so that the remaining iterations are not sufficiently time-consuming to bal-
ance the workload. This situation arises when the initial iterations of a loop are much
more time-consuming than later iterations. The factoring algorithm [40] addresses this
problem. Under factoring, allocation of loop iterations to processors proceeds in phases.
During each phase, only a subset of the remaining loop iterations (usually half) is di-
vided equally among the available processors. Because factoring allocates a subset of
the remaining iterations in each phase, it balances load better than guided-self schedul-
ing when the computation times of loop iterations vary substantially. In addition, the
synchronization overhead of factoring is not significantly larger than that of guided-self
scheduling.

Like the factoring algorithm, the tapering algorithm [51] is designed for loops where
the execution time of iterations varies in such a way as to cause load imbalance under

65

guided-self scheduling. Tapering is used for irregular loops, where the execution time of
iterations varies widely and unpredictably. In the tapering algorithm execution profile
information is used to estimate the average iteration time and the variznce in iteration
times. These estimates are used to select a chunk size that, with high probability, limits
the amount of load imbalance that can occur to be within a given bound.

Although guided-self scheduling minimizes the number of synchronization opera-
tions needed to achieve perfect load balancing, the overhead of synchronization can
become significant in large-scale systems with very expensive synchronization primi-
tives. Trapezoid self-scheduling [73] tries to reduce the need for synchrenization, while
still maintaining a reasonable balance in load. This algorithm allocates large chunks
of iterations to the first few processors, and successively smaller chunks to the last few
processors. The first chunk is of size -2’%, and consecutive chunks differ in size 3%; iter-
ations. The difference in the size of successive chunks is always a constant in trapezoid
self-scheduling, whereas it is a decreasing function both in guided-self scheduling and in
factoring.

Al of these loop scheduling algorithms attempt to balance the workload among the
processors without incurring substantial synchronization overhead. Each of the algo-
rithms assumes that an individual iteration takes the same amount of time to execute on
every processor. This assumption is not valid however on many shared-memory multi-
processors. The existence of memory that is not equidistant from all processors (such as
local memory or a processor cache) implies that some processors are closer to the data
required by an iteration than others. Loop iterations frequently have an affinity [67] for
a particular processor — the one whose local memory or cache contains the required
data. By exploiting processor affinity, we can reduce the amount of communication
required to execute a parallel loop, and thereby improve the performance.

In this chapter we describe a new loop scheduling algorithm called affinity scheduling.
This algorithm attempts to balance the workload, minimize the number of synchroniza-
tion operations, and exploit processor affinity. Affinity scheduling uses a deterministic
assignment policy to assign repeated executions of a loop iteration to the same processor,
thereby ensuring most data accesses will be to the local memory or cache. In contrast to
most known algorithms, affinity scheduling employs per-processor work queues, which
minimize the need for synchronization across processors. As a result of the determin-
istic assignment policy and per-processor work queues, affinity scheduling introduces
synchronization only when load imbalance occurs. If the initial assignment of iterations
to processors produces a balanced workload, all processors will finish executing at about
the same time without incurring any synchronization overhead. If load imbalance occurs
(i.e., a processor is idle while there are iterations to be executed), iterations migrate
from one processor to another.

The next section provides the rationale for affinity scheduling, and describes the
affinity scheduling algorithm. Section 5.3 presents an analytic evaluation of affinity
scheduling and a comparison with other known techniques. Section 5.4 contains an
experimental comparison of the known loop scheduling algorithms, based on five rep-
resentative applications running on a Silicon Graphics multiprocessor workstation, and
additional experiments on the BBN Butterfly and Sequent Symmetry multiprocessors.

&7

@

®

Section 5.5 places our results in perspective, by discussing the broader issue of schedul-
. ing in shared-memory multiprocessors. Finally section 6 summarizes our results and
presents our conclusions.

5.2 Affinity Scheduling

5.2.1 Rationale

Our motivation for exploiting processor affinity in loop scheduling derives from the
observation that, for many parallel applications, the time spent bringing data into the
local memory or cache is a significant source of overhead, ranging between 30-60% of
the total execution time [16, 32, 75]. While data movement caused by true sharing is
unavoidable, it is possible to minimize data movement caused by a poor assignment of
iterations to processors. By scheduling a loop iteration on the processor whose local
memory or cache already contains the necessary data, we can significantly reduce the
execution time of the iteration.

Affinity scheduling is based on the assumption that, in many cases, loop iterations
do in fact have an affinity for a particular processor. In order for this assumption to
hold, it must be the case that: (1) the same data is used over and over by an iteratior,
and (2) the data is not removed from the local memory (or cache) before it can be
reused.

Data reuse is common in many applications, particularly those that employ iterative
algorithms wherein a parallel loop is nested within a sequential loop. In such cases.
each iteration of the parallel loop accesses the same data on successive iterations of the
enclosing sequential loop. During the first iteration of the sequential loop, each iteration
of the nested parallel loop loads the required data into the local memory or cache, where
it may remain during subsequent iterations of the enclosing sequential loop.

Data reuse may also occur in programs produced by a parallelizing compiler. Ear-
lier work has suggested that nested loops be interchanged iL such a way as to reduce
synchronization and communication overhead [34]. The resulting loop structure nests a
parallel loop within a sequential loop, again producing the desired form. If necessary,
several parallel loops can be coalesced into one [58].

Whether data resides in local storage long enough to be reused is a more complicated
question. Data may be removed from local storage to make room for the data needed
by other iterations of the same parallel loop, or another application. If two applications
share a single processor, then the data required by one application may be forced out of
local storage by the other application. We can minimize this effect under time sharing
by increasing the quantum, so that the time required to reload the cache is small relative
to the quantum size. Even in this case, affinity scheduling will be of little help if the
iterations of a parallel loop cannot be executed repeatedly within a single quantum (a
distinct possibility on small-scale multiprocessors with extremely large loops). A better
solution is to avoid time-sharing altogether, and employ space sharing instead, wherein
each application gets some number of processors for a relatively long pericd of time.

@ﬂ

c@-

&

67

Space sharing not only avoids cache (and memory) interference between applications,
it also has other attractive properties that result in improved performance over time
sharing {21, 21, 54] (see also chapter 3).

Even if a set of processors are dedicated to a single application, the data needed
by one iteration of a loop may be evicted from local storage to make room for the
data needed by another iteration of the same loop. # Although eviction may have been
a serious problem in the past, when local caches (or memory) were quite small, it is
less likely to occur in modern multiprocessors. The size of local caches and memory
has grown substantially in the last few years in order to bridge the ever-widening gap
between processor speeds and communication speed. For example, the BBN Butterfly
offered 1 MB of local memory per node in the early 1980’s, and 16 MB of memory
per node in 1990. With regards to cache-coherent machines, the Sequent Symmetry
(introduced around 1987) has 64 KB local caches, the Silicon Graphics 4D/480GTX
(introduced around 1990) has 1 MB (second-level) local caches, and the Kendall Square
Research multiprocessor (introduced in 1991) has 32 MB of coherent local memory (or
cache) per processor. Given this trend, the chances are good that the local cache or
memory will be large enough to hold the data for many iterations of a loop.

If eviction occurs even with very large local storage, then the program may not be
suitable for execution on a multiprocessor. Efficient execution requires that a processor’s
working set fit in the local cache (or memory). If the working set consists of multiple
iterations, and the associated data doesn’t fit in local storage, then the program will
thrash, spending most of its time loading data from non-local storage. This type of
program will not execute efficiently on modern multiprocessors regardless of the loop
scheduling algorithm in use.

Finally, there are loops that can execute efficiently on shared-memory multiproces-
sors, but which do not exhibit affinity. For example, a large parallel loop might force an
eviction on every iteration, but if each iteration is time-consuming and makes efficient
use of the local cache, then the evictions will not dominate the execution cost. Qur
work does not address this case; we exploit affinity only where it exists. and thereby
significantly improve the performance of a large class of programs.

5.2.2 Affinity Scheduling Algorithm

We consider the loop scheduling problem to have three dimensions: load imbalance, syn-
chronization overhead, and communication overhead due to non-local memory accesses.
Our algorithm for affinity scheduling builds on previous work in loop scheduling, while
also attempting to exploit processor affinity. The main ideas underlying our algorithm
are:

e As with many known algorithms, we assign large chunks of iterations at the start
of loop execution, so as to reduce the need for synchronization, and assign pro-
gressively smaller chunks to balance the load.

?We assume that the number of iterations is much larger than the number of available Pprocessors,
and therefore each processor must execute multiple iterations.

A

«@-

*

68

e We use a deterministic assignment policy to ensure that an iteration is always
assigned to the same processor. After the first execution of the iteration, that
processor will contain the required data, so subsequent executions of the iteration
will not need to load the data into local storage.

¢ We reassign a chunk to another processor (which also involves moving the required
data) only if necessary to balance the load. An idle processor removes chunks from
another’s queue, and executes them indivisibly, so an iteration is never reassigned
more than once.

We will assume that the underlying hardware or software implements a coherent
memory, so that data is copied i~*o local storage when first accessed. This copy is
implemented in hardware on machines with coherent caches, such as the Symmetry
and Silicon Graphics machine, and may be implemented in the operating system on
machines lacking coherent caches, like the Butterfly {17, 20, 43].

Our affinity scheduling algorithm divides the iterations of a loop into chunks of
size [N/P], where N is the number of iterations in the loop, and P is the number of
available processors. The iy, chunk of iterations is always placed on the local work
queue of processor 1. When a processor is idle, it removes 1/k of the iterations in its
local work queue and executes them. ® If a processor’s work queue is empty, it finds the
most loaded processor, removes [1/P] of the iterations in that processor’s work queue,
and executes them. *

Note that we distinguish between assigning a loop iteration to a processor’s work
queue, and executing the iteration on that processor. Initially, loop iterations are as-
signed to a processor’s work queue in chunks of size 1/P, so as to balance the load
statically. Processors execute 1/k of the remaining iterations on their local work queue
at a time, which corresponds to at most N/kP iterations. Processors execute 1/P of
the remaining iterations from a remote work queune, which corresponds to at most N/P?
iterations.

A pseudocode description for affinity scheduling can be found in Figure 5.1. Al-
though we implemented this algorithm by hand for our experiments, it could easily be
employed by a parallelizing compiler.

In our current implementation on small-scale multiprocessors, an idle processor ex-
amines the work queues of all the other processors and removes work from the queue
with the most iterations. This implementation suffices on small-scale machines, but
would not be efficient on a large-scale machine, where a scalable or randomized policy
would be more appropriate [22].

There are two important differences between affinity scheduling and previous dy-
namic loop scheduling algorithms. First, the initial assignment of chunks to processors
in affinity scheduling is deterministic. That is, processor i is always assigned the i,

3The constant k is a parameter of our algorithm. In most of our experiments we assume k equals P.
We describe the effects of changes in k in section 5.3.

4Synchronization is required to remove iterations from a work quene, but not to check the load on a
Processor.

