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ABSTRACT

This thesis studies a new data weighting function, which consists of a
complex valued window known as the linear complex valued FM chirp window.
This type of window, when used with the Fourier transform, produces a
magnitude spectrum which permits identification of single sinusoids and multiple
sinusoids which can be separated in frequency by less than one DFT bin. This
allows determination of whether or not one or multiple signals are present. The
chirp window seems to have better resolution properties than classical windows.
When the chirp window is used with a signal that contains a frequency step (i.e.,
FSK), the resultant spectrum is markedly different for the upward shift and
downward shift cases. The work of this thesis consists of replicating the results
of J. Griffiths in his paper "A Novel Window For High Resolution Fourier
Transform" to establish the signal to noise ratio dependency of this type of
window, and to study its behavior when damped sinusoids are present.
Additionally, a review of classical windows and sidelobe behavior is presented.

All simulations where performed using MATLAB.
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I. INTRODUCTION

The general problem of spectral analysis is that of determining the spectral
content of a random process based on a finite set of observations from that
process. A variety of parametric and non-parametric techniques have been
developed. Because of the relative ease with which Fourier spectra can be
computed and the fact that the resulting spectral estimate (which is the magnitude
squared of the transform) is directly proportional to the power of sinusoidal
processes, the Fourier based non-parametric technique is a valued and widely
used tool in spectrum analysis. This estimate is called the periodogram.

In many practical cases data consists of sinusoidal signais embedded in
white Gaussian noise, and in such cases it may be advantageous to apply a data
window to the signal before computing the periodogram. Without data
windowing, a lower level signal may be masked by the sidelobes of a higher level
signal, provided that the signals are close in frequency. Windows can be used as
weighting functions applied to data to reduce the spectral leakage associated with
finite observation interval, or in other words, data windowing will reduce the
magnitude of the periodogram at frequencies not near the signal frequency. This
reduction is made at expense of increasing the bandwidth of the main lobe of the

spectral estimates.




Generally, the traditional windows used in spectral analysis (rectanguiar,
Hamming, Blackman, Kaiser, etc.) are positive, real valued, symmetric functions.
One draw back of windows is their influence on theability to detect spectral lines
that are separated in frequency by an amount which is small compared to the
spectral width of a single spectral component. The mair: objective of this thesis is
to study a new data window in conjunction with the Fourier transform approach.
This window possesses "high resolution” capabilities. The window to be studied
is the complex linear FM chirp window presented by L. J. Griffiths [Reference 1].

Chapter llis a short review of spectral estimation. The classical method of
spectral estimation, the periodogram, is analyzed in detail. Deterministic signals
and wide-sense stationary stochastic processes are examined. Due to the
random nature of the signal in the last case, the mean and the variance of the
periodogram are important issues that need to be addressed.

in Chapter lll the main traditional windows, presented by F. J. Harris
[Reference 2], will be developed by considering the method used by A. H. Nuttall
[Reference 3] in analyzing the sidelobe behavior of windows. The performance of
these windows in detecting a weak spectral line in the presence of a strong
nearby line will be examined. If additive white Gaussian noise (AWGN) is
present, the smaller signal will many times not be detected. A simulation using a
sighal composed of two equal amplitude sinusoids, not centered at bin

frequencies, will be given.




Chapter IV will examine the results obtained by L. Griffiths [Reference 1]
using the high resolution window which consists of a complex linear FM chirp.
For high signal to noise ratios averaging is not necessary. The Fourier based
spectral estimate is used for a single complex valued sinusoid and for two
complex valued sinusoids. The results obtained are then compared with those
found using a traditional raised-cosine window. Also, an example to illustrate the
effect of the frequency chirp window on frequency shift keyed (FSK) signals is
presented. Finally, the validity of this window is examined when the data consists
of complex valued damped sinusoidal signals, and in addition the signal to noise
ratio (SNR) dependency of this window is established.

Chapter V is devoted to conclusions and recommendations concerning th2

use of nontraditional windows in spectral analysis.




il. SPECTRAL ESTIMATION

A. BACKGROUND
The main objective of spectral estimation is to determine the spectral
content of a random process from a finite set of observations. The Power

Spectral Density (PSD) of the sampled sequence is defined by:
Ps() = kZ Rux(K)exp(—j2nf kTs) (1)

where T is the interval between successive samples. This requires that the
autocorreiation function R,, (k) is known for all values of k. In most practical
cases, these values are not available. Instead, only N samples of the random

signal x(t) may be available, and from this limited data set the PSD must be

estimated. It is necessary to find a method of estimating If’,(f) which permits the
use of a finite data set. A question that has to be posed is whether or not this

estimate is "consistent.”

To determine consistency it is necessary to introduce some definitions such
as bias, variance and frequency resolution. Given that N data samples are
available, x , = x(nT,) where n=0,1,............ ,N-1, and that an estimate of a given

quantity Y is desired. Y could be the mean of the signal, its autocorrelation, its




PSD, or some other quantity of interest. The estimate of Y is denoted by the

function
Y = G(X0u X1 evrrereereereeeren. L XN-1). (2)
Because Xx,, X, ,..., Xy, are random variables, Y is also a random quantity

with probability density function (PDF) f(\?/Y). In order to obtain a consistent

estimator, it is necessary to choose g(x,.x, ,..., Xy, ) such that its PDF is centered
on the true v. ‘e of Y, and has as small a variance as possible. Conversely, a
poor estimator will have a probability density with a large variance and/or will not
be centered on the true value of Y. These concepts are illustrated in Figure 2.1.

The "bias" b of an estimator is defined by the difference between its true

value Y and the conditional average of its estimatorY . Therefore,
b=Y-E[Y/Y] 3

where, from [Ref. 4],

E[?/Y] = I . -fm g(xo, -.....  XN-1)f(X0, - Xn-1/Y)dXo.....dXN-1 (4)
where g(Xo,......, Xn.1) = XX X2 ,-.., Xpq - An "unbiased" estimator is one for which
b=0.

The "variance"” of estimator Y relates to the width of the conditional
probability density function f(Y/Y) and is defined by

o} = E[(Y/Y)?] - (E[YIY])? (5)




where E[(Y/Y)] is the conditional expectation of Y, as defined above, and E[(Y
/Y)?}] is calculated by

ELYY)?) = [ 1900, -ovooes X)) (X0, ... X1 /Y )Xo DX (6)

An estimator is called "consistent" if both its bias and variance approach
zero as the number of samples becomes large. Another concept of interest,
"frequency resolution” will be introduced in the next section.

In this thesis, the only kind of estimator that will be considered is the

nonparametric spectral estimation tool known as the periodogram.

B. PERIODOGRAM FOR DETERMINISTIC SIGNALS

The periodogram is one of the methods of classical spectral estimation, and
is defined as the squared magnitude of the Discrete Fourier Transform (DFT)
performed directly on the data set [Ref. 5]. Because the method of computation
is relatively easy and fast when using the Fast Fourier Transform (FFT), the
periodogram is the most popular estimator.

To develop a general formula to compute the periodogram, consider first the
case of a "deterministic" analog signal x(t), that is a continuous function of time. If

x(t) is absolutely integrable, then the signal energy & is finite and given by

g= [ Ixl?dt<w . (7)




The Fourier transform of x(t) exists, and is given by
X(F)= |7 x(tyexp(-j2nf tydt. (8)

while the squared modulus of the Fourier transform is often called the spectrum

S(f) of x(t), where

S(h = IX()I?. (9)

Parseval's energy theorem relates energy by
[, Ixi?dt=[7 Xl = [~ s, (10)

which means that the energy of the time domain signal is equal to the energy of
the frequency domain transform. Therefore, S(f) is an Energy Spectral Density
(ESD); in other words, it represents the distribution of energy as a function of

frequency.




H{yiy)

*

GOOD ESTIMATOR
POOR ESTIMATOR

i Y

Figure 2.1. Conditional Probability Density Function For Good And Bad Estimator




To obtain a discrete sequence, x(t) has to be sampled at regular intervals T,

which results in
Xn=X(nT;) for—o<n<w (11)

The sampled sequence x, can be represented as the product of x(t) and an

infinite set of equal spaced delta functions, as in

Xo= 3 x®5(t-nTs). (12)

N=-a

Taking the Fourier transform of x , leads to
X,(f )= j:[ i x()d(t— nTs)Ts]exp(—jant)dt, (13)
A=—00

(The factor T, ensures conservation of integrated area between Equation (8) and
Equation (13) [Ref. 5].)
hence

X' E)=Ts X xnexp(=j2nfnTs). (14)

1

X'(H and X(f) will be identical in value over the interval ‘217, <f< 3T,

as

long as x(t) is band limited. Thus, the ESD is

s'®=|x0| =s0. (15




In order to define a Discrete Fourier Transform (DFT), it is necessary to
consider the following conditions:
+ The data sequence is available from a finite time "window" thatisn=0to n
= N-1;

+ The transform is discretized for N values by taking samples at frequencies

f=mAf where Af= r'ﬁ and m=0,1,........ ,N-1. The DFT is defined as
N-1 ]
Xm=Ts 2220 Xnexp(-j2rmafnTs) (16)
n
where Af = ﬁ—'ﬂ . hence
Xm= TsNz::;xnexp(—jann/N) ,form=01,......, N-1 (17)
n=

+ The inverse DFT is given by
Xn = Af "i;) Xmexp(i2rmn/N) , forn=0,1,.....N-1, (18)
m
therefore the discrete Energy Spectral Density may be defined as

Sm = [Xm|? (19)

where X, is the DFT of x, for 0 < m < N-1;
+ For a deterministic signal x(t), both the discrete S, and the continuous S'(f)

have been called periodogram spectral estimates.

10




C. PERIODOGRAM FOR STOCHASTIC PROCESSES

A different point of view must be taken when x(t) is Wide Sense Stationary
(WSS) stochastic process rather than deterministic, finite energy signal. In this
case the parameter of interest is the power (time average of energy) density as a
function of the energy becomes very large, i.e., £>x. The autocorrelation

function of a stationary random process is given by
Rxx(T) = E[X'(t + T)X(t)] (20)

where E is the expectation operator. This expression provides the basis for
spectrum analysis, rather than x(t) itself. The PSD of a random process x(t) is

defined as the Fourier transform of R (1)

Px(f) = F[Ru(1)], (21)
or

Px(f) = [7, Rux(t)exp(-j2nfryds. (22)

Usually, the autocorrelation function R,(t) is unknown, thus the assumption
that the random process x(t) is ergodic has to be made in order to permit the
substitution of time averages for ensemble averages. Under this assumption

R,.(t) may be expressed as

Rux(x) = fim = [T x(t+ Dx* (tydt (23)

11




and it is possible to show that P (f) may be expressed as [Ref. 5}
Pe(h = Jim Ef 3| [l xtexp(-jznftat]” | (24)

In the last expression it is important to note the presence of the expectation
operator since, due to the ergodic property of R,(t) , the limit T in P,(f) without

the expected value does not converge in any statistical sense.

If Px(f) is sampled for valuesn=0,1,........ N - 1, then

Ps(f) = Jim G| Ts z x,,exp(—JannT,) for —s-<f<o- (25)

Note that the expectation factor has been ignored, which can cause statistically
inconsistent results (i.e., the variance of spectral estimate does not decrease
even if longer sequences are used). The Fast Fourier Transform (FFT) is used to

evaluate P,(f). In fact if f, = mAf (equally spaced frequencies form = 0,1,.......... ,

N - 1) with af = gt-, then

a 2
Ps(fm) = Pm = 5= | Ts z xaexp(Z)| . (26)

By definition, the DFT (hence FFT) of x, is given by

Xm=Ts Z XneXp( ‘2"'"") (27)
and therefore
P = Poerm) = = 1Xml. (28)
12




Replacing the value of X, the formula for the periodogram is obtained by

- T, [Nt -j2rmn
Pper(m) = "Nl ngo Xnexp( N

2
)| - (29)

This last expression may be efficiently computed using the FFT.
It is important to note that the periodogram has some limitations, such as:

+ The frequency resolution Af is limited by the length of the data record to Af =
1

NT,

+ Because the DFT can be written as the convolution of the true Fourier
transform with the Fourier transform of a rectangu'ar window, there is a limited
ability (due to leakage), to detect weak peaks in the presence of strong peaks.
+« Random data can produce other difficulties because the periodogram is not

a consistent estimator, as is shown in Section 2.3.1 and 2.3.2.

1. Bias of the Periodogram

The bias of the estimator Isp,,,(,, can be determined by computing its mean

value and then comparing it with the true power spectral density.
If x(t) is a WSS process, then the PSD of the sampled sequence x, is

given by
Ps(h= £ Ru(klexp(-j2nkiTs). (30)

The periodogram can be written as

A N-1 2
Pper(f) = 5| Z Xnexp(-j2nfnTs) (31)

13




where

=% form=01,..... N-1. (32)

The ensemble average of ﬁ’,,,,(f) using

Ryx(n — m) = E{XnXm]

is expressed

- 1 NSNS .
E[Pper(f)] = 2, 2, Rudn — miexp(=j2n(n - m)fTs). (33)

n=

For an arbitrary function g(k), it can be shown that

b} = '8 (N-IkDgtk 34
TS an-m= % (N- kD, (39
hence

E[Pou®]=, % | (1-§)Rulexp(-i2nkiT,) (35)

If Equation 35 is compared with Equation 30, it is seen, for knot equal to

0, that the results are not equal, and therefore the estimatelspe,(f) is biased. The

bias of this estimator is defined as the difference between the true PSD and the
mean value of the estimator (i.e., if both are equal then the estimator is

unbiased). The last equation can also be written as

14




ElPper(] =, £ WORw(K)exp(-j2nkIT) (36)
where w(k) is the triangular window given by

Ikl
N for k| <N-1

1-
w(k) =
) { 0 elsewhere

(37)

The periodogram windows the autocorrelation with a triangular window.
This corresponds to the convolution of the Fourier transform of the two functions.

