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METHOD FOR DESIGN RUTATION

1. INTRODUCTION

Response surface designs are used to develop a polynomial model relating a
dependent variable y to a set of quantitative independent variables z,, z3, ..., 7.
Each row of the Nxk design matrix X is a point in k-dimensional space. The
dependent variable y is measured at each of the design points and the coefficients of
the polynomial model are estimated from the data by the least-squares formula

b=(M'M)"'M’y, (1)

where b is the estimated coefficient vector and M is the Nxp expanded design
matrix, or model matrix, that has one column for each coefficient of the polynomial
model.

Many designs have been proposed for the estimation of the coefficients of
first- and second-degree polynomial models. The designs are centered at the origin
and scaled so that the design levels are convenient numbers—such as integers,
simple fractions, and their square roots; a change of origin and scale makes the
designs applicable to applied problems. Because a response surface design is a set of
points in k-dimensional space, a rotation of the coordinate axes will produce a new
design matrix that represents the same geometric figure as the original design. An
elementary result in linear algebra is that multiplication by an orthogonal matrix P
corresponds to a rotation of the coordinate axes if the determinant of P is 1, and to
a rotation followed by a reflection—a change of sign or direction of one axis—if the
determinant of P is —1. Hence there is no theoretical problem in obtaining
rotations of a design; there are only the practical questions Why rotate a design?
And how can a useful orthogonal matrix be selected to rotate the design?

2. MOTIVATION

The well known D- and G-efficiencies of first- and second-order response
surface designs are not affected by a rotation of the coordinate axes—see the proof
in the Appendix. One must look at other criteria to see any benefit from design
rotation. Two criteria examined here are the size of the design region and the
symmetry of the design matrix. The starting point for the theory of response




surface designs is the specification of the design region; it is usually taken to be a
cube or sphere of a specified size (in coded units). For spherical designs, the ranges
of the coded design factors are not considered important, and designs are compared
by scaling them to the same diameter. In this report, I take a different approach to
developing a response surface design.

Suppose an experimenter wishes to vary cooking time from 40 to 60 minutes,
and cooking temperature from 180 to 200 degrees. I assume that, regardless of the
design used, the range of the coded design factors must be scaled to the ranges of
the experimental factors so that cooking time varies from 40 to 60 minutes, and
temperature varies from 180 to 200 degrees. Such a scaling of the coded design
factors to the experimental factors is necessary to give the experimenter a design
with the specified ranges.

The specification of ranges for the experimental factors does not imply a
cuboidal region. The midpoints of the ranges of the experimental factors usually
represent the current process settings or a guess of the factor settings that will
optimize y. The exploration of the region around the center point of the design
should be symmetrical (that is, a spherical design) unless the experimenter specifies
that some directions are more important than others. A cuboidal region would be
appropriate, for example, if the experimenter specifies that the directions toward
the corners of the cube are more important than the directions toward the centers
of the faces of the cube.

Two examples will show how the size of the design region and symmetry of
design matrix can be changed by a rotation of the design. The first example
involves a rotation and scaling of the central composite design for two factors. The
central composite designs were developed by Box and Wilson (1951) and consist of
(a) center points at the origin, (b) axial or star points, which can be represented in
a shorthand notation by the permutations of (+1,0, - ,0), and (c) factorial
points, which are a two-level factorial or fractional factorial design of at least
resolution V and can be represented by (+a!, +a7l, -, +a7!). Typical
choices for a are the square root of k, which places the noncentral design points on
the surface of a sphere, and the fourth root of the number of factorial points, which
makes the contours of constant prediction variance spherical. Figure 1 shows a
rotation and scaling of the two-factor central composite design. The effect of the
rotation and scaling is to make the design cover a larger region (the large outer
circle in Fig. 1) when the rotations are scaled to cover the same range. Table 1
gives the coded design settings of the central composite design, the rotated design,




Temperature
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»>Time

40 min. 60 min.

