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1. OVERVIEW
This document is the final report for Generalized Multichannel Signal Detection, an

effort conducted by Kaman Sciences Corporation (KSC) under Rome Laboratory's Broad
Agency Announcement (BAA) number 90-04. This effort was performed for

Dr. James H. Michels
Rome Laboratory

RL/OCTM
Griffiss AFB, NY 13441

(315) 330-4432

1.1 Background

Over the last few years, the Surveillance and Photonics Directorate of Rome Laboratory
has been investigating an innovative approach in signal processing. This model-based
innovations approach has been described in a series of technical reports ([Michels 891,
[Michels 90a], [Michels 90b], and [Michels 91]). This investigation has developed:

"* A synthesis procedure for simulating multichannel Autoregressive (AR) processes in
which intertemporal and interchannel correlations are controlled by specifying signal
characteristics such as the one-lag temporal and cross-channel correlation parameters.

"* A capability for ialyzir- the pe -ormance of various multichannel estimation
algorithms.

"* A multichannel signal detection algorithm based on a generalized likelihood ratio using
an innovations approach.

Kaman Sciences has designed a software system to supF )rt these investigations. This
system. the Multichannel Signal Processing Simulation System (MSPSS), allows the user to:

"* Synthesize multichannel signals, interffrence (clutter), and noise ai described by certain
Autoregressive (AR) models

"* Perform certain diagnostic functions on the synthesized signals, such as plotting,
calculating certain statistics, and examining Fourier transforms and correlation functions.

"* Calculate a loglikelihood statistic and examine its performance in terms of false alarm
and detection probabilities.

The MSPSS has two main subsystems. The original subsystem is a collection of stand-
alone programs, each of which are called from a variety of menus. These programs pass data
between one another in system files. The 'old system' is very flexible in the analysis that it
supports in that the user is not limited to executing the programs in a predefined order. It
also provides a wide range of functionality. It is quite inconvenient, however, when the user
wants to perform repetitive analyses. The user interacts with the system for a short while to
execute a program, waits a considerable time for the program to complete, then must interact
with the program again, and so on. A batch capability in which the user can define all inputs
at once would be much more convenient.

The 'new subsystem' was developed to fill this need ([Kaman 91a] and [Kaman 92b]).
The 'new system' was designed and implemented under a Graphical User Interface-based
fourth generation system. Kaman Sciences originally designed this GUI-based system, the
User Front-end Interface (UFI) as part of the Multisensor Interface Algorithm (MAX) system,
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a program developed for RL/OCTS. The UFI combines code generation capabilities with
windowing, icons, and a mouse-dnven interface. The UFI is general purpose, but the MSPSS
is the first system, other than the onginal one, to be developed under it.

The UFI portion of the MSPSS, the new subsystem, allows the user-to construct an
"experiment" characterized by various algorithms and parameters. Once an experiment has
been completely described, a computer program for performing the experiment is
automatically generated, compiled, and executed. Since these are simulation experiments, the
generated program can run for quite a while. Typically, a single experiment is used to
analyze the performance of the signal detection algorithm in terms of the false alarm rate and
the probability of detection.

The MSPSS supports the RL investigations described above. Several extensions to this
work are described, but not analyzed, in Multichannel Detection Using the Discrete-Time
Model-Based Innovations Approach [Michels 91]. First, the synthesized processes generated
for the signal detection analysis can be generalized or changed. The signal, clutter, and noise,
as synthesized by the MSPSS as it existed at the start of this project, were all described by
either AR processes or Gaussian white noise. The sum of signal, clutter, and noise is then an
Autoregressive Moving Average (ARMA) process. Dr. Michels has suggested generalizing the
process synthesis to include nonstationary bandpass processes, processes modeling multipath
situations, and spherically invariant random processes (SIRP) for the generation of more
general classes of non-Gaussian processes.

Second, the signal detection algorithm can be adapted to handle these new cases.
Multichannel likelihood ratios need to be developed and implemented for nonstationary
bandpass processes, multipath analysis, adaptive processing, and non-Gaussian SIRP
processes.

Finally, the techniques implemented in the MSPSS at the beginning of this project could
be enhanced. In particular, additional decomposition methods can be added, as well as new
diagnostics for testing the distribution of a process. Dr. Aydin Ozturk, a statistician recently
appointed as a visiting professor at Syracuse University has suggested a method for
determining probability distributions based on limited data samples. Dr. Ozturk's colleagues
at Syracuse University have been examining different methods of applying Ozturk's
algorithm. A method of testing distributions based on this work could be added to the
MSPSS.

The work reported in this project added functionality to the MSPSS to support the
analysis of these generalizations and extensions.

1.2 Objective

The objective of this effort was to enhance the MSPSS to support generalizations of the
analysis implemented at the beginning of the project. These generalizations were based on
suggestions for future work described in Multichannel Detection Using the Discrete-Time
Model-Based Innovations Approach [Michels 91]. Specifically, such enhancements were
expected to support the investigation of new multichannel signal processing algorithms
consisting of the following:

* The synthesis and analysis of multipath and feedback processes as described in Section
8.2.6 of [Michels 91]
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"* The synthesis arid analysis of multichannel extensions of non-Gaussian processes using
Spherically Invariant Random Processes (SIRP) as the white noise driving term mi an
Autoregressive (AR) process.

* Enhancement of the synthesis and analysis procedures to support adaptive processing. In
particular, coefficients describing the synthesized process can be abruptly changed.

"* Implementation of new algorithms, such as the Singular Value Decomposition of
covariance matrices and a goodness-of-fit test.

1.3 Tasks Performed

This effort consisted of tasks that developed new capabilities in process synthesis
methods, estimation algorithms, likelihood ratio algorithms, and new diagnostic algorithms.
The specific details of these tasks evolved in consultation with RL to provide capabilities that
best support their research directions.

1.3.1 Task 1: Process Synthesis

Under this task, four extensions were made to the signal synthesis modules of the
Multichannel Signal Processing Simulation Software.

1.3.1.1 Unconstrained Quadrature Components

A synthesis procedure resulting in multichannel autoregressive processes with Gaussian
statistics and unconstrained quadrature components was implemented. This procedure requires
the use of the correlation function shaping techniques contained in the current software to
describe the correlation matrix given in Equation 4.6.3.b of [Michels 91], to solve for the
coefficients in the Yule-Walker equation 4.6.6, and to synthesize Autoregressive processes as
described in Equation 4.6.21 .b.

Unconstrained quadrature synthesis modules were added to both the menu-based old
system in the MSPSS and the UFI-based new system.

1.3.1.2 Multipatb Processes

The synthesis capability was extended to include the effects of multipath, as described in
Figure 8.2.1 of [Michels 91]. In this extension, the signal processes were configured to contain
delayed and weighted values of the non-white clutter noise, where the number of delays, the
time position, and the values of the weights are user specified.

Multipath synthesis modules were added to both the menu-based old system in the
MSPSS and the UFI-based new system.

1.3.1.3 Spherically Invariant Random Processes

Multichannel Non-Gaussian process synthesis algorithms using the Spherically Invariant
Random Processes (SIRP) method [Rangaswamy 91] were implemented. This procedure is
used to generate a non-Gaussian white noise process as an alternative to the Gaussian white
noise driving term in the previous AR process synthesis procedures. The specific approach
utilizes the procedure outlined in [Rangaswamy 91] for generating SIRPs for the K
distribution.

Detection analyses using SIRP noise and AR clutter being investigated by RL currently
use a deterministic model for the signal. A capability of generating deterministic signals was



also added under this task.

SIRP synthesis modules were adued to both the menu-based old system in the MSPSS
and the UFI-based new system. A mixuversion of the 'old system,' focused on SIRP process
synthesis, was delivered to Dr. Jorge Romeu, at the direction of RL. This minisystem
supported the research descnbed in Monte Carlo Validation of A Theoretical Model for the
Generation of Non-Gaussian Radar Clutter [Romeu 92].

1.3.1.4 Processes with Abrupt Parameter Changes

An AR process synthesis procedure capable of simulating an abrupt change in the
process parameters was implemented. In this procedure, the user has control of the correlation
properties of the processes before and after the change, as well as the temporal location of the
change.

This capability was implemented by providing a module for concatenating multiple
processes under the old system. Each process that is concatenated can be synthesized under a
different model, or the same model with different parameters.

The analysis supported by this capability is still a subject of current RL research. The
flexibility of the 'old system' is still needed, and canned analysis sequences cannot yet be
defined to take advantage of this capability. Therefore, it has not yet been added to the 'new
system.'

1.3.2 Task 2: Algorithm Implementation

The Single Value Decomposition (SVD) was implemented as an addition to the
previously available Cholesky and LDU decompositions of the error covariance matrix. This
capability was implemented in the white (driving) noise generation of process synthesis
procedures in the old ;ystem. It was also implemented in the linear prediction filters in both
the old and new systems.

1.3.3 Task 3: Likelihood Ratio Implementation

Two new likelihood ratio statistics were implemented under this effort. One of these
likelihood ratios is appropriate for an innovations-based model in which quadrature
components are not constrained to be uncorrelated. The other is appropriate for a deterministic
signal in K-distributed SIRP noise.

1.3.3.1 Unconstrained Quadrature Likelihood Ratio

The likelihood ratio detection schemes described in Equations 6.3.27 and 6.3.37 of
[Michels 91] were implemented for the case of Gaussian processes with unconstrained
quadrature components. This capability was implemented under both the old and new systems.

