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The present paper considers the effect of stress concentrations on the damage evolution in brittle solids with disordered
microstructure. This problem is herein approached studying discrete models provided with a local load sharing rule. Two of
these models: tight bundle parallel bar model and lattices, are employed to establish universal trends in brittle cooperative
deformation processes.

1. Introduction The proposed strategy is to extract simple,
universal trends and features of the macro re-

The stress concentration attributed to the sponse through considerations of simplified net-
presence of microcracks and microvoids is corn- work mode!s emphasizing disordered microstruc-
monly regardcd as one of the leading causes of tures. The universality should be understood as a
failure in materials. As a result of the defect property invariant of the details (higher statistical
induced stress concentration material adjacent to momenta) of the disorder, damage evolution, etc.
the existing microdefect is much more likely to Once determined, universal parameters and
fail than the undamaged regions far from the trends, beiig common to an entire class of mate-
defect subjected to average, or far field stresses. rials and phenomena, will greatly facilitate formu-
Consequently, a rigorous analysis of the coopera- lations of more sophisticated models necessary
tive brittle phenomena must consider spatial dis- for application in engineering design.
tributions of strengths and stresses. In contrast to
the loose bundle parallel bar model (considered
in the first part of this study, Krajcinovic et al.
(1993)) it is, thus, necessary to consider not only 2. Parallel bar model
the statistical distribution of rupture strengths
but also the precise locations of weak links within In general, a local load sharing rule may be
the system. This problem is obviously much more introduced rigorously through a more sophisti-
difficult since it involves a more complete de- cated discretization or in a simpler, but more
scription of the microstructural disorder. arbitrary, manner using a modified version of the

parallel bar model allowing for unequal distribu-
tion of loads released by the ruptured link. To
establish connection with the preceding study it

Correspondence to: Prof. D. Krajcinovic, Department of Me- seems reasonable to consider first the latter alter-
chanical and Aerospace Engineering, College of Engineering native. In a parallel bar model a local load shar-
and Applied Sciences. Arizona State University. Tempe. AZ ing rule may be postulated a priori (directly) or by
85287-6106, USA.
1 Permanent address: Civil Engineering Department. Univer- means of a hierarchical grouping of links into

sity of Belgrade. Yugoslavia. cells.
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2. 1. Parallel bar model with local load sharing

Fluctuations of forces within a parallel bar r- 4

model can be. for example, estimated using an a
priori selected load sharing rule. For example,
Harlow and Phoenix (1982) assumed that the r=3
force released by a rupturing link is equally shared
by its nearest neighbors. Even with such a simple
approximation of the reality rigorous analyses
turn out to be all but trivial. In fact Harlow and r= 2

Phoenix (1982) were only able to derive a conser-
vative, lower bound on the system strength as-
suming that the failure will occur when the two
adjacent links in the bundle rupture. This as-
sUmption may be. indeed, warranted in the case
of very homogeneous materials. In most struc-
ttiral materials, with a larger scatter in rupture
strengths, macro failure is typically preceded by f
the formation of much larger clusters of ruptured Fig. I. A parallel bar model in flrm of a Caylty tree of

links. Unfortunately, "the complexity (of these
statistical models) grows enormously with increas-
ing bundle size and simplification techniques are
by no means obvious" (Phoenix, 1978).

"2.2. Hierarchical models tributed according to an appropriately selected
rupture strength distribution function p(fr). The

In many cases natural systems and materials, spatial distribution of links with unequal strength
such as tendons (Cassidy et al., 1990), are intrinsi- is typically varied to study the effect of different
cally hierarchical. In other cases, the self-similar- realizations of the same statistics.
ity on several scales is the product of manufactur- Initially, all links carry identical loads f = F/N,
ing processes (solidification) or non-equilibrium where F is the externally applied tensile load.
growth (vapor deposition). Finally, the scale in- When a link ruptures the force it carried is re-
variance may also be the consequence of the leased and quasi-statically transferred to the re-
stress directed dilution of common materials with maining link in the cell. A cell fails only if both
disordered microstructure. Indeed, measure- constituent links rupture. Consequently, the fail-
ments indicate that the failure surfaces caused by ure of a cell of order (r) represents the rupture
fracture (Mandelbrot et al., 1984), faulting and of a corresponding link of the order (r+ 1) (see
microcrack growth and coalescence are character- Fig. 1). In this sense, the hierarchical, Cayley
ized by fractal geometry. Hence, the study of tree, model introduces a simplified load sharing
hierarchical structures may be important both for rule. More realistic load sharing rules may be
their own sake and as an approximation of the formulated by increasing the number of links in a
local load sharing rule. cell (functionality) at the expense of the simplicity

