
NASA Contractor Report 191513

ICASE Report No. 93-53 AD-A271 854i111![Ii 1/1111II tl!11111[! 111tilli1 I

ICASE U
PARALLEL SPATIAL DIRECT NUMERICAL SIMULATIONS
ON THE INTEL IPSC/860 HYPERCUBE

Ronald D. Joslin
Mohammad Zubair -- 'ro

ELECTE

NASA Contract No. NAS1-19480 - NOVO 419•3

August 19939

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

93-26586
National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681 -0001

PARALLEL SPATIAL DIRECT NUMERICAL SIMULATIONS
ON THE INTEL IPSC/860 HYPERCUBE

Ronald D. Joslin

NASA Langley Research Center, Hampton, VA 23681

and

Mohammad Zubairi
Old Dominion University, Norfolk, VA 23529

ABSTRACT

The implementation and performance of a parallel spatial direct numerical simulation
(PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical
simulation approach is used to compute spatially evolving disturbances associated with the
laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS
on the hypercuhe to perform transition studies is examined. The results indicate that the
DNS approach can effectively be parallelized on a distributed-memory parallel machine. By
increasing the number of processors, nearly ideal linear speedups are achieved with nonopti-
mized routines; slower than linear speedups are achieved with optimized (machine-dependent
library) routines. This slower than linear speedup results because the FFT routine domi-
nates the computational cost and because the FFT routine indicates less than ideal speedups.
However, with the machine-dependent routines, the total computational cost decreases by a
factor of 4 to 5 compared with standard Fortran routines. The computational cost increases
linearly with spanwise, wall-normal, and streamwise grid refinements. The hypercube with
32 processors was estimated to require approximately twice the amount of Cray supercom-
puter single processor time to complete a comparable simulation; however, it is estimated
that a subgrid-scale model, which reduces the required number of grid points and becomes
a large-eddy simulation (PSLES), would reduce the computational cost and memory re-
quirements by a factor of 10 over the PSDNS. This PSLES implementation would enable
transition simulations on the hypercube at a reasonable computational cost.

NTIS G'RA&I

DTIC TAB
Unavnounced (Just Irioation

By
-,Dlstribut io/

Availabillty *des

Av41 an&/or

91st Speool"

This research was supported by the National Aeronautics and Space Administration

under NASA Contract No. NAS1-19480 while the second author was in resideumIe at the
Institute for Computer Applications in Science and Engineering (ICASE). NASA Langley
Research Center, Hampton, VA 23681.

1. INTRODUCTION

The state of the three-dimensional boundary-layer flow on the wings and fuselage of an

aircraft determines the viscous drag portion of the total drag of the aircraft. This viscous

drag, which is flow-state dependent, can amount to 40 or 50 percent of the total drag. (See

Bushnell et al., 1977.) Any decrease in the viscous drag can lead to reduced fuel expenditures.

This fuel savings can translate directly into reduced operating costs each year for the industry

in terms of millions (if not billions) of dollars. The flow field on a wing can be in a laminar,

turbulent, or transitional (an intermediate state that indicates transition from a laminar to

a turbulent flow state) state. Because a laminar flow state yields less viscous drag than a

turbulent flow state, laminar flow on the wings is preferable and results in a net fuel savings.

Today, turbulent flows engulf most of the wing area of commercial aircraft. Clearly, any

aircraft manufacturer that successfully designs an aircraft with "laminar flow wings" (i.e.,

wings covered primarily by laminar flow) will have an enormous advantage.

As yet, the transition from laminar to turbulent flow is not completely understood. The

first reasonably comprehensive method for predicting transition was derived from stability

theory, which is the eN method by Smith and Gamberoni (1956) and Van Ingen (1956).

Although the eN method is widely used to predict transition in a broad class of flows, it does

have some limitations: a quasi-parallel boundary layer is assumed; no amplitude information

about the ingested disturbance in the boundary layer is taken into account; and the method

is semiempirical, which requires some foreknowledge of the flow in transition. The true

physical problem involves the ingestion of disturbances that interact in a nonlinear manner

in the later stages of transition and are imbedded in a growing boundary layer. Consequently,

a method that accounts for nonparallel flow and nonlinear interactions is necessary to predict

transition.

Recently, Herbert and Bertolotti (1987) have devised a nonlinear, nonparallel computa-

tional method that is based on the parabolized stability equations (PSE). With some success,

1

Malik and Li (1992) have extended the PSE approach to coinlute crossflow (list urbances in

swept Hiemenz flow. Validation of this new approach for a broad class of flows will con-

tinue throughout this decade. Before the development of this theory, the only approach to

solve the nonparallel, nonlinear boundary-layer transition problem was by direct numerical

simulation (DNS). To date, most studies with DNS have been limited to the temporal fo.r-

mulation, in which a spatially periodic computational domain travels with the (listurbance

and the temporal evolution of the disturbance is computed. This method has enabled the

extension of the simulations into the later stages of transition (Zang and Hussaini. 1987.

1990; and Laurien and Kleiser, 1989) and has provided a database of qualitative information

that unfortunately lacks the physically realistic spatial representation. Spatial DNS com-

putes spatially evolving disturbances and can provide needed quantitative information about

transition. Progress in spatial DNS has been made by, among others, Danabasoglu et al.

(1990, 1991) for channel flows; Fasel (1976), Spalart (1989), Fasel et al. (1990), Rai and Moin

(1991a, 1991b), Bestek et al. (1992), and Joslin et al. (1992, 1993a) for boundary-layer flows;

and Joslin et al. (1993b) for swept-wing flows. For a more complete list of accomplishments

in transition prediction with DNS, refer to the reviews by Kleiser and Zang (1991) and Reed

(1993). Enormous speed and memory requirements are necessary for spatial DNS because

of the large domains and intensive computations that are involved.

Machines that can process large amounts of data at faster speeds are in ever increas-

ing demand. Two possibilities exist for achieving high computational speeds: technological

advancements and parallel computations. Technological advancements alone will not pro-

vide the desired computational speed because certain intrinsic physical limitations are being

reached. An important limitation is the cycle speed, which is governed by the propagation

speed of the signal in the given media. For example, the Cray 1 (delivered in 1976) had

a cycle time of 12.5 nsec, and the Cray 2 (delivered in 1987) had a cycle time of 4.1 nsec.

Although 11 years elapsed, an improvement of only a factor ot 3 in processor speed has been

2

achieved. Parallel computation is a more attractive alternate approach because the cost and

size of computer components decrease by an order of magnitude compared with Cray-type

supercomputers, with only an incremental decrease in component speed. The real advantage

to parallel computing is the increase in computational speed that occurs as the number of

processors are increased.

A large body of literature covers the treatment of numerical algorithms for vector and

parallel computers. (See Ortega and Voigt, 1988.) In most cases, the numerical treatments

have focused on simplified problems. In other cases, algorithms for computationally intensive

kernels in isolation from the entire application have been studied. These studies are all

necessary; however, an efficient scheme for a kernel does not necessarily result in the efficient

implementation of the whole scientific application. Typically, an entire application consists

of a number of kernels with different data-distribution requirements, which necessitates data

movement between two kernels. This movement can considerably degrade the performance

of the entire application on a parallel machine.

