
COMM NAVAL POSTGRADUATE SCHOOL

Monterey, California

0=
S~STATES

THIESIS

SOFTWARE REUSE AND THE ARMY PROGRAM
DEVELOPMENT PROCESS

by

Donald F. Burns HII

June 1993

Principal Advisor: David V. Lamm
Associate Advisor: Ronald A. WFitzman

Approved for public release; distribution is unlimited.

93-25606

3-no

REPORT DOCUMENTATION PAGE Form Approved

Pub•ic repolq•g burden for this cOllctOnt of informtior is estimatned to averaqg I how r oe " ipOfesp ,f incudinq g the time for reC.ewC g instrl,•ctOin Wa.r(hing existifn data sources
gashmertn and maintaining the data needed. and cOmpl0etng and reviewing the col ewon of nformation Send comments regarding this burden estimate or any other aspect of this
collectiOn of information. including suggestions for reducinrg hs I •ul¢den to Washinqtonl HeaaQuarers Ser•ices, O'reciorate for information Operations and Rel:oris. d 1is jefferwoi
Davis Highway. Suite 1204. Arlington, VA 22202-4302 end to the Office of Management and Budget Paperwork Reduction Prole" (0104,0188). Washington DC 20S03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Jnne 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

SOFIWARE REUSE AND THE ARMY PROGRAM
DEVELOPMENT PROCESS

6. AUTHOR(S)

Burns, Donald F., III

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This thesis examines the current Army Program Management software development effort with
respect to the application and implementation of software reuse. This study examines current efforts
by the Department of Defense and related agencies to implement software reuse into the development
and life cycle of both embedded and host application software for automated weapon systems. The
DoD software development cycle templates are examined for software reuse applicability, integration,
and implementation. Broad overview and analysis of potential, real and perceived reuse implementation
inhibitors and barriers is conducted by category (Management, Standards, Library, Legal, and
Education), and in conjunction with interviews of critical personnel within the Program Management
structure to assess current knowledge and opinion on software reuse. Identified software reuse
inhibitors and program personnel concerns are addressed by category, with the intention of finding
generalized solutions and application or execution points within the parameters of the software program
development structure.

14. SUBJECT TERMS 15. NUrl(R Zo.- PAGES

Software Reuse, Reuse Inhibitors, Army Program Manager, Software Metrics 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

I Tn,'rfi'r I InA,,c.C-,. II I inirlicgl1ieA I1.
N•N 7540-01-280-5500 Sandard Form 298 (Rev 2-89)

Prescrbed by ANSI Sid 139-18

Approved for public release; distribution is unlimited.

SOFTWARE REUSE AND THE ARMY PROGRAM
DEVELOPMENT PROCESS

by

Donald F. Burns III
Captain, United States Army

B.S., Louisiana Tech University, 1982

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
June 1993

Author: _ _ _ _ _ _ _ _ _ __-

Donald F. Burns III

Approved by:__

i Lamm, Principal Advisor

Ronald A. We~itan, A~sp cte Advisor

David R. Whipple, hairman
Department of Administra. ive Sciences

ii

ABSTRACT

This thesis examines the current Army Program Management

software development effort with respect to the application

and implementation of software reuse. This study examines

current efforts by the Department of Defense and related

agencies to implement software reuse into the development and

life cycle of both embedded and host application software for

automated weapon systems. The DoD software development cycle

templates are examined for software reuse applicability,

integration, and implementation. Broad overview and analysis

of potential, real and perceived reuse implementation

inhibitors and barriers is conducted by category (Management,

Standards, Library, Legal, and Education), and in conjunction

with interviews of critical personnel within the Program

Management structure to assess current knowledge and opinion

on software reuse. Identified software reuse inhibitors and

program personnel concerns are addressed by category, with the

intention of finding generalized solutions and application or

execution points within the parameters of the software program

'F~ordevelopment structure. i

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND I

B. PURPOSE 4

C. RESEARCH QUESTIONS 5

D. SCOPE 5

E. METHODOLOGY 6

F. ORGANIZATION 6

II. SOFTWARE AND THE DEPARTMENT OF DEFENSE 8

A. SOFTWARE: DEFINITION AND NEED 8

B. SOFTWARE: PROBLEMS 11

1. Complexity 11

2. Cost 12

3. Productivity 12

4. Reliability 14

5. Quality 14

C. SOFTWARE: SOLUTIONS 15

1. Studies, councils, and working groups . . . 15

2. Standardization 17

D. SOFTWARE REUSE: TECHNOLOGIES AND METHODS . . . 19

E. SOFTWARE REUSE: CURRENT APPLICATIONS 25

F. SUMMARY 28

III. SOFTWARE REUSE 29

iv

A. THE PM AND SOFTWARE DEVELOPMENT•.•...29

B. THE SOFTWARE DEVELOPMENT PROCESS 30

1. System Definition 36

2. Software Requirements Definition 36

3. Preliminary Design 37

4. Detailed Design 38

5. Code and Unit Testing 39

6. Integration Test 40

7. System Test 40

8. Maintenance 41

C. OPPORTUNITIES FOR REUSE 44

D. REUSE INHIBITORS 49

1. Standards50

2. Training and Education 56

3. Management 64

4. Lack of Centralized Catalog of Assets . . . 73

5. Legal and Contractual Issues 77

E. SUMMARY 78

IV. THE VIEW FROM THE TOP 80

A. INTRODUCTION 80

B. PROGRAM/PROJECT/PRODUCT MANAGER 81

C. DEPUTY PROGRAM/PROJECT/PRODUCT MANAGERS 85

D. HARDWARE/SOFTWARE DIVISION CHIEFS 88

E. FINAL OBSERVATIONS 91

F. SUMMARY 92

V. ADDRESSING THE PROBLEMS 94

v

A. INTRODUCTION 94

B. SOLUTIONS 94

1. Standards 94

2. Training and Education 97

3. Management 99

4. Libraries 102

5. Legal and Contractual Issues 103

C. LEVELS OF EXPERTISE AND KNOWLEDGE 104

D. O(UMMARY 106

VI. CONCLUSIONS AND RECOMMENDATIONS 108

A. INTRODUCTION 108

B. THE WORK AT HAND 108

C. OVERCOMING THE BARRIERS 110

D. RECOMMENDATIONS 114

E. AREAS FOR FURTHER RESFARCH 115

APPENDIX A PROGRAM OFFICE QUESTIONNAIRE 118

APPENDIX B DEFINITIONS 121

APPENDIX C ACRONYMS 125

LIST OF REFERENCES 127

BIBLIOGRAPHY 131

INITIAL DISTRIBUTION LIST 133

vi

I. INTRODUCTION

A. BACKGROUND

The defining difference between weapon systems of today

and those of twenty years ago amounts to a single work,

software. Computer software, utilized in embedded computer

systems, enabled the United States to maintain technological

superiority over the numerically superior and once formidable

Warsaw Pact and Soviet Armed Forces during the last two

decades of the Cold War.

Although this omnipotent force no longer exists, there is

still a threat from a multitude of potential enemies. The

uncertainty and potential instability in such areas as

Southwest Asia and the Commonwealth of Independent States

foster a Continuing need for these high-tech systems. Review

of the revised DoD doctrine, commensurate with the current

down-sizing of the military and future programs, clearly

demonstrates that the need for enhanced system performance

utilizing highly sophisticated and extremely expensive

embedded computer systems will continue to grow. In 1970, the

Army inventory contained only three automated weapon systems.

By 1980, there were 91. Today, the Army is supporting or

developing more than 250 distinct automated weapon systems.

[Ref. l:p. 27) As shown in Figure 1-1, this trend should

continue.