A hierarchical structure studied by Smalley et and tractability.
al. (1985) is topologically a Cayley tree shown in The transfer of forces within the Cayley tree
Fig. 1. The original parallel bar model (bottom was quantified by Smalley et al. (1985) introAýuc-
level in Fig. 1) containing N links is partitioned ing conditional probabilities defining the chance
into N/2 cells. each containing two links. The that a cell will fail when the force from a rup-
rupture strengths of individual links are dis- tured link is transferred within the same cell to
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the extent link. Omitting the detvils of the deriva- 3. Lattices
tion, available in Smalley et al. (1985) and Herr-
mann and Roux (199(0), it suffices for present On the next level of sophistication a solid may
purposes to list the final recursive expression be partitioned into iiregular polyhedra ("finite
relating cumulative (Weibull) probabilities of fail- elements") referred to as Voronoi tessellation
ure P(f,) in cells of two sequent orders (r) and (froth) or Wigner-Seitz cells. Cellular represen-
(r+ 1), tation of solids, which predates discretizations

such as finite elements, are natural and common
P p+ 1) p(r) [l - (1 - p(r)4' - ( p(,))2. (1) in modeling stochastically nonuniform solids with

disordered microstructure. Dual to this division
In this particular case, the cumulative proba- into cells is the Delauney simplicial graph (net-

bility function P(f>f,). i.e., the maximum force work, see Zallen (1983) and Ostoja-Starzewski
which can be entrusted to the considered hierar- and Wang (1989)) shown in Fig. 2. The sides of
chical system, can be solved from (1) by iteration, the original Voronoi polyhedra ("finite ele-
Instead. Smalley et al. (1985) applied the renor- ments") are orthogonal to the bonds (sides) of
malization group method according to which the the Delauncy network (lattice). The nodes of the
failure corresponds to the bifurcation (or unsta- simplicial Delauney network are equidistant from
ble fixed) point in the (p(r, p(r+1) space. For the point of intersection of two graphs. The at-
the Weibull rupture strength distribution (Eq. tribute "simplicial'" refers to the fact that the
(2.11) in Part 1) (with the shape parameter a = 2) Delauney division consists of simplest polyhedra
the bifurcation point corresponding to the recur- (triangles in two and tetrahedra in three dimen-
sive equation (1) is P * = 0.2063. For P < P * the sions) or simplexes. It can be shown that the
solution tends to p = 0 (stable state), while for Voronoi polyhedra and Delauney simplexes can
P > P * the solution of (1) tends to p = 1 (rup- fill the entire space.
ture). In a manner analogous to one suggested by

The corresponding value of the maximum force Englman et al. (1984) it will be assumed that the
is then Fm = 0.4807 VC Ku+ = 0.6798 Kum (where load carrying capability of a Voronoi "finite ele-
u+ and U,,, are the Weibull scale parameter and ment" is exceeded in a given direction when the
the system displacement at maximum force F = bond of the dual Delauney graph in that direc-
Frm). In comparison, the loose bundle (equal load tion ruptures. In this sense the considered dis-
sharing) estimate for the same distribution of cretization is a generalization of the "local ap-
rupture strengths can be computed from Eq. proach to fracture" concept introduced by
(2.13) in Part I as Fm = e-'/ 2 Kum = 0.6065 Kum.
The difference of 11% between these two esti-
mates is obviously a direct result of the selected
load sharing rule (i.e., cell size). As expected with
the increasing cell size the influence of the stress
concentration is diminished. According to the
numerical computations for the Cayley tree hav-
ing cells containing four links (approximating a
two-dimensional parallel bar model) F,,, = 0.4327
Kx+= 0.6119 Kum which is only 1.3% in excess of
the loose bundle estimate. This result provides a
first but nevertheless convincing evidence that
the direct interaction of defects has a second-
order effect on the system response during the
precritical stage of the deformation process and Fig. 2. Voronoi polyhedra and its dual Delauney network
the magnitude of the maximum force Fm, itself. (bold lines).
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Lemaitre (1986) and successfully applied in luted by sequential removal of links which can be
finite-clement computations thereafter, either random or directed by applied loads (pos-

Introducing Delauney network a two-dimen- tulating an appropriate rupture criterion). In the
sional continuum is approximated by an articu- course of a dilution process the number of miss-
lated network of links joined at nodes. The nodes ing links grows along with the probability of
may form a periodic lattice of regular geometry emergence of larger, irregularly shaped clusters
or an irregular, topologically disordered, De- of missing links. Coincidentally, the stiffncss of
launey network. Structurally, a lattice or a net- the lattice decreases. At the elastic percolation
work may be either a truss (central-force lattice) threshold p =p,, the stiffness of the lattice is
or a grid (frame). The links of a truss are sub- reduced to zero. At this point the initial state
jected only to axial forces. The elements of a grid characterized by a disordered distribution of de-
can support both axial forces and bending mo- fects abruptly makes a transition into a state
ments preventing relative rotations of links in a dominated by a single, highly localized cluster of
node. With respect to the connectivity range a missing links. At the percolation threshold a tran-
node may be connected only to the nearest neigh- sition takes place from defects characterized by
bors (nodes forming the first coordination group short-range connectivity to a defect cluster exem-
- simple trusses) or nodes of several coordination plifying long-range connectivity (localization). The
groups (complex trusses). The present study will infinite (spanning) cluster emerging at p =p,,
concentrate only on some of the many possible transects the infinite lattice. The percolation
alternatives obtained combining features men- thresholds Pce available in the literature pertain
tioned above. In particular only the planar lat- to lattices of infinite sizes. Numerical simulations
tices having perfect, periodic, geometry will be are, however, for obvious reasons performed on
considered in the sequel, large but finite lattices. The effect of the finite