Thus, Equation 36 can be written in terms of W(f), the Fourier transform
of w(k) and the Fourier transform of R (k) which according to Equation 30 is the

true PSD P(f). Therefore

E[Poert | = [/, Po(f Wn(f -1 ) | (38)
where
: 2
Wi = 5(2t)” (39)

From Equation 38 it can be seen that the Periodogram average is
equivalent to viewing the true spectrum through the spectral window W (f).
Because W, (f) becomes more and more sharply peaked about f = 0 as N—o, it

is evident from Equation 38 that although the periodogram is biased, it is

15




asymptotically unbiased. In other words, if enough data is available, that isN—«

then
lim E[Ppar(D] - Ps(h). (40)

Hence, the mean converges to the true PSD. It is aiso evident from Equation 38

that the resolution of the periodogram is determined by the spectral width of W,(f)

which is approximately Af = %; where T, is the interval between successive

samples and N is the number of samples.
2. Variance of the Periodogram

The variance of the periodogram is given by
Var(lspe,(f)) = Cov(lspe,(f), lsper(f)) , (41)
where the covariance is defined by
Cov(Bpertf1), Poer(f2)) = E[ Poar(F)Pper(f2) | ~ E[ Poortfr) JE[ Prer(f) . (42)
Assuming white Gaussian noise of spectral height P(f), the covariance becomes
Cov(Poath), Pra()) = PultPutta] (ometece)” (smoteal)” | ey
For f,=f,= f this becomes

Var(Ppe(h)) = (Ps(f))z[1 + (;';Tznz—’ﬁ‘,-rl) 2] . (44)

16




If N> , then

Var(Poer() = (Pa()’. (45)

It is important to note that the variance is a "constant" independent of N,
or as N— the variance does not approach to zero. Therefore the periodogram is
not a consistent estimator. The standard deviation (square root of the variance)
is as large as the mean (the quantity to be estimated).

The fact that the variance of the periodogram does not decrease with
increasing data record length may be attributed to the lack of an expectation
operator in the definition of P(f). The periodogram can be enhanced to make it a
consistent estimator. To reduce the variance, at expense of frequency resolution,

a number of periodograms can be averaged.

D. PERIODOGRAM AVERAGING
The data record X ,X.............. Xy, can be divided into K segments, each

consisting of M samples (i.e., N = KM). This means there are K subrecords,

given by
¢ Subrecord 1 Xgy Xgy cveeeeeeemannaneninaanens )
¢ Subrecord 2 Xpt Xhgoeeeeneeemomneeenannnns Xom-1
¢ Subrecord 3 Xom s XoMets coeeeemmeeennnen Xam.1




¢ Subrecord K Xikamh XKoot +ooeeeeeee Xy.1 -

For each of these records, the periodogram is computed as

2
Ppe,(f k) = I fM xpexp(-j2nnfTs)| ,fork=0,1, ........ ,K-1. (46)

The average of these periodograms is given by

Pavper(§) = & & Pper(f: 0 (47)
or
1 (k+1)M-1 . 2
Pavper(f) = KM k—O - xnexp(-j2nnfTs)| . (48)

It is important to note that because the length of each data record is now M,

the frequency resolution has been reduced by a factor ofK, from

1 1 =
Af= N to Af= T (recall that N = KM ).

Therefore, whatever improvement found in the variance is traded off against a
loss in resolution.

To determine whether this averaged periodogram is consistent, its bias and
variance have to be computed. The mean value of the average periodogram will

be the same as the mean value of the periodogram based on any of the individual
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data sets. Since the periodogram for each data set is identically distributed and

the data are assumed to be statistically independent as well as stationary
A K-1 ~ A
E[ Pavoer( | = & = E[ Poertf:K) |= E[ Pour (:0) (49)

or

N _ 2
E[Pavper(f)] = E[# I’g Xnexp(—j2nnfTs) } (50)

Using Fauation 35 and Equation 38 with N replaced by M

[ PaperD] =, % (1- M) Ruexp(-i2nkiT,) (57)
hence

E[ Pavper(® | = j; PE W f )df (52)
where

sin anTs)z

Wi = (524 (3)

Comparing E[Isavpe,(f)] in Equation 52 with the true PSD in Equation 30, it is
clear that this estimator is "biased”. Furthermore, becauseM < N the resolution is
poorer (i.e.: Af = H1F ) than the one obtained using all of the data. Although

resolution is lost, the advantage using the averaged periodogram is evident when

its variance is computed. The variance of the averaged periodogram is
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Var(Bapr) = 2Var(Bouth) = 1P| 1+ (3R20) (54
or

Var(Paper(f)) — 3(Ps())*. (55)

The variance has been reduced by a factor of K below that of the unaveraged
periodogram.

Periodogram averaging allows reduction of the variance of the estimate at
the expense of frequency resolution. The value of K must be chosen in such a
way as to obtain an desirable reduction in variance at an acceptable frequency
resolution.

Finally, a technique known as the "Welch Method" will be mentioned. This
technique consists of windowing each data segment (%, x,,........... Xy.4) with a
non-rectangular window before forming the periodogram (i.e., x, is replaced by
w,X,, where w, is the window weighting). The advantages of this technique are
the same as discussed in the context of straight periodogram averaging. For
instance, if triangular windows with 50% overlap are used, the frequency
resolution is poorer by a f:cior of 1.42 due to the windows, but the variance is

improved by a factor of 1.77 [Ref. 4] due to the overlap.
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Ill. CLASSICAL WINDOWS

A. INTRODUCTION

Generally, a signal x(t) can exist in the entire interval (-0,0), but this signal
is often corrupted by noise. From the point of view of spectral analysis, the
detection and estimation of the signal necessitates that it be of finite length, in
other words, every observed signal that has to be processed must be of finite
length. Considerations of spectral analysis include:

+ Detectability of tones in the presence of nearby strong spectral components.
+ Resolvability of similar strength nearby spectral components.

Spectral analysis data involves two basic operations: sampling and
windowing. It is necessary to define the observation interval (NT,) (sec.), where,
N is the number of uniformly spaced samples of the observed signal and T, is the
time interval between samples.

The selection of a finite time interval (NT,) leads to an interesting peculiarity
of spectral analysis: If the record length NT, is selected in such way that it is not
an integer multiple of the period of the signal, a discontinuity will be introduced by
truncating the signal. This produces the undesired effect known as "leakage", the

non-zero projection of smeared frequency components.
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Windows can be defined as weighting functions applied to data in order to
reduce the spectral leakage associated with finite observation interval.
Essentially, the window function is applied to data to reduce the order of the
discontinuity at the boundary of the periodic extension.

The requirements of real-world machine processing also dictate that the
data set be of finite extent. As an example, the pair x(nT,) (the sampled signal)
and X,(f) (the Fourier transform of x(nT,)), is not suited for numerical
computation. This is so because the number of samples x(nT,) of x(t) is not
finite, and because X (f), or the Fourier transform of the sampled data, is

continuous rather than discrete, where

a

Xsf)=+ ¥ x(f-2) (56)

Ts m&e :

Appendix A contains the derivation of the above equation.
It is therefore necessary to limit the sequence x(nT,) to a finite number of
samples and sample X((f) at some appropriate location, in order to obtain the

discrete function

X(m) = X(f = %) where m = integer and T, = record length.

The objective is to get the discrete pair x(nT,) and X(m), for a good

approximation to the continuous Fourier transform pair x(t), X(f).
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B. WINDOWING A DISCRETE SIGNAL
If x(nT,) is the sampled version of the signal and w(nT,) is the sampled
window function, then the Fourier transform of the windowed sampled data signal

is given by
N-1 .
Gs(h) = Z%) g(nTs)exp(-j2nfnTs) (57)
n=|
where g(nT,) is the windowed sampled signal defined as

g(nT,) = x(nT,) w(nT), then

N-1
Gs(f) = Zo x(nTs)w(nTs)exp(-j2nfnTs) (58)
n=|
where
w(nT:)=0, forn>Nandn<0 (59)

and N = number of uniformly spaced samples of the observed signal.
The effects of the window in the spectral estimate are shown by the
interpretation of the Equation 58. This equation shows that the transform G,(f) is

the transform of a product, and because multiplication in the time domain

23




corresponds to the convolution of the two corresponding transforms in the

frequency domain, it follows that
Gsh = [* X )W(F - df (60)

or

Gs(f) = X(f) * W(f). (61)

This last equation is the key to the effects of processing finite length data,
since it represents the sum of all of the spectral contributions to each f weighted
by the window centered at f' and measured at f [Ref. 5].

The samples of the Fourier transform Gg(f) of the windowed sampled signal,
can be related to the discrete Fourier transform if the sampling rate is at f = Tﬂo
Therefore,

N-1
G(m)=Gs(f=7) = 2‘6 g(nTs)exp(-ji2rnmTs/To) form =0, 1,..., N-1. (62)
n=t

The record length is defined as T,= NT,. The discrete Fourier transform

pair is obtained as

Gm)= 3 g(nTs)exp(-j2rnmN) (63)
n=0

and the inverse discrete Fourier transform is defined by
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N-1
a(n) =1 2}0 G(m)exp(j2rmn/N). (64)

At this point is important to emphasize the following points:

+ Both G(m) and g(n) are periodic.
+ The values of Gim) for 0 <m < g correspond to the positive frequencies of

X(f).

» If T, is chosen in accordance with the sampling theorem, and T,= NT, is
sufficiently large, (i.e., to improve Af = f';) then for 0<m <N -1 *he discrete

transform G,(f) is a good approximation to the samples X(f) of the continuous

transform.

C. CLASSICAL WINDOWS

Classic windows are weighting functions, generally of the form of a raised
cosine, used in spectral analysis to reduce spectral leakage. In past years,
several classical windows have been developed [Ref. 2]. In this chapter a
reconstruction of these main traditional windows will be made, along with a
comparative study of the performance of these windows in the detection of a
weak spectral line in the presence of a strong nearby line.

A brief definition of the principal parameters used when comparing windows

performance is provided below.
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* The equivalent noise bandwidth measures the bandwidth of the window.
The objective is to minimize the bandwidth of the window in order to eliminate
the noise in the passband region of the signal.

* Processing Gain (PG) is defined as the ratio of output signal-to-noise ratio
So/No

to input signal-to-noise ratio (i.e., PG = 0°). A detailed approach to PG is
given in Appendix B.

* The highest side lobe level is the measure of the highest peak sidelobe
relative to the main lobe, and is an indicator of how well a window suppresses
the leakage effect. A window should exhibit low sidelobes away from the main
lobe to reduce the effects produced by spectral ieakage.

* The scalloping loss is defined as the ratio of coherent gain for a tone
located half a bin from a DFT sample point to the coherent gain for a tone
located at a DFT sample point, and is related to minimum detectable signal.

Two important concepts are here introduced: Coherent gain, defined as the

sum of the window term w(nT,), or the DC signal gain of the window (i.e.,

coherent gain ='§,w(nTs)); and a bin that is defined as the fundamental
frequency resolution (i.e., bin = 'ﬁ‘ where f; is the sampling frequency and Nis

the number of samples).
 The worst case processing loss measures the reduction of the output
signal to noise ratio as a result of windowing and of worst case frequency

location, and is defined as the sum of maximum scalloping loss of a window
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and of processing loss due to that window. It is an important parameter since it
allows for maximizing the detectability of tones.

+ The minimum resolution bandwidth ( 3.0 dB bandwidth) is related to the
mifimum separation between two equal strength spectral lines such that their
respective main iobes can be resolved. The criterion for this resolution is the 3
dB bandwidth of the window and means that two equal strength main lobes
separated in frequency by less than their 3 dB bandwidths will not be resolved
easily as two distinct spectral lines.

+ The 6 dB bandwidth defines the resolution of the windowed DFT. The DFT
output points are the linear addition of the spectral components weighted
through the window at a given frequency, therefore the sum at the crossover
point of the kernels must be smaller than the individual peaks if the two peaks
are to be resolved. This means that at the crossover point the gain from each
kernel must be less than 0.5 or the crossover point must occur beyond the 6
dB points of the window.