Also, the constrained quadrature likelihood ratio contained in the previous version were
configured under the 'new system' to perform detection analyses using the unconstrained
quadrature process synthesis procedures. (With the flexibility in the interaction of modules,
this capability exists under the 'old system' with no addit'ional labor.) The constrained
quadrature likelihood ratios were derived under the assumption that the in-phase and
quadrature components of the radar are uncorrelated. This capability allows performance
degradation to be examined as this assumption is increasingly violated.
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1.3.3.2 SIRP Likelihood Ratio

A new likelihood raio and a filtering scheme were implemented for the case of a
determnisuc signal in SIRP noise or AR clutter with SIRP driving noise. The implementation
allows the Gaussian limiting case of the K distrbuton to be used as well. This capability was
implemented in both the ne% and old systems.

The previously existing loglikelihood ratio derived for Gaussian processes was
configured in the new system so that SIRP processes could be evaluated with that
loglikelihood statistic as well. Thus, the case of a mis-matched receiver can be addressed.
This capability is provided by the structure of the 'old system' with no additional effort.

1.3.4 Task 4: Diagnostics Implementation

A capability was added for estimating the distribution of a quadratic form that
characterizes SIRPs. This capability was added to the old system. Since this capability is not
appropriate for batch operation and requires a graphical display of the results, it was not
implemented under the new system.

1.4 Summary of Results

The capabilities of the MSPSS were considerably generalized by this effort. Previously,
the synthesis and analysis capabilities were limited to Gaussian processes with uncorrelated
in-phase and quadrature components. New capabilities added under this effort remove this
constraint on quadrature components, add an important non-Gaussian capability, support the
modeling of multipath processes, and allow process parameters and models to abruptly
change. Diagnostic procedures, new loglhkelihood ratios, and other new algorithms
appropriate for these new models were added to the MSPSS. With these new capabilities,
RL/OCTM can explore the robustness, performance, and applicability of the innovations-based
loglikelihood ratio in [Michels 91] in much more general circumstances. It will require some
time before the full potential of this new system is thoroughly explored.
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2. TilE MULTICHANNEL SIGNAL PROCESSING SIMULATION
SYSTEM

Kaman Sciences has developed the Multichannel Signal Processing Simulation System
(MSPSS) to support research being conducted by RL/OCTMI. This section bnefly overviews
the problems that can be examined with the MSPSS and how capabilities are added to this
software system.

2.1 The Multichannel Signal Detection Problem

The MSPSS is designed to simulate correlated random vectors which charactenze
several channels of data. The data gathered at any point in time consists of a (possibly
complex) vector with a component for every channel. A single realization of the process
generating this data consists of a ordered sequence of such vectors. When no target is
present, the data will consist of white noise and, optionally, correlated noise (clutter).

The signal detection problem is to decide if the data is, in fact, white noise and clutter
or if a signal is present. That is, one must decide between the null hypothesis

* H,: x - c + n

and the alternative

H H:x -s +c +n

where x denotes the observed retur i, s denotes a signal, c denotes clutter, and n denotes
noise. The probability of falsely deciding a signal is present is known as the false alarm
probability, while the probability of correctly indicating a signal when one is present is known
as the probability of detection. (Considered as a problem in the Neyman-Pearson theory of
statistical hypothesis testing, the false alarm probability is known as the significance level.
The probability of detection is the power of the test.) Typically, signal detection algorithms
are evaluated as a function of these two parameters, the false alarm rate and the probability of
detection. The MSPSS supports the estimation of the threshold value and probability of
dctection under user-specified conditions for given false alarm rates.

2.1.1 An Innovations Approach

The MSPSS implements the approach to this problem descnbed in [Michels 99] and
[Michels 91]. This is a model-based approach depending on specific models for the signal,
clutter, and noise. The signal and clutter are each modeled as Vector Autoregressive (VAR)
processes. A VAR process x ( 1), x (2) .r (N) is defined by:

x(n)=- • A(k)x(n -k)+z(n),
k-I

where : (n ) is a random (possibly complex) zero-mean vector with covariance matrix T_ If the
off-diagonal elements of E are non-zero, the time samples x (n) are correlated across channels.
The AR parameters A (k _ead to correlation of the process in time.

Previously, the distribution of the driving noise term was Gaussian throughout the
MSPSS. This effort added a capability to allow the driving noise distribution to be a K-
distributed Spherically Invariant Random Process. Also, the processes were previously
represented by the in-phase and quadrature components in complex form. That is, if the
returns have J channels, x (n ) is a J element complex vector:
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X (n )r - [x,(n ),x,(n ),.. rj (n )I.

where the real component of x, (,t) represents the in-phase component of the jth channel, and
the imaginary component represents the quadr-ture component. This effort added a capability
to represent in-phase and quadrature components in concatenated quadrature form:

r (n)T = [xtj (n ), _vQ r (n )],

where x, (n ) and x, (n ) are J-element real vectors representing the in-phase and quadrature
components respectively:

x1T (n ) - [x, I(n ), x,2(n ) r .... j (n )]

.rT(n )=[XQ,l(n),xQ,-(n .. Q. j (nA)].

In addition, a more general procedure was implemented to allow arbitrary correlation between
these components.

The remainder of the mathematics in this section does not apply to the concatenated
quadrature form of a VAR process.

The covariance matrix of the driving noise, L can be decomposed in one of several
ways. The Cholesky decomposition is represented by:

E=C I CH.

C is a lower diagonal matrix, and I is the identity matrix. The LDU decomposition is
E=LDLn

where D is a diagonal matrix and L is a lower diagonal matrix with unity along the principal
diagonal. At the start of this effort, the MSPSS only supported the Cholesky and LDU
decompositions. During this project, the Singular Value Decomposition (SVD) was added:

ZEQAQH.

., is a diagonal matrix in which the principal diagonal consists of the eigenvalues of E. The
columns of Q are the corresponding eigenvectors. The matrix Q is unlikely to be lower
diagonal.

Any one of these decompositions can be used to construct an "innovations"
representation of a VAR process. Let M be C, L, or Q. The innovations representation is then
given by the following equation:

p

Mx (i U M-A (k) x (i - k ) + M-z (i),
k-I

where M- z (i) are the innovations. The random vector M- z (i) is uncorrelated in time and
across channels and has variances given by the diagonal matrix in the correspond'ng
decomposition. At present, the MSPSS supports innovations-representations of autoregressive
processes. A state-space capability is currently being developed.

2.1.2 Shaping Functions and the Yule-Walker Equations

A Vector Autoregressive model of the signal or clutter can be specified by the AR
parameters and either the covariance matrix of the driving noise or one of the decompositions
described above. However, direct specification of these parameters does not readily enable
the control of the temporal and cross-channel correlation. Consequently, a "shaping function"
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has been proposed for controlling AR parameters in terms of physically meaningful
parameters [Michels 9!].

For a stationary, zero-mean stochastic process x(1),x(2),...,x(N), one can define a
matrix showing the correlations across channels for the kth lag:

R,(k)=E [x(n )xH(n -k )],

where x (n - k) denotes the Hermetian transpose of the vector r(n , ). (The Hermetian
transpose of a matrix is the complex conjugate, on an element by element basis, of the
transpose of a matrix.) Note that if the number of channels is J, R,(k ) is a J x J matrix.
Furthermore, it follows from this definition that the foli u.ing holds:

R,(-k ) = RH(k )

The correlation matrix and the AR parameters are related by the Yule-Walker equations.
For example, if the number of lags, p. is three, the Yule-Walker equations are as follows:

R(0) R(1) R(2) R(3)]

A(1) A(2) A(3) R(-2) R(-) R(I) R(2) F ] 0 0 0
R(-2) R(-I) R(0) R(I)

R(-3) R(-2) R(-I) R(0)

Given the matrx of correlations R, these equations can be solved for the AR parameters and
the driving noise covariance matrix E.

The user of the MSPSS does not specify the correlation matrix for each lag, but certain
parameters of "shaping" functions" from which the correlation matrix is calculated. Two forms
of shaping functions are available, a Gaussian and an Exponential function. The Gaussian
shaping function is defined by

Uk i[k- ,,s )21R,,i,s(k Ki, e2, j

x i,s(l'.s )

R, .. s(k ) R,.J.i * (-k ), i >j.

K is the amplitude matrix, X is the one-lag temporal correlation parameter, I is the lag value at
which the function peaks, 0 is the Doppler shift, and T is the sampling period. X* is the
complex conjugate of the complex number X.

The Exponential shaping function is defined by

R•,i,J (k) =KiJ.i e, jts

R•,i,j ( k )=R,•,,i* (-k ),i> j .

2.1.3 The Signal Detection Algorithm

An innovations-based signal detection algorithm has been defined for the above model
[Michels 91]. The signal and clutter are assumed to be VAR processes, while noise is white
and possibly correlated across channels. The sums of the signal, clutter, and noise are
Autoregressive Moving Average (ARMA) processes. These can be approximated by different
high order VAR processes.
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Given the parameters of the VAR process, including the decomposition of the driving
noise covanance matrix, a linear filter can be constructed whose outputs are the innovations
when the inputs are the VAR process. Two such filters, denoted FO and Fl, need to be
constructed for this signal detection algorithm. The parameters of the VAR process
approximating the ARMA process for the null hypothesis describe the FO filter. Thus, when
the input is the sum of clutter and noise, the output of the FO filter will be white noise
uncorrelated in time and across channels. Similarly, the Fl filter applies to the alternative
hypothesis. When the input is the sum of signal, clutter, and noise, the output of the Fl filter
will be uncorrelated white noise. The outputs of the two filters, then are estimates of the
innovations for the VAR models corresponding to the null and alternate hypotheses.