1

GROWTH TREND OF ARMY SOFTWARE INTENSIVE
BATTLEFIELD SYSTEMS

(FIELDED/UNDER DEVELOPMENT)

_ I

200- 100 R&D

NUMBER
OF
SYSTEMS

62 PRODUCTION
100 91

POST DEPLOYMENT

2 SUPPORT

1970 Io 1990

rigure 1-1

Source: [Ref. l:p. 26]

This technological sophistication is not cheap. In Fiscal

Year (FY) 1980, the U.S. Department of Defense (DOD) spent

over $3 billion on software. [Ref. 2:p. 19] Most estimates

place DOD expenditure for software acquisition during Fiscal

Year 1993 in excess of $30 billion. [Ref. 2:p. 19] This

represents an approximate growth rate of 12% per year. [Ref.

3:p. 124]

Since 1985 (FY 1986), the budget has contracted to a point

where the FY 1993 budget recommended by President Bush

provides $63.6 billion for the U.S. Army, a 28% reduction in

buying power over FY 90 (as measured in FY 92 constant

dollars). [Ref. 4:p. 74] The exponential growth in both the

2

number of automated battlefield systems and their associated

cost has lead to wide discrepancies between the funding

required and the funding available for development and

fielding of new systems. [Ref. l:p. 29]

The annual life cycle cost of Army mission-critical

embedded software systems is at present in excess of $9

billion, with approximately 30% dedicated to system develop-

ment and 70% to Post Deployment Software Support (PDSS)

(Figure 1-2).

'00

C 20[

8:3 64 n a 6? U E ?a 7 76 79 a U

Figure 1-2

Fewer defense dollars, increasing numbers of programs, and

rising costs for state-of-the-art weapon systems demand

critical analysis of every dollar spent by Army Program

Managers to ensure maximum utility and return on investment.

Compounding the financial problem is a decline in software

productivity at a time when current software projects are

3

steadily increasing in size, scope, and complexity. (Ref.

5:p. 3] This decline in productivity is due in part to the

aforementioned increase in software system complexity and, in

part, to the general decline in the number of available

software engineering personnel in the Army, other DoD

agencies, and the civilian software development community

[Ref. 5:p. 14].

The DoD, in conjunction with a host of corporations

involved in developing and utilizing mission-critical program

software, has been studying a multitude of proposals to reduce

development costs and optimize productivity. These proposals

include technical as-well-as non-technical approaches to the

problem. Although all areas under scrutiny show potential,

the most promising rewards are thought to lie in the area of

improved program management and utilization of 3vailable

resources. In this regard, the application of software-reuse

technologies bears great potential value.

B. PURPOSE

The purpose of this thesis is to examine the problems

inherent with the application of software-reuse technologies

at the DoD Program Office level. The thesis will explore the

key aspects of current DoD Loftware-reuse technologies and the

principal management inhibitors or barriers to implementation.

Additionally, this thesis will query major-systems program

managers on their views and observations with respect to

software-reuse and its potential or actual effects on their

4

programs. Finally, this thesis will examine the most

promising approaches to resolving the problems associated with

implementation of software-reuse within the major-systems

Program Offices.

C. RESEARCH QUESTIONS

In accordance with the purpose of this thesis, the primary

research question is:

What are the primary problems involved with the proposed

software technologies reuse process from the perspective of a

Program Office and how might these problems be addressed?

To effectively address this question, the following

subaidiary research questions must be answered:

1. What are the key aspects of the DoD software
technologies reuse concept?

2. What are the principal management inhibitors or barriers
to software-reuse?

3. How do Army major-system program offices view the
software-reuse program?

4. What are the most promising approaches to resolving the
problems associated with implementation of the software-
reuse program?

D. SCOPE

This thesis will limit its scope to the non-technical

aspects of software-reuse. Specifically, the potential

bent-fits gained from the implementation of a DoD software-

reuse policy governing the use of reuse tools and techniques

in the software development portion of major-system program

management. It will address only those reuse technologies

5

currently recognized by DOD and recommended by research groups

and advocates for effective, cost-efficient software

development. The thesis research will not exploi? software-

reuse beyond the development phase of the program life cycle.

Z. METUODOLOGY

The research foundations of this thesis are the documented

efforts of the DOD Systems Acquisition and Software-reuse

Workshops conducted by the Director of Defense Information of

the Office of the Assistant Secretary of Defense, Interna-

tional Electrical and Electronic Engineers (IEEE) Software

Seminars and Symposiums, and a host of other Government and

civilian conferences and proceedings. Interviews of various

personnel within the Army Acquisition Corps Program Office

structure provided valuable and otherwise nonobtainable

research material. Government reports, publications, minutes

and proceedings of current ad hoc software-reuse workshop

committee meeting and efforts to develop and implement a reuse

process provided additional information.

F. ORGANISATION

This thesis documents current efforts to implement

software-reuse into major-systems program development, and

attempts to identify and address potential managerial problems

associated with reuse at the Program Office level.

Chapter II reviews the need for and functional nature of

software-reuse, some current aspects of DoD software-reuse

6

programs, and evaluates its current status. Chapter III

explains the process used to select program software

development methods and the Program Manager's ability to

affect software development. The chapter then presents and

analyzes inhibitors and barriers to implementing software-

reuse. Chapter IV examines the views and observations of

Program Office personnel. Chapter V analyzes potential

methods for overcoming the problems identified in Chapter III.

Finally, Chapter VI answers the research questions, draws

general conclusions and provides recommendations for areas of

further study.

7

II. SOFTWARE AND THE DEPARTMENT OF DEFENSE

A. SOFTWARE: DEFINITION AND NEED

The Federal Acquisition Regulation (FAR) defines software

as "the set of instructions and data that are executed in a

computer. This definition includes only the executable form

of the instructions and data." [Ref. 6:pp. 3-5] By

definition, software is an intangible, without mass, volume,

or other physical properties. It is at best conceptual,

lending itself to the nature of an art more than science or

engineering. Yet, it is one of the most critical resources of

the Department of Defense for the production of today's

sophisticated, high-technology weapon systems. The DoD

considers weapon systems software to be on the "critical path"

of system development. [Ref. 6:p. 1-1]

Software is integrated into virtually every weapon system,

either as an integral component, such as an embedded system,

or as some sort of training or maintenance complement to the

primary system. Today, software has taken the place of many

hardware functions in weapon systems. This has become a mater

of practical application, allowing system designers much more

latitude than previously permitted with strictly hardware or

hardwired solutions to advanced problems. Software has

allowed weapon systems designers to take advantage of

capabilities here-to-fore thought unattainable because of the

8

physical limitations of man and machine. Software has proven

to be inherently more flexible than hardware, and allows both

minute performance upgrades and sweeping changes to funda-

mental eapon systems operations without major computer

hardware changes or structural reconfiguration. Such relative

ease of change in abilities has proven to be an economic boon

to the system upgrade concept. It has proven to be far

cheaper and generally quicker to upgrade capability through

software changes than system redesign, refit, or rebuild. In

addition, it is orders of magnitude cheaper to upgrade than

produce new, more advanced weapon systems, as demonstrated by

the U.S. Air Force's decision to upgrade existing F16s vice

developing a new, multipurpose fighter [Ref. 7:p. A5].

Software upgrading has become increasingly important in

this time of similarly rapid evolution of Threat' weapon

systems' computer technology and associated upgrading.

Software has become so prominent in U.S. weapon system design

that it has proven to be an influencing factor on overall

system design about 50 percent of the time since the early

1970's. [Ref. 6:Ch. 2] However, software as a major component

of computerized systems is a relatively new development. It

was not until the late 1960's that hardware and software

'Threat refers to the now defunct Soviet Union, its
successor, the Commonwealth of Independent States, various
client states of the old Soviet Union, and other potential
belligerents.

9

components of digital systems began to progress along separate

paths.

Hardware development has been revolutionary, producing

faster, ever more advanced and capable machines. This

revolution has been brought about by the marriage of the

silicon chip and electrical engineering, and resulted in such

things as Very High Speed Integrated Circuits (VHSIC).

Today's computers have exponentially increased capability over

the earliest practically applied systems. Consequently, this

revolutionary process has gone from 16 bit architecture

utilizing 60,000 word memories to 32 bit architecture

utilizing 5.0+ million word memories. [Ref. 5:p. 2]

Paralleling the hardware revolution has been software

evolution. Although a slow process, often being equated to a

"black art," software evolution has produced much. [Ref. 8:p.