Of all the above mentioned parameters, the most important is the sidelobe

level, since it allows for reduction of the bias produced by leakage. Therefore, an

analysis of the sidelobe behavior of the windows following the approach

presented by H. Nuttall is considered next. The relationships obtained will be

used in analyzing the performance of windows [Ref. 3]. The windows of interest

are of the form
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K
w(t) =1 kz_% axcos(2rkt/L) for Jt| <t (65)

where K is an integer, (i.e., K + 1 is the number of terms in the window equation),
a, is a real constant, and L is the duration of the window. The Fourier transform

of w(t) is given by

W) = j‘fz wit)exp(~j2nft)dt (66)

where the window w(t) is a continuous function of time, and possesses aii orders

of derivatives for |t| < % However, discontinuities in w(t) or its derivatives occur at
t=t§. These discontinuities dictate the asymptotic behavior of W(f). The

window w(t) is normalized according to

Yac=1 (67)
k=0

K
w(0)=%§’ak=%. (68)

it is also observed that

2
~~
+
NIir-
—
i

K
» _ 1 _ K
mgrtrj\z_w(t)_ L k%( 1)*a. (69)

This last equation may or may not be equal to zero. 'Vith non-zero values,

w(t) is discontinuous att = i% and W(f) will decay at 1/f (her._ce, 6 dB roll off per
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octave). At a value of zero w(t) is continuous for all t. Also w'(t) is continuous for

all t since
, K
w'(t) = -& 3 kaysin(2nktlL) (70)
k=0
and
mliT/zw ®=0. (71)

However, w"(t) may not be continuous at t = +L/2 because

K
wit)= —5[’-‘33 Y. k2accos(2nkt/L) (72)
k=0
and
/" 4r? K
lim w”(t) = -5 (=D k?ax. (73)
-5 k=0

Tius last equation may or may not be equal to zero. If it is not zero, then
w"(t) is discontinuous at t = +L/2 and W(f) will decay at 1/f* (hence, 18 dB roll off

per octave). However if it is zero, then w"(t) is continuous for all t, and it follows
that w™(t) is also continuous for all t, then W(f) decays at least as fast as 1/f°

[Ref. 3].
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D. COMPARISON OF CLASSICAL WINDOWS

Next the most important classic windows (i.e., rectangular, triangular,
Hamming, Blackman and Kaiser windows) will be constructed, and their sidelobe
behavior compared. The other significant parameters will be identified following
those presented by F. J. Harris [Ref. 2). The Fourier based spectral estimate of

the window was obtained from the magnitude of the Fourier transform by

_ 2
W(m) = N}:’ w(n)exp (-j2znm/N)| . (74)
n=0

In the simulation the window length is fixed at 51, while the FFT is taken at a size
of 1024 (i.e., zero pad to 1024). Also, we will use normalized coordinates, and
the resultant sequence will be shifted so that the left end point coincides with the
origin. The sample period T,= 1 ailows to have a bin with a width of 1/N.
1. Rectangular Window
This window is unity over the observation interval [Ref. 7]. The window

for a DFT is defined as
win)=1forn=01,........ ,N-1 (75)

The spectral window is given by

sin(}e)

(76)

W(O) = exp[-j(g‘- - 1)9]

sin(%())
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where

6=2nT and T,= 1.

As shown in Figure 3.1, the magnitude squared transform of this window
is seen to be a sinc function, which has a DFT main lobe of two bins and a first
sidelobe level approximately 13 dB down from the main lobe peak (which agrees
with Harris [Ref. 2]). Since for this window there is only one coefficient non-zero,
the window decays at only 6 dB/octave, which is the expected rate for a function

with a discontinuity.
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Figure 3.1. Rectangular Window.
2. Triangular Window

This window is defined as
wn) =5 forn=0,1,........ , N2 (77)
wn)=w(N-n) forn=N/2,........... , N - 1.[Ref. 8] (78)
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The transform of a triangular window is given by

sin %o

(o) = 2exp| (¥ -1)e 512 (79)

1
sin 59

This means that the transform of the window is the digital sinc? function.
Figure 3.2 shows the windows and the magnitude squared transform. The main
lobe width is twice that of the rectangular window transform, and the sidelobe
level (approximately 26 dB down from the main lobe peak) is twice as low as that
of a rectangular window transform.

Because this window has a discontinuity in the first derivative, the

sidelobes fall off at -12 dB/octave.
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3. Hamming Window

This window is given by [Ref. 8]
W(n) =0.54 - 0.46c0s (Zn) forn=0,1,.......oocc.... N-1 (80)

The magnitude squared transform of this window is shown in Figure 3.3,
and indicates that a marked improvement in the sidelobe level is realized. For
this window the sidelobe level is seen to be approximately 43 dB lower than the
main lobe peak. However, a broadening of the width of the main lobe should also
be noted.

Because Equation 69 does not equal zero for the coefficients of

Hamming window, this window has an asymptotic decay of 6 dB/octave.
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4. Blackman window
The equation for this window has three non-zero coefficients and was
developed to achieve a window with a relatively narrow main lobe and low

sidelobes [Ref. 8]. It is given by
W(n) = 0.42-0.5cos(%n) +0.08cos (22n) (81)

forn=01,............... ,N-1.

The Blackman window is shown in Figure 3.4. Its largest sidelobe is
approximately 58 dB down from the main lobe peak. For the coefficients of this
window Equation 69 is zero but Equation 73 is not, thus this window has an
asymptotic decay of 18 dB/octave.

When referred to as the exact Blackman window, the following (exact)

coefficients are included:

a,= 7938/18608

a, = 9240/18608

a, = 1430/18608.
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When constructing this window, results differ from those of Harris [Ref.
2]. The exact Blackman window is depicted in Figure 3.5 and shows the largest
sidelobe to be approximately 65 dB below the main fobe peak, not 51 dB down as
cited in Harris work [Ref. 3]. Experimental results were closer to those presented
by Nutall (68.2 dB lower) [Ref. 3]. The rate of fall off is only 6 dB/octave.

(Equation 69 is not equal to zero for the coefficients of this window).
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5. Kaiser-Bessel Window
This window is of the form of the zero-th order modified Bessel function

[Ref. 9] and is given by

lo(ra 1.0—%)

w(n) = —m-z— for 0 < |nf<¥, where (82)
=[()'T

lo() = 2 [ a ] : (83)
k=0

The parameter a can be selected, and its choice is a tradeoff between
sidelobe level and mainlobe width. The transform is approximately given by

N sinh(Jazxz—(NGQ)z )

W(6) = loem) (3242 (Ner2)?

(84)

This window is presented in Figure 3.6 and Figure 3.7 for the valuesa =2 and «
= 3, respectively.

The figures demonstrate that for value of a= 2 the highest sideiobe peak
is approximately 50 dB down from the mainiobe peak, whereas for a = 3 the
sidelobe peak is approximately -70 dB, but a considerable increment in main lobe

width should be noted. For both cases a fall off of 18 dB/octave is observed.
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E. HARMONIC ANALYSIS USING CLASSICAL WINDOWS

The experiment to be described follows closely that presented by Harris
[Ref. 2]. The objective is to demonstrate the influence that classical windows
have on the detection of a weak spectral line in the presence of a strong nearby
line. A signal composed of two frequencies has been considered, with the

following parameters:

[ 4

sampling frequency f,= 1 Hz,
« record length T,= 256,
+ number of samples N = 256,
+ signal amplitudes A,= 1, A,=0.01( 40 dB separation),
+ signal frequencies f,= 10.5 bins = 10.5 f, /N and f,= 16 bins = 16 f,/N.

It is interesting to observe the behavior of the rectangle window when the
two spectral lines are located exactly in DFT bins (i.e. f,= 10 bin , f,= 16 bins ).
This is shown in Figure 3.8, where we can observe that the rectangular window
allows identification of each spectral line with no interaction. However, in the
present analysis the more difficult problem (i.e. f, = 10.5 bins) will be presented,
that is where the poorer resolution occurs.

The power spectrum for a signal with f,= 10.5 bins and f,= 16 bins is show
in Figure 3.9, where the sidelode of the larger signal has completely hidden the
mainlobe of the smaller signal. This is due to the fact that the sidelobe level of

the rectangle window 5.5 bins from the center is only at 25 dB down from the
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peak (see Figure 3.1). Therefore the smaller signal (5.5 bins away from the
largest) could not be detected because its main peak is at more than 25 dB down
(i.e., 40 dB).

The case when applying a triangular window is presented in Figure 3.10,
where the side lobes have fallen by a factor of two over the rectangle window's
sidelobes (i.e., the -30 dB level has fallen to -60 dB). Also, the sidelobes of the
largest signal have fallen to approximately -43 dB at the smaller signal so it is
barely detectable (its mean peak level is at 40 dB). The artifacts at the base of
the side lobe structure are probably due to the coherent addition of the kernels of
the two signals.

The results of applying the Hamming window are presented in Figure 3.11.
Here the weak signal can be detected, since its peak appears approximately at
35 dB down or approximately at 3 dB over the side lobe of the largest signal.
Note that the sidelobe structure of the larger signal extends over the entire
spectral range.

We next apply the Blackman window, and the results are depicted in Figure
3.12. The presence of the smaller signal can clearly be seen, since there is a
deep null between the two lobes of approximately 17 dB. The artifact at the base
of the large signal lobe is the sidelobe structure of that signal. The rapid rate of

fall-off of the side lobes should be noted.
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in Figure 3.13 the results of applying the exact Blackman window are
presented. As in the Blackman window, the smaller signal is detected, since an
approximately 20 dB null between the lobes of the two signals is observed. Note
that now the sidelobe structure of the larger signal extends over the spectral
range. However, this leakage is not too severe, since it is about 60 dB lower than
the main lobe peak.

The last window to be demonstrated is the Kaiser-Bessel window, and the
results are presented in Figures 3.14 and 3.15 for the valuesa = 2 and a = 3,
respectively. Here too, an obvious detection of the weak signal can be made. it
is important to note the effect of choosing the parameter 'a’, since a trade off
between sidelobe level and main lobe width must be considered. For instance,
with a = 2, a null of approximately 20 dB is between the two main lobes, and the
side lobe structure of the larger signal is about 60 dB below the main lobe, as
illustrated in Figure 3.14. However, an improvement in the sidelobe level should
be noted when a = 3, but at expenses of an increment in the main lobe width,
shown in Figure 3.15.

Figure 3.16 illustrates sidelobe levels for some of the windows discussed

above [Ref. 10].
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When additive white Gaussian noise (AWGN) corrupts the signals then the
larger signal (centered at 10.5 bins) is detected even at low levels of signal to
noise ratio (SNR) of 0 dB, as shown in Figure 3.17. The weak signatl (at 16 bins)
can not be detected even at high levels of SNR (i.e., 30 dB), as shown in Figure
3.18. Therefore, the performance in the presence of noise using classical
windows will be simulated using a signal composed of two equal amplitude
components, centered at f,= 10.5 bins and f,= 11.5 bins, as is demonstrated in

Section 4.3.
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IV. NONTRADITIONAL WINDOWS

A. INTRODUCTION
The main objective of this chapter is to study a new data window for use in
Fourier-based non-parametric spectral analysis. The weighting function to be
studied is complex valued and consists of an analytic linear FM chirp. This is
shown in Figure 4.1, where the complex valued function, its real and imaginary
part as well as the magnitude is plotted. Due to the fact that this nontraditional
window has high resolution capabilities [Ref. 1] and given the ease with which
Fourier spectra can be computed (i.e., computationally efficient), this kind of
window can become an attractive tool in spectral analysis.
The work to be done here can be summarized as follows:
¢ To analyze the results of J. Griffiths [Ref. 1] and to replicate them using
MATLAB [Ref. 10];
* To establish the signal to noise ratio sensitivity of this type of window;
+ To examine the behavior of this window when using damped sinusoidal
signais;
+ To develop a mathematical approach to investigate the behavior of this

window in the presence of one or several signals.
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B. FM CHIRP WINDOW DEFINITION AND EXPERIMENTAL RESULTS
In accordance with J. Griffiths's work, the goal is to define a window w(n)
that has high resolution capabilities. The weighting function which meets this

objective is the linear FM chirp, defined by

w(n) = e®™, (85)
forn=01,............., N - 1, where 9(n)is the phase term and is defined as
a(n) = 8(n - 1)+ Q(n). (86)

In the last expression, the term Q(n) is the digital instantaneous frequency,

and is expressed as

Qn) = &0 (87)
The phase term is initialized to zero at n = 0 and is given by

o(n) = 22D (88)

Once the windcw is defined, the Fourier-based spectral estimate can be
obtained from the magnitude of the Fourier transform of the windowed data

sequence x(n) by

—j2nnk

~ _ 2
Poer(k) = | & x(mpwimexp(B)| (89)
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Note that the periodogram is not normalized by N. In order to simplify the
analysis, periodogram averaging is not employed. The simulations to be
presented are at sufficiently high SNR that averaging does not significantly
change the resporse.

Several different sets of parameters will be used in the simulations. The
data is a 32 point sequence, padded with 96 zeros to allow a 128 point FFT. This
1:4 ratio of data size to transform length is employed throughout the simulations,
with the purpose of obtaining "smoother”" curves in the frequency domain. The
value of the number of sampling points is 32. Using a spacing between samples,
of T,=1 provides a DFT bin width of 1/N.

The magnitude spectrum for the linear FM chirp window is dericted in
Figure 4.2. From this it should be noted that the magnitude of the spectrum
shows a deep null at DC (i.e., 0 Hz), and is approximately constant, at 15 dB (or
10log,,(32)), at other frequencies [Ref. 4]. It is important to observe that the width
of the sharp null is less than 1/4th bin (Note that a bin is defined in terms of the 32
point data duration and not the overall transform length, i.e., binwidth = 1/32) .

