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UNDERTOW IN THE SURYZONE

Abstract

Waves breaking on a beach drive a vertically sheared cross-shore

flow. directed onshore near the surface and offshore near the bed.

Models, based on conservation of both mass and momentum flux, exist

for monochromatic waves and have been tested in laboratories. They

provide predictions for the vertical profile of the mean cross-shore

currents below the wave trough level which agree qualitatively well with

the measurements. This study extends these models to random waves

and tests them with field data. A second class of model, based on

incomplete physics but valid over the whole water column, is developed

and also compared with the measurements.

Data from two field experiments are used in this study to make a

statistically meaningful test of the models. Three current meters over the

vertical were deployed on a sled during the SuperDuck Experiment held

near Duck. North Carolina during October 198o. Five current meters

over the vertical were deployed at each of three stacks at Scripps

Institution of Oceanography. La Jolla, California during March and April

1987.
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Model comparisons with the data from both field experiments show

that, while the models give values that are within the expected range,

they do not yet adequately predict the vertical structure of the velocity

profile over the water column. The statistical measures of fit reported in

this study give additional quantitative insights into the behavior of the

models.



iv

List of Figures

Figure 1: A schematic of the cross-shore depth-averaged estimate of the

mean current

Figure 2: The Rayleigh distribution P(H) and the broken wave weighting

function W(H)

Figure 3: A schematic of the mass model

Figure 4: The Rayleigh distribution with all waves amplitude bigger than

z selected

Figure 5: The Rayleigh distribution with all waves with amplitude less

than z selected

Figure 6: Three model profiles and measurements from Scripps run 17ac

Figure 7: Three typical profiles showing the variation in the shear stress

as a function of vt

Figure 8: Map of North Carolina

Figure 9: A simplified schematic of the SuperDuck sled

Figure 10: A typical set of measurements and a typical beach proffle

during SuperDuck

Figure 11: Plot of the SuperDuck sled data used in this study

Figure 12: Map of Southern California

Figure 13: A typical beach profile during the Scripps UnderTow

Experiment and the location of the three fixed stacks of

instruments

Figure 14: Scripp's instrument layout during the UnderTow Experiment

Figure 15: A schematic of an intermittently submerged current meter



v

Figure 16: The location of the Scripps current meters in relative water

depth versus the fraction of time they spent in the water.

Figure 17: Scripps UnderTow data plotted on scaled axes

Figure 18: The statistical measures of fit between the mass model and

the Scripps data, graphed as a function of the parameters n

and gamma

Figure 19: Scatter plots of the mass model compared with all Scripps

sensors.

Figure 20: Scatter plots of the mass model compared with Scripps

meters located the wave trough

Figure 21: Line of perfect agreement between the model and

measurements

Figure 22: Scatter plot of the fit between the wave height predictions and

the Scripps measured wave heights.

Figure 23: Typical scaled profiles predicted by the momentum model.

Figure 24: Statistical measures of fit between the momentum model and

all Scripps data located below the wave trough.

Figure 25: Scatter plot and statistics of the comparison of the

momentum with the Scripps data below trough level.

Figure 26: Scatter plot and statistics from the comparison of the mass

model with the SuperDuck data.

Figure 27: Scatter plot and statistics from the comparison between the

mass model and the SuperDuck data located below the

trough level.



vi

Figure 28: Scatter plot and statistics from the comparison between the

momentum model and SuperDuck measurements located

below the trough level.

Figure 29: Scatter plot and statistics from the comparsion between the

momentum model and the Scripps sensors located in the

lower quarter of the water column.



vii

List of Tables

Table 1: A list of SuperDuck sled runs used in this study

Table 2: A list of Scripps runs used in this study.

Table 3: Statistical measures of fit for the mass model - data

comparisons with the Scripps UnderTow data.

Table 4: Summary of statistic for the comparisons between the mass

model and the field data

Table 5: Summary of statistic for the comparisons between the

momentum model and the field data

Table 6: Summary of statistic for the comparisons between the

momentum model and the field data located in the lower

quarter of the water column



Vill

Acknowledgments

This study was funded by grant N00014-91-J-4107-POOOO1,

issued by the Office of Naval Research. The research was carried out

under the supervision of Professor Gary Griggs at the University of

California, Santa Cruz. Professor Ed Thornton at the Naval Postgraduate

School. Monterey. and Professor Bob Guza at the University of California.

San Diego. Without their generosity and special insights this project

would have been more intractable, and certainly much less enjoyable.



Objectives

Undertow is an offshore directed flow below the wave trough level

which, on a 2-dimensional beach, compensates for a shoreward mass

transport induced by the waves above the trough-level. Undertow has

been observed in the laboratory by Russel and Osorio (1956). Svendsen

and Hansen (1984), Stive and Wind (1986). and Okaysu. Shibayama and

Horikawa (1988). and on the natural beach by Greenwood and Osborne

(1990).

Undertow may play an important role in the off-shore flow of

sediment in the surfzone under large waves, and sediment transport

models such as Baillard (1981) include the near-bottom mean currents

as a parameter. While depth-averaged current theories are well

developed, researchers have recognized that there can exist significant

shear in the vertical velocity profile under breaking waves.

Two competing theories exist for the vertical structure of the mean

cross-shore flow based on differing boundary conditions for the cross-

shore momentum-balance; Stive et all (1986, 1987) and Svendsen et all

(1984. 1987, 1988. 1989). Both models predict a general parabolic

shape below the wave trough level and the results only differ significantly

outside the surfzone. A simple heuristic model, dependent on only local

variables, is offered as an alternative to the previous approaches. The
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model is easy to implement and. while possibly lacking some important

physics. it gives predictions over the whole water column.

Two sets of field measurements are used for model-data

comparisons. The Naval Postgraduate School deployed a sled during the

October 1986 SuperDuck experiment hosted by the U.S. Army Corps of

Engineers Field Research Facility. Duck. North Carolina. The sled

housed three current meters over the vertical and a pressure sensor.

Twenty-one 30 minute runs were extracted from the measurements for

use with this study. Scripps Institution of Oceanography deployed

instruments at Torrey Pines. California during the spring of 1987. Three

stacks, each consisting of five current meters over the vertical and two

pressure sensors, were located along a cross-shore transect.

Approximately eighty 1 hour runs were extracted for use in this study.

This thesis compares the models for undertow with the

measurements and provides five statistical measures to serve as a basis

for interpreting the results. This is a quantitative comparison of the

theories to data where previously researchers have presented only

qualitative comparisons.
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Models for Mean Cross-Shore Currents

Two categories of models are developed for comparison with the

field data. In the ensuing discussion the variable x represents the cross-

shore direction, u represents the cross-shore flow, positive offshore, and

z the vertical direction, referenced from the mean water line and positive

upward, and w the vertical velocity. Time averaging will be represented

with an horizontal overbar and ensemble averaging with the angle

brackets.