The lattice models to be discussed within this size is, subsequently, eliminated by finite-size
study should not be confused with the geometri- scaling.
cally similar models used in molecular dynamics The considered dilution process is character-
problems. Present study considers lattices only as ized by a continuous and gradual change of the
elementary discretizations of solids allowing for microstructure (number of extent links) which at
simple analyses. In the case of molecular dynam- the elastic percolation threshold results in an
ics models nodes actually represent the molecules abrupt, qualitative change of the response re-
or atoms. Thus, the intermolecular (bond) forces flected in the singularity of the system compli-
must be derived from the interaction energy typi- ance. A phenomenon of this type is commonly
cally approximated by the "Lenard-Jones 6-12 referred to as the phase transition. As in the case
potential". of the parallel bar model the Gibbs energy re-

mains continuous (Krajcinovic et al., 1993) while
3.1. Percolation models its second derivative with respect to the force

becomes singular at p =Pce" Consequently, the
In view of the substantial literature on the considered critical phenomenon (change in the

percolation theory (see Stauffer, 1985, etc.) a connectivity range) is a second-order phase tran-
short precis of basic aspects will suffice to render sition. Finally, in the proximity of the percolation
the following discussion at least partially self-con- threshold the lattice stiffness (or less rigorously
tained. Only the bond percolation problem will the elastic modulus on the macro-scale) changes
be considered and p will denote the probability slowly with the proximity parameter (p -p,) be-
that a link is present (and q = 1 -p that the fore vanishing at p =p,. Hence, the lattice stiff-
bond is absent or ruptured). In its initial state of ness is a reasonable candidate for the order pa-
quenched disorder a lattice is usually weakened rameter.
by few missing links randomly distributed over The most remarkable aspect of the percolation
the entire lattice. The lattice is subsequently di- theory is that the systems belonging to the same
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universality class have identical asymptotic behav- determinate when the number of constraints
ior in the vicinity of the critical state. More equals the number of degrees of freedom, i.e.,
specifically, the systems (phenomena) forming a when
universality class have identical percolation
thresholds pc and scaling laws defining the rate p =-pc,, = 2d/z. (3)

of change of the transport properties in the prox- Removal of a single additional link beyond the
imity of the percolation threshold. While the per- percolation limit (3) transforms the truss into a
colation threshold depends only on~ diia . ir.-en- mechanism unable to support externally applied
sionality d and the lattice type (microstructure), loads. In (3) the subscript (cen) refers to the
the scaling law for the stiffness and other param- elastic percolation threshold for a central-force
eters exhibiting singular behavior as p -pc de- lattice.
pends only on the dimensionality d. During the initial phase of the process the

In its conventional form the percolation model number density p of extant links is well above the
recognizes only two alternatives; a link is either percolation limit pc,,. During this phase of the
missing (or ruptured) with a probability q = 1 deformation process the missing links (defects),
or is present with a probability p. All links are dfrainPoestemsiglns(eet)orsisumed presaveientiwitcal probabitylionk area Ascattered over the lattice, are far from each other.
assumed to have identical cross sectional area A Forces in the links are almost equal to corre-
and elastic modulus E. The elastic energy of the s orces in the pristieqlatti rer

lattice is (modifying slightly the expression from thenselfocsin theory appice r onse-
Hanen 190)the self-consistent theory applicable. Conse-

Hansen, 1990) quently, the lattice stiffness is during this phase a

2V= EA EL-gjj[(uj - uj) . e,,1 2  linear function of p. Thus, the mean-field esti-
mate for the tangent stiffness of a randomly di-
luted central-force lattice is

"+"EIL gijgik ~i.k, (2)
KT P - Pcen

where u1 is the displacement of the node i, eij a K 1 Pcen

unit vector located at node i and directed to- 1
wards the node j and 0ijk the change of angle - z 2 d(zp- 2 d), (4)
between the links ij and ik. Also, I is the modu-

lus of inertia and L the length of a link. Finally, where K is the stiffness of the undamaged (pris-
Lg- 1g = L -' if the link is present and zero oth- tine) lattice for which p = 1.
erwise. Numerical simulations by Feng and Sen (1984),

Sahimi and Goddard (1986), Beale and Srolovitz
3.1.1. Central-force lattices (trusses) (1988) and others on diluted triangular two-di-