@é.‘

i3

69

loop.initialization(N,P)
// N is the number of loop iterations, P is the number of processors

{
for(i =0 ; i <P ; i++) {
// assign iterations numbered ceil(i*N/P)
// through min(N,ceil((i+1)*N/P)) to processor i
assign_iterations(i)
}
}

loop // executed by each processor
// get 1/k of the local iterations to execute
range = get_iterations_from_local_queue(i/k) ;
if (range == empty)
max_load = find_most.loaded_processor() ;
if (max_load == nil) break ;
// get 1/P of the iterations from the most loaded processor
range = get_iterations_from_nonlocal_queue(max_load,1/P);
if (range == nil) break ;
execute(range) ;
forever

Figure 5.1: Pseudocode for affinity scheduling

70

chunk of iterations to execute. For many programs, this assignment ensures that re-
peated executions of the loop will access data that is already stored in the local memory
or cache. Second, affinity scheduling initially assumes that load imbalance will not oc-
cur, and therefore assigns the same number of iterations to each processor’s work queue.
Each processor gets iterations from its own local work queue; accesses to different work
queues can proceed in parallel, and each access is local, and therefore cheap. If load
imbalance arises, the algorithm migrates iterations from loaded processors to idle ones.
Migrating iterations causes the associated data to move twice; the data must first move
to an idle processor to alleviate load imbalance, and then move back to its original
location to restore processor affinity. However, under affinity scheduling this overhead
is introduced only when load imbalance arises, whereas other algorithms incur this
overhead on every iteration.

Despite these differences, we will show that affinity scheduling has all the advan-
tages of the best dynamic loop scheduling algorithms. That is, it balances the load
dynamically, minimizes synchronization, and is immune to the arrival and departure of
processors in the system.

5.2.3 Modified Factoring

The affinity scheduling algorithm is intended to address all three dimensions of the loop
scheduling problem. An entirely new algorithm is not needed in order to deal with
communication overhead however; previous methods can be extended to deal with this
new dimension. We will now describe how to reduce the need for communication in the
factoring algorithm.

During each phase of the factoring algorithm, iterations are grouped into P equal-
sized chunks. Those chunks are placed in the central work queue, and each processor
removes the next available chunk. Our modification to this scheme is that during each
phase, processor i always removes the 7;; chunk from the queue, rather than the chunk
at the front of the queue. If the i, chunk for this phase is no longer in the queue.
an idle processor removes the first chunk in the queue. > By selecting the same chunk
each time a loop executes, the modified factoring algorithm ensures that an iteration
has access to the data it referenced during an earlier execution. However, each access
to the central work queue is considerably more expensive than in the case of factoring
or guided-self scheduling, and the additional overhead may eliminate the benefits of
scheduling iterations close to their data. We will examine this issue in our experiments
with the various loop scheduling algorithms.

5.3 Analytic Evaluation

Under affinity scheduling each iteration is initially assigned to a processor based on
affinity considerations, and then reassigned to another processor if necessary to balance
the load. Since an iteration is reassigned at most once, the algorithm is stable under

*As with affinity scheduling, load imbalance may cause data to move twice.

71

load imbalance conditions and avoids processor thrashing [68], where processors spend -

more time executing migrated work than executing their own assigned work.

The fact that each iteration is reassigned to another processor at most once by affin-
ity scheduling does not imply that the number of synchronization operations associated
with reassignment is linear in the number of iterations. Since iterations are assigned
(and reassigned) to processors in chunks, synchronization overhead is amortized over the
number of iterations in a chunk. Theorem 5.3.1 places a bound on the synchronization
overhead induced by affinity scheduling.

Lemma 5.3.1 [59] If each processor takes 1/k,, of the iterations in a work queue, the
total number of accesses will be at most klog(N/k), where N is the initial number of
tterations in the work queue.

Theorem 5.3.1 Affinity scheduling will incur at most O(klog(ﬁ) + Plog(%)) syn-
chronization operations on each work queue.

Proof: When a processor accesses its local work queue, it removes 1/k,, of the remaining
iterations. Initially, each local queue contains N/P iterations. From Lemma 5.3.1 it follows
that a processor wil. access its own work queue at most O(k log(%)) times. When another
processor accesses that work queue, it removes 1/P,, of the remaining iterations. Again using
Lemma 5.3.1 we conclude that no more than O(Plog(-g;)) accesses by other processors can
occur. So the total number of synchronization operations to each work queue is (in the worst
case) O(klog(£;) + Plog(£5)).

By way of comparison, guided-self scheduling induces O(Plog(N/P)) synchroniza-
tion operations on the central work queue, factoring induces O(P log(\V)) operations,
and trapezoid self-scheduling induces 4 P operations.

One common assumption in loop scheduling is that all processors do not start execut-
ing loop iterations at the same time, as there may have been delays due to previous load
imbalance or synchrorization operations. Theorem 5.3.2 places a bound on the degree
of imbalance that can result from using affinity scheduling under this assumption.

Lemma 5.3.2 [59] Assume that all iterations of a loop take the same amount of time
to complete. If each processor takes 1/P,, of the remaining iterations in a work queue,
then all processors finish within one iteration of each other.

Theorem 5.3.2 Assume that all iterations of a loop take the same amount of time to
complete, and that not all processors start ezecuting loop iterations at the same time.
Under affinity scheduling, all processors will finish within -}’,%:_—'1';)5 + 1 sterations of each

other.

Proof: Under affinity scheduling the worst-case imbalance occurs when all processors except
one finish working on their own iterations just as the remaining processor is ready to begin
working on its iterations. In this case the late processor will take -},% iterations from its own

L))

Lo

72

work queue, leaving Q%‘fﬁ iterations to be divided among the other P—1 processors. According
to Lernma 5.3.2, if each of the P — 1 processors removes 1/ P of the remaining iterations, they
will all finish within one iteration of each other. Under this scenario, one processor will have to
execute f; iterat.ons, while each of the other processors has only -éf;—_”l-)vﬁ iterations to execute.
The resulting imbalance is £ — -}f—;}-{%, or -‘5“-;1;_—'1%. Since processors do not, in general,
start executing iterations at exactly the same time, there could be an additional disparity of

one iteration. As a result, all processors will finish within -},y; - -}:—-;-Pl% +1, or %,(%p-__l,‘)% +1

iterations from each other. §

Both guided-self scheduling and factoring can guarantee that all processors finish
within one iteration of each other. Theorem 5.3.2 implies that if the constant k is equal
to the number of processors P, then all processors will finish within one iteration of
each other under affinity scheduling as well.

From these results, we see that k plays an impo::ant role in the overhead of affinity
scheduling. If £ is a small constant, then the number of synchronization operations per
local work queue is small (proportional to log(f;'s)), while the potential for load imbal-
ance is high (proportional to %). As k approaches P, affinity scheduling approaches the
same worst-case load imbalance as guided-self scheduling and facto-"ng, while simulta-
neously increasing the number of synchronization operations on the local work queue
by a factor of P.

Selecting an optimal value for k seems a difficult task, since the best choice depends
on a tradeoff between the benefits of load balancing versus the costs of synchronization.
This problem is not unique to affinity scheduling however, because most loop scheduling
algorithms must make this same tradeofl.

Under affinity scheduling we have separated the synchronization costs associated
with access to the local work queue (as represented by k, the fraction of iterations
removed from the local work queue) from the synchronization costs associated with
access to remote work queues (as represented by P, the fraction of iterations rernoved
from a remote work queue). Since synchronization operations on local work queues are
usually inexpensive, we use £k = P in all of our implementations, which results in small
initial chunks (N/P?) and thus good load balancing properties. Smaller values of &
could be used to reduce the number of accesses to local queues, while increasing the
potential load imbalance.

We next consider the size of chunks of iterations that should be used with parallel
loops wherein the time each iteration takes to execute is a decreasing function of the
iteration index. These loops are among the most difficult to schedule because they
often result in load imbalance, particularly when the scheduling algorithm assigns large
chunks of loop iterations to the first few processors and successively smaller chunks
to other processors. Theorem 5.3.3 indicates how many iterations each chunk should
contain so that no more than 1/P of the remaining work is assigned to a processor at
one time.

Theorem 5.3.3 Assume a parallel loop with N iterations, where the iy, iteration takes
time proportional to (N — 1)*. A chunk of size (_’F-FIX)_P of the iterations corresponds to

A

d
o

73 1

at most 1/ P,, of the remaining work to be done. L
[

Proof: Assume that there are R more iterations to be executed. The index of the first
iteration is r; the index of the last iteration is r + R — 1. Assume also that the time iteration d
z takes to complete is ¢ - (r + R — z)*. This function suggests that the iteration with index r
takes time c - R*, while the iteration with index r + R —] takes time ¢ to complete. The total
work remaining to be done in the loop is:

r4+R-1 d
E c-(r+ R—-2)f
r=r
The time required by the first chunk of size (T+Bx)—§ iterations is
r+ae ! ®
Z c (r+R-z)
z=r
In order not to create load imbalance, we want this work to be 1/P,, of the total work to be
done, or
o ! | THR-
E c4(r+R—z)"=F~ z c-(r+ R-z) d
r=r z=r
Using integral approximation. we will prove the theorem by proving:
r+‘-k—fr?—l
Z c(r+R-z) PS (
" rt+mrnr !
<c-R +/ c-(r+R~z)dr
r
1 r+R
<3 c-(r+R—z)kdzr (5.1)
r+HA-1 [
= . Y
< 7 ;;, c-(r+R-2z)
Because (r + R — z) is a decreasing function of r we know that forall § > r + 1:
b b b-1 o
3 (r+R—x)“5/(r+R-z)’°gE(r+R—z)" (5.2)
T=r+l 4 z=r
These inequalities represent an upper and lower bound on the numerical value of the integral.
Using (5.2) it is straightforward to prove the first and last inequality of the set of inequalities
(5.1). In order to complete the proof of (5.1) we need to show that °
" L vy -1 R 1 r+ R
c- R +/ c-(r+R—z)sz-13/ ¢-(r+ R-z)dr
or
R\ 1 °
k+1)R* + R"“—(R-H——-—— < SR
() (R) Pk+1) - P

74
or N
k+1 1 1 g
-) <= ‘
R *! (1+R P(k+l)) P (5.3)

Because (1x1/z)* > 1+ k/z and we have that

k+1 1 T TS E+1 1 1
— —_ -—— < -] - — —_— -
g t1-U+e-Bary) SR ! R tPSP

which proves inequality (5.3), which in turn proves inequality (5.1). |

Theorem 5.3.3 suggests that when all iterations take the same amount of time,
1/P,;, of the iterations corresponds to 1/P,, of the workload. When the iterations have
a decreasing triangular form, that is iteration i takes time proportional to (N — i), then
1/(2P),, of the iterations corresponds to 1/P,, of the workload. When the iterations
have a decreasing parabolic form, that is iteration i takes time proportional to (N —)2,
then 1/(3P),; of the iterations corresponds to 1/P,, of the workload.