Mass Transport Due to Monochromatic Wayes

Common to all the models is the two-dimensional assumption that,

on average, as much water moves on-shore as moves off-shore. How

much water is that? Depth averaged theory gives us an estimate for

either the mean shoreward flow in the wave layer, Uf. or the return flow

in the lower water column, Ur. It Uf C

forms the basis for all of the

models and, since we will need

estimates of Ur, we present the

concepts and a derivations of the

commonly used forms. The game

plan is to start with Ur

monochromatic non-breaking Figure 1: A schematic of the cross-

wave theory,(Phillips, 1977), add shore depth-averaged estimate of

the mean current.
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a simple breaking wave model (Stive and Wind. 1982). and extend it to

random wave theory. (Thornton and Guza, 1983).

The net cross-shore mass flux. Mf. in the direction of wave travel

in an Eulai tan reference is integrated over the wave surface from trough

to crest.

Mf = pu(z) dz (1)

For non-breaking monochromatic waves, Phillips. (1977). approximated

the wave velocity in the crest-trough region using a Taylor Series

expansion. To lowest order u(z) is approximated as uniform between

crest and trough and.

pgH 2(2
Mf 8C (2)

It follows that. in shallow water, the depth-averaged shoreward-directed

mean flow in the wave trough to crest region Uf is

= Mf = gH - H (3)

pH 8C 8

and is assumed uniform over the vertical. Since we require that the

return flow balance with the shoreward flow it follows that.

U I tH (4)

Under breaking waves there is an additional contribution to the net

mean shoreward flow which is modeled as a plug of water. known as the
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roller, that moves approximately with the wave propagation speed C. An

empirically derived expression was presented in Stive and Wind (1982)

for monochromatic breaking waves in shallow water,

Urdt = -UfH = -,dz = -- H (5)

where Ti is the wave crest level. Then,

u~- ~ di (6)
U f = TUO 1h, 6

Ur = - 0 VfH (7)

Another model for the roller contribution Is by Svendsen (1984) in

which the mass flux per unit wave length supplied by the roller is given

by

MR = PAC= pA (8)

where L is the wave length and T the time period. Svendsen, (1984)

estimates the area A = 0.9 H2 . In this case, the total mass transport is

found by adding the roller contribution to the unbroken result.

Extension to Random Breaking Waves

The monochromatic case is extended to random waves following

work by Thornton and Guza (1983). It is assumed the wave height
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distribution at any location, either outside or inside the surf zone, is well

described by the Rayleigh distribution.

2P(H) - 2 exp - (rH 2
2 X(

Hrms FIgure 2: The Rayleigh

Fraction distribution P(H) and the

W(H)P(H) broken wave weighting

Fraction function W(H).

At any depth a percentage of the waves are breaking. which is

assumed to be a weighted fraction of the Rayleigh distribution,

Pb(H) = W(H) P(H), where W(H) is a weighting function. Thornton and

Guza (1983) gave a simple form for W(H) which is dependent not on H

but on Hrms, - and h.

W(H) = (H)msl (9)

where n is determined from the measurements. The unbroken fraction of

waves is given by

P,(H) = P(H) [I - W(H)] (10)

An expression for the net depth-averaged return flow in the upper

layer. (Uf) is obtained by estimating the contributions from the unbroken
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waves. (Uuf) . and the broken waves (Ubf). such that. (Uf) = (Uuf) + (Ubf).

Then, applying equations 6 and 10,

•"UufPu ()dH .-im,/ I - H { Hr ~ -1•-

(U.f) = (H) = 16V [( JH (11)

and. using equation 8.

(Ubf) fUb Pb (H) dH H0 h ()Zh Hr 5 J (12)

Likewise, expressions for the depth-averaged return flow below the

trough level from the unbroken waves. (Uur). and broken waves. (Ub,).

are found by applying equations 4 and 7 and retaining terms to order H,

(UW) = f UurP.(H)dH = /1-/T-f I "{rI- 2[1 + 3mrHTJ (13)

!)'-=-H.]s)H (14)
(Ub,) = f "Ubr P,(H) dH = ý0 •--h(')Hrnm(4
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Mass Balance Model

Uf U

Figure 3: A schematic

of the mass model

The simplest model is based on the conservation of mass-flux and

approximates the return flow as uniform over the vertical and equal to

the onshore tranport. This model has the advantage of requiring only

local knowledge of wave height and water depth and it predicts a velocity

profile over the entire water column. In the extension to random waves

the expressions for the depth-averaged mean currents for

monochromatic waves are used for each wave height. At each level z the

flow is partitioned into the contributions from breaking and non-breaking

waves and averaged over the appropriate portion of the Rayleigh

distribution.
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BA 2A

P(A) exp (Hrms) Figure 4: The Rayleigh

distribution with all waves

with amplitude bigger than z

selected.
A=z

In the upper wave layer, at any elevation z above the mean water

line. only waves with amplitude at least as big as z can add to the mean

flow there. Smaller waves have no affect. The contribution from the

unbroken waves is found by utilizing equation 3

nur(z)) =Ef Uu(z) Pu (A)dA

~V/~rm~iS exp(-S 2) + ~e(S)] ( 15)

where S 2z'b
Hr=ms

The contribution from the broken waves is found by integrating equation

6

(Ubf(Z)) = fE Ubr Pb (A) dA

I J HMIS-)n [ (h - z)exp (_S)2 -Hr erfc (S)] (16)
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These equations are valid for z > 0 Since the wave layer extends to the

trough level ad is symettrical about the mean water line. reflect these

equations about z = 0 for the complete solution in the wave layer.

2
8A 

2A 2

P(A)m 2 - X - /Hrms2 rm

P(A) H Figure 5: Rayleigh

distribution with all

waves with amplitude

A=z less than z selected

Approximate the return flow below the mean water line where only

waves with an amplitude smaller than z can contribute. Larger waves

depress the trough level below z. The contribution from the unbroken

waves is found utilizing equation 4

(Uur(z)) =f Uur Pu (A) dA

I /iM7H 1 1[_ H (~)nIT 2 + 1) exp (_T2) -1]H n

+ HýdmT + )T eXp(-T 2) _ 'ýerf(T) (17)

where T =([2[)

The contribution from the broken waves is found using equation 7

(U br(z)) Ubr Pb (A) dA

V= H H, 2)I[T exp (_T2) -2 erf(T)] (18)
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Adding the solution for the top and the bottom together provides

the vertical profile. Typical profiles are shown in Figure 6. A typical

model profile is given in figure 6 plotted alongside measurements.