180°

Figure 1. A Rotation and Scaling of the Two-Factor Central Composite Design.
The design points before rotation are indicated by small squares. The design is first
rotated (solid dots), then scaled to cover the same range as the design before
rotation (hollow dots).

and the rotated and scaled design. The advantage of the larger region of the
rotated and scaled design is that it gives a better estimates of the mode] coefficients
when the designs are applied in the usual manner. Table 2 shows that the larger
experimental region of the rotated and scaled design in Table 1 yields better




Table 1. Two Factor Central Composite Design
R L

Coordinates "...Rotated ...and Scaled
Point 3, z, v, v, 3, 3, Block
1 =707 =707 -.924 -.383 -l —.414 1
2 107 -.707 383 —.924 414 -1 1
3 -.107 707 383 924 —414 1. 1
4 707 .J07 924 .383 1. 414 1
5 0. 0. 0. 0. 0. 0. 1
] -1 0. -.924 383 -1, 414 2
1 1. 0. 924 -—.383 1 -414 2
8 0. -1 -.383 -—.924 -414 -1 2
9 0. 1. 383 924 414 1 2
10 0. 0. 0. 0. 0. 0. 2

Table 2. Variance of Estimated Coefficients

Standard Rotated
Model Term Orientation and Scaled
constant 5 o3 5 o?
linear 25 o? 213 02
quadratic 875 o2 837 02
interaction 10 o2 729 o2

estimates of the model coefficients. Scaling the design to cover the larger region

increases the determinant of M'M from 256 to 909.

The second example is a rotation and scaling of the hexagon design. Table 3
gives the coordinates of the design both before and after the rotation and scaling;

Figure 2 shows the rotation and scaling.

Table 3. Hexagon Design

Coordinates Rotated and Scaled
Point 2, z, 3, z, Block
1 1. 0. 1. -.268 1
2 =5 868 —.268 1 1
3 -5 -—.866 -.732 -.732 1
4 0. 0. 0. 0. 1
5 -1. 0. -1. .268 2
6 S5 —.866 .268 -1. 2
7 5 .866 732 732 2
8 0 0. 0 0 2




Figure 2. Two Rotations and Scalings of the Hexagon Design. The hexagon design
in its usual orientation is indicated by small squares. After rotation by =/12
radians and scaling the factor levels to the range —1 to 1, the design points are
indicated by a solid dots for a clockwise rotation of the design and by hollow dots
for a counterclockwise rotation of the design. Notice that the clockwise and
counterclockwise rotations are reflections across the x,-axis; multiplying the second
coordinate by —1 will change one rotation into the other.

In the standard orientation of the hexagon design, the first factor covers the



interval (—1,1) and the second factor covers the interval (—.866,.866). In the new
orientations, both factors cover the interval (—1,1); the rotated designs also cover a
slightly larger region than the original design.

The unequal ranges of the factors of the hexagon design in its usual
orientation create a problem in applying the design. If the levels —.866 and .866 of
the second factor are scaled to 180 and 200 degrees for the two-factor cooking
example, then the design is no longer a spherical design, but an ellipsoidal design
based on an irregular hexagon. This method of applying the design essentially
ignores the levels —.866 and .866 of the second factor; they could be replaced by —1
and 1 without affecting the levels of cooking temperature used by the experimenter.

An alternative method of applying the design is to associate the diameter of
the circle with the ranges of the experimental factors. The design diameter of two
units would therefore correspond to the full range of cooking temperature (180 to
200 degrees). Because the second design factor varies from —.866 to .866, cooking
temperature would be varied from 181.3 degrees to 198.7 degrees in the experiment.
This latter method of applying the design is consistent with the theory of optimal
designs, but tends to produce counter-productive consultant-client discussions.

The new orientations of the hexagon design give both factors the range —1 to
1, so they do not create a problem in associating the range of the coded design
factors to the ranges of the experimental factors. The price paid for the symmetric
orientations of the hexagon design is that the design now has seven levels of each
factor. An alternative is to use the central composite design, which has only five
levels, but requires more experimental runs.