The simplest models ensue neglecting the link mensional central-force lattices lead to several
bending stiffness (EI/L 3 ) and reducing expres- important conclusions. In all cases the linear
sion (2) to the first of the two terms on the self-consistent region (4) persisted to surprisingly
right-hand side. The mean-field theory estimate small tangent stiffnesses (KT = 0.05K). The
for the central-force lattice stiffness and the per- cross-over region connecting the mean-field and
colation threshold for a random dilution can be percolation regimes was, consequently, very short.
determined in a very simple manner. If N is the Within numerical errors the percolation thresh-
number of nodes, the number of degrees of free- old was found to be P~en = 0.65 which for z = 6
dom is then (Nd) where d is the lattice dimen- (triangular lattice) is closely fitted by the mean-
sionality. If z denotes the coordination number field estimate (3) according to which Pcen
(i.e., number of links at each node) then the total 2(2)/6 = 2/3.
number of constraints is (zNp/2). During a ran- A complete analysis of a large central-force
dom dilution process a truss becomes statically triangular lattice having 14,700 bonds was per-
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formed by Beale and Srolovitz (1988) who csti- 3.1.2. Frames (grids)
mated the percolation threshold (i.e.. the density Two major problems associated with the cen-
of existing bonds at the instant of vanishing macro tral-force lattice model arc: (a) occurrence of the
stiffness) as p =p., = 0.65 + 0.005. The force- model incured instabilities; and (b) the fact that
displacement curve of the considered lattice, sub- the elastic percolation threshold p,,, significantly
jected to tensile tractions at two ends, was found exceeds the percolation threshold pc for the con-
in form of a number of sharp spikes separated by ductivity problems. The physics and mathematical
stretches during which the displacement increases structure of the conductivity and elastic perccla-
at zero force. This, physically meaningless, re- tion problems are by no means identical. The
sponse is attributable to the loss of internal stabil- Kirchhoff equations defining the partition of
ity of the truss and subsequent rigid body pivoting electric current in a node are scalar in contrast to
of the overconstrained segments of the truss the nodal equilibrium equations which are vecto-
nceded to align the extant links with the exter- rial. However, in two-dimensional problems two
nally applied forces. This instability is the conse- percolation thresholds should coincide since the
quence of the vectorial nature of the equilibrium cluster of missing links traversing the lattice (p,)
equations for a lattice node and is, in fact, not transects it as well (pc,) (Krajcinovic and Basista,
present in conduction phenomena. 1991). To illustrate the role of the internal insta-

Literature focused on the elastic percolation bilities it suffices to examine a square or cubic
problems is vague on a rather crucial issue. Al- lattice. Since neither of these two lattices, even
most as a rule the overall (lattice or specimen) when all links are present, has any shear stiffness
stiffness is confused with the elastic modulus, their percolation threshold is Pcn = 1 (as ob-
Even more importantly it is not obvious whether served in Roux and Guyon, 1985).
the scaling law pertains to the tangent or secant There are at least two ways in which the situa-
stiffness and whether the percolation threshold is tion can be remedied. Firstly, the local instabili-
defined as a dilution level at which the tangent ties can be prevented constraining relative rota-
stiffness KT or the secant stiffness K reduces to tions of links in nodes assuming built-in condi-
zero. All experiments (Benguigui, 1984; Sieradzki tions at each node and endowing the links with
and Li. 1986; Benguigui et at., 1987) reported in bending rigidity. Alternatively, each node can be
the literature were load controlled. Since the connected to nodes belonging to more than one
post-peak (softening) segment of the force-dis- coordination group to reduce the chance for the
placement curve is unstable a load controlled test occurrence of internal instabilities. At this point
cannot distinguish between K = 0 and KT = 0. only the first of these two alternatives will be

The arguments in the first part of this study examined.
(Krajcinovic et al.,. 1993) indicate that the phase Determination of the elastic peicolation
transition occurs at the apex of the force-dis- threshold Pce for a grid necessitates extensive
placement curve. i.e., when KT = 0. However, the numerical simulations. According to the results of
infinite cluster emerges at this point only in force simulations reported in Kantor and Webman
controlled -ases. On purely physical grounds it is (1984), Feng et al. (1985). Sahimi (1986) and
appealing to conjecture that the onsets of change others, it turns out that for a grid p, = p,. Thus,
in connectivity (percolation threshold), localiza- as expected on purely geometric grounds, elastic
tion, loss of homogeneity in displacement field and conductivity percolation thresholds (once the
and loss of ellipticity of the governing equations internal instabilities are eliminated) are indeed
are different manifestations of the same phe- identical. This facilitates application of the perco-
nomenon (criticality). However, this issue can be lation theory in mechanics since the conductivity
settled conclusively only by precise force and percolation thresholds for several different peri-
displacement controlled tests which, to the best odic lattices are available in Stauffer (1985) and
knowledge of the authors, were not as yet re- other standard monograph on the percolation
ported in the literature, theory. The effect of the rotational constraints in
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lattice nodes is very significant. For example, the (random dilution) case. The difference between
fraction of bonds needed to maintain the load p,, and p,,J is attributable to the direction of
carrying capability is lowered from 0.645 to 0.347 applied forces, while the rest (to pc) is due to
for triangular lattice and from 1.0 to 0.5 for the the lack of rotational constraints in nodes (i.e.,
quadratic lattice. internal, model induced, instabilities).