0.5

U/Ur

4-3 1 2

z -0.5 r •

/ ___ A-stack B-stack C-stack
h 0

Hrms meters 0.38 0.54 0.67

-h meters 1.21 1.57 2.28

Ur rn/s 0.10 0.12 0.12

Figure 6: Three model profiles and measurements from Scripps run 17ac.

The 3 lines are the predictions at the three stacks, which appear almost

equal on this scaled plot. The diamond markers are the measurements:

are from the C-stack, the squares are from the B-stack and the triangles

are from the A-stack. The scaling parameters are given in the table.
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The Momentum Model

Two models by Stive and Wind (1986) an Uday and Svendsen

(1993) are developed below. The models are formulated in a similar

manner differing only by their choice of boundary conditions. The model

by Stive and Wind is described first.

Models based on the conservation of momentum across the

surfzone provide a more realistic description of the physics and predict a

sheared profile for the return flow. Mass balance is still a requirement in

this model and is used as a boundary condition to resolve an integration

constant. The theory rests upon the cross-shore and vertical Navier

Stokes momentum equations. The velocities are partitioned into their

mean u ,wave a, and turbulent u', contributions and time averaged. The

vertical momentum equation for the pressure is solved and combined

with the cross-shore momentum equation. Assuming isotropic

turbulence and steady 2-D flow, Stive and Wind, (1986) show

d (w,)= g 2L:7 + dPF-;F + .2-Pkai') (19)d --- dxf dx dz_

where
17(x) is the mean surface elevation known as wave setup
g is the acceleration due to gravity
p is the water density
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The turbulent Reynolds stress is modeled using an eddy-viscosity

formulation

Da• (20)}
t(z) = -p(I-WI = PV,(2

where v, is the eddy viscosity coefficient. The last term in equation 19

can be simplified if the wave motion is irrotational.

= a (21)

This assumption is good outside the surfzone. Even inside the surfzone,

the turbulence of the breaking waves is primarily confined to the crest-

trough region and this approximation appears to be reasonable (see

Thornton. (1979)). Using the continuity equation.

C a (22)

then

UW) 3-j- + T- -UF+ Wý- -C~v(23)

Substituting equations 20 and 23 into equation 19 gives

S= (24)

where the wave forcing term R = - )+g] (25)

This method for deriving the wave forcing, while different from

Svendsen's method in the details, gives the same net result. Stive and

Wind's R differs because they assume that the oscillating contribution to
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stress is small compared with the Reynolds stress, p(tlw) << p(u-W' hence

they use R = n(ga + -0- -P). We will use equation 25.

If R is constant over depth, equation 24 can be integrated to yield

the shear stress. Stive and Wind (1986) gave empirical evidence from

laboratory studies to indicate R is constant over the vertical and they

assumed so. However. it is easy to show R constant over the vertical.

even in intermediate water depth, using linear theory and substituting

the wave velocities U and % and averaging in time. In shallow water

linear theory directly predicts wave orbital velocities which do not vary

with depth. Integrating equation 24.

a (26 )
Pv a -j(z) = t~)= i)Rz + C1  26

Integrating a second time.

1 dR 2  1 (27)iI(z)=---z +-Ct~z+C0  2
2pv, dx pv,

Stive and Wind, (1986), obtained C, by integrating equation 24

from the trough level %/, . to the sea-bed -h. and solved for the shear

stress at the trough level.

Y(71.) =- )d, + R Y, (28)

where d, = 77, + h is the depth below trough level, and Tb is the shear

stress at the seabed. Using this result, equation 26 is evaluated at the

trough level to solve for C,
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dR(x)h+..
C, = dx)h + b (29)

For completeness, the shear stress at any depth z is given by

?(z) = dR z•h)+fb (30)

Co is resolved by using the conservation of mass criteria that the

amount of water traveling shoreward above the wave trough level M., is

balanced by an equal amount of water traveling offshore in the lower part

of the water column M, such that. AM1 = -M,. The depth-averaged mean

return flow U, is defined byMT = U 1d. Stive and Wind (1986) applied this

below trough level.

[ 1(z)az = Udt (31)

This evaluates to

I dR 1 {,+3 772h-h -1

-T - 17i{ + 3 h - 2h3} - (7 - h) (32)6pv, dx d, 2pv,

Substituting equations 29 and 32.

1R 2l 1 dR 1 dR 2  ?f
uz)z--"-4- j z+-} bz+h-AI -+U, (33)

2pv. dx pv, dx 6pv, dx 2pv,

Setting 4 = (z+h)/d,. Stive and Wind's (1986) form can be derived

(Iz)= ,2 lt2 DR dt(T j (34)21 3vr"ý 2 Pvt
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Following the derivation of Svendsen et all (1987). Svendsen and

Hansen (1988). and Uday and Svendsen (1993). the integration constant

C1 is solved by defining a thin but significant bottom boundary layer

which is matched to the solution at the top of this boundary. The bottom

boundary has a thickness 8 and the top of the bottom boundary layer is

located at Zb == -h + 8. Above the bottom boundary layer, and below the

trough level, the water motions are defined by equations 1 through 25.

In the bottom boundary layer.

aT (35)
TZPVb - (~ = 7,PT, + IpfL2  ~P(-)

where Vb is the eddy viscosity coefficient in the bottom boundary layer

and is distinctly different from the coefficient v, in the middle layer.

Matching the shear stresses at the top of the bottom boundary layer,

pvbT 1% = PVt- --- pv b (36)

Integrating equation 35 from the seabed to the top of the boundary

layer

7ZbP~ Z Xb aa + P(' P-p A

We(37)

Where
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S= 'u )l (38)

is the stress due to the steady streaming velocity at the top of the bottom

boundary layer. Svendsen (1984). and Uday and Svendsen (1993)

assume that the wave forcing is small in the boundary layer,

(39)

and requiring a no slip condition at the seabed then the wave stress

vanishes there

S= 0 (40)

then, equation 37 simplifies to

Tzb = PVbTj" = bs (41)

C1 is found by applying equation 26 at the top of the bottom

boundary layer

C1 = T(zbh _sdR dR
and th ) - Zb = eb-- ts s-treZb b c42m)

and the expression for the shear stress becomes

'E(z)=--AzR _ Zb) +•b - •s ( 43 )
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CO is given by equation 14 and D(z) becomes

CD(z) I l Z2 1aR 1R.(3h2_d 2) + ('b-')+h dt (44)

The only difference between the solutions of Svendsen and Uday

(1993) and Stive and Wind (1986) is the explicit bottom boundary layer.

If the boundary is thin and the strcss due to the steady streaming is

small then Zb = -h, and Ir = 0. Then and equation 44 collapses to

equation 33.

