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1 Introduction x
®
Background
The personnel of the Geomechanics Division, Structures Laboratory, U.S. ®

Army Engineer Waterways Experiment Station (WES) are responsible for

research and development in the general field of soil and rock dynamics. Our

primary interest is in the response of earth and earth-structure systems

subjected to intense transient (blast-type) loadings. An analysis of these

systems is typically conducted in three different phases. First, laboratory tests °
are conducted on the geologic materials of interest in order to develop a data

base of composition and mechanical properties; then, based upon this data

base, a set of recommended material properties is developed for the consti-

tutive modelers. In the second phase, the modelers fit one or more consti-

tutive models to the recommended material properties. Last, finite element

(FE) or finite difference codes are used by the ground shock calculators to o ©
analyze the responses of these systems.

The Geornechanics Division is frequently asked to conduct mechanical
property investigations. In performing these investigations, we have tested
and characterized many types of materials. These materials generally fall into PY
the following groups: moist and fully saturated cohesionless soils, desert
alluviums, natural and remolded clays, clay shales, soil and rock "matching”
grouts, and a variety of competent rocks. As basing and attack scenarios of
the Department of Defense become more elaborate, and as the analysis tech-
niques of modelers and ground shock calculators become more refined,
greater demands are placed on the engineer who is asked to perform and o
analyze the laboratory mechanical property tests in order to provide recom-
mended material properties. Modelers and calculators are now requesting
total-stress mechanical p:.ci., data at stress levels of several kilobars.
Complicated stress- and strain-path tests are frequently included in their lists
of desired material response tests. Greater emphasis in effective-stress Y
material properties is now evident in the ground shock community.

Due t0 the unconventional nature of many of the requested tests, the
engineer performing and analyzing the tests is sometimes uncertain about
existing laboratory equipment, i.c., whether it restricts the types of tests that
can be conducted. The engineer may question the measured laboratory L
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responses; are they theoretically realistic? An engineer may have specific
questions such as: (a) what effect will small amounts of air-filled porosity
have on material properties, (b) what loading rates are appropriate for con-
ducting truly drained tests or undrained tests with meaningful pore pressure
measurements, and (c) how does one calculate effective stresses at kilobar
stress levels for rock-like materials? In some situations, an engineer respon-
sible for recommending material properties may only have low pressure (less
than a kilobar) total-stress and effective-stress data from which to extrapolate
muitikilobar material responses.

An engineer would have a tremendous advantage if a numerical tool were
available with which to verify laboratory test results or to predict unavailable
laboratory test data. The appropriate numerical tool should give an engineer
the capability to calculate both total- and effective-stress material responses.
This numerical tool would:

1. calculate strains, total and effective stresses, and pore fluid pressures
for fully- and partially-saturated porous media,

2. calculate the time dependent flow of pore fluids in porous media,

3. model nonlinear irreversible stress-strain behavior, including coupled
shear-induced volume change, and

4. simulate the effect of nonlinear pore fluid compressibility and the
contribution of the compressibility of the grain solids for stresses up to
several kilobars.

The FE code JAM incorporates all of the above features. The code simu-
lates quasi-static, axisymmetric, laboratory mechanical property tests, i.c., the
laboratory tests are analyzed as boundary value problenis. Features 1 and 2
were incorporated into the code using modified formulations of Biot's coupled
theory as advanced by investigators such as Zienkiewicz (19852) and Lewis
and Schrefler (1987). An elastic-plastic strain-hardening cap model calculates
the time-independent skeletal responses of the porous solids. This enables the
code to model nonlinear irreversible stress-strain behavior and shear-induced
volume changes. In order to accurately model the total- and effective-stress
responses of multikilobar lsboratory tests, fluid and solid compicsiibilities
were incorporated into the code. Following the concept used by Chanp and
Duncan (1983), partially-saturated materials were simulated with a “hornoge-
nized” compressibie pore fluid.

Approach

To develop the FE code, four major tasks were completed. They were:
1) a cap model was incorporated into an existing iwo-dimensional finite

element code PLAST and numerical experiments were conducted to
verify its implementation;
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2) amodified version of Biot’s coupled theory was implemented into the
code produced in step 1 above;

3) adata base of drained and undrained mechanical properties was ob-
tained for a limestone with a porosity of 13.5%; it included me:hani-
cal properties from tests conducted at stress levels of up to 6 kilobars
and recommended properties;

4) using the recommended properties from step 3, a cap model was fit to
the drained properties; the undrained stress-strain and pore pressure
responses of the material were calculated with the FE code and then
compared to the undrained material responses.

Purpose and Scope

The purpose of this report is to document the features and algorithms
implemented into the FE code JAM. Chapter 2 describes the FE model im-
plemented into JAM and briefly documents the constitutive models available in
the code. The essential features of the cap model are reviewed and the steps
required to implement the cap model into the FE code JAM are summarized
in Chapter 3. The equations of state for air, water, and grain solids are docu-
mented in Crapter 4, and the equations for compressibility of an air-water
mixture are developed. Chapter S describes features in the FE program not
introduced in earlier chapters and presents solutions from several verification
problems as proof that the program works correctly. Numerical simulations
of limestone behavior under drained and undrained boundary conditions are
presented in Chapter 6. The final chapter summarizes the results of this
rescarch effort.

Chapter 1 Inroduction

) ® ® 9 ° °




2 Finite Element Model

introduction

This chapter describes the FE model implemented into JAM and briefly
documents the constitutive models available in the code. The work of Biot
and other investigators is described, followed by a discussion of the equations
implemented by Lewis and Schrefler and modifications that must be made to
those equations. In addition, the equations are derived for the residuals.
Finally, the five constitutive models available in JAM for modelling skeletal
behavior are described.

Background

In 1941, Biot published his three-dimensional theory of consolidation for
static loading. In his theory, Biot coupled the solution of the equations of
pore fluid diffusion with the equations of deformation for the porous solids.
He was thus able to calculate time-dependent displacements, strains, pore fluid
pressures, and effective stresses. Biot made the following assumptions in his
formulation: (1) the material was isotropic, (2) the material was linear elastic,
(3) small strains were applicable, (4) the pore water was incompressible, (5)
the pore water could contain air bubbles, and (6) flow of the pore water obey-
ed Darcy's Law. In subsequent papers, Biot extended his theory to include
anisotropic materials, viscoelastic materials, and dynamic processes (Biot
1955, 1962).

With the rapid development of digital computers and advances in numerical
techniques such as the finite element method, many investigators expanded
Biot's theory in attempts to model more realistic and more complex probms.
Sandhu and Wilson (1969) were the first to use finite “lement techniques with
Biot’s original formulation to solve initial boundary value problems. They
applied variational principles to the field equations of fluid flow in a fully
saturated porous elastic continuum, and then used the finite element method to
numerically solve the resulting coupled equations.

Chapter 2 Firwte Elen.amt Mode!




Ghaboussi and Wilson (1972, 1973) developed a variational formulation of
Biot’s dynamic field equations for saturated porous elastic solids. Their finite
element formulation allowed for the compressibilities of both the fluid and
solid phases. Their methods were applicable to dynamic soil-structure inter-
action and wave propagation problems in saturated geologic media.

Zienkiewicz and his colleagues have written extensively about their use of
modified versions of Biot’s formulation to solve consolidation, liquefaction,
and wave propagation problems in fluid saturated porous materials (Simon et
al. 1986a and 1986b: Zienkiewicz 1985a; Zienkiewicz et al. 1980;
Zienkiewicz and Shiomi 1984). They have incorporated several different non-
linear constitutive models into their numerical codes. For example, Lewis er
al. (1976), used a hyperbolic constitutive relationship to model the skeletal
response of the solids. They incorporated fluid and solid compressibilities,
creep, and void -atio dependent permeability into their code. Zienkiewicz and
his colleagues have also demonstrated a capability to solve dynamic problems
such as ground motions due to earthquakes. For example, Zienkiewicz ef al.
(1982), modified the Critical State model to include a Coulomb-type failure
surface and incorporated a "cumulative densification” feature into the consti-
tutive model that allowed pore fluid pressures to increase with increasing
numbers of load-unload cycles. They then demonstrated the utility of their
approach when they used their code to approximate the earthquake induced
displacements and pore pressures within the Lower San Fernando Dam.

Other investigators have also expanded Biot’s formulation with nonlinear
constitutive models. Oka er al. (1986) developed an elasto-viscoplastic consti-
tutive model for clay and used Biot's theory to study the two-dimensional con-
solidation response of sensitive and aged clay deposits. They demonstrated
the capability of their code to simulate the consolidation response of clay
deposits during ihe construction phase of embankments. Chang and Duncan
(1983) used a modified Cam Clay constitutive model in their analyses of earth
structures constructed of compacted, partially saturated clay soils. They also
applied the concept of a "homogenized pore fluid” to Biot’s formulation in
order to model partially saturated clay soils. With this implementation, they
were able to treat partially saturated soils as two-phase materials, i.e., solids
and compressible pore fluid. instead of using a more theoretically rigorous
approach involving three-phase materials.

Lewis and Schrefler (1987) extended Biot’s formulation to include the
governing equations for single phase, multiphase, and saturated-unsaturated
flow in a deforming porous solid. They discussed finite element procedures
for both the space and \ime discretization aspects of consolidation problems.
They also presented linear elastic and nonlinear constitutive relationships; the
nonlinear models included the hyperbolic model and incremental elastic-plastic
models such as the Critical State models.
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Finite Element Formulation

Effective stresses and strains

|
°

For a nonlinear material not susceptible to creep strains, a general stress- o
strain relation can be written as x
. g
do;;" = Dy (dfu . d‘-‘u) 21
= Dyjyy deyy’ e
where o;; " is the matrix of effective stresses, D,;, is the tangential stiffness
matrix or constitutive matrix, de, is the matrix of total strains, de§; is a
matrix of strains due to the compression of the grains by the pore fluid and o
dey,” is a matrix of effective strains. The matrix de§, is evaluated as:
g drx
aey; = - — & 2.2
ki 3%, ki
L
where K, is the bulk modulus of the grains, = is the pore fluid pressure, §,, is
the Kronecker delta defined by
6--={=l if i=j
Yy =0 if i#j
o @
and an engineering mechanics sign convention is used in which compression is
negative.
The purpose of the term de§, is illustrated in the following example. If a [
porous specimen surrounded by a pervious membrane was placed into a pres-
sure vessel and a pressure of several hundred megapascals was applied, a
volume decrease would be measured in the specimen due to the compression
of the grains. However, since the total strain de, is equal to the volume
strain due to grain compressibility, i.e., de,, = def,. :he effective strains and e
therefore the effective stresses within the specimen are zero. With the term
de},; included in the general stress-strain relation, effective stiesses can
simply be calculated as:
do,, " =do, + xé, 23 [
Under drained boundary conditions, the total and effective strains are equal,
and the total and effective stresses are equal.
o
Chapter 2 Fwwie Element Mode!
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o
In Equation 2.3, no factor need be applied to the pore pressure term to
account for grain compressibility, which was a method proposed by Skempton
(1960). After appropriate manipulation, the above equations will yield
Skempton’s equation ®
Ap'=Ap—[l—_K; Ax 24
K,
where p is pressure, K and K ¢ are the bulk modulus of the skeleton and grain .
solids, respectively.
Finite slement equations
L
The general equations developed from the spacial discretization of the
equilibrium and continuity equations have been documented by a large number
of investigators (Lewis and Schrefler 1987; Zienkiewicz 1985a). Lewis and
Schrefler developed the following equations:
(Kla - [L]1% -R =0 25 e
and
[Hlx - (S1% - [L)Ti - Q=0 £
®
where [X] is the tangent stiffness matrix of the solid phase,
K- [ BTD Bdn 2.7
g
°
[L) is the coupling matrix between the solid and fluid phases,
L- I BTmNdQ - I B'D, " Ndn 28
Q Q 3Kl ®
[H] is the permeability matrix of the porous skeleton,
H- vmT X vNaa 2.9
0 H ()
[S] is the compressibility matnix,
S - I NTs N d0 2.10 o
0
7
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in which the scalar s is evaluated as

Ry  _m™Dm 2.11

s = sk
e Ky 3k,)°

R is the external force vector,

R = JNTdbdﬂ + I NTdtdr 2.12
1] r

Q is the vector of boundary flows,

Q- I NTqdr + I (VT X vognda 2.13
r 0 *

and the superimposed dot indicates a time derivative. In the above equations,

it is the vector of displacement increments, # is the vector of pore pressure

increments, D 7 is the elastic-plastic constitutive matrix, m is the matrix

equivalent of the Kronecker delta, B is the strain-displacement matrix, N is the

matrix of displacement shape functions, N is the matrix of pore pressure

shape functions, b is a vector of body forces,  is a vector of surface trac-
tions, & is the absolute permeability matrix of the material, u is the dynamic
viscosity of the pore fluid, K P and X ¢ are the bulk modulus of the grain
solids and pore fluid, respectively, ¢ is the porosity of the material, q is the
vector of applied fluid flux, and p, g and A are fluid density, gravity, and
elevation head, respectively.

Lewis and Schrefler (1987) describe in detail the components that contrib-
ute to the rate of fluid accumulation. However, one of the terms in their
formulation is misieading if not incorrect. The following discussion expands
on their analysis and then shows why their formulation requires modification.
For the material and conditions of interest, Lewis and Schrefler specify that
four volumetric strain components must be evaluated; they are the volume

strain of the porous matrix ¢, , the volume strains of the grain solids ef and

the pore fluid ¢/, and a component of solid volume strain ¢ ¢ due to the
applied effective stresses. To simplify the discussion of fluid accumulation,
consider the following test conditions. A fully saturated porous material is
contained in a sample chamber, which has frictionless sides, and is loaded by
a frictionless piston with area A. A flow meter attached to the piston indicates
the direction of fluid flow into (positive flow) or out of (negative flow) the
sample. The top surface of the piston is loaded by a chamber pressure P, and
a second fluid pressure P, is applied through the flow meter to the pore fluid
within the sample. The fluid pressures P, and P, control the total and effec-
tive stresses within the sample. Recall that for a porous material with a
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volume of unity, the volume of the voids is n, and the volume of the solids is
I-n.