The exploitation of parallelism for real-world computations becomes an even greater

challenge in the absence of tools that transform sequential codes into parallel codes. A

number of issues must be considered in the implementation of an entire application on a

parallel computer. Some of these issues include

Data Mapping. The data distribution among the various processors of a parallel ma-

chine is a key factor in the efficiency of a parallel implementation. For many scientific

applications, the optimal data distribution is not obvious and requires experimentation.

Communication Requirement. The choice of the algorithm and the data distri-

butions determines the communication requirements of an application. Two factors are

treated separately: the communication volume and the frequency of communication. Fre-

quent interprocessor communication is not desirable on parallel machines because of the high

conimunicatiou-setup overheads. On such machines, large messages and infrequent commu-

3

nication are preferable.

Problem Granularity. For a given number of processors, a pr'oblemn granularity ex-

ists below which parallelization is not effective. The problem granularity depends on the

hardware and software characteristics of the parallel machine.

Single Node Performance. The efficient implementation of a code on a single node is

important because any improvement in the computational performance on a single processor

will have a multiplicative effect on the overall parallel performance.

In summary, the whole scientific application needs to be implemented carefully to obtain

desirable performance on parallel machines.

Scientific applications can be clearly categorized according to their suitability for paral-

lel implementation; however, many scientific and engineering applications fall into grey areas

where the suitability of parallelization for the application is not clear. In most cases, the

application must be implemented and tested to determine its suitability for parallel computa-

tions. These applications include a variety of diverse numerical approaches. Some examples

of these applications are: Fischer et al. (1988) and Henderson and Karniadakis (1991), who

discussed the use of spectral element methods to characterize the unsteady Navier-Stokes

equations; Otto (1993), who studied chemical reactions in a computational fluid dynamics

code; Jackson et al. (1991), who studied incompressible turbulence with a temporal DNS

code; and Edison and E.lebacher (1993), who used a fully balanced tridiagonal solver (all

three directions) in a temporal DNS code to study compressible, isotropic turbulence.

The goal of the present research is to modify a spatial DNS approach described by Joslin

et al. (1993a) to perform boundary-layer transition computations on parallel computers. The

suitability of the DNS code for parallelization on a distributed-memory parallel machine, the

Intel iPSC/860, is examined.

4

2. GOVERNING EQUATIONS

To compute the disturbance development, the incompressible Navier-Stokes equations

are solved. The streamwise direction is x, the wall-normal direction is y, and the spanwise

direction is z. A sketch of the computational domain is shown in Fig. 1. Instantaneous ve-

locities ii = (ft, 6, ti•) and pressure P are decomposed into the base components U = (U, V, W)

and P and the disturbance components u = (u, v, w) and p so that

i(x,t) = U(x_) + u(x_,t) and .I(x_,t) = P(j) + p(j_,t) (1)

where x = (x, y, z) and t is time.

The base flow is generally the steady-state solution of the Navier-Stokes equations. For

simplicity, this study will use the Blasius similarity profiles for the base flow of a flat-plate

transition problem.

To determine the disturbance component of the instantaneous velocities and the pres-

sure, substitute equation (1) into the Navier-Stokes equations and subtract the base-flow

equations. The resulting unsteady, nonlinear disturbance equations are

au_1
S+ (U-v)u + (u -V)u+ (L -" VW = _VP + 1 V2 u (2)

and the continuity equation is

V.U_=0 (3)

Boundary conditions at the wall and in the far field are

u= 0 at y=0 and u -0 as y-* oc (4)

The equations have been nondimensionalized with respect to the free-stream velocity U½,

the kinematic viscosity v, and some length scale at the inflow (e.g., displacement thickness

6*). A Reynolds number can then be defined as R6 . = Ub6o/v.

3. NUMERICAL TECHNIQUES

In the streamwise direction (x-direction), fourth-order central finite differences are used

for the pressure equation. At boundary and near-boundary nodes, fourth-order differences

are used. For the first and second derivatives in the momentum equations, sixth-order

compact differences by Lele (1992) are used. At the boundary and near-boundary nodes,

explicit fifth-order finite differences are used. The compact differences lead to tridiagonal

systems, and the central finite differences lead to a pentadiagonal system; both of these

systems can be solved efficiently by an LU-decomposition with the appropriate backward

and forward substitutions.

In the wall-normal direction (y-direction), a Chebyshev series is used to approximate the

disturbance at the Gauss-Lobatto collocation points. Because this series and its associated

spectral operators are defined on [-1, 1] and the physical problem of interest has either a

semi-infinite [0, oo) or a truncated domain [0, ymax], a transformation is employed. Studies

of spectral methods and mapping transformations in unbounded regions have been conducted

by Grosch and Orszag (1977) and Boyd (1989). Here, an algebraic mapping is used:

Y maxsp(l + Y) (2 sp + Ymax)Y - Ymaxsp (5)
2sp + ymax(1 - Ymax(sp + Y)

where y E [0, ymax) and E [-1, 1]; Ymax is the wall-normal distance from the wall to

the far-field boundary in the truncated domain; and sp controls the grid stretching in the

wall-normal direction. The Chebyshev series operators lead to matrix-matrix multiplies.

In the spanwise direction (z-direction). periodicity is assumed, which allows for Fourier

series representations. With the Fourier series, spectral accuracy is obtained in the spanwise

direction, and fast Fourier transforms (FFT), or sine and cosine transforms, may be used for

fast computation of derivatives. The general Fourier series leads to FFT operations, and the

sine and cosine series lead to matrix-matrix multiply operations. For more details on the

spectral methods used here, refer to Canuto et al. (1988).

6

For time marching, a time-splitting procedure was used with implicit second-order

Crank-Nicolson differencing for normal diffusion terms; an explicit third-order three-stage

Runge-Kutta (RK) method was used for the remaining terms. This time-stepping procedure

was used successfully by Streett and Hussaini (1991) for Taylor-Cou.'.te flow simulations.

The pressure is omitted from the momentum equations (2) for the fractional RK stage,

which leads to

atu + (u*. Vu* + (U1 V)__ + (*. VW 1 V2u* (6a)

with boundary conditions

u_* (6b)

Time is advanced from urn to the intermediate disturbance velocities u*, and u_ are inter-

mediate boundlary conditions that will be explained later in this section.

A full RK stage is completed by advancing the solution in time from u* to um+1 by

r+p (7a)

and

V. _m --- 0 (7b)

By taking the divergence of equation (7) and imposing zero divergence of the flow field at

each RK stage, a pressure equation is obtained

V 2 pm+l U*) (8)

which is subject to homogeneous Neumann boundary conditions; hm are time-step sizes in

the RK scheme. This boundary condition is justified in the context of a time-splitting scheme

as discussed by Streett and Hussaini (1991).

Because the pressure equation (8) is an inviscid calculation and involves boundary con-

ditions on the normal component of velocity only, a nonzero tangential velocity component

7

may arise at the computational boundary at the end of each full RK time-step, which iS

referred to as a "slip velocity." To correct this problem, intermediate boundary conditions

as described by Streett and Hussaini (1991) and Joslin et al. (1992) are used, which are

given by

uj .= ii,, + h' (h im-)Vp7 h,],_Vp,. (

where U fc = 0 for a rigid wall and u,,. = uo for an inflow or a wall slot condition, evaluated

at the appropriate time in the RK stage.