What is the significance of the steady streaming stress on the

solution? Svendsen and Hansen (1984) say it has little inf uence inside

the surfzone but outside Uday and Svendsen (1993) have shown it can be

important in determining the vertical structure of u(z)

Extending the Results to Random Waves

The monochromatic description by Stive and Wind (1986) is

extended to random waves by ensemble averaging over the wave

distribution.

The monochromatic result expressed by equation 44 is a

polynomial in z with coefficients C2. C1. and Co. Ensemble averaging

over the wave distribution,
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(0(z) )=( C2z2 + Cz + CO )=f (C2z2 + Clz + Co) P(H) dH (45)

What factors affect the shape of the profile? The curvature is a

function of C2 an C1 , which are functions of d, calculated from wave

quantities, and vt. a tunable parameter. Big values of dRWill produce

more shear than small values, while the inverse is true for v,. Typical

momentum model profiles are shown in Figure 7 for 3 values of v,.

I ! 0 ! I

-4 -2 2 4
U/Ur

-0.25
* II

e,, Figure 7: Three typical profiles

-0.5 - showing the variation in the shear of

Z ,the profile as a function v,.. All other

h \parameters being equal. the nearly
-0.75 vertical profile has the largest value, in

this case v, = 0.lCh, while the strongly

-1 sheared profile has the smallest value

vt = 0.001Ch.
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Wave Height Decay and Models of Wave Forcing

dR

The wave forcing of the undertow is described by the d- term. To

describe this term the wave height and the wave induced velocities are

first described across the surfzone. The gradient of the wave setup, d-,

is the derived from across the radiation stress momentum equation

The wave height transformation across the surfzone is modeled

following Thornton and Guza (1983) in which the energy flux is balanced

by the dissipation due to turbulent decay (-b) due to wave breaking and

the dissipation due to bottom friction (ef).
dE CX

-= (Cb)+ (-f) (46)

(er) is presumed small and ignored in this model. The average rate

of dissipation due to wave breaking is modeled as a turbulent bore after

Stoker (1956) and Hwang and Divoky (1970). Thornton and Guza (1983)

extended this to the random wave model using the Rayleigh distribution

for wave heights. The turbulent dissipation (c), is due to the breaking

wave portion of the total distribution and is found by applying the

symmetrical weighting function,

(sb) = .pg B3" (-H!)n Hrms3  (47)

An approximation for Hrs is found by substituting expressions from

lineary theory for E and C into equation 46 and integrating shoreward

from a location where the initial parameters are known.
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The cross-shore gradient of the wave forcing term. P, is computed

at the same time as the wave height. The velocity terms are taken

directly from lineary theory. The wave setup is solved from the cross-

shore momentum equation integrated over depth and time averaged.

(see Phillips. 1977).

an I aSx (48)Jx-= -TgD -x-

where Sxx is the radiation stress and D is the total water depth including

wave setup. Using linear theory, the radiation stress, wave setup, and its

cross-shore gradient are numerically estimated at the same time as

computing the wave heights.
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The Field Experiments

"Sometimes you can observe a lot by looking"
Yogi Berra

Opeqframe Current Meter

Two sets of field measurements are used in this study for the

model-data comparisons. Data was acquired at the SuperDuck

Experiment in 1986 and the Scripps UnderTow Experiment in 1987. The

nearshore morphology and wave climate were significantly different at

the two experiments. Th7 SuperDuck experiment took place on a barred

beach with a typical peak wave period of approximately 6 seconds. The

tides at Duck are on the order of 1 meter. The Scripps experiment was

located on a planar beach with a peak wave period of approximately 12

seconds and a tidal range on the order of 2 meters. The largest currents

measured at both experiments were on the order of plus or minus 40

cm/sec.
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The SuperDuck Experiment

The SuperDuck experiment

was held at the US Army Corps of _MKW

Engineers Field Research Facility

(FRF) at Duck, North Carolina

during the month of October
020 406W080

1986. The shoreline Is relatively =
NIOM~M

straight with the profile

characterized by 1:10 sloping
Figure 8: Map of North Carolina

foreshore, a single bar and a

mean slope of 1:100 offshore of

the bar. The current measurements were made using Marsh-McBirney

bi-directional electromagnetic current meters mounted on a movable

sled. A paro-scientific pressure sensor was located at the center of the

sled to measure wave height, sea-surface elevation and the mean water

depth. The bathymetry was measured daily during the experiment. The

three current meters were mounted at elevations 0.7. 1.0 and 1.5 meters

above the seabed.

- 1.5
0)

1.0

0.5 Figure 9: A simplified schematic of the

0 r SuperDuck sledS0
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The sled was deployed by towing it offshore to the outerside of the

bar and pulled onshore to the measurement sites. Measurements were

made just outside the bar crest, on the bar crest, inside the bar crest.

and in the trough. The sled position was surveyed at the beginning and

end of each run. At each location the currents were measured for at

least 35 minutes. The measurements were conducted within 1-2 hours

before and after high tide in order to minimize tidal height variation. The

data was sampled at 8 Hz and telemetried back to shore where it was

recorded.

The orientation of the current meter components relative to the

alongshore bottom contours was precisely determined which was critical

to the determination of the cross-shore flow direction. The alongshore

contour orientation was determined by averaging the contours over 150

meters alongshore on the outer bar where the contours were reasonably

linear. (See Whitford and Thornton. in press). The sled orientation was

determined within +/- 0.5 degrees by using an electronic surveying

system to triangulate on two reflective prisms mounted 7 m up the mast

of the sled on a spreader. separated by 2.4 meters. Given the sled

orientation relative to the contours, and the orientation of the current

meter relative to the sled, the current meters were numerically rotated in

post-analysis to obtain the cross-shore and alongshore velocity

components.
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, 0

z
E -1
0

S-2

E
.G -3
0E

S-4 ..

0 50 100 150 200 250

Distance in meters Off-Shore

Figure 10: A typical set of measurements and a typical beach profile

during SuperDuck

The SuperDuck runs used in this study are listed in Table 1 Each

run was a series of collections with the most seaward given a starting

index, (usually 1). which incremented for subsequent collections. The

measurements used in this study are plotted in Figure 11

0.25 "

-15 -10 .5 U/Ur
- t Figure 11: A plot of the SuperDuck sled

_=0.25= a""-0 " data used in this study. The velocities

z -0.5 ;r', • are scaled by the theoretical depth-,S.'

h "L averaged velocity Ur, the vertical axis is
scaled by the mean water depth. Twenty-

-1 Jone runs of 30-minute averages from

SuperDuck are used in this study.
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run xloc Hrms peak
(meters) (meters) frequency

15-1 136.010 0.92 0.16
15-2 108.010 0.76 0.16
15-3 83.510 0.57 0.16
15-4 39.010 0.59 0.16
16-2 143.700 0.98 0.19
16-3 93.200 0.80 0.19
16-4 75.200 0.57 0.19
16-5 62.200 0.52 0.19
16-6 29.200 0.49 0.19
17-1 140.700 0.72 0.19
17-2 106.200 0.69 0.19
17-3 79.200 0.57 0.19
17-4 69.700 0.41 0.19
17-5 65.700 0.36 0.19
17-6 34.200 0.24 0.19
17-7 29.200 0.26 0.19
18-1 151.700 0.93 0.19
18-2 103.200 0.84 0.19
18-3 84.700 0.67 0.19
18-4 63.200 0.38 0.19
18-5 35.200 0.28 0.19

Table 1: SuperDuck sled runs used in this study. The cross-shore

positions of each run and the local measured wave heights and peak

frequencies are included.
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The Scripps Undertow Experiment SaCru Cfu

8ouhmCdb,• 4.