The phase spectrum for the window under study is shown in Figure 4.3, and
it can be observed to have a quadratic behavior. It should also be noted that
there is a = discontinuity at the 0 frequency point. The results of the window
amplitude and phase simulation in this work are agree which those presented by

Griffiths.
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The next simulation to be performed is for the case of a single complex
input sinusoid, in additive white Gaussian noise (SNR = 30 dB). In Section C a
noise simulation to determine the signal to noise sensitivity of this kind of window
will be performed using different SNR levels. The magnitude spectrum estimate

shown in Figure 4.4 is obtained when
x(n) = exp(2nn(’s;?) (90)

is used in Equation (89). The frequency of this complex sinusoid is therefore f, =
0.328125 Hz. From Figure 4.4 it can be noted that it is the chirp window
transform shifted to the frequency of the signal (i.e.,f, = 0.328125 Hz). Since the
muiltiplication of two functions in the time domain corresponds to the convolution
of the two corresponding transforms in the frequency domain it should be noted
that a sharp null is located exactly at the frequency of the signal.

it is important to note that the frequency of the signal is not DFT bin
centered (i.e., f = 10.5f,/N). This means that the simulation is done for the worst
resolution case or, in other words, when spectral leakage occurs.

The results of the next simulation are presented in Figure 4.5. It shows the
behavior of the transform of the chirp window in the magnitude spectrum when
two analytic sinusoids are present. A second complex valued sinusoid is added
to the data used for Figure 4.4. The signal frequency is at f, = 0.3125 Hz, which

corresponds to a DFT bin of 10 (i.e., f,= 10f/N), and thus the two signals are one

58




half bin apart. In Figure 4.5, the magnitude spectrum is observed to be
completely different from that produced when a single sinusoid is present. In fact,
two nulls are not observed at locations that correspond to the signal frequencies.
One explanation as to why two deep nulls are not observed is that a
Fourier-based method is employed, and it has linear properties. The shape of the
magnitude spectrum illustrated in Figure 4.5 is related to the sum of the response
for the case when a single input is present (Figure 4.4), with a similar response
that is obtained by shifting to the left by 0.0156 Hz (i.e., 0.328125 Hz-0.3125 Hz).
But due to the fact that the periodogram is not a linear process (magnitude
squared of the transform) the resultant spectral estimate has to involve the
contribution of the implicit crossterms, produced when the magnitude of the
Fourier transform sum of the individual weighted data is squared (i.e.,

i2n 2
%(x,(n))+(x2(n))w(n)exp(%"—k) ), where x,,, and x,, are the data sequences

representing each one of the analytic signals, respectively.

However, it is important to keep in mind the changes that the chirp window
produces in the magnitude spectrum when two closely spaced sinusoids are
present in the data, as compared to when only a single sinusoid is present. This
can become an advantage over traditional windows, since the chirp window could
detect spectral lines that are less than a bin apart.

Figure 4.6 illustrates the magnitude spectrum obtained when using

conventional windows. In this case, the data used to produce Figures 4.4 and 4.5
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is weighted by a raised cosine (i.e., Hamming window) prior to computing the
transform. Figure 4.6a shows the magnitude spectrum for the case of a single
complex valued sinusoid located at f,=0.328125 Hz. Figure 4.6b illustrates the
magnitude of the transform for the case of two analytic sinusoids that are
separated by one half bin (i.e., f,=0.3125 Hz f,= 0.328125 Hz). As expected,
only a single peak is observed in both cases, even though Figure 4.6b is the
magnitude spectrum for two signals. This is due to the fact that conventional
windows can not resolve spectral lines that are separated by less than one bin.

The final example presented by J. Griffiths to illustrate the differences
between traditional and FM chirp windows is in the use of a signal containing
frequency steps (i.e., frequency shift keying). The signal consists of a sinusoid at
0.2 Hz for the first 16 samples, and 0.4 Hz for the remaining 16 samples. In this
case, it is necessary to guarantee a phase continuity of the time waveform at the
location of the frequency jump. It was therefore necessary to define an
instantaneous frequency Q(n) (Equation 87) as the desired discontinuous
function and then compute 6(n) by means of Equation 86.

A marked difference can be observed, as shown in Figure 4.7, when
computing the magnitude spectrum for the cases of weighting data with classical
and FM chirp windows for a frequency stepped signal. Figures 4.7a and 4.7b
iflustrate the magnitude spectrum when the weighting function is a traditional

window (i.e., a Blackman window 32 points in length) and the data is a sinusoid
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containing a frequency which moves from 0.2 Hz to 0.4 Hz at the midpoint of the
data record. Figure 4.7a displays a signal with a shift upward from 0.2 Hz to 0.4
Hz, while in Figure 4.7b the frequency shifts from 0.4 Hz to 0.2 Hz (downward) as
time progresses. From these figures it can be observed ttjat the traditional
magnitude spectra are almost identical for both cases of FSK signals, so it is not
possible to determine which way the signal frequency shifts. When the chirp
window was used with the same FSK signals, the results depicted in Figure 4.7c
are obtained for an upward step and Figure 4.7d when the frequency is stepped
downward. It is important to note that in order to be consistent with the results
presented by J. Griffiths, an SNR of 30 dB (or better) was employed.

A possible explanation as to why the upward change in frequency causes a
result that presents a marked difference from that when the change in frequency
is downward is the fact that the chirp introduces a time varying spectral
component (instantaneous frequency) which will affect the upward and downward
shifts differently. Since the weighting data is an FM chirp with instantaneous
frequency defined by Q(n), the net instantaneous frequency is simply the sum of
the instantaneous frequencies of the data and the window [Ref. 4]. Analysis of
Figures 4.7c and Figure 4.7d, shows that an FM modulation, upward or
downward, will result in an magnitude spectral estimate which presents multiple
nulls in the lower spectral regions, as is shown in reginn 0.25 Hz to 0.5 Hz in

Figures 4.7c and 4.7d. One should also note that the two main peaks in Figures
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4.7a and 4.7b are also located in the lower spectral region. If the frequency
function of the signal is time reversed such that the high frequency portions
appear at the beginning of the record (i.e., step downward), then the location of
the maxima and the minima of the spectral estimate are reversed. For instance,
we can observe from Figure 4.7c that the maximum value (i.e., 20 dB) of the
maghnitude spectrum occurs at approximately 0.4 Hz. Whereas in Figure 4.7d the
minimum value (i.e., -3 dB) of the spectral estimate occurs at approximately 0.4

Hz.

C. SIGNAL TO NOISE RATIO SENSITIVITY OF FM CHIRP WINDOW

The discussion here relates to the minimum signal to noise ratio at which
the chirp window method still yields useful results. For the simulation, we realize
that the resuits are dependent upon the transform length. In the simulation the
data length and transform length are 32 and 128 points, respectively. The noise
will be additive white Gaussian noise (AWGN).

For the case of a single complex sinusoid, the results of processing the data
with the complex window are presented in Figure 4.8, where it can be observed
that at a high level of SNR (i.e., 30 dB), a deep null of approximately 30 dB of
amplitude is located at the frequency of the input signal (see Figure 4.8a). When
simulations are performed at SNR's of 20 dB and 18 dB, good results are still

obtained as shown in Figures 4.8b and 4.8c. Therefore, if the SNR is better than
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18 dB good results are obtained, which agrees with Griffiths's claim that good
performances are achieved for SNR levels between 20 dB and 25 dB [Ref. 1].
When the value of SNR is reduced to 15 dB (Figure 4.8d) the spectra becomes
ambiguous, and below that value a null is no longer present at the signal's
frequency location. Therefore, the linear FM chirp window is a high resolution
weighting function for single sinusoids, but is limited to high SNR levels (i.e.,
above 15 dB).

To demonstrate the SNR dependency of the chirp window when more
than one signal is present the following experiments are performed: Two equal
amplitude sinusoids of length 32 which are one bin apart (i.e. f,= 10.5f/N =
0.328125 Hz and f,= 11.5f/N = 0.359375 Hz) are considered. These sinusoids
will be weighted by classical windows (i.e., Rectangular and Hamming ) and by
the chirp window for different levels of SNR. The experiment will then be
repeated for sinusoids located one half a bin apart (i.e.,f, = 10.75f/N = 0.335937
Hz and f, = 11.25f/N = 0.351562 Hz). Note that in both cases the signals are not
bin centered and the sequence is padded with 96 zeros to provide a 128 point
FFT.

On observing the lack of two deep nulis at the signal frequencies when the
data is weighted by the chirp window, it should be noted that the point Griffiths
argues that, when two or more closely spaced sinusoids are present in the input

data, the spectral estimate will have a shape that resembles that shown in Figure
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4.5. Different levels of SNR have been chosen to determine over which range of
SNR values, the magnitude spectrum continues to produce useful results. Data
with the same levels of SNR (i.e., 30 dB, 18 dB, 9 dB and 0 dB) will be compared
using rectangular, Hamming, and FM chirp windows.

Figure 4.9 shows the results when the input data is weighted by a
rectangular window. From this it can be observed that the two higher main lobes
are located exactly at the frequencies of the composed signal. At an SNR of 30
dB (Figure 4.9a), detection of the two signals is excellent. At an SNR of 18 dB
(Figure 4.9b) and an SNR of 9 dB (Figure 4.9c) good results are also found,
whereas at an SNR of 0 dB (Figure 4.9d) the result begins to be ambiguous, even
though the signals are still recognizabie.

Figure 4.10 shows the results when the weighting function is a Hamming
window. As expected, a better sidelobe level is found here than when using a
rectangular window, but it should also be noted that the main lobes are now
broader. As in the rectangular window, at an SNR of 30 dB (Figure 4.10a) and an
SNR of 18 dB (Figure 4.10b) the resuits of the spectral estimation are good. At
an SNR of 9 dB (Figure 4.10c) reasonable results are still obtained, but at an
SNR of 0 dB (Figure 4.10d) the observed spectral estimate is ambiguous. Figure
4.11 shows the resuits when using the complex FM chirp window for the case
when the signals are one bin apart. It shows a pattern with multiple deep nulls,

and, even though two nulls are observed at approximately the frequency of the
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input signals (Figure 4.11a and 4.11b), they cannot be considered detections due
to the presence of other nulls at frequencies that differ from the input frequeiicies.
It is interesting to observe that at an SNR of 9 dB (Figure 4.11c), a deep null is
present near one of the input frequencies, but this also cannot be considered a
detection. However, it should be noted that the shape of the spectrum is almost
the same for SNR's of 30 dB, 18 dB and 9 dB (Figures 4.11a to 4.11c). At an
SNR of 0 dB the spectral estimate does not convey any information. Another
important observation is the fact that the shape of the spectral estimate in figure
4.11, looks totally different from that of Figure 4.5 which is the spectral estimate
when two signals are one half bin apart.

The next simulation to be performed has the sinusoids separated by one
half bin (i.e., f, = 10.75f/N = 0.33597 Hz and f, = 11.25f/N = 0.351562 Hz). Here
also the number of data samples is 32, and the sampling frequency f, = 1 Hz.
Figure 4.12 shows the results using a rectangular window. As expected, only one
main lobe is present in the spectral estimate due to the fact that traditional
windows are not able to resolve spectral lines that are separated by less than one
bin. This main lobe can not be resolved for any SNR, for instance of 30 dB
(Figure 4.12a), 18 dB (Figure 4.12b) and 9 dB (Figure 4.12c). At an SNR of 0 dB
(figure 4.12d) the main lobe still is present but begins to be ambiguous.

Figure 4.13 shows the results obtained when using a Hamming window. As

is the case in a rectangular window, only one main lobe is present. Lower
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sidelobe levels are obtained, but at the expense of a wider main-lobe width. At
SNR's of 30 dB (Figure 4.13a), 18 dB (Figure 4.13b) and 9 dB (Figure 4.13c), a
good detection of the main lobe, representing the average spectral location, is
achieved. At an SNR of 0 dB (Figure 4.13d) the spectral estimate becomes
ambiguous.

Finally, in Figure 4.14, the results obtained using the chirp window are
depicted. It should be noted that in all simulation the axis are normalized, so that
the maximum value of the magnitude spectrum is 0 dB. Despite the fact that the
input signals are located at f, = 10.75f/N and f, = 11.25f,/N, which differs from the
locations of the input signals in Griffiths paper (i.e., f, = 10f, /N andf, = 10.5f, /N)
the shape of the spectral estimate looks similar to that shown in Figure 4.5. At
least at 30 dB of SNR (Figure 4.14a) and at 18 dB of SNR (Figure 4.14b) the
shape of the spectral estimate looks similar to that shown in figure 4.5. At an
SNR of 9 dB, the shape of the spectrum begins to become distorted and at an
SNR of 0 dB it is totally different from that in Figure 4.5, hence it is unknown

whether more than two signals are present (or any at alil).
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D. CHIRP WINDOW APPLIED TO DAMPED SINUSOIDS
In this section the effects of the chirp window will be studied when the data
is a damped sinusoid. First to be considered is the case of a single "damped"”

sinusoid of the form
. 10.5fs
x(n) = exp(2rn(——))exp(-Tcn) (91)

where n varies from 0 to 31 so that the data length is 32. The sampling frequency
f,= 1 Hz and T, is the time constant of the decaying exponential. This input
sequence was weighted by the chirp window for different values of T (i.e., T, = 1,
1/2, 1/3, and 1/4) and the obtained results are depicted in Figure 4.15. An SNR
of 30 dB was employed.