Loops with decreasing workloads, such as those described above, are among the most
difficult loops to schedule. The scheduling algorithm must be careful to avoid assign-
ing so many iterations to one processor that the remaining iterations are insufficient to
balance the workload. Our experiments indicate that the factoring and trapezoid algo-
rithms have better load balancing properties than guided-self scheduling for this type
of loop. This result can be traced to the fact that both factoring and trapezoid start
with a chunk that contains 1/(2P),, of the iterations to be scheduled, while guided-self
scheduling starts with a chunk that contains 1/P,, of the iterations. According to the-
orem 5.3.3, the first chunk will be the bottleneck in guided-self scheduling, while it will
not be a bottleneck for factoring or trapezoid.

In general, if a loop scheduling algorithm assigns less than 1/P,, of the remaining
workload to each idle processor, then the minimum imbalance will result. Theorem 5.3.3
states how many iterations correspond to this fraction of the remaining workload for
loops wherein successive iterations require a polynomially decreasing amount of work.
If the amount of work per iteration increases polynomially, then the loop is easy to
schedule: 1/(kP),, of the remaining iterations always corresponds to less than 1/P,, of
the remaining work.

Summarizing our results, affinity scheduling (with £ = P) offers worst-case load
imbalance guarantees that are the the same as (or in some cases better than) those
of guided-self scheduling and factoring, but can, in the worst case, introduce about P
times more synchronization operations. Fortunately, these synchronization operations
are directed to P different work queues, and so the number of serialized synchronization
operations under affinity scheduling is somewhat smaller than the number of serializ-
able synchronization operations under guided-self scheduling or factoring. Since affinity
scheduling can also dramatically reduce communication overhead, affinity scheduling
should perform much better than either guided-self scheduling or factoring. We will
now examine the relative performance of these loop scheduling algorithms experimen-
tally.

75

5.4 Experimental Evaluation

In order to evaluate the performance benefits of affinity scheduling, we implemented
many of the known loop scheduling methods by hand on a Silicon Graphics 4D/480GTX
Iris workstation, a bus-based, cache-coherent machine with 8 processors. We then mea-
sured the performance of each of the scheduling algorithms on a suite of applications.

5.4.1 Scheduling Algorithms

We implemented the following loop scheduling algorithms by hand on the Iris: static
scheduling (STATIC), self-scheduling (SS), guided-self scheduling (GSS), factoring
(FACTORING), trapezoid self-scheduling (TRAPEZOID), affinity scheduling with k =
P (AFS), modified factoring (MOD-FACTORING), and a hand-optimized algorithm
(BEST-STATIC). BEST-STATIC represents our attempt at the best static assignment
possible, given complete knowledge of the application and its input. We implemented
this assignment by hand, atter examining the application and the input, so as to maxi-
mize locality of reference and minimize load imbalance. While not generally reaiizable,
since it requires programmer intervention and assumes knowledge of the application’s
input, BEST-STATIC is a useful base-line for evaluating other loop scheduling algo-
rithms.

5.4.2 Applications

We carefully selected five application programs that present loop scheduling algorithms
a range of opportunities for addressing load imbalance, synchronization overhead, wnd
communication overhead. Our application suite contains the following programs:

o Successive QOver-Relaxation (SOR):

DO SEQUENTIAL 19 I = 1,MAXITERATIONS
DO PARALLEL 29 J = 1,N
DO SEQUENTIAL 39 K = 1,N
A(J,K) = UPDATE(A,J,.K)
39 CONTINUE
29 CONTINUE
19 CONTINUE

All iterations of the parallel loop take about the same time to execute, so bet-
ter load balancing algorithms are not likely to produce much better performance.
However, the i), iteration of the parallel loop always accesses the i;; row of the ma-
trix, so scheduling algorithms that exploit processor affinity are likely to produce
much better performance.

e Gaussian Elimination:

76

DO SEQUENTIAL 19 K = 2,N
DO PARALLEL 29 I = K,N
DO SEQUENTIAL 39 J = K-1,N+1

A[1103) = A[1I[J] - A[K-1][J] * A[il[K-1]/A(K-1] [K-1]

39 CONTINUE
29 CONTINUE
19 CONTINUE

This application exhibits some load imbalance across iterations, but it also offers
many opportunities for exploiting processor affinity. Although successive execu-
tions of an iteration of the parallel loop do not access exactly the same matrix
elements each time, there is significant overlap in the elements referenced by suc-
cessive executions of an iteration. As with SOR, we expect scheduling algorithms
that exploit affinity to improve performance substantially.

Transitive Closure:

DO SEQUENTIAL 19 K = 1,N
DO PARALLEL 29 J = 1,N
IF (A(J,K) .EQ. TRUE) THEN
DO SEQUENTIAL 38 I = 1,N
IF (A(K,I) .EQ. TRUE) A(J,I) = TRUE
39 CONTINUE
29 CONTINUE
19 CONTINUE

The distinguishing characteristic of this application is that each iteration of the
parallel loop may take time O(1) or O(N) (where the input matrix is of size N x N'),
depending on the input data. Since the input values determine the variation in
iteration execution time, this application will serve to evaluate the eflfectiveness
of load balancing for each scheduling algorithm. This application will also benefit
from some form of affinity scheduling, since the i iteration of the parallel loop
always accesses the i, row of the matrix.

Adjoint Convolution:

DO PARALLEL 19 I = 1,N*N
DO SEQUENTIAL 29 K = I,N*N
A(I) = A(I) + X*B(K)*C(I-K)
29 CONTINUE
19 CONTINUE

This application exhibits significant load imbalance; the ¢;), iteration of the parallel
loop takes time proportional to O(n? — i). There is no affinity to exploit however,
so this application serves to evaluate the effectiveness of load balancing in the
absence of affinity.

77

DO SEQUENTIAL 1 I1 = 1,50
DO PARALLEL 2 12 = 1,10
DO PARALLEL 3 I3 = 1,10
DO PARALLEL 4 I4 = 1,10
{10}
[if C then {50}]
4 CONTINUE
3 CONTINUE
2 CONTINUE
DO PARALLEL 5 I5 = 1,100
{s0}
DO PARALLEL 6 16 = 1,5
{100}
[if C then {30}]
6 CONTINUE
5 CONTINUE
DO PARALLEL 7 I7 = 1,20
DO PARALLEL 8 18 = 1,4
{30}
8 CONTINUE
7 CONTINUE
1 CONTINUE

Figure 5.2: Structure of the L4 application

o L4: This application was used as a benchmark in [59]; we include it in our study
for comparison with previously published results. The structure of L4 can be
found in Figure 5.2. L4 is an example of a hybrid application with non-perfectly
nested and multi-way nested parallel loops. In our experiments. all if statements
are true with probability 0.5. As this application does not perform any memory
accesses, there is no affinity to be exploited.

Table 5.1 summarizes the properties of our application suite with respect to load
imbalance and affinity. If an application exhibits load imbalance, the iterations of the
loop may take varying amounts of computation time, so a static scheduling algorithm
may not be appropriate. If an application exhibits affinity, we can improve performance -
by scheduling iterations appropriately.

5.4.3 Comparison of Loop Scheduling Algorithms

In this section we compare the performance of the various loop scheduling algorithms
using the application suite. Due to the large number of scheduling algorithms we con-
sider,-we will represent algorithms with comparable performance with a single line in
the performance graphs.

78

Application Load imbalance | Affinity
SOR none yes
Gauss elimination little yes
Transitive closure | input dependent yes
Adjoint convolution large no
L4 little no

Table 5.1: Load imbalance and affinity characteristics of the application suite.

25

207

Comple-
tion
time

(secs)

LS L

T

S§S o
GSS, FACTORING, TRAPEZOID +
MOD-FACTORING -0~
AFS, BEST-STATIC, STATIC -x -

——
+ +
i Q T e a~ae =
-
1 1 [I 1 1 .
processors

Figure 5.3: Performance of loop scheduling algorithms for SOR.

\é;ﬂ

«@ -

..‘.

79

18 T T T T T -1
GSS, FACTORING, TRAPEZOID -o—
16 | MOD-FACTORING -+ - -
SS -o-

AFS, STATIC x - |
BEST-STATIC =—

S
"""""""" +. e e e e
9 1 1 1 T i i
1 2 3 4 5 6 7 8
proces:ors

Figure 5.4: Performance of loop scheduling algorithms for Gaussian elimination.

Figure 5.3 presents the completion time (in seconds) of the SOR program (N = 512)
running on 1 to 8 processors. As can be seen in the figure, SS performs the worst of all,
due to its high synchronization overhead. Other algorithms with lower synchronization
overhead, such as GSS, FACTORING, and TIRAPEZOID, perform much better than SS
— since there is no significant difference in the execution time of iterations, sophisticated
load balancing schemes aren’t necessary for this application. All of these algorithms
perform worse than the algorithms that exploit affinity. Both STATIC and AFS are
comparable to the best possible static algorithm. MOD-FACTORING lies between
AFS and FACTORING, since it requires less communication than FACTORING, but
requires more expensive access to the work queue than AFS. These results confirm that
affinity scheduling can improve the performance of loop scheduling algorithms.

Figure 5.4 plots the completion time of the Gaussian elimination program (N =
384) under the different scheduling algorithms. It is surprising to see that none of the
scheduling algorithms that ignore processor affinity can effectively utilize more than
two processors. There is simply too much contention for the shared bus under these
algorithms, since every iteration mus: load data into the local cache. SS performs worst
of all, because of its high synchronization overhead, but the performance difference
-narrows quickly as the communication costs of GSS, FACTORING, and TRAPEZOID
start to dominate synchronization costs. Once again, AFS and STATIC perform the

80

25 ™ T T T Y T

GSS, FACTORING, -o—
MOD-FACTORING -+ -

SS -a-
20 - AFS, STATIC -x - |
\ BEST-STATIC -&—
AN TRAPEZOID —~~—
Completion
time 15
(secs)
10 i
5 L
1 2 3 4 5 6 8

processors

Figure 5.5: Performance of loop scheduling algorithms for transitive closure (random
input).

best; they are within 10% of BEST-STATIC in the worst case, and a factor of 3 better
than the traditional dynamic loop scheduling algorithms. In addition, both AFS and
STATIC can effectively use all 8 processors.

This application is a perfect example of the fact that the dominant source of over-
head in many applications is communication (caused by cache misses), not synchroniza-
tion. Loop scheduling algorithms that focus on synchronization overhead alone perform
poorly when compared to algorithms that reduce communication overhead by exploiting
processor affinity.

Figure 5.5 presents the completion time of the transitive closure program when
given a random input graph of 512 nodes, with about 8% of the edges present. Because
the load is averaged over all iterations, preserving affinity takes precedence over load
balancing. As a result, AFS, STATIC, and MOD-FACTORING perform better than
GSS, FACTORING, SS, and TRAPEZOID.

Figure 5.6 presents the completion time of the transitive closure application when
given a skewed input graph of 640 nodes containing a clique of 320 nodes, and no other
edges. This is the first example where there is significant imbalance in the computation
across iterations, which explains why STATIC performs poorly. Although SS manages
to balance the load, it still suffers from high synchronization overhead. The surprising

&

°-

L)

81

22

20 R GSS -o— |
FACTORING -+ -
18 STATIC ©- |
MOD-FACTORING -x -
SS &— N
10 AFS — -
14 b BEST-STATIC -
Completion TRAPEZOID o -
time 12
(secs)
10 F
8 -
6F NG e T
4
2
1 2 3 4 5 6 7 8

Processors

Figure 5.6: Performance of loop scheduling algorithms for transitive closure (skewed
input).