These examples suggest that both the practical efficiency and the correctness
of application (or the client-friendliness) of a response surface design may be
affected by a rotation of the design. So how can desirable rotations be obtained?
There is little information in the literature on design rotation. Box and Behnken
(1960) note that their four-factor design is a rotation of the four-factor central
composite design and give the orthogonal matrix that yields the rotation, but they
do not discuss how the orthogonal matrix was found.

Doehlert and Klee (1972) gave rotations of Doehlert’s (1970) uniform shell
designs that minimize the number of levels of the factors. A technique used by
Doehlert and Klee (1972) was to start with a known orthogonal matrix of simple
form and then augment the matrix with additional rows and columns to get a




matrix that yields the minimum number of factor levels for the next higher
dimensional design. The augmentation process can be applied to other sequences of
designs, but a useful orthogonal matrix is required to start the process. Crosier
(1991) gave symmetric orientations of response surface designs for mixture
experiments. No orthogonal matrices were given, although there must be matrices
that map, for example, the three-dimensional central composite design to the
mixture space for four components.

In summary, the existing literature provides little guidance for rotating
response surface designs. The only helpful idea is to augment an orthogonal matrix
to serve the next higher dimension in a sequence of designs that have the same
construction. The development of useful orthogonal matrices to start the process is
an intuitive process. The numerical techniques developed in this report are offered
as a supplement to the intuitive approach to obtaining design rotations. Neither
approach is guaranteed to find the best solution. Doehlert and Klee (1972), for
example, missed the five-level orientation of the eight-factor uniform shell design
given in Table 4. The design in Table 4 can be orthogonally blocked: the points in
Table 4 are one block and their negatives are the other block; the same number of
center points must be used with each block. The design in Table 4 is one design in
the class of uniform shell designs; the symmetric orientation of the uniform shell
designs was found using the numerical techniques described in the next section.

3. AN APPROACH TO DESIGN ROTATION

3.1 Parameterization of Orthogonal Matrices
The rotation of a response surface design can be written in matrix notation as
W=XG (2)

where W is the rotated design matrix, X is the Nxk design matrix, and G is a kxk
orthogonal matrix whose determinant is one.

To optimize some criterion for W as a function of G, it is necessary to
parameterize G as a vector § whose elements can be varied independently of each
other. The k? elements of G cannot be varied independently because G must
remain an orthogonal matrix. G can be expressed as the product of k(k—1)/2




Table 4. Rotated Eight-Factor Uniform Shell Design
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NOTE: Add negatives and center points.

matrices, each of which represents a rotation in a plane defined by two coordinate
axes. All pairs of axes are included in this factorization of G, which can be written

(3)

* (Gr—1,4)s
where the matrix G;; is formed by replacing four elements of a kx k identity matrix;

.sz) .

* G)(Gas - -

(G12Gy3 * -

G=




the 1,5 and j,j elements are cos(0;;), the 1,j element is ~sin (6;;) and the j,¢ element
is sin(0;;). The G,; matrices represent a clockwise rotation of the design—that is,
the design is rotated from the positive z; axis toward the positive z; axis. The
representation of the matrix G as the product of k(k—1)/2 matrices is a useful
conceptual tool, but it is not necessary to actually form and multiply all the G;’s to
obtain G. G can be obtained from an identity matrix in k(k—1)/2 stages that
require only a lirear transform of two columns; each stage corresponds to post-
multiplication by a G;; matrix. Post-multiplication by G,; transforms the sth and
Jjth columns by the equations

9*ni = €08 (0;;) gni + 811 (0;5) 9, (4)
and
9%s;j = —8in (0;;) gn; + €0 (;5) gn; (5)

where n=1,2, ...,k is the row index and g*,; and g*,; are the values in the sth and
Jth columns after the transformation. In programming equations (4) and (5), it is
necessary to put the value of g*,; into a temporary storage location so that g,; is
still available when equation (5) is implemented; it is also customary to take the
calculation of cos(6;;) and sin (0;;) outside the loop over the rows of G.