The solution procedure follows: The intermediate RK velocities 0* are determined by

solving equation (6). The pressure p,,+' is found by solving equation (8). Then, the full

RK stage velocities u_+l -are obtained from equation (7). After the above system is solved

three consecutive times, full time-step velocities result. The three-stage RK time steps given

by Williamson (1980) are {h', h', h,h} = {1/3,5/12,1/4}ht, where the sum of the three RK

time stages equals the full time step (ht).

To obtain the pressure p for the two- and three-dimensional boundary-layer problenls,

solutions of the Poisson equation (8) for each RK stage are required. For thrtcdinmensional

simulations with spanwise periodicity assamed, the pressure is determined in transform space,

where the Fourier coefficients are evaluated.

For the two-dimensional problem and the zero-wave-number component of the three-

dimensional problem, the Poisson equation with Neumann boundary conditions is equiva-

lent to the composite solution of a Poisson problem and 9 Laplace problem with Dirichlet

boundary conditions (Streett and Hussaini, 1991):

V 2 PI A1o in F pl = 0 on OF (10a)

10 in F p I I7.' . pI on OF (10b)

where pi are gradients normlal to the boundaries, R, is the known zero-wave-numil)er Fourier

coefficient of the right side of the pressure equation (8), and I,,•v is the influence niatrix.

8

This boundary condition gives the influence of the right side R, on the boundary. The

final solution p = p 1 _p 1t satisfies the original problem and the boundary conditions. rhe

influence-nidtrix te -hnique is also used for the pressure solver to ensure that the continuity

equation is discretely satisfied. Details of the influence-matrix technique are given by Streett

and Hussaini (1991), Danabasoglu et al. (1991), and Joslin et al. (1992). To form the

influence matrix, a sequence of solutions is first determined for a ;,roblem

V 2p' =0 in F p' =(5,j on 091 (11)

for each discrete boundary point (7j). The 6,,j is the Dirac-Delta function defined as bj

1 for i j and 6,,j = 0 for i j. After the vector of normal gradients pi is computed at all

of the boundary points, these vectors are stored in columns to yield a matrix referred to as

the influence matrix

INF [Pn Pn, P] (12)

where NB is the number of boundary points minus the corner points. The composed influcnce

matrix gives the residuals of p as a result of the unit boundary condition influence. The value

of one boundary condition is temporarily relaxed so that the problem is not overspecified.

This relaxation is accomplished by setting one coluni of the influence matrix to zero, except

for the boundary point of interest, which is set to unity. The corresponding residual is exactly

zeroed.

Because the gradient, or boundary condition, at one discrete boundary point was relaxed

in the influence-matrix formulation, the desired condition (P, = 0) may not hold at that

boundary point. The desired condition may not hold because the discrete compatibility

relation may not I)e true for the pure Neumann problem. To regain this boundary rondl;tiOn.

the pressure problem (10) is solved again: this time a honzer(o constant (e.g., 0.01) i,- added

to the right side of equation (10a). A pressure correction Tj results. The composite solutioii

satisfies the boundary conditions at all discrete nodes and consists of a linear combination

9

of p and jJ. This co'nbination is found by satisfying the equations

aip,,+a 2 j,, =0 on 01, and al +a 2 =1 (13)

The final pressure (p' +1) is then given by

p,,+l =nip+(I-a,)P with al =p/(-,, (14)

In transform space, Poisson equations are solved for the zero-wave-number component;

for the remaining wave numbers, Helmholtz equations are solved. To solve the equations

efficiently, a fast elliptic solvwr is required. For this purpose, the tensor-product method

described by Lynch et al. (1964) is used. On a nonstaggered grid, this appr•.ach was

employed by Danabasoglu et al. (1990, 1991) for the channel problem and by Joslin et al.

(1992) for the boundary-layer problem.

The discretized equations become

(Hn -/3)pn + pnXT = Rn (15)

where p, are nonzero Fourier coefficients of the desired pressure solution p, H, are the wall-

normal derivative operators, XT is the transpose of the streamwise central finite-difference

operator,). = nT are spanwise wave-number coefficients of the Fourier series, and R, 're

known Fourier coefficients of the right side of the pressure equation (8).

The following matrix operations determine the wall-normal operators H,,:

Ho b2 and H, = IGLDDIL (16)

where D is a spectral wall-nermal derivative operator for the stretched grid,) is the deriva-

tive matrix with the first and last row: set to zero, and D2 is the spectral wall-normal second

derivative operator with the boundary cond~tions contained in the first and last rows. This

rmodification enforces the homogeneous Neumann boundary conditions required for p on the

10

Gauss-Lobatto grid. The zero-wave-number equation is solved on Gauss-Lobatto points;

all other wave-number equations are solved on Gauss points. The interpolation matrix 1
gL

operates on variables at Gauss-Lobatto points and transforms them to Gauss points; the

interpolation matrix IGL performs the inverse operation. These operators are defined by

Joslin et al. (1993a).

The operator H, is decomposed into

H. = QAQ-' (17)

where A is a diagonal matrix of eigenvalues and Q is the corresponding matrix of eigenvectors.

Temporary matrices are introduced and defined

P, = Q-1pn and Gn = Q-1Rn (18)

Equations (17) and (18) are substituted into equation (15) to obtain

APn + Pn XT = G- (19)

Because XT is a fourth-order accurate, pentadiagonal matrix, the LU-decomposition method

is used and provides an efficient method to solve the pressure equation (19). Equation (19)

is used to solve for ,n, which is then used in equation (18) to solve for p,,.

The operators H,, the eigenvalue and eigenvector matrices Q,Q-',A, the penta-

diagonal operator XT, and the influence matrix 1N, are all mesh-dependent matrices and

need to be calculated only once.

Here, disturbances are introduced into the boundary layer by forcing at the inflow

boundary; however, the swept-wing problem of Joslin et al. (1993b) used surface suction

and blowing to introduce disturbances. At the outflow, the buffer-domain technique of

Streett and Macaraeg (1989) is used.

11

4. PARALLEL IMPLEMENTATION OF THE SPATIAL DNS

In this section, the various data-distribution options available for implementation in the

three-dimensional DNS code on a parallel machine are discussed, and the data distribution

used in this application is outlined.

4.1 Data Mapping

The DNS code consists of a number of comnputationally intensive kernels. Dependent

upon the data mapping. some of these kernels are executed locally 01 a single p)rocessor.

and the rest arc executied globally across the processors. The kernels that are executed lo-

cally do not require communication between processors: kernels that are executed globally

require communication. The major computationally intensive kernels are the matrix-imatrix

multiplication, the FFT, the tridiagonal solver, and the pentadiagonal solver. The op 'ration

counts that correspond to the kernels are illustrated in table 1; these operation counts are

for a one-time iteration of the DNS code. Of these major kernels, the inatrix-niatrix multi-

plication is the most conmputationally intensive kernel. Hereafter, tip demnotes the numtber of

processors omi a parallel machine, and i,, ii!. and ri denote the number of data items (i.e..

grid points) in the streamuwise, wall-normal, and spanwise directions.