The signal detection algorithm works by first filtering two copies of the returns by the
two filters FO and F1 in parallel. A loglikelihood ratio is then calculated on the outputs of
these filters. If the loglikelihood statistic is above a predefined threshold, the algorithm allows
one to decide a signal is present. Otherwise, the alternative hypothesis should be rejected and
one should decide no signal is present.

This algorithm raises many questions that the research program being conducted by
RL/OCTM is designed to answer. What threshold values should be used for given false alarm
rates and given parameters of the signal, clutter, and noise models? What is the probability of
detection? How does the performance vary with different algorithms for estimating the filter
coefficients and different estimation algorithms (e.g. the Yule-Walker, the Nuttall-Strand, and
the Vieira-Morf algorithms)? Does the use of different decomposition algorithms (Cholesky,
LDU, or SVD) alter the performance? How does the algorithm perform for different varieties
of non-Gaussian noise? How much variation is there in the performance of th.se algorithms
as the process correlation changes? When are AR models good approximations? What
happens if the models embodied in the filters do not exactly match the radar returns?

The MSPSS provides the analyst with tools to answer these questions via Monte-Carlo
simulation. Capabilities are provided for synthesizing signal, clutter, noise, and their sum. In
process synthesis, the user enters the parameters of the shaping functions and chooses a
decomposition method. The program solves the Yule-Walker equations by means of the
Levinson-Wiggins-Robinson algorithm. The program synthesizes the innovations for an AR
process, multiplies the innovations by the decomposed covanance matrix, and adds the
weighted sum of previous lags. A user-specified number of realizations of signal, clutter, and
noise is generated, where the number of time samples is also user specified.

Capabilities are provided for performing certain diagnostic functions on the resulting
realizations of the generated stochastic processes. The user can calculate means and variances,
fast fourier transformations, correlation functions, or estimate autoregressive parameters. The
functions, and the synthesized radar returns, can be displayed graphically under an X windows
interface. Various functions are provided for manipulating radar returns such as adding them,
splitting a multichannel return into several single channel returns, combining single channels
into multichannel returns, and so on.

Finally, the MSPSS implements the signal detection algorithm described above. Linear
prediction filters are provided, with user-definable parameters, for removing intertemporal and
interchannel correlation. Several loglikelihood statistics can now be calculated, depending on
the specific model the user chooses. Both thresholds and detection probabilities can be
calculated, as well as the variance in these estimates.
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2.2 Using the MSPSS

When invoking the onginal menu-based system, the user is presented with a main menu
with two sets of three submenus. The two sets of menus correspond to capabilities for single-
channel and multichannel models. The three submenus for each set provide synthesis, filtering,
and diagnostic capabilities, respectively. The user chooses a menu option by typing an
identifier, followed by a carnage return. Each option in a subprogram corresponds to an
individual program. These programs prompt the user for their inputs, echo their outputs to the
user's terminal, and save some of their inputs to user-specified binary files. These binary files
are readable by other programs in the system.

The new UFI-based system interacts with the user by means of a windowing, icon, and
mouse-driven interface. This interface is implemented under X Windows, but a menu-based
interface is also provided. The user defines a "project" as a collection of "experiments." An
experiment consists of an analysis sequence. A typical analysis sequence will estimate AR
parameters for filters, repetitively synthesize noise so as to estimate threshold values, and
synthesize signal plus noise so as to estimate detection probabilities. When defining the
sequence, the user defines all required inputs. The system is designed such that no inputs
require any knowledge of intermediate results.

After defining an experiment, the user can exit the system. The back end then creates a
Fortran 77 program implementing this experiment. The program is created, and its execution
is begun in background. The system sends a message to the user when finished, using the
Unix system's mail facility. The user can then examine the output of the program, which is
saved to a file. The use of the new system is described in much greater detail in [Kaman 92a].

2.3 Adding Capabilities to the Old System

The original menu-based system consists of a collection of programs called by c-shells
that implement menus providing a simple user-interface. Hence, new capabilities are added by
first writing or modifying a main program. These programs are written in the Unix Fortran
Preprocessor (UFP) language, a Kaman-internal Ratfor-like language [Robbins 89].

When writing such programs, the analyst should follow the style of existing programs.
In particular, an extensive library of subroutines is already available. Some of these
subroutines support writing and reading returns to binary files in a standard manner such that
all programs in the system can interact with these files. Autoregressive process parameters
and channel variances can also be written to binary files.

Fortran format statements and fortran input-output should not appear in any main
program. Subroutines are available for echoing messages to Unix "standard output" and
"standard error." Parameters should be read from the user by use of these subroutines and
external "help" files. In short, new capabilities should be added by leveraging the existing
body of tools, which greatly simplify some of the most tedious aspects of programming.

Once a new program and its corresponding help file are written, it must be linked into
both the developmental and the delivered version of the system. Obviously, it should first be
added to the developmental version and tested before delivery. Programs should be stored in
files whose names end with a ".u" extension; for example, "madd.u" is the name of a program
for adding two or more multichannel returns together. The corresponding help file should be
named with a ".hip" extension, for example, "madd.hlp".
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The developmental version of a program should be stored in the directory -mmi/mchan
on Kaman Science's system. The help files should be in the directory -mmi/mchan/hlp. The
delivered version should be stored in the directory -kaman/mchan on the coinputer system
operated by RL/OC, and the help files are in ~kaman/mchan/hlp.

Each new program should be added to the "make files" in -mmt/mchan and
-kaman/mchan. When a program is preprocessed, compiled, and linked, various files will be
created. Those files with ".f' extensions contain fortran source code corresponding to the UFP
programs in ".u" files. File with ".o" extensions contain object code, while files with no
extension contain executable images. Finally, some directories contain files with ".a"
extensions. These files are archived libraries of object code.

The last step in adding a program to the original system is adding it to the menus that
provide the user-interface. These menus are implemented as c-shells. They are in the
directories - mmi/mchan/bin and - kaman/mchan/bin.

2.4 Xdding Capabilities to the New System

"I ,. new system is implemented under the User Front-end Interface (UFI), a tool
developed by Kaman to encourage software reusability. A system built under the UFI
consists of a collection of reusable UFP subroutines. Ideally, the user of an UFI-based
system, who may have no programming experience, describes an experiment. The experiment
combines capabilities from the library of reusable components. The order in which functions
are called is user-definable. The back-end to a UFI-based system automatically generates and
executes a main program implementing the experiment by calling upon the reusable
subroutine library. The generated main program is also in the UFP language.

The MSPSS is too complicated to fully support this idealized flexibility. The UFI-based
system provides a set of predefined analysis sequences for generating programs for
experiments. This system provides the user with a batch capability, with the attendant
advantages of allowing the user to quickly and efficiently define an analysis. Such an analysis
or experiment corresponds to the invocation of menu items in the first system in a fixed order
with user-defined values for all parameters and options. The output of an experiment
typically consists of Monte Carlo estimates of the threshold values of the loglikelihood
statistic and the probabilities of detection, given false alarm rates and a description of the
signal, clutter, and noise.

Capabilities are added to the new system by adding reusable subroutines to the library
and by modifying or creating new analysis sequences. Reusable subroutine modules must
follow certain interface conventions. The UFI Knowledge Base (UFIKB) specifies their
interface, both with the main program and with respect to user-defined parameters. Analysis
sequences, also specified in the UFIKB, defines the order in which modules are invoked.
Thus, the steps needed to implement a sequence under the MSPSS are:

"* Create all source modules.

"* Describe all source modules to the UFIKB.

"* Write a sequence for the UFIKB.

"* Add the sequence name to an appropriate menu.

Existing modules and sequences provided models used by programmers during this effort.
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2.4.1 Source Modules

Each main program in the onginal system is usually decomposed into several modules
in the UFI-based system. This decomposition separates those portions of the original program
that read parameters from the user and otherwise initialize various entities from those portions
that process each realization of a radar return. By convention, modules in the new system are
named xxxP, xxxL, and xxxT, where xxx is the main program's name. P stands for "pre-
loop," L stands for "loop," and T stand for "Terminate". They are not all always necessary
and, in particular, the "terminate" routine often does not exist. Only subroutines that will be
called from UFI-generated main programs need follow these conventions.

Typically, the pre-loop program reads all needed variables from the user and passes
these variables and related ones (such as the inverse of a matrix) to the loop program. In
practice, several pre-loop programs should sometimes be written, supporting several
combinations of user-inputs and initialization functions. This supports greater flexibility in
nesting loops and more complicated analysis sequences than were originally envisioned for the
MSPSS.

The loop program performs some processing that is in a loop in a program which
processes every realization or trial of a radar return. Examples of functions in loop programs
include process synthesis, estimation, and filtenng. In effect, the pre-loop and terminate
routines are written merely to support the major functions provided by the loop programs.
Loop programs should avoid sending messages to standard output and standard error.

The terminate routine does whatever post processing needs to be done, such as printing
out averages of parameter estimates.

The interfaces to these subroutines follow certain conventions. The general pattern is

subroutine XXXY( HDR I, STATE, HDR2, ARRY I, HDRn, ARRYn, IER)

where the headers contain information on the size of the following argument; STATE is a
vector of "state" variables (all of the same type); the arrays are such things as a multichannel
signal, a vector of variances for each channel, or an AR coefficient (a square matrix in the
multichannel case); and IER is an error flag that returns a nonzero value if a problem exists.
Macros exist for manipulating the headers in UFP programs.