,,. .........

Bob Guza and his team
•~~ ~ ., . ,

from Scripps Institution of .. --- "
Mks .......Oceanography. deployed stacks of - .

0 60 120

current meters at three cross- Figure 12: Map of Southern

shore locations near La Jolla, California

California and collected data over

the course of nine days during April and March 1987. Each stack

consisted of five electromagnetic current meters and two pressure

gauges.

E 3.0

2 1.5 -1.A-stack B-stack C-stack

0.0-

E
"--1.5

" -3.0
0 50 100 150 200

cross-shore distance in meters

Figure 13: A typical beach profile during the Scripps UnderTow

Experiment and the location of the three fixed stacks of instruments.
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A-stack x = 76 m
MA3M1

0A4 84 0A A2 65MA
MA5 50 W

30? P2A18 40 PlA 10

B-stack x - 105 m MB1

MBS 
13!

082
OB6 102 0i2TMB3 78

44 P2B ni1 287 P28• 6

C-stack x = 148 m MC3

205
MC5

161 0C2

oc6 1115
7 1P2,C 1 Pic 10 MCI

Longshore --

centimeters

o 50 100 200

Figure 14: Scripps instrument layout during the UnderTow experiment.

Two sorts of flowmeters were deployed, the Marsh McBirney sphere

design and the Scripps open-frame design. Guza-et al., (1988),

compared the two sensor types and showed that they have similar

characteristics. However, since the open-frame sensor is more sensitive

to both the upper sea-surface and the lower bottom boundary care was

taken to place those meters in the middle of the water column. The
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instruments were wired into a common data acquisition system a&id

sampled at 2 Hz. The length of the runs varied from 4 to 12.5 hours and

a total of 79.8 hours of useful data were extracted for use with this

study.

run start stop length date time hsig
(hour) (hour) (hours) (cm)

3 0.4 12.6 12.2 Mar 26 1824 75.0
1987

5 24.6 37.4 12.8 Mar 27 1835 59.0
1987_

6 37.7 41.7 4 Mar 28 0740 47.0
1987

7 48.6 61.3 12.7 Mar 28 1834 48.0
_ 1987

8 61.5 66.3 4.8 Mar 29 0728 41.0
1987

9 72.9 85.9 13 Mar 29 1855 28.0
1987

10 86.1 90.6 4.5 Mar 30 0805 30.0
1987

11 96.5 109.4 12.9 Mar 30 1830 33.0
1987

12 109.5 116.0 6.5 Mar 31 0730 34.0
_ 1987_

13 120.5 133.2 12.7 Mar 31 1830 36.0
1987 36 _ _

17 168.0 180.4 12.4 Apr 02 1800 105.0
1987 _5-0

18 183.7 191.5 7.8 Apr 03 0940 186.0
1_ _ _ 1_ _1987 _

19 191.5 204.2 12.7 Apr 03 1732 177.0
_ 1987

Table 2: A List of Scripps runs used in this study. Included are the start

and stop hours from epoch, length of run, date and offshore wave

heights. Each run was split into 1.1 hour segments, designating the first

segment as aa, the second ab. and so forth.
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Field Data Analysis

The data required a significant amount of processing to get from

the original input to the final mean values used in this study. A

meticulous attention to detail was imperative for clean consistent results.

The original calibrations were applied and a quality check was made of

all the sensors. The time series was examined for inconsistencies in the

means and standard deviations and the gain of one of the pressure

sensors was altered, to compensate for a presumably faulty data

acquisition amplifier. Each run was divided into 1.1 hour segments

(8192 samples). The pressure signals were used to infer the mean water

depth, the local wave height and the sea-surface signal.

Zeroing the Current Meters

Figure 15: Schematic of an intermittently

submerged current meter. Used for predicting

h when the meters electronically ring based on

the location of the meter, d, the measured

- - • - -mean water depth, h, and the time series of

the sea surface elevation, n(t).
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The current meters sitting high in the water column were

intermittently submerged and a process called "zeroing the current

meters" was performed on the time-series to remove the electronic

ringing which corrupted the signal. By monitoring the the sea-surface

signals and accounting for the mean water depth and the location of the

current meter in the vertical, we deduced when the current meters were

in the water. We required that the Marsh McBirney current meters be

covered by at least 5 centimeters of water and the open-frame meters by

at least 15 centimeters. The corresponding value in the current meter

time series was set to zero if this criteria was not met.

The ratio of the total number of sample points versus the number

of points not zeroed is plotted in Figure 16. This demonstrates how

current meters can be relatively low in the water column and, apparently.

still be coming in and out of the water. We found that the zeroing

statistics of the inshore openframe current meters were the most

sensitive to low wave heights and surfbeat due in a large part to our

conservative requirements for being submerged 15 centimeters. For the

momentum model comparisons, only data below trough is used.

Figure 16 shows that there is more than one way to choose the

wave trough level for random waves. At least for this zeroing technique.

trough level based on a relative water depth, such as the Hrms trough

level, may include points which are only intermittently submerged. A

better criteria is the fraction of time spent in the water. That is, we can
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label a meter "below trough level" if the meter was reported submerged

95% of the time. We have this information for the Scripps UnderTow

data but not for the SuperDuck data. For the Duck data we choose the

2Hrms trough level.
3.0

2.0

1.0
Ir

z a mwl
rm 0.0 ---................ "

Hrms -6% Hrms trough level

-1.0 .. -- - 2Hrms trough level
-1.0~ii::i? ..... . . .. .I.

-2.0-

-3.0

0.0 0.2 0.4 0.6 0.8 1.0

Fmcdion of toe Tw In tIh Wader

* Current Meter
gauges submerged 95% of the time

-*• gauges submerged 85% of the time

Figure 16: The location the Scripps current meters in relative water

depth versus the fraction of the time they spent in the water.