Because G is an orthogonal matrix with determinant 1, equation (2) does not
allow for rotations followed by a reflection. Sign changes of the factors do not affect
the criteria proposed below for the desirability of a rotation. Hence, the method
developed in this section is able to find a good rotation of a design, although it may
be necessary to change the sign of a factor to put the rotated design in a convenient
form.

3.2 Criteria for Selecting a Rotation

The examples in Section 2 show what properties of a design may be changed
by rotation and therefore what criteria need to be specified for the objective
function of the multivariate optimization procedure. Rotating a design does not
change its diameter, so the range of the coded factors is used to measure the size of
the design. As can be seen in Table 1, rotation of a design should minsimize the
range of the coded factors so that rescaling the design will increase the size of the
experimental region. Because most rotations are likely to have different ranges for




the factors, the largest range (Rpa) will be taken as the first criterion to be
minimized.

The second example in Section 2 showed that equal ranges for the factors
might be obtained by rotation. To obtain this goal, the difference between the
largest and smallest range

may be minimized by the optimization procedure. The symmetric orientation of
the uniform shell designs was found by using the sum of the two criteria R;,, and
AR as the objective function for the multivariate optimization. Although this
success showed that these criteria could be effective, additional criteria were
developed to indicate other properties of symmetric designs.

Design factors can have equal ranges without being defined over the same
interval; for example, the first factor may cover the interval —1 to 2, whereas the
second factor covers the interval —2 to 1. It is also possible that the factors may
have the same range, but the range is asymmetric about zero, the center of the
design. For example, the factors may all cover the interval —1 to 2, even though
the design is centered at the origin. To develop a test for symmetric ranges, let L;
be the minimum value in the jth column of the rotated design matrix W and let H;
be the maximum value in the jth column of W. A criterion for obtaining

symmetric ranges is
k
Bom= % |13+ B;]- 7
’=

This criterion will be zero if L;j=—F; for j=1, 2, ..., k—that is, if all the factors
have symmetric ranges.

In addition to having the same, symmetric rarnge for all factors, a symmetric
design should have the same set of factor levels for all factois. An exact test for the
same set of factor levels for all factors would be cumbersome, so the following
indicator was developed to search for designs with the same set of levels for every
factor. Find the sum of absolute values (SAV) of the factor levels for each factor;
take the difference between the largest and smallest of these sums. The difference
will be zero if the factors have the same set of levels. The quantitv to be minimiz.d
by the optimization procedure is

10




N N
ASAV = maxy, |ug| —ming, |uy. (®)
1=1 =1

The criteria developed here are suggestive, not exhaustive. Criteria that capture
better the ideas of symmetry and size might be developed and criteria that reflect
other goals may certainly be used.

3.3 Random Starts for the Optimization Procedure

Multivariate optimization procedures often terminate at local optimum, rather
than at the global optimum. Because of this phenomenon, it is customary to start
the multivariate optimization procedure with many different initial guesses for the
solution vector. A simple method of obtaining different initial values for the vector
0 is to generate each 0;; as a uniform random variate over the interval (0, 2r). This
method is adequate for practical purposes but it is subject to criticism on
theoretical grounds. The columns (or rows) of G can be interpreted as points on
the surface of a sphere of radius 1; the use of uniformly distributed 6;;'s does not
generate a sequence of random orthogonal matrices whose columns are uniformly
distributed over a sphere. To obtain random orthogonal matrices whose columns
represent points uniformly distributed over a sphere, it is necessary that the angles
0;; have a distribution that depends on the value of j—s. Anderson, Olkin, and
Underhill (1987) give the following method of obtaining the required angles.

/2 j—i j—i+l
Let 0;; = arccos (t,/_,- ,where t;_;= Y up/ T up
m=1 m=1

and the u’s are independent random chi-square variates with one degree of freedom.
Anderson et al (1987) point out that after setting ¢; = u; /(u ;+u3), it is possible to
use the denominator of t; as the numerator in t3 = (u;+u3) /(4 ;+us+u3) because
the properties of chi-square variates make ¢; and ¢, independent. Thus, for fixed 1,
the k—1 0;;°s can be created from k—i+1 independent chi-square variates.