Existing modules provide models illustrating these conventions in greater detail. The
UFP source code for these modules is stored in files with ".u" extensions in the directory

mmi/srz, for the developmental version of the MSPSS. The delivered source is in the
directory -kaman/mmi/src on the RL/OC computer system. When new files are added to these
directories, they should be described to the make files in these directories as well.

2.4.2 Knowledge Base

Once a UFI module is written, it is described to the knowledge base. The knowledge
base description specifies the arguments for each subroutine and what parameters need to be
read from the user. The UFI uses this specification to prompt the user for these parameters
when the user is defining an experiment. A file is created by the UFI for storing these
parameters. It is this file that is actually read by generated programs when they are executing.

The UFIKB Builders' Guide [Kama i 91b] describes the knowledge base language in
detail, while existing knowledge base files can be used as models. Each UFP source program
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xxx.u should have a corresponding knowledge base file named xxx.mkb. These knowledge
base files aie in the directory -mmi/kb or-kaman/mmi/kb. Acceptable types for arguments in
subrounne interfaces are defined in the file "ioblock.mkb."

Once a new knowledge base file is written, it must be entered into the make file in the
directory in which it is stored. It must also be entered into the file "mmi.mkb," which lists all
those files comprising the local knowledge base of the UFI-based version of the MSPSS.

2.4.3 Sequences and Menus

Sequences are also written in the UFIKB language. Sequences are added to the UIFKB
in a manner similar to that used for modules. They are defined in files with an extension of
".mkb". These files must be added to the make file and to the file "mmi.mkb." In addition,

each sequence should appear on a menu. These menus are defined in the file "xalmenu.ikb."
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3. NEW CAPA31LITIES
Under this effort, new capabilities were added to the Multichannel Signal Processing

Simulation System (MSPSS) in the areas of

"* Process synthesis methods

"* Estimation algorithms

"* Likelihood ratio algorithms

"* Diagnostic algorithms

New capabilities were first implemented in the original menu-based system following the
procedures described in Section 2.3. When appropriate, they were then implemented in the
new UFI-based system following the procedures described in Section 2.4. This section further
defines the capabilities added during this effort. The capabilities implemented under the
original menu-based system are first described in detail. The analysis sequences implemented
under the new UFI-based system are briefly outlined in the next section.

3.1 Process Synthesis

Four additional programs were designed under this effort for process synthesis. Two
relate to unconstrained quadrature synthesis. The third is a very general synthesis program
that includes options for Gaussian processes, Spherically Invariant Random Processes (SIRPs),
and multipath processes. The following sections describe these programs in detail. These
sections are modifications of the memos that were written specifying the programs before they
were developed.

3.1.1 Quadrature Synthesis

The two programs for synthesizing processes with unconstrained quadrature components
are each callable from a menu choice in the original system. The first synthesizes the sum of
signal, clutter, and noise, where the signal and clutter are specified by a shaping function
approach. The output is in concatenated quadrature form and is stored in files that can be read
by the other programs in the system. The other program converts radar returns in
concatenated quadrature form to complex form.

The synthesis program generates a multichannel radar return in concatenated quadrature
form as discussed in Section 2.1.1. The radar return consists of a signal, clutter, and noise.
The user has the option of not including signal, clutter, and noise. The signal and clutter, if
present, consist of Autoregressive (AR) processes with Gaussian driving noise. The noise is
Gaussian white noise.

Specifically, the program generates the sequence of real column vectors r (1), r (2),
r (N), where

r(n)-s(n) + c(n)+w(n),n = 1,2...., N. (1)

The sequence of vectors r (n) represents the return process. The sequence of vectors s (n)
represents the signal. c (n) represents the clutter, and w (n ) represents the noise.

The number of elements in each vector r (n), s (n), c (n), w (n) is equal to twice the
number of channels, J. Each vector r (n) can be thought of as a 2 elemect column vector
where each element is itself a column vector:
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x• (n) are the in-phase components, and xQ (n) are the quadrature components of the process.

They are real column vectors. For example, if the process contains two channels, the in-phase
and quadrature components are each composed of two real numbers:

x (n ) 1(n , (n xQ,2(n

This representation of a radar return is known as the concatenated quadrature form.

A single sequence of vectors r ( 1), r (2) ... , r (N) is referred to as a trial or realization
of the process. Since random processes are used in generating radar returns, the radar returns
will vary from trial to trial. Each vector, r (n), in the sequence of vectors is referred to as a
time sample. Once again, because of the random nature of the process, the N time samples
will vary across a single realization of the underlying process.

3.1.1.1 White Noise

The Gaussian noise vector, w (n), is characterized as a zero-mean process for both the
in-phase and quadrature components of each channel and a square complex covariance matrix

M. The noise is not correlated across time, but may be correlated across channels. The
covariance matrix E. specifies the cross-channel correlations. It is defined as the following:

E = E [w (n ) w" (n)]

One can think of the covariance matrix as a matrix of matrices:

[Y-E.,, 11.,IQ]

In all other synthesis programs in this system, the QI and IQ components of covariance and
correlation matrices are zero. This program differs from these other synthesis programs in
that it provides the user with explicit control of these correlations.

The user does not specify the covariance matrix. Rather, either the Cholesky, the LDU,
or the Singular Value Decomposition (SVD) of the covariance matrix is specified. The
Cholesky decomposition is defined to be

E= 1/2)C CH,

where the factor of 1/2 is included to divide the variance of each channel among the In-phase
and Quadrature components. C is a lower triangular matrix, and C" is its Hermetian
transpose. The LDU decomposition is

L- (1/2)LD LH.

L is a lower triangular matrix with ones along the principal diagonal, and D is a diagonal
matrix used to control the variances. The SVD is

E - ( I12)Q A Q1 .

A is a diagonal matrix. Each element of A is an eigenvalue of 2E, while the columns of Q are
the corresponding right hand eigenvectors. The rows of QHi are left hand eigenvectors. The
eigenvectors in Q should have a norm of unity. Also, QH is the inverse of Q, that is,
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QH = Q-1

The user specifies either C, L and D, or Q and A. For each time sample in each trial, the
program synthesizes a zero mean vector:

St (n
t (n) - [tr (n

The elements of the in-phase and quadrature vectors comprising t(n) are statistically
independent. If the user has specified a Cholesky decomposition, each element has a variance
of 1/2. Otherwise the variance of the jth element of t(n), j - 1, 2, .... 21, is (lI2)Dj.j or
(L/ 2 )A j ,j.

The noise is then generated by the appropriate formula, depending on the user-specified
decomposition:

w(n )= Ct (n).

w (n ),L t(n).

w (n)= Q t(n).

When decompositions are echoed to the user, a message is also written reminding the user of
the factor of 1/2. (A factor of 1/2 does not appear in decompositions involving the complex
process synthesis routines.)

3.1.1.2 AR Process Generation

The signal and clutter are generated as AR processes:
P

x(n)=- . A (k)x(n -k)+v(n),

where A ( 1 ), A (2), ... , A (P) are the AR coefficients, P is the order of the AR process, and
v (n) is the driving white noise term with covariance matrix E,. The driving noise is generated
much as the noise is generated above based on the decomposition the user chooses.

,Each AR coefficient can be thought of as a matrix of matrices:

[x(n 1P [A,, 1 (k) AQ (k lx(n -k) [v, (n)
(xQ fln )-kd [AQ, (k ) AQQ(k)J Q(n -kk + VQ (n

The user does not specify the AR coefficients or the covariance matrix. Rather, they are
found by solving the Yule-Walker equations. As an example, if P is three, the Yule-Walker
equations look like the following:

R(0) R(1) R(2) R(3)
[IR ] (-I) R (0) R(1) R(2) ["

A(1) A(2) A(3) Re(-2) R(-I) R(0) R(1) [ 0 0 0J

R(-3) R(-2) R(-I) R(0)

The correlations matrices R(k) are themselves matrices of matrices. The submatrices
correspond to II, IQ, QI, and QQ correlations. The user controls these matrices by specifying
the parameters of certain "shaping functions" used to calculate the matrix values.
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Two shaping functions are provided, Gaussian and Exponential. The Gaussian shaping
function is of the following form:

RaBý .i~s (Il) K-"8 , O, .s (I_ "' )

;L1(IAB 2,

The Exponential function is of the following form:
I -IAM

R AB .,,.S (1) - K AO ,,.s A:a

A.B i.S j .,

The superscripts A and B can be either I or Q. The subscripts i and j range over the number
of channels. K' is the amplitude, X-1 is the one-lag temporal correlation parameter, and IAl is

the lag value at which the function peaks. The user enters these values.

Unlike the shaping functions used in the procedures for synthesizing returns in complex
form, these shaping functions do not include parameters for Doppler shifts.

Subroutines for performing SVDs were added to the system during this effort. They
were obtained from LINPACK [Dongarra 79].

3.1.1.3 Implementation Notes

The program asks the user for parameters describing the signal, clutter, and noise. It
calculates the AR parameters from the solution of the Yule-Walker equations, and
decomposes the covanance matrix, as appropriate. A user-specified number of realizations of
the signal, clutter, and noise are generated and summed, as specified. The resulting trials are
stored in a user-specified file.