31] In the roughly forty years since the introduction of the

first digitaI system, software evolution has produced hundreds

of languages spanning four levels of complexity2 , multitudes

of design and instruction set architectures, and a plethora of

development techniques and styles.

Because of the seemingly unlimited ability of computer

resources to expand on physical limitations, these resources,

especially software, are experiencing voracious demand from

2Levels of complexity for computer languages are
categorized into four groups: machin. languages, assembly
languages, higher order languages, and application generators.
[Ref. 6:pp. 3-10] Each language meets a specific need at a
particular level of programming (see Appendix B).

10

Government and industry. The fact is that tomorrow's weapon

systems will be complex technological marvels filled with

computer hardware and software.

D. SOFTIAME: PROBLEMS

The sophistication and approach to mission critical

computer software design and development provide ample

opportunity for problems to arise. These problems take many

forms, but generally can be seen to parallel many of the

problems that appear in hardware development. Some of the

more relevant are as follows:

1. Complexity

As the demand for software grows and the applications

expand, the level of complexity necessarily goes up. As

program capability expands, especially with regard to real-

time systems, the number of source lines of code (SLOC)

becomes enormous. Because of the "building-block structure

and mind-boggling interrelatic'nships in modern software," such

as the number of "do loops" and "go to" instruction sets

involved in simple evaluation algorithms, arithmetic software

progression can quickly become geometrically complex. [Ref.

8:p. 30] The ambiguous nature and poor decomposition of

software problems coupled with the predominant control of

projects by "hardware people 3"' expands and aggravates the

3Hardware as opposed to software people. The term
indicates background discipline with respect to the system,
such as electrical engineering, aeronautical engineering, etc.

11

complexity problem. [Ref. 7:p. 4] Technological advances in

hardware introduce new requirements into the process,

requiring sometimes substantial changes to earlier software

packages or modules. Finally, expansion of mission critical

computer resources software programs creates a need for

substantially larger and more complex associated support

systems. [Ref. 6:Ch. 1]

2. Cost

Once, hardware was the "big-ticket" item in terms of

weapon system cost. However, over the last two decades, that

trend has changed. Today, software accounts for up to 80

percent of the cost of a weapon system (see Figure 2-1). Much

of this growth can be attributed to the recognition and

inclusion of the costs associated with the entire software

system's life cycle. Other sources of cost growth include

poorly formulated initial software requirements, upgrading and

changing requirements after initiation of the development

phase [Ref. 9:p. 50], and otherwise just poor software design

methodologies used by some software developers. [Ref. 6:Ch.

1] Add to this the serious decline in real defense spending

allocations and appropriations budgeted over the next five

years, and the "cost" factor takes on linchpin significance.

[Ref. 3:p. 74]

3. Productivity

Nearly every study conducted during the last ten years

has given warning to an imminent shortage of software develop-

12

ment personnel. The current growth rate of the number of

software-producing personnel is about 4 percent per year. W

10:p. 31] Matched against the estimated 12 percent annual

growth rate in demand for software and the increasing

complexity of today's programs, SLOC productivity is dropping

dramatically. As the level of difficulty in "producing lines

of integrated, tested, and documented code per month"

traverses from "'easy' (precedented) tasks" to complex

software tasks, the production rate per programmer drops from

about 150 lines per month to 30 lines per month. [Ref. 11]

SOFTWARE UFE CYCLE

COST

SOF1AM

oevanuerw

SOPWAM

SUPPORT

70%

Figure 2-1
Source: [Ref. 2:Ch. 2]

Although the number of programmers is growing, the

productivity per programmer is falling. The smaller (relative

13

to demand) work force and increasing demand will trigger

economic responses, driving up the price of labor and the

related cost per SLOC. The "bottom line" is simple -- the

future portends a dearth of mission critical software.

4. Reliability

Software reliability can be explained simply as the

probability that a software component, module, or program will

work in a satisfactory manner for a given period of time and

under specified conditions [Ref. 12:p. 347]. Reliability is

a function of system requirements and program design, and

depends on accuracy, consistency, complexity, error tolerance,

and modularity. (Ref. 13:p. 229] Predictably, as program

size and complexity have gone up, reliability has dropped.

Most programs developed to date have not worked as initially

designed, and most have never lived up to requirements and

design specifications once "repaired." (Ref. 8:pp. 29-30]

Software reliability has a direct impact on program cost,

often accounting for cost overruns of 50 to 100 percent of

total program budget. [Ref. 6:p. 1-I]

5. Quality

Software quality is essentially the absence of

spoilage, or that substantial effort (55 percent of the total

lifetime cost of the average system) dedicated to diagnosis

and removal of faults introduced during the development

process. [Ref. 14:pp. 198-200] When eradicating design

errors it is necessary to figure both a lost time cost and a

14

lost productivity cost. The lost time cost consists of the

manhour cost of repairing the unfruitful labors of previously

expended and expensed manhours and the utility cost of not

having a fielded system. The lost productivity cost, while

only an estimation, must be extremely high given that efforts

to repair one piece of software must necessarily pull

resources away from the production of new software, aiding in

the overall decline in software productivity.

C. SOFTWARE: SOLUTIONS

Recognizing that no single program, project, or group can

"fix" all of the problems listed in Section B, the Army, in

conjunction with the DoD, has approached these problems with

various solutions. Some of the more important or influential

are as follows:

1. Studies, councils, and working groups

The DoD has engaged in and contracted for a number of

studies and working groups to address the problems and

concerns involved with mission critical computer resources

development and acquisition. [Ref. 15:p. 1] Efforts have

been directed at almost every aspect of these problems. They

have involved studies of weapon systems' software management,

cost-schedule strategies for software intensive project

development, the software development environment, and

technology transfer. [Ref. 16:pp. 4-5] Additional areas of

focus have been on issues involving software reuse tech-

nologies, including the Software Technology for Adaptable,

15

Reliable Systems (STARS) Program. [Ref. 17:p. 1] There have

also been policy and standardization attempts made to address

problems within the segment of the Defense Industrial Base

responsible for most DoD software production. [Ref. 18] And

finally, a great variety of joint Service attempts have been

made to apply standardization to shared common concerns such

as avionics hardware and software and command and control

communications systems. [Ref. 6:Chs. 3-4] [Ref. 19:p. A-22]

Most notable of these efforts has been the great

proliferation of permanent panels, working groups and software

study organizations. Also of note has been the number of non-

DoD organizations and civilian companies which have also

formed to advance computer technology, regardless of the

apparent beneficiary of their findings and proposals. Some of

the more prominent and important of these organizations and

companies are:

(a) Defense Advanced Research Projects Agency (DARPA)

(b) Software Engineering Institute (SEI)

(c) Defense Information Systems Agency (DISA)

(d) Joint Logistics Commanders (JLC) Joint Policy
Coordinating Group on Computer Resource Management

(e) Institute for Defense Analyses (IDA)

(f) National Security Industrial Association (NISA)

(g) Joint Integrated Avionics Working Group (JIAWG)

(h) U.S. Army Communications-Electronics Command (CECOM)
Center for Software Engineering

(i) NASA Langley Research Center

16

2. Standardization

Most of the problems listed in Section 2 are the

result of the uncontrolled proliferation of the number of

weapon systems utilizing computer applications that occurred

from the late 1960's through the 1970's and into the early

1980's. [Ref. 6:Ch. 4) This multiplicity of problems posed

by the non-standardization of supposedly interoperable systems

reached a peak in the late 1970's and prompted the DoD to

focus on standardization, particularly with regard to embedded

systems. Through the efforts of most of the groups listed

above, and especially the agenda carried by the Joint

Logistics Commanders and DARPA, significant advancements have

been made in both hardware and software standardization.

To this end, the DoD has standardized nearly every

aspect of software and hardware development, production, and

procurement through issuance of specific policy and guidance.

The primary governing directives is DoD Directive 7920.1, Life

Cycle Management of Automated Information Systems [Ref. 21].