4. EXAMPLE

Hardin and Sloane (1992) give a second-order response surface design for four
factors in 16 runs by pairs of complex numbers. I call their design the complex
number design. Table 5 gives the real-valued coordinates for the four factors of the

11




Table 5. The Complex Number Design

Point z, z, z, z,

1 0. 0. 0 0.

2 1 0. 0 0.

3 -5 .866 0 0.

4 -5 —-.886 0 0.

5 0. 0. L 0.

6 0. 0. -5 .866

7 0. 0. -5 —.866

8§ -707 O -707 O

9 =77 O 354 -—612
10 707 O 354 612
1 354 —-612 -T707 O
12 354 -—612 354 -—612
13 354 -—612  .354 812
14 354 612 -707 O
15 354 612 354 —612
16 354 612  .354 612

complex number design. Rows 2-4 in Table 5 correspond to the pair of complex
numbers (w",0) for r=0, 1, and 2, where w= ezp (271 /3); rows 5-7 are (0,w ") for
r=0, 1, 2; and rows 8-16 are 2~/2 (—w', —w*) for r=0, 1, 2 and 8=0, 1, 2 at each
value of r.

The design has been oriented to minimize the number of levels of the factors,
but Hardin and Sloane (1992) do not discuss how this orientation was obtained.
Notice that the first and third factors cover the interval —.707 to 1, whereas the
second and fourth factors cover the interval —.866 to .866. The objectives in
rotating this design were to obtain (a) a symmetric range for each factor, (b) the
same range for each factor, (c) the same set of levels for each factor, and (d) a large
region. It was not clear if all these objectives could be attained, nor was it clear
how such objectives could be pursued without the method developed in this report.

The first step in exploring this problem was to generate 100 random 6's by
the method of Anderson et al (1987). The criteria discussed in Section 3 were
calculated for the 100 random orientations of the design given by this set of 8’s.
Table 6 gives the mean, standard deviation, minimum and maximum of the criteria
for the 100 random orientations, for the design as initially given by Hardin and
Sloane (1992), and for the optimized design. For the optimization, objective
function was a weighted average of the four criteria; the weights were proportional
to the reciprocals of the standard deviations of the criteria. Other methods of
weighting the criteria could be used. For example, a different set of randomly

12



Table 6. Criteria for Rotations of the Complex Number Design
100 Random Orientations _

Criterion Mean St.Dev. Min. Max. Initial Optimised
Reus 1.78 04 1.69 1.84 1.73 1.71
AR .12 05 .02 .25 02 .00
Ry 40 13 07 61 59 .00
ASAV 35 .18 07 .81 .84 .00

varying weights could be used with each starting point 6.

The Nelder-Mead downhill simplex method, as described by Press, Flannery,
Teukolsky, and Vetterling (1986), was used for the optimization. Again, this was
merely a convenient choice; other optimization methods, such as direction-set
methods, annealing methods (see Press et ol 1986 for a description of these), or
genetic algorithms (see Goldberg 1989) could be used. The 100 random 6#'s were
used as starting points for the optimization. From an initial point 6,, the downhill
simplex method creates a simplex by generating m = k(k—1)/2 additional points as
follows. For i=1, 2, ..., m, let 0; =0y+Ae;, where ¢; is the elementary vector with a
one in the sth place and zeros elsewhere. For the initial simplex, A was set at three
radians. The downhill simplex method moves the simplex away from the worst
point and shrinks the simplex until the relative difference between the objective
function at the best point and the objective function at the worst point reaches a
predetermined value, or until a maximum number of iterations has been reached.
The termination criterion was a relative tolerance of 10~7 in the objective function,
or a limit of 500 iterations. Of the 100 optimizations, only 11 were terminated by
the 500-iteration limit. The angles in the optimized #’s, the design levels in W, and
the four criteria for a design were generally accurate to two or three decimal
places—as judged by the agreement between different optimizations that
terminated at the same, or equivalent, rotations. A rerun of the optimizations, with
the optimized 0’s as the starting points and A =.01, added another decimal place of
accuracy.