Figure 4.15a shows the result when the damped input sequence has a value
of T.= 1, and from it we clearly observe that no null is present at the frequency of
the signal (i.e. f, = 10.5f/N = 0.338125 Hz). Moreover, the shape of the spectral
estimate is similar to that of Figure 4.5. That is, according to Griffiths, the case
when more than one input sinusoid is present.

When T_= 1/2 the spectral estimate has the shape shown in Figure 4.15b
and from it can be observed that, as in the previous figure, no null is present at
the frequency of the input signal. In this case the shape of the magnitude
spectrum is similar to that shown in Figure 4.5 (two sinusoids one half bin apart).

For values of T, = 1/3 (Figure 4.15c) and T, = 1/4 (Figure 4.15d) no null is
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observed at either the signal frequency location, but in these cases the shape of
the spectrum is not similar to that of Figure 4.5. Another observation is that at the
0 frequency location for T.= 1 (Figure 4.15a) the magnitude of the spectrum is at
approximately 10 dB, whereas when T = 1/4 the amplitude of the spectrum at the
0 frequency point is approximately 0 dB.

The next simulation performed to determine the behavior of the complex
window is when the signal consists of two damped sinusoids. Then the signal is

given by
x(n) = [exp(2nn()) + exp(2rn(T=))lexp(-Tcn). (92)

Note that the complex sinusoids are separated by one haif bin.

The resuits of weighting this input sequence with the complex window are
depicted in Figures 4.16a for a value of T.= 1, Figure 4.16b for T = 1/2, Figure
4.16¢ for T, = 1/3 and Figure 4.16d for T.= 1/4. From Figure 4.16a we can
observe that the shape of the spectral estimate is similar to that shown in Figure
4.5. According to the theory proposed by Griffiths as it relates to the shape that
the magnitude spectrum has in the presence of two or more input signals, the
simulation is correct. But when the time constant takes values of 1/2, 1/3 and 1/4
the shape of the spectral estimate becomes to be different from that shown in

Figure 4.5. It is also important to note that, in this case, the maxima of the
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magnitude spectrum remains almost the same, regardless of the value of the time

constant.

E. NUMERICAL BEHAVIOR OF CHIRP WINDOW
The spectral estimate obtained from the magnitude of the Fourier transform

of the weighted data sequence x, is given by

B9 = | 5, xagoexp(-2inkniN) 2, (93)
where x, is a simple analytic sinusoid (for easy interpretation) of the form

Xn = exp(j2nkon/N) (94)
(i.e., one complex valued sinusoid with frequency k), and

gn = exp(j2n(n? + n)/(2N)), (95)

is the chirp window equation.
It is known that the transform of the multiplication of two functions in the
time domain corresponds to the convolution of the two corresponding transforms

in the frequency domain. Therefore,
"{:; XaGn€XP(=2jmkn/N) = X(K) » G(K), (96)
n=

where
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X(Kk) = 8(k — ko) (97)

is the transform of x,, and
G(k) = "§; exp(2n(n? + n)2Nyexp(-j2xkn/N) (98)

is the chirp window transform. Hence,

X(K) * G(K) = 8(k — Ko) * G(K) = G(k — ko). (99)

While finding a close expression for%exp(nz) is difficult, developing a close

form expression is too cumbersome. When one signal is present, the spectral
shape is the transform of the chirp window will be shifted to the frequency of the

signal (i.e., k;), or

Px(k) = |G(k - ko)) (100)

The chirp window has a deep null at the zero frequency point (see Figure 4.2).
Due to the convolution the null will be simply shifted to the signal frequency
location, making the estimate of the signal possible (see Figure 4.4).

Different results are obtained when more than one signal is present, i.e.,
Xn = exp(j2nkon/N) + exp(j2rkin/N). (101)
In this case, the Fourier transform of the data sequence is

X(k) = 8(k — ko) + (k —k1). (102)
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The spectral estimate is given by

P,(k) = |G(k - ko) + Gik — k1)|2, (103)
or

Pyx(k) = G3(k — ko) + G2(k — k1) + 2G(k — Ko)G(k ~ K1). (104)

From the last expression we can observe the presence of crossterms which
prohibit the detection of two expected nulls at the signal frequency locations.
Some window parameters are estimated (i.e., mean and standard
deviation). The chirp window as in all of our experiments has a length of 32
points and is padded with 96 zeros, permitting a 128 point FFT. Because the
magnitude of the FFT is symmetric in frequency, only one-half of the transform
length (i.e., from 0 Hz to 0.5 Hz) will be considered, as is shown in Figure 4.17.
To compute the mean and the standard deviation, the first 11 points of the
window transform are rejected, with the purpose of obtaining pararneter values in
the region where the shape of the transform becomes more stable (i.e., from point
12 to point 64). The following are the results of the measurements:
+ Value of window transform at 0 frequency point = 2.3437x10™" (i.e., null)
+ Mean of the window transform = 5.8271

+ Standard deviation of window transform =0.7275
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From the above estimates, we can observe that the value at DC is almost
zero, yielding a deep null when the magnitude spectrum of the window is
computed. The square of the magnitude of the chirp window transform is
bounded by 2.0 and 7.657, if one disregards the null at the zero location (see
Figure 4.12). Appendix C depicts an alternative window, which consists of a
square chirp window derived from the chirp window presented by Griffiths (Ref.

4).
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V. CONCLUSIONS AND RECOMMENDATIONS

In this thesis some classical and non-traditional windows have been
examined as they apply to the periodogram. The periodogram approach has
some advantages and disadvantages:

+ Advantages
1. Computationally efficient, since it uses the fast Fourier transform (FFT).
2. The power spectral density (PSD) estimate is directly proportional to the
power of the sinusoidal process.[Ref. 5]

+ Disadvantages

1. Frequency resolution (Af = f';) is limited by the record length To = NTs.

2. Suppression of weak signals by strong signal sidelobes.

3. Introduction of distortion in the spectrum due to sidelobe leakage.

4. Periodogram is statistically not consistent (i.e., the variance of the PSD
estimator does not tend toward zero as the record length increases). To
circumvent this problem the averaged periodogram as defined in
Equation 48 can be used, with a proportional loss of resolution.

In describing classical windows' ability to detect a weak spectral line in the
presence of a strong nearby line, it was observed that if two spectral lines are

located exactly at DFT bin centers, the rectangular window allows each to be
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identified without interaction. If any of the spectral lines are not bin centered,
spectral leakage occurs, and the sidelobe structure of the larger signal can mask
the structure of the smaller signal, thereby prohibiting its detection. One of the
most important parameters of classical windows is the sidelobe level.

When analyzing the sidelobe behavior of the classical windows considered
in this thesis, and following the method presented by Nuttall (Ref. 3), the window
with the best sidelobe behavior is the Kaiser-Bessel window (fora = 3). The
largest sidelobe is approximately 7G dB beiow the mainiobe peak. Another
important question is the trade-off between sidelobe level and main lobe width of
a given window.

A very important limitation of classical windows is their poor capability for
detecting spectral lines that are separated in frequency by less than one DFT bin.
In fact, as is demonstrated in Figure 4.6b, the magnitude squared Fourier
spectrum does not provide an immediate indication of the fact that two closely
spaced sinusoids (i.e., one-half bin apart) are present, because only one main
lobe beam is obtained. The Fourier-based spectral analysis therefore lacks good
resolution. A non-traditional window (the chirp window), which was tested for its
resolution capabilities in this thesis.

The simulation resuits presented in Chapter IV demonstrate that the chirp
window can distinguish between single and multiple sinusoidal components when

these components are located less than one DFT bin apart.
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For a single complex valued sinusoid, simulation results show a deep null

located exactly at the signal frequency. This is due to the fact that the magnitude
spectrum of the chirp window exhibits a deep null at the 0 frequency point and, if
the data consists of a single sinusoid, the spectral shape is simply the transform
of the chirp window shifted to the signal frequency. However, it should be noted
that this detection is limited to high signal-to-noise ratios (i.e., above 15 dB).

In the case of two equal amplitude complex valued sinusoids, simulation
results show that the shape of the spectrum differs from that when a single
sinusoid is present. In fact, two nulls are not present at the frequency signal
locations, and the pattern observed consists of a non-uniform spectrum which
contains nulls at lower frequencies and broad peaks at higher frequencies. One
possible explanation as to why two nulls are not observed at the signal frequency
locations is that the shape of the magnitude spectrum is related to the sum of the
response of the individual weighted signal transforms. The periodogram is not a
linear process (i.e., magnitude squared of the Fourier transform). The resultant
spectral estimate involves implicit crossterms. The use of the complex valued
chirp window creates large differences in the shape of the magnitude spectrum
depending upon whether single or multiple frequencies are used. The presence
of two or more signals can be inferred from the shape of the magnitude spectrum.

it must be emphasized that the results described above do not apply when

the data contains damped sinusoids. When a single damped sinusoid, with a

g0




time constant equal to the data length or one-half the data lenth, is weighted by a
chirp window, the resulting spectral estimate does not have a null at the signal
frequency location. The spectrum shape is similar to that found when more than
one sinusoid is present. If the sinusoid decays very fast (i.e., the time constant is
smaller than one-third of the data length), even less satisfactory results are
obtained.

In the case of two damped sinusoids with a time constant equivalent to the
data length, the resulting spectral estimate agrees with the results found when
using non-damped sinusoids. However, when the time constant has values of
one-half and one-third of the data length, the spectral shape yields nulls at lower
and higher frequencies. At a time constant value of one-quarter of the data
length, nulls are observed only at higher frequencies. The chirp window is not a
desirable weighting function when damped sinusoids are present.

Another aspect is the use of the chirp window when the signal contains
frequency steps (i.e., FSK). A marked difference in the spectral estimate is noted
for the upward change relative to the downward change case. This difference in
the spectrum shape is due to the fact that the chirp window introduces a time
varying spectral component, or digital instantaneous frequency, which will affect
the downward and upward shifts differently. However, this change in the shape

spectrum can offer an advantage over traditional windows, since the use of
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traditional windows as weighting functions results in a spectral estimate which is

almost the same for the downward shift and upward shift cases.

The numerical value of the window transfom at the DC location is almost
zero. This confirms the presence of a nuill at the 0 frequency point in the
magnitude spectrum. Simulation results show that the alternative non-traditional
window presented in Appendix C (which is a square chirp window) behaves much
like the chirp window studied in Chapter IV. It should be noted that the square
chirp window is limited to high SNR (above 15 dB).

Finally, a continuation of the research into non-traditional windows is
recommended, since they have better resolution properties than conventioiiai

windowing techniques, such as the raised cosine window.
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APPENDIX A. RELATIONSHIP BETWEEN THE TRANSFORM OF A CON-
TINUOUS SIGNAL AND A SAMPLED SIGNAL.

To demonstrate the relationship between the sample transform X,(f) and the

Fourier transform X(f) of continuous function x(t), define

Xs(h =1, £ _X(- ). (A1)
Let x,(t) be a pulse train of delta functions:

xs(t)= £ 8(t-nTs). (A.2)

Because Equation A.2 is a periodic function, it can be expanded in a Fourier

series as

Xs() = £ xnexp(ED), (A3)
where

Xn = - [T X(Dexp(-jZ2)ydt. (A.4)

If x(t) = 8(t), and recalling that [*_x(t)3(t — t)dt = x(t) , a periodic pulse train of delta

functions can be written so that

Xn = 1= [T S(exXp(-jZM)dt = 7-€°, (A.5)
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hence

Therefore Equation A.3 can be written as

£ st-nT)=1 £ expGZ™).

n

If tis replaced by f and T, by 7- , Equation A.7 becomes

$5(¢-2)=T, £_exp(2inT,).
Next, recalling that the Fourier transform of the sampled data is
Xs() = £_x(nTo)exp(-j2xfnTy),
and that the continuous function of x(t) can be written as
x(® = [°. X yexp(2nf tydf |
replacing Equation A.10 into Equation A.9 yields
Xs() = LX)l $_exp2rn(f-f)Ts).
Applying Equation A.8 shows that
] 3}9.‘_@ exp(2rn(f- f/)T,) =7 nﬁ_@ (f-f - ),
and therefore
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(A.9)

(A.10)

(A.11)
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Xo) =[x £ 86-1 - £)af (A.13)
But by the property of the delta function,

2 x(®3(t - to)dt = x(to). (A.14)

The final result is

Xsh=1% 5 X(E-£). (A.15)
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APPENDIX B. PROCESSING GAIN

Processing gain is defined as the ratio of cutput signal to noise ratio (SNR),

to input signal to noise ratio (SNR), , and is given by

_ (SNR),

PG= (SNR), (B.1)
where SNR is defined as the ratio of signal power to noise power (i.e. SAN).
The derivation of (SNR), = S//N, . Let the sampled sequence be defined by

x(nTs) = Aexp(joxnTs) + q(nTs), (B.2)
where q(nT,) is a white noise sequence with varianceo% , and

ok = g (B.3)
The component (i.e., signal plus noise) of the Fourier transform is given by

X(wx) = Zx(nTs)W(nTs)exp(-joxnTs) (B.4)

where w(nT,) is the window sampled sequence.

