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I. Introduction

The advantages of planar, integrated, or monolithic fabrication for microwave and millimeter-

wave circuits are too well known to be repeated here, except in summary form. The reduction in

size, weight, and ultimately, manufacturing costs are strong forces driving the need for new

approaches to circuit design, incorporating new devices when possible. Novel two-terminal

devices in novel planar oscillator circuits were investigated during the term of this contract. We

developed several experimental techniques for dealing with problems unique to these oscillators,

and we broke new ground in the investigation and exploitation of resonant tunneling diodes.

II. Mutual Coupling of Planar Oscillators

Despite advances in numerical electromagnetic analysis software, many practical problems in

antenna arrays and mutual coupling are still beyond the practical scope of computational analysis.

An important category of problems is the case of an array of planar oscillators. Usually the desired

mode of operation is for all the oscillators to work in phase, creating a beam that travels outward

perpendicular to the plane of the oscillators. But in the absence of external reflectors or other

synchronizing influences, the phase of each oscillator will be determined by the signals it receives

from the others by means of mutual coupling. And this mutual coupling is a quantity that is not

easily calculated except for simple ideal cases.

In working with monolithic IMPATT oscillators operating at 50 GHz, we realized how difficult

it was to obtain data on the mutual impedance between oscillators on a ground plane. In response

to this problem we developed a simple experimental technique to determine the imaginary part

kX 12 ) of the mutual impedance between two oscillators [ 1]. As Fig. I shows, the method uses

one oscillator and its mirror image. The effective distance between the real oscillator and its image

is varied by moving the mirror. Tracking the oscillator's frequency as a function of mirror distance

gives data that can be reduced to values Of X1 2 , as shown in Fig. 2. This technique for measuring

mutual impedance of planar oscillators has since been adopted by Robert York of U. C. Santa
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Fig. 1. Experimental setup for measurement of frequency variation versus separation distance

between a single oscillator and a vertical mirror. (from Ref. [1])

-F VS D -- X12 VS - X12 THEORY
28 -

- 10- 2

-18 8 1. 1. / 2 .42. 83.

g (a ) (b)_

'-4I I I I

I U)

cn -20 -- 2

LLa
~-40 - -

ILA -508 -4

-60 -- 1 -5

6 .4 .8 1.2 1.6 2 2.4 2.8 3.2

IJISTRNCE IN WAVELENGTHS BETWEEN OSCILLATORS

Fig. 2. (a) Measurement of Af versus D (interoscillator spacing). (b) X12 versus D converted

from frequency measurement. (c) X 1 2 versus D derived from mutual impedance radiation model.

(from Ref. [I])



3

Barbara and others.

I11. Stabilization of Planar Oscillators

The word "stabilization" is used in this section in two different but related senses. The first

meaning is "to prevent oscillation." A successfully stabilized circuit, in the first sense, is in the

steady state with no tendency toward oscillation or other changes with time. We use the word in

this sense to refer to certain circuits which prevent negative-resistance devices from oscillating at

undesired frequencies. This subject is treated in the first division of this section, entitled

"Undesired oscillation suppression."

The second sense of the word "stabilization" is used in reference to oscillators. In this sense, a

perfectly stable oscillator would produce a mathematically exact sine wave. Stabilization of an

oscillator, in the second sense, refers to steps taken to improve the spectral purity of its output.

This subject is treated under the heading "Desired oscillation stabilization."

A. Undesired oscillation suppression

The successful use of negative-resistance two-terminal devices as oscillators depends on

presenting the device with an embedding impedance that encourages oscillation at the desired

frequency and discourages oscillation everywhere else in the frequency spectrum. The frequency

range over which the embedding impedance must be considered is the range in which the device

shows significant negative dynamic resistance. Some devices such as Gunn-effect diodes have

only a narrow frequency range of negative resistance. Relatively simple circuit precautions can be

taken to insure that these devices do not oscillate at audio or low RF frequencies as well as the

desired microwave frequency. IMPATT diodes have a somewhat broader range of negative

resistance, and thus require more careful bias circuit design. Unfortunately worst of all in this

respect is the tunnel diode and its modem cousin the resonant tunneling diode (RTD). The

dynamic negative resistance of these devices goes down to DC and extends continuously into the

millimeter-wave frequency range for RTDs. If the unique high-frequency advantages of the RTD

are to be utilized, methods must be developed to insure that the devices oscillate only at the high
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frequency desired and nowhere else. This is not easy.

In work that began while the principal investigator was on sabbatical leave at MIT Lincoln

Laboratories, we found that a low-impedance lossy transmission line is capable of presenting

RTDs , ith the broadband low-resistance bias source that is required to suppress undesired

oscillation. We reported this work in connection with a quasioptically-coupled slot antenna

oscillator [2,31 shown in Fig. 3. The attraction of this bias method is that the kind of lossy

transmission line used is relatively easy to integrate in a monolithic structure. This should make

the job of integrating RTD oscillators into monolithic circuits much easier.