82

8 Li LB 4 I B T | J
GSS, STATIC ¢—
1+ FACTORING, MOD-FACTORING —— |
AFS, BEST-STATIC, TRAPEZOID B -
SS x -
6k -
Comple- 5 |
tion
time
(secs) 4
3k
2r
l L 1 L i |] |
1 2 3 4 5 6 7 8

Processors

Figure 5.7: Performance of loop scheduling algorithms for adjoint convolution.

result in Figure 5.6 is that GSS performs worst of all. Although GSS assigns only 1/ P of
the iterations to the first processor, those iterations contain 2/ P, of the total work; the
remaining iterations do not have enough work to balance the load. Both FACTORING
and TRAPEZOID start with a smaller initial chunk of iterations, and therefore balance
the load better. AFS and MOD-FACTORING have the same load balancing properties
as FACTORING and TRAPEZOID, but exploit affinity as well.

Although AFS and MOD-FACTQRING perform the best, the improvement over
FACTORING and TRAPEZOID is not greater than 15%. The existence of sigrificant
load imbalance forces an affinity scheduler to override the initial assignment of iterations
to processors and instead execute iterations on any available idle processor. Each time
an iteration moves to another processor, the data must be loaded into a different cache.
This is also why AFS does not perform as well as BEST-STATIC, which has knowledge
of the input, and is therefore able to distribute the clique nodes evenly among the
processors, while maintaining processor affinity.

Figure 5.7 presents the performance of the scheduling algorithms for the adjoint
convolution program with N = 75. In this application, iterations have no affinity for a
particular processor, since the parallel loop is not embedded within a sequential loop.
There is significant load imbalance across iterations however, since the first iteration
takes time proportional to O(N?), while the last iteration takes time proportional to

th

@

83

O(1). As expected, loop scheduling algorithms that emphasize load balancing, such as
FACTORING, MOD-FACTORING, TRAPEZOID and AFS, perform the best. GSS
and the static methods assign too much work to the first few processors, and suffer
load imbalance as a result. SS again suffers from high synchronization overhead. These
results are consistent with those of [40].

We should note that a trivial change to our implementation of GSS would improve
its performance to be comparable to FACTORING, although not as good as AFS for
these examples. Instead of taking [N/ P] iterations, each processor could take [N/(kP)]
iterations, where k is 2n appropriate constant. With this change, GSS could start with
smaller chunks, leaving more opportunities to balance the load, without introducing
significant synchronization overhead. Eager and Zahorjan [26] argue that decreasing
the chunk size is not enough to balance the load if the execution time of iterations
decreases at a fast enough rate. Theorem 5.3.3 quantifies this relationship between the
variance in iteration execution times and the resulting load imbalance. and suggests
that if (1e rate of decrease is polynomial with exponent k, and each processor takes
no more than (—kq'qL)I" of the remaining iterations, no imbalance will occur. Thus, a
simple decrease in the chunk size is probably enough to balance the load for nearly all
programs.

Load imbalance is particularly important in the adjoint convolution problem because
the computation times of the iterations decrease linearly; the first few chunks could
become a bottleneck. Rather than decrease the chunk size at the beginning of the
loop, we could schedule the loop backwards, so that the last iterations execute first.
(Reverse execution works in this case because there are no dependencies among the
iterations.) Figure 5.8 presents the performance of several loop schedulers on the adjoint
convolution problem, when scheduling the iterations in reverse order. We see that all
scheduling algorithms (apart from SS) perform reasonably well, and are comparable in
performance to the best scheduling algorithms that execute the loop iterations in index
order. Although executing the iterations in reverse order may increase the potential
load imbalance (since the last iterations to be executed are the most time-consuming).
the potential imbalance is a negligible percentage of the total completion time of the
application. If there are N iterations, and the i, iteration takes O(N — i) time to
execute, the last iteration to be executed under reverse ordering takes about O(N)
time, while the total completion time of the application is about O(A?2/P). Thus, the
potential imbalance (time O(N)) is asymptotically small when compared to the total
completion tirae (O(N?/P)), unless the number of processors is on the order of the
number of loop iterations.

Finally, figure 5.9 plots the performance of the loop scheduling algorithms for the
L4 application. Since there are no memory references in L4, we would not expect an
affinity scheduler to perform any better than a scheduler that ignores affinity. In fact,
all loop schedulers perform about the same, although the dynamic schedulers perform
a bit better than the static scheduler, and self-scheduling is clearly the worst. These
results for L4 are consistent with those reported in [59].

-

!“ h

@

L

10 M T T T T T
GSS —~—

or FACTORING -+ - -
AFS, BEST-STATIC -o -

8 SS - x - -

TRAPEZOID -=—

processors

Figure 5.8: Performance of loop scheduling algorithms for adjoint convolution (reverse
index scheduling).

) | T |
GSS -—
3.5 55+ 4
FACTORING o~
STATIC x -
3 MOD-FACTORING -&—
i AFS — -
TRAPEZOID ——
Comple2 5 | .
tion
time
(secs) 2}
15F
1 -
0.5 4
1 2 3 4 5 6 7 8
processors

Figure 5.9: Performance of loop scheduling algorithms for application L4.

L7

-@-

-
|
1
|
|

® |
|
4
1
|

° |

86

5.4.4 Effects of Load Imbalance

In order to explore the effect of load imbalance in isolation, we implemented three
dynamic loop scheduling algorithms {AFS, GSS, and TRAPEZOID) by hand on the
- BBN Butterfly. None of our loop scheduling algorithms on the Butterfly preserve affinity,
and even the distributed work queues require non-local access, so any performance
differences can be attributed to the load balancing properties of the various algorithms.

We executed three applications on the Butterfly, while progressively introducing
more imbalance in the computation. The first application has the following form:

DO PARALLEL 191 = 1, N
DO SEQUENTIAL 29 J = 1, N-I
COMPUTE
29 CONTINUE
19 CONTINUE

This application is similar to adjoint convolution, in that the first few iterations
of the parallel loop have much more work to do than the last few iterations. Figure
5.10 plots the performance of the three loop scheduling algorithms for this application.
where N = 5000. AFS and TRAPEZOID have comparable performance, and both
perform better than GSS. The reason for this is given by theorem 5.3.3, which states
that the workload of this application is evenly balanced when processors take 1/{2FP) of
the reinaining iterations. TRAPEZOID starts with chunks of exactly that size, while
AFS uses smaller chunks, which results in slightly greater synchronization overhead.

Our second application has even greater load imbalance: iteration 1 takes time
proportional to (N — 1)?.
DO PARALLEL 19 I = 1, N
DD SEQUENTIAL 29 J =
COMPUTE
29 CONTINUE
19 CONTINUE

1, (N-I)=%*x2

According to theorem 5.3.3, each processor should take 1/(3P) of the remaining
iterations to balance the load evenly. TRAPEZOID allocates chunks larger than that,
but smaller than the chunks used by GSS. Therefore, we would expect TRAPEZOID
to behave worse than AFS, but better than GSS. Figure 5.11 plots the results for this
program, with N = 200. As expected, AFS performs better than TRAPEZOID, which
performs better than GSS. Note however that TRAPEZOID is very close to AFS when
the number of processors is close to 50 and N = 200. Theorem 5.3.3 explains why:
given 50 processors, the first chunk allocated by TRAPEZOID is of size 200/(2 + 50) =
2 iterations, while the maximum number of iterations that can be allocated without
creating imbalance according to theorem 5.3.3 is 200/(3 » 50) = 1.5 iterations. Thus,
TRAPEZOID is within one iteration of the optimal allocation, which in practice gives
performance comparable to AFS.

o -

87

40 T T 1 |] T 1 |
3B GSS -
! TRAPEZOID + -
0F AFS -0 - 4
Comple-25 I 1
tion
time 20[.
(secs) 15| -
10 | -
5 -
0
0 10 20 30 40 50 60

processors

Figure 5.10: Performance of loop scheduling algorithms on the Butterflv under trian-
gular workload.

40 T T T T T T T T

sF b GSS ~— |
TRAPEZOID + -
fF " AFS -~ -

Comple-25 |
tion
time 20
(secs) 15 |

10+
5
0 1 1

0 5 10 15 20 25 30 35 40 45 50
processors

Figure 5.11: Performance of loop scheduling algorithms on the Butterfly under decreas-
ing parabolic workload.

88

40 — T T T T T

35 k- t+ GSS o |
v TRAPEZOID -+ -

0p AFS © -
.

Comple-2d 1 . -
tion 20 0‘ +. -
time \ ’

(secs) 15F & i
A
10 b s S
5 -
0 1
0 10 20 30 40 50 60

Processors

Figure 5.12: Performance of loop scheduling algorithms on the Butterfly when load is
in first 10% of iterations.

Our final application has imbalance comparable to that of transitive closure. That
is, the first 10% of the iterations take 100 time units to complete, while the remaining
90% of the iterations take one time unit to complete, The code for the application is:

DO PARALLEL 19 I = {,N
IF (I.LT.(K/10)) THEN
COMPUTE(100)
ELSE
COMPUTE(1)
ENDIF
19 CONTINUE

If the first processor takes more than 1/(10P) of the iterations, it will get more than
(1/P)s of the work, and will therefore be the last processor to finish. Figure 5.12 plots
the results of executing this program on the Butterfly with N = 50000. In this figure,
AFS is clearly superior to TRAPEZOID and GSS. Both GSS and TRAPEZOID can be
improved, at the expense of synchronization overhead, by starting with smaller chunks
of iterations. AFS can afford to start with small chunks of iterations because it uses a
distributed work queue, which results in either smaller synchronization overhead for the
same load balancing properiies, or comparable synchronization overhead for superior
load balancing properties.

- 4

@

)

89

Delay | GSS | TRAPEZOID | FACTORING AFS
k=2|k=P

0.0625N | 2.31 2.34 231 2.42 2.32
0.125N | 2.44 2.44 2.45 2.59 2.44
0.1875N | 2.53 2.54 2.52 2.82 2.52
0.2031N | 2.54 2.57 2.54 2.68 2.54
0.2187N | 2.58 2.6 2.58 2.58 2.58
0.25N 29 2.9 29 2.9 2.9

Table 5.2: Execution time (in seconds) of simple, balanced loop program with non-
uniform start times.

5.4.5 Effect of Processor Arrival Time

In our previous examples, we assumed that all processors begin executing iterations
at about the same time. We now focus on the case where not all processors start
executing loop iterations at the same time. Static loop scheduling algorithms are clearly
inappropriate for this situation; robust dynamic loop scheduling algorithms should be
able to distribute the load evenly independent of the starting time of processors.

According to the analysis in section 5.3, if all iterations take the same time to
complete, then under guided-self scheduling, factoring, and affinity scheduling (with &k =
P), all processors finisk within one iteration of each other, regcrdless of the starting time
of processors. To confirm this fact experimentally, we implemented a simple, balanced
parallel loop with 200 million iterations and no memory accesses on the Iris. Since our
loop has no affinity to exploit, the serformance differences among the algorithms can be
attributed to any load imbalance caused by the non-uniform starting time of processors.