If P, is increased and P, held constant, the effective stress in the specimen
will increase, the material will compress, and pore fluid will flow out of the
specimen. Since the specimen is fully saturated with fluid, the rate of change
in fluid accumulation is equal to the volumetric strain of the porous matrix
and may be written as:

e, By B 2.14

If P, and P, are increased at the same rate, the effective stress within the
specimen will not change. However, both the grain solids and the pore fluid
will compress due to the change in pore fluid pressure. For these conditions,
fluid will flow into the speciinen. Let us evaluate the solid and fluid compo-
nents separately. The volw .. strain in the solids due to an applied pressure is
expressed as:

TR LA 2.15
vV, K

where K, is the bulk modulus of the grains and V is the volume of the sol-
ids. From this equation, we can express the volume change within the unit
volume due to the compression of the grains as:

-dw
4

del = (1-n)de, = (1-n) 2.16

where dP has been replaced by the pore fluid pressure dr.

In the same manner, the volume change within the unit volume due to the
compression of the pore fluid is written as:

del = B X 217

where K is the bulk modulus of the pore fluid.

Lewis and Schrefler also evaluate the component of volume strain due to
the compression of the grains caused by the increase in effective stress. A
similar analysis was developed by Bishop (1973). Refer again to the test
configuration and the example in which P, was increased and P, held
constani. For a statistically random distribution of pore space within the
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specimen, the area of solids (4,) on any plane through the specimen will be
A, =(1-n)A 2.18

where n is the porosity of the specimen as previously defined. If do;;” is the
average normal effective stress on any surface, then do;;" / (1 - n) is the

average normal stress in the solids. Using the concept implied by Equa- v
tion 2.15, the pressure applied to the solids can be expressed as:
e Il 2.19
3(1-n) Y 3(1-nm)
which when substituted into Equation 2.16 gives:
de, =3V . _dv__ _dom 2.20
V. (1-mV 3K, (1-n)
The component of volume strain due to the applied effective stresses for the
unit volume is then:
gese - 4V d0u 2.21
14 3K,
The components of the volume strain are now:
ey e 35 3t o) 222 ~
at at a o o
and the expressions for each component when substituted gives:
total matri o
depe O 1 %oy |1-n ,onlor 223
ot ot 3K, o K, K, | o
The term in dispute is the component of volume strain due to the applied
effective stresses. Grain compression due to changes in effective pressure is
already incorporated into all skeletal constitutive models by default. In an
analysis of drained test data, the skeletal strains are not decoupled from the
grain strains, and the sum of the two is always measured by strain gauges or
deformeters. Therefore, both components are included when a constitutive
model is fit to drained hydrostatic loading data. A similar argument can be
made by examining Equation 2.23. During a drained test, Equation 2.23
would reduce to the following
Bew By, 1 Sow 2.24
or a Y 3K, o
Chapter 2 Fiute Element Modei
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Clearly, this is in error; the only strains included in the above expression
should be the skeletal strains. Therefore, one should only include grain com-
pression due to changing pore pressures in the final formulation. The neces-
sary modifications were made to Equations 2.8 and 2.11, which are rewritten
below PY
- &
L- j BTmNan 225 "
2
®
and
5 ==l 2.26
K, K,
[ ]
Equations for residual forces
Although numerous papers pertaining to the FE equations governing pore
fluid flow in a deforming porous solid are available, none outline the equa- °
tions required to calculate the residual forces. In this section, these equations
are developed for a nonlinear incremental finite clement program that employs
a modified Newton-Raphson solution scheme.
The time integration of Equations 2.5 and 2.6 is performed using the fol-
lowing approximation: ® o
L“A'xdt=aAt”A’x*(l - a)At'y 227
for0 < a < 1. From Equation 2.27, the following are developed: °
vanry . ¥ - ' 2.28
At
and
@
ealdly L (Ja) 'y ¢ a "ty 2.29
[
@
1
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Table 2.1 gives the most common difference schemes adopted by the selec-
tion of a given value of «. Equation 2.5 may be written for a given time

Table 2.1.
Time Integration Parameters

0 Forward or Euler Conditionally
% Crank-Nicolson Unconditionally
% Galerkin Unconditionally
1 Backward Conditionally
t+ oAt as:
fradrp g 1vadly o fradipp g icadty . tralp 2.30

Equations 2.28 and 2.29 are introduced into Equation 2.30 to produce the
following

t+A2 ! t+A2 !

1+ A2 U-u 1+ rT- %
[K] e | = L) o & Y
At 2.31
I‘AIR_ IR
Y
Multiplying by Ar and collecting terms, one obtains
1o A2 1+ A2 ! 1+ A2 1+ A2 !
K u- ‘up- L -
[K)f } (L) "4 - 'x) Sis

= I‘AIR__ 'R

In general, Equation 2.32 represents nonlinear behavior. The relationship
may be linearized with the following expressions:

Y- (T R RV SR TES RS () 2.33

1eA1L(1) | e8I (o)) |, g o(i) 2.34

where i represents the current iteration, and the initial conditions are

1081, (0) oty and "*4(0) o’y This linearization can be used as the
first step in a Newton-Raphson iteration (Bathe 1982). If Equations 2.33
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and 2.34 are substituted into Equation 2.32 and the terms for iterations (i-1)
and (0) are brought to the right hand side of the equation, then one obtains:

“N[Klbu(i) - lfAl[le'(i) = “NR - 'R

_ 1+A1[K]{I+Atu(i—l) _ loAt“(O)} 2.35
A l*Al[L]{HAl'(i-l) _ I+Al'(0)}

Recognizing that
IR = “N[K] I*Nu(O) - HN[L] I+N'(0) 2.36

Equation 2.35 may be written in terms of the incremental or accumulative
stresses and pore pressures as

I+N[K]6“(i) _ l*Al[let(i) -
2.37

1eAp _ eMp(Gi-1) | A eli-1)

where {*AFG-D) . IVBT 1+815(-1) gy and
A o (D) 18 (-1,

Equation 2.37 is one of the two equations required to solve for pore fluid flow
in a deforming nonlinear porous solid. The second equation is developed
from Equation 2.6 and is written at time t+aAf as:

[H] IOGN' _ [SJIOGAI* - [L]T t+adt . _ IOGNQ . 2.38

Equations 2.28 and 2.29 are introduced into Equation 2.38 to produce

(Y. VS |
[HH1-a)'s + « "%} - [S) ] oo T
At
2.39
(XYY} !
_ L T Uu- u
(L] T

=(l-a)'Q «a'"%Q .

1
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Collecting terms and multiplying by Af one obtains:
{-151 + aAe[H]} ""4x - (LT "4 - 'u)

2.40
+ {[81 + (1-a)At[H)}'x = P
where P = At{(1-a) ‘Q + « '*2'Q). If the following equations
§=-[S] + abt[H] 241
and . .
H=1[S8]+(l-a)At[H] = At[H] - § 243
are substituted into Equation 2.40 for simplification, then one obtains
2.43

Sy (LT "¥u=P-H'x -[L]T 'u

Equation 2.43 must now be formulated for general nonlinear behavior
using the same linearization process applied to Equation 2.32, i.e., Equa-
tions 2.33 and 2.34 must be substituted. This operation produces

l'NS{I#Nr(i-l) o b‘l’(')} - l'Al[L]T{IONu(i-l) 5 614(')}

) HAIP . nA:f{ NAlr(O) - HA:[L]T HAlu(O) ) 2.44

Collecting the éu and éx terms on the left hand side of the equation, one gets

I'Algb’(i) B "N[L]Tbu(i) 2 nA:P - I'N}"{I'Al’(())
245

- rarg e -y I'N[L]T{I'Alu(i“l) - nAJu(O)} ]

Equations 2.41 and 2.42 can be used to eliminate the terms A and $ from the
right hand side of Equation 2.45 to produce

!'A!S&t(l) . nA:[L]Tbu(:') - !'AJP
2.46

~ 1oArgy to A8t _(0) _ 12 AQ1ps(i-1) 1+Arpqts-1)
Ar H T G + M

where IONGU-U . { - l'AllS](l-l) . aAl"A'lH]("”} l'AlAr(l*l)‘

I'NM(I'” & I'N[L]T(l'l) l'AlAu(l'l) .
"A'At("” = e -l | :oAl,,(O)

1)

:-A:Au(:-l) « farucl) !°Al“(0)

]

l'A’Au(O) - 0 W ,'A'Af((” - 0 )
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Equations 2.37 and 2.46 are written in matrix form for increment £+ 4 as:

K - L 6 ul® R - FU-1 , cli-1 ®
LT -S+aAtH ||s2® P - At[H]x® - Gi-D 4 pgG-D
247
This is the system of equations that must be solved to calculate displacements )

and pore fluid pressures in a deforming porous solid.

Constitutive Models

Four of the five constitutive models available in the FE code JAM were

deve.oped by Owen and Hinton (1980). These models were implemented by

Owen and Hinton in the FE code PLAST, which was the original FE code on

which JAM was buiit. Each of the four models were implemented as elastic-

plastic models with linear strain hardening, and each has a different yield ®
criteria. The four models include the Tresca and von Mises criteria, which |
are suitable for metal plasticity, and the Coulomb and Drucker-Prager criteria, |
which are more suitable for the simulation of soil, rock, and concrete. |

The yield stresses in both the Tresca and von Mises criteria are indepen- |
dent of pressure, which makes these models unsuitable for simulating the pres- e o
sure dependent material behavior exhibited by soil, rock and concrete. In
contrast, yield stresses in the Coulomb and Drucker-Prager criteria are pres-
sure dependent. For more information on these models, the reader should
refer to Chapter 7 in Owen and Hinton (1980).

An elastic-plastic strain-hardening cap model was implemented into JAM 10 ¢
calculate the time-independent skeletal response of the porous solids. The cap
model enables the FE code to model nonlinear irreversible stress-strain behav-
ior and shear-induced volume changes. Chapter 3 contains extensive docu- |
mentation on the cap mcdel. |
° :

Element implemented into JAM

A new clement was implemented into JAM to calculate both the displace- _
ment and pore fluid pressures. JAM uses an eight-node isoparametric element e |
with 16 displacement and four pore fluid degrees of freedom. Similar ele-
ments were used by Lewis and Schrefler (1987), Simon ef al. (1986a; 1986b),
Zienkiewicz (1985a), Zienkiewicz ef al. (1980), and Zienkiewicz and Shiomi
| (1984). Four Gauss integration points are utilized in each element.

15
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Summary

In this chapter, the work of Biot and other investigators was bricfly de-
scribed, followed by a discussion of the modified Biot equations implemented
by Lewis and Schrefler and modifications that were made to those equations.
In addition, equations were derived for the residual forces. Finally, the five
constitutive models available in JAM and the element implemented into JAM
were described.
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3 The Cap Model and Its 5
Implementation

Introduction °

The "cap model falls within the framework of the classical incremental
theory of work-har'ening plasticity for materials that have time- and temper-
ature-independent properties” (Chen and Baladi 1985). When modelling geo-
logic materia!; subjected to stresses ranging from one to several hundred ®
megapascals, the cap model has several desirable features. Of primary
importance is its ability to model volumetric hysteresis through the use of a
strain-hardening yield surface or cap.

In this chapter, the essential features of the cap model are reviewed, and
the steps required to implement the cap model into the finite element code o o
JAM are summarized. After a brief evaluation of the loading function and
flow rule, the incremental elastic-plastic stress-strain relations are outlined. In
addition, the cap model implemented into JAM is described, and the equations
are developed for the elastic-plastic constitutive mawrix and the plastic
hardening modulus. Finally, the numerical implementation of the cap model ®
itself is described. The reader should note that an engineering mechanics sign
convention is used in which compression is negative.

Background .

The cap model has been used by researchers in the ground shock commu-
nity for approximately 20 years to simulate the responses of a wide variety of
geologic materials. It is "predicated on the fact that the volumetric hysteresis
exhibited by many geologic materials can also be described by a plasticity

model, if the model is based on a hardening yield surface which includes con- J
ditions of hydrostatic stress” (Sandler et al. 1976). The model was first
described in the open literature by DiMaggio and Sandler (1971). The
FORTRAN source code for the model was published by Sandler and Rubin
(1979).
®
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As stated above, the cap model has several desirable features. Of primary
importance is its ability to model volumetric hysteresis through the use of a
strain-hardening yield surface or cap. The cap model may also be formulated
with a nonlinear failure surface, with linear or nonlinear elastic moduli, or as
a function of the third stress invariant. With the appropriate selection of
material parameters, it can be used as a linear elastic or linear elastic-perfectly
plastic material model. Sandler and Rubin (1979) demonstrated notable fore-
sight with their use of function statements within the model, which allow sub-
stantial changes to be made to the cap model’s potential functions with little
programming effort.

Modifications and expansions of the original mode! were made by several
researchers. Effective-stress versions of the cap model are reported in
Baladi (1979), Baladi and Akers (1981), and Baladi and Rohani (1977, 1978,
1979). A transverse-isotropic cap was developed by Baladi (1978) and an
elastic-viscoplastic cap model by Baladi and Rohani (1982). Rubin and
Sandler (1977) developed a high-pressure cap model for ground shock calcu-
lations due to subsurface explosions. Baladi (1986) developed a "complex”
strain~Jependent cap model, which required 39 model parameters, for ground
shock calculations of a dry cemented sand. In addition, several versions of
the cap model are described in the text by Chen and Baladi (1985).