B. Desired oscillation stabilization

Turning now to the second type of stabilization, namely the purification of spectral output, we

found that a quasioptical open resonator is well suited for the stabilization of planar negative-

resistance-device oscillators. We first applied this technique [41 to the 50-GHz monolithic

IMPATTs furnished by Texas Instruments, the same devices that were used in the mutual coupling

experiments. Open resonators a few cm in length can exhibit unloaded Q's on the order of 10,000

to 100,000 in the millimeter-wave range. When a high-Q resonance of a quasioptical cavity is

coupled properly to a planar oscillator, the spectrum improves markedly. Fig. 4 shows the

experimental setup used for the IMPATT oscillator. Fig. 5 shows its spectrum when the load was

an open waveguide, and Fig. 6 (to the same scale) shows the notable spectral improvement

obtained when the oscillator was placed in a quasioptical cavity.

The next step was to apply the same basic technique to RTDs. This was first done in the 10-

GHz range as described in Ref. [2] and shown in Fig. 3. This oscillator was described in more

detail in a subsequent Electronics Letters paper [3]. E. R. Brown and colleagues later applied the

principle to a waveguide-based RTD oscillator at 100 GHz in the experiment [5] shown in Fig. 7.

Brown obtained spectral improvements even greater than those we achieved with IMPAIT

oscillators. Since an important application of RTD oscillators may be as local oscillators for

receiving mixers, techniques that will improve their spectral performance may be very significant in

the future.
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IV. Resonant tunneling diodes (RTDs)

After a long period during which tunnel diodes were eclipsed by more interesting and flexible

three-terminal devices, the field has undergone something of a renaissance with the development of

the resonant tunneling diode, or RTD. RTDs are made possible by fabrication techniques such as

molecular-beam epitaxy and organometallic chemical vapor deposition which allow the precisely-

controlled growth of semiconductor heterostructures having layer, only a few atoms thick. The

resulting quantum wells can be used for many purposes, among the simplest of which is the dsign

ot RTDs whuse cutoff frequencies can approach 1 THz.

E. R. Brown and his colleagues at MIT Lincoln Laboratories have led the way in exploiting the

high-frequency potential of these devices. During a sabbatical leave and the following

collaboration, the principal investigator with his research assistants have explored two aspects of

RTD applications, using devices supplied by MIT Lincoln Laboratories. These aspects will now

be described.

A. Power combining of RTDs

Despite their high-frequency capabilities, individual RTDs have a rather small maximur, power

capability, often in the microwatt range. The reason for this is simple. In a typical RTD the useful

range of dynamic negative resistance occurs at a bias voltage of 1-2 volts. High-frequency

operation of the devices limits the total usable area, which means that thermal considerations

restrict the maximum DC current to the low milliamp range. Th,ýse two restrictions limit the

maximum RF power obtainable from a sir. e device, which can never exceed a fraction of the DC

input power. This ceiling is usually less than a milliwatt for a single microwave RTD. For many

applications, more power than this is desirable.

One way to increase the total power available from an RTD oscillator is to increase the number

of devices used. In a collaborative experiment in which MIT Lincoln Laboratories supplied a set of

25 monolithically-paralleled RTDs, we demonstrated a power-combined output of 5 mW at around

I GHz from this array [6]. The same kind of lossy-line bias method as discussed above was used

in the oscillator bias circuit. At the time this work was reported, it represented one of the highest



9

power outputs ever obtained from a microwave RTD oscillator up to that time.

B. Noise in RTD Oscillators

As we mentioned earlier, applications of RTDs in local oscillator service will require the best

possible spectral characteristics. Since the RTD is a fairly new device, relatively little is known

about its noise characteristics. E. R. Brown has proposed a model [7] of shot noise in RTDs that

predicts either enhancement or suppression of shot noise, depending on whether the device is

operating in the negative-resistance or positive-resistance portion of its current-voltage

characteristic, respectively. In recent experiments which are as yet unpublished, we have built a

low-microwave-frequency RTD oscillator around a triple-barrier device furnished by MIT Lincoln

Laboratories. Elaborate noise measurements using a phase-noise test setup have confirmed the

basics of Brown's theory, but work was continuing at the expiration of this contract to understand

the noise mechanism and the theory in more detail.

V. Conclusions

Basic research is by its very nature unpredictable, and the work just summatized has

concentrated on areas somewhat different than those we planned to explore at the outset. For

example, more activity involving three-terminal devices was originally anticipated, but not carried

out. Nevertheless, we feel that many of the techniques and models developed will be useful

regardless of the type of devices they will be used with in the future. The low-impedance lossy

transmission line may be helpful in stabilizing three-terminal millimeter-wave devices as well as

two-terminal ones. Open-resonator oscillator stabilization is a technique that can be applied to any

kind of oscillator that can be coupled to a quasioptical resonator. Whatever the specific application,

we feel that the results of this research contract have contributed significantly to the knowledge and

technology base of the United States.
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