For the three-dimensional problem., three major data mappings exist:

x-rmapping. The three-(dimensional data are partitioned into ,t. t w()-(limnenisionial plamn's

of it, i data items each. The first 11,. /lp planes are mapped to processor p0, the next ,ilrp

planes are mapped to processor pl, and so on.

y-mapping. The three-dimensional data are partitioned into ny two-dimensional planes

of 11,11: data items each. The first n,/aip planes are mapped to processor p0. the next 11./tip

planes are mapped to processor pl, and so on.

z-mapping. The three-dimensional data are partitioned into a Z two-dimensional planes

of 1z'11, data items each. The first i /'½p planes are mapl)ped to processor po, the next ,t z p

planes are mapped to processor pl, and so on. An example of this mapping is shown in Fig.

12

2 for nP = 4.

As stated earlier, the data mapping determines whether a particular kernel is to be

executed across all processors or executed locally on a single processor. Table 2 shows the

executions of the major ke.nels for the three data mappings. For the x-mapping, a great deal

of communication is clearly required, which is undesirable. Both the y- and z-mapping are

more desirable than the x-mapping because most of the kernels are executed locally. Because

the operation counts shown in table 1 indicate that the matrix-matrix multiply is higher than

FFT's, the z-mapping should be more efficient than the y-mapping. The z-mapping requires

that one kernel (FFT) be executed globally. Our implementation of the PSDNS code on the

Intel iPSC/860 is based on the z-mapping.

4.2 FFT Implementation

The FFT kernel computes nxny sequences of discrete Fourier transforms of size n,. The

z-mapping distributes sequences across all processors of the machine. One way to compute

the discrete Fourier transform of these sequences is as follows: first, the transpose is taken

of the three-dimensional data (the resulting distribution is the x-mapping of u), the one-

dimensional FFT algorithm is then executed on sequences of length n. on each processor, the

results are multiplied by a coefficient array, the inverse Fourier transform of the data is then

computed, and, finally, the results are transposed back to the original data distribution. In

this scheme, all global data movement occurs in the transpose step. To keep communication

overheads to a minimum, the transpose operation must be implemented efficiently. The

transpose operation is a complete exchange operation; every node has an equivalent amount

of data to exchange with every other node. The xor algorithm is used to implement this

exchange procedure because it is the optimal procedure on the Intel iPSC/860. The xor

algorithm, which is illustrated in table 3. schedules various exchanges at particular nodes to

avoid link contention. In this scheme at the ith step, a node j sends data to node iXj.

13

5. PSDNS VALIDATION

The evolution of a Tollinien-Schlichting wave in the three-dimensional flow is used to

validate the PSDNS approach. A disturbance with an initial amplitude A',0 = 1 x 10-6 is

introduced into the boundary layer by a forcing at the inflow for the PSDNS. The inflow

disturbance profiles are obtained with linear stability theory (LST). The parallel-flow as-

sumption is used for comparison with LST. Calculations are made with an inflow Reynolds

number Rb. = 900 and frequency w = 0.0774. The PSDNS was computed on a grid of 200

uniformly spaced streamwise nodes (60 nodes per disturbance wavelength), 61 wall-normal

collocation points, and 8 spanwise nodes. The outflow boundary is 1216* from the inflow

boundary, the far-field (or free-stream) boundary is 756" from the wall, and the wall-normal

grid-stretching parameter sp, is equal to 10. For the time-marching scheme, the disturbance

period is divided into 320 time steps.

Figure 3 shows the streamwise evolution of the computed streamwise (U) and wall-

normal (v) velocity components of PSDNS compared with LST. Very good agreement in

amplitude and phase are found at every spanwise location in the physical domain. (Note,

that the buffer-domain region is nonphysical and that the DNS and LST results are not

expected to agree.)

6. PERFORMANCE OF PSDNS ON INTEL IPSC/860

Although direct simulations of transition involve large computational grids and many

thousands of time steps per simulation, the performance of the PSDNS code can be suffi-

ciently examined for a single time step on smaller grids. The cost and feasibility of a full-scale

simulation can be estimated by using scaling information.

The range of parameters is limited to the capability of the machine. The Intel iPSC/860

hypercube at NASA Langley Research Center has 32 processors, each with 8 megabytes of

memory. Because the single precision is limited to 32-bit words and because simulations of

transition require the computations of small-scale phenomena, all performance test cases are

14

double-precision (64-bit words) computations.

The first sequence of performance simulations is computed on a grid of 64 streamwise

points and 41 wall-normal points. Figure 4 shows both the computational cost (total cost

minus communication) and the communication cost for each processor in CPU sec for a

variation in the spanwise grid and the number of processors. For a given computational grid,

a decrease in both the computational and communication cost is achieved by increasing the

number of processors. For this parallel implementation, the communication cost does not

exceed 6 percent of the total cost for all grids and variations in the number of processors

that were considered.

Figure 5 shows the relative cost of the major numerical techniques and shows the speedup

of each technique with the number of processors. As expected, the computational cost break-

down indicates that the majority of the time is spent on matrix-matrix multiply operations

(table 1). The results suggest that a negligible change occurs in the cost contributions from

each numerical technique with an increase in the number of processors. The speedup of each

numerical technique as the number of processors increases indicates a nearly ideal linear

speedup for the matrix-matrix multiply and the tridiagonal solver. Because matrix-matrix

multiplies 1ccount for nearly 80 percent of the total computational cost and because the

speedup for the matrix-matrix multiplies are nearly ideal, the total speedup approaches a

nearly linear rate. For example, the theoretically ideal speedup rate is 4 with an increase

from 8 to 32 processors and the speedup of 3.4 was realized in the total computational cost.

Figure 6 shows the computational cost and the slowdown for a spanwise grid refinement

with 8 processors. Matrix-matrix multiplies dominate the PSDNS cost; matrix-matrix mul-

tiplies and tridiagonal and pentadiagonal solvers slow down at a faster rate than other major

numerical techniques. For example, the matrix-matrix mult-ply has a theoretically ideal rate

of slowdown of 8 when n, is increased from 8 to 64. The FFT adds the least additional cost

as the spanwise grid is refined from 8 to 64; the FFT results in only an iv'r-ase of a factor of

15

3.3 in the computational cost. (The ideal slowdown rate is 8, which is undesirable because

of the cost increase.)

The relative balance in work load between respective processors is an important element

in documenting the PSDNS performance. Figure 7 shows the computational and comnmuni-

cation cost for each stage of the three-stage Runge-Kutta time step for each processor of an

8-processor simulation on a spanwise grid of n, = 8. In this figure, the AIMS performance

software shows the work load for each processor in a separate display area. The lines that

connect the processor areas indicate global communication; the shaded areas indicate the

computational work; the blank spaces between shaded areas indicate idle times. The results

show that all processors are load balanced, with the exception of the first node (node = 0).

For the present combination of numerical techniques and parallel implementation, this is the

best Lad balance that can be expected. Because of the influence-matrix pressure solver that

is used on the first node only, additional work is always required on this node. The idle time

amounts to about 20 percent of the total cost for a single time-step advancement.