Three areas have received the primary focus:

(a) Higher Order Languages (HOLs). As mentioned rlier,
there were hundreds of languages being used within the
DoD by the late 1970's. In order to inject some much
needed interoperability into embedded systems and limit
geometrically expanding software support costs, the DoD
severely limited the number of acceptable HOLs and
designated Ada as the preferred language. [Ref. 6:Ch.
4]

While DoD Directive 3405.1, Computer Programming
Language Policy, lists and provides guidance for
selection of the approved DoD programming languages
[Ref. 22], DoD Directive 5000.2, provides explicitly

17

for the use of Ada as the single, common, HOL in new
computer embedded weapon systems [Ref. 20:p. 6-D-3].

(b) Software Development. Technological advances and
language standardization aided software development
immensely. The insertion of Very High Speed Integrated
Circuits (VHSIC) has provided much greater potential
application of the acceptable software languages. to
exploit this potential while maintaining control of
resources, the DoD has implemented DoD-STD-2167A,
Defense System Software Development, and DoD-STD-2168,
Defense System Software Quality Program, to apply
standardization and a system engineering approach to
software development. (Ref. 23] Additional efforts,
such as the STARS program and liaisons between
technical and academic institutions have aimed at
fostering technology application and transfer [Ref.
6:Chs. 4 - 5].

(c) Computer Hardware. Because the revolutionary
developments in mission critical computing hardware
took as many directions as there were software
languages, the DoD expended considerable effort
standardizing the Instruction Set Architecture (ISA).
This standardized the "Internal and fixed repertoire of
Instructions" that compose the required roadmap
describing the hardware/software interface. [Ref.
5:Ch. 3] Although an ISA is currently established as
MIL-STD-1750A 4 , the tremendous pane at which computer
technology is moving forward has rendered this
architecture obsolete. [Ref. 26:pp. 36-37]

DoD attempts at regulating the computer development

environment through directives, regulations, and standardiza-

tion have successfully surmounted, or at least curtailed, many

of the problems described in Section 2. Often the proposed

solutions for a particular problem produce "bleed-over" into

other problem areas, directly or indirectly complimenting

4The currently established MIL-STD-1705A, 16-bit
architecture, is generally utilized in airborne applications
and is probably the most widely used system. [Ref. 6:Ch. 3]
However, other standard-ized 8-bit and 16-bit architectures do
exist within certain communications applications. [Ref. 24]
[Ref. 25]

18

other efforts to address problems in any given area. For

example, the standardization and implementation of MIL-STD-

1705A architecture fostered the development of the Ada HOL,

which in turn has enabled the DoD to more effectively

structure the software development environment. Obviously, as

each problem exerts some influence on the other problems

individually and collectively, so too do the proposed and

potential solutions.

This iterative process of problem evaluation, solution

application, problem evaluation, is slow, ponderously expen-

sive, and yields only marginal results. Recognizing the need

to optimize efforts to solve mission critical computer

resources problems, the DoD and its many supporting and allied

agencies have attempted to utilize all the tools available to

maximize computer resource potential. One of the most viable

so0 itions, widely ranging in terms of impact and potentially

lucrative in terms of results, is application of software

reuse technologies and methodclogies. The potential feasi-

bility of this has been borne out by studies showing as much

as 40 to 60 percent of the software written for one system is

virtually identical to previously written code for a similar

system [Ref. 2:p. 20].

D. SOFTWARE REUSE: TECHNOLOGIES AND METHODS

DoD has settled on the definition of software reuse as

being any new application of an existing component to include

requirements, designs and specifications, and final source

19

code, as well as corresponding test plans, procedures,

results, and supporting documentation, generated during any

stage of a system's development. [Ref. 27] This definition

opens the scope of software reuse to much wider application

than the DoD definition of software (Section A) would suggest.

This definition facilitates implementation of reuse not only

from the technical aspect, but the all too long ignored non-

technical aspect.

While the concept of software reuse has been around since

the very first digital computers, reusability did not become

a major topic within the computer industry until 1983 [Ref.

28:p. 372], even though the DoD had initiated efforts through

the JLC to implement reusability as early as 1981 [Ref. 15:Tab

E]. Although 1983 marked the beginning of real efforts, from

a technological perspective, to develop the mechanics of

software reuse, only in the last three to four years has real

interest been shown in examining and developing the non-

technical side of software reuse.

To understand the non-technical aspects of software, it is

first necessary to have at least a rudimentary knowledge of

the technical side of software reuse. The first step in

development of new software from existing software is domain

analysis. This is a process wherein preliminary requirements

for software parts are identified to fill common needs within

the specified domain. The process develops a preliminary

domain model and a classification scheme. Then, through the

20

collection, organization, and analysis of the data, the model

is refined to identify common objects, structures, and

functions as candidates for reusable parts. [Ref. 29:p. 1]

The domain analysis is independent of the type or application

of reuse. [Ref. 16:p. 5]

The second step requires a thorough cost analysis to

ensure there is a benefit to be gained through reuse. A

relatively simple formula has been developed by the JIAWG

based on the "first-cut" domain analysis and estimated

potential for reuse across the system domain. The formula and

process [Ref. 29:pp. 5-11] are as follows:

(1) Determine overall estimation of potential software
parts reusability. Base the estimation on high,
medium, and low ratings of software parts and areas,
with high being greater than 50 percent and low being
less than 30 percent reuse of products.

(2) Assumptions:

(a) Software parts (e.g., all documentation, design
representations) are reused.

(b) There will be some cost associated with
developing reusable software to current project
standards.

(c) The more times a software part is reused, the
lower the cost of that part.

(3) Let:

B = relative cost of locating and integrating reusable
software parts (0 < B < 1).

R = proportion of reused software parts (proportion of
iew software parts = 1 - R).

E = cost to develop reusable software parts relative
to non-reusable parts [includes development of
library and standards (E > 1).

21

C = relative cost of developing the total project
software parts (break even point: C = !).

N estimated number of times code must be reused to

break even [N = E / (1 - B)].

(4) Then:

C = (1 - R) * 1 + R * (B + E/N) or

C = (B + E/N-l) * R + 1

As stated earlier, this is a rather simplistic approach.

However, the point is made graphically (based on a "best case

estimate" in which "software parts up to and including code

are reused" [Ref. 29:p. 11]) in Figures 2-2 and 2-3. Figure

2-2 demonstrates the percentage of cost savings for different

values of B. The lower the value of B, the more that is

saved. Figure 2-3 demonstrates potential cost savings based

on various values of reusable software parts. In this graph,

the relative cost of developing reusable software parts is

1.25 and the relative cost to reuse it is 1.0. [Ref. 29:pp.

9-11] These graphs demonstrate the potential for reuse.

However, while on the surface this would appear to be a simple

matter, the potential technical difficulties of utilizing

still immature techniques for reuse can quickly overwhelm any

cost advantages. Obviously, thorough domain analysis becomes

even more crucial.

Should both steps prove advantageous, however, there are

two different approaches to successful implementation of

software reuse. The two approaches are based on either "the

22

COST IMPACT OF REUSING SOFTWARE

80

C 70
0
S 60
T _,

50 4- B-.2
S

A 40 -0- B-.4

30 4 U- B=.6
1 30i

G
S 20-

% 10-•

0 ;i: - IE, ;

0 20 40 60 80 100

% OF SOFTWARE REUSED

Figure 2-2

COST IMPACT VS. USE
E=1.25, B=.1

40 --

0 30

T 20

S 10 _._R-.

"-0 R-.4
I 0 .- R-,.6

N • , 2 3 45

G -10t

20

-30

NUMIBER OF REUSES

Figure 2-3

23

origin and packaging of the component, or the granularity of

components that are reused." [Ref. 16:p. 5].

1. Origin and packaging of components refers to the

system commonly detailed as the software library or repository

system. The library system can be founded on a variety of

precepts, from libraries containing only components within

certain domains (generally indicating intense domain analysis)

to libraries stocked with individual coded lines of software

to libraries consisting of combinations of reusable data,

architectures, designs, software modules or entire programs.