In this set of experiments, all processors start executing loop iterations at the same
time, except for one processor, which is delayed for time t;. We varied the delay and
measured the execution time of our simple loop under the different scheduling algo-
rithms. The results appear in table 5.2. In the table, the delay column represents the
number of iterations one processor was delayed. For example, in the first experiment,
a processor is delayed for the amount of time it takes one processor to execute one-
sixteenth of the iterations. Within this time, the other seven processors can execute
7/16 = 0.43 of the iterations.

The measured results show that all algorithms perform about the same in the pres-
ence of non-uniform starting times for all processors. These results are as expected for
GSS, FACTORING and AFS (with ¥ = P), because each of these scheduling algorithms
guarantees that all processors finish within one iteration of each other. TRAPEZOID
also performs close to the best algorithm in each case. Not surprisingly, AFS with k = 2
performs worst of all, but even this algorithm is within 10% of the best algorithm.

These experiments suggest that having processors with different arrival times does
-not affect the performance of good loop scheduling algorithms. The maximum imbalance
introduced depends on the size of allocations of iterations relative to the number of

90

remaining iterations. If the remaining iterations are enough to balance the work evenly
(a8 is the case in mos: loop scheduling algorithms), then different arrival times do not
impose any noticeable overhead. The two factors that distinguish the performance of the
various loop scheduling algorithms in our experiments are the load imbalance inherent
in the computation, and the ability to preserve affinity in the scheduler.

5.4.6 Synchronization Overhead

In this section we fucus on the synchronization overhead imposed by each scheduling
algorithm, so as to verify experimentally our analytic results, and to quantify the syn-
chronization overhead incurred by our application suite. Qur metric for synchronization
overhead is the number of times a processor removes iterations from a work queue. The
time required to remove iterations from a work queue might be a more accurate metric.
but we are primarily interested in the number of synchronization operations required
by each algorithm, and not the implementation details of a particular algorithm on a
particular machine.

Every algorithm except affinity scheduling uses a central work queue, wherein each
access to the work queue is a global synchronization operation. For affinity scheduling,
we identify scporately the number ot operations performea on local work queues from
the operations performed on remote work queues. We note however that on many
architectures, operations on remote queues under affinity scheduling would be cheaper
than global synchronization operations on a central work queue, since there is less
contention for access to each distributed work queue under affinity scheduling.

We should also note that load imbalance does not affect the number of synchroniza-
tion operations performed by SS, GSS, FACTORING and TRAPEZOID. Load imbal-
ance does affect the number of synchronization operations performed by AFS however.
because AFS responds to imbalance dynamically by migrating iterations. Thus, the
number of remote synchronization operations performed by AFS will give us insight
into the migration overhead incurred by the algorithm.

We will use SOR as an example of a well-balanced application, and adjoint-
convolution and transitive closure (with a skewed input) as examples of applications
with considerable variance in computation times across iterations. In the transitive
closure example, all the work is contained in the first half of the iterations, while in
the adjoint convolution example, the computation times of the iterations are linearly
decreasing.

Table 5.3 shows the number of synchronization operations per loop incurred by SOR
under the various scheduling algorithms. In our example, there are 512 iterations per
loop, so self-scheduling (SS) induces exactly 512 synchronization operations, regardless
of the number of processors. TRAPEZOID requires the smallest number of synchro-
nization operations, followed by GSS and FACTORING. As expected, AFS requires a
very small number of costly remote synchronization operations, and induces about as
many local synchronization operations per queue as TRAPEZOID.

Note that ali of the entries in table 5.3 represent an integer number of synchronization
operations, except the entries for affinity scheduling. There are two reasons for this.

9,

First, the individual entries in the table for affinity scheduling represent an average
across all processors for local and remote synchronization operations. Second, repeated
executions of the same parallel loop under affinity scheduling do not always require the
same number of local and remote synchronization operations.

Table 5.4 shows the number of synchronization operations per loop incurred by
transitive closure (with a skewed input matrix) under the various scheduling algorithms.
Once again, SS induces a large number of synchronization operations independently of
the number of processors. TRAPEZOID requires the fewest serialized synchronization
operations, but is only slightly better than AFS.

Even though the input matrix causes a large load imbalance in this application, AFS
requires only one or two remote synchronization operations per work queue to balance
the load. Each processor accesses a local work queue 20-30 times on average, but rarely
accesses a remote work queue. Whereas traditional loop scheduling algorithms always
access non-local work queues, AFS accesses a non-local work queue only 5-10% of the
time, and yet balances the load just as well. On machines where access to a local work
queue is much cheaper than access to a remote work queue (either due to the cost of
non-local access or the cost of non-local synchronization primitives), this property of
affinity scheduling could have enormous performance advantages.

Table 5.5 presents the total number of synchronization operations for the adjoint
convolution application under the various scheduling algorithms. TRAPEZOID again
has the smallest number of synchronization operations. Although AFS does more syn-
chronization operations than TRAPEZOID, the additional overhead is not noticeable,
because synchronization is relatively inexpensive on the Iris multiprocessor. and because
the number of processors we used in our experiments was rather small. In both cases
synchronization was less than 1% of the execution time, so any small savings in the
number of synchronization operations would have almost no impact on total execution
time.

To confirm that synchronization overhead is not an important factor in the compar-
ative performance of loop scheduling algorithms on shared-memory multiprocessors, we
implemented a simple, balanced parallel loop on the Butterfly. In our implementation of
affinity scheduling on the Butterfly, all work queues require non-local access. Since our
loop has no affinity to exploit, the performance differences among the algorithms can
be attributed to synchronization overhead. The results appear in Figure 5.13. As can
be seen from the figure, GSS, TRAPEZOID, and AFS have comparable performance
when the effects of affinity scheduling, distributed work queues, and load imbalance are
factored out.

5.4.7 Architectural Trends and Affinity Scheduling

Our experiments on the Iris confirm that communication overhead is a dominant factor
in application performance on modern shared-memory multiprocessors. Why then do
so many of the known loop scheduling algorithms ignore communication overhead?
~Because the hardware trends discussed in chapter 2 have produced a qualitative change
in the relative cost of communication and computation in the last few years.

92
Processors | SS | GSS [FACTORING | TRAPEZOID | AFS (per work queue)
remote local
1 512 | 1 10 3 0 1
2 512 | 10 18 7 0.5 7.3
4 512 | 23 32 13 1.0 16.8
6 512} 33 50 16 1.1 21.8
8 512 43 56 27 0.4 27
Table 5.3: Number of synchronization operations for SOR (N= 512).
Processors | §S | GSS | FACTORING | TRAPEZOID | AFS (per work queue)
remote local
1 640 | 1 11 3 0 1
2 640 | 11 20 7 1.5 8.4
4 640 | 23 36 13 2.1 16.8
6 640 | 34 52 18 1.1 23.8
8 640 | 45 64 22 0.7 28.3

Table 5.4: Number of synchronization operations for transitive closure on a skewed

640-node graph.

Processors | SS | GSS | FACTORING | TRAPEZOID | AFS (per work queue)
Tremote local
1 5625 1 14 3 0 1
2 5625 | 14 29 7 4 11
4 5625 | 31 49 14 6.75 20.2
6 5625 | 46 69 21 8.3 29.3
8 5625 | 61 89 <8 9.87 35.6

Table 5.5: Number of synchronization operations for adjoint convolution N = 75.

‘%]

\ZJ

@

L)

9]

f L Bl | | B3 1 J
GSS < |

TRAPEZOID + -

100 AFS -0~

Completion
time

10

0 10 20 30 40 30 60
processors

Figure 5.13: Performance of loop scheduling algorithms on the BBN Butterfly.

In order to demonstrate the impact of this change on loop scheduling, we executed
our Gaussian elimination program on a Sequent Symmetry S81 multiprocessor, a bus-
based, cache-coherent machine that predates the Iris. The processors on the Iris are
about 30 times faster than the processors on the Symmetry, but the peak bandwidth of
the Symmetry bus is 80 MB/sec, while the peak bandwidth of the Iris bus is only 64
MB/sec. Figure 5.14 plots the execution time of Gaussian elimination on a 256 by 256
matrix under three dynamic loop scheduling algorithms on the Symmetry. From this
figure we can see that AFS and GSS are comparable in performance on the Symmetry,
while our earlier results showed that AFS clearly dominates GSS on the Iris. We can
conclude that the ability of AFS to exploit processor affinity in Gaussian elimination is
of little value on the Symmetry, since communrication is cheap relative to computation.

We also see in figure 5.14 that TRAPEZOID performs 10-15% worse than both
AFS and GSS on this application. The cause of this disparity can be traced to the
load balancing properties of TRAPEZOID. When all iterations take the same time to
execute, processors finish within one iteration of each other under guided-self scheduling
{59]. Under TRAPEZOID, processors finish within several iterations of each other [73].
Wher an iteratiop takes a long time to complete, the imbalance introduced by the
trapezoid algorithm can be noticeable. Although the trapezoid algorithm requires fewer
accesses to the work queue, the Sequent does not employ a large number of processors,
and therefore the low synchronization overhead of TRAPEZOID does not outweigh the
load imbalance it causes.

These results suggest that communication was a relatively minor issue on the pre-
vious generation of shared-memory multiprocessors, and that both load imbalance and

25 F T T B -
GSS ~
TRAPEZOID -+ -
20 AFS -0 -]
Comple-
tion
time 15F
(secs)
10 |
5 1
0 5

Figure 5.14: Gaussian elimination on the Sequent Symmetry.

synchronization overhead were dominant. Our results on the Iris argue that the situ-
ation has changed dramatically, so much so that communication is now the dominant
factor in performance.

5.4.8 Scalable Multiprocessors

To demonstrate that the affinity effects we measured on the Iris hold and are even
stronger on recent large-scale multiprocessors, we performed several experiments on the
KSR-1, a large-scale cache-coherent multiprocessor, released in 1992, two years after
the Iris. We are interested in investigating if the architecture trends we observed among
the Sequent and the Iris still hold for the KSR-1. Our experiments use those programs
from our application suite that have some locality to preserve, which includes Gaussian
elimination, SOR, and transitive closure.

Figure 5.15 presents the completion time of Gaussian elimination on a 1024 by 1024
matrix under various loop scheduling algorithms on the KSR-1. We see that AFS is best
of all algorithms. It improves the completion time of the application by a factor of 3.7
compared to FACTORING and GSS, and by a factor of 2.8 compared to TRAPEZOID.
TRAPEZOID outperforms both GSS and FACTORING because it has the smallest
number of synchronization operations, and synchronization is very expensive on the
KSR, far more expensive than on the Iris (which has hardware locks).