In formulating the cap model, DiMaggio and Sandler (1971) complied with
the constraints imposed by Drucker’s stability postulate. Drucker’s stability
postulate is sufficient, although not necessary, to satisfy all thermodynamic
and continuity requirements for continuum models (Sandler et al. 1976).
Satisfying Drucker’s stability postulate insures uniqueness, continuity, and
stability of a solution and provides a2 mathematical problem that is properly
posed. Rubin and Sandler (1977) state that "...the numerical solution to a
properly posed problem can proceed without the fear that the results will be
strongly dependent on errors of approximation of initial and boundary condi-
tions, round off error, etc.” Drucker (1951) defines a work-hardening mate-
rial as one that remains in equilibrium under an added set of stresses applied
by an external agency. It also means that "(a) positive work is done by the
externs! agency during the application of the added set of stresses and (b) the
ne1 work performed by the external agency cver the cycle of application and
removal is positive if plastic deformation has occurred in the cycle”

(Drucker 1951). Drucker (1950) states these two conditions in a mathematical
formal as

do, de, >0 and do, dej 20

The first statemnent constrains a model such thai strain-softening may not
occur. The second statement implies (a) the loading function or yield surface
must be convex and (b) the plastic strain increment vector must be normal to
the vield surtace, which means that an associated flow rule must be used.
These are the constraints imposed by Drucker’s stability postulate.
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Loading Functions and Flow Rule
Drucker’s criteria for stability permits considerable flexibility in the func-
tional forms of the loading function f. Since Drucker’s stability postulate o
requires the yield surface and plastic potential surface to coincide, the loading
function f implicitly represents both the yield and potential surfaces. For a o
perfectly plastic material, a general form of the loading function may be writ-
ten as
and as
fo;,k) =0 32
®
for a strain- or work-hardening material, where « is a hardening parameter
that acts as an "..internal state variable that measures hardening as a function
of the history of plastic volumetric strain” (Sandler and Rubin 1979). For
isotropic materials, the loading function may be expressed in terms of stress
invariants, e.g.,
L
fU hp o) =0 =
where J; = 0,, = the trace of the stress tensor and
Jp = %s;s;; = the second invariant of the deviatoric stress tensor. = o
This is the form of the loading function used in most versions of the cap
model. The loading function is assumed to be isotropic and is comprised of
two surfaces, an ultimate failure envelope and a strain-hardening surface or
cap. The failure envelope, which is fixed in space and symmetric about the
hydrostatic axis, limits the maximum shear stresses in the material and is ex- ®
pressed as
f=hiyfhp )= {hp - QU =0 A
The cap, which moves as plastic deformations occur, is represented as .
f=HU Ly )=\l - FU w0 =0 =5
The hardening parameter « is gencrally taken to be a function of the plastic ®
volume strain (Chen and Baladi 1985)
®
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x = g (ehy) b

Equation 3.6 allows the cap to expand and contract. By allowing the cap to
contract, one can limit the amount of dilation that a material may develop
when its stress path moves along the failure envelope h. This form of the
hardening parameter is typically used for soil-like materials that do not exhibit
significant dilation during failure. For rock-like materials, the hardening
parameter may be written as

x = g[8 )ma] 37

In this form, the cap is only permitted to expand, thus allowing a material to
dilate while its stress path moves along the failure envelope, i.c., when

h = 0. Both Equations 3.6 and 3.7 produce hysteresis during an imposed
hydrostatic load-unload cycle /3aladi and Akers 1981).

The plastic loading criteria for the loading fuiction f are given by

af > 0 loading . 38
=L da,-j = 0 neutral loading
do;; < 0 unloading

(Baladi and Akers 1981). These criteria imply that during loading from a
point on a given yield surface a stress increment tensor do j (when viewed as
a vector) will point outward (Rohani 1977). Plastic strains will only occur
under this condition. During unloading, the stress vector points inward, and
the material will behave elastically. Neutral loading occurs when the stress
vector is tangent to the yield surface. During neutral loading, no plastic
strains are produced in the case of a work-hardening material (Rohani 1977).
This is referred to as the “continuity condition®, and its satisfaction leads to
the coincidence of elastic and plastic constitutive equations (Chen and

Baladi 1985).

Drucker (1951) has shown that the plastic strain increment tensor for a
work-hardening material may be written as

dxr"f it f+0and 2L do, >0
dtp - olJ aolj 39
y . d
0 1f[<0.or[=0md.a.;f_dauso

Y

which is identical to the expression used for elastic-perfectly plastic materials.
The term d\ is a positive factor of proportionality that is nonzero only when
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plastic deformations occur (Baladi and Akers 1981). For the cap model, the
loading function f may take the form of either Equation 3.4 or 3.5.

Deiivation of Incremental Elastic-Plastic Stress-
Strain Relations

The basic premise in the formulation of the cap model and all elastic-plas-
tic constitutive models is that certain materials are capable of undergoing
small plastic (permanent) strains as well as small elastic (recoverable) strains
during each loading increment (Baladi and Akers 1981). This may be ex-
pressed mathematically as

délj = dé; + d@Z 3.10

where de jj = components of the total strain increment tensor,
de‘;j = components of the elastic strain increment tensor, and

def; = components of the plastic strain increment tensor.

This equation simple states that the total strain increment is equal to the sum
of the elastic and plastic strain increments. In its most general form, the
elastic strain increment tensor may be expressed as

e
de;; = C, iy doy —

where C, ;,(0,,) = the material response function, which may be 2
function of stress. For isotropic materials, the elastic strain increment tensor
may be expressed as

dJ. ds,
;- - . Wy 3 Y 3‘2

“ 5%

where s, = ¢, - (J;/3)8, = the deviatoric stress tensor,

8,, = the Kronecker delua, and

K and G are the elastic bulk and shear moduli, respectively.
The elastic bulk and shear moduli may be constants or functions of stress or
strain invariants, ¢.g..

G+ GtJy.Jyp.J5p)

where Jy, = s, 5,5, = the third invanant of the deviatoric stress
tensor.

1
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Chen and Baladi (1985) discuss the thermodynamic restrictions to the pos-
sible forms of the above equations. Permissible functional forms of K and G
must not generate energy or hysteresis and must maintain the path-independent
behavior of elastic materials. Thus, the bulk and shear moduli should be
limited to the following forms (Chen and Baladi 1985)

K= K(Jy.€5) 3.14
G = G(Jp,¢f)

Inclusion of the plastic strain tensor into the functional forms of K and G is
permitted since plastic strains are constant during periods of elastic deforma-
tion. Under these restrictions, the hydrostatic and deviatoric components of
the elastic strain increment tensor (Equation 3.12) may be written as

dJ,

degy = — 3.15
3IK(Jy.€))
and
ds..
de‘; = ___2__;. 3.16
ZG(.’ZD.(U)

Combining Equations 3.9 and 3.12, the total strain increment ensor can be
written as

de. » g L9y, 3.17
Y& Ye B0

i)

The plastic strain increment tensor (Equation 3.9) may also be expressed in
terms of the hydrostatic and deviatoric components of strain. Applying the
chain rule of differentiation to the right-hand side of Equation 3.9 results in

4
a8y o 3.18

ch = d\

which simplifies to

dcfj=dk .‘2!.6 . ! . af s 3.19

===y

] p——
aJ, 24%0 dhs

Multiplying both sides of Equation 3.19 by &, gives an expression for the
plastic volumetric strain
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del, = 3d\ gjf. 3.20
1

By definition, the deviatoric component of the plastic strain increment tensor
is written as’

del = def. - Hdep 8, 3.21

Substitution of Equations 3.19 and 3.20 into Equation 3.21 gives
dc, . d\ af a3 af

— 3.22
J Sy as

The proportionality factor d\ must be determined prior to evaluating any of
the above plastic strains. Baladi and Akers{1981), Chen and Baladi(1985),
and Rohani(1977) outline the methods required to evaluate the proportionality
factor. Those methods are included here for completeness.

Using Equations 3.4, 3.5, and 3.6 or 3.7, the total derivative of the
loading function f may be expressed as

af 1 af af dx
df = a‘,l ==dJ; + s,-jds,-j

T de’ mm =0 323
2 .’20 d JzD a‘kl

This expression is known as the "consistent condition” for strain-hardening
materials (Chen and Baladi 1985). Using Equations 3.15, 3.16, and 3.20,
Equation 3.23 may be manipulated to give

Gde 24
3Kdel, :Jf drl 34x5’1f gl 32
1 \/"ID av-lzp ! a(kt
Substitution of Equation 3.10 into Equation 3.24 produces
3x(d¢“-de‘,’,)§]f. oS _(de,-deb) s, -
'y dy1p
3.25
; of of o«
& oy
PO dey
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By substituting Equations 3.20 and 3.22 into Equation 3.25, one obtains

3Ka_fd€kk"‘ G _‘Z.L_sijdeij=

9Jy Vo 3T
2D 2D
3.26
2 2
dx91(§3_f. o8 —3%.‘31_3'5_
! Iy 1 9% defy
Solving for the proportionality factor dA yields
af G af
3Ka_,]1de”‘ » J.;____ p JD sijdeij
d\ = - 2,12 3.27
91(%’.[. ¢ |8 2-33‘?[.%!_ 9«

By using Equations 3.17, 3.19, and 3.27, the total strain increment tensor
may be written as
dJ, ds;;

= T i
“y" 3% " 35

r v

T 528

2
ok || co[2L ) -3 9 ax

% afa . Sy af
aJ, Y
' 2yhap 9N

.
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The stress increment tensor may be written as
da‘-j = Kdekké,-j + 2Gdeu

-

Sij
%)y yl2p 3yl2p

+ 5 3.29
9K _a‘ljf. Lol 1.5 %f. %_f. _"_!‘E_
L : d J2D L aekk.

% 3k 25, G _U

o —— j
%, ylap 9yl2p

Equations 3.28 and 3.29 are the general constitutive equations for an elas-
tic work-hardening plastic isotropic material (Chen and Baladi 1985). To use
these equations, one must first define the loading function f, the functional
forms of the elastic moduli K and G, and the hardening parameter « for the
material of interest.

Elastic-Plastic Constitutive Matrix

In the following section, the equations for the elastic-plastic constitutive
matrix are formulated. The equations are written in matrix format to render a
more compact form of the equations. The development of the elastic-plastic
constitutive matrix follows the derivation of Owen and Hiaton (1980).

The loading or yield function f for a general work- or strain-hardening
elastic-plastic model (Equation 3.2) may be rewritten as:

fe.x) = F(e) - k(x) = 0 3.30
where (in matrix format) ¢ is the vector of normal and shear stresses and « is
the hardening parameter that controls the expansion of the yield surface.
Recall that in the cap model, the cap itself is the only strain-hardening yield

surface; the failure envelope is not a hardening surface. Equation 3.30 may
be differentiated to give:

af of
df s Lde + 2dx = 3.31
If o o 3 x = 0

or in another form:

Chapter 3 The Cap Mode! and Its implementation 25
.4 0 ® ® ® B ) ®




26

aTdo - Ad\ = 0 3.32

where
af = 8 . 8 3.33
aﬂ 30,-]-
and
A=-L 9 4 3.34
d\ o«

Owen and Hinton refer to the vector a as the flow vector. The scaler A will
be identified as the plastic hardening modulus.

The total strain increment tensor (Equation 3.10) may be written in matrix

format as
de = de® + deP 3.35

By substituting for both the elastic and plastic strain increments, i.c., using
the matrix equivalents of Equations 3.9 and 3.11, the following expression is
obtained:

de = Dldo + a\ 2L 3.36
deo

where D is the matrix of elastic material constants and the inverse of the
material response function.

After multiplying Equation 3.36 by a’ D one obtains:

aTDde = aTde + a’ Dad\ 3.37
which may be refined further by climinating a” de with the use of Equa-
tion 3.32 to produce:
a’Dde = [ A + a"Da | d) 3.38
This leads to an expression for the scaler term d\:
d) - 8 Dde 3.39

(4 +a"Dd]

This term gives the magnitude of the plastic strain increment vector and is the
matrix form of Equation 3.27. Note that in the text by Owen and
Hinton (1980), this expression was printed incorrectly.
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Having defined an expression for d), it may be substituted into Equa-
tion 3.36 to give:

T
dpa 3.40 *
Dl'de={1- 2 tde
[A + dga] :
T T
where dp, = a” D. o
[Multiplying both sides of Equation 3.40 by D gives:
(
Dad], 3.41
do = e e (1l °
[A + d,z;a]
which is an expression for the elastic-plastic incremental stress-strain relation.
If we substitute dj, = Da, then the elastic-plastic constitutive matrix may be
expressed as: S
dpd} 3.42
D* = D 22 '
[A . dga] IR
Plastic Hardening Modulus °
The plastic hardening modulus A must now be evaluated for a strain-hard-
ening formulation such as the cap model. If the hardening parameter « is a
function of the plastic strains, i.c.,
x=g (‘P) 3.43 ®
then Equation 3.43 may be differentiated to give:
de = 2% d¢? 3.44
e’ °
®
27
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Substituting Equation 3.44 into Equation 3.34, substituting for ¢”, and rear-
ranging produces:

A= -0 3 3f 3.45

9Kk gepdo

The plastic hardening modulus A will be dependent upon the functional form
of the loading or yield function f and the hardening function used in the cap
model.

Cap Model Implemented into JAM

The following section describes the version of the cap model implemented
into the finite clement code JAM. The functional forms of the equations are
outlined, and the cap model is described in more detail.

Two elastic response functions govern the behavior of the model in the
elastic regime. The elastic bulk modulus is defined by the following equation

K.
K(Jy,.eh) = 1 _‘K‘ 1 - Ky exp(Kyeh,) 3.46

where K, = the initial elastic bulk modulus and

K, and K, are material constants.
The elastic bulk modulus prescribes the unloading moduli in pressure-volume
space. The three material constants may be determined from the unloading
data obtained during hydrostatic loading tests. The elastic shear modulus is
defined by the following equation

G
Glyp.€f) = =51 - Grexp(Gyefp) 3.47
= S

where G; = the initial clastic shear modulus and

G,and G, are material constants.
The elastic shear modulus prescribes the unloading moduli in principal stress
difference-principal strain difference space. The three material constants may
be determined from the unloading shear data of triaxial compression tests.
The constants for the elastic bulk and shear moduli may also be determined
from uniaxial strain compression tests, i.¢., from the unloading slopes of the
stress path (= 2G/K) and stress-strain curves (= K + 4/3G).