[Ref. 28:pp. 372-376] The retrieval system works much like

any other resource library, with indices and cross references

based on such things as keywords, domain types, architectures,

etc. The repositories, on the other hand, do not generally

classify and catalog software parts. They generally "have no

order or commonality and usually no controls are exercised."

[Ref. 29:p. 6]

2. Granularity of thcý components, such as code reuse,

specification reuse, generc cion of software, and reuse based

on generic architectures, is the other way to define reuse.

This involves taking actual code, specifications, architec-

ture, etc., from one application and using it "as is" or

modified for use in another application, regardless of system

design. [Ref. 16:p. 6]

The choice of approach to reuse then depends on such

variables as the domain, its boundaries and level of

24

technological sophistication, expertise in the field and

mission of the system. [Ref. 16:p. 6]

E. SOFTWARE REUSE: CURRENT APPLICATIONS

There are currently several on-going software reuse

efforts, both within the Federal Government and by industrial

programs supporting the Federal Government. Because of

software reuse's need to access preexisting software parts,

efforts limited to a particular military Service, university

or industry software engineering community tend to limit

potential. These current programs encompass the efforts of

the DoD, National Aeronautic Space Administration (NASA),

several universities, and a number of software engineering

contractors. Some of the more significant software programs

involving reuse follow:

1. Software Technology for Adaptable, Reliable Systems

(STARS) Program. STARS is a major software enhancement

program directed by DARPA. The program, initiated in the

early 1980's, with the mandate to build on the achievements of

the Ada program, is aimed at improving the software

development and support environment. [Ref. 30:p. 10] It was

designed to cover both technical and management aspects during

all phases of the software life cycle, and is part of a joint

effort with the very high speed integrated circuit (VHSIC)

program to improve management practices, software acquisition

strategies, technologies, and personnel skill levels. [Ref.

31] The STARS program is "trying to increase software

25

productivity, reliability, and quality by integrating support

for software processes and reuse concepts." [Ref. 16:p. 5]

Currently, STARS is sponsoring two programs focused

specifically on reuse:

(a) ASSET. Asset Source for Software Engineering Tech-
niques. This program is focused on developing and
exploiting technologies to permit effective interoper-
ability between reuse libraries. [Ref. 16:p. 5]

(b) CARDS. Central Archive for Reusable Defense Software.
The CARDS program is tasked with "creating a knowledge
blueprint" specifying "how to build domain-specific
reuse libraries." [Ref. 16:p. 5]

2. There are several software library programs which are

classified as "origin of component: programs:

(a) RAPID. Reusable Ada Products for Information System
Development. This is an Army program with objectives
to promote "reuse" of Ada software components and
reduce systems development and maintenance costs. It
utilizes an automated system for identification,
analysis, storage, and retrieval of Ada reusable
software components, including source code, require-
ments, and design criteria. [Ref. 32:pp. 31-32]

(b) CAMP. Common Ada Missile Packages. The CAMP program
is sponsored by the U.S. Air Force Armament Laboratory
and is operated by McDonnell Douglas Missile Systems
Company. It serves the military, NASA, and civilian
contractors developing missile systems software. This
reuse program consists of taxonomy classified software
packages aimed at applications in a real-time domain.
[Ref. 33]

(c) APATDS. Advanced Field Artillery Tactical Data System.
The AFATDS program provides a library system within the
Army Tactical Command and Control System (ATCCS). This
library is designed to provide reusable Ada software
components for fire support applications and to have
interface commonality with the other battlefield
functional areas (BFAs) 5 within ATCCS.

5The five Battlefield Functional Areas are Maneuver
Control, Fire Support, Air Defense, Intelligence and
Electronic Warfare, and Combat Service Support.

26

(d) Eli. Eli is a NASA sponsored library facility. It is
a "knowledge-based reusable software synthesis system"
designed to classify, store, and retrieve software as
well as create an environment that "emphasizes,
encourages, and supports reuse." [Ref. 34:p. 17] It
is intended to be part of a system incorporating the
software development tool CASE (Computer-Aided Software
Engineering system) and the Architecture Design and
Assessment System (ADAS) with the goal of automated
system development. [Ref. 35:p. 65]

(e) AdaNet. This is a project under the direction of the
NASA Johnson Space Center. The AdaNet objective is to
develop an electronic distribution network for software
engineering information, parts, and code. The program
serves the U.S. Government and private industry working
on software development in manufacturing and adminis-
trative areas. [Ref. 36]

3. There are far fewer programs which utilize the

"granularity of components" approach to software reuse.

However, one of the largest and most complex projects is the

Army's ATCCS project (see D.2(c) above). The Army Tactical

Command and Control System seeks to tie together command and

control systems being developed by the five BFAs. Being

developed from commercial non-developmental (NDI) computer

systems and commercial and Governmental off-the-shelf software

(COTS and GOTS), ATCCS employs specification reuse at the "A",

"B", and "C-5" specification level. Additionally, the program

utilizes a generic architecture to provide high-level design

for related applications within the five BFAs, and provides

for planned and potential future technology insertion. [Ref.

37]

27

P. SUMMARY

Obviously, a great deal of time and effort are being spent

on reuse application. The process is extremely complex,

blurring the boundaries between the technical and managerial

aspects of program development. It requires the software

developer to consider the managerial aspects of cost and

development time while the program manager must consider reuse

methodologies and available resource pools. It requires long

term investment and provides dubious returns, especially in

the short run. However, it appears to be one of the best

answers to the software program issues of increasing demand

and productivity deficit, short of halting technological

advance. This chapter addressed software definition,

problems, solutions and reuse technologies. The next chapter

will focus on program management software development methods

and the barriers to implementing a software reuse program.

28

III. SOFTWARE REUSE

A. TEE PM AND SOFTWARE DEVELOPMENT

Regardless of the type of software needed for a system,

the eventual product can be arrived at only after the

development process has run its course. The program manager

will determine the direction and ultimate end of that course.

It is within the venue of the program manager to influence

nearly every aspect of software development.

The PM's level of technological sophistication, comprehen-

sion of software, software architecture, and software

engineering concepts, and overall familiarity with the soft-

ware development process, will in large part, determine the

shape of the final product. The complexity and sophistication

of the final software product, whether embedded or not, will

be determined by the degree and depth of involvement displayed

by the PM.

This concept is very simple. The greater the PM's

knowledge of cost estimation, system requirements, software

architecture, design, engineering, and test and evaluation,

the more he is able to influence the software development

process. The less the PM knows, the more likely he will rely

on subordinates or outside contractors to make critical

decisions and influence development. Therefore, the final

product will be the result of personal bias and preferences of

29

either the PM or knowledgeable subordinates or contractors

tasked with software development or management. This can be

reflected in something as simple as the choice of an off-the-

shelf product such as SCO UNIX6 to be used as an operating

system with the Army's Tactical Command and Control System or

as complex as the embedded systems found in cruise missiles

utilizing satellite global positioning system navigation

programming. It is easy to understand that a developmental

program will be more susceptible to, and indeed be more

reflective of, PM influence than a COTS program.

B. THE SOFTWARE DEVELOPMENT PROCESS

To understand the problems facing the Program Manager in

developing software, let alone attempting to incorporate

software reuse into the acquisition process, it is critical to

understand the product development cycled or process. Only

when this process is thoroughly understood can attempts at

schedule reduction and cost saving through reuse be attempted.

The development cycle or process for software is similar

to that used for hardware with only a few exceptions. One

difference is the idea that software development is only the

first part of the software life cycle, whereas the hardware

life cycle is generally acknowledged to begin after the

6SCO UNIX is typical of a commercial off-the-shelf host
operating system for standard applications programs. SCO is
the brand name and stands for Santa Cruz Operations while UNIX
is the type of system, much the same as MS (Microsoft Systems)
DOS.

30

development process is completed. The most obvious difference

however, is the end product. Hardware development results in

the production or completion of some physical product which

performs a visible. or measurable function. There is a

definitive end to the process, a tangible finality to the

development effort. For hardware, the end of the development

process marks the beginnir4 of the production process.