To ensure compatibility with other programs in the system, the file containing the radar
return written by this program stores each trial in a complex array with N rows and 2J
columns. N is the number of time samples. Hence each row corresponds to a single time
sample. J is the number of channels in the process. The first half of each row represents the
in-phase components of a time sample, and the second half represents the quadrature
components. The imaginary part of all elements of this array are identically zero. We note
that the input file is readable by the subroutine MCIMC, the same subroutine used to read
radar returns in other programs in this system.

Likewise, AR coefficients and covariance matrices are written in a form compatible with
other programs in the system.

3.1.2 Conversion to Complex Form

A program was written to convert the concatenated quadrature representation of a radar
return to the complex representation. The routine asks the user for the names of an input file
and an output file. The routine reads a number of trials from the input file, where each trial
consists of a number of time samples from a multichannel radar return in concatenated
quadrature form. It converts each trial to the complex representation, and writes the result to
the output file in a form readable by other programs in this system.

Let x(I ), x (2), ..., x (N) be a single trial read from the input file. Then x (n) is a 2
element column vector where each element is itself a column vector:

19



X, n
Xx ( n )nx ( n ) = LxQ2 (n )

x, (n) are the in-phase components, and x, (n) are the quadrature components of the process.
They are real column vectors. For example, if the process contains two channels, the in-phase
and quadrature components are each composed of two real numbers:

x i ( n ) , . I) - , ( , X ( ) ( n ) F

IXI, 2( n LrQ, 2( ni

To ensure compatibility with other programs in the system, the file containing the input signal
stores each trial in a complex array with N rows and J columns. In other words, the
quadrature form is stored in the same data structure as the complex form. This leads to a
reinterpretation of the elements of the complex forni. N is the number of time samples.
Hence each row corresponds to a single time sample. J should be an even number, and is
twice the number of channels in the process. The first half of each row represents the in-phase
components of a time sample, and the second half represents the quadrature components. The
imaginary part of all elements of this array are identically zero. Note that the input file is
readable by the subroutine MCIMC, the same subroutine used to read radar returns in other
programs in this system.

The complex form of a two channel vector is expressed as:

1 (n) FXi(n ) jx XI (n
[XI, (n) +/j xQ (

where j is the square root of negative one. The subroutine MCOMC provides a suitable
means of writing trials to the output file in a format compatible with the rest of the system.

3.1.3 SIRP Synthesis

A program was written to pro-,ide a wide range of synthesis capabilities associated with
Spherically Invariant Random Processes (SIRPs) and multipath processes. This routine
generates a multichannel radar return consisting of a signal, clutter, and white noise, with the
user having the option of not including any of these. The signal, if present, consists of either

"* A deterministic signal

"* An Autoregressive (AR) process with either a multichannel Spherically Invariant
Random Process (SIRP) or Gaussian noise driving term, or

"* An AR-like multipath process

The clutter, if present, consists of an AR process with either SIRP or Gaussian driving noise.
The white noise is either SIRP or Gaussian.

Specifically, the routine generates the sequence of vectors r ( I), r (2), ..., r (N), where

r(n) -s(n)+c(n)+w(n),n l,2, ... , N.

The sequence of vectors r (n) represents the return from the radar. The sequence of vectors
s (n) represents the signal. c (n) represents the clutter, and w (n) represents the white noise.
The number of elements in each vector r (n), s (n), c (n), w (n) is equal to the number of
channels, J.

A single sequence of vectors r (1), r (2) ...2 r (N) is referred to as a trial or realization
of the process. Since random processes are used in generating radar returns, they will vary
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from trial to trial. Each vector, r (n), in the sequence of vectors is referred to as a time
sample. Once again, because of the random nature of the process, the N time samples vary
across a single realization of the underlying process.

3.1.3.1 Deterministic Signal

Deterministic signals are represented by

s, (n ) -Aj cos[Oi (n ) +*, 1 + jB, sin(O, (n ) + ],

where Ai and B, are user-specified complex constants; ,( ,(I ) = 2n(n - 1)(fd T ),, and (fj T)j is
a user-specified constant between -0.5 and +0.5; j is the square root of -1; and #j is the initial
phase. 0, can either be a user-specified constant between 0 and 2nL, or a random number
between 0 and 2 n.

Strictly speaking, if the phase is random, the signal is not deterministic. Since all other
parameters are deterministic, and this option is a special case, the signal is described as a
"generalized deterministic signal." The constants A, and B, are complex instead of real to give
the user more flexibility. In particular, if the user sets all parameters except Ai to zero, the
user can easily specify a complex constant value for the signal.

3.1.3.2 Noise

Noise can either be Gaussian white noise or a SIRP.

3.1.3.2.1 Gaussian Noise

The Gaussian noise vector, w (n), is characterized as a zero-mean process for each
channel and a square complex covariance matrix E. Physically, the diagonal elements of E are
the variances of the channels, and the off-diagonal elements are the cross-channel correlation
coefficients. For example, 2 is the variance of channel i. The number of rows (and columns)
in E is equal to the number of channels.

The user specifies either the Cholesky decomposition, an LDU decomposition, or a
Singular Value Decomposition (SVD) of the covariance matrix. The Cholesky decomposition
is

E C CH

where C is a lower triangular complex matrix, and CH is its Hermetian transpose. The LDU
decomposition is

E=L D L H

where L is a lower triangular matrix with ones along its diagonal and D is a diagonal matrix.
The SVD is

E.-Q A QO.

A is a diagonal matrix. Each element of A is an eigenvalue of 2E., while the colum.-'.s of Q are
the corresponding right hand eigenvectors. The rows of QH are left hand eigenvectors. The
eigenvectors in Q should have a norm of unity. Also, Q" is the inverse of Q. The user
specifies either C, L and D, or Q and A.

The vector w (n) is generated as follows. First, for each time sample in a realization,
generate a vector, z (n), of independent zero-mean normally distributed random variates. The
ith channel has a variance of either unity, if the user specified a Cholesky decomposition; Di4,
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if the user specified an LDU decomposiion; or i .. if the user specified a SVD. Then the
white noise vector w (n) is found by the appropriate equaton:

w (n ),C -(n)

w (n),L 'In)

w (n ) -,Q (n)

3.1.3.2.2 SIRP Noise

The SIRPs in this routine are specified by one of the above decompositions of the
covariance matrix E, as above, and two additional parameters, a and b. For SIRPs, let z (n) be
a vector of independent zero-mean normally distributed random vanates. The SIRP noise is
then

w (n )=CS (n),

w (n J L Sz(n),

or

w (n )Q S :(n),

where S is a random diagonal matrix generated as explained below.

The user has two choices to make when specifying the generation of S. First, S can be
constant for a single realization (but vary across realizations), or S can vary from time sample
to time sample in each realization. Second, the diagonal elements of S can all be equal, or a
different vanate can be generated for each nonzero element of S.

To generate an element of S the program follows the algorithm given in [Rangaswamy
911. First, it generates a Chi Squared random variate u with 2a degrees of freedom. u is
gentrated based on an algorithm for Gamma variates in [Fishman 73]. It tends to create
overflow and underflow problems for a < 0.25 or a > 100.0. Warning messages alert the user.
Also the algorithm tends to become much slower as the number of degrees of fieedom
increases.

Once the program has generated a Chi Squared variate, it then calculates a random
variate v:

b

v is a random variable with the following Probability Density Function (PDF):

(V -y 2b (b v )2a- I e-b'v
2

12

r (a) 2'

Let the random variable s be defined as follows:

V
S .0 -,

a

where

a - 4•2 ab.

Then s is the desired element for the random matrix S.
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s has unit variance. Thus, the matrix S has the identity matrix as its covanance matiix.
Therefore, the covanance matrix for SIRP noise remains E.

Notice that a and b are constants that do not vary with channels, unlike most other
parameters for these multichannel processes.

3.1.3.3 AR Process

In the previous section, we discussed how a deterministic signal and white noise are
generated. The signal can also be (and the clutter is) an AR process with either SIRP or AR
driving noise. An AR process is generated following the "shaping function" approach
explained in Section 2.1. That is, Tlhe vector stochastic process x(I ), x (2), ..., x (N) is an
Autoregressive process of order m if

x (n)= F, A, x(n- k) + v(n)

k -, I

where v(n) is either SIRP noise or Gaussian noise, as above, with covariance matrix £. Note
the AR coefficients, A,, A, ... , Ak, are square m.;Lnces. Therefore, given the covariance matrix
of the driving noise, the parameters a and b of the SIRP if necessary, and the AR coefficients,
the driving noise and the AR process can be generated as above.

In this approach, the following parameters are specified and used in calculating
correlations across channels and across time:

"* The variance of each channel process,

"* The one-lag temporal correlation parameters,

"* The lag values at which the cross-channel correlation functions peak,

"* The Doppler frequency,

"* The sampling frequency.

The AR coefficients and the covariance matrix of the driving noise are found from the
correlation matrix by solving the Yule-Walker equations, using the Levinson-Wiggins-
Robinson algorithm.

3.1.3.4 Multipath Processes

The signal, if clutter is present, can also follow a multipath model. Previously, the
signal was generated as

s (n )- Ak s(n - k ) +v, (n)

k-I

Now the user is able to specify matrices Bk and generate the signal as

m 
K

s (n)- Aks(n -k)+ +E Bkc (n - )+v,(n)
k - I Ik - I

The matrices Ak and the covariance matrix of the driving noise are still found by the shaping
function approach. The user must explicitly enter values for the matrices Bk. These matrices
account for a correlationof the signal with past values of clutter
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3.1.3.5 Program Input

This routine requires the following input:

"* The random number seeds (optional).