Using Equation B.2 in Equation B.4 obtains the value of the signal component

X(wk)signai = §Aexp(jmknTs)w(nT,)exp(-ijknTs) (B.5)

or
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x(wk)signal =A % W(I'\Ts). (B. 6)

The power component of the signal is therefore

(Powern)signal = S, = Az[%: w(nT,)]z. (B.7)
The noise component of the windowed transform is given by

X(@k)noise = ZW(NTs)A(nTs)exp(-joxnTs). (B.8)
The noise power (the mean square value of this component) is given by

E[ IX(@k)nosel* | = S Zw(nT)w(mT,) 6.9)

E[qQ(nTs)q* (MTs)]lexp(-joxnTs)exp(joxmTs)
If m = n, and the mean of the noise is zero, it follows that

E[ IX(@K)nose|® ] = No = 62T wW2(nTy), (B.10)
and therefore

S "2[%‘"‘""’]2

(SNR), = 32 = oy (B.11)
It is known that for an AWGN case, the relationship (SNR),,... is given by

(SNR); = A—ﬁ (B.12)
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If the results of Equation B.11 and Equation B.12 are applied in Equation B.1, the

processing gain is obtained as

PG = SNRK _ [%: Wy T

(SNR) ~ T wi(nTs)
n

(B.13)

For the case of a rectangular window, the sum of the window terms is given by
¥ w(nTs) = & w2(nTs) =N B.14
Z w(nTs)= 2 w(nTs) = (B.14)

then the processing gain for the case of a rectangular window is N, as in
(PG)rectwindow = & =N . (B.15)

This gain is obtained when processing an analytic signal (i.e., complex
valued sinusoid in AWGN). For any other window, the gain is reduced due to the
windows roll-off.

There is a practical approach to computing the processing gain for the case
of a rectangular window with real input and a complex input signal. If the input

signal is real, then

x(t) = Acos(2nft). (B.16)
Therefore,
(SNR)i =3 =82 - £ (B.17)
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and, because the length of the window is N, it follows that
(SNR), = 32 = A4 _ AN (B.18)

The processing gain is then given by

(SNR) AIN/2No) N
(PG)rect.M'ndow = (SNR)T = Azmoo = '2.- (B. 19)

From Equation B.19, it can be seen that PG for the case of a rectangular
window, when the input signal is real, is half that found when the input signal is
complex. This is due to the fact that the value of the power output signal (i.e., S,)
is twice the value of S, when the signal is real. In other words, if the input signal

is of the form
x(t) = Aexp(j2rft), (B.20)

the relationship (SNRY), remains the same as in Equation B.17, but (SNR), is given

by

(SNR), = 3o - AX2. _ AN (B.21)

T No ~ No/2N ™ No

Therefore, PG in the case of a complex input signal is
(SNR), _ AZNMN,

(PG)rect window = BNR), = AN, N (B.22)

and Equation B.22 agrees with Equation B.15.
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APPENDIX C. AN ALTERNATIVE NONTRADITIONAL WINDOW

The alternative chirp window depicted here consists of a hard dipped chirp
generated from the chirp window studied in this thesis. The MATLAB program for
this window can be found in Appendix D.

This window has a 32 point length and the equation for the chirp window
(i.e., w(n) = exp(j 6(n))) has been modified according to the following equations:
The angle omega is defined by

Q = arctan(imag(w(n))freal(w(n))) (C.1)
then, if

Q>-n/4 and Q < n/4 = w(n)=1 + 0j (C.2)
if

Q> n/4 and Q < 3n/4 = w(n) = 0+, (C.3)
if

Q>3nM4and Q<nt=>wn)=-1+0j (C.4)
if

Q>-nand Q< -3n/4=>w(n)=-1+0) (C.5)
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and, if

Q>-3n/4and Q< -n/4d > wn)=0-j (C.6)

Figure C.1a, depicts the projection of the window on the real and imaginary
plane, while figures C.1b, C.1c and C.1d, show the real, imaginary part and a
three dimensional plot of the window, respectively. From this figures it can be

observed tha ‘he real and imaginary part toggle, this means that when the real
part is +1 the imaginary part is 0, and vice versa.
Figure C.2a shows the spectrum of the window. It can be observed that the

shape is similar to that of the magnitude spectrum for the FM chirp window, with a
deep null at the 0 frequency location. This window can therefore be considered
as a high resolution procedure for single sinusoids. Figure C.2b shows the
magnitude spectrum when a single sinusoid is present. The frequency of the
signal is at 0.328125 Hz. (i.e., f,= 10.5fs/N), and a deep null is observed at the
proper signal frequency location. Note that the frequency location is not bin
centered. An SNR of 20 dB is employed. It should also be noted that the
amplitude of the null seems to be greater than that of the chirp window (compare
to Figure 4 .4).

Figure C.2c depicts the spectrum when two signals are present. The
frequency of the signals are located at 0.3125 Hz (i.e., f,= 10fs/N) and at

0.328125 Hz (i.e., f,= 10.5fs/N). This figure shows that the minimum of the
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spectrum does not occur exactly at the signal frequency locations, and the
spectrum shape is totally different than that resulting from a single signal (Figure
C.2b). The magnitude spectrum for this type of window when more than one
signal is present has behavior similar to that presented by Griffiths (Figure 4.5),
that is, multiple nulls at lower frequencies and smooth spectral shape at higher
frequencies, confirming his contention that such a change in the magnitude

spectrum can be attributed to the presence of more than one signal.
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APPENDIX D. MATLAB PROGRAMS

%RECTANGULAR WINDOW
clg
n=1:51;
=-25:25;
w=0nes(1,length(n));
axis({-30 30 2 2));
subplot(211),plot(x,w),title('rect. window’),xlabel('n’), ylabel(’
w(n))
wi=abs(fitshift(fft(w,1024)));
W=20"10g10(wi/max(wi));
t=-pi:2"piflength(W):pi;
axis([-4 4 -80 0]);
subplot(212),plot(f(1:1024),W), xlabel('radian frquency), ...
ylabel('log-magnitude of transform’), ...
title('1024 point FFT of rectangular window’)
grid
pause

%TRIANGLE WINDOW

clg

n=151:

x=-25:25;

w=bartlett(51);

axis({-30 30 0 1));

subplot(211),plot(x,w),title(triangular window'),xiabel(n"),

ylabel('w(n)’)
wi=abs(fftshift(fft(w,1024)));
W=20"1og10(wi/max(wi});
=-pi:2*piflength(W):pi;
axis([-4 4 -80 0]);

subplot(212),plot(f(1:1024),W),xlabel(radian frequency’), ...

ylabel('log-magnitude of transform’), ...
title('1024 point FFT of triangular window')
grid

pause

%HAMMING WINDOW

clg

n=1:51;

x=-25:25;

w=hamming(51);

axis((-30 30 0 1));

subplot(211),plot(x,w).title( Hamming window’),xlabel(n’),

ylabel('w(n))

wi=abs(fftshift(fft(w, 1024)));

W=20"log10{wl/max{wi));

t=-pi:2*piflength(W):pi;

axis([-4 4 -80 0));
subplot(212),plot(f(1:1024), W) xlabel( radian frequency’), ...
ylabel('log-magnitude of transform’), ...

title('1024 point FFT of Hamming window’)

grid

pause

%BLACKMAN WINDOW
clg
n=151;
=-25:25;
w=blackman(51);
%w=(7938/18608)-(9240/18608)*cos(2*pi*n/50)+(1430/1
8608)*cos(4*pi*n/50);
axis((-30 30 0 1));
subplot(211),pot(x,w) title('Blackman window') xiabel({'n’),

ylabel('w(n)’)

wi=abs(fftshifi(fft(w, 1024)));

W=20"log10(wi/max(wf));

f=-pi:2*pifiength(W):pi;

axis([-4 4 -80 0]);

subplot{212),plot(f(1:1024) W) xlabe!('radian frequency’), ...
ylabel('log-magnitude of transform’), ...

title('1024 point FFT of blackman window’)

grid
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pause

%KAISER-BESSEL WINDOW
clg
n=1:51;
x=-25:25;
w=kaiser(51,2*pi);
%w=kaiser(51,3*pi);
axis([-30 30 0 1});
subplot(211),plot(x,w),title('Kaiser window
(a=3)).xiabel('m)....
ylabel(w(n))
wt=abs(fftshift(fft(w, 1024)));
W=20"log10(wf/max(wl)};
f=-pi:2*piflength(W):pi;
axis((-4 4 -100 0));

subplot(212), ptot{f(1:1024),W).xiabel{ radian frequency’), ..

ylabel('log-magnitude of transform’), ...
title('1024 point FFT of Kaiser window 2=3’)
grid

pause

%SIDELOBE LEVELS OF CLASSICAL WINDOWS
clear

clg

n=200;

dbs=60;

b=0.1102"(dbs-8.7},
w=[boxcar(n)triang(n)hamming(n)blackman(n)kaiser(n,b)];
axis([-50 250 0 1.2));

subplot(211),plot(w)

gtext('rect.”)

gtext(‘triang.”)

gtext(hamming’)

gtext('blackman’)

gtext('kaiser")

y=fit(w,1024);

[my,nyl=size(y);

f=(0:49)/512;

Pyy=y(1:50,:).*conj(y(1:50,:));

axis,

subplot(212),semilogy(f,Pyy)

glext('rect.’)
gtext(triang.")
gtext(’hamming’)
gtext(‘blackman’)
gtext('kaiser)
pause

%APLICATION OF CONVENTIONAL WINDOWS TO DETECT
A WEAK SIGNAL(amplitude=0.01) IN THE PRESENCE

%0F A STRONG(amplitude=1) NEARBY
SIGNAL(amplitude=0.01)

%RECTANGULAR WINDOW (TWO SIGNALS : t1=10fs/N |,
f2=16ts/N )

clear

clg

n=0:255;

5=(cos(2"pi*10°n/256)+0.01*cos(2*pi*16°n/256));

wi=abs(ffi(s));

W=20"log10(wt/max(wf));

axis([0 100 -80 0});

subplot(211),plot(n, W) xlabel(k),ylabel('log-mag. of transf.
(dB)), ...

title(RECTANGULAR WINDOW (TWO SIGNALS: 11=10fs/N
12=16fs/NY)

pause

%RECTANGULAR WINDOW (f1=10.5fs/N , f2=16fs/N)

clear

n=0:255;

s=(cos(2*pi*10.5*n/256)+0.01*cos(2*pi*16"n/256));

%s=(c0s(2"pi*10.25"n/256+cos(2"pi*16"n/256));

wi=abs(fft(s));

W=20"log10(wi/max(wl));

axis([0 100 -80 0));

subplot(212),plot{n,W),xlabel (%'}, ylabel{'log-mag. of transf.
(dB)), ...

titleRECTANGULAR WINDOW (TWO SIGNALS:
1=10.5is/N 12=16fs/NY)

pause

%TRIANGLE WINDOW (f1=10.5fs/N , 12=16fs/N)
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clear

clg

n=0:255,

s1=(cos(2*pi*10.5*n/256)+0.01 "cos(2*pi*16*n/256))";
wi=(bartlett(256));

w=w1.'st:

wi=abs(fft(w));

W=20"10g10(wt/max(wi));

axis([0 100 -70 0});

subplot(211),plot(n,W).xlabel(k’)ylabel('log-mag. of transt.

{dBy), ...

titie{ TRIANGLE WINDOW (TWO SIGNALS: 11=10 5s/N
f2=161s/N))

pause

%HAMMING WINDOW (f1=10.5(s/N , 12=16is/N )
clear

n=0:255;
$1={cos{2*pi*10.5*n/256)+0.01*cos(2"pi* 16" n/256))';
wi=(hamming(256));

w=w1."s1;

wi=abs(fft(w));

W=20"log10(wi/max(wl));

axis([0 100 -70 0));

subplot(212),plot(n,W),xiabel('k’),ylabel(log-mag. of transf.

(dB)), ...

title(HAMMING WINDOW (TWO SIGNALS: f1=10.5fs/N
f2=161s/N))

pause

%BLACKMAN WINDOW (f1=10.5fs/N , f2=16fs/N)

clear

clg

n=0:255,

s1=(cos(2*pi*10.5*n/256)+0.01*cos(2"pi* 16"n/256));

w1=(blackman(256));

w=w1."s1;

wi=abs(fft(w));

W=20"log10(wf/max(wi));

axis({0 100 -70 0));

subplot(211),piot(n, W) xlabel(’k'),ylabel('log-mag. of
transt.(dB)), ...

title(BLACKMAN WINDOW (TWOQ SIGNALS: 11=10.51s/N
12=161s/N))

pause

%EXACT BLACKMAN WINDOW

w1=(0.42659071-0.49656062" cos(2*pi*n/256)+0.0768486
7*cos(4*pi*n/256))’

w=w1."s1;

wi=abs(fft(w));

W=20"l0g10(wi/max(wf));

subplot(212),plot(n,W),xlabei('k') ylabel('log-mag. of
transf.(dB)’), ...

titie(EXACT BLACKMAN WINDOW (TWO SIGNALS:
f1=10.5fs/N 12=16fs/N})

pause

%KAISER-BESSEL WINDOW(B=2) (f1=10.5fs/N ,
f2=16fs/N)

clear

clg

n=0:255;

s1=(cos{2*pi*10.5*n/256)+0.01*cos(2"pi* 16*n/256))":

w1=(kaiser(256,2*pi));

w=w1.st;

wi=abs(fft(w));

W=20"10g10(wf/max(wt));

axis([0 100 -70 0]);

subptot(211),plot(n,W),xiabel('k') ylabel(log-mag. of
transt.(dB)), ...

litle( KAISER-BESSEL WINDOW B=2 (SIGNALS H1=10.5s/N
f2=16fs/N))

pause

%KAISER-BESSEL WINDOW (B=3)

wi=(kaiser(256,3*pi));

w=w1."st;

wi=abs(fft(w));

W=20"log10(wf/max(wf));

subplot(212),plot(n,W),xlabel('k’) ylabel(}ag-mag. of
transt.(dB)), ...

title('KAISER-BESSEL WINDOW B=3 (SIGNAL: 11=10.5fs/N
f2=16fs/N))

pause
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%DETECTION OF WINDOWED SIGNAL IN AWGN
ENVIROMENT

%RECTANGULAR WINDOW (f1=10fs/N  f2=16fs/N )

clg

=0-255;

rand('normal’);

1=1/(10%(0/20))*rand(n); %0J0 SNR level

$2=(C0s(2"pi*10.5"n/256)+0.01"cos(2*pi*16*n/256));

S=824r;

wi1=abs(fft(S));

W1=20"log10(wl1/max(wf1));

axis({0 100 -80 0));

subplot{221),plot(n,W1),xlabel('k’),ylabel('log-mag. of
transf.(dB)), ..

title('Rect. Window (AWGN))

glext(1=10.5bin 12=16bin’);

gtext('SNR=0dB";

pause

% TRIANGLE WINDOW WITH NOISE (f1=10.5¢s/N
f2=161fs/N)

rand('normal’);

%S=(cos(2*pi*10.5"n/256)+c0s(2* pi*16*n/256));

%S1=5+1;

wi=(bartlett(256)}";

w2=wt."S;

wi2=abs(fft{w2));

W2=20"log10(wi2/max(wi2));

%subptot(211),plot(n W2),xlabel(k') ylabel(10g-mag. of
transf.(dB)), ...