Software on the other hand is more abstract in its end result.

There is no physical product, and performance can be judged

only after extensive testing. Production is merely a matter

of copying the final product to other disks for use in other

machines, or embedding the software onto silicon chips

integrated into the system. And because there is no physical

product, it can be difficult to determine a definitive

completion point. This often leads to distortion of the

programming as the project attempts to reach completion. 7 The

urge to "add"capabilities and enhancements after the develop-

ment phase has been initiated, combined with the complexity of

today's programs and difficulty in determining the end point

TDeveloping computer software is much like taking a trip
from point A to point B by following a road map. There are
several routes that can be taken -- the direct route (straight
line) and any number of more circuitous routes. Even after
the journey starts, it is possible to veer off the most direct
route (for any number of reasons) and add miles to the trip.
The same concept applies to software. Although there is not
much in the way of a road map to follow, there are infinite
detours and "scenic routes" in the programming which provide
no added value to the product and may even complicate or delay
program completion.

31

requires the software developer and program manager to

exercise close-hold management over the process.

Whether the final product is embedded application software

(generally the ultimate goal of the software acquisition

activity), commercial off-the-shelf software bindings, or

development support, maintenance, and diagnostic software, the

program manager follows one of three development process

models. The conventional or "waterfall" software development

model is shown in Figu-e 3-1, and evolutionary offshoot is

presented in Figure 3-2, and finally the prototyping approach

is depicted in Figure 3-3.

The conventional software development model, commonly

referred to as the "waterfall" software development process

because of the way it is graphically presented, is the

baseline model. It is the system most often used to manage

DoD software development. To understand the evolutionary and

prototype development processes it is critical to understand

the waterfall method.

The steps in this standard software development process

are as follows: System Definition, Software Requirements

Definition, Preliminary Design, Detailed Design, Code and Unit

Testing, Integration Test, System Test, and Maintenance. [Ref.

38:pp. 19-20]

32

a!

wil

I ' I,

" °~fig

Figure 3-1. Conventional or "Waterfall" Boftware
Development Process

33

SET OBJECTIVES

- PERFORMANCE

"* TECHNICAL

"* QUALITY
t •. FEEDBACK

SELECT SYSTEM
ARCHITECTURE

PREPARE 1
EVOLUTIONARY

DEVELOPMENT PLAN

FIFP-AT UINTIL

SCO M PLETE

"ENGINEER" AN
INCREMENT

CODE AND TEST
THE INCREMENT

DELIVER THE
INCREMENT FOR

USER
EVALU)ATION.I

-Ir

ANALYZE
RESULTS

Figure 3-2. Evolutionary Softvare Development Process

34

S GATHER -

REQUIREMENTS •

_ j BUILDo

J ~REFINE "

• -.- REQUIREMENTSI

AND TEST
FINAL PRODUCT

Figure 3-3. Prototyptng Software Development Process

35

I. Systex Definition

The first step actually happens prior to the start of

the development effort. It starts with the definition of

the system architecture. This is the allocation of system

requirements to either hardware or software components. Once

the decision is made as to which functions will be executed by

hardware and which will be executed by software, a parallel

effort of hardware and software definition, design, and

implementation is initiated. Although there are now two

separate development paths, the two must remain linked

together through cooperative effort to ensure successful

system integration is the final product. [Ref. 38:p. 20]

2. Softvare Requirements Definition

This is the most important step in the entire

development process. Insufficient requirements identification

and definition create development errors which propagate

through the development process, to end in erroneous hardware

designs and software products which can be extremely expensive

and time consuming to correct (if they can be corrected at

all). Therefore, this step which uses the System Specifica-

tion as a guide to establish the requirements for each

computer software configuration item, including software

inputs and outputs, interfaces, and controls, is crucial in

the development process.

As mentioned earlier, testing, based on the require-

ments, is the method used to determine if the product has

36

reached completion and if it satisfies the system needs. The

testing criteria are based on the requirements definitions.

Consequently, it is possible to poorly define, incorrectly

develop, successfully test, and ultimately produce a product

that does not meet system specification.

It is often necessary to develop testing tools,

modules, and interfaces into individual modules concurrently

with the program software in order to be able to test the

final product. These testing tools add even greater potential

for error and unsuitable end product. Again, the importance

of correctly defining the requirements comes into focus.

3. Preliminary Design

This activity determines the overall software

structure. The software is partitioned into modules based on

the requirements identified in the software requirements

definition phase. The function (or functions) of each module

is then defined, as-well-as the relationships between modules.

The software executive functions which contribute the timing

and priority rules for the software structure are also defined

at this stage. To ensure the software requirements meet

hardware constraints, the timing and memory budget for the

software tasks and modules are also established during this

phase.

Currently, there are two types of software design

methods -- functional development and design-oriented

development. Both engage in the decomposition of the system.

37

One is based on the concept that each module represents a

major step in the overall process. The other is based upon

the concept that the behavior of an object, such as a disk

driver or video display, is characterized by the operations

involving or performed by or on that object, and the functions

it requires of other objects (such as the demands made of the

SCSI driver by an external peripheral). [Ref. 38:p. 22]

Again, as in many software engineering operations and

procedures, both these methods are hierarchical. They exist

as building blocks, with the smaller blocks of the lowest

level forming the larger blocks of the next higher level and

so on. Ultimately, the top-level modules can accomplish their

application or execution tasks with the culmination of all the

subtasks.

In its most effective form, the average software

module contains about 100 lines of source code and seldom

exceeds 200 lines. Each of the blocks or modules in the

hierarchical structure should generally contain more than two

but less than seven smaller blocks or submodules to maintain

an effective span-of-control over the function.

4. Detailed Design

Having broken down the overall program into manageable

modules in the previous phase, this step proceeds to detail

the design of each software unit module. The detail is

expressed to such a point that the coding sequence can be done

by someone other than the software designer. This requires

38

that the detailing include the unit's function, inputs,

outputs, and memory and timing constraints, as-well-as the

logical, static, and dynamic relationships between modules.

It is critical, therefore, that the completed detailed design

include descriptions of all data to be processed and all

processes to be executed. Finally, this step generates the

module and system integration test specifications and

procedures.

5. Code and Unit Testing

In this step, the detailed software design is

translated into the machine code of the target computer and,

when complete, tested to eliminate errors.

The coding process involves writing source code for

each software component or module in a Government approved

higher-order languages such as Ada. A compiler is then used

to translate the source code into object code.

As with the previous steps of the software development

model, the relative ease of completion and degree of success

of the coding phase depends directly on the software require-

ments and documentation produced in the earlier steps.

However, an even more crucial factor can affect the outcome of

the coding sequence at this point -- the human factor.

Because each unit or module of higher-order code is written by

a human programmer, the greatest potential for errors in the

coding sequence comes from that programmer.

39

The unit testing of the software generally detects

most of these coding errors, which are then corrected by the

programmer. Errors that go undetected during this phase will

usually turn up during the next step, software module

integration testing.

6. Integration Toot

This step entails combining the small, manageable,

encoded modules into larger modules and testing the

integration to ensure compliance with system requirements.

Obviously the module integration must usually be based on the

functional capabilities demonstrated by groups of specific

units. The integration is done incrementally, with coded

units being added only after each assembled sub-module is

successfully tested.

Because the integration testing involves several coded

units, it can be extremely difficult to locate and isolate

faults or errors. Fault isolation and correction can be a

tedious, expensive, and time consuming business. The

importance of a well designed software test plan and test

description is clearly evident.

7. System Test

This is the final step in the actual development

process. This step demonstrates that the hardware works in

conjunction with the software to accomplish all system

functions. Successful completion of this step will result in

a finalized product ready for production.

40

S. Maintenance

The Maintenance portion of the developmental process

carries the software through the rest of its life cycle. If

properly executed, the previous steps result in a product that

is readily maintainable and thoroughly documented. It remains

only for the maintenance process to correct any residual

problems in the software, adapt the software to hardware or

operational environment changes, and enhance the software to

enhance performance or incorporate new functions. [Ref. 38:p.