In the second series of simulations, the matrix-matrix multiply is optimized because it

requires over 80 percent of the total computational cost of the PSDNS on the hypercube

(see Fig. 5). For a more efficient code, the mo -r" c-matrix multiply routine would have to be

improved (if possible). Instead of a standard Fortran rout;ne, the library routine DGEMM

is used here to attempt optimization. The performance simulations are repeated.

Figure 8 shows the computational and communication costs with a spanwise grid re-

finement and an increase in the number of processors. In comparison with Fig. 4, the trend

of reduced cost as the number of processors is increased remains tbh same: however, the

relative comnmunication cost has become significant. . the quantitative cost of com-

munication is the same as before the new matrix-matrix multiply routine was introduced. the

communication now equals 20 to 30 percent of the total cost because the new matrix-matrix

multiply routine has reduced the total computational cost by a factor of 4 to 5 in comparison

16

with the original code implementation.

Figure 9 shows the relative cost of the numerical techniques and the speedup of each

technique with the number of processors. With the new matrix-matrix multiply routine,

the major numerical techniques are more balanced in terms of relative work load. The

communication and FFT have comparable relative cost and now dominate over the other

major numerical techniques. The matrix-matrix multiply and the tridiagonal solver both

have nearly ideal speedups as before; however, the total speedup is only about half of the

ideal rate. This decrease in efficiency occurs because the FFT routine is now the dominant

numerical technique and the FFT rate of speedup is not ideal.

Figure 10 shows the numerical cost and the slowdown for a spanwise grid refinement with

eight processors. The numerical techniques and communication cost are balanced; however,

communication becomes dominant as the spanwise grid is refined. The slowdown rate as

spanwise grid is increased are the same as those for the initial comparison (Fig. 6); however,

the total slowdown rate has decreased significantly. Because the FFT routine is the dominant

numerical technique and because the FFT slowdown rate is small, the total rate of slowdown

closely follows the FFT rate. This result is advantageous; it indicates that little additional

cost will result from refinement of the grid in the spanwise direction.

The present multiprocessor implementation of the PSDNS can be evaluated by varying

the number of x - y planes on each processor. For example, the use of eight spanwise grid

points on an eight-processor simulation indicates that each processor performs computations

on a single x - y plane; eight spanwise grid points on a four processor simulation indicates

that each processor performs computations on two x - y planes. Figure 11 shows the cost

for a single x - y plane on each processor compared with the cost of four x - y planes on

each processor. Because FFT and global communication costs increase, cost increases are

incurred in both cases with increased number of processors. Although the FFT technique

and the global communication are both effected by changes in the number of processors for a

17

fixed number of x - y planes on each processor, the costs are constant for all otheri techniques

(Fig. 11). For four x - y planes on each p)rocessor, notte the initial drop in the coniputatiomal

cost from two to four processors.

In the remainder of this section, the streamwise and wall-nornial grids will be refined

to determine the cost scalings. The relative cost of the major numerical techniques and

the speedup of each tec'hnique with the number of processors are shown in Fig. 12. with a

streamwise grid refinement from ii, = 64 to ii, = 128. Decreases in both the computational

and communication costs are achieved by increasing the number of processors. The relative

c(mmunication cost accounts for 10 to 30 percent of the total computational cost.

Figure 13 shows the relative numerical cost breakdown for the dominant kernels. The

numerical techniques and the communication are balanced; the FFT routine and commu-

nication dominate the cost. Similar to the speedup rates from the earlier case, the total

rate of speedup (as the number of processors increases) is slower than the ideal speedup rate

because the dominant FFT routine and the communication have speedup rates that are less

than ideal.

Figure 14 shows the computational and communication costs with a spanwise grid vari-

ation. The results show trends similar to the n, = 64 grid shown in Fig. 9. If the spanwise

grid is refined by a factor of four, then a factor-of-three increase in the total computational

cost results.

As in Fig. 11, Fig. 15 shows the cost of the PSDNS with a single x - y plane on each

processor and with four x - y planes per processor. For the single x - y plane on each

processor, the cost increases with the number of processors in use; however, the case with

four x - y planes on each processor results in a decrease in the total computational cost.

This result is encouraging for the performance of large-scale simulations with a large number

of processors.

Figures 6, 10, and 14 show the effect of spanwise grid refinements on the computational

18

and communication costs. Figure 16 shows that streamwise (x) refinements lead to nearly

linear theoretical increases in cost; Fig. 17 shows that wall-normal (y) refinements also lead

to nearly ideal linear increases in computational cost. Although the results ill Fig. 16 show

that the matrix-matrix multiplies scale like ny , the FFT and communication dominate the

cost leading to the total cost scaling like the FFT rate.

7. DISCUSSION

The present performance data for the PSDNS suggest that insufficient core memory is a

limitation of the hypercube. The largest grid that fits on a single node has 128 streamwise,

41 wall-normal, and 4 spanwise points (21,000 total grid points). An attempt to perform

computations with 8 spanwise planes of this same x - y grid failed because of insufficient

memory. Because the code requires about 160 bytes per grid point, the 21,000-point grid

used about 3.4 megabytes of memory; the failed grid required 6.8 megabytes (plus operating

system). The largest grid that could potentially be used for the present PSDNS code has less

than 42,000 grid points on each processor. With the code optimized for the matrix-matrix

multiplies, the total cost for a single time step varied significantly with the grid and the

number of processors in use. To determine if simulations of transition can be undertaken,

the grid requirements must be specified to estimate the computational cost requirements.

The grid resolution is highly dependent on the problem and the numerical techniques. To

estimate the feasibility of using PSDNS on the hypercube, a sample transition problem

computed on a single processor of a Cray-2 supercomputer is used for comparison.

In a recent study, Joslin and Streett (1993b) computed the nonlinear evolution of a

crossflow vortex packet on a swept wing with spatial DNS on the Cray-2. The cost of this

computation amounted to approximately 125 CPU hr with a single processor. The grid

contained 901 chordwise, 61 wall-normal, and 32 spanwise points (1.76 million total points)

which required 36.6 megabytes of core memory. The unsteady computation required 9500

time steps in the time-marching scheme to reach the nonlinear inflectional velocity profile

19

stage, which occurs just prior to the laminar-to-turbulent transition.

Each x - y plane of the Joslin and Streett (1993b) study contained 55,000 grid points (8.8

megabytes of memory), which is beyond the capability of the present hypercube (8 megabytes

per processor). In this case, the feasibility of using PSDNS has been easily determined by

examining the memory limitation alone. However, if 16 or 32 megabytes of memory per

processor were available transition studies could potentially be conducted on the hypercube.

Then the feasibility of using this parallel computer would rest on the computational cost of

such a simulation.