In the current model, the failure envelope portion of the loading function f
is defined by a modified Drucker-Prager failure surface (see Figure 3.1) of the
form
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3.1. Cap model yield surfaces
3.48
h(.’l. .IzD ) ",sz ‘[A ’CCXP(B.’])] lf.’l>L(K)
°® (
where A, B and C are material consiants. These constants may be determined
from the locus of triaxial compression failure data plotted in the appropriate
stress space. The strain-hardening yield surface or cap is described by the
following
[ J
H"’l'\/"ZD .() ‘v.lzb 349
05 .
- %{[X(x) -LoP -4y - Lo PP iy <L
®
where X(«) and L(«) define the values of J; at the intersection of the cap
with the J, axis and at the center of the cap, respectively (see Figure 3.1);
x is the hardening parameter, which is equal to the plastic volumetric strain,
ie., L
[ J
29
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Equations 3.48 and 3.49 also indicate the value of J; determines which of the

two yield surfaces should be used. R is the ratio of the major to minor axes
of the elliptical cap and has the following functional form

RiL(x)] '-'R,-*Rl[l -ap(Rz{L(x)_Lo})] 3.51 .

where R;, R|, R, and L are material constants; L, defines the initial location
of the cap.

Chen and Baladi (1985) explain that the functional form of the cap was o
chosen such that the tangent of its intersection with the failure envelope is
horizontal. This condition is guaranteed by the following relationship between

X(x) and L(x)
X(x) = L(x) - RA(I(x),Top ) Hal A
where
i) ifl(x) <0 3.53
Lo = {9 ey 5 0 T
The hardening function for tiis model is defined by
‘:k‘ W(CID{X(-)-XOH_ 1) 3.54
L
which may be rewritten in the following form
P
X(x) =~ L |} Lx, 2>
b °
where D, W and X, are material constants. W establishes the maximum
plastic volumetric strain the material can develop; X;. like L, defines the
initial location of the cap.
L
As described previously, Drucker’s stability postulate places limits on the
functional forms of the equations in the cap model. Sandler and Rubin (1979)
specify some of those limitations: (a) Q(J, ) must decrease monotonically
with increasing values of J; ; (b) to avoid work-softening, the functions
@
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1
X(«x) and L(x) must be continuous and monotonically increasing functions
and
9F 50 ad ¥ <o
3]1 aK o
(c) the cap must extend from the J; axis to a point on or below the failure d
envelope A, i.e.,
F(X(x),x] =0 3.56
and
FIL(x),x) SQ[L(x)] 3:57
(d) within the yield surfaces defined by o
Vhp <Q(4) forJ >L(x) 3.58
and
 J
Jhp <F(J,,x) for L(x)2J, 2X(x) Gkl

the material response must be isotropic elastic. Sandler and Rubin (1979)

explain that if the inequality in Equation 3.57 is true, then a gap exists be- ® (
tween the cap H and the failure envelope h and a von Mises type failure sur-

face is used as a transition between the two yield surfaces (Figure 3.1). The

yield surface for J, 2L( «) is thus defined by the following expression

U2p = min{F[L(x).x] , Q[J;]) 840 °

In the evaluation of plastic hardening modulus A. one need only be con-
cerned with the functional form of the cap since it is the only hardening sur-

face in the model. In order to evaluate A, each of the three terms in Equation L
3.45 must be evaluated. Recalling Equation 3.50, the first term may be ex-
panded as
oH _oH3X _ dH aX 361
W Wk X0 |
ki L
L
. N
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Each of these terms is evaluated as

axX 1
= 3.62

p
O kx D(‘fk . W)

oH
— =2(L-X 3.63
axX ( )

Combining the terms gives
o0H  2(L-X)

B . 3.64
D(eu + W)
The second term in the expression for A4 is evaluated as
]
afu
since x = €f,. The final term in 4 can be expanded as
H _oH, . %; OH 3.66

Y Y L
aa‘] a',l 2 ',2D d JZD

Recalling that s,;8,; = 0 and substituting Equations 3.64-3.66 into Equa-
tion 3.45, one gets
6(X - d
A= .._..(........_ll.)...a.”! 3.67
D(cfk + W)™

as an expression for A. Simplifying this further by evaluating
aH
_— 2y - L 3.68
37 (5 )

and substituting into Equation 3.67, one obtains the final expression for the

Chapter 3 The Cap Mode! and its iImplementation




plastic hardening modulus

12(X - L)(J, - L
A =2t W - L) 3.69

D(ehy + W)

Numerical Implementation of the Cap Model

introduction

The numerical algorithm for the cap model was published by Sandler and
Rubin in an attempt "to facilitate the general use of the cap model in dynamic
computations, as well as in model fitting” (Sandler and Rubin 1979). The cap
model algorithm was designed for use in either finite element or finite differ-
ence codes and is applicable to both static and dynamic problems (Chen and
Baladi 1985). Of notable foresight on the part of the designers was their use
of function stater.ents within the model, which allow substantial changes to be
made to the cap model’s potential functions with little programming effort.
This feature has allowed investigators to simulate a wide variety of natural and
man-made materials with high degrees of fidelity between model and material
response. Despite the many published variations of the cap model, the
original cap model algorithm developed by Sandler and Rubin still forms the
foundation of most current cap model algorithms.

The cap model algorithm is essentially an implementation of Equa-
tion 3.29. To march the calculation through time, the user must input the

stresses ‘o, and the location of the cap at time ¢, which is explicitly defined

by the term /( ‘x ) and implicitly defined by the hardening parameter ‘«, and
the strain increments from the solution of the field equations for the current

time step '*4’de; . The cap model returns the new stresses ‘*“‘o . and the

updated cap location and hardening parameter I(‘*4'x) and ‘*4x at time
t+At. A given strain increment may invoke four different types of stress
paths that coincide with four different algorithms within the cap model itself:

(a) an elastic algorithm.

(b) a failure envelope algorithm,

{c) a hardening cap algorithm, or

{d) a tension cutoff algorithm,
In the following text, a description of the four numerical algorithms is provid-
ed. The descriptions are base upon previous descriptions by Baladi and
Akers (1981), Chen and P»'«di (1985). Sandler and Rubin (1979), and Meier
(1989). To simplify the p - .ntation, a description of the cap model's re-
sponse in the tensile regime will be deferred to the later part of this section.

33
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Elastic algorithm

To start the numerical procedure, it is assumed that the given strain incre-
ments produce an entirely elastic stress path. A set of elastic trial stresses are
calculated from

EJI = ‘-’1 + 3K “A'dékk 3.70

ESU = 'S,'j +2G '*A'deij an
The elastic trial stresses are tested with respect to the tension cutoff, the fail-
ure envelope, and then the cap. If these surfaces are not violated by the trial
stresses, the actual stress path is an elastic path, and the new stresses are the

elastic trial stresses, i.c., '*A'J; =EJ and 1*8%5, < Eg

Failure envelope algorithm

If the following conditions exist when the elastic trial stresses are tested
with respect to the failure envelope,

Ej 2 L('x)

h(EJ,.ijzb )=$/5Jm -ofiy =20

then the elastic trial stresses have violated the failure envelope, and the given
strain increment must be a combination of elastic and plastic strains. The trial
stresses must be corrected such that (a) the final stress state falls on the failure
surface and satisfies the following relation

h(""_], ", "A'sz ) =0 in

and (b) the resulting elastic and plastic strain increments add up to the given
strain increments ' *4'de ;.

The mathematical statement that requires the final stresses to lie on the
fixed failure surface is given as

dh« M40 -0 3.7

Assuming small strain increments, Equation 3.73 can be numerically approxi-
mated by the following expression
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+ +* 3.74
dh = EJZD _Jl A'JZD - 0( EJ])*Q('Aljl)

which reduces to

9
dh =\ Enp - Q(E1y) B

since the final stress point must lie on the failure surface, i.e.,

, + N 3.76
lAlJzD _Q(l Aljl)=0

Equation 3.75 may be substituted into Equation 3.73 and expanded in the
following manner

E E oh
hp - Q7)) = o——doy

37,90 a1p d0;; W
dh 1 oh E
: 2yJ2p dy)3p

where dJ, =7, - 'J; and ds;; = Es,-j - 's,j. From Equations 3.70 and

3.71, we know that dJ; = 3K'*4'de,, and ds;; = 2G'*4'de,;, and these
expressions may be substituted into Equation 3.77 to give

Erp - QUEI) = 3K "*8tge,, BR
R
3.78
. G oh ES I'Alde
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If we substitute Equation 3.78 into the numerator of Equation 3.27 and recog-

nizethat h=f, S0 - - 92 _ 9k 1 2nd % - 0 for the fixed fail-
aJ 37, p
1 1 9 JZD

ure envelope, an expression for d\ may be written as
d\ EJZD - ok 1)
= 7 3.79

ok|92 1| . ¢
1

Substituting the above expression into Equation 3.20, the final expression for
the plastic strain increment is obtained

: )
fLp —Q('Em 20

a7,
Q0
EXA

def, = -3 3.80

9K + G

An expression for "A'Jl may be developed in the following manner
Ay =1+ 3Kdel,
=1y + 3K "8y - IKdel, g8l

E, - 3Kkdef,

where def, is defined by Equation 3.80. A “tentative” value of '*4'J, may
be calculated from Equation 3.81; this value is tentative because it must be
tested against the current position of the cap, which is defined by the value of

L('x).

If '*4'J, < L('x), which indicates the stress point has violated the cap,
then corner coding is required, i.e., the cap must intersect the failure envelope
forming a corner, and the value of '*4'J, must be adjusted. Adhering to the

imposed conditions of normality, a stress state lying on the failure envelope
produces dilatant plastic volumetric strains. Since cap expansion can only

result from compressive plastic volumetric strains, the cap is stationary, and
the new stress state can not move beyond the intersection of the cap and the

failure envelope. Thus, the final stress state is '*4'J; = L('x), and the up-
dated hardening parameter is '*4'x = .
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If *4!J, > L(‘x), then the final stresses will depend upon the form of
the hardening function. Equation 3.7 is the simplest form of the hardening
function to use because it only permits plastic volumetric compaction, i.e., the
cap is only allowed to expand. As in the above case, a stress state lying on
the failure envelope produces dilatant plastic volumetric strains. Since the
hardening function defined by Equation 3.7 prescribes no cap movement due
to dilatant volumetric strains, the cap is stationary. Thus, the final stress state

is ‘*47J, i.c., no adjustment is required, and the updated hardening parame-

teris ‘*4fx = 'x. If the hardening function takes the form of Equation 3.6,
which allows the cap to expand and contract, the cap is adjusted (in this case
contracted) to a position prescribed by

cag e SL 1 ad, 3.82
Befk

5

and a tentative value of ‘*4’x is obtained. The new position of the cap must

be compared to the value of ‘*4'J,. If the cap has contracted such that
A< L(MA) = *87 both "4’k and '*47J; must be adjusted

such that '*81J, = L('*4%x) = '*A'|  This is accomplished by starting

with the following relation

al

dtp 3.83
aep kk
kk

EJy - 3Kdefy = A = L(PtA) = e

i

eliminating def g» Which is the third unknown, by substituting the following

E t
de’, = W=
kk Py, T 3.84
— + 3K '
dey y
from which one can show that
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Ejp - u

a_:’ +3K
aekk "
3.85
£, i”,- «3K| - 3K(E1 - )
ek | 4,
._aL + 3K
ae‘;k 1
which in turn simplifies to
28 By o
deh
AU R TEAL L g roAtJl - kk | 3.86
ﬂ. + 3K
aegk ’l

Having calculated the final value of '*47J;, we must calculate the new com-
ponents of the deviatoric stress tensor '*4’s,.. The expressions for '*4's,;
are developed below.

Recognizing the path independence of linear elastic constitutive equations,
we can write

l'AIS‘_j - ‘Sij o 2Gd£‘; 3.87

Substituting Equation 3.71 into Equation 3.87 and performing a simple manip-
ulation one obtains

1+ At E P .88

Recalling Equation 3.22 and recognizing that —2L_ = 1, we can write
Jip

d\
i 3.89

2Ly 2

P .
de;
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which can be substituted into Equation 3.88 giving ‘

+ E d\G +A
A R T =y 3.90
1’ H‘AIJzD ®
After rearranging the above equation one obtains

rarg aG | k.
S 1+ s 391 °

ij — ij
1+4t
vV “Yap

Squaring each side of Equation 3.91 and multiplying by % produces

L
“A%hp 1+ __EAEL__ =, E&p 3.92
‘/ +a
! 'JZD
Taking the square root of each side and rearranging terms, one obtains )
1+4AL
Y "he oy, _dNG 3.93
1,5-’20 ‘/nAthD
o

Replacing the right-hand side of Equation 3.93 with the expressions in Equa-

tion 3.91, one obtains
1+4¢ 1+ Al
Y "o Sy 3.94 °

I'AIJ o
rearg . ¥ "% &, 3.95

to calculate the new deviator stress tensor components. e
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Cap algorithm

If the failure envelope is not violated by the elastic trial stresses, the trial
stresses are checked against the loading function for the cap. If the following

conditions exist
HCEnL | Enp ') > 0

Er, < x(')
or
Ej, s L(')
then the cap algorithm is invoked and the position of the cap is adjusted until

H(“Aljl "/ “A'JZD 1 I‘AIK) =0

An iterative procedure is used in the cap algorithm. To start the proce-
dure, a trial value of d!") is assumed in order to calculate a new trial cap
position ‘*411() = [() = 11 4 41 where the superscript i denotes an
iterative value. In addition, trial values of x () ,L(x“’) L X( x® ). and

def,, are computed. Finally, a trial value of J, is computed from the
following relation

1D = Ep - 3Kdef, 3.96

if 79 < X(x), a smaller value of di‘") is assumed. If
J 2 L(x'™), 2 larger value of dI'") is assumed. This process is carried

on until the condition L (x") 7,7 < X(x") is satisfied. The final value
of I is one which satisfies the following equation to some desired accuracy

‘/ nm‘, Gd‘-‘u / 3.97

where

oF
aJ,

_9F

E" -a—j'l'

Jlm"m J,m'lm
The derivation of Equation 3.97 is outlined in the following text.
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If we start with Equation 3.22 and substitute for d\ using Equation 3.20,
one obtains

oH

-a'j; 3.99

we can rewrite Equation 3.99 as

d p
de,-’;- =5y “kk 3.100
6¢J2p
Substituting the above into Equation 3.88 and rearranging gives
G de}
Sij 1+ Ef_f__ = Esij 3.101
3¢y

Performing the same operations on the above equation as was used on Equa-
tions 3.91-3.93, one obtains Equation 3.97.