Two symmetric orientations were found that have the same value by each
criterion. The two orientations, after scaling the factor levels to cover the interval
—1 to 1, are given in Tables 7 and 8. The first orientation (Table 7) can be
obtained by using 0’ = (57 /6, 3.486, 5.161, 3x/2, 2.299, 7x/4), changing the sign of
the first factor, and scaling the design to the range ~1 to 1. The second orientation
(Table 8) can be obtained by using 8’ =(—=/6, O, arctan(2'/?), x/2, 3x/4, x/4),
changing the sign of the fourth factor, and scaling. The second orientation is

13




Table 7. A notation of the Complex Number Design

Point s, 5, s, 5,
1 0 0 0 0

] g g 0 0

4 0 0 g g

7 -1 b -d d

5 b -1 d —d

s d —d -1 b

2 —d d b -1
10 1 —d b d
11 —d 1 d b
13 d b 1 —d

8 b d —d 1

16 f —-a — —h
14 -a f ~h -
12 —h - f —-a
9 — -h —-a f

15 - —e —. —e

NOTE: a=3/2'7-2%.121
b=22as 172

c=1-2"12 s 203
d=21%_1m:s 414
e=2-2'/2 = 586
f=2"2 . 707
g=2dss 828
A=3c 879

preferable to the first because it has an additional type of symmetry not found in
the first orientation: if a factor occurs at level g, it also occurs at level —a.

5. ADDITIONAL TOPICS

5.1 Multiple Solutions

Any angle in # may be replaced by 6;; + 27 without changing the rotated
design. In addition to the multiple solutions created by the periodic nature of the
sine and cosine functions, there are other solutions (#'s) that represent all
permutations of the columns of W and usually some permutations of the rows of W.
The different row orders that can be obtained by rotation are called equivalent row
orders; the implications of nonequivalent row orders are discussed in the next

paragraph.
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Table 8. Another Rotation of the Complex Number Design

Point 5, 5, 5, s,
1 0 0 0 0
6 g g 0 0
4 0 0 g g
7 ] 0 e —e
5 0 —£ —e e
3 —e e - 0
2 e —e 0 -
9 -1 -b 0 e
12 -b -1 e 0
16 e 0 -1 -b
14 0 e -b -1
13 1 -d b d

8 —d 1 d b
11 d b 1 —d
10 b d —-d 1
15 - —e —e —e

NOTE: b, d, ¢, and g are defined in Table 7.
5.2 Proving That Two Designs Are Rotations

It may be of interest to show that two Nxk design matrices A and B are, or
are not, rotations of each other. Applying the theory of generalized inverses to
solve A=BP for P, with the idea of showing that P is an orthogonal matrix, yields
P=(B'B)"!B’A. But P may not be an orthogonal matrix even if one design is a
rotation (or a rotation followed by a reflection) of the other. Nonequivalent row
orders for A and B will make P a nonorthogonal matrix, even if A and B are
rotations of each other.

5.3 The Shape of the Surface Over 8

If one considers the values of the objective function as a surface over the
possible values of 8, then the shape of the surface depends not only on the objective
function (the criteria used, and their weighting), but also on the orientation of the
design in X. Multivariate optimization procedures are sensitive to the shape of the
surface over the parameter space; some surfaces make the multivariate optimization
problem easy, and others make the problem difficult. It is not known if the
optimization process can be improved by updating the design in X whenever a
better orientation is found.
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5.4 Decomposition of P; Range of ¢