The temporal cost can be determined based on the previous performance results of a

single time step. From data in Figs. 16 and 17, the rates at which computational cost

increases with streamwise and wall-normal grid refinements can be determined at 1.95 and

2.15, respectively. The performance results indicate that a single time step on a grid of 64

streamwise, 41 wall-normal, and 32 spanwise points distributed on 32 processors will cost 3.7

sec for each processor. With the scaling rates, the computation by Joslin and Streett (1993b)

performed on the hypercube is estimated to cost 77 sec for each processor per time step. This

results in a total cost of 206 hr for each processor to achieve the nonlinear inflectional velocity

profile state described by Joslin and Streett (1993b). With the dedicated use of a 32-processor

hypercube with 16 megabytes of memory per processor, a simulation could be completed

in approximately 9 days, which is nearly twice the cost of using a supercomputer. This

comparison is a rough estimate of the total computational cost required for the simulations

because only small grids can be used. Onm a grid with 64 streamwise, 41 wall-normal, amid

32 spanwise points, the computational cost of 3.0 sec resulted on a single processor of a

Cray-Y/MP; the performance was 189 megaflops. For the same grid, the computational cost

on the hypercube resulted in 3.7 sec for each processor and roughly 153 mnegaflops.

From the estimate, simulations can apparently be performed on the hypercube, provided

that each processor has at least 16 megabytes of memory. Similar to using supercomputers.

20

the hypercube would require a number of dlays to complete a single simulation. To decrease

the memory and computer-cost requirements, two basic alternatives can be explored. The

first alternative is an increase in the number of processors in use for a given grid; the second

alternative is the reduction of the computational grid size for a given simulation. However,

by decreasing the size of the grid, the PSDNS will not resolve the smaller scales (subgrid).

which will &,grade the results. To capture these small scales with an appropriate model, the

PSDNS approach becomes a large-eddy simulation (LES) code, or PSLES. As discussed and

demonstrated by Piomelli et al. (1990), LES can reduce the computational grid and cost by

an order of magnitude in comparison with DNS. If a subgrid-scale mode could accurately

capture the physics in the boundary-layer flow, then a PSLES on a computational grid of

256 streamwise, 41 wall-norlnal, and 32 spanwise points, distributed on 32 processors, could

potentially be computed. The cost for a single time step would be 14 sec for each processor.

For the swept-wing problem described by Joslin and Streett (1993b), the total computational

cost on this LES grid would amount to 37.5 hr for each processor, or 1.5 days. Although

the PSLES performance scalings are slightly underestimated because additional costs are

involved with this model, PSLES seems plausible, and its use on parallel computers will be

explored in the near future.

8. CONCLUDING REMARKS

The performance of a recently implemented parallel spatial direct numerical simulation

(PSDNS) approach on the Intel iPSC/860 is documented. The PSDNS results are in good

agreement with linear stability theory for a small-amplitude test case, which serves as the

initial validation of the code on the parallel computer. The performance results show nearly

ideal linear speedups. which are achieved by increasing the number of processors. The

computational cost shows nearly theoretical linear increases with streamwise., wall-nornial,

and spamiwise grid refinements. The results show that the work is well balanced between the

processors (except the first node. which will have approximately 15 to 20 percent larger work

21

load because of the numerical techniques employed). Furthermore. a speedup with a factor

of 4 to 5 was obtained by using machine-dependent libraries; rather than standard Fortran

routines.

The feasibility of using the PSDNS on the hypercube to compute transitional flows is

assessed. A comparative study with the Cray supercoinputer demonstrates that PSDNS

could be used for transition studies on the hypercube, provided that each processor had

16 megabytes of memory. Furthermore, the use of a subgrid-scale model to compute large-

eddy simulations (PSLES) would reduce the computational cost by an order of magnitude

compared with PSDNS. Large-eddy simulations could readily be used to study transition on

the hypercube at a reasonable computational cost.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Dr. Bart A. Singer, High Technology

Corporation, for reviewing this manuscript. Also, thanks goes to Ms. Jonay A. Campbell,

Mason and Hanger Services Incorporated, for her editorial assistance.

REFERENCES

Bestek. H., Thumm, A., and Fasel, H. F. (1992). Numerical investigation of later stages

of transition in transonic boundary layers. In First European Forum on Laminar Flow

Technology, March 16-18, 1992. Hamburg, Germany.

Boyd, J. P. (1989). Chebyshev-Fourier Spectral Methods. Lecture Notes in Physics, 49,

Springer-Verlag, New York.

Bushnell, D. M., Heftier, J. N., and Ash. R. L. (1977). Effect of compliant wall motion on

turbulent boundary layers, Phys. Fluids, 20(10), s31-48.

Canuto, C., Hussaini, M. Y.. Quarteroni, A.. and Zang, T. A. (1988). Spectral Methods in

Fluid Dynamics. Springer-Verlag, New York.

22

Danabasoglu, G.. Biringen, S., and Streett. C. L. (1990). Numerical simulation of spatially-

evolving instability control in plane channel flow. AIAA Paper No. 90-1 530.

Danabasoglu, G., Biringen. S.. and Streett, C. L. (1991). Spatial simulation of instability

control by periodic suction blowing. Phys. Fluids A, 3(9), 2138-2147.

Eidson, T. M., and Erlebacher, G. (1993). Implementation of a fully-balanced periodic tridi-

agonal solver on a parallel distributed memory architecture, (to be submitted foi publication

in Concurrency: Practice and Experience).).

Fasel, H. F. (1976). Investigation of the stability of boundary layers by a finite-difference

model of the Navier-Stokes equations. J. Fluid Mech., 78, 355-383.

Fasel, H. F., Rist, U., and Konzelinann, U. (1990). Numerical investigation of the three-

dimensional development in boundary-layer transition. AIAA J., 28(1), 29-37.

Fischer, P. F., Ho, L.-W., Karniadakis, G. E.. Ronquist, E. M., and Patera, A. T. (1988).

Recent advances in parallel spectral element simulation of unsteady incompressible flows.

Computers and Structures, 30(1-2), 217-231.

Grosch, C. E., and Orszag, S. A. (1977). Numerical solution of problems in unbounded

regions: coordinate transforms. J. Comput. Phys., 25, 273-296.

Henderson, R., and Karniadakis, G. E. (1991). Hybrid spectral-element-low-order methods

for incompressible flows, J. Sci. Comp., 6(2), 79-99.

Herbert, Th., and Bertolotti, F. P. (1987). Stability analysis of nonparallel boundary layers.

Bull. Am. Phys. Soc., 32, 2079.

Jackson, E., She, Z.-S., and Orszag, S. A. (1991). A case study in parallel computing: I.

Homogeneous turbulence on a hypercube, J. Sci. Comp., 6(1), 27-45.

Joslin, R. D., Streett, C. L., and Chang, C.-L. (1992). Validation of three-dimensional

incompressible spatial direct numerical simulation code- a comparison with linear stability

23

and parabolic stability equations theories for bou(ndary-layer transition oni a fiat plate. NASA

TP-3205, 1992.

Joslin, R. D., Streett, C. L., and Chlang, C.-L. (1993a). Spatial DNS of boundary-layer

transition miechanisms: Validation of PSE theory. (accepted for publication in Theor. and

Comp. Fltid Dyn.).

Joslin. R. D. and Streett, C. L. (1993b). The role of stationary crossflow vortices in 1)oandary-

layer transition on swept wings. (subinitted for publication in Phg,,. Fluids A).