MOD-FACTORING exhibits interesting behavior. It behaves reasonably well on
a small number of processors, somewhere between AFS and TRAPEZOID. For larger
numbers of processors, its behavior gets increasingly unstable, and starts to approach
the performance .of FACTORING very quickly. The reason for this sudden change is
that large numbers of processors can easily introduce small amounts of imbalance. Such

95

220 -1 | | T L
GSS —~—
200 FACTORING ~—]
TRAPEZOID =
180 - AFS ——— “1
160 k STATIC - |
MOD-FACTORING =—
140 - ~
Time
(SCCS) 120 ¢ ~
100 - -
80 - <
60 .
40 | ~
0 5 10 15 20 25

processors

Figure 5.15: Gaussian elimination on the KSR-1.

short-term fluctuations cause some processors to execute iterations that belong to other
processors, and almost all affinity is lost.

Figure 5.16 shows the completion time of the transitive closure application under
different scheduling algorithms. We note that all previously known schedulers saturate
at 10-15 processors and their performance gets worse beyond this point. The communi-
cation and synchronization overhead that these schedulers impose at 10-15 processors is
so high, that adding more processors just makes matters worse. Once again. AFS per-
forms the best of all algorithms. The closest algorithm to AFS is TRAPEZOID, which
has a small number of synchronization operations and manages to degrade performance
more gracefully. Aithough Ak5 performs better than the other aigorithms, the gap be-
tween AFS and the other algorithms is not as great as it was for Gaussian elimination.
There is a simple explanation for this: transitive closure has significant load imbalance,
while Gaussian elimination does not. In order to balance the load, AFS must migrate
(reassign) iterations from one processor to another. This migration results in a loss of
affinity. In Gaussian elimination, AFS almost never has to migrate iterations becauce
there is almost no imbalance among the processors, and thus no loss of affinity.

Figure 5.17 presents the completion time of SOR on the KSR-1. Once again, AFS,
STATIC, and MOD-FACTORING are the best algorithms. What is unusual is that they
are not much better than the others. SOR has lots of affinity to be preserved, and there

L]

160
140

120

Time
(secs)

Figure 5.16: Transitive closure on the KSR-1. (1024 node graph, where 40% of them

form a clique).

T LI ng —— L]
FACTORING ——
MOD-FACTORING ===
AFS —
TRAPEZOID ~e—
STATIC =

5 10 15 20
processors

350 T 2 Y T T T ~T
GSS ~—
MOD-FACTORING ==—
AFS —
250 b TRAPEZOID =a—
STATIC ==
200 -
Time
\5€cs)
150 -
100 n
50 -
0 1 1 1 1 L L
0 S 10 15 20 25 3u 35 40

processors

Figure 5.17: SOR on the KSR-1. (1024 by 1024. 12% iteratious)

is almost no imbalance to hinder the preservation of affinity. So. why isn’t AFS mnch
better than the other schedulers? The reason lies with a fundamental computation cost
that changed in the KSR-1. SOR performs a few additions and one division inside the
inner loop. Although floating point addition is supported in hardware on the KSR-1.
floating point division is implemented in software. Thus. the KSR-1 is a relatively slow
machine for applications that make heavy use of floating point division (like SOR). Any
benefits that arise from preserving affinity are bound to be a small percentage of the
total completion time of this application on this machine.

Comparing Affinity Preserving Algorithms

Now that we have demonstrated the importance of affinity, we compare the three affinity-
preserving loop schedulers we considered: static, affinity scheduling and modified-
factoring. Static scheduling preserves affinity but fails to balance the load in the cases
where load imbalance arises. Thus, it is inappropriate in dynamic environments. In sev-
eral cases modified-factoring preserves almost all the affinity \here is, but in some cases
it is highly unstable. This behavior can be traced to two properties of this algorithm:

o Modified-factoring has high synchronization overhead, much higher than factoring,
because each processor searches for a chunk of preferred work in a central queue

98

where all chunks are held. In contrast, most other algorithms, inclading factoring.
take the first chunk they find, and thus have smaller synchronization overhead.

e Modified-factoring is 100 eager to balance the load. If a processor does not find
a preferred chunk, it takes the preferred chunk of another processor, which in
turn takes the chunk of another processor and so on. Thus, if there is even one
processor that finishes its phase before the others start, it will probably result in
no chunk being assigned to its preferred processor.

Affinity scheduling overcomes the problems of the other affinity preserving algo-
rithms, by being a dynamic scheduling algorithm that reassigns iterations only when
there are no more local iterations to execute. This makes affinity scheduling both flexible
and robust at the same time.

5.4.9 Large Problems

Affinity scheduling performs the best when the working set of the parallel application
is in the caches (or local memories) of the multiprocesscr. Although both caches and
local memories used to be rather small. and could not hold the input for large scientific
problems, this is no longer the case. Local memories have become larger every vear.
quadrupling their size every three years [37]. Even caches continue to grow iu size: the
SGI Iris has 1 MB caches, while the KSR-1 has 32 MB caches.

To verify that affinity scheduling results in significant performance improvements
even for very large problems, we ran Gaussian elimination on a 4096 x 4096 matrix on
16 processors on the KSR-1. This problem needs more than five hours to complete on
one KSR-1 processor, and about 25 days to complete on one Butterfly I processor. We
ran the application on the KSR-1 and its completion time under various loop schedulers
was:

loop scheduler completion time (minutes)
16 KSR-1 processors

AFS 20.6
STATIC 20.9
MODIFIED-FACTORING 22.7
FACTORING 47.3
TRAPEZOID 50.7
GSS 73.7

We see that even for very large scientific problems, affinity scheduling results in
significant performance improvements, a factor of 2.5 over FACTORING and TRAPE-
Z01D, and a factor of 3.5 over GSS. All affinity preserving schedulers (STATIC, AFS
and MODIFIED-FACTORING) perform within 10% of each other.

o

99 ‘

5.4.10 Summary of Results |
®

Our experimental results demonstrate that the affinity scheduling algorithm has load

balancing properties comparable to those of the best known loop scheduling algorithms Y
(i-e., guided self-scheduling, trapezoid, factoring), while maintaining processor affinity,
and thereby significantly reducing communication overhead. The number of synchro-
nization operations per queue required by affinity scheduling is not much larger than
the number of operations required by the trapezoid algorithm, which induces the least
amount of synchronization overhead of the dynamic algorithms. Moreover, the num-
ber of serialized synchronization operations induced by affinity scheduling is always less
than the number of serialized synchronization operations required by the other dynamic
methods. As a result, in most cases affinity scheduling performs better than any other
known algorithm on modern shared-memory multiprocessors. ™

5.5 Related Issues

Loop scheduling can be viewed as part of the general problem of scheduling tasks in
multiprocessor systems so as to minimize the completion time of parallel applications.
In this context, loop scheduling is analogous to process scheduling, which is concerned
with many of the same issues, including load imbalance, synchronization overhead. and
communication overhead.

While some of the results regarding process scheduling apply to loop scheduling,
there is an important distinction between the two problem domains: a loop scheduling
algorithm must choose an appropriate decomposition (i.e., chunks), while the process
scheduling algorithm is given the decomposition selected by the programmer as input.
Thus, loop scheduling considers an additional dimension — loop decomposition so as
to minimize load imbaiance — and therefore must make tradeotfs in three dimensions
(svnchronization overhead, communication overhead, load imbalance}. It is this third |]
dimension that distinguishes work in loop scheduling, and that has dominated loop
scheduling research. However, even when there is a straightforward decomposition,
and the loop scheduling problem degrades to the process schedul 1g problem, process
scheduling algorithms are of little use, since communication is usually ignored in pro-
cess scheduling. In those cases where the role of communication has been considered, °
the resulting schedulers need large amounts of information, like call graphs, detailed
communication patterns, and exact communication costs [14, 58]. Such knowledge is
not generally available, as it may depend on unpredictable run-time factors (e.g. the
input of the application). Dynamic scheduling algorithms, including affinity scheduling,
emphasize algorithms and heuristics that are robust in dynamic environments and work

under limited information. d
Another aspect of loop scheduling that has attracted some attention deals with
scheduling loops that have dependencies within the statements of one iteration, across
iterations, or both {47, 58]. This problem is interesting and leads to challenging graph-
- theoretic problems. Unfortunately the most general form of the problem is intractable

and must be solved using heuristics. Moreover, applications that have loops with depen- i

®

o L J ® ® ¢ ® ®] { (

100

dencies do not usually achieve large speedups as they can execute in parallel at most a
.few iterations at a time. Unless each iteration takes a long time to execute, and can be
easily parallelized, loops with dependencies are of limited use in significantly enhancing
application performance using parallel processing.

Recent compiler work has also dealt with the issue of communication through the
use of blocking or tiling {77]. Blocking is a method of restructuring a loop so that
successive accesses to data by a processor occur as close in time as possible, so that
the data is still in the local cache when it is referenced over and over. Blocking can be
used at any level of the memory hierarchy, but it has the potential to introduce load
imbalance, since large blocks imply not only improved cache hit ratios, but also coarse
computation granularity, which may result in load imbalance.

5.6 Conclusions

In this chapter we discussed several important properties of loop scheduling algorithms.
Most algorithms assign the iterations of a loop to processors so as to minimize load im-
balance, while incurring minimum synchronization overhead. We argued that the non-
uniform access time to data in a shared-memory multiprocessor (due to local caches or
memory) introduces a new dimension to the loop scheduling problem: communication
overhead. We showed that traditional loop scheduling methods that ignore communi-
cation costs impose significant overhead on parallel applications, and proposed a new
loop scheduling algorithm based on affinity scheduling. This new algorithm performed
better than all other known algorithms in our experiments. The main ideas underlying
affinity scheduling are:

o Affinity scheduling uses per-processor work queues, instead of a central work
queue. Accesses to several work queues may proceed in paraliel, and most accesses
to work queues are local access that do not suffer from contention. Synchronization
across processor occurs only if load imbalance arises.

e When a paralle! loop is embedded within a sequential loop (a common case),
affinity scheduling assigns an iteration of the loop to the same processor each time
it is executed. I the iteration accesses the same data each time, then the data
will already be in the local memory or cache, reducing communication overhead.

Based on our experiments with affinity scheduling and other loop scheduling policies
on three different multiprocessors, we conclude:

o Loop scheduling algorithms should simultaneously consider load imbalance, syn-
chronization, and communication. Known policies that ignore communication
overhead incur a significant performance penalty in current multiprocessors. If
processor speeds continue to improve more quickly than memory or interconnec-
tion speeds, communication will be an increasing percentage of an application’s
execution time; scheduling methods that reduce both communication and syn-
chronization overhead are going to have an even greater impact in the future.

101

o Affinity scheduling is robust. Our experiments cover a range of applications with
widely varying characteristics. For applications that create affinity between iter-
ations and processors, affinity scheduling is by far the best algorithm. For ap-
plications with a lot of input-dependent load imbalance (i.e., transitive closure),

- affinity scheduling is again the best scheduling algorithm. Even for applications
that have no affinity to exploit, but exhibit significant potential for load imbalance
(i.e., adjoint convolution and L4), affinity scheduling is among the best algorithms.

o Central work queues are a bottleneck, even in small-scale multiprocessors. Central
work queues (or ready queues) have been criticized for serializing access to work,
which can produce a bottleneck in large-scale systems. Efficient synchronization
primitives (e.g., fetch and ¢) and efficient chunking algorithms can help with
synchronizaiion overhead, but the problem of communication overhead remains.
Central work queues require the frequent movement of data among processors,
since every process must load the data it needs into the local cache. The resulting
communication overhead degrades performance even for a very small number of
Processors.