%litle( Triang. window (AWGNY)

%Qqtext(1=10.5bin, {2=16bin’;

%qtext('SNR=0dB');

%pause

%HAMMING WINDOW WITH NOISE(f1=10 5fs/N
f2=16ts/N)

wh=(hamming(256))";

w3=wh.*S;

wi3=abs(fft(w3));
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W3=20"10g10(wi3/max(wi3));

subplot(222),piot(n,W3),xlabel(k').ylabel( log-mag. of
transt (dB)), .

titie(Hamming window (AWGN))

gtext(f1=10.5bin 12=16bin’);

gtext{SNR=0dB");

pause

%BLACKMAN WINDOW WITH NOISE (f1=10.5ts/N
f2=16fs/N)

wb=(blackman{256))";

wi=wb.*S;

wi4=abs{fft{w4)).

W4=20*l0g10(wi4/max{wid));

subplot(223),plot(n, W4) xlabel{’k) ylabel(log-mag. of
transt.(dB)), ..

title('Blackman window (AWGN))

gtext(1=10.5bin 12=16bin");

gtext(SNR=0dB);

pause

%KAISER WINDOW WITH NOISE (a<2)

wk=(kaiser(256,pi*2))";

wo=wk.*S;

wiS=abs(ift(w5));

W5=20*i0g10(wi5/max(wi5));

subplot(224),plat(n,W5),xlabel('k’),ylabel(log-mag. of
transt.(dB)), ...

litle('Kaiser-Besse! window (AWGN))

gtext(a=2')

gtext(f1=10.5bin {2=16bin’);

gtext('SNR=0dB");

pause

%NON-CLASSICAL WINDOWS (LINEAR FM CHIRP
WINDOW)

%AMPLITUDE SPECTRUM FOR 32 POINT LINEAR FM
CHIRP WINDOW

clear

clg

n=0:31;




On=2*pi*n."(n+1)/(32*2);

w=exp(i*On);

axis;

plot(w)

pause

wi=abs(fft{w,128));

W=20"1og10(wi);

=0:1/127:1;

axis({0 1 -30 20));

subplot{211),plot(,W),xiabel('Normalized
frequency’),ylabel(‘amplitude dB’),...

titie('Amplitude spectrum for 32 point linear FM chirp
window)

pause

%PHASE SPECTRUM FOR 32 POINT LINEAR FM CHIRP
WINDOW

P=angle(fft(w));

f1=0:1/31:1;

axis;

subplot(212),plot(f1,P),xlabel( frequency’) ylabel('Phase
radians’),...

title('Phase spectrum for 32 point lingar FM chirp window’)

pause

%SPECTRUM FOR ONE COMPLEX SINUSOID AT
1=0.328125 Hz

clg

rand('normal’)

r1=1/(10%(30/20))*rand(n);

x1=exp(i*2*pi*n*0.328125)+11;

wi=x1."w;

wii=abs(ift(w1,128));

axis([0 1-30 20));

W1=20"log10(w11);

subplot{221).piot{f W1),xlabel('Normalized frequency
Hz').yiabel('Amplitude dB’),...

titie('One signal at FM chirp window’)

qtext(1=0.328125 Hz.')

gtext('SNR=30dB")

pause

12=1/(10%(20/20))*rand(nY;

x2=exp(i*2°pi*n*0.328125}+12;

W2=X2."W;

w2i=abs(ffi(w2,128));

W2=20"log10(w2f);

subplot(222),plot(f,W2).xlabel('Normalized frequency
Hz'),ylabel{’Amplitude dB),...

title('One signal at FM chirp window’)

gtext('t=0.328125 Hz.)

glext('SNR=20dB")

pause

13=1/(10%(18/20))*rand(n);

x3=exp(i*2*pi*n*0.328125)+13;

w3=x3."w;

w3l=abs(tf(w3,128));

W3=20*l0g10(w3f);

subplot(223),plot(f, W3).xlabel(Normalized frequency
Hz'),ylabel('Amplitude dB'), ..

title('One signal ai ¥M chirp window)

gtext(=0.328125 Hz.)

gtext('SNR=18dB")

pause

r4=1/(10*(15/20)}*rand(n);

x4=exp(i*2*pi*n*0.328125}+14;

wi=x4 *w;

wit=abs(fft(w4,128));

W4=20"10g10(wdf);

subplot{224),plot(i,W4),xlabel(Normalized trequency
Hz'),ylabel{’Amplitude dB),...

title('One signal at FM chirp window)

gtext(1=0.328125 Hz.")

gtext('SNR=15dB")

pause

%SPECTRUM FOR TWO SINUSOIDS AT 11=0.328125 Hz,
f2=0.3125 Hz

clg

rand('normal’)

r21=1/(10*(30/20))*rand(n);

x1=(exp(i*2*pi*n"0.328125)+exp(i*2*pi*n*0.3125))+121;

wi=x1."w;

wit=abs(fft(w1,128));

W1=20"I0g10(w1f);
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axis({0 1 -30 30]);

subplot(221).plot(f. W1}, xiabel{ Normalized frequency
Hr').ylabel('Amplitude d8)....

title('Two signals at FM chirp window')

gtext{'11=0 328125 Hz)

gtext(12=0.3125 Hz)

gtext{'SNR=30dB)

pause

r22=1/(10%(20/20))"rand{n);

x2=(exp(i*2*pi"n*0.328125)+exp{i*2*pi*n*0.3125)}+122;

w2=x2 "w,

wt=abs(tft(w2,128));

W2=20"log10(w2!),

subplot(222),plot(1, W2),xlabel('Normalized treguency
Hz').ylabe!('Amplitude dB"),. .

title('Two signals at FM chirp window)

gtext('11=0 328125 HZ)

gtext(12=0.3125 Hr')

gtext(SNR=20dB")

pause

123=1/(10%(15/20})"1and(n);

x3=(exp(i*2*pi*n*0.328125)+exp(i"2"pi"n*0.3125))+123;

w3=x3."w;

w3f=abs(fft(w3,128));

W3=20"10g10(w3t);

subplot(223).plot(f, W3),xlabel ('Normaiized frequency
Hz').ylabel('Amplitude dB’).. .

title('Two signais at FM chirp window’)

gtext(11=0 328125 Hz)

gtext(12=0 3125 Hz))

gtext('SNR=15dB")

pause

r24=1/(10*(10/20))*rand(n),

x4=(exp(i*2*pi"n*0.328125)+exp(1°2°pi*n"0.3125))+124;

wa=x4 "w,

waf=abs(fft(wd, 128));

W4=20"lag10(w4f);

subplot(224) plot(f, W4),xlabel{Normalized frequency
H2'). ylabel(' Amplitude dB),...

titie( Two signals at linear chirp window’)

glext('t1=0.328125 Hz')

otext('12=0.3125 Hz)

gtext( SNR=10dB")
pause

%SPECTRUM FOR ONE SINUSOID AT 11=0 328125 Hz
USING RAISED COSINE WINDOW

¢lg

rand('normal’),

1s=1/(10*(30/20})* rand(n).

x2=exp(i*2*p1"n*0.328125)+1s;

w1=hamming{32)"

w3=x2 “wl,

w3t=abs(ffi(w3.128));

W3=20"10910(w3f),

axis({0 1 -30 30));

subplot(211).plot{f W3).xlabel('Normalized frequency
Hz'),ylabel('Amplitude d8'),

title('Spectrum for one sinusoid using raised cosine
window')

glext(t=0 328125 Hz)

glext('SNR=300B")

pause

%SPECTRUM FOR TWO SINUSOIDS AT H1=0 328125 Hz,
f2=0 3125 Hz USING RAISED

%COSINE WINDOW

x3=(exp(i*2*pi*n*0.328125)+exp(1*2°pi*n"0 3125))41s;

wi4=x3 *wi;

wii=abs{fit(w4,128));

W4=20"10g10(wdt),

subplot(212).plot(f.W4),xlabel('Normalized trequency
Hz').ylabel('Amplitude dB’),

title('Spectrum for two sinusoids using raised cosine
window')

gtext(11=0.328125 Hz')

gtext(t2=0.3125 Hz))

gtext('SNR=30d8")

pause

%SPECTRUM FOR FREQUENCY STEP TIME WAVEFORMS
USING RAISED COSINE WINDOW
clear
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clg

n=1:32;

rand('normal’)

r=1/(104(30/20))"rand(n);

0(n)=2*pi*n.*(n+1)/(32"2);

F(n)=2"pi*n/32;

O0(n)=0(n)+F(n);

w=exp(i*0(n));

wc=blackman(32)’;

x1=exp(i*2*pi*(0:15)*0.2);

x2=exp(i*2*pi*(16:31)"0 4);

xu=(x1,x2]+r;

wl=xu."wc;

wit=abs(fft(w1,128)):;

W1=20*10g10(w1f),

$=0:1/1271;

axis({0 1 -30 30));

subplot{221).plot(f, W1}, xlabel( Frequency
Hz'),ylabel{' Amplitude dB’)...

title(Up freq. step (conv. window)’)

pause

W2=Xu. "W,

w2i=abs(fft(w2,128));

W2=20"l0g10(w2t);

subplot(223),piot(f, W2),xlabel(*Frequency
Hz') ylabe!('Amplitude dB), ...

title(Up freq.step (FM chirp window)’)

pause

xd=[x2 x1]+r;

w3=xd."wc;

w3f=abs(fft(w3,128)):

W3-20"log10(w3i);

subplot{222).plot(f, W3),xlabel( Frequency
Hz'),ylabel(‘Amptitude dB’)....

title(' Down freq.step {conv. window)')

pause

wé=xd."w,

wif=abs(fft(w4,128));

W4-20"log10(w4f);

subpiot(224),plot(f, W4),xlabel( Frequency
Hz'),ylabel('Amplitude dB)....

title('Down freqg. step (FM chirp window)’)

pause

%ANALYSIS OF SNR FOR CLASSIC AND HIGH
RESOLUTION WINDOWS

%NO NOISE CASE

%RECTANGLE WINDOW (f1=10.756s/N | {2=11 25{s/N)

clear

clg

n=0:31;

s=(cos(2"pi*10.75"n/32)+cos(2*pi* 11.25*n/32));

wi=abs(ffi(s,128));

W=20*log10({wi/max(wi));

f=0:1/127:1;

axis({0 0.5 -60 0));

subplot(221).plot(f, W).xlabel('Normalized freq
Hz."),ylabel('Amplitude (dB)). .

title(RECTANGULAR WINDOW')

gtext(NO NOISE)

glext(11=0.335937Hz.’)

gext(f2=0.351562Hz.")

pause

%HAMMING WINDOW (H1=10.75fs/N , 12=11.25{s/N)

w1h=(hamming(32))"

wi=wlh"s,

wi=abs(fft(w1,128));

W1=20"10g10{wf1/max(wf1));

subplot(222).plot(f, W1),xlabel('Normalized freq
Hz "), ylabel(Aniplitude (dB)),.

title(HAMMING WINDOW)

glext(NO NOISE)

gtext(11=0.335937Hz.)

gtext(f2=0.351562Hz.")

pause

%LINEAR FM CHIRP WINDOW ONE COMPLEX SINUSOID
AT t=0.328125(or 10.75/32)

%N0O NOISE CASE

n=0:3%;

On=2*pi*n.*(n+1)/(32*2);

we=exp(i*On);
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x=exp(i*2*pi*n*10.75/32);

w2=x."WC,

wi2=abs(fft(w2,128));

W2=20"log10{wf2/max(wf2));

t=0:1127:1;

axis([0 1 -60 0]);

subplot{223),plot(f,W2),xlabel('Normalized freq.
Hz.').ylabel('Amptitude (aB)’)....