Finally, an argument can be made that the
regularity of the considered lattices has no effect
on the conclusions. Being simplicial, a planar 4. Distributed strength lattices
Delauney network has an identical coordination
number z = 6 as the regular triangular lattices. One of the basic shortcomings of conventional
Since the product zp' = 2.0 ± 0.2 (where the su- percolation models is inherent to the bimodal
perscript b stands for bond percolation) is a di- distribution of the rupture strengths of links which
mensional invariant for all examined lattices (Zal- can be either equal to zero (initial damage) or to
len, 1983) it seems reasonable to conclude that some positive constant fr, In view of the discus-
the bond percolation thresholds for triangular sion of the parallel bar models in the first part of
and Delauney lattices are similar in magnitude. this study (Krajcinovic et al., 1993) it is obvious
Consequently, the pre-peak (hardening) response that the band-width of the rupture strength distri-
of a triangular lattice is not affected by the regu- bution has a strong influence on the type of the
larity (periodicity) of the lattice. An analogous response in both qualitative and quantitative
conclusion was, in the context of the sol-gel sense. However, analyses of disordered lattices
transition reached by de Gennes (1979, Ch. V.2.8). assembled from links having arbitrary distributed

rupture strengths and stiffness require large-scale
3.1.3. Directed percolation numerical simulations. First statistical studies of

The above listed data are related to perfectly triangular lattices conducted by Sahimi and God-
random dilution of lattices. In the course of ran- dard (1986) were directed towards investigation
dom dilution processes the lattice stiffness tensor of the influence of different link stiffnesses and
changes isotropically. A glance at the lattices different link rupture thresholds on the lattice
studied by Beale and Srolovitz (1988) indicates response. These analyses demonstrated that by
that in the case of dilution processes driven by changing the distribution of link rupture strengths
arbitrarily oriented externally applied forces (un- it becomes possible to change the failure mode
iaxial in their case) only some of the components from one in which the spanning crack is of very
of the stiffness tensors become singular at the regular geometry to one characterized by a span-
percolation threshold. The links aligned with the ning crack of very complex (fractal) geometry. In
externally applied tractions are subjected to the the first case, characterized by a narrow link
largest forces and are, therefore, much more likely strength bandwidth, the failure mode is brittle
to fail than other links, since almost all of the energy is dissipated to

In the case of directed percolation infinite form the spanning crack. The failure in this rela-
cluster of missing links forms in a direction tively homogeneous material can be attributed
roughly perpendicular to the applied tensile trac- solely to the stress concentration of a single de-
tions. Therefore, it requires rupture of fewer fect of preferential geometry. In the latter case,
links than necessary for random (isotropic) dilu- characterized by a more substantial link strength
tion. According to Kinzel (1983) the directed bandwidth, a large number of links is ruptured
bond percolation thresholds are: Pcd = 0.479 for a without being the part of the spanning cluster
triangular lattice and 0.6445 for a square lattice, and promoting the macro-failure. In other words,
Therefore, the Beale and Srolovitz (1988) esti- in this damage tolerant heterogeneous solid fail-
mate of P,,n = 0.65 should be compared with ure is preceded by significant dissipation of en-
Pced = 0.479 for directed percolation and not, as ergy and attendant accumulation of damage.
typically assumed, to pce = 0.347 for the isotropic A truly comprehensive study of triangular cen-
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_ ,__ •since the considered tensile loading was not con-
- .ducive to emergence of large compressive forces.
AA A A /^\ /A Hence, since the lattice geometry was periodic.
A A and analysis deterministic, the disorder was a
V. direct consequence of the nondeterministic distri-

bution of the initial damage and rupture strengths
// // V \ (quenched disorder).