Anderson et al (1987) give a method of decomposing an orthogonal matrix P
into a set of angles # that can be used to construct G and a diagonal matrix D; the
diagonal matrix has 1’s and —1’s on the diagonal. Let P=GD; then G~ !P=D.
Because G is the product of k(k—1)/2 matrices, the decomposition of P into D and
a set of angles is performed in k(k—1)/2 stages; each stage calculates 0 ;; and then
premultiplies P by G,T'jl. The 0;;°s are extracted in the standard order (1,2), (1,3),
. (1,K), (2,3), etc. Let 0;;=arctan(pj;/p i) if p;>0 and let 6;;=x/2 if p ;=0.
After extracting 6;;, P is modified by using the equations

p*,',, = ¢08 (0,'1') Pin + 80 (0,‘,’) Pjn (10)
and
P*in = —81(0;;) pin + c0s (6;5) Pjn (11)

where n=1,2,...,k is the column index and p*;, and p*j, are the values in the sth
and jth rows after the transformation. Equations (10) and (11) are similar to
equations (4) and (5) and can be programmed in a similar manner. At the end of
the process P has been reduced to D.

The decomposition of P given by Anderson et al (1987) always yields angles
0;; in the range —/2 to x/2, whereas the angles in the multivariate optimization
procedure are allowed to take on any value.

5.5 Test Cases and Results

For two factors, the rotations of the central composite design and of the
hexagon design given in Section 2 may be used to test optimization routines and the
programming of equations (4) and (5). For k>2 and & even, the central composite
designs can be rotated to have a smaller range for the coded factors (and
subsequently scaled to cover a larger region) by using 8;;=w/4 for s odd and
Jj=1+1, and 6;; =0 otherwise.

Doehlert’s (1970) uniform shell designs for k>2 can be rotated to give the

factors equal ranges by wusing O;;=aresin[(j—i+1)"'] i j<k and
0;j=—arcsin[(j—¢ +1)—1/z] if 7=k The designs produced by this rotation have
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seven levels of the factors, except for the three-factor design (three levels—the
Box-Behnken design) and the eight-factor design (five levels). It is necessary to
change the sign of the last factor, as the preferred form for the new orientation is
both a rotation and a reflection of the uniform shell designs. The designs for even &
can be orthogonally blocked in the same manner as the design in Table 4.

6. SUMMARY

Figures illustrating rotations of the hexagon design and the octagon (or
central composite) design showed how rotations can produce a symmetric treatment
of the factors, a larger experimental region, or both. A rotation of the eight-factor
uniform shell design (with levels —1, —.5, 0, .5, and 1 for each factor) was given.

Rotations of a response surface design can be obtained from standard
multivariate optimization techniques. This method requires parameterization of
orthogonal matrices by a set of parameters that can be varied independently and
the specification of the objective function for the multivariate optimization routine.
The factorization of an orthogonal matrix into matrices that represent planar
rotations was used to represent the orthogonal matrix by a set of planar angles that
can be varied independently. For the objective function, design criteria that
represent the size of the design region and the symmetry of the design matrix were
given. The specific criteria developed were the maximum range of the factors, the
equality of the factor ranges, the symmetry of the factor ranges about the center
point of the design, and the equality of the sets of factor levels.

Multivariate optimization procedures require a starting value (initial guess)
for the vector of planar angles that represent an orthogonal matrix. The method of
Anderson et al (1987) for generating the angles will produce a sequence of random
orthogonal matrices that represent rotations uniformly distributed over a sphere.

The method for rotating a design was applied to the four-factor complex
number design of Hardin and Sloane (1992). The criteria for the desirability of a
rotation were calculated for 100 random orientations; the criteria were then divided
by their standard deviations to form a weighted average for use as the objective
function for the multivariate optimization. Two symmetric orientations of the
design were found.
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Appendix: Proof of Invariance of D- and G-Efficiency Under Rotation

The proofs for a second-order response surface design are more difficult than
the proofs for a first-order model. I will give only the proofs for the second-order
case in detail; the proofs for the first-order case are similar to those for the second-
order case. These proofs show that the D- and G-efficiencies of a second-order
response surface design are not changed by a rigid rotation of the coordinate axes.
In a spherical region rotation of the coordinate axes is equivalent to a rotation of
the design points. For a cuboidal region, rotation of the coordinate axes is
equivalent to rotation of the design points and the cuboidal region simultaneously
(so that the design points maintain the same relationship to the region boundaries
as they had before the rotation).

