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1. INTRODUCTION

Combining GaAs Microwave Monolithic Integrated Circuits (MMICs) and fiber
optic technologies offers microwave system designers many advantages for
remote antennas, communication links, and phased array antennas. Active phased
array antennas use a large number of individually controlled transmit-receive
(T/R) modules which require independent microwave reference and control
signals. The resulting distribution networks needed to route this information for
T/R modules to perform beam steering and shaping can become very complex.
Conventional distribution networks such as coaxial transmission lines and metallic
waveguide are bulky, and are susceptible to radiation in hostile environments.
Fiber optic transmission systems have become an attractive alternative for the
distribution of microwave and control signals, because of their desirable features,
such as high speed, large bandwidth, good electrical isolation, small size, and
immunity to electromagnetic interference (EMI) and electromagnetic pulse
(EMP). Presented in this report are four optically controlled microwave
circuits, which take advantage of the GaAs MESFET as an optical detector, to
demonstrate that fiber optic technology can be integrated into GaAs MMIC-based
microwave systems.

2. GaAs MMIC MESFET AS AN OPTICAL DETECTOR

For microwave applications, there is an interest in linking optical signals directly
to the MMIC. This makes the MESFET, the principal building block of MMICs,
an attractive optical detector because, unlike the PIN diode, it is compatible with
oasic MMIC processing. The Metal-Semiconductor (MS) photodetector, which
performs similarly to the PIN diode, can also be fabricated on the MMIC chip.
However, for many applications, such as the direct optical injection locking of
oscillators, the illumination of an active device is required.

The photoresponse of the MESFET is due to the photogenerated currents
produced in the channel, substrate, gate depletion region, and potential barrier at
the channel substrate interface. The photoresponse of an ITT GaAs MESFET as a
function of gate-to-source voltage (Vgs) for different optical intensities is shown
in Figure 1. From the graph two important observations can be made. First, the
photoresponse is an increasing function of the optical intensity due to the increase
in the photogenerated carriers in the device. Second, the photoresponse is
dependent on the electrical bias. For the MESFET, the optimum bias
corresponds to the maximum device transconductance (gm).

The frequency response of an ITT GaAs MESFET and a PIN photodetector was
compared by measuring the forward transmission coefficient, {S21l, of each in a
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Figure 1. Photoresponse of a GaAs MESFET as a function of Vgs and optical
intensity.

fiber optic link. The frequency responses of the MESFET and the PIN are
depicted in Figure 2, showing that the ITT device response is higher than the PIN
almost to 1 GHz.

The MESFET has a larger response than the PIN diode, even at significantly
lower coupling efficiencies (13.5% for the ITT device and 60% for the PIN),
because of internal gain mechanisms. Improvements in optical coupling and
optimization of material parameters of the MESFET will lead to improvements
in frequency response, so that it will equal or better the performance of the PIN
to a few GHz.

3. OPTICAL CONTROL OF MICROWAVE CIRCUITS

The MESFET is used as an optical detector in two types of control
configurations, direct and indirect, to perform optical control of microwave
circuits. In the indirect approach, the MESFET is used as an optical detector to
receive a control signal which is sampled, amplified, and then utilized to control
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Figure 2. Frequency response of a PIN photodetector and an ITT GaAs
MESFET.

microwave circuit functions. In the direct approach, the optical signal illuminates
the MESFET and changes the device's operating conditions. Three indirectly
controlled circuits for phase, gain and switching, and one directly controlled
circuit for injection locking, were built to demonstrate optically controlled
microwave functions.

3.1 OPTICAL GAIN CONTROL

Gain control by optical means has been accomplished [1,2] by controlling the
biasing circuit of an amplifier, as shown in the block diagram in Figure 3. For
this experiment, the optical sensing element was a multi-finger MESFET, which
was illuminated by an LED source. The optical signal changed the drain to source
voltage of the MESFET, which in turn was used to control the bias voltage of the
amplifier.

The gain control element was a MMIC distributed amplifier whose performance

was controllable through its bias voltage. A 14-gate finger MESFET served as
an optical detector. By using a multi-finger MESFET, the exposed GaAs area for
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Figure 3. Block diagram of an optically controlled amplifier.
»
light absorption was increased resulting in a significant improvement in the
optical response over a single finger device. Gain control was established by
increasing the light to the MESFET. As the optical illumination incident on the
MESFET was increased, the gain of the distributed amplifier increased. A R
change in gain of -10 dB to +5 dB was achieved over the frequency range of 5 to
8 GHz with only 250 uw of optical power, as shown in Figure 4.
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Figure 4. Amplifier gain as a function of optical power. »




3.2 OPTICAL PHASE CONTROL

The optical control of a 6-bit X-band phase shifter was also demonstrated [3]. A
digital phase shifter consisting of n-bits may be optically controlled by an
intensity modulated LED or laser diode. Again a MESFET was used as the optical
detector in this experiment. The LED's intensity was varied to produce 2n
equally spaced discrete MESFET output voltages, which were appropriately
scaled via a standard amplifier to correspond to an A/D converter input voltage
range. The A/D converter then converted the voltages to an n-bit binary word
which was used to command the phase shifter to a desired phase state. In this way,
the intensity level of the incident opticai input sets the phase shifter to the desired
state. A block diagram of the phase shifter is shown in Figure 5 and the test
results at 10 GHz are shown in Figure 6.