\ // The macro-variables defining the kinematics of
the considered dissipative process are the dis-
placement ui of the lattice (change of the distance

Fig. 3. A triangular lattice of size A = 8. separating the rigid members) and an appropri-
ately defined damage variable D. On micro-scale
the history is recorded by the number of broken

tra!-force lattices consisting of links with identical links it. Since it. or D. are the only history
stiffnesses and randomly distributed rupture recording variables all macro-variables and trans-
strengths was recently completed by Hansen et al. port properties (such as lattice stiffness) must be
(1989). At each end the lattice was supplied by a defined as a function of D and all micro-variables
rigid member (bus) ensuring identical displace- as a function of it. To determine the statistics of
ment of all nodes it connects. Periodicity condi- the process the results of computations are aver-
tions were enforced in lateral direction to elimi- aged over the entire ensemble of physical realiza-
nate the end effects. The quenched disorder was tions selecting the number n of ruptured links as
introducing assuming uniform distribution of link the control variable. In view of the finite size of
rupture strengths p(fr) = constant (modeling the the lattices the force-displacement relation was
initial damage by links of zero strength). On such sought by Hansen et al. (1989) in form of the
a lattice Hansen et al. (1989) performed repeated following finite-scaling Ansatz
computations for a large number of different
physical realizations of the same statistics. The F= K(1 - V3'au)u. (5)
only difference between individual simulations
consisted of different spatial distribution of links The lattice stiffness K was, for convenience, taken

strengths. To ascertain the effect of the lattice to be equal to unity by Hansen et al. (1989). The

size Hansen et al. (1989) considered four differ- parameter a was then selected to ensure the best
ent lattice sizes (with A = 4. 8, 16 and 32 number fit between the Ansatz (5) and the computational

of rows, see Fig. 3). Computations for the lattice results over the entire spectrum of parameters

of smallest size (A = 4) were considered statisti- (lattice sizes). It was not entirely surprising that

cally unreliable since the individual defects (mis- the parameter a itself was found to be a function

sing links) occupy a large portion of the lattice of lattice size L. On the basis of these computa-

from the very beginning of the dilution process. tions Kracinovic and Basista (1991) proposed a

Computations were performed following the simple equality

rules of conventional truss analyses. Forces in a =/3A'-P, (6)
each link were computed for each external dis-
placement increment. A link was removed and its which for O = 3/4 (as suggested in Hansen et al.,
force redistributed to extant links, in accordance 1989) fits the computed data exceedingly well.
with the equilibrium conditions, whenever the Having the above expression (6) for the param-
force in this link exceeded its strength f,. Hansen eter a the force-displacement relation can be
et al. (1989) considered a symmetric rupture con- cast in the familiar form (see part 1, Eq. (2.2))
dition making no difference between tension and (allowing additionally for the lattice size effect)
compression. However, the ensuing departure
from physical reality of fracture was negligible F(A) =K[I -w(A)]u. (7)
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The damage parameter w can be shown (for The self-consistent estimate for the displace-
the selected uniform distribution of link rupture ment can be readily derived in a manner indi-
strengths) to be linearly proportional to the dis- cated in Hansen et al. (1989). For the considered
placement u tensile loading only the diagonal links arc likely

to rupture. Since the total number of diagonal
(A) = v-3fA-~u. (8) links is 2A2 , the damage D (number density of

The damage parameter w can be also rewritten ruptured links) is, according to Eq. (2.3) of Part I,
as a function of the externally applied force F in equal to n/2A2. Thus, the average strain is
form of n

w(AF)= 0.5 (1-[I_-4/3/3A_1(F/K)I,. m2 (14)

(9) where Em is the strain at which the strongest link
ruptures, i.e.. for which D = 1.

where as before f3 = 3/4. At the same time since (u/A) is the displace-
Similarly, the displacement corresponding to mcnt of a lattice node

the apex of the force-displacement curve is from
(7) and (8) U 2ýE)

ur = A1O/2V 1ý3, (10) A v•,.,
where the subscript m denotes the value of the where the length of the diagonal link / is equal to
variable corresponding to the maximum force Fm unity. Hence, the expression (13) may indeed be
to which the lattice can be subjected (rupture derived from (14) and (15) as a self-consistent
force in a load controlled test). The number of estimate of the number of ruptured links at the
ruptured links at the apex of the force-displace- state corresponding to the apex of the force-dis-
ment curve is placement curve.

The parameter a, number and density of rup-
nm =Aa /2j3. (11) tured links nm, displacement um, force F,, and

Substitution of (10) into (8) and (7) leads to damage Dm at the apex of the force-displace-
analytical expressions for the damage at the apex ment curve (failure in the stress controlled test)
and maximum force vwhich are both independent were computed from the above expressions and
of the lattice size arranged in Table 1. The corresponding numeri-

cal data read off Fig. 6 in Hansen et al. (1989) are
m,, = 0.5 and Fm = 0.5 Kudm. (12) added in parentheses. As already mentioned the

From (7) the secant modulus K = K(1 - w) at the numerical results for A = 4 are omitted as sug-
apex is according to (12) equal to 0.5 K. The gested in Hansen et al. (1989).
analytical expression for the number of ruptured The remarkable accuracy with which the above
bonds at the apex is expressions, derived using the simple relationship

(6) for the parameter a, fit the numerical simula-
nm = A m•- (13) tions provides a strong indication that the lattice

Table I
Parameter a (Eq. (5)), number and density of ruptured bonds, displacement, force, and damage at the apex of the force-displace-
ment curve

A n, n,,/N um Fm.