"* The name of one or more output files.

"* Parameters that apply to the radar return in general: the number of trials, the number of
time samples per trial, the number of channels, and the number of points to generate and
eliminate to avoid the transient period in the AR process synthesis.

"* A response as to whether the user wants a signal, and if so, whether the signal should be
deterministic, an AR process, or a multipath process. If the user wants an AR or
multipath process, whether the driving noise should be a SIRP or Gaussian. In addition,
the user must enter appropriate parameters to define the signal.

"* A response as to whether the user wants clutter. If so, the user must enter appropriate
parameters for its generation.

"* A response as to whether the user wants noise. If so, the user must enter appropriate
parameters for its generation.

"* The names of the files to which the trials of the signal, the clutter, the noise, their sum,
and the AR coefficients are written.

The program saves the specified outputs to the specified files.

3.1.4 The ASCII File Minisystem

During this effort, a scaled-down version of the original menu-based system was
delivered to Dr. Jorge Romeu to support the research described in [Romeu 92]. This
minisystem contained Fortran source code for synthesizing SIRPs and Gaussian processes and
for converting binary files containing the synthesized processes to a format suitable for Dr.
Romeu's software.

The conversion program reads a file containing a synthesized process. Typically, this
file is produced by the single channel SIRP synthesis program or the program for calculating a
quadratic form which serves as a sufficient statistic for characterizing SIRPs. It produces an
ASCII file.

The program asks the user for a file name. It reads the file and produces a properly
formatted output file. Each trial is written on a single line, so the output file has as many lines
as trials. The imaginary part of all numbers is discarded. Each line consists of a series of real
numbers separated by spaces. The real numbers are not written in exponential format, but
rather with a reasonable fixed number of digits to the left and right of the decimal point.

The programs contained in the single channel minisystem delivered to Dr. Romeu are
described in Appendix A.

3.1.5 Abrupt Parameter Changes

To give the user an ability to synthesize processes with abrupt parameter changes, a
program was written to concatenate up to four files of synthesized data together into a single
file. For example, let x(I), x(2), ..., x(NI) and y(l), y(2), ..., y(N 2 ) be two returns. Then
the program will create a process z (1 ), z (2), ... , z (N), where
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N =N1 +N,

and

x (n), n =1,2..., N
:(n )- (n - N ) n = N + 1, N + 2,... N

If the input files do not contain the same number of trials, the output file will contain the
minimum of the number of trials in each input file. The function of the program when the
number of channels vanes among input files depends on the user. If the user has turned the
"zero-fill" option off, the output file will contain returns with the number of channels set to
the minimum over the number of channels in all input files. If the user has chosen to zero fill,
the number of channels is set to the maximum over the number of channels in all input files.
Input files with fewer channels are padded with additional channels containing all zeros.

3.2 Algorithms

As was discussed above in Section 2.1.1, a new matrix decomposition algorithm was
added to the MSPSS under this effort. Previously, only the Cholesky and LDU
decompositions were supported for diagonalizing the covanance matrix. The Singular Value
Decomposition (SVD) is now included in the MSPSS.

The SVD is based on the theory of eigenvalues and eigenvectors. Let M be a matrix.
Then X is an eigenvalue and the column vector x is the corresponding eigenvector if and only
if

Mx =Xx.

An n x n matrix always has n eigenvalues, some of which may repeat.

The SVD of a matrix M is given by

M =QAQ-',

where A is a diagonal matrix whose principal diagonal consists of the eigenvalues of M. The
columns of Q are the corresponding eigenvectors.

The SVD was implemented based on a collection of subroutines in LINPACK [Dongarra
79]. The SVD is a user-selectable option in the synthesis routines, as noted in Section 3.1, and
in the linear filter. Only the SVD capability in the linear filter was transferred into the new
UFI-based system.

3.3 Likelihood Ratios

Two new loglikelihood ratios were implemented under this effort. One is designed for
detecting an AR signal in AR clutter and white noise, where signal, clutter, and noise are
modeled in concatenated quadrature form. The other is suitable for detecting a constant signal
in AR clutter and white noise, where the driving noise term in the AR clutter and the white
noise are both modeled by SIRPs.

3.3.1 The Unconstrained Quadrature Loglikelihood Statistic

A program was written for calculating the loglikelihood ratio appropriate for detecting a
signal when the signal, clutter, and noise are described by models in concatenated quadrature
form. These models permit the in-phase and quadrature components to be both spatially and
temporally correlated.
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Let x( 1 ), x (2), ..., x(N ) be a multichannel return in concatenated quadrature form. That
is, each x(n ) represents a time sample and is a real vector with an even number of elements.
The first half of these elements are the in-phase components, and the second half are the
quadrature components. The statistical hypothesis test which the program implements tests
between the two hypotheses:

"* H0 : x -c + n

"* Hj: x =s +c +n

where s is a signal, c is clutter, and n is white noise. Clutter is optional. A test of this type
is a signal detection problem.

To implement this test, the user must use several programs, including a new one written
under this effort. The programs for estimating AR parameters and implementing a linear filter
are not based on the concatenated quadrature form. They treat the concatenated quadrature
signal as a real multichannel signal with twice the appropriate number of channels. To
interpret the output of these programs correctly, the user should mentally partition the
matrices given for AR coefficients and the covariance matrix. The new program described in
this section calculates the appropriate loglikelihood statistic based on the theory of
unconstrained quadrature components.

The statistical test is based on an innovations representation. Using the unconstrained
quadrature synthesis program, the user can create a file containing a specified number of
realizations of the sum of signal, clutter, or noise. Coefficients should already be estimated for
AR models of the null and alternate hypotheses. Using these models, the user can pass the
synthesized processes through two filters operating in parallel. The output of the null
hypothesis filter is an estimate of the innovations under the AR model corresponding to the
null hypothesis. The output of the alternate hypothesis filter is an estimate of the innovations
of the alternate hypothesis AR model. The outputs of these two filters are stored to files, and
can be read by the loglikelihood statistics program.

The loglikelihood statistics program calculates the following statistic [Michels 91]:

A 1 J . N [ ,j(n IH o)] 2  [-Q,.i(n IHo)] 2  [s ,,j(n IH I)]2 [EQ,J(n H 1 )])2

2nA = - 1- E o21,j(HO) + Q,,(HO) o2j,j(HI ) &~j(HI2~~ ~~ j n IC ( O

where J is the number of channels, N is the number of time samples, EA, j( n I ilk) is the output
of the linear filter corresponding to the hypothesis Hk, and a2A j(Hk ) is the corresponding
standard deviation. This statistic is calculated for each set of realizations in the input. The
alternate hypothesis of a signal being present is accepted if the statistic is above some
threshold value.

It should be noted that the synthesized returns can be converted to complex form before
estimation and filtering. If this is done, the appropriate loglikelihood statistic to calculate is
the Gaussian statistic described Section 3.3.2.1. This procedure allows an examination of the
robustness of the Gaussian loglikelihood statistic to a model mismatch of correlation between
the In-phase and Quadrature components.

3.3.2 The SIRP Loglikelihood Statistic

The SIRP loglikelihood ratio was implemented in the original system for both single and
multichannel cases. This section describes the multichannel version.
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Given two multchannel filtered processes and vanances for each channel, this program
calculates certain loghkelihood ratio statstics. Two statistics are calculated, one appropriate
for Spherically Invanant Random Processes and the other for Gaussian processes. Many
realizations of the returns are input into the program. The program calculates the statistic for
each of these realizations. The program operates in two modes. In the first mode, the program
allows the user to determine thresholds for a given false alarm rate. In the other mode, the
program produces the probability of detection for a given threshold.

3.3.2.1 Background

This program is part of an implementation of a statistical hypothesis test. Let x( 1 ), x(2),
x(N ) be a multichannel random process. That is, each x(n ) represents a time sample and

is a vector with each element representing a channel. The test decides between the two
hypotheses:

"* H: x -c + n

"* HI:x =s +c +n

where s is a signal, c is clutter, and n is white noise. A test of this type is a signal detection
problem.

In statistical theory, the significance level of a test is defined to be the probability of
deciding in favor of the alternative hypothesis HI ,,%hen, in fact, the null H0 is true. Since for a
signal detection problem, this mistaken decision corresponds to erroneously concluding a
signal is present, radar theorists refer to the significance level as the probability of false
alarm. One decides a signal is present when the loglikelihood ratio exceeds a critical value. In
radar theory, a critical value is known as a threshold.

Statisticians define the probability of accepting the alternative hypothesis H1 when, in
fact, it is true as the power of a test. Given the physical interpretation of the above signal
detection problem, radar theorists refer to the power as the probability of detection.

The program described here is designed to analyze specific statistics in terms of false
alarm probabilities, probabilities of detection, and thresholds. It is the final module of certain
programs that implement specific statistical tests. Given the probability of false alarm, it
returns a threshold. Given a threshold, it can be used to calculate the probability of detection.

The statistical tests analyzed by this program are defined here. The models of the signal,
clutter, and noise in the above hypotheses may have both intertemporal and cross-channel
correlation. The first step in the statistical procedure is to pass the synthesized process through
two filters in parallel. These two filters are known as F0 and Fl.