25]

Although, this sounds relatively simple, the main-

tenance phase of the life cycle is actually a process in and

of itself. Software maintenance is the most costly step in

the overall process, as the life of the product can extend for

years.

It is possible for errors in the software to present

themselves long after the software has been released for use.

These problems can result form subtle changes or differences

in the host hardware, expansion of the intended application

environment, or interaction with other software. However, a

large number of these errors can be attributed to poorly

designed tests developed in parallel with the software.

Poorly designed and developed unit or module tests as-well-as

integration tests will plague software throughout its usable

life. The error correction process, as described previously,

41

is a fairly straight forward (albeit difficult) matter of

fault isolation and program correction.

The process of inserting changes in the programming to

accommodate a changing operational environment or minor

hardware changes, however, is a small scale repetition of the

software development process. The new requirements are

identified and documented. The change(s) to meet the new

requirements must be designed within the parameters of the

existing software design. The design is then coded, debugged,

and tested as in previous steps. It is critical, given the

influences of changing requirements and the nature of

inserting new code intc the existing program, that exacting

and deliberative testing be conducted to ensure the new code

does not adversely affect or impact the already existing code.

The only deviation from the original development model is the

addition of an end review at the completion of the change

process to ensure the new requirements are met and the

unchanged functions still operate correctly.

The other two methods mentioned previously are used in

cases where the waterfall method may not apply because of

difficulty in defining the software requirements fully at the

beginning of the process; significant risk created by the

design approach to satisfy requirements; or the user

requirement for early initial capability (utilization of

software). (Ref. 38:p. 15)

42

Although the evolutionary development process can be

applied to any development effort, it is best applied to very

large software development projects or when intermediate

software products are necessary or required. The evolutionary

model reduces large programming efforts into manageable size,

then breaks the system requirements into phases and applies

the waterfall life cycle to each phase. This method allows

the positive demonstration of evidence that the final product

will work effectively.

The prototyping approach is designed to bypass the

normal software documentation in favor of speed of develop-

ment. Instead, a prototype program is developed to

demonstrate proof of concept. Once the concept is

demonstrated, the prototype program is discarded and the

standard waterfall development process, including the

production of documentation, is followed to produce the final

software product. Because the prototype software program has

no documentation, it is virtually unmaintainable, and

therefore of little use except to prove the required concept.

The development process, as detailed above, is ideally

suited to implement software reuse at the program or project

level. The actual reuse implementation process is much like

the software life cycle maintenance process. However, this is

not to imply that the reuse process can be integrated into the

process just anywhere.

43

Recalling that the definition of reuse includes any

new application of existing components (i.e., requirements,

designs, specifications, source code, and test plans,

procedures, results and documentation) the opportunity for

utilization software reuse methods is quite obvious.

C. OPPORTUNITIES FOR REUSE

The first step in applying reuse to any new system is to

examine the operational domain of the system under scrutiny.

In essence, if the system to be upgraded or developed is a

missile, then other missile systems should be considered as

candidates for potential reuse contributions. Other areas

which should be targeted for review for reuse application

should be systems which incorporate a particular character-

istic or functional capability identified as being

conceptually necessary or required in the concept exploration

phase of program development.

During the System Definition phase, a close examination

should be made of existing architectures in similar systems.

Reuse requires that these architectures be examined for

advantages and opportunities to incorporate both hardware and

software technology into the new system. Although fielded

systems generally contain less than state-of-the-art or

leading-edge technologies, reuse of existing architectural

concepts preclude large expenditures on concept exploration --

essentially eliminating the re-invention of the wheel. Even

something as seemingly minor as the approach used to develop

44

the architecture in an existing system can be utilized to save

time and money in system development. Any reuse of archi-

tecture will necessitate further investigation of the existing

system for reuse of other components.

Reuse of existing systems specifications and associated

documentation can provide baseline requirements for new

systems as-well-as systems undergoing upgrade. If nothing

else, a comprehensive review of requirements for currently

fielded similar systems should highlight shortcomings in

requirements identification and definition. Test procedures,

standards, and results of similar systems should be examined,

again with the idea of baselining. As mentioned earlier,

testing is critical and can lead to devastating results in the

end product when incremental testing shows the system

development to be on target, but the final product falls short

of overall performance specifications. Only after a project

is complete and undergoing operational testing does it become

apparent that the system is inadequate, usually requiring more

time and money to fix the problems, if they can be fixed at

all. Reuse can potentially save considerable time and money

if applied at this stage of the software development process.

Even if actual requirements and specifications from other

systems are not reused, the contribution of examination and

comparison will pay valuable dividends even if only

demonstrating what not to do in software development.

45

The next step in the software development process,

preliminary design, is the first phase in which actual coded

modules can be examined for potential reuse. Applying reuse

at this phase requires examination of those systems identified

in the previous phases as having similar requirements,

specifications, and performance characteristics. Careful

scrutiny of selected target systems while simultaneously

establishing the preliminary design should provide opportunity

for the developer to compare and contrast actual modular

breakdown with proposed modules. Because reuse in this phase

entails identification and comparison of functions or

hierarchical modules which can contain hundreds of lines of

code, it is possible that actual code as-well-as module

concepts or functions could be utilized in the developing

system.

Reusing actual code will substantially reduce time spent

on detailed design. It may be possible to incorporate

directly (or after slight modification), any reusable modules

identified during the last step. Direct injection of reusable

modules will eliminate time spent on detailed design and

during the coding phase. Additionally, this will also have

positive impact on related testing, providing early informa-

tion which could potentially impact other modules and

associated testing.

If direct reuse of modules or hierarchical functions

proves impractical, reuse can still be helpful in the

46

decomposition of the proposed system. Although not absolutely

certain, the probability is high that new systems, unless

incorporating radically new technology, will have some

commonality of function or design with existing fielded

systems, thus offering potential for reuse of decomposed

forms.

During the coding and testing phase, the traditional

concept of software reuse is applicable. That is, the

traditional concept of line-by-line review of coded software,

classified by standard domain analysis. This approach would

be used for those modules which have not been the recipients

of imported reusable modules identified in previous phases.

Although it may sounder easier to commit these detailed

modules to standard encoding procedures, the developer still

runes the risk of generating errors in the code. And, as

mentioned earlier, testing must be considered, developed, and

tested. Testing of the new code can be time consuming. And

while a line by line search (by domain) can be time consuming,

it may still be quicker and cheaper than developing the

individual coded lines. Reuse at this point also offers the

potential of utilizing previously debugged and tested code,

thus saving time. As sufficient code becomes catalogued, it

may someday be possible to draw nearly 75 percent of new

programs from reuse libraries, either as functional modules or

as individual lines of code, with the remaining 25 percent

47

consisting of the requisite software bindings and new code to

utilize technological advancements.

Although integration and system testing cannot directly

benefit from reuse, the two areas will benefit indirectly.

Because reuse can significantly reduce design and development

times and thus the time spent on the associated testing and

debugging cycle, the program should have more time in the

overall schedule for integration and system testing.

Additionally, the use of previously developed, and

successfully tested and deployed software systems components

can substantially reduce the integration debugging process

time.

The maintenance phase of reuse candidate software programs

should be referred to throughout the development process of

new programs. Each step of the candidate programs for reuse

should be analyzed for potential inclusion in the developing

software program and then cross referenced with the

maintenance documentation to determine faults or problems in

the original programming. Any anomalies and errors detected

and corrected in the original software and its test plan can

then be applied or implemented into the new development. If

correctly documented, the maintenance phase of programs

targeted for reuse provides corrective guidance useful in

cutting error detection time found in the original

programming, and prevents repetition of errors found in reused

software components.

48

Clearly, software reuse is applicable throughout the

development process. It can be both cost and time effective,

but there are limitations that should be readily apparent.