MKle ;er, L., and Zang, T. A. (1991). Numerical simulation of transition in wall- bounded

shear flows. Ann. Rev. Fluid Mech., 23, 495-537.

Laurien, E., and Kleiser, L. (1989). Numerical simulation of boundary-layer trai sition and

transition control. J. Fluid Mech., 199, 403-440.

Lele. S. K. (1992). Compact finite difference schenis with spectral-like resolution. J. Co'm-

putt. Phys., 103, 16-42.

Lynch. R. E., Rice. J. R., and Thomas, D. H. (1964). Direct solution of partial difference

equations by tensor product methods. N'im. Math., 6. 185-199.

Malik. M. R. and Li, F., Three-dimensional boundary layer stability and transition. Aerotech

"92. Paper No. 921991, 1992.

Ortega. J. M. and Voigt. R. G. (1988). A bibliograp)hy on parallel and vector numerical

algorithms. ICASE Interim. Report 6.

Otto, .J. C. (1993). Parallel execution of a three-dinensional. clmenmiclly reacting. Navier-

Stokes code (on distributted-inemorv machines. AIAA Paper 98-48807-CP.

Piomnelli, U.. Zang. T. A.. Speziale. C. G.. and Hussaini. MI. Y. (1990). Oil thme large-e(d(dy

sinulation of transitional wall-bounded flows. Phijs. Fluids A. 2(2). 257-265.

24

Rai, NI. M., and Moin, P. (1991a). Direct numerical simulation of transition and turbulence

in a spatially-evolving boundary layer. AIAA Paper No. 91-1607.

Rai, M. M., and Moin, P. (1991b). Direct numerical simulation of turbulent flow using

finite-difference schemes. J. Comput. Phys., 96, 15-53.

Reed, H. L. (1993). Progress in transition modelling: Spatial direct numerical simulations.

AGARD-R-793.

Smith, A. M. 0., and Gamnberoni, N. (1956). Transition, pressure gradients, and stability

theory. Douglas Aircraft Company Report No. ES-26388.

Spalart, P. R. (1989). Direct numerical study of leading-edge contamination. In Fluid

Dynamics of Three-Dimensional Turbulent Shear Flows and Transition, AGARD-CP-438,

5.1-5.13.

Streett, C. L., and Macaraeg, M. G. (1989). Spectral multi-domain for large-scale fluid

dynamic simulations. Int. J. Appl. Numer. Math., 6, 123-140.

Streett, C. L., and Hussaini, M. Y. (1991). A numerical simulation of the appearance of

chaos in finite-length Taylor-Couette flow. Appl. Numer. Math., 7, 41-71.

Van Ingen. J. L. (1956). A suggested semi-empirical method for the calculation of the

boundary-layer transition region. University of Delft Report VTH-74, Department of

Aerospace Engineering, Delft. The Netherlands.

Williamson, J. H. (1980). Low-storage Runge-Kutta schemes. J. Comput. Phys.., 35(1).

48-56.

Zang. T. A.. and Hussaimii. NI. Y. (1987). Numerical simulation of nonlinear interactions in

channel and l)oun(lary-layer tram::ition. Nonlinear Wave Interactions in Fluids. 87, 131-145.

Zang. T. A.. and Hussaini. XI. Y. (1990). Multiple paths to sublharmonic lanuinar breakdown

in a boundary layer. Phys. Rev. Left-. 64. 641-644.

25

Table 1. Operation Counts for the Major Kernels

Kernel Operation count (oc) Normalization count
Soc/nxnyrnz

MAT-MAT 0(nn'n.) O(n2)
FFT O(n.nyn, log 2n..) O(log 2 n,)

TRIDIAG O(nnnn) 0(1)
PENTADIAG O(n.nyn,) 0(1)

Table 2. Major Kernel Executions With Different Data Mappings

Kernel x-mapping y-mapping z-mapping
MAT-MAT global global local

FFT local local global
TRIDIAG global local local

PENTADIAG global local local

Table 3. Illustration of the xor Scheme for Complete Exchanges

node 0 1 2 3 4 5 6 7
steps I

1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

26

Inflw ,, • , Outflow

/-Buffer
II •=• domain

Inf low I •,•Otlw,,

Fig. 1. Computational domain of boundary-layer transition problem.

27

ny

Vnz

1x

fPl

ny
_

1ix

Fig. 2. The z-mapping of n = 8 spanwise grid onto four-processor machine.

28

xl-6

2 X10

_ DNS Buffer
o LST

Domain

0

l~ly 0

-1

U 00

-2 ,I ,I,

300 350 400 450

x/d*

Fig. 3. Amplitude growth with downstream distance for a Tollmien-Schlichting

wave with initial amplitude A' 1 x 106. Reynolds number R6. = 900, and

frequency , 0.0774.

29

80 , I

lI \ \"

60 \ \\

Comp, sec 40 M .~

20 , - -

0 10 20 30 40

n.

5 5n.

4 -a- 16

20 ''*' --.5--- 3

3 ,,,6\3 2
Comm, sec -0\•..-O-64

2 • , •- * - 1 2 8

0 'N\\

0 I I

0 10 20 30 40

n.

Fig. 4. Computational and communication cost with number of processors (np) for

initial implementation of PSDNS, where n.. = 64 and ny = 41.

30

80 --- --- ------

60
Comp, %

40

20

0
5 10 15 20 25 30 35

np

4 -0- Total
/,,' -0- Comm

/ / 0 -A FF1'
/ / /

3/4 -0- Mat-Mat

T/' -*- Tridiag
"" 2X,'/_' -x- PentadiagT 2 0 ;/ .-

111

5 10 15 20 25 30 35

nP

Fig. 5. Computational-cost breakdown and speedup with number of processors

(nlp) for initial implementation of PSDNS, where n, = 64, n. = 41, and n.. = 64.

31

80 1 1 T

//

/,/ /
60 / ,,/

// /
/ /

Comp, sec 40 1" ,/

201
20 -"0
0

0 20 40 60 80

nz

8 -0- Total
// -0- Comm/

6// ,o' -A- FFT
-0- Mat-Mat

4, -*- Tridiag

T ,8 ,,.-x- Pentadiag

2

00 I , I I

0 20 40 60 80

n.

Fig. 6. Computational-cost breakdown and slowdown with spanwise grid (n,) for

initial implementation of PSDNS, where n, = 64, ny = 41, and np = 8.

32

4

3

TIHE (msec

Fig. 7. Computational-cost breakdlown for each processor for initial implemlentation

of PSDNS, where it., 64, ni = 1 and n, =8.

33

15

0 1% 1 It \ ' , ,,

Comp, sec i\ • , It

0

0 10 20 30 40

5, n.
-0-8

4 . -0- 16
4 -A- 32

,, -0-64
Comm, sec

2 ---- -*- 128

0 * I * I ,

0 10 20 30 40

n.

Fig. 8. Computational and communication cost with number of processors (np) for

optimized PSDNS, where n. = 64 and ny = 41.