Field Recalibration of the Current Meters

Twenty-six 1-hour-series were determined tU be "low flow" runs

based on having measured low waves and, by averaging these means, a

new in-situ calibration offset was determined for the two outer stacks.

The inner-most stack was not corrected in this way because we did not
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feel confident that the flow was truly zero there. Only the large signal

series were used as the final Scripps means in this study which left

twenty-six 1 hour means for use in the model-data comparisons.

1

0.75

0.5

0. U/Ur

-5 >2.5 5

S 2.U Figure 17: Scripps UnderTow data plottedZ
/0.7o on scaled axes. The mean current is

h 0scaled to Ur and the vertical axis is scaled

to the water depth, h.
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Model Data Comparisons X0.
-1.0 -0.5 0rv 0. 5 1.0

Imeu~mnst-0.
• -1.0L

FIgure 21: The line of perfect agreement

between the model and the measurements.

How well do the models compare with the field data? What kinds

of errors and correlations do we calculate? The answers to those

questions depend on how and where we look. First we briefly examine

the statistical methodology, how we implemented the model-data

comparisons and what statistical measures we computed. Then, we

discuss the models, starting with the simplest mass balance model. We

identify "tunable" parameters and identify how they affect the statistical

fit.
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The Statistical Tests

The model data comparisons were accomplished by comparing the

predicted values to their corresponding measured values. Lists of these

comparisons, ( Meas(l), Model(i) ), were created by running the model

against a subset of the field measurements.

Six statistical quantities are reported for each comparison. The

linear regression statistics: slope, intercept and r-squared, are reported

as a measure of scatter in the fit. Three quantities of error are reported,

absolute error and two measure of relative error. Absolute error.

computed using equation 49, has real units and is an rms measure of

the difference between the model and the measurements. Relative error

weights the difference between the model and the measurements against

a measure of expectation. In this study we scale by the measurement,

which we presume is accurate, and compute the relative error using

equation 50. This statistic is not well-behaved near zero and we

compensate by reporting two relative error statistics, first excluding

measurement less than the reported accuracy of the current meters of

+/- 3 cm/sec, (Guza et all, 1981) and second excluding measurements

less than +/- 15 cm/sec. This last cutoff is arbitrary but gives us a feel

for the relative error for the fit with all reasonable measurements in the

entire data set and with a set restricted to large-ish mean currents which

are presumably of interest.
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absolute error =N (49)

J N (Pi MMi)
precent error = 4 N i(50)

A perfect match has all measures of error equal to zero. a slope of

one, an intercept of zero and a correlation coefficient r-squared equal to

zero. In practice the measures are far from perfect. A question we want

to answer is. "Can we deduce the best fit from some combination of these

statistical measures?"

The following designators will be used in reference to the statistical

quantities:

absolute error: units are meters per second and values represents

the rms distance between the measurements and the ideal case

percent error 1: relative error using only measurements outside the

+/-3 centimeter per second threshold.

percent error 2: relative error using only measurements outside the

+/-15 centimeter per second threshold.

r-squared: correlation coefficient squared

slope: slope of best fit line

intercept: intercept of best fit line
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Mass Model - Scripps Data Comparisons

The mathematical definition of the mass model is given by

equations 15 through 18. There are two parameters in the model we

must set: the exponent n and the coefficient of saturation, gamma.

These variables control the amount of wave-breaking in the model.

Maximum breaking occurs for small n and small gamma, with the

requirement that the weighting function W(H), must be less than 1.

Larger values predict that more than 1000/6 of the waves are breaking.

For a given gamma, a large n predicts less breaking than a small n.

We chose a reasonable range of parameters: n = 4. 5. 6 and gamma

= 0.4, 0.5. 0.6. ran the model against the Scripps data and found that

the model is generally insensitive to these choices for n and gamma. The

statistical results are plotted in Figure 18 from which we conclude that

the mass model appears to be insensitive to the parameters n and

gamma.



38

nexp nexp
1 2 3 4 5 6 1 2 3 4 5 6

0.12 150

11 ) n 10 I0 On

0.06 100( 0 BI 8

absolute error m/s percent error (1)

0.00 .0
0.3 0.4 0.5 0.6 0.3 04 0.5 0.6

1 2 3 4 5 6 1 2 3 4 5 6
60 8 8 8 I i0 .131 0 BI B

0. 00 0.6-

0.4

percent error (2) r-squared
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0.2

0 •- 0.0. C
0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6

1 2 3 4 5 6 1 2 3 4 5 6
0.8 0.05 1 3 0 I i o nl
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slope intercept (m/s)
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0.0 • 0.000
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Figure 18: The statistical measures of fit between the mass model and

the Scripps UnderTow data. graphed as a function of the parameters n

and gamma. The open boxes show the nexp dependence, the solid boxes

the gamma dependence.
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Scatter plots of the results using the two extreme (n, gamma) pairs

are shown in Figure 19. Points found in the first and third quadrants

represent comparisons in which the model and the measurement were of

the same sign. Positive values in the first quadrant represent off-shore

flow while negative values in the third quadrant represent shoreward

flow. Overall, the values predicted for the case with much wave

breaking, (n = 1, gamma = 0.4). are larger by a factor of approximately

1.3 times compared with a case with the little breaking, (n = 6. gamma =

0.6). With maximum wave breaking there is more scatter and the

relative error is larger than with minimal breaking.

The statistical measures for these two cases are listed in Table 3.

The case with the minimal breaking has better overall numbers. The

relative error, for measurements with a magnitude larger than 3 cm/s is

98% while for measurement with magnitude larger than 15 cm/s is 58%.

"• 0.5.- o.51

In' Measurer5

onshore -0.5 -0.

Figure 19: Scatter plots of the mass-model compared with all Scripps

sensors. On the left is Casel1 with parameters n = 1, gamma = 0.4. On

the right is Case2 with n = 6. gamma = 0.6.
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Statistical Measure n=1; gamma=0.4 n=6: gamma=0.6

absolute error m/s 0.11 0.10

percent error 1 (3 cm/s) 132 98

percent error 2 (15 cm/s) 50 58

slope 0.66 0.47

intercept m/s 0.05 0.03

r-squared 0.68 0.75

Table 3: Statistical measures of fit for the mass model-data comparisons

of the Scripps UnderTow data. Two pairs of parameters are tested.

Case I is with n = 1 and gamma = 0.4. Case 2 is with n = 6 and gamma=

0.6.