The solution of Equation 3.97 is obtained through the use of an iterative
convergence routine known as the modified regula falsi method (Sandler and

Rubin 1979). A dimensionless function P (/) is defined as

I(K) - Jl“)

. (i
m if "l SX(K)

p
JEJZD -J'.A'Jz([i)) - Gdekﬁ

P(l) = | 32’, it X(x)<J P <L(x)
Gde'k

E teaty ()
J J J
J 20 * a0 3£

(i)
X(x) - J) e ()
i V.S T if J,o'2L
L(x) - X(x) =) 3.102

where the solution P([) = O is also the solution of Equation 3.97. If we can
show that £7, < 1*841() < ] then P (1) is bounded and monotonic in the
strict sense, and the solution P(!) = O is unique and can be found to any
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desired degree of accuracy (Sandler and Rubin 1979). An expression for the
degree of accuracy or tolerated error is given by

P
~/£_, ) Vfumj _ Gdeyy
2D 2D T

< NO[X(x)] 3.103

where a tolerance of N/h( o ,yJ,p ) = 1073 (in dimensionless format) is
typically used.

To show that EJ, < "*4n ) < ! we must recognize that Jl(i) <L('%)
must be true, since it is a2 condition for invoking the cap algorithm. In addi-
tion, since

J](i) - EJl - 3de’k’k 3.104

we know that J" > EJ , because the plastic volumetric strain increment is
negative during volumetric compaction, i.e., when the cap expands. This

means that the final value of ’*4%J; must lie in the range
EJl < “Al.’l < L( IK)

Now let us determine the lower limit of '*4%J,("” which will lead us to the
lower limit of ‘*4/1). The cap exhibits its furthest expansion when £J, is
at the intersection of the cap and the failure envelope. When the cap is in this
position, *41J, = L('*8'x) = EJ,, which implies that the lower bound of
uml (i) is
141 1('*81) = L( NAIK) = E"l

The upper bound of *4'1 () js simply the value at time 1, i.e., *4'1 = 'I.
Combining these expressions, the range of ‘*471 () must be

E"l < IOAII(I) < l’
With the above conditions satisfied, the solution to Equation 3.97 may be

obtained. This concludes the description of the cap algorithm. A description
of the cap model’s response in the tensile regime follows.

Tensile algorithm

Sandler and Rubin (1979) recognized that soil tensile data is seldom ob-
tained in the laboratory and therefore dealt with 1ensile behavior in a simple
manner. They also cautioned potential users of the simplistic nature of the
cap model in the tension regime. A tension failure response is invoked if
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EJ, > T, where T is the tension cutoff or limit. Sandler and Rubin recom-

mended that the final stresses be defined as *4'J, = Tand '*4's;; = 0
when the tension cutoff is exceeded. For materials using the definition of the
hardening parameter defined by Equatior 3.6, the plastic volumetric strain is
defined by

Ey _ 1
Gl e g+ 1131( d 3.105

and an updated hardening parameter is determined. If the tension cutoff is not

exceeded but EJ, > 0, i.e., the elastic trial stress still lies in the tension

regime, the stress state must be checked against both the failure envelope and
the von Mises transition using the following inequality

JEhp 2 min{Q(E)), F[L( %), 'x])

Stress states violating the von Mises transition must be returned to that surface
using the same logic implemented for the failure envelope. Stress states lying
on the von Mises transition will produce no plastic volumetric strains due to
the imposed normality conditions. In addition, the von Mises transition is
fixed because the cap hardening surface does not expand.

Implementation of Cap Model into JAM

Two basic operations that are associated with elastic-plastic material mod-
els must be performed in most implicit finite element codes: (1) the construc-
tion of the elastic-plastic constitutive matrix and (2) the calculation of the
residual forces. The purpose of this section is to explain how these two oper-
ations were affected by the implementation of the cap model. The later opera-
tion will be considered first since it is a straight forward process.

After the strain increments at time 7+ A¢ are cbtained from the solution of
the field equations, the stresses at time ¢+ At in each element are calculated.
The residual forces at time ¢+ At are then calculated based on the stress states
in the elements. In this operation, no substantial changes are required in the
cap model subroutines; hence, the implementation is rather simple.

However, three components, the elastic constitutive matrix D, the plastic
hardening modulus 4, and the flow vector a, are required to calculate the

elastic-plastic constirutive matrix D*?. The calculation of the elastic constitu-
tive matrix is simple and needs no further discussion. In JAM, a modified
cap-model subroutine calculates and returns values for the flow vector and the
plastic hardening modulus. This subroutine first determines which ol four
possible regions or surfaces a stress point resides in or on, i.e., an elastic
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region, the failure surface, the cap, or the tension cutoff. The plastic harden-
ing modulus is nonzero only when the stress point falls on the cap since it is
the only hardening surface. In this case, the plastic hardening modulus is
calculated using Equation 3.69. The flow vector is calculated by numerically
evaluating Equation 3.66 when the stress state lies on the failure surface, the
cap, or the tension cutoff.

I To complete the implementation, one must provide the model access to the
material constants and an array to store the location of the cap for each nu-
merical integration point.

Verification

To insure that the cap model was correctly incorporated into the finite
element program JAM, several laboratory stress- and strain-path tests were
numerically simulated. These calculations were compared to the output from
a cap model driver (Chen and Baladi 1985) exercised over the same laboratory
stress and strain paths. The two programs should produce similar if not
identical results.

The following tests and strain paths were simulated: a hydrostatic compres-
sion test with one load/unload cycle, a set of constant radial stress triaxial
compression tests, a set of constant mean normal stress tests, a uniaxial strain
(K,) test with one load/unload cycle, and finally a test with a K, load/constant
axial strain (BX) unload cycle. To simulate the tests with the finite element
program, a single element was loaded under the appropriate boundary condi-
tions. Several loading increments were utilized during each calculation, and a
convergence tolerance of 1 percent was satisfied at the end of each increment.
The output at the end of each increment is represented by a symbol on the
comparison plots.

The simulated hydrostatic loading test consisted of an applied loading to a
pressure level of 250 MPa, followed by an unloading to zero pressure. This
calculation exercised the logic and code affecting both the cap movements and
the elastic algorithms within the model and finite element program. The finite
element and cap model driver results are compared in Figure 3.2. Output
from the finite element program matches the cap model driver with no notice-
able errors.

Four constant radial stress triaxial compression tests at radial stresses of
25, 50, 100, and 150 MPa were simulated. Loading was terminated prior to
reaching the ultimate failure surface, an. unloading results were acquired for
only three of the four calculations. The values of principal stress difference
calculated by the finite element program were less than those of the cap model
driver (Figure 3.3). The magnitude of the errors decreased when a larger

number of increments was applied.
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Figure 3.4. Simulated stress-strain response of constant mean normal
stress tests

sion tests, loading was terminated prior to reaching the ultimate failure sur-
face; unloading results were not acquired. The finite element and cap model
driver results are compared in Figure 3.4. Errors in the stresses calculated by
the finite element program were less than those in the simulated triaxial com-
pression tests (Figure 3.3).

The simulated K, test consisted of an applied loading to a vertical strain
level of 20 percent, followed by an unloading to a small value of vertical
stress. In this calculation, the finite element simulation was conducted with a
displacement controlled boundary condition. This type of loading should
produce an exact match between the finite element program and the cap model
driver since no strain increment iterations are required in the finite element
program. The calculated K, stress-strain response is plotted in Figure 3.5 and
the stress path response in Figure 3.6. There are no noticeable differences be-
tween the two calculations.

A K, load/BX unload test was also simulated with a displacement control-
led boundary condition. The test consisted of an applied loading to 20 percent
axial strain, followed by an unloading to a small value of radial stress (Fig-
ure 3.7). In this calculation, the corner coding of the cap model was exer-
cised as the stress path unloaded along the failure envelope (Figure 3.8). The
calculated results suggest a proper implementation of this logic.
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Summary

The features of the cap model and the relevant equations were documented
in this chapter. In addition, the steps required to implement the cap model
into the FE code were summarized. The implementation of the cap model
was verified by comparing the output from the FE code and a driver for the

cap model.
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4 Equations of State for Air,
Water, and Solids

Introduction

The materials of interest to this investigation include partially-saturated
soil- and rock-like geomaterials and man-made concretes, grouts, and grout-
cretes. As outlined in Chapter 2, the equations developed from the Biot
theory require an expression for the bulk modulus of the pore fluid and the
grain solids. To determine the bulk modulus of the pore fluid, the concept of
a homogeneous pore fluid will be adopted to treat partially-saturated materials.
This investigation will assume that the liquid within the pore space is water
and the gas within the pore space is air. Thus, the pore fluid will be regarded
as a compressible mixture of air and water. Based on the equations of state
(EOS) for air and water, we will develop equations for the bulk modulus of
this air-water mixture. The grain solids will be treated as either linear or
nonlinear elastic materials or as nonlinear hysteretic materials; each method
for calculating the bulk modulus of the grain solids will be described.

Equation of State for Water

Over the pressure range of interest to this investigation, i.c., 0 to 600
MPa, water has a finite compressibility and should be treated as a nonlinear
elastic compressible material. The compressibility of water is depicted in
Figure 4.1 as a plot of pressure versus volume strain. The reader should note
that at 600 MPa the volume strain of water is nominally 14 percent. The bulk
modulus or compressibility of water was evaluated from the Walker-Sternberg
EOS for water (Walker and Sternberg 1965), which is valid for pressure
levels of up to 50 GPa. The EOS expresses the water pressure as an analyti-
cal function of the density and the internal energy of the water. For this
investigation, the energy dependent terms in the EOS were not included due to
the assumed quasi-static and isothermal nature of the intended calculations.
Without the energy terms, the EOS is expressed as
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Figure 4.1. Pressure versus volume strain response of water
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where P is the pressure in the water, p is the density of the water, f; are
material constants and Py is the initial pressure. If we define volumetric
strain as

6“,1_%2 4.2

then the bulk modulus of water may be expressed as

2
L IC R L 4.3
deyy o dp
Substituting Equation 4.1 into Equation 4.3, one obtains the final expression
for the bulk modulus of water as a function of density

K, = ;‘- (02f) + 30%fy + 5051y + 10%1, ) 4.4
0

In the FE program, pressure is the known quantity, not density. Since the
EOS expresses pressure and bulk modulus as a function of density, Newton's
method was used to calculate the density for a given pressure, then the bulk
modulus was calculated.
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Air-Water Compressibility

Background P

The concept of a homogeneous pore fluid (HPF) was first introduced by
Chang and Duncan (1977). In using their concept, one assumes that a 4
three-phase material containing air, water, and solids may be replaced with a
two-phase material containing a compressible pore fluid and solids. A partial-
ly-saturated material is transformed into a fully-saturated material with a HPF.
Effective stress is calculated in the same manner as for a fully-saturated mate- o
rial, and the modulus of the pore fluid is calculated based on the modulus or
compressibility of an air-water mixture. The concept is applicable to materi-
als with saturation levels greater than 85 percent. At these levels of satura-
tion, the air should be in the form of occluded bubbles uniformly distributed
throughout the water, and the air and water pressures should be identical. At °
lower saturation levels, one can not guarantee that the air and water pressures
will be the same.

The compressibility of air-water mixtures has been studied by several
investigators. Bishop and Eldin (1950) examined non-zero total-stress friction
angles measured during undrained shear tests. They attributed the observed L4
behavior to incomplete saturation of test specimens. Using Boyle’s and
Henry’s Laws, they developed expressions for the compressibility of an air-
water mixture without accounting for surface tension effects.

Schuurman (1966) reviewed the work of previous investigators and con- ° q
cluded that surface tension effects must be included in an air-water compress-
ibility formulation. Schuurman claimed to be the first to attempt such a for-
mulation. Schuurman assumed that at saturation levels greater than
85 percent, the air existed in the form of bubbles. However, to account for
surface tension, the radius of the air bubbles was required, yet little if any
experimental data was available to provide this necessary information.
Schuurman’s formulation also differed from that of Bishop in that he wrote his
expressions in terms of the current volume of air as opposed to the original
volume, and he assumed the water was incompressible.

Fredlund (1976) also developed an expression for the compressibility of an PY
air-water mixture using a formulation in which the water had a finite com-
pressibility. He accounted for surface tension in a manner that did not require
a knowledge of air bubble sizes by using a parameter for air-water pressures
similar to Skempton’s B parameter, which could be evaluated experimentally.
Fredlund also interpreted the mixture volume in the expression for compress-
ibility as the volume of water plus free air as compared to water plus total air.

Chang and Duncan (1977) based their expressions for the compressibility
of an air-water mixture on the equations of Schuurman. Like Schuurman,
they included surface tension effects in their formulation and assumed the

water was incompressible. °
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Alonso and Lloret (1982) reviewed the work of previous investigators,
compared the compressibility curves of each, and formulated their own ex-
pressions for the compressibility of an air-water mixture. They assumed a
finite compressibility for water and accounted for surface tension in the same
manner as Fredlund.

In summary, there are significant differences in the equations developed by
several investigators for air-water mixtures. For this reason, equations for the
compressibility of an air-water mixture will be developed in this chapter.
Prior to developing the equations, a brief description of the appropriate physi-
cal laws will be provided.