3.3 OPTICAL SWITCHING

An optically controlled GaAs MMIC switch was constructed and tested with the
MESFET as an optical detector [4]. A block diagram of the circuit is shown in
Figure 7. The microwave switch, contained on a single GaAs MMIC chip, was a
single pole double throw (SPDT) which operated from 8 to 12 GHz. The switch
was controlled by two voltage settings, Vi and V2. To switch the microwave
input signal to OUTPUT 1, the required voltages were V1=0.0 and V2=-7.0 volts.
To switch the microwave input signal to OUTPUT 2, the voltages needed were
V1=-7.0 and V2=0.0 volts.

The operation of this circuit is as follows. The MESFET optical detector was
biased at pinch-off, and the drain-to-source voltage (Vps) was set to 3.0 volts.
Under optical illumination the device conducted current through Rp which
resulted in a change of 0.5 volts in Vps. The optical intensity needed to provide
the 0.5 volt change was only 25 pw. The drain of the MESFET was connec..d to
two high speed operational amplifiers with a voltage gain of 14 (23 dB). One of
the amplifiers operated in the inverting mode and the other in the non-inverting
mode. In the absence of illumination, the difference between Vps and the
reference voltage to the input of the non-inverting op-amp, Vrefl, was 0.0 volts,
and therefore the output voltage Vi was 0.0 volts. For the inverting op-amp the
difference was 0.5 volts at the input, Vref2 was set to 2.5 volts, and with a gain
of 14, the output V2 was -7.0 volts. Under these conditions, QUTPUT 1 was in
the low loss state, and OUTPUT 2 was in the isolation state. When the MESFET
was illuminated, Vpgs changed from 3.0 to 2.5 volts and the outputs of the op-

amps switched states, thereby switching the microwave signal from OUTPUT 1
to OUTPUT 2. Switching rates of 100 ns were obtained.

x
[ J
.
LY
®
X
[ ]
[ J
L
» o
»
[ ]
[ ]
[
[ ]




b 180°
180°
90°

FET Inverting

Dobva op-amp
\D Y

45° 6-bit
= X-band

MR
TTTTTYTIT
:

D—-O.—-4 D___D_ 2250 shifter
G-40 22.5°
11.25°
11.26°
5.625°
Inverting op-amps
for level shiftina

Figure 5. Block diagram of an optically controlled 6-bit X-band phase shifter.

\V

150

1m: //

Phase Shift (Degrees)

0 50 100 150 200 250 300 350
Optical Power (Microwatts)

Figure 6. Phase shift as a function of optical power for the X-band digital phase
shifter at 10 GHz.
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Figure 7. Optically controlled GaAs MMIC switch.

3.4 DIRECT OPTICAL INJECTION LOCKING

Each individual T/R module needs its own phase and frequency reference signal.
A high speed fiber optic link can be einployed to provide this reference signal by
optically injection locking an oscillator in the module. In direct optical injection
locking, the active element in the oscillator is illuminated by an optical signal
which contains a microwave modulation. The direct method is a simple technique
which is easily integrated into MMICs.

For this experiment, an oscillator was designed using a MESFET with a large
drain to source spacing to improve optical coupling [5]. The oscillator was
designed in a common gate configuration with series inductive feedback. The
circuit was fabricated on an alumina substrate with the MESFET chip mounted to
allow direct illumination from an optical fiber. The free rur.ning unilluminated
oscillator, with an output power of 3.7 mW, operated at a frequency of 5.45%8
GHz. A high speed laser, coupled to a 50um core fiber, was biased to 4 mW of
output power and modulated to approximately 100% modulation depth, at a
frequency close to that of the oscillator. The end of the fiber was positioned
above the MESFET, and the optical signal injection locked the oscillator. Locking
bandwidths of up to 50 MHz were achieved. Figures 8a and 8b show the
MESFET oscillator in free running and optically injection locked states. This
technique provides reasonable locking bandwidth without the need to separately
detect and amplify the optical signe.
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4. CONCLUSION

There is increasing interest in using fiber optics in microwave systems for
distributing microwave signals, modulation information, and control signals, and
for signal processing. Of particular interest is the use of fiber optics in GaAs
based MMIC active phased array antennas. The distribution of microwave signals
has been demonstrated as was the optical control of gain, phase and switching
functions of microwave MMICs. These applications can be used to steer and shape
the radiation pattern of active phased array antennas. Although the optimization

bladd

N

-




{ of these circuits requires further investigation, the initial results are encouraging.
In the area of MMICs, it is foreseen that future work will address the integration
of electrooptic and microwave components on the same chip.
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