The next question we want to answer is. "How well does the mass model

predict values below the wave trough level?" For the Scripps data we

identified the meters below the trough level as meters which were

submerged at least 95% of the time. A representative scatter plot and

the statistical results are given in Figure 20:
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04 Statistic Value

I absolute error m/s 0.08

0.2 1 percent error 1 (3 cm/s) 108

__- _______ percent error 2 (15 cm/s) 56

-0.2 q 0.2 0.4 slope 0.15-. Measure
0.2 intercept m/s 0.06

r-squared 0.24

Figure 20: Scatter plots of the mass-model compared with the Scripps

meters located below the wave trough. Model was run with n = 6.

gamma = 0.6.

All of the statistical estimates worsened except the absolute error

which did not change significantly. Only the correlation statistics

dropped dramatically. Visually, the fit worsened or at least fell farther

from our ideal case.
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Momentum Model - Scripps Data Comparisons

The momentum model is defined by equation 33 or 44. In this

study we assume the bottom boundary layer is thin and model using

equation 33.

The momentum model has the same parameters. n and gamma, as

the mass model though they are hidden in the wave forcing term. dRdx.

B is an additional parameter used in modeling the wave height. We can

confidently discharge the question "How well do we model the wave

heights across the surfzone?" and show that the model is insensitive to

reasonable values of n. gamma and B.

The parameter B tunes the amount of energy dissipation in

equation 47. The best B is one which minimizes the rms error been the

predicted wave height and the measured. In our implementation we

found a reasonable value of B for any (n, gamma) pair. Figure 21 shows

a typical scatter plot of the wave height fit.

1 Figure 21: Scatter plot of the fit

between the wave height predictions.

0.5. and the Scripps measured wave0.5 . ,.

4147 "- heights. The results are with n = 6.

gamma = 0.6 and B = 1.95. The

0 I absolute error of the fit was 5 cm.
0 0.5 Measure 1

The units on the graph are m/s.
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This is a decent job of modeling the wave heights and we conclude

that, if we're modeling Hrms accurately. we must be doing a reasonably

good job of modeling its cross-shore gradient. Can we conclude that our

model for dRdx will be equally insensitive to our choices of tunable

parameters?

We have no measure of dRdx and must rely on mathematical

intuition. Inside the surfzone dRdx depends primarily on the gradient of

the wave setup which, using linear theory, depends on the gradient of the

radiation stress Sxx.. Inside the surfzone Sxx = 3E/2, where E, the

energy stored in a linear wave, is proportional to the wave height

squared. Therefore, we conclude that the model for dRdx is equally

insensitive to our choice of n and gamma.

The Eddy Viscosity Coefficient, vt

The eddy viscosity coefficient, vt has a marked affect on the

amount of shear in the profile. Small vt makes for large shear while with

large vt the profiles become effectively shearless. Stive and Wind, (1986),

report a value of vt = 0.01 Ch. taken from channel theory. We examined

the behavior of the model a function of the scaling coefficient, nut where,

vt = nut* Ch and found it to be quite predictable
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We selected a liberal range of values to survey, varying nut from

0.0001 to 10. For small values we found, as predicted, that the shear in

the profile is unrealistically large while for large nut, the limiting case is

the straight profile predicted by the mass model. Figure 7 is a good

example of this.

For a given value of nut. the shape of the profile is sensitive to the

value of dRdx. How will this vary across the surfzone? Wave setup, is

effectively zero outside the surfzone and dRdx is minimal, due only to

changes in the wave orbital momentum. In a saturated surfzone the

cross-shore gradient of the setup is maximum and approaches a

constant, Guza and Thronton (1981). Figure 22 illustrates the model

prediction at the three Scripps stacks for a particular run.

Figure 22: Typical scaled profiles predicted

by of the momentum model, using n = 1,

UU gamma = 0.4 and nut = 0.001. the model-5 UIUr 5

S0 was run with against Scripps run 17ab.

The predictions are the lines: solid
Z -0.5

"°5 represents the A-stack, dotted line the B-
stack, and the dashed line the C-stack.

-- The markers are measurements: diamonds

represent the A-stack. triangles the B-stack

and squares the C-stack.
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absolute error mn/s 0.4 percent error (1) 400mlI " T
0.2-- - -'- + 200= _*

II 0 I I I I 0 I

-3 -1 log of nut 1 .3 -1 log of nut

percent error (2) 200 r-squared 0.8
LIT I

100l LI 0.4-

• i1

-3 -1 log of nut 1 -3 -1 log of nut 1

slope 2-intercept rn/s 0.2

11! - "--0.10W

I i • i, .i. i __ U _ _ __ _ _ __ _ _ _
I *I-- a

-3 -1 log of nut 1 -3 -1 log of nut 1

Figure 23: Statistical measures of fit between the momentum model and

all Scripps data located below the wave trough.
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Figure 23 gives a graphical representation of the vari'ibility of the

fit as a function of nut. This confirms that the ei rcrs are large for

unrealistically small values of nut and that for large values the

momentum model predicts the simple mass results. The "best fit" was

for nut = 0.002. n = 6 and gamma = 0.6. Except for a slight deviation in

tbie r-squared all measures of fit were "best" for these parameters. A

sample scatter plot and statistics are included in Figure 24

0Statistic Value

0.2 absolute error m/s 0.070.2
!•i.m'p' percent error 1 (3 cm) 113,.q_..r*EgUm• ,

-•0 I=percent error 2 (15 cm) 44
-0.2 m, a 0.2 0.4 0.44

"-0.2 "Measure so e04

intercept m,'s 0.08

r-sguared 0.356

Figure 24: Scatter plot and statistics of the momentum model

comparison with the Scripps data below trough level. Model was run

with n = 6, gamma = 0.6 and nut = 0.002.

Can we conclude that this is a good or a bad fit? We should

postpone this question until the final analysis. This may give us time to

think of an alibi.



47

SuperDuck Comparisons

The SuperDuck comparisons can proceed directly since, by now,

we should have a better feel for the model. We showed that the

sensitivity to n and gamma was minimal and we chose standard values

of n = 4 and gamma = 0.42 for this comparison. As before, we look first

at the fit with the mass model before tackling the momentum model.

Mass Model Comparisons
Statistic Value

0.5 absolute error m/s 0.11

I percent error 1 (3 cm) 94
0.25

-i GN percent error 1 (15 cm) 70
S•-. qj

-0.5 -012 L 0.25 0.5 slope 0.42

4.26 Measure intercept m/s 0.03

-0.5 -r-sguared 0.41

Figure 25: Scatter plot and table of statistics from comparison between

the mass model with the SuperDuck data. Parameters were n = 4 and

gamma = 0.42.
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Figure 25 illustrates the results of exercising the model with our

choice of parameters with all of the SuperDuck dataset. It reveals a

good deal of scatter in the fit, especially in the match with the negative

onshore flows. The absolute erTor is 0.11 m. identical with the

comparable Scripps results. The relative error is 135 percent which is

smaller than by a factor of 2.4 times smaller than the comparable

Scripps results. The correlation statistics are poorer for the Duck

comparison due to the scatter we mentioned earlier. Would you say this

is a better or a worse fit?