Boyle’s and Henry's laws

Boyle’s and Henry’s Laws will be used in developing equations for the
compressibility of an air-water mixture. These laws are defined and explained
for purposes of completeness. Boyle’s Law states that "at a constant tempera-
ture, the volume of a given quantity of any gas varies inversely as the
pressure to which the gas is subjected” (CRC Handbook 1980).

Air dissolves in water according to Henry’s Law, which states that "the
weight of gas dissolved in a fixed quantity of liquid, at constant temperature,
is directly proportional to the pressure of the gas above the solution” (Fredlu-
nd 1976). Fredlund (1976) explains that the structure of water molecules pro-
duces a "porosity"” within the water of approximately 2 percent by volume.
This porosity can be filled by a gas such as air, i.e., air dissolves in water by
filling this pore space (see Table 4.1).

Fredlund (1976) provides a simple  Table 4.1.
analogy to understand the compress- Solubility of Air in Water

lblllty Of an air-watcr mixturc. m-—n-y
Toemperature Hervry's
) c Constant
Consider a test vessel made of a Deoress o
cylinder and piston. At the base of 0 0.02918
the cylind;r is a porous stone having a 4 0.02632
rosity of 2 percent; the porous
= i pe po 10 0.02284

stone simulates the behavior of the
water. The piston is initially posi- 15 0.02055
tioned some distance above the stone

g . . 20 0.01868
with air filling the space in between.
An imaginary valve at the surface of 25 0.01708
the porous stone controls the move- 10 0.01564

ment of air into the stone. The air in

. . trom Frediund (1976)
the porous stone simulates the air dis-  mm—————————
solved in water. If the valve is closed
and the piston moves down into the cylinder, the air above the stone com-
presses following Boyle's Law. If the valve is opened, some of the air will
diffuse into the porous stone following Henry's Law. This process will con-
tinue until all of the air passes into the porous stone. When the piston con-
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tacts the porous stone, there is a discontinuity in the compressibility of the
system; the compressibility jumps immediately to that of water. The level of
saturation within an air-water mixture must be evaluated to determine the

discontinuity point.

Derivation of equations

The following assumptions were made for this analysis. We will assume
initial saturation levels are greater than 85 percent, which implies that all air
bubbles are occluded. Surface tension effects will be neglected, which allows
us to assert that the air bubbles within the water will be at the same pressure
as the water. The air is soluble in water and observes Henry’s Law, and the
rate of increase in pore water pressure from any simulation is slower than the
rate of diffusion of air in water. Finally, prior to full saturation, the com-
pressibility or bulk modulus of water is a constant. We will first develop the
equations for an air-water system with a rigid porous skeleton, then one with

a compressible porous skeleton.

The following terms are used in the derivation of the compressibility of an

air-water mixture. Let

V denote the total volume of air and water,

V, the volume of the void space,

V,, the volume of water,

V, the volume of dissolved air,

V, the total volume of air,

V, the volume of free air, which is equal to V, - V,,

P,, the pore water pressure,

P, the pore air pressure and

H Henry’s constant.
A subscripted "o" is used to indicate an initial value. The total mass of air
and water remains constant. Substituting expressions for porosity (n) and sat-

uration (S), the initial volumes of water V, , and free air Va‘o may be
expressed as

Vo = SoVip = 0, V, S, 4.5
and
Vao:(l -so)vvoznovo(l i %) e

Using Henry’s Law and Equation 4.5, the initial volume of dissolved air may
be expressed as

Vdo = Vwo H - n, Vo so H 4.7

The sum of Equations 4.6 and 4.7 yields an expression for the initial total
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volume of air in the system
V,, =n,V,(1-5,+ S,H) 4.8

ao

Expressions for the compressibility of water and an air-water mixture may be
written as

& m= L Yo 4.9
¥V, 4P,
and
G-l [2Va, DN 4.10
Va + Vw de de 1

respectively. Substituting Equation 4.9 into Equation 4.10 one obtains

¢, -1 | _y ¢ 4.11
m g dP wrw
Va + Vw w

We will now use Boyle’s Law to develop an expression for the derivative
in Equation 4.11. Boyle’s Law may be written as

V,P,=V,P 4.12

ao " ao

If we assume the pore and air pressure are equal and V, = V,,, we can write
the following

Pao  Puo_ VarVa 4.13

Pa Pw Va’o + Vd
from which we write

de _ Va'o * Vd

dV‘ = - 7 ~ao
¢ (Va * Vd) 4.14

o R Vao Pao
V2

Substituting the latter expression in Equation 4.14 into Equation 4.11, one
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obtains

[ v
== 1 7 aP +V,C,
Va + Vw ao " ao

4.15

which is an expression for the compressibility of an air-water mixture. By
judiciously substituting for the volume terms in Equation 4.15, we will devel-
op a final expression for the compressibility of the mixture.

By combining Boyle’s Law ( Equation 4.12) and Equation 4.8, we may
write an expression for the current total volume of air

P
v, =—§£"0Vo(1-sa+SoH) 4.16

a
a
The current volume of water may be expressed as
V, = V,,(1+C,5P) 4.17
and, after substituting for V,,, as

V, =n,V,S5,(1 + C,5P) 4.18

The current volume of dissolved air, which is a function of Henry’s Law and
the current volume of water, is written as

V,=n,V,S,H(1 + C,oP) 4.19

Subtracting Equation 4.19 from Equation 4.16, one obtains an expression for
the current volume of free air

: P.s 4.20
Vy =1V, | 5= (1-5,S,H) - S,H(1+ C,bP)

a
a

Adding Equations 4.20 and 4.18, one obtains

: P
vV, +V,=nV, 7:2(1 -S,+S,H) + S,(1- H)(1+ C,6P)
a 4.21

which will eventually be substituted back into Equation 4.15. Combining
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Equations 4.8 and 4.16, one may write

2 2
7 P
RCIgS [._‘.‘_‘Z] n,V,(1-5,+S,H) 4:27 :
7 P
ao a .
and, by multiplying Equation 4.18 by the compressibility of water and
dropping the higher order terms, one obtains
v,C, =n,V.§ C, 4.23
®
Substituting Equations 4.21, 4.22, and 4.23 into Equation 4.15 yields the final
expression for the compressibility of an air-water mixture
-1 .
Pao
C, = .’_,...(l- S, + SoH) + §,(1-H)(1-C,6P)
‘ 4.24
Pao
x4-22(1-5,+S,H) + S,C, ®
P 2
a
In a similar manner, an expression for the level of saturation may be devel-
oped and written as L
s
vV, + V,
4.25
. S,(1+C,8P) v
P“(I-S +S,H) + S,(1- H)(1+C,bP)
"";" o %o (/] w
a
When the porous skeleton is compressible, the current void volume may be L
expressed as
Va ¥ Vw = Vo("o" €pr) 4i26
) ) ®
where V_ is the initial total volume of voids and solids and ¢, is the effec-
tive volumetric strain. Substituting the above and Equation 4.18 into the first
expression in Equation 4.25, one obtains
®
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s Y mS(1-C,8P) .
vV, +V, Mo = €kk

which is an expression for the level of saturation in a deforming porous skel-
eton. An equation for the compressibility of an air-water mixture within a de-
forming porous skeleton may be obtained by combining Equations 4.15, 4.22,
4.23, and 4.26 to yield

n 4.28

Gz

P
2 —=2 (1-5,+5,H) + 5,C,

o ~ €k | P,

In the process of a calculation, one must first evaluate Equation 4.27. If
the level of saturation is less than one, Equation 4.28 is used to calculated the
bulk modulus of the pore fluid. If the level of saturation is equal to one, the
bulk modulus of the pore fluid is calculated from the EOS of water, i.c.,
Equation 4.4.

To illustrate the response of a partially-saturated material to an applied
loading, an example calculation was conducted and the output graphically

P
.9
.2

800
000

Amo @
pe e
QO

FA RN

Figure 4.2. Pressure-volume response of partially-saturated material

presented in Figure 4.2. The simulated material kas 2 Young's modulus of
1800 MPa, a bulk modulus of 1000 MPa, a total porosity of 20 percent, a
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saturation level of 90 percent, and an air porosity of 2 percent. The material
was loaded under undrained uniaxial strain boundary conditions. At volume
strains less than approximately 2 percent, the generated pore pressures are
negligible, and the loading bulk modulus is equal to the skeletal bulk modulus
of 1000 MPa. At these strains levels, the material loads as if it were fully
drained. At a volume strain of 2 percent, all of the air porosity is eliminated,
and the pore fluid becomes fully saturated and begins to carry a major portion
of the applied stress. At these strain levels and above, the material loads as a
fully-saturated material. In addition, the pressure-volume response is nonlin-
ear due to the nonlinear nature of the water. o

Equation of State for Solids

Three methods for calculating the bulk modulus of the grain solids were
implemented into the FE program. The first method assumes the grain solids
are linear elastic materials. The second method uses an analytical EOS and
treats the solids as a nonlinear elastic material. The third method uses a
simple model to simulate the nonlinear hysteretic material behavior of the °
graius.

The first method is self explanatory; the program simply uses a constant
bulk modulus value for the entire calculation. In the second method, an ana-
Iytic relationship between pressure and compression is developed for each
material. Compression is defined as ®

g 4.29

where ¢ 1s the Cauchy or engineering strain. Using solid carbonate as an °
example material, the pressure-compression relationship is linear below
1.2 GPa and may be written as

p‘ =07p 4.30

where P, is the grain pressure. The bulk modulus for carbonate may then be

written as
2 dP 2
K =(l-u)* = =07(¢(1-pu)* 431
" W i b))

A plot of pressure versus volumetric strain for carbonate is plotted in
Figure 4.3 Other materials may be simulated in an analogous manner.

The third model. which simulates nonlinear hysteretic matenial behavior,
uses tabulated curves that describe the loading and unloading pressure-volume
response of the grains. This model 1s based on the work of Meier (1986),
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Figure 4.3. Pressure versus volume strain response of carbonate

who used a similar model for one-dimensional, plane-wave ground shock
calculations.

During virgin loading, the volume strain is computed from the current
value of pressure through linear interpolation of the tabulated loading curve.
A similar process is employed when unloading occurs from pressure levels at
or above the lockup point using the tabulated unloading curve. When unload-
ing takes place from pressure levels below the lockup point, a scaling process
must be applied to the tabulated unloading curve. In this scaling process, let
P, and ¢, represent the peak pressure and peak volume strain, respectively,
from which unloading commences (sec Figure 4.4). The pressure and volume
strain scaling factors are calculated as

4.32

f.’““a)fp‘a 4.33

where P; is the pressure at lock up. P, is the tension cutoff pressure, and a is
an empirically determined calibration constant with values ranging between
zero and unity. Knowing the unloading pressure (P;), the recovered pressure
(A P). which is the difference between the pressure 2: lock up and the value
of pressure on the tabulated unloading curve, is calculated in the following
manner
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= Ci-—-———-—*-; ;-'-—Si/f.

Figure 4.4. Nonlinear-hysteretic mode!
AP = (P, - P)/, 434

The recovered strain (A ¢) is computed through linear interpolation of the
tabulated unloading curve. The unloading volume strain (¢ ;) is calculated by
subtracting the scaled value of recovered strain from the peak strain

Ae
€, 5 €0 T e 4.35
i m j;
The bulk modulus on this unloading curve is calculated as
K, =K, (f!f,) =K, l-a*;.] 4.36
»

where K, = AP /A¢. Reloading occurs along a line passing between the
last unloading pressure-volume strain point and the point P, .¢,, .
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Summary .
L,
The algorithins required to numerically simulate the behavior of the three ®
primary constituents of geomaterials, air, water and solids, were documented
in this chapter. When these algorithms are combined with an appropriate 4
skeletal model into the FE formulation of Biot’s theory, the multikilobar
response of any geomaterial may be calculated.
®
|
o
I ]
® |
]
o
®
]
62 Chapter 4 Equations of State for Aw, Water, and Sohds
]
M o . J 2 o ® ) ® N |




5 Features and Verification of A
FE Program

Introduction a

The objectives of this chapter are to (1) describe features in the FE pro-
gram that have not already been introduced and (2) present solutions from
several verification problems as proof that the program works correctly.
Several features of the FE program have already been introduced. In Chap-
ter 2, the benefits gained from effective stress simulations of multi-kilobar
material hehavior and the available material models were described. The cap
mocel was documented in Chaprer 3 and the equations of state of air, water,
and solids were described in Chapter 4.

The following features will be presented in this chapter. A restart feature o q
was implemented into the FE program to permit the simulation of certain
laboratory tests. For example, a consolidated undrained triaxial compression
test wherein the consolidation phase has drained boundary conditions and the
shear phase has undrained boundary conditions requires changing fluid flux
boundary conditions. A brief summary of the postprocessing procedures will
also be presented. These features are described in the next section.

The final sections of this chapter document solutions from several
verification problems. For each problem. the FE solution is compared to
a ailable closed form or analytic solutions. These verification problems
¢. .iblish the FE program'’s ability to correctly solve a variety of initial and °

boundary value problems.

Additional Features of FE Program

Restart feature

The resiart feature was implemented for the purpose of allowing the user to
chznge the boundary conditions at a preselected time in the calculation. A
K/BX/STX test (acronyms defined subsequently) is an example of a labora- °
tory test with changing boundary conditions. This test is conducted by
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loading a cylindrical specimen to a desired mean normal stress level under K
or uniaxial strain boundary conditions, unloading to a desired mean normal
stress level under constant axial strain (BX) boundary conditions, and then
conducting a constant radial stress triaxial compression (STX) test at yet
another mean normal stress level. The K loading and the BX unloading
phases may be numerically simulated with displacement controlled boundary
conditions. However, to realistically attempt to simulate the STX phase, the
user should apply stress controlled boundary conditions. The restart feature
implemented into JAM allows the user to perform this calculation in a simple
manner.