title('One signal at FM CHIRP WINDOW')

gtext('NO NOISE")

gtext(¥=0.335937Hz2.")

pause

% FM CHIRP WINDOW 2 COMPLEX SINUSQIDS AT
11=0.335937, 12-0.351562(0r 11.25/32)

x1=x+exp(i*2*pi*n*11.25/32);

w3=x1."wc;

wi3=abs(ftt(w3,128));

W3=20"log* O(wi3/max(wi3));

subplot(224),plot(f, W3),xlabel('Normalized freq.
Hz."},ylabel{’Amplitude (dB)),...

title( Two signals at FM CHIRP WINDOW')

gtext(NO NOISE’)

gtext('1=0.335937Hz.)

gtext('f2=0.351562Hz.")

pause

%SIGNAL TO NOISE RATIO (SNR) ANALYSIS

clg

n=0:31;

rand('normal’y;

7=30; %ievel of SNR (dB)

1=1/(104(z/20))*rand(n);

%RECTANGULAR WINDOW (AWGN)

SI=S+T;

wir=abs(ffi(sr,128));

Wr=20*log10(wfr/max(wir});

axis([0 0.5 -60 0));

subplot(221),plot(f,Wr),xiabel('Normalized freq.
Hz."),ylabel{'Amplitude (dB)),...

title(RECTANGULAR WINDOW)

gtext('SNR=30d8")

gtext(11=0.335937Hz.")

gtext(f2=0.351562Hz.")

pause

2=18;

1=1/(10%(z/20))*rand(n);

SI=S+41;

wir=abs(tfi(sr,128));

Wr=20"1og10(wir/max(wir));

subplol(222),ptot(f,Wr),xlabel{'Normalized freq.
Hz.'),ylabel('Amplitude (dB))....

litle(RECTANGULAR WINDOW')

glext(SNR=18d8")

pause

=9,

1=1/(10*(z/20))*rand(n);

ST=S+T;

wir=abs(fft(sr,128));

Wr=20"0g10({wir/max(wir));

subplot(223),plot(f, Wr),xlabel('Normalized freq.
Hz ') ylabel('Amplitude {dB)),...

title (RECTANGULAR WINDOW')

gtext(SNR=9dB)

pause

2=0;

r=1/(10%(2/20))*rand(n);

SI=S+;

wir=abs(fft(sr,128));

Wr=20"1og10(wir/max(wir});

subplot(224),plot(f,Wr) xiabel('Normalized freq.
Hz."),ylabel('Amplitude (dBY)),...

titie(RECTANGULAR WINDOW')

gtext('SNR=0dB)

pause

%HAMMING WINDOW (AWGN)
clg

z=30;

r=1/(10%(2/20))*rand(n);

SI=S+I;

wh=w1h.*sr,
wih=abs({ft(wh,128));
Wh=20"log10(wth/max(wth));




subplot(221),plot(f, Wh).xlabel(Normalized freq.

Hz').ylabe!('Amplitude {dB))....
title(HAMMING WINDOW')
giext('SNR=30dB")
otext(11=0.335937Hz.")
gtext('2=0.351562Hz.)
pause
=18,
1=1/(10%(z/20))*rand(n);
SI=S+4f,;
wh=w1h.*sr;
wih=abs(fft(wh,128));
Wh=20"10g10{wfh/max(wfh));

subplot(222},plot(f, Wh),xlabel('Normalized freq.

Hz *).ylabel('Amplitude (dBY)....
titleHAMMING WINDOW')
gtext('SNR=18dB")
pause
2=9;
r=1/(10%(z/20))*rand(n);

SI=S+f,

wh=w1h."sr;
wfh=abs(fft(wh,128));
Wh=20"log10(wfh/max(wfh));

subpiot(223),plot(f, Wh),xlabel('Normalized freq.

Hz."),ylabel('Amplitude (dB)),...
title(HAMMING WINDOW')
gtext('SNR=9dB")
pause
2=0;
r=1/(10%(z/20))*rand(n};

Sr=S+[;

wh=w1h.*sr
wih=abs(fft(wh,128));
Wh=20*log10(wfh/max(wth)};

subplot(224),plot(f, Wh), xlabel('Normalized freq.

Hz.").ylabel(Amplitude (dB)),...
title(HAMMING WINDOW')
gtext('SNR=0dB")
pause

%FM CHIRP WINDOW (One signal+AWGN)

clg

n=0:31;

rand{'normal’);

=3C, %level SNR

r=1/(1C*2/20))*rand(n);

XI=X4,

wel=we."xr;

wic1=abs(!ftiwc1,128));

WC1=20"l0g10(wic1/max(wic1));

%subplot(223) plot(f, WC1),xiabel Normalized freq.
Hz "), ylabel('Amplitude (dB))....

%title('One signal FM CHIRP WINDOW')

%gtext(1=0.328125Hz")

%qtext('SNR=-3d8")

%pause

%FM CHIRP WINDOW (Two signals+AWGN)

clg

=30,

r=1/(10(2/20))*rand(n);

xri=x1+;

wc2=we."xr1;

wic2=abs(fft(wc2,128));

WC2=20"1og10(wic2/max(wfc2));

axis((0 1 -40 0));

subplot(221),plot{f, WC2),xlabel('Normalized freq.
Hz."),ylabel(Amplitude (dBY),...

title{"Two signals FM CHIRP WINDOW)

gtext('SNR=30dB")

gtext(f1=0.335937Hz.")

gtext(f2=0.351562Hz.")

pause

1=18;

r=1/(104(z/20))*rand(n);

Xri=x1+r;

WC2=WC "xr1;

wic2=abs(fft(wc2,128));

WC2-20"tog10(wic2/max(wfc2));

subplot(222),plot(f, WC2),xiabel('Normalized freq.
Hz."),ylabel(Amplitude (dB))....

title('Two signals FM CHIRP WINDOW")

gtext(SNR=18dB’)

%gtext(11=0.328125H7)
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Yogtext(12=0.359375H7)

pause

=9,

r=1/(10%(2/20))"rand(n);
xri=x1+r;

WC2=WC_*X(1;
wic2=abs(fit(wc2,128));
WC2=20*10g10(wic2/max(wic2)),

subplot(223) plot(f, WC2) xiabel('Normalized freg.

Hz."),ylabel(Amplitude (dB)’)....
title( Two signals FM CHIRP WINDOW')
gtext(SNR=9dB")
%gtext(f1=0.328125Hz)
%qtext('f2=0.359375Hz)
pause
z=0;
1=1/(10~(2/20))*rand(n);
xri=x14r;

WC2=WC."Xr1;
wic2=abs(fft(wc2,128));
WC2=20"l0g10(wic2/max(wic2));

subplot(224),plot(f, WC2),xlabel(Normalized freq.

Hz."),ylabel(Amplitude (dB))....
title( Two signals FM CHIRP WINDOW)
gtext{ SNR=0dB)
%gtext(f1=0.328125H7))
%gtext(t2=0.359375H7)
pause

%SUM OF TWO SINUSQIDS SHOWING EXP. BEHAIVOR

clear
clg

s=c0s(2*pi*(0:.1:31)*10/31)+cos(2"pi*(0:.1:31)*10.5/31);

axis;

subplot(211),plot(s).xiabel('n’).ylabel('s) title('Sum of two

sinusoids’)
pause

%DAMPED SINUSQID
n=0:1:31;
s1=exp(-n/16)."cos(2*pi*n"0.328125),

subplot(212),plot(s1),xlabel('n’).ylabel('s1’) title(' Damped

Sinusoid’)
pause

%DAMPED SINUSOID SIGNAL WITH HIGH RESOLUTION

WINDOW
clear
clg
n=0:31;
On=2*pi*n.*(n+1)/(32*2);
w=exp(i*On);
rand('normal’)
r=1/(10%(30/20))*rand(n);
x=exp(i*2*pi*n*0.328125)."exp(-n/31 41,
wi=x."w,
wif=abs(fft(w1,128)),
W1=20*log10(w1f);
1=011/127:1,
axis([0 1 -30 30));
subplot(221),plot(f, W1),xlabel('Normalized
frequency’),ylabel('amplitude dB),...
title('1=0.328125  Time constant=1')
pause

%TIME CONSTANT = 1/2

x=exp(i*2*pi*n*0.328125). "exp(-2*n/(31) +;

W2=X."W,

w2t=abs(fft(w2,128));

W2=20"log10(w2t);

subplot(222),plot(f, W2) xlabel(Ncrmalized
frequency'),ylabel('amplitude dB)....

title('f=0.328125  Time constant=1/2')

pause

%TIME CONSTANT = 1/3

x=exp(i*2*pi*n*0.328125)."exp(-3"n/(31))+r.

w3=x."w;

w3f=abs(fft(w3,128));

W3=20"log10(w3f);

subplot(223),plot(f, W3),xiabel('Normalized
frequency’).ylabel('amplitude dB’),...

title('=0.328125  Time constant=1/3)
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pause

%TIME CONSTANT = 1/4

x=exp(i*2*pi*n"0.328125)."exp(-4"n/(31))}+r;

%x=exp(i*2"pi“n*0.5)."exp(-n/(4*31));

wa=x_"w,

wdf=abs(fft(wd,128));

W4=20"10g10(w4!);

subplot(224),plot(f, W4),xlabel('Normalized
frequency’),ylabel(Amplitude dB'),...

litle('t=0.328125  Time constant=1/4")

pause

%TWQ DAMPED SINUSOID SIGNALS (f1=0.3125Hz

120 326125Hz)
clg

x21=(exp(i*2*pi*n*0.3125}+exp(i*2"pi*n*0.328125) 4.

x1=x21."exp(-n/31);

wh=x1."w,

wSi=abs(ift(w5,128));

W5=20*log10(w5);

subplot(221),plot(f, W5),xlabel('Normalized
frequency’),ylabel(Amplitude dB"),...

title('two damped signals Tc=1")

pause

x2=x21 *exp(-2*n/31};

wh=x2."w;

wof=abs(fit(wb,128));

W6=20"log10(wof);

subplot(222),plot(f, W6),xlabel('Normalized
frequency’),ylabel('Amplitude dB’),...

title(two damped signals Tc=1/2)

pause

x3=x21 "exp(-3*n/31)

w7=x3."w,

w/l=abs(fft(w7,128));

W7=20"log10(w7f);

subplot(223),ptot(t W7).xlabel('Normalized
frequency’).ylabel('Amplitude dB'),...

title(two damped signats Tc=1/3)

pause

x4=x21 *exp(-4*n/31);

w8=x4."w;

wBi=abs(ffi(w8,128)):

W8=20"log10(w8f);

subplot(224),plot(f, W8) xiabel('Normalized
trequency’),ylabel('Amplitude dB’),...

title('two damped signals Tc=1/4')

pause

%MEAN VARIANCE AND DC POINT OF CHIRP WINDOW

clear

clg

n=0:31;

On=2*pi*n.*(n+1)/(32"2);

w=exp(i*0n);

wi=abs(fft(w,128));

pause

wi=wi(12:64)

pause

t=011127:1;

axis((00.508));

subplot(221),plot(f, wi),xlabel('Frequency’),ylabel(Magnitud
€)

title( TRANSFORM OF CHIRP WINDOW")

agtext(Figure 4.17)

pause

wi=wi(1)

m=mean(w1)

sd=std(w1)

x=sum(w1)/53

pause

115




10.

LIST OF REFERENCES

Griffiths, Lioyd J., "A Novel Window for High-Resolution Fouier
Transforms," Nineteenth Asilomar Conference on Circuits, Systems, and
Computers,November, 1985.

Harris, Frederick J., "On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform, "Proceadings of the IEEE," Vol. 68, No. 1,
January, 1978.

Nutall, Albert H., "Some Windows with Very Good Sidelobe Behavior,"
IEEE Transactions on Acoustic, Speech, and Signal Processing,Vol.
ASSP-29, No. 1, February, 1981.

Fante, Ronald L., Signal Analysis and Estimation, New York: John Wiley
and Sons, 1988.

Kay, Steven M., and Marple, Stanley L., "Spectrum Analysis - A Modern
Perspective," Proceedings of the IEEE, Vol. 69, No. 11, November, 1981.

Jenkins, D.M., and Watts, D.G., Spectral Analysis and Its Applications,
San Francisco: Holden-Day, 1968.

Rice, J.R., The Approximation of Functions, Vol. 1, Reading, MA:
Addison-Wesley, 1964, pp. 124-131.

Blackman, R.B., and Tukey, G.W., The Measurement of Power Spectra,
New York: Dover, 1958, pp. 95-100.

Kuo, F.F., and Kaiser, J.F., System Analysis By Digital Computer, New
York: Wiley, 196, pp. 232-238.

MATLAB Program, v.3.5, v.4.0, The Mathworks, inc., 1992.

116




INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

Cameron Station
Alexandria, VA 22304-6145

. Library, Code 52

Naval Postgraduate School
Monterey, CA 93943-5000

. Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

. Professor Ralp.h Hippenstiel, Code EC/Hi

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

. Professor Monique P. Fargues, Code EC/Fa

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

. Ecuadorian Air Force Attache

2535 15TH Street, N.W.
Washington, DC 20009

. Major Moreira, Ramiro P.

Av. La Isia #781 y OB. Diaz de la Madrid
Quito, Ecuador
SA

117