34

100 - ,

80

60
Comp. %

40 -- _

20

0 I -F -l - -I- -- - -1 -

5 10 15 20 25 30 35

4 i ii,' -0-Total
'0e -0- Comm

SFFT
3 7//:3 //- -mat-mat

'I,"

____ W-* Tridiag
2/ ..- -X- Pentadiag*-. ---

5 10 15 20 25 30 35

np)

Fig. 9. Computational-cost breakdown and speedup with number of processors

(np) for optimized PSDNS, where n, = 64 and ny = 41, and nz = 64.

35

15 i '

/lef

10k

Comp, sec L /
//

5 A

0 ,

0 20 40 60 80

nz

10 -0-Total
-0- Comm8 ,"-A- FFT

/ 0- Mmat-Mat
6 -*- Tridiag

Tn. 8 4 ,.,' -- x- Pentadiag

2
0 , I I , I

0 20 40 60 80

nz

Fig. 10. Computational-cost breakdown and slowdown with spanwise grid (n,) for

optimized PSDNS. where n, = 64, ny = 41, and np=S.

36

4 ,II I I III I II I

4

3 - ----

10n
-- -e-0-8

8 -0- 16

6 -- 32
comp, sec -0-64

4 . . .128

2

o I , I I ,

o 10 20 30 40

Fig. 11. Coiliput ational- cost breakdown for one (top) and four (bottomn) rz y

planles per processor and number of processors (tip) for optimized PSDNS., whlere

= 64 and n6 = 41.

37

20

15 - ,

Comp, sec 1 \ -
I' \

0 10 20 30 40
~ n.

' \b

,, -0- 8
4" -0- 16

\ ",""-&- 32

\ ",

Comm, sec 3 \64
\128

5• l I * I I

0 10 20 30 40

n.
b'

Fig. 12. Computational and communicati(-,n cost with number ý'f processors (np)

for optimized PSDNS, where n., = 128 and n. = 41.

38

100 , , , ,

80

60
Comp, %

40

20

0 X-----'- --' ---- -

15 20 25 30 35

2.5 , -0-Total
-0- Comm

2.0 - FFT
-0- Mat-Mat

T .16s i. 5 ./ ••--Tridiag
/-÷.• ____•-x- Pentadiag•

1.0

0.5 I , I ,

15 20 25 30 35

np

Fig. 13. Computational-cost breakdown and speedup with number of processors

(lip) for optimized PSDNS, where n, = 128, ny = 41, and n. = 64.

39

20 'T7 I I I I '

15 -

Comp, sec 10

5
A- - .---e-."

0 - I '
5 10 15 20 25 30 35

n.

4 ' ' , '" , ,, -o- Total
/ F

/ -0- Comm
,/,/ // -- A-- FFT

3-0- Mat-Mat
S./'/'// " -*-Tridiag

2 -. .- " -x- Pentadiag

5 10 15 20 25 30 35

n.

Fig. 14. Computational-cost breakdown and speedup with spanwise grid (n,) for

optimized PSDNS, where n, = 128, ny = 41, and np = 8.

40

8 " I

6 ------- - ------- --

Comp, sec 4

2

0111. -.e

5 10 15 20 25 30 35

n.

20 i , 1 -0-Total
-0- Comm

15 ----------.... -,&- FFT

-0- Mat-Mat
1 -*- Tridiag

Comp, sec 10
-x- Pentadiag

5

0 * I I

0 5 10 15 20

Fig. 15. Coxnputational-cost breakdown for one (top) and four (bottom) r - y plains

per processor and number of processors for optimized PSDNS, where n. = 128 and

n. = 41.

41

10

8 -

Comp, sec 6
4

0
60 80 100 120 140

nx

2.0 -0- Total
-0- Comm

1.8 -I&- FFT
-0- Mat-Mat

1.6 -*-- Tridiag
T,=.4 1. 4 -x- Pentadiag

1.2
,r_,

1.0 0 I I

60 80 100 120 140

nx

Fig. 16. Computational-cost breakdown and slowdown with streamwise grid refine-

ment for optimized PSDNS, where ny = 41, n, = 32, and np = 16.

42

15

10--

Comp, sec

3.~---------====-----2-...---
0 ------------

40 50 60 70 80 90

4 -0- Total
-0- Comm

/

3/-0- Mat-Mat
T/-*- Tridiag

2,- -x- Pentadiag

///

40 50 60 70 80 90

Fig. 17. Computational-cost breakdown and slowdown with streamwise grid refine-

ment for optimized PSDNS, where n, = 64, nz = 32, and np = 16.

43

REPORT DOCUMENTATION PAGE OForm Appro0ved

I OMBS NO 0704-0188
PuOi'c e•oonec Ouroen for tnh, cc en•on of ntormhauon ý, .ft-tateo to a.e,.qe ! oou , e o•orse nc;udeng tne tue for revei•no •sstuctmor, riearc ng ex, t ne oata wource,
qatlner~nq and I 4,ntaining the data needed. art compmeting adn re.,e-nq Ir o l nof nfo-iat On Send Conle'ItS re.?ardrn; In,% o..ren es'rnate 0, an.)tne' asoe4! CI ,
cOirection h0n~rnt~ . dC h9n srmqgett ons to, reoacang tn o.ro"en -.Arf rtr la~auteC %eS ct ;nDec'owae for hntorr-n,Ic. 3oe'a c-,~s d re~le"'
J#_ "r,, Su'te 1204 A hngtOn, VA 222024302. and to the 0"ýe eo Maýnqernent a•d dudget Paperwor, ReLdmCOn ProjeCt (C704)I3SS)V iVnw.ngton 2.C 2-5C3

1. AGENCY USE ONLY (Leave bWank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1993 CoaReDort
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

PARALLEL SPATIAL DIRECT NUMERICAL SIMULATIONS ON THE
INTEL IPSC/860 HYPERCUBE C NASI-19480

6. AUTHOR(S) WU 505-90-52-01

Ronald D. Joslin
Moha-nmad Zubair

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering
Mail Stop 132C, NASA Langley Research Center ICASE Report No. 93-53
Hampton, VA 23681-0001

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-191513

Hampton, VA 23681-0001 ICASE Report No. 93-53

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to Journal of
Final Report Scientific Computing

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel
iPSC/860 hypercube is documented. The direct numerical simulation approach is used to compute spatially evolving distur-
bances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on
the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach
can effectively be parallelized on a distributed-memory parallel machine. By increasing the number of processors, nearly ideal
linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine-
dependent library) routines. This slower than linear speedup results because the FFT routine dominates the computational
cost and because the routine indicates less than ideal speedups. However, with the machine-dependent routines, the total
computational cost decreases by a factor of 4 to 5 compared with standard Fortran routines. The computational cost increases
linearly with spanwise, wall-normal, and streamwise grid refinements. The hypercube with 32 processors was estimated to
require approximately twice the amnount of Cray supercomputer single processor time to complete a comparable simulation;
however, it is estimated that a subgrid-scale model, which reduces the required number of grid points and becomes a large-eddy
simulation (PSLES), would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This
PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.

14. SUBJECT TERMS 15. NUMBER OF PAGES
spatial direct numerical simulations; parallel computing 45

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified I

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Pre•(Crbed bV ANSI Sid Z39-18

* U.S. GOVERNMENT rRINTING omcE: IM9 - 725-O64/SICSS 291-102