The filters are designed to remove both the intertemporal and the cross-channel
correlation under one or the other hypothesis. If the null hypothesis is true, the output of the
F 0 filter is uncorrelated. On the other hand, if the alternative hypothesis is true, the output of
the F, filter is uncorrelated. Thus, one of the filter outputs is white noise. The system of
which this program is a part provides capabilities to generate inputs such that the resulting
white noise is either Gaussian or a special type of Spherically Invariant Random Process
(SIRP).

For the Gaussian case, the appropriate calculated statistic is
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r., (n.H) " Ekf
InA= ~ ~ -_ _ _

where J is the number of channels, N is the number of time samples, C,.H, Is the variance of
the Jth channel in the output from filter F, when H, is true, and E(n IlH, ) is the output from
filter F,.

For the SIRP case, the appropnate statistic is

InA = Inhj (q 1 ) - lnh,,j (q,,)

where

"2 a J I J )2

hNJ (q,) = q K (2s•a-,)

I . I£,(n IH, ) 2
q, = EE

1-g1 n - C1 2J./,lt

K is the modified Bessel function of the second kind, and r is the Gamma function, a is a
shape parameter associated with SIRPs.

Other programs exist in the system for

"* Synthesizing realizations of signal, clutter, noise, and their sums

"* Estimating filter parameters

"* Implementing the filters

The program described here calculates the above loglikelihood ratios, depending on which one
is chosen by the user. The statistic is calculated for many trials, and the user can use these
realizations to determine the threshold for a given false alarm probability or the detection
probability for a given threshold.

3.3.2.2 Detailed Specification

The program prompts the user for the names of two files, one containing the output of
the F 0 filter and the other the output of the F, filter. These files are binary and should contain
an equal number of trials of their respective multichannel signals. They should also contain
the same number of channels. These files are in the usual formats for synthesized data for this
system.

The program has several options for the variances. The user can decide to estimate
means and variances from the data by the usual statistical estimation formulas. Both biased
and unbiased options are available. Alternately, the program reads variances from a user-
specified file. Finally, the user can enter the variances directly. All these options are
independent for the two signals.

The program asks the user whether the SIRP or Gaussian statistic should be calculated.
If the SIRP option is desired, the program prompts the user for the value of a.

The program asks the user to choose between two modes, one for calculating thresholds
and the other for calculating the probability of detection. If the threshold calculating option is
desired, the user is prompted for an index into the sorted threshold list. If the detection
probability mode is desired, the user is prompted for a threshold value.
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The user is given the option of viewing the statistic on a tmal-bv-tral basis. Also, the
user is prompted to determine if the sorted list of likelihood ratios should be echoed to the
user's screen.

The program reads in a pair of filter outputs from the two files and calculates the
appropriate statistic. If the user has so indicated, the program outputs the statistic for each trial
as it is calculated. The program maintains a sorted list of the statistic's value.

After all trials have been read, the program prints out the sorted list if the user has so
indicated. Under the threshold calculation mode, the program outputs all thresholds after the
indexed value, inclusive. Under the detection probability mode, the program outputs a count
of the number of statistics that exceed the threshold. In either case, the program outputs the
total number of trials.

Subroutines were written to calculate modified Bessel functions and the Gamma function
under this effort. These subroutines were taken from Kaman's Colorado Springs office, which
implemented a modified Bessel function for another project.

3.4 Diagnostics

Rangaswamy et. al. states that a certain quadratic form is a sufficient statistic for SIRPs
[Rangaswamy 91]. The distribution of this statistic can act as a good check on the output of
the SIRP synthesis routines. Thus, a program was written to determine the distribution of this
quadratic form for the white noise driving terms of the AR processes.

The input to this routine is a file containing many realizations of a multichannel radar
return. The user is also asked to enter the variances for each channel. For each realization, the
program calculates the quadratic form q,, j = 1, 2, ...,. J, where J is the number of channels:

1 N
; = , - )1

E- Ixrj(n)1

N is the number of times samples, x(1), ... x (N) is a white noise process, and ao is the
variance for the jth channel. (For a complex number :, ÷i z,, the square of its magnitude is
given by

I Z, + i z, 12 = z,2 + .

This is a real number.)

The theoretical probability density function (pdf) is not calculated by any program in the
system, but is given here for completeness. The pdf for the quadratic form qj is

f (q) - h2N(q)
F(N)

where

h2N (q) = 2 (aq )(a- N)12 Ka._N [2(aq )1/2],r(a)

r is the Gamma function, and K is the modified Bessel function of the second kind.

For each realization of the input process, the program calculates a single real number as
defined by the above quadratic form. To ensure compatibility with other programs in the
system, these outputs values are stored in a data structure appropriate for a single realization
of a multichannel process, where the number of time samples in the output process is equal to
the number of realizations of the input process. Each time sample in the output is the
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quadratic form for the corresponding trial in the input. This output process is saved to a
user-specified file. This file is readable by other programs in the system, particularly the
programs for calculating certain statistics and for displaying histograms.

Two related programs were developed under this effort. One calculated the SIRP
quadratic form for a single channel signal. and the other calculated data useful in plotting
histograms. A histogram plotting program was added to the system under another effort
during the time period of this task.
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4. ANALYSIS SEQUENCES
The capabilities of the new UFI-based system are implemented by providing the user

with certain analysis sequences. Each analysis sequence calls existing modules in a fixed
order. The user is prompted for all necessary inputs. The UFI-based system creates and
executes a main program using the user's inputs. The outputs of this program provide the user
with the desired results.

During this effort, many new analysis sequences were written. In addition, existing
sequences were changed to include a SIRP capability. This section describes these additions
and changes. The analysis sequences are now organized into four menus:

e A menu of "AR signal sequences" for six previously existing analysis sequences, some
of which now allow the user to choose between Gaussian and SIRP noise. The signal is
an AR process.

* A menu of three "multipath sequences," in which the signal includes a multipath
component.

* A menu of four "deterministic signal sequences." The signal is deterministic, the clutter
is an AR process with either Gaussian or SIRP driving noise, and the white noise is
either Gaussian or SIRP.

* A menu of seven "unconstrained quadrature seciuence," in which the In-phase and
Quadrature components of the signal, clutter, and noise are not constrained to be
uncorrelated.

4.1 AR Signal Sequences

The sequences for modeling the signal as an AR process are described in greater detail
in [Kaman 92a]. Six sequences are provided on this menu:

"* AR parameter estimation

"* ARMA parameter estimation

"* Detection analysis, no clutter, a priori parameters

"* Detection analysis in clutter, a priori parameters

"* Detection analysis, no clutter, no a priori parameters

"* Detection analysis in clutter, no a priori parameters

The sequence for estimating AR parameters generates a number of trials consisting
solely of a signal. The signal is described by an AR process in which the driving noise may
be either Gaussian or a SIRP. Each trial is used to estimate the AR coefficients and the
covariance matrix. The final output is the mean, variance, and error variance of these
estimates.

The sequence for estimating ARMA parameters generates a number of trials consisting
of the sum of signal and white noise. The signal is generated from an AR process, and both
the driving noise and the white noise may be either Gaussian or a SIRP. Each trial is used to
estimate the parameters of an AR approximation of the ARMA model for the sum of signal
and noise. The final output is the mean and variance of these estimates calculated across all
trials.
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The final output of the remaining four sequences consists of means and variances of
detection probabilities and thresholds for given false alarm rates. The sequence for detection
analysis with "a priori" parameters and no clutter is based on an algorithm for detecting a
muluchannel AR signal in white noise. The noise can be Gaussian or SIRP, and so can the
signal driving noise. The null hypothesis filter merely lags the input appropriately and
decorrelates it across channels using the actual covanance matrix of the white noise. The
alternative hypothesis filter uses coefficients generated by "a prion" parameter estimation.

The other "a priori" detection analysis sequence analyzes signals in AR clutter and white
noise. Both the signal and the clutter are described by AR processes with either Gaussian or
SIRP driving noise terms. The white noise is also either Gaussian or SIRP. The parameters
for both the null and the alternative hypothesis filters are found by "a priori" parameter
estimaton using a cell' channel for the alternate hypothesis estimates.

The remaining two sequences without "a priori" parameters were not modified under this
effort. The AR models used for these sequences can only have Gaussian driving noise terms.

4.2 Multipath Sequences

The sequences written under this effort parallel the estimation and "a priori" detection
analysis sequences in the menu for AR signal sequences. The menu for multipath sequences
contains three choices:

"* Estimate AR parameters for multipath process, no noise

"* Estimate AR parameters for multipath process with noise

"* Multipath detection analysis in clutter and noise, a priori parameters

The first choice calls a sequence that estimates parameters for a multichannel AR
approximation to a multichannel multipath model of the sum of signal and clutter. The clutter
is an AR process with either SIRP or Gaussian driving noise. The signal has a multipath term,
as described in Section 3.1.3.4. The user specifies the number of trials of the sum of signal
and clutter to be generated, and the AR parameters are estimated for each trial. The final
output is the mean and variances of these estimates.

The sequence for estimating AR parameters for multipath processes with noise is very
similar. The signal has a multipath term, and the clutter is an AR process. The driving noise
terms can be either Gaussian or SIRP. The sum of signal, clutter, and noise is synthesized for
each trial. AR parameters are estimated for each trial using an algorithm and order selected
by the user. The final output is the mean and variance of these parameter estimates.