4 1.06(1.00) 9 0.280 1.09 0.54 0.5(0.500)
8 1.26 (1.25) 25 (26) 0.195 1.83 (1.91) 0.92 (0.94) 0.5 (0.521)

16 1.50(10.50) 85 (81) 0.166 3.08 (3.(10) 1.54 (1.56) 0.5 (0.487)
24 1.66 (1.65) 173 (168) 0.155 4.17 (4.13) 2.09 (2.15) 0.5 (0.495)
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response during the hardening phase of the de- the finite-size scaling la\% (5) and (6), suffices to
formation process (i.e.s along the ascending part eliminate the influence of the lattice size A, de-
of the force displacement curve) depends en- tails (higher statistical momenta) of the damage
tirely on the volume averages of the disorder distribution and microstructure (precise location
(spatial distribution of ruptured links). This is, of links having given rupture strengths within the
indeed, the reason behind the close agreement lattice). The scatter of results about their means
between the self-consistent estimates and the re- was found to be very small as well. In suilmary.
suits of numerical computations from Hansen et the response of the lattice along the ascending
al. (1989). Moreover, since the analytical esti- segment of the force-displacement curve, includ-
mates of the pre-peak (hardening) segment of the ng the apex itself, can be with acceptable accu-
response obtained by the parallel bar model are racy estimated using the seif-consistent models
in close agreement with the numerical simula- (or some other first-order effective continuum
tions performed on lattices the latter models model).
should be used only when the emphasis is on the In the pre-peak, effective continuum regime
post-peak (softening) behavior. the defects (clusters of missing links) are small

According to computations in Hansen ct al. and far away from each other. The stress fluctua-
(1989) both the total number of ruptured bonds tions are local and spread over a small part of the
it and the density of the ruptured bonds (,,I/N ) lattice. Consequently, the sequence of the link
at the apex strongly depend on the specimen size. ruptures is dominated by the distribution ot link
However. the magnitude of the damage varia•ble strengths (de Arcangelis, 1990). Within this phase
at the apex depends only on the selected dist ibu- of the deformation process spatial distribution of
tion of ruptured strengths as already ascertained links of different strength has a second-order
by the expressions derived in the preceding part effect on the response. The lattice response is
of this paper (Krajcinovic et al., 1993) for a paral- local and governed by the averages of the in-
lcl bar system. It is important to notice that in volved fields.
contrast to the parallel bar model it becomes The modeling of the softening response turned
necessary to make distinction between the de'sit% out to be everything but simple. The numerical
of ruptured bonds D = (t/N) and the parameter results of Hansen et al. (1989) strongly suggest
a, defining the reduction of the secant modulus development of a multi-fractal force distribution
K = K(U - w). Both of these parameters, as ex- at the incipient rupture of the lattice. Within the
pected, depend on the microstructure (selected post-peak regime, characterized by significant de-
distribution of the link rupture strengths p(f,)). feet densities, the stress fluctuations surrounding
However, only the parameter &w. or more accu- the defects spread over most of the lattice.
rately the magnitude of the secant modulus K(w). Therefore, each link is subjected to a different
is invariant of the lattice size. Since the magni- force. The local (rather than the average) stress
tude of the specimen (lattice) secant modulus becomes a dominant factor of the lattice response
K(w) is readily measurable in experiments this near the point of rupture. Omitting the details.
conclusion is potentially very important for the available in Hansen et al. (1989), Herrmann et zlI.
selection of the internal variable quantifying the (1989). de Arcangelis (1990) and Hansen (1990),
damage. it suffices to state that the scaling behavior of the

The other important set of conclusions in lattice at the incipient rupture requires an infinity
Hansen et al. (1989) concerns the post-peak or of exponents defining different statistical mo-
softening part of the lattice response. As indi- menta of the distribution of forces in cutting
cated above the ascending seg- nts of the links. The post-peak response preceding the lat-
rescaled force-displacement relation (7). in con- tice rupture depends on the higher statistical
junction with (9), determined for different lattice momenta of the initial (quenched) disorder, i.e.,
sizes A were found to collapse on a single master unlikely events. The scatter of the results in the
curve. A single parameter ,3, in conjunction with softening regime is much more pronounced and
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quite persistent. Experimental evidence of this threshold. The scaling law for the system tangent
phenomenon is well documented in the case of stiffness is characterized by a strongly nonlinear
heterogeneous materials such as concrete (see, dependence on the proximity parameter. Yet, the
for example, Hegemier and Reed, 1985). self-consistent estimates of the damage and se-

Finally, it should not be construed that the cant moduli at the percolation threshold are in
multi-fractal nature of the force distribution in close agreement with numerical simulations.
links during the softening regime has anything to (c) The response in the post-peak (softening)
do with the discretization or modeling of the solid regime depends on the higher (extreme) statisti-
by a truss. Identical analyses performed for a grid cal momenta of the initial disorder and stress
(frame) by H,ýrrmann et al. (1989) demonstrated distribution leading to a large test-to-test scatter.
identical trends leading to the same conclusions. Consequently, the predictions of the expected

vallies of the ultimate rupture strength of the
system are of limited utility.