Write the first- or second-order model as
Y= Mz ﬂ +e€ (Al)

where y is the Nx1 vector of responses, M, is the Nxp model matrix, 8 is the px1
vector of coefficients, and € is the Nx1 vector of errors. A rotation (possibly
followed by a reflection) of the Nx k design matrix X is given by

W = XP, (A.2)

where P is an orthogonal matrix. The model matrix for the rotated design is M,,
and the coefficient vector for the rotated design is denoted ~.

Let M, =M, Q. For a first-order model,

10

0Pl (A.3)

Q is therefore an orthogonal matrix. For the second-order model the matrix that
maps M; to M,, is not an orthogonal matrix.

Reparameterize the model (1) for the second-order case by replacing the
interaction (product) terms z;z; by 21/2 z; z; and the interaction parameiers §;; by
2-1/2 Bij- To write the reparameterized model in matrix notation, I introduce a
diagonal matrix C that has 1’s in the positions corresponding to the constant term,
linear terms, and squared terms and 21/2 in the positions corresponding to the
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interaction terms. The reparameterized model is written

y = M,CC '8 +e. (A.4)
After rotation of the design matrix X by P, the model (4) becomes

y =M,CC ly+e. (A.5)

For the reparameterized models,

M,C = M,CQ, (A.6)
10 0 |
where Q=|0P 0
00 P2

Pl? is the second Schlaflian matrix derived from P and maps the second-order
terms of the reparameterized model to the second-order terms of the rotated,
reparameterized mode! (see Box and Hunter 1957). PI¥l is an orthogonal matrix
and therefore Q is also an orthogonal matrix.

To show the invariance of D-efficiency, I need to show that the determinant

of My, M,, is equal to the determinant of M; M,. Using the elementary properties
of matrices and determinants,

det[(M.C)’ M,C] = det(C'M,, M,C) = det(C’) det (M, M,) det(C).  (A.7)
Applying equation (A.6) to the left hand side of equation (A.7) gives
det[(M,C)’ M, C| = det[(M.CQ) M.CQ] = det(Q'C'M;M,CQ) =
det (Q) det (C’) det (M, M,) det (C) det (Q) = det (C’) det (M, M,) det(C)  (A.8)
because det(Q) = +1. Combining equations (A.7) and (A.8) gives
det(C’) det (M, M,,) det(C) = det(C’) det (M M;) det(C). (A.9)

Because det (C)=+0,
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det(M,M,) = det(M;M,). (A.10)

To show the invariance of G-efficiency under rotation, I need to show that
the maximum prediction variance within the experimental region remains
unchanged when the design is rotated. To do this, I will show that the prediction
variance at every point in the region remains unchanged when the design is rotated.
Let x’ and w’ be 1xp vectors that represent the same point in the models M, and
M,, respectively. In the reparametrized models using M;C and M,, C, the point is
represented by w'C and x’ C, respectively. Therefore w'C =x'CQ and (its
transpose) C'w = Q'C’'x.

Now examine the effect of the reparameterization on the prediction variance:
Var(y|w'C)/o ? = w'C[(M,C)' M,C]"!C'w = w'C[C'M,M,C|"'C'w =
w'CC (M, M,)'C' 1 C'w =w (M, M,)'w = Var(y|w') /o % (A.11)

Next, examine the effect of the rotation on the prediction variance of the
reparameterized model:

Var(j|w'C)/o? = w'C[(M,C)’ M,C|]'C'w =
x'CQ[(M,CQ)’(M.CQ)|'Q"C'x = x'CQ[Q’C'M; M,CQ|'Q'C’'x =
x'€QQICTI (M M,)7'CTIQTIQC'x =

x' (M, M;)"!x = Var(y|x’)/o 2. (A.12)

Combining equations (A.11) and (A.12) yields Var(y|w’) = Var(y|x’).
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