How well does the data from below trough level compare with the

mass model? The scatter plot and statistics are found in Figure 26

0.4 Statistic Value

" " absolute error m/s 0.08
0.2

0.2 ,• * • percent error 1 (3 cm) 103

W- "I"-- _ percent error 2 (15 cm) 66
-0.2 0.,2 0.4 soe02

Measure
_0.2 intercept m/s 0.07

r-squared 0.36

Figure 26 Scatter plot and statistics from the comparison between the

mass model and the SuperDuck data located below the trough level

using n=4 and gamma = 0.42.
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The errors are nearly the same as those found using the entire

data set, but the correlation has dropped. This comparison with Duck

data produced similar statistics values as did the Scripps comparisons.

Momentum Model Comparisons

The momentum model was exercised with the SuperDuck data

located below the 2Hrms trough for fixed n=4 and gamma - 0.42 and

with a "reasonable" nut value of 0.002.

S0.6 Statistic Value

o absolute error m/s 0.11

percent error 1 (3 cm) 155
0.2 _•

a wl * percent error 2 (15 cm) 76
- u - U .,' I I

-0.2 0.2 0.4 0.6 r-squared 0.25
-0.2 Measure slope 0.52

intercept m/s 0.07

Figure 27: Scatter plot and statistics from the comparison between the

momentum model and SuperDuck measurements located below the

trough level. Values are computed using nut = 0.002.
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Mean Currents Near the Sea Floor

We are finally prepared to ask a serious question. How well does

the momentum model work when predicting "near bottom flow". For the

purpose of this experiment, we will restrict ourselves to the lower quarter

of the water column. At SuperDuck, the lowest current meter was at 0.7

meters above the bed and only 3 current meters fit this criteria. The

Scripps data provides 49 suitable points. The results for the statistical

fit are given in Figure 28.

S0.6 Statistic Value

0.4 absolute error m/s 0.13

0.2 g _ percent error 1 (3cm) 93

percent error 2 (15 cm) 78
-0.2 0.2 0.4 0.6 slope 0.38

-0.2 - Measure

intercept m/s 0.14

r-squared 0.31

Figure 28: Scatter plot and statistics from the comparison between the

momentum model and the Scripps sensors located in the lower quarter of

the water column. Model was run using n = 6. gamma = 0.6 and nut =

0.002.
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Discussion

"Increasingly, the mathematics will demand the courage to face its

implications" Ian Malcom

The Statistical Measures

Did our statistical measures prove to be meaningful? Can we find

a single measure to use as a fitness test? The answer at this stage is no.

The absolute error seems a good choice for parameterizing the range of

the errors. Beyond that, it gives little additional information. The

relative errors proved to more sensitive to the change in parameters and,

while they follow the same trend as the absolute error, the reported

values are quite high. Is this because the errors were large or is this a

figment of the scaling parameter we chose? We scaled the error by the

measurement which we presume is correct. Is there a better choice?

Apparently not.

The linear regression statistics, taken as a whole, are useful for

observing the scatter of the comparison. The slope and intercept of the

best fit line is an intuitive measure of fit. The slope can be used as a

measure of how much the best fit line deviates from perfect. Taken alone,

the correlation is not a good measure of fit.
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The Mass Model

How well did the mass model compare with the field

measurements? We found that the model was insensitive to the

parameters n and gamma which affect the predicted amount of wave

breaking. The best results were obtained with the least breaking, n = 6

and gamma = 0.6. but this still led to an under prediction of the

measured values. The best-fit statistics for the mass model compared

with the two data sets and their subsets are summarized in Table 4.

Data Set absolute percent percent r2 slope intercept n gamma

error rn/s error 1 error 2 m/s

Scripps 0.10 98 58 0.75 0.47 0.03 6 0.6

all sensors

Scripps sensors 0.08 108 56 0.24 0.15 0.06 6 0.6

below trough

SuperDuck 0.11 94 70 0.41 0.42 0.03 4 0.42

all sensors

SuperDuck 0.08 103 66 0.36 0.24 0.07 4 0.42

below trough I

Table 4: Summary of the statistical results of the comparison between

the mass model and the field data used in this study
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Momentum Model Comparisons

The behavior of the momentum model as a function of the eddy

viscosity coefficient was well predicted by theory. Large errors were

reported for small values of nut and, for large nut. the values converged

to the mass-model results. A summary of the statistics for both data sets

is reported in Table 5

Data Set absolute percent percent r2 slope intercept n gamma nut

error m/s error 1 error 2 m/s I

Scripps - 0.07 113 44 0.36 0.44 0.08 6 0.6 0.002

below trough _]02

SuperDuck - 0.11 155 76 0.25 0.52 0.07 4 0.42 0.002

below trough

Table 5: Summary of best fit statistics for the comparison between the

momentum model and the field data used in this study
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Mean Currents Near the Bed

We ran the momentum model with the Scripps data located in the

lowest quarter of the water column to determine how accurately we can

predict the mean near-bottom currents. The results using parameter

choices. n= 6. gamma = 0.6 and nut = 0.002 are summarized in Table 6.

Data Set absolute percent percent r2 slope intercept n gamma

error m/s error 1 error 2 m/s

Scripps sensors 0.13 93 78 0.31 0.38 0.14 6 0.6

lower quarter

Table 6 Summary of the statistical results of the comparison between

the mass model and the field data used in this study

Can we draw some conclusions from the results? The statistical

values numbers do not vary much from data-set to data-set nor much

from model to model. This is not a good sign. Overall. the mass model

seems to do as good a job as the momentum model. The general shape

of the profile is better described by the later, but the results based on our

two sets of measurements can not distinguish between the two models.

What are some of the reasons for this? One question we can not

answer is how well did the assumption of conservation of mass flux hold

in these data sets? Using only 3 to 5 current meters in the vertical will

give us only a rough quantitative measure of the mass flux. If water were
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being lost or gained from the alongshore direction, the mathematics says

the model will not work.

Another reason lies in the shear terms found in the momentum

model which distribute the mass flux about the vertical line positioned at

Ur. Thus. while we may be able to better predict the velocities in one

part of the water column by injecting more or less shear into the model.

the comparison with values elsewhere may suffer.

What kinds of future studies might resolve the open questions?

Mathematical studies of the kind leading to improvements for the

momentum model would be fruitful. Measurements which allow us to

test how well we're modeling the wave forcing term seem invaluable.

Perhaps with the new sonar technologies being developed we will be able

to measure three components of velocity over a nearly continuous depth

profile. More studies of wave setup and its cross-shore gradient will help

quantify other important parameter of the model.
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