5. Summary and conclusions From the modeling viewpoint it is important to
notice that the effective continuum models (Horii

The study presented in this two-part paper has and Nemat-Nasser, 1993; Krajcinovic and
a qualitative character. The considered dis- Sumarac, 1989; Krajcinovic, 1989; Nemat-Nasser
cretizations are insufficiently sophisticated te and Hori, 1990. etc.) can be used along the entire
provide for a rigorous and quantitative dcscrip- length of the hardening regime including the predic-
tion of the behavior of brittle solids with disor- tion of the percolation threshold (onset of localiza-
dcred microstructure. Additionally, all considera- tion). If further substantiated this conclusion may
tions in , :s study were based on analyses of render development of higher-order effective
two-dimerin-onal systems overestimatiag the role continua models unnecessary. Identifying the
of the defect interactions on the macro response. considered process of damage evolution as a sezc-
Finally, all lattices considered in this study were ond-order phase transition justifies application of
limited in size emphasizing the size effect. Never- several novel methods of statistical physics. More
theless. unencumbered by complex mathematical importantly it becomes possible to identify uni-
structure and amenable to analytical solutions versal parameters and trends in deformation.
and inexpensive numerical simulations the con- These universal parameters are invariant with
sidered models are valuable in discerning the respect to discretization (lattice regularity) and
dominant and universal trends in the behavior of details of the microstructural disorder. They are
disordered solids. common to a wide spectrum of materials and

The macro response of a solid with disordered phenomena.
structure during a brittle deformation process At this point it seems certain that the secant
consists of three distinctly different regimes: stiffness modulus represents a proper choice for

(a) During the initial regime, characterized by the internal variable quantifying accumulated
a low density of small defects scattered through- damage. In the pre-peak response the ,ecant
out the solid, the macro response is local. Trans- moduli are readily measured in tests (Lemaitre
port parameters. such as lattice stiffness, can be and Chaboche, 1978) in addition to having at-
computed from volume averages of defect: and tributes of universality (inva'iance with respect to
the size effects are readily determined using ap- the speciment size, dilution sequence, details of
prop-iate finite-size scaling. Stress fluctuations the microstructural disorder, etc.). In three-di-
are both small and local. Owing to its effective mensional problems the stiffness tensor inher-
continuum nature the hardening segments of the ently incorporates anisotropy which is one of the
response of systems containing similar densities criteria defining the universality group (Sengers.
of defects are similar as well. 1985). Finally, the damage effective continua mi-

(b) The character of the response changes cromechanical models (Horii and Nemat-Nasser,
drastically in the vicinity of the elastic percolation 1983- Krajcinovic, 1989, etc.) is also measured as
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the change in the stiffness tensor. Hence, the two retical treatment of two-dimensional fragmentation in

theories, valid for different ranges of microdefect solids, Philos. AMag. B 50. 307-315.
Feng. S. and P.N. Sen (1984). Percolation on elastic nctworks:

densities. are mutuall. compatible. Nev exponent and threshold, PhMs. Ret,. Lett. 52, 216-,219.

In conclusion, the present two-part study of a Feng, S., M.F. Thorpe and E. Garboczi (1985). Effective

set of rather primitive discrete models leads to medium theory of percolation on central-force elastic net-

some interesting conclusions related to coopera- works, Ph/ys. RIe. 1 3,'. 27t,-28t0.

tive phenomena in brittle deformation. The study Hansen. A. (1990). Disorder, in: HI.J. Herrmann and S. Roux.
hythe mechanical damage eds.. Statistical Models for the F,'cture of Disordered Ale-

dia. North Holland, Amsterdam. pp. 115-158.

models as second-order phase transitions justifying Hansen, A.. S. Roux and H.J. Herrmann (1989). Rupture of

application of novel statistical physics theories, central-force lattices, J. Phys. France 50. 733-744.

The study also identifies necessary thermody- Harlow. D.G. and S.L. Phoenix (1982). Probability distribu-

namic variables defining the state and the change fions to, the strength of fibrous materials under local liad

of state in a deformation process dominated by sharing 1: Two-level failure and edge effects, 4Adi. Appl.of satein defrmaionproess omiate byProb. 14. 68-94.
microcrack evolution. Most importantly, the pre- I legemier, G.A. and R.1-1. Reed (1985). On deformation and

sent study establishes universal trends and paramn- failure of brittle solids: Some outstanding issues. Vech.

eters defining critical state and behavior for the Mater. 4, 215-259.

considered class of problems.lHerrmann. H.J., A. Hansen and S. Roux (1989), Fracture of
disordered, elastic lattices in two dimensions. I'/hy.. Rer. B
39. 637-648.
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