In summary, our theoretical and experimental evaluation shows that affinity schedul-
ing has the attractive load balancing properties of the best known loop scheduling algo-
rithms, but also reduces communication overhead substantially. This overhead is quite
high on current multiprocessors. and is likely to increase in the future. We conclude that
loop scheduling techniques, such as affinity scheduling, that minimize communication
overhead will be increasingly important in the future.

102

103

@.'ft

d

6 Conclusions and Future Work -

In this dissertation we studied the problems of scheduling and decomposition for locality L
in shared-memory multiprocessors. We used several applications and several machines,
including the most popular models of Encore, Sequent, SGI, and Butterfly multiproces-
sors. Based on our experimental and analytical evaluation we conclude:
e Communication is a significant and increasing source of overhead in shared- ®

memory mulliprocessors. Communication was not an issue in shared-memory

multiprocessors 10 or even 5 years ago, mainly because processors were so slow

that communication was a negligible percentage of the total completion time of the

parallel application. An impressive increase in processor speeds accompanied by a

moderate increase in memory and interconnection network speeds has resulted in

. . ; o [®

an increase in the (relative) cost of communication by more than an order of mag-

nitude. Qur experiments with several multiprocessors suggest that the oldest (and

slowest) multiprocessor (the BBN Butterfly I} has the best performance (in terms

of speedup and efficiency), while the most recent multiprocessors (the Butterfly

TC2000 and the SGI Iris) have the worst performance, having efficiency as low

as 30% in many cases. The low efficiency is particularly interesting in light of the ®
fact that we used small scale multiprocessors (up to 50 processors). Had we used

larger scale multiprocessors we would have measured even greater performance

degradation.

o Scheduling and decomposition methods that reduce communication are essential.

1 Previously known scheduling and decomposition algorithms (especially dynamic
algorithms) have, for the most part, ignored communication as an overhead di-

mension. As a result, programming techniques that were efficient on the previous

& zeration of shared-memory multiprocessors now impose unacceptable overhead.

For example, even though thread libraries have dramatically reduced the cost of

4 thread creation [5, 12, 71], lightweight threads increase communication, since upon o

creation, each thread must load its working set into the local cache or memory.

This additional communication can easily increase the overhead associated with

each thread by two orders of magnitude, making the use of lightweight threads

very inefficient on modern shared-memory machines. Thus, the solid body of re-

i - search that deals with lightweight threads, including operating system support Y

for threads, performance analysis of multi-threaded applications, and compiler

104

implementations that use multiple threads, is of limited applicability. Without
scheduling algorithms that reduce commuunication, multi-threaded programming
models are impractical on modern shared-memory multiprocessors.

e Our proposed scheduling algorithms (memory-conscious scheduling and affinity
scheduling) show significant performance improvements now, and will those im-
provements are ezpected to increase in the future. We implemented our thread
scheduling method (memory-conscious scheduling) and compiler loop scheduling
method (affinity scheduling) on several multiprocessors, including the Butter-
fly family of parallel processors, and the SGI Iris and Sequent Symmetry bus-
based cache-coherent multiprocessors. We compared our algorithms against the
best known algorithms, and showed that our algorithms have significant per-
formance improvements over other popular methods, especially on the recent
generation of multiprocessors. Other algorithms do not address communication
costs, which have only recently become the dominant source of overhead. In ad-
dition, many previous studies of scheduling algorithms (both experimental and
simulation based) used skeletons of applications rather than real applications
[5, 47, 26, 59, 73]. Although these skeletons accurately represent the structure
of applications, they don’t make memory references, which tends to obscure the
cost of communication in these studies.

Given that current and future multiprocessors will have a deep memory hierarchy,
system software must take this hierarchy into account. There are several extensions to
our work that address this problem:

e All of our work has dealt with a two-level memory hierarchy (local and non-local
memory). This work could be extended to multi-level memory hierarchies. In such
architectures, there exists local, close, and distant memory for each processor. A
multi-level memory hierarchy presents a rich variety of choices for scheduling and
data allocation, but also complicates these two problems.

¢ Parallelizing compilers have traditionally focused on finding the maximum par-
allelism available in a program, while generally ignoring the memory hierarchy.
Although recent work has begun to deal with the memory hierarchy explicitly
(e.g., [77]), there is still much to be done. Several decisions made by parallelizing
compilers have to be reconsidered and possibly redesigned. Scheduling, decom-
position, data placement, process placement, and loop optimization have to be
carefully judged in terms of their effect on moving data across the memory hi-
erarchy. Compilers may alro be able to exploit information about data reference
patterns gathered from previc :¢ runs of the same application.

e It is becoming increasingly apparent that parallel software is fundamentally dif-
ferent from sequential software, and yet parcllel processors are built out of the
same components as uniprocessors. New hardware techniques may be needed for
multiprocessors. Latency-tolerant processors [2] are one step in this direction, but
other ideas need to explored.

105

Bibliography

[1) M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young. “Mach: A New Kernel Foundation for UNIX Development”. In Pro-
ceedings of the Summer 1986 USENIX Technical Conference and Ezhibition, pages
93-112, Pittsburgh, PA, June 1986.

[2] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. “APRIL: A Processor
Architecture for Multiprocessing”. In Proceedings of the Seventeenth International
Symposium on Computer Architecture, pages 104-114, May 1990.

{3] S. Ahuja, N. Carriero, and D. Gelernter. “Linda and Friends”. IEEE Computer,
19(8):26-34, August 1986.

[4] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. “Scheduler Acti-
vations: Effective Kernel Support for the User-Level Management of Parallelism™.
In Proceedings of the Thirteenth Symposium on Operating Systems Principles, pages
53-79, October 1991.

[5] T. E. Anderson, E. D. Lazowska, and H. M. Levy. “The Performance Implications
of Thread Management Alternatives for Shared Memory Multiprocessors”. IEEE
Transactions on Computers, 38(12):1631-1644, December 1989.

[6] T.E. Anderson, H.M. Levy, B.N. Bershad, and E.D. Lazowska. “The Interaction of
Architecture and Operating System Design”. In Proceedings of the {th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 108-120, April 1991.

(7] J. Archibald and J.-L. Baer. “Cache Coherence Protocols: Evaluation Using a

Multiprocessor Simulation Model”. ACM Transactions on Computer Systems,
4(4):273-298, November 1986.

[8] T. S. Axelrod. “Effects of Synchronization Barriers on Multiprocessor Perfor-
mance”. Parallel Computing, 3:129-140, 1986.

[9] BBN Advanced Computers Inc. The Uniform System Approach To Programming

the Butterfly Parallel Processor. Cambridge, Massachusetts, 1986. BBN Report
6149, Version 2.

106

[10] BBN Advanced Computers Inc. Chrysalis Programmers Manual. Cambridge. MA,
February 1988.

[11] B.N. Bershad, E.D. Lazowska, and H.M. Levy. “PRESTO: A System for Object-
Oriented Parallel Programming”. Software - Practice and Ezrperience, 18(8):713-
732, August 1988.

(12] B.N. Bershad, E.D. Lazowska, H.M. Levy, and D.B. Wagner. “An Open En-
vironment for Building Paralle] Programming Systems”. In Proceedings of the
ACM/SIGPLAN PPEALS 1988 Symposium on Parallel Programming: Ezperience
with Applications, Languages, and Systems, pages 1-9, July 1988,

{13] D. L. Black. “Scheduling Support for Concurrency and Parallelism in the Mach
Operating System”. IEEE Con:puter, 23(5):35-43, May 1990.

[14) S. H. Bokhari. Assignment problems in parallel and distributed computing. Kluwer
Academic Publishers, Boston, 1987.

(15) W. J. Bolosky and M. L. Scott. “A Trace-Based Comparison of Shared Mem-
ory Multiprocessor Architectures”. Technical Report 432, University of Rochester,
Computer Science Department, July 1992.

[16] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox. “NUMA
Policies and Their Relation to Memory Architecture”. In Proceedings of the 4th
International Conference on Architectural Support for Programming Languages and
Operating Systemns, pages 212-221, April 1991.

[17] W.J. Bolosky, R.P. Fitzgerald, and M.L. Scott. “Simple But Effective Techniques
for NUMA Memory Management”. In Proceedings of the 12th Symposium on Gp-
erating Systems Principles, pages 19-31, December 1989.

{18] E. D. Brooks. “The Butterfly Barrier”. International Journal of Parallel Program-
ming, 15(4):295-307, 1986.

[19] D. R. Cheriton, H. A. Goosen, and P. Machanick. “Restructuring a Paralle] Sim-
ulation to Improve Cache Behavior in a Shared-Memory Multiprocessor: A First
Experience”. In Proceedings of the International Symposium on Shaered-Memory
Multiprocessing, pages 109-118, 1991.

{20] A.L. Cox and R.J. Fowler. “The Implementation of a Coherent Memory Abstraction
on a NUMA Multiprocessor: Experiences with PLATINUM?”. In Proceedings of the
- 12th Symposium on Operating Systems Principles, pages 32-44, December 1989.

[21] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc, and E. Markatos. “Multiprogram-
ming on Multiprocessors”. In Proceedings of the Third IEEE Symposium on Parallel
and Distributed Processing, pages 590-597, Dallas, Texas, December 1991.

{22) S. Dandamudi. “A Comparison of Task Scheduling Strategies for Multiprocessor
Systems”. In Proceedings of the Third IEEE Symposium on Parallel and Distributed
Processing, pages 423-426, Dallas, Texas, December 1991.

107

[23] T. W. Doeppner Jr. “Threads: A System for the Support of Concurrent Pro-
gramming”. Technical Report CS-87-11, Department of Computer Science, Brown
University, 1987.

{24] T. H. Dunigan. “Kendall Square Multiprocessor: Early Experiences and Perfor-
mance”. Technical Report ORNL/TM-12065, Oak Ridge National Laboratory, May
1992.

[25) D. L. Eager, E.D. Lazowska, and J. Zahorjan. “The Limited Performance Benefits
of Migrating Active Processes for Load Sharing”. In Proceedings of the 1988 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
pages 63-72, May 1988.

[26] D. L. Eager and J. Zahorjan. “Adaptive Guided Self-Scheduling”. Technical Re-
port 92-01-01, Department of Computer Science and Engineering, University of
Washington, January 1992.

[27) D.L. Eager and J. Zahorjan. “Chores: Enhanced Run-Time Support for Shared-
Memory Parallel Computing”™. ACM Transactions on Computer Systems, 11(1):1-
32, February 1993.

[28] J. Edler, J. Lipkis. and E. Schonberg. “Process Management for Highly Paral-
le]l UNIX Systems”. Technical Report Ultracomputer Note 136, Ultracomputer
Research Laboratory, New York University, April 1988.

[29] D.G. Feitelson and L. Pndolph. “Distributed Hierarchical Control for Parallel
Processing”. IEEE Compu.. ~, 23(5):65-77, May 1990.