The multipath detection analysis is the most complicated sequence of these three. The
loglikelihood ratio used here is the Gaussian statistic developed under the assumption of no
multipath components. Thus, this sequence explores the performance of a signal detection
algorithm under a model mismatch. The signal, clutter, and noise are modeled as above. An
"a priori" parameter estimation phase estimates the parameters for the null and alternative
hypothesis filters. The null hypothesis filter is based on a model of the sum of clutter and
noise. The alternate hypothesis models the sum of signal, clutter, and noise, where the signal
has a multipath term.

Once the filter coefficients are estimated, a number of trials of clutter plus noise (i.e. the
null hypothesis) are synthesized. Each trial is passed in parallel through the filters. The
loglikelihood statistic is calculated from the filter outputs. This sample of loglikkelihood ratios
is used to estimate the thresholds for given false alarm rates. This process of estimating the
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distribution of the loglikelihood statistic is repeated. only based on the synthesis of the sum of
signal, clutter, and noise. The detection probability is estimated for the estimated threshold.
An outer loop, which includes "a prion" parameter estimation, thresholding, and detection
probability estimation supports the calculation of the means and variances of thresholds and
detection probabilities. These means and variances are the final outputs of this sequence.

4.3 Deterministic Signal Sequences

The sequences for analyzing deterministic signal models do not include separate
sequences for estimating AR parameters. All four sequences are designed to analyze the
performance of signal detection algorithms:

"* Detection analysis, constant signal in white noise, actual parameters

"* Detection analysis, constant signal in white noise, a priori estimates

"* Detection analysis, constant signal in AR clutter, actual pai-a. eters

"* Detection analysis, constant signal in AR clutter, a priori estimates

The first sequence analyzes a signal detection algorithm in which the signal is
deterministic, as described in Section 3.1.3.1, and the noise is white, possibly correlated across
channels. The noise can be either SIRP or Gaussian. The detection algorithm decides
between the two hypotheses

"* Ho: The radar returns consist of white noise

"* H,: The radar returns consist of the sum of a deterministic signal and white noise

The null hypothesis filter merely decorrelates the noise across channels. The alternate
hypothesis filter first subtracts the (known) deterministic signal and then decorrelates the noise
across channels. In both filters a decomposition of the actual noise covariance matrix is used;
this sequence does not contain any procedures to estimate the filter parameters. The
loglikelihood statistic appropriate for this model is used to decide whether a signal is present
or not. The final output consists of means and variances of thresholds and detection
probabilities for user-specified false alarm probabilities.

The second sequence differs from the first only in that "a priori" parameter estimates are
used for the filters. The user specifies the number of trials used to estimate the parameters for
the linear filter decorrelating the noise. This filter actually includes AR parameters for
decorrelating across time as well, even though the noise includes no temporal correlation.
Hence, the user must specify an AR parameter algorithm and an order for the process of
estimating the filter coefficients.

The third sequence is based on a different model. The signal remains deterministic, but
the noise is modeled by an AR process which includes both cross-channel and intertemporal
correlation. The noise is referred to here as "AR clutter." In this case, the filter for the null
hypothesis is a linear filter which decorrelates its inputs across time and space. The alternate
hypothesis filter first subtracts the deterministic signal before performing the filtering based on
the AR parameters. These filters use the actual parameters of the AR process for the noise,
not estimates. As usual, the final output is the means and variances of threshold and detection
probability estimates.

The fourth sequence differs from the third in that the filter coefficients are "a priori"
estimates; that is, estimates obtained using previously obtained data from a 'reference' channel
and a 'test cell' channel.
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4.4 Unconstrained Quadrature Sequences

The last menu is for sequences analyzing unconstrained (concatenated) quadrature
models of the signal, clutter, and noise. All white noise terms in these sequences are
Gaussian; no S[RP options are available. An interesting feature of these sequences is that
capabihties are provided for analyzing processes in concatenated quadrature form and by
immediately convertng them to complex form after synthesis. The latter situation is referred
to as a model mismatch, since the theory on which the analysis is based assumes the in-phase
and quadrature components are uncorrelated. Seven sequences are available for analyzing
unconstrained quadrature models:

"* Estimate AR parameters for signal, no clutter, no noise

"* Estimate AR parameters for signal + noise, no clutter

"* Estimate AR parameters for signal + clutter + noise

"* Detection analysis, no clutter, a priori parameters, model mismatch

"* Detection analysis, no clutter, a pnion parameters

"* Detection analysis in clutter, a priori parameters, model mismatch

"* Detection analysis in clutter, a pnion parameters

The first three sequences analyze various algorithms for estimating AR coefficients.
They are parallel in structure. A number of trials are synthesized for the sum of the indicated
combination of signal, clutter, and noise. The signal, clutter, and noise are all described by
unconstrained quadrature models, as described in Section 3.1. 1. For each trial, AR coefficients
and the covariance matrix are estimated by a specified algorithm. The resulting estimates
should be viewed as partitioned matrices, as is appropriate for the concatenated quadrature
form. In parallel, AR parameters are estimated for the complex form of the synthesized
return, based on a conversion of the concatenated form. The final output of these sequences
are means and variances of both sets of AR estimates.

The remaining four sequences parallel one another in structure. The final outputs are
means and variances of thresholds and detection probabilities for user-specified false alarm
probabilities. The signal and clutter, which is only present in the last two sequences, are
synthesized to fit a multichannel unconstrained quadrature AR model. The white noise is also
synthesized under an unconstrained quadrature model. In the model mismatch sequences, the
synthesized radar returns are immediately converted to complex form, and the Gaussian
loglikelihood statistic described in Section 3.3.2 is eventually calculated. The unconstrained
quadrature loglikelihood ratio described in Section 3.3.1 is calculated for those two detection
analysis sequences without a model mismatch.

All the filters, both for the null hypothesis and the alternate hypothesis, are based on AR
models. Their parameters, the AR coefficients and the decomposition of the covariance matrix,
are obtained by an "a priori" estimation process. This description holds even in the cases in
which the null hypothesis models the radar returns as white noise. For the model mismatch
situation, the actual covariance matrix is not available for the complex form. Hence, an
estimation procedure must be performed. Even though the actual value is available for the
no-clutter no-model-mismatch case, it seemed advisable to undergo the estimation process
anyway so as to maintain the parallelism.
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Appendix A.
The Single-Channel Minisystem

During this effort, a small version of the onginal menu-based system was delivered to
Dr. Jorge Romeu. This mirusystem contains capabilities for single channel synthesis and some
diagnostics. it is further described in this appendix.

The system is delivered on a tar tape containing source code and object files for certain
library routines. It is intended to be read on a Sun computer. Object code for the libraries is
provided for both the Sun 3 and Sun 4 architectures. Reading the tape creates a subdirectory
called "schan" under the user's current directory. This subdirectory contains the files
described in Table A-I.

To run this system, there must be an environment variable called ARCH already defined
in the user's environment. Currently the Sun 3 and Sun 4 architectures are supported and
ARCH must be set to one of these two values. Also, the software requires access to the Unix
f77 and make programs.

The system is executed by first changing the working directory to "schan." Then "schan
[return]" is entered at the Unix prompt to invoke the Single Channel Process Synthesis Menu.
The menu contains the following options:

"* Generate K-distributed SIRP

"* Generate Gaussian noise

"* Generate single channel AR process with SIRP or Gaussian driving noise

"* Convert a file to ASCII in a format suitable for Dr. Romeu's software

"* Convert data to ASCII file

The user should select the appropriate menu prompt. The seiected programs are automatically
compiled if necessary.
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Table A-1: Files in the Minisystem

File Description
README Descnbes how to install and rin the system

data An empty subdirectory
source A directory of Fortran source code.

source/cbta.f Converts binary data files to ASCII
source/cgwn.f Generates single channel Gaussiai- white noise

source/data2ascii.f Converts binary files to ASCII in Romeu format
source/scarsirp.f Generates single channel AR processes

source/sirpm.f Generates single channel SIRP noise
source/Makefile Compiles and links above programs

source/sun4.,nake Called from Makefile
source/sun3.make Called from Makefile

schan A c-shell for invoking the system
hip A directory of help files associated with the main programs

hlp/cbta.hlp
hlpi'cgwn.hip

hlp/data2asci.hip
hlp/scarsirp.hlp
hlp/sirpm.hlp

sun3 Sun 3 object code for various library routines
sun3/ibfsl.a

sun3/libmat.a
sun3/libmc.a
sun3flibmv.a
sun3flibvec.a

sun4 Sun 4 object code for vanous library routines
sun4/libfsl.a

sun4flibmat.a
sun4/libmc.a
sun4/libmv.a
sun4/libvec.a

bin A directory to contain linL.. executables and object code
bin/sun3 A directory to contain compiled Sun 3 object code
bin/sun4 A directory to contain compiled Sun 4 object code
bin/exe A directory to contain linked executables

bin/menu I A c-shell for the main menu
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OF

ROME LABORATORY

Rome Laboratory plans and ezecutes an interdisciplinary
program in research, development, test, and technology
transition in support of Air Force Command, Control.
Communications and Intelligence (C31) activities for all
Air Force platforms. It also executes selected
acquisition programs in several areas of expertise.
Technical and engineering support within areas of
competence is provided to ESC Program Offices (POs) and
other ESC elements to perform effective acquisition of
C31 systems. In addition, Rome Laboratory's technology
supports other AFMC Product Divisions, the Air Force user
community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research
programs in areas including, but not limited to,
communications, command and control, battle management,
intelligence information processing, computational
sciences and software producibility, wide area
surveillance/sensors, signal processing, solid state
sciences, photonics, electromagnetic technology,
superconductivity, and electronic
reliability/maintainability and testability.