Postprocessing

In many instances, one would like to plot FE results at a single location,
e.g., at the nodal points. Many postprocessing FE software packages require
stress and strain values at the nodes rather than at the Gauss integration
points. A procedure was implemented in the FE program JAM to extrapolate
and smooth Gauss point data to the element vertices, i.e.. corner nodes.
Values at the midside nodes were then calculated from the values at the
appropriate corner nodes.

The implemented smoothing procedure was developed and described by
Hinton, Scott, and Ricketts (1975) and Hinton and Campbell (1974). The
procedure is simple and straightforward. The smoothed stresses at the nodes
may be calculated from the expression

3
91 abecb] |
‘62‘:babc <°ll’ 5.1
63 c bab 6”1
La4 bcba o |

where the 6, are the smoothed stresses, o,.0,,0,;,; and o, are the stresses

at the integration points, and @ = 1 + _‘/2:.;.— , b= ~_;. and ¢ =1 - _g?.

At a given comer node, smoothed values from adjacent elements are averaged
to yield a single value.

Plane and Axisymmetric Verification Problems

Five problems with plane or axisymmetric geometries were solved with
JAM 10 test and verify that the material models, the eight-node quadrilateral
element, and numerous other algorithms were correctly implemented in the FE
program. For each of the five problems, selecte:f output from JAM are
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compared with closed form or analytic solutions.

A Y =

I

= -7

- = |1

T
& 2 >

Figure 5.1. Geometry and loading conditions for Verification Problem 1

Verification Problem 1 exercises a single element under distributed normal
and shear loads of 1000/length as shown in Figure 5.1. The element sim-
ulates an isotropic linear elastic material having a Young's modulus of 30 X
106 and a Poisson’s ratio 0.3. The following boundary conditions were
imposed:

uxsuy=0 at point A and uy=0 at points B and C

Table 5.1.
Results from Vaerification Problem 1

Chapter 5 Features and Verithcation of FE Program

-1000.
o, -1000. -1000. -1000.
-1000. -1000. | -1000. -1000.
-600. -600. 0. 0. i
-1.733x10% -1.733x10% -2.333x10°% -2.333x10%
1.733x10% 1.733x10% -2.333x10°% -2.333x10°%
-8.667x10% -8.667x10"% .8.667x10% -8.667x10%

Table 5.1 compares stress and strain states calculated from the FE and
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analytic solutions (Hibbitt, Karlsson and Sorensen 1989) for this problem
under plane strain and plane stress boundary conditions. This problem
exercises the elastic constitutive model, verifies that the eight-node quadratic
element accurately models constant strain states, and also checks that
distributed loads are correctly simulated. The results from JAM match the
analytic solution exactly. Verification Problem 1 was also successfully solved
using the Cap model algorithm.

ERNEENEY

Z =l =
- -1
: A B C :
r  TIrrreeT
< 1000 — > 2 —>

Figure 5.2. Geometry and loading conditions for Verification Problem 2

Verification Problem 2 exercises a single axisymmetric element under
distributed normal loads of 1000/area as shown in Figure 5.2. The element
simulates an isotropic linear elastic material having a Young’s modulus of
30 % 105 and a Poisson’s ratio 0.3. The following boundary conditions were
imposed:

u,=0 at points A, B, and C

Table 5.2 compares stress and strain states calculated from the FE and
analytic solutions (Hibbitt, Karlsson and Sorensen 1989) under the imposed
axisymmetric boundary conditions. Like Verification Problem 1, problem 2
exercises the elastic constitutive model, verifies that the eight-node quadratic
element accurately models constant strain states, and also checks that
distributed loads are correctly simulated. The results from JAM match the
analvtic solution exactly.

Plane and axisymmetric patch tests were employed in Verification
Problems 3 and 4. In the patch test, nodal point displacements are applied 10
a patch of elements such that a constant state of strain exists throughout the
mesh. In Verification Problem 3, the elements simulate an isotropic linear
clastic material having a Young's modulus of 30 x 10 and a Poisson’s ratio
0.3. The imposed displacement boundary conditions were applied to the patch
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Table 5.2.

o
&
L
-1000.
3 -1.333x10° -1.333x10°5
€, -1.333x 105 -1.333x 10
Yz 0. 0. Y
-1.333x10°5 -1.333x 10°%
o
Y
—
° |
12
= )
c 24—y X
Figure 5.3. Geometry for Verification Problem 3
of elements shown in Figure 5.3 and were calculated as: L
= o -3 = e -3
u,-[x _2.])(!0 and u, [y _i]xl()
Table 5.3 compares stress and strain states caiculated from the FE and °
analytic solutions (Hibbitt, Karisson and Sorensen 1989) for this problem
under plane strain and plane stress boundary conditions. The resuits from
JAM match the analytic solution exactly. Verification Problem 3 was also
successfully solved using the Cap model algorithm.
Verification Problem 4 consists of a patch of axisymmetric elements o
67
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Table 5.3.
Results from Verification Problem 3

Plane Strass

Analytic

Figure 5.4. Geometry for Verification Problem 4

simulalin§ an isotropic linear elastic material having a Young's modulus of
30 x 10° and a Poisson’s ratio 0.3. The imposed displacement boundary
conditions were applied to the patch of elements shown in Figure 5.4 and
were calculated as:

u, = [(r- 1000)0;:.] x10°3 and u, = [z

-

¢______(";000)] x10 3

Table 5.4 compares stress and strain states calculated from the FE and
analytic solutions (Hibbitt, Karlsson and Sorensen 1989) for this problem.
The results from JAM match the analytic solution exactly. Verification
Problem 4 was also successfully solved using the Cap model algorithm.
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Table 5.4.
Results from Verification Probilem 4

Axisymmetric X
@
: 4
5.769 x 10* 5.769x 104
o, 5.769 x 10* 5.769x 10*
o, 1.154 x 10* 1.154x 104 Y
o, 3.462x 10* 3.462x10*
3 1.x103 1.x1073
€, 1.x1073 1.x10°3
Ve 1.x10°3 1.x10°3 o
0.
eI . . e o e ) i A
- — i ®
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/
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Figure 5.5. Mesh geometry for Verification Problem 5

Verification Problem 5 is a plane strain simulation of a thick wall cylinder
subjected to an increasing internal pressure. Due to the symmetry of the ®
problem, a quarter grid was used in the calculation; the problem geometry and
FE mesh are shown in Figure 5.5. The material was modeled with the
following properties, a Young's medulus of 21000, a Poisson's ratio of 0.3, a
yield stress of 24 and a linear hardening modulus of 0. When a cylinder with
these properties is subjected to an increasing internal pressure above 10.4, an °
elastic-plastic boundary moves through the cylinder; on the external side of
the boundary, all of the strains are elastic. and on the interior side, the strains
are elastic-plastic. Table 5.5 compares stresses calculated from the FE and
analytic solutions (Hodge and White 1950; Prager and Hodge 1951) at several
radii within the elastic region for an applied internal pressure of 18, which
places the elastic-plastic boundary at a radius of 160. The computed resuits L
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Table 5.5.
Results from Verification Problem 5

Max.
Principal
Stress
or

20.32 20.25

are well within the imposed convergence tolerance of 1 percent. The results
from JAM also agree with the results calculated by Owen and Hinton (1980)
for this problem. This validates the plasticity formulation in JAM.

Consolidation Problems

To verify that the FE progiam could solve consolidation problems, output
from JAM were compared to the results calculated from closed form solu-

0.0 v v T T

02

® PR Bolutlon
—— Series Bolution

08 ¢

1.0 i n i A &

oo 02 o4 oe os 10
Normalized Pore Preseure

Figure 5.6. Pore pressure versus depth at two time increments

tions. Boundary conditions and material properties were altered to fully exer-
cise different features within the FE program. In Figure 5.6, depth versus

calculated pore fluid pressures are plotted in a normalized format at two dif-
ferent time increments for a one-dimensional consolidation problem in which
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the soil column was idealized as an elastic porous skeleton with an incompres-
sible pore fluid. Good agreement is shown between the FE results and the
closed form solution. A similar one-dimensional problem was solved with
two materials having compressible pore fluids, where the ratios of pore fluid
modulus to skeletal modulus (N) were 2000 (nearly incompressibie pore fluid)
and 5 (highly compressible pore fluid). Results from the FE program and the
closed form solution (Chang and Duncan 1983) are plotted in Figure 5.7 as
normalized displacements versus time factor, i.e., normalized time. Again,

1.0 Y T L Rl

0.8 < FE Solution
00 FE Solution
— Series Solution
0.8 |

Normalized Displacement
o
>
¥

N = 2000

0.0 | L
_0.2 A 1 ) 1
1074 1073 1072 10~} 10° 10!

Time Factor

Figure 5.7. Displacement versus time for one-dimensional consolidation of
an idealized elastic material

the results show reasonabl. agreement between the FE results and the closed
form solution.

A two-dimensional axisymmetric consolidation problem consisting of a
circular foundation on a finite soil layer (Figure 5.8) was also .alculated. The
mesh is A units high by /04 units wide, and a uniform vertical load of radius
A was applied to the top surfaces of three elements to simulate the foundation
loads. The following boundary conditions were invoked for this problem.
The vertical edges of the mesh (A-D and B-C) were constrained in the radial
direction, the bottom edge of the mesh (C-D) was constrained in the vertical
direction. the top surface (A-B) was free draining, and no flow conditions
were applied to the three remaining surfaces (B-C, C-D, and A-D). The cal-
culated settlements (in dimensionless format) from JAM (solid circles) are
compared in Figure 5.9 to settlements calculated from the analytical solution
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Figure 5.8. Mesh geometry for Axisymmetric Consolidation Problem
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Figure 5.9 Displacement vs Time from 2D Consolidation Problem

(solid line). Again, there is excellent agreement between the calculation and

the analytical solution. °
e
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Cryer Problem

A numerical simulation of Cryer’s problem (Cryer 1963) was conducted as
an additional verification test of the FE program. Cryer developed a closed

Figure 5.10. Mesh geometry for Crysr Problem

Figure 5.11, Dimensionless pore pressure response for Cryer's problem

form solution to the problem of a sphere of elastic porous material loaded on
the surface by a constant uniform pressure and having drained boundary con-
ditions. For values of Poisson’s ra .o less than 0.5, pore pressure at the
center of the sphere increases 1o stress levels greater than the externally
applied pressure and then dissipates. The greatest increase in pore pressure
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occurs for values of Poisson’s ratio equal to 0. This response is called the
Mandel-Cryer effect after the two mathematicians who discovered the phe-
nomena. Gibson et al. (1963) conducted laboratory experiments on clay
spheres and were able to reproduce the Mandel-Cryer effect. They demon-
strated that the total stress within a consolidating sphere is not time invariant
as predicted by Terzaghi-Rendulic consolidation theory. Dimensionless total
stress at the center of the sphere increases above unity and approaches unity at
late time.

Figure 5.12. Dimensionless displacement response for Cryer's problem

4.9
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Figure 5.13. Pore pressure contours for Cryer Problem
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Utilizing the symmetry of the problem, the soil sphere was represented by
the mesh depicted in Figure 5.10 and calculated as an elastic axisymmetric
problem. A unit pressure was placed on the boundary during the first incre-
ment of loading and held constant thereafter. Figure 5.11 and Figure 5.12
compare the results from JAM with the closed form solution for a value of L
Poisson’s ratio equal to 0. Figure 5.11 is a plot of dimensionless pore

pressure at the center of the sphere versus the square root of dimensionless *

time; Figure 5.12 is a plot of dimensionless displacement of it outer surface

of the sphere versus the square root of dimensionless time. The comparison

between the FE calculation and the closed form solution is very good. Pore °

pressure contours at a dimensionless time of approximately 0.04 are plotted in

Figure 5.13. At this early time, a significant portion of the sphere has pore

pressures greater than unity,

Summary i

In this chapter, the restart and post-processing features of the FE program

were described. The documented verification problems indicate that the FE

program correctly calculates one- and two-dimensional consolidation problems

and elastic and elastic-plastic boundary value problems. Although the success- o

ful calculation of these verification problems does not certify the FE program

is error free, they should increase the confidence of the end user.
e &
®
®
®
o
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6 Numerical Simulations

Introduction

Numerical simulations of limestons behavior under drained and undrained
boundary conditions are presented in this chapter. The ability of the
14-parameter cap model to simulate the basic drained behavior of limestone is
demonstrated by comparing calculated responses of hydrostatic, uniaxial
strain, and triaxial compression loadings with measured or recommended lirne-
stone responses. In a similar manner, the ability of the FE code to calculate
the undrained behavior of limestone is demonstrated by comparing calculated
responses of uniaxial strain loadings with recommended limestone responses.
Finally, some example calculations are documented that demonstrate the utility
of the FE code in analyzing laboratory test specimen conditions.

Salem Limestone

The limestone simulated in this chapter is commonly referred to as Salem,
Bedford, or Indiana limestone. It was extracted from the Salem formation
near the community of Bedford, Indiana. Mechanical property tests were
conducted on intact specimens of 13.5-percent porosity Salem limestone by the
Vermont office of Applied Research Associates. These mechanical property
tests included drained and undrained (with pore pressure measurements)
hydrostatic ioading tests, K or uniaxial strain tests, triaxial compression tests,
and strain path tests. Laboratory test data and recommended material proper-
ties were obtained from Blouin and Chitty (1988a, 1983b) and Zelasko (1991).