{30] R.s. towier and L. hontothanasis. “lmproving Processor and Cache Locality in
Fine-Grain Parallel Computations using Object-Affinity Scheduling and Continu-
ation Passing”. Technical Report 411, University of Rochester, Computer Science
Department, 1992.

{31] R. Goldman and R. P. Gabriel. “Qlisp: Parallel Processing in Lisp”. IEEE Software,
6(4):51-59, July 1989.

[32] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber. “Compara-
tive Evaluation of Latency Reducing and Tolerating Techniques”. In Proceedings of
the 18th International Symposium on Computer Architecture, pages 254-263, May
1991.

[33] A. Gupta, A. Tucker, and S. Urushibara. “The Impact of Operating System
Scheduling Policies and Synchronization Methods on the Performance of Paral-
lel Applications”. In Proceedings of the 1991 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 120-132, May 1991.

[34] R. Gupta. “Synchronization and Communication Costs of Loop Partitioning on
Shared-Memory Multiprocessor Systems”. In Proceedings of the International Con-
Jerence on Parallel Processing, pages 11:23-30, August 1989.

108

[35] R. Gupta and C. R. Hill. “A Scalable Implementation of Barrier Synchronization
Using An Adaptive Combining Tree”. International Journal on Paralle! Program-
ming, 18(3):161-180, June 1989.

[36] R. H. Halstead Jr. “Multilisp: A Language for Concurrent Symbolic Computa-
tion”. ACM Transac: ..ns on Programming Languages and Systems, 7(4):501-538,
October 1985.

[37) J. L. Hepnessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, Inc., 1990.

{38] D. Hensgen, R. Finkel, and U. Manber. “Two Algorithms for Barrier Synchroniza-
tion”. International Journal of Parallel Programming, 17(1):1-17, 1988.

(39] M. A. Holliday. “Reference History, Page Size, and Migration Daemons in Lo-
cal/Remote Architectures”. In Proceedings of the 3rd International Conference on
Architectural Support for Programming Languages and Operating Systems, Boston.
MA, April 1989.

[40] S.F. Hummel, E. Schonberg, and L.E. Flynn. “Factoring: A Practical and Robust
Method for Scheduling Parallel Loops”. Communications of the ACM, 35(8):90-
101, August 1992.

[41] C.P. Kruska! and A. Weiss. “Alocating Independent Subtasks on Parallel Proces-
sors”. IEEE Transactions on Software Engineering, 11(10):1001-1016, 1985.

{42] R. P. LaRowe Jr. and C. S. Ellis. “OS Experimentation and a User Community
Coexist Under the DUnX Kernel”. In Proceedings of the International Conference
on Parallel Processing, pages 11-158-11-166, August 1991.

[43] R. P. LaRowe, Jr. and C. S. Ellis. “Experimental Comparison of Memory Man-
agement Policies for NUMA Multiprocessors”. ACM Transactions on Computer
Systems, 9(4):319-363, November 1991.

[44] R. P. LaRowe Jr., J. T. Wilkes, and C. S. Ellis. “Exploiting Operating System Sup-
port for Dynamic Page Placement on a NUMA Shared Memory Multiprocessor”.
Proceedings of the Third ACM SIGPLAN Symposium on Principles and Prv ctice
of Parallel Programming (PPOPP), pages 122-132, April 1991.

{45]) S. T. Leutenegger. Issues in Multiprogrammed Multiprocessor Scheduling. PhD
thesis, University of Wisconsin-Madison, August 1990.

[46] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. “Policy/Mechanism
Separation in Hydra”. In Proceedings of the 5th Symposium on Operating Systems
Principles, pages 132-140, Austin, TX, November 1975.

[47] T.G. Lewis and H. El-Rewini. Introduction to Parallel Computing. Prentice Hall,
Englewood Cliffs, NJ, 1992.

109

[48] S.-P. Lo and V.D. Gligor. “Properties of Multiprocessor Scheduling Algorithms”.
In Proceedings of the International Conference on Parallel Processing. August 1987.

[49] S.-P. Lo and V.D. Gligor. “A Comparative Analysis of Multiprocessor Scheduling
Algorithms”. In Proceedings 7th International Conference on Distributed Comput-
ing Systems, pages 205-222, September 1987.

[50] B. Lubachevsky. “Synchronization Barrier and Related Tools for Shared Memory
Parallel Programming”. In Proceedings of the 1989 International Conference on
Parallel Processing, pages [1:175-179, August 1989.

[51] S. Lucco. “A Dynamic Scheduling Method for Irregular Parallel Programs™. In
ACM SIGPLAN ’92 Conferenice on Programming Language Design and Implemen-
tation, pages 200-211, June 1992.

[52] E. Markatos, M. Crovella, P. Das, C. Dubnicki, and T. LeBlanc. “The Effects of
Multiprogramming on Barrier Synchronization”. In Proceedings of the Third IEEE
Symposium on Parallel and Distributed Processing, pages 662—-669, December 1991.

[53] B.D. Marsh, M.L. Scott, T.J. LeBlanc, and E.P. Markatos. “First Class User-Level
Threads™. In Proceedings of the 13th Symposium on Operating Systems Principles,
pages 110-121, October 1991.

[54] C. McCann, R. Vaswani, and J. Zahorjan. “A Dynamic Processor Allocation Policy
for Multiprogrammed Shared Memory Multiprocessors”. Technical Report 90-03-
02, Department of Computer Science and Engineering, University of Washington,
March 1990 (Revised February 1991).

{55] J. M. Mellor-Crummey and M. L. Scott. “Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors”. ACM Transactions on Computer Systems,
9(1):21-65, 1991.

[56] J. K. Ousterhout. “Scheduling Techniques for Concurrent Systems”. In Proceedings
of Distributed Computing Systems, pages 22-30, October 1982.

[37] John Ousterhout. “Why Aren’t Operating Systems Getting Faster as Fast as Hard-
ware?”. Proceedings of the Summer 1990 USENIX Conference, pages 247-256, June
1990.

(58] C. D. Polychronopolous. Parallel Programming and Compilers. Kluwer Academic
Publishers, Boston, MA, 1988.

[59] C. D. Polychronopoulos and D. J. Kuck. “Guided Self-Scheduling: A Practical
Scheduling Scheme for Parallel Supercomputers”. IEEE Transactions on Comput-
ers, C-36(12), December 1987.

[60] E. Rothberg and A. Gupta. “Parallel ICCG on a Hierarchical Memory Multipro-
- cessor - Addressing the Triangular Solve Bottleneck”. Technical Report CSL-TR-
90-449, Stanford University, September 1990.

110

[61] V. Sarkar. Partitioning and Scheduling for Ezecution on Multiprocessors. PhD
thesis, Stanford University, April 1987.

[62] M.L. Scott, T.J. LeBlanc, and B.D. Marsh. “Evolution of an Operating System for
Large-Scale Shared-Memory Multiprocessors”. Technical Report 309, University of
Rochester, Computer Science Department, March 1989.

(63] M.L. Scott; T.J. LeBlanc, and B.D. Marsh. “Multi-Model Parallel Programming
in Psyche”. In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 70-78, March 1990.

[64] J.P. Singh, W-D. Weber, and A. Gupta. “SPLASH: Stanford Parallel Applications
for Shared-Memory”. Computer Architecture News, 20(1):5—-44, March 1992.

[65) B. Smith. “Architecture and Applications of the HEP Computer System”. In
Proceedings of the SPIE, Real-Time Signal Processing IV, 1981.

[66] M. S. Squillante. Issues in Shared-Memory Multiprocessor Scheduling: A Perfor-
mance Evaluation. PhD thesis, Department of Computer Science and Engineering.
University of Washington, October 1990.

[67] M. S. Squillante and E.D. Lazowska. “Using Processor-Cache Affinity Informa-
tion in Shared-Memory Multiprocessor Scheduling”. Technical Report 89-06-01,
Computer Science Department, University of Washington, February 1990.

[68] M. S. Squillante and R. D. Nelson. “Analysis of Task Migration in Shared-Memory
Multiprocessor Scheduling”. In Proceedings of the 1991 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems, pages 143-155. May
1991.

[69] Sun Microsystems, Inc. “Lightweight Processes”. In SunOS Programming Utilitics
and Libraries, March 1990. Sun Part Number 800-3847-10.

[70] P. Tang and P.-C. Yew. “Processor Self-Scheduling for Multiple Nested Parallel
Loops™. In Proceedings 1986 International Conference on Parallel Processing, pages
528-535, August 1986.

{71] R.H. Thomas and W. Crowther. “The Uniform System: An Approach to Runtime
Support for Large Scale Shared Memory Parallel Processors”. In Proceedings of

the 1988 International Conference on Parallel Processing, pages 245-254, August
1988.

[72] A. Tucker and A. Gupta. “Process Control and Scheduling Issues for Multipro-
grammed Shared-Memory Multiprocessors”. In Proceedings of the 12th Symposium
on Operating Systems Principles, pages 159-166, December 1989.

[73] T.H. Tzen and L.M. Ni. “Trapezoid Self-Scheduling: A Practical Scheduling
Scheme for Parallel Computers”. IEEE Transactions on Parallel and Distributed
Systems, 4(1):87-98, January 1963.

",

111

[74] R. Vaswani and J. Zahorjan. “The Implications of Cache Affinitv on Processor
Scheduling for Multiprogrammed, Shared Memory Multiprocessors™. In Proceed-
ings of the Thirteenth Sumposium on Operating Systemns Principles, pages 2640,
October 1991.

[75] W.-D. Weber and Anoop Gupta. “Exploring the Benefits of Multiple Hardware
Contexts in a Multiprocessor Architecture: Preliminary Results”. In Proceedings
of the 16th International Symposium on Computer Architecture, pages 273-280,
Jerusalem, Israel, May 1989.

[76] M. Weiser, A. Demers, and C. Hauser. “The Portable Common Runtime Approach
to Interoperability”. In Proceedings of the 12th Sumposium on Operating Systems
Principles, pages 114-122, December 1989.

(77] M. E. Wolf and M. S. Lam. “A Data Locality Optimizing Algorithm™. In ACM
SIGPLAN 91 Conference on Programming Language Design and Implementation,
pages 30-44, June 1991.

[78] P.-C. Yew, N.-F. Tzeng. and D.H. Lawrie. “Distributing Hot-Spot Addressing in
Large-Scale Multiprocessors”. IEEE Transactions on Computers, C-36(4):388-395,
April 1987.

[79] J. Zahorjan, E. D. Lazowska, and D. L. Eager. “Spinning Versus Blocking in
Parallel Systems with Uncertainty”. Technical Report 88-03-01, Department of
Computer Science and Engineering. University of Washington, March 1958.

[80] J. Zahorjan, E.D. Lazowska, and D.L. Eager. “The Effect of Scheduling Discipline
on Spin Overhead in Shared Memory Parallel Svstems”. IEEE Transactions on
Parallel and Distributed Systems, 2(2):180-198, April 199].

[81] J. Zahorjan and C. McCann. “Processor Scheduling in Shared Memory Multiproces-
sors”. In Proceedings of the 1990 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 214-225, May 1990.