Simulations

Process

Prior to numericaily simulating limestone behavior under drained or
undrained beundary conditions, the skeletal or drained behavior of Salem
limestone was required. The 14-parameter cap model, which was documented
in Chapter 3, was fit to recommended drained Salem limestone mechanical
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®
properties. With this model and fit implemented into JAM, drained single-
element boundary value problems were conducted to insure the FE code
would reproduce the cap model calculations. Undrained single-element
boundary value problems were then conducted.
¢
Drained limestone simulations X
The following recommended drained Salem limestone mechanical proper-
ties were available for fitting: a failure envelope, hydrostatic load and unload °
behavior, K, stress-strain behavior, K, pressure-volume behavior and K,
stress paths, stress-strain curves from triaxial compression tests conducted at
several confining stress levels, and strain path data along three different paths.
Typically, a high fidelity fit of both the hydrostatic loading and K, or
uniaxial strain, responses is impossible to capture with a relatively simple cap L4
: ¢
-
o O
L
( ¢

Figure 6.1. Drained K, stress-strain comparison

model. For this reason, greater emphasis was placed on fitting the uniaxial-

strain stress path and stress-strain responses and less emphasis on the hydro-

static loading response. In Figures 6.1-6.3, the calculated drained K stress PY
and strain responses from the 14-parameter cap model are compared (o the

recommended drained K_ behavior. Figure 6.1 compares the drained K,

stress-strain behavior, Figure 6.2 the K, stress paths, and Figure 6.3 the K,

pressure-volume responses. The quality of the fits are very good. To make

these fits, one must compromise between fitting the K stress path and the K

stress-strain behavior. The model K, stress-strain response breaks over at a L4
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Figure 6.3. Drained K, prassure-volume comparison ®
vertical stress of approximately 150 MPa. A better match to the stress-strain
behavior would require the K stress path to break over at a higher value of
principal stress difference. Higher fidelity was desired in the K, stress path.
L
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In Figure 6.4, the calculated drained hydrostatic pressure-volume response
of Salem limestone is compared to the recommended behavior. The quality of
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Figure 6.4. Drained hydrostatic load-unload comparison
tae fit is not very good because greater emphasis was placed on fitting the K, o 4

behavior. Only a very complicated cap model, with several tens of fitting
parameters, would fit both the hydrostatic and K, behavior of this material.

Drained triaxial compression (TXC) tests at confining pressures of 100 and
400 MPa were also simulated with the cap model. The calculated responses °
are plotted as principal stress difference versus axial strain and compared to
actual test results in Figures 6.5 and 6.6. The quality of the fits is quite good
considering the error introduced into the calculations by the lack of fidelity in
the calculated hydrostatic pressure-volt me response.

Undrained limestone simulations

The following single-clement undrained simulations were performed using
the Walker-Sternberg EOS for water and a carbonate EOS for the grain solids.
The cap model fit to the recommended drained limestone properties modeled °
the skeletal behavior of the limestone.

An undrained K test conducted on a fully-saturated specimen of Salem
limestore was simulated with the FE code. The output is compared 0 the
available recommended properties as another method of verifying the FE
code. The calculated and recommended stress-strain responses are compared L
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Figure 6.6. Drained TXC stress-strain comparison at 400 MPa confining

pressure

in a plot of total vertical stress versus total vertical strain (Figure 6.7). The
calculated undrained K stress-strain response replicates the recommended
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stress-strain response perfectly during the loading phase, while the unloading
is slightly stiffer. The calculated and recommended stress paths are compared
in a plot of principal stress difference versus total mean normal stress
L
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(Figure 6.8). The correlation between the calculated and the recommended
stress paths is excellent.

The total (solid), effective (short dash) and pore fluid stresses (long dash)
for the simulated undrained K test are presented in Figure 6.9 in the format

400 B

Figure 6.9. Stresses in a simulated undrained K, test

of stress versus total volume strain. This figure illustrates that, even in 2
competent rock such as limestone, a significant portion of the total applied
stress 1s carried by the pore fluid, and the peak effective stress is only 20% of
the peak total applied stress.

In "conventional” soil mechanics, water and the grain solids are often
assumed to be incompressible. These assumptions have significant im,>lica-
tions with regard to the response of materials during undrained loading.
Under undrained or zero volume change boundary conditions, the undrained
strength at failure and the undrained effective stress path are unique for a
given material with prescribed initial conditions (Lambe and Whitman 1969).
This means that the effective stress path is independent of the applied total
stress path. A path of zero volume change in an elastic-plastic material
implies that the elastic and plastic volume strains are of equal magnitude and
opposite sign. To demonstrate that a unique effective stress path is developed,
an undrained triaxial compression (TXC) tes!, i.e., constant radial stress
durin_ shear, and an undrained constant mean normal stress (CP) test, i.e.,
constant mean normnal stress during shear, were numerically simulated. The
following conditions existed prior to the undrained loading in both simula-
tions: (1) the compressibilities of the water and the grain solids were zero;
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(2) the nominal effective confining stress in the specimens was 200 MPa,

which was generated by a drained hydrostatic loading; and (3) the initial pore

fluid pressure was zero. The stresses during the shear loading were applied

incrementally until the calculation would not converge under a convergence ® ®
tolerance of 0.5 percent. The calculated total and effective stress paths for the

TXC test (solid line) and the CP test (dashed line) are presented in Figure

6.10. The calculated effective stress paths from the TXC and CP tests are

identical.

Additional undrained calculations were performed to prove that the un-
drained effective stress paths are not unique when the water and grain solids
are compressible. Three undrained TXC tests with the following initial condi-
tions were simulated: the nominal effective confining stress was 200 MPa and
the applied back pressures (initial pore fluid pressures) were 0, 100, and
300 MPa. The calculated effective stress paths are presented in Figure 6.11. ®
These calculations indicate that as the applied back pressure increased from 0
to 300 MPa, the corresponding effective stress paths moved to lower values of
effective mean normal stress. This response can be explained with the follow-
ing logic. As the water becomes stiffer with increasing levels of back pres-
sure, equal strain increments within the specimen generate larger increments °
of pore fluid pressure. Thus, the effective stress paths move to the left in
Figure 6.11.

The previous sections show that the FE code can accurately simulate both
drained and undrained responses of Salem limestone under ideal laboratory
test boundary condition. In the following sections, non-ideal boundary °
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Figure 6.11. Effective stress paths from tests with different back pressures

conditions that actually exist in the laboratory tests will be simulated.

Test Specimen Simulations

FE grid

Cylindrical test specimens were simulated with the axisymmetric FE grid
depicted in Figure 6.12. A quarter grid, consisting of 144 elements and 483
nodes, was used in the simulation due to the symmetric nature of the problem.
The specimen end caps were included in the simulation to investigate the
effects of end cap restraint upon both the stress and strain conditions within
the test specimen. A worst case situation was simulated, i.e., one in which no
sliding was permitted between the specimen and the steel end caps.

The simulated specimen is 11.43 cm (4.5 in.) in length with a diameter of
5.04 cm (2 in.). The permeability of the limestone was [.03 x 10® m?, which
is a value that insures a uniform pore pressure field throughout the mesh
during both the drained and undrained simulations.

Simulation of drained triaxial compression test

A drained triaxial compression test at a confining stress of 200 MPa was
simulated in the following manner. First, equal increments of vertical and

Chapter 6 Numerical Simulations

3 . ey

e



Axial Load/Displacement

l

End ‘Cep

K U Y e A

LELEET

Specimen

FE Grid

LT

|

End Cap

Confining
Pressure

Figure 6.12. Finite element grid for specimen simulation

radial normal stresses were applied to the boundaries of the grid until the
stresses equaled 200 MPa. Second, increments of vertical stress were applied
until the total vertical stress reached 550 MPa. Finally, increments of vertical
stress were removed until a hydrostatic state of total stress was obtained.

The output from this calculation is plotted in the form of contour plots of
several stress or strain parameters, i.c., vJ;p. plastic volume strain, axial
strain and radial strain (Figures 6.13 and 6.14). The contour plots present the
state of stress or strain in the specimen at the time of peak total vertical stress
(Note: the end cap is not included in these contour plots). With the exception

of the upper 15 to 20
percent of the speci-
men, i.c., near the
interface of the
specimen and end cap,
the state of stress
within the specimen is
relatively uniform
(Figure 6.13). Thisis
also true of the plastic

Table 6.1.

Laboratory Calculated Stress and Strain Vslues

Axial Straen

15.8%

I Radial Strain

-6.2%

Principat Stress Difference

310 MPy

v dap

179 MPa

volume strains within the specimen (Figure 6.13). However, both the axial
and radial strains (Figure 6.14) exhibit significant gradients throughout the
specimen. The smallest axial strains (0.03 m/m) are at the top of the
specimen; the largest (0.20 m/m) develop at the center of the specimen. The
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radial strains vary from approximately zero at the specimen-end cap interface

to as much as -0.065 m/m at the center of the specimen.

Table 6.1 contains values of stress and strain that would be calculated from
laboratory measured load and deformation measurements. Stresses, €.g.,
principal stress difference, were corrected for the changing cross-sectional
area of the test specimen. The stress values underestimate the strength of the
test specimen by approximately 5 percent, 179 MPa (from above table) versus
190 MPa (average stress throughout specimen). The axial strain of
15.8 percent represents only a small portion of the calculated axial strain
within the test specimen, while the radial strain of -6.2 percent is
representative of the radial strains in the central portion of the test specimen.

This calculation implies that the state of stress within the test specimen is
nct significantly effected by end cap restraints. Uniform stresses occur
throughout major portions of the specimen. In contrast, large axial and radial
strain gradients were developed in the test specimen. This implies that some
type of end-cap lubrication should be used if uniform states of strain are

desired.

Simulation of consolidated undrained triaxial compression test

A consolidated undrained triaxial compression test at a confining stress of
200 MPa was simulated with the FE code JAM. To begin the calculation,
equal increments of vertical and radial normal stresses were applied to the
boundaries of the grid until a hydrostatic stress of 200 MPa was achieved.
During this hydrostatic loading, pore fluid was allowed to drain from the
specimen. The boundary conditions were then changed so that no pore fluid
could drain from the specimen. Finally, increments of vertical stress were
applied until the solution would not converge, which implied that the specimen
had failed. Failure occurred at a total axial strain of approximately
4.7 percent. A uniform pore fluid pressure existed throughout the specimen.

The output from this calculation is plotted in the form of contour plots of
VJap. volume strain, axial strain, and radial strain (Figures 6.15 and 6.16).
The contour plots present the state of stress or strain in the specimen at the
time of specimen failure (Note: The end cap is again not included in thesc

contour plots). The

Table 6.2.

*/JID contours (Figure Laboratory Calculated Stress and Strain: Values

6.15) illustrate that a
uniform state of stress
exists within 2 majority
of the test specimen;
significant gradients
only exist near the
specimen-end cap inter-
face. The same is true
of the volume strain

for Undrained TXC Test

B g e~ RN Y

Axwal Strann 4 7%
Radial Stram -0.4%
Volume Stran 3.8%
Principal Stress Difference 216 MPa
v’ Jzo 124 MPa
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contours. The calculated volume strains indicate that the specimen was
compacting. The calculated pore pressures confirra this observation, i.e., they
increase continuously until spec’ ien failure occurs. Due to the smiall axial
strain level at which specimen failure occurs, significant gradients of axial and
radial strain were not developed in the test specimen (Figure 6.16). Axial
strains vary from 0.02 m/m at the top of the specimen to less than 0.055 m/m
in the center of the specimen. Radial strains range from approximately zero
at the specimen-end cap interface to -0.004 m/m at the center of the specimen.

Table 6.2 contains values of stress and strain that would be calculated from P
laboratory measured load and deformation measurements. As in the drained
simulation, stresses were corrected for the changing cross-sectional area of the
test specimen. The laboratory calculated stress values correspond with the
values from the test specimen simulation, i.e., 124 MPa (from above table)
versus 123 MPa (average stress throughout specimen). The laboratory calcu-
lated volume strain of 3.8 percent underestimates the simulated volume strains
that vary between 4 and 4.4 percent throughout most of the test specimen.

The axial strain of 4.7 percent agrees with the calculated axial strain
throughout a major portion of the test specimen. The radial strain of -0.4% is
representative of the simulated radial strains in the central portion of the test
specimen. Py

This calculation demonstrates that significant stress and strain gradients are
not developed in the limestone when the specimen fails at small axial strains,
despite the introduction of end cap restraint. In addition, the stresses and
strains calculated from laboratory measurements correlate well with the actual
stress and strain states within the test specimen.

Summary

Numerical simulations of limestone behavior under drained and undrained
boundary conditions were presented in this chapter. The ability of the
14-parameter cap medel to simulate the drained behavior of the limestone was
demonstrated by comparing calculated responses of hydrostatic, uniaxial
strain, and triaxial compression loadings with measured or recommended
limestone responses. The ability of the FE code to calculate the undrained ®
behavior of the limestone was demonstrated by comparing calculated respon-
ses of uniaxial strain loadings with recommended limestone responses.

Finally, both drained and undrained TXC test simulations were documented
which demonstrate the utility of the FE code in analyzing laboratory test
specimen conditions. °
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7 Summary

This report documents the features and algorithms implemented into the FE
code JAM. The FE code JAM is a numerical tool with the capability to:

® calculate strains, total and effective stresses, and pore fluid pressures
for fully- and partially-saturated porous media,

® calculate the time dependent flow of pore fluids in porous media,

® model nonlinear irreversible stress-strain behavior, including coupled
shear-induced volume change, and

® simulate the effect of nonlinear pore fluid compressibility and the
contribution of the compressibility of the grain solids for stresses up to
several hundred megapascals.

In this report, the FE model implemented into JAM was described, and
equations were developed for the residual forces. The features of the cap
model and the relevent equations were documented, and the steps required to
implement the cap mode! into the FE code were summarized. Other consti-
tutive models available in the code were also reviewed.

The equations of state for air, water, and the grain solids were documented,
and the equations for the compressibility of an air-water mixture were devel-
oped. Several documented verification problems demonstrated that the pro-
gram works correctly. These problems included one- and two-dimensional
consolidation problems, Cryer's problem of a consolidating sphere of s0il, and
a thick-walled cylinder problem.

Numerical simulations of limestone behavior under drained and undrained
boundary conditions were presented. A 14-parameter cap model modelied the
skeletal properties of the limestone. Single element calculations demonstrated
the ability of the FE code to simulate both the drained and undrained re-
sponses of the limestone under several different load and unlosd boundary
conditions. The wtility of the FE code was demonstrated by the simulation of
restraint had on the stress and strain states in the test specimen.

Chapter 7 Summary
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