Only successful, well-documented programs should be candidates

for reuse. Programs which suffered from habitual teething

problems during development should not be used, even if the

program has been fielded. While a fielded program can be

judged to be at least marginally successful, software which

suffered through slow and error prone development generally

suffers from poor planning, design, and execution, thus

providing a poor model for new program development. As with

any program development, a critical analysis should be

performed of the risk involved with reuse candidate programs.

Obviously, high risk programs based on dubious software

programs should only be referred to for the lessons they can

provide in error analysis and detection.

D. REUSE INHIBITORS

Although the software reuse procedure for new program

development is fairly straight forward, there are a number of

factors which have so far prevented employment of reuse on a

widespread basis. These inhibitors cover a wide range of

areas, but can be condensed into several primary categories.

These categories cover 1) standards, 2) training and

education, 3) management, 4) lack of centralized and cataloged

assets, and 5) legal and contractual issues [Ref. 39:pp. 1-8].

49

While the management category would seem to encompass the

reuse inhibitors from the program manager's perspective, in

actuality, all of the categories bear some impact on reuse

implementation. Each category contains inhibitors which

actually affect areas outside what could be considered the

bounds of that particular category. And, within each

category, the separate inhibitors also carry overlapping

influence.

The following is an analysis of the five primary

categories of software reuse inhibitors. It will focus on the

individual factors within each category and their impact on

specific areas, applications, or implementation procedures and

techniques of software reuse.

1. Standards

a. Lack of Standards

The lack of standards in such areas as hardware

and software architectures, and commonly utilized software

languages, perpetuated by hat the DoD requests and requires

and by what the industry and contractors provide, contributes

greatly to the difficulty of attempting to implement software

reuse. This is especially true of the military attempts at

software reuse. Because the military uses civilian

contractors to develop most software, the each contractor

generally has commercial interests which produce software in

a preferred commercially marketable language, there is a

tendency by the contractors to develop DoD programs in the

50

same language of choice. Once the program is developed, it is

then usually translated into the DoD preferred Ada computer

language. (The term "usually translated" is used because the

requirement for DoD to use Ada is fairly recent. A large

amount of equipment utilizing a variety of software languages

has been fielded prior to the implementation of this

requirement, therefore it is impractical to expect this code

to ever be compiled into Ada. A factor impacting the

compilation of Ada in programs currently under development is

the loose enforcement of the regulation. For any number of

reasons, the software development contractor may be exempted

from delivering a final software product in Ada.) However,

because this is a higher order language, each line of which

may be the transposition of several separate lines of another

code which in turn can be composed of several levels of

subcommands and routines, it does not decompose easily or

simply when attempting to examine the code for potential

reuse.

From the hardware perspective, the problem seems

somewhat simpler to understand. Although two different

programs may be written in the same language and may even have

very similar applications or domains, they may be designed to

operate in very different hardware architectures. The

different hardware systems and their basic approach to program

execution may effectively prohibit porting or reuse of other

program segments onto targeted hardware. Whereas some

51

architectures rely on hardware solutions to specific problems,

others rely on software solutions to address those same

problems, consequently, the hardware design will dictate the

software developer's approach to the program development.

b. Lack of standard or comaon development
methodologies

Although the DoD is governed by a host of regula-

tions designed to provide control and structure to the

development process, civilian software developers are under no

such regulation. Each software development company has its

own internal program and guidelines. Consequently, the

development process described earlier, which so readily lends

itself to a structured building block approach and provides

significant documentation so easily adaptable to reuse

analysis, is not followed by those outside the DoD. As a

result, adequate documentation for potential reuse may no be

available. The usual drivers of poor or insufficient

documentation is shoddy program design and incoherent

structuring of modules, both of which dissuade reuse

implementation. These programs often suffer a painful

development process and are generally plagued with problems

throughout their life cycle, making them unlikely candidates

for reuse.

c. Lack of Common Notation for Describing Designs
and Requirements

Although seemingly minor, this inhibitor to

software reuse complements both the Lack of Standards and the

52

Lack of Standard or Common Software Development Methodologies.

Just like spoken languages with their own unique alphabets,

software languages have their own specific and distinct

symbology and notation. A programmer experienced in one

language may have only a vague understanding of another,

rendering any attempt by the programmer to analyze a program

targeted for reuse an exercise in futility. Although most

symbology and notation has comparable representation in every

language, the cost of translation and transposition can be

prohibitively expensive for a project with such a dubious

potential payoff.

Another problem occurs when attempting to measure

the performance of programs against an accepted standard. The

lack of commonly accepted hardware performance standards and

software metrics prohibits the developer from effectively

comparing the performance of one program or program segment

against another. This is a very complex concept, as measuring

performance is more than just operating against the clock.

the measure of software performance must include allowances

for hardware induced performance, as-well-as broad parameters

which define singular computations and program executions.

the measure of hardware performance on the other hand must

take into account how each specific piece of software goes

about the execution of its tasks, and negate those effects to

accurately measure performance. The lack of standardized

metrics or a defined process to test either hardware or

53

software components prevents any real attempt at even

examining the broad base of existing software for potential

candidate reuse programs.

d. Laok of Methodology for Uxtending standards

There are literally hundreds of software

development and consulting firms in operation in the U.S.

today. Many of these firms are currently engaged in develop-

ment or consulting efforts with the DoD, and are often in

direct competition with each other. Consequently, there is

seldom a free exchange of information between firms on

progress in either software or hardware development.

Additionally, each of these firms measures its progress

against its own internally accepted standards, and while some

of these standards may be shared or subscribed to by many

firms, not all firms agree on all standards, nor are they

necessarily the latest standards. Precisely because most of

these finms are competitors, any advances in metrics, design,

hardware, or development processes, are often kept secret by

the developers t gain the most rom the advancement, either in

monetary or technological terms. It is seldom in the firm's

best interest to advance the general knowledge of its

competitors. Current efforts by the industry to track

progress and standards of performance consist of deriving

information from trade publications, advertising copy, and

reverse engineering efforts. consequently, there exists

within the industry no mechanism or body of regulators (other

54

than the DoD) to decide what are the appropriate standards for

the industry, how to ensure compliance with these standards,

how and when to upgrade these standards, and finally, how to

disseminate this information throughout the industry. As with

the lack of standards, the lack of a mechanism to promote and

disseminate those standards inhibits reuse by acting as a

force multiplier for an already crippled industry.

e. Lack of Standardised Definitions of Roused,
Common, Shared softvare

In an industry bereft of standards, it is not

surprising that a common definition for reused or shared

software cannot be agreed upon. This is a simple situation of

putting the cart before the horse. It would be impractical if

not impossible to define such things as reused, common, or

shared software without first addressing the industry wide

problem of general software standards. Obviously, software

reuse is inhibited by the lack of a standardized definition of

what constitutes reuse. (If you can't describe it, you can't

define it, and if you can't define it, you can't find it, and

finally, if you can't find it, you can't use it!)

Additionally, the lack of a regulatory body or dissemination

mechanism adds to the inherent reuse inhibitions.

f. Lack of Well-Defined Reuse Methodologies

The compliment to the lack of adequate and

standardized definitions for reuse or shared software is the

lack of any well-defined or standardized reuse methodologies.

While the industry cannot settle on standard software

55

development models, it would be totally unrealistic to believe

the industry can settle on any standardized models for reuse

implementation. Again, any attempt to implement an undefined

concept across an entire industry can only meet with failure.

2. Training and Education

a. Reuse Inhibits Innovation and Reduces Competitive
Advantage

Within the industry, software reuse is viewed as

a rehashing of old ideas and technology. In an industry where

there are literally scores of software producers, innovation

is a market discriminator. A key strategy in marketing a

software product is to differentiate the program from its

competitors. This is usually done by focusing on some new and

innovative feature or gimmick. Consequently, reusing

previously released software eliminates this potential

marketing approach. An additional factor that the software

firm must consider is the actual software engineering

workforce. If the aforementioned workforce views software

reuse as a restraint on creativity or a hindrance to

innovation, the company may be hard pressed to maintain

experienced and talented software engineers. The perception

that a firm cannot engage in software reuse while keeping

talented, creative people on the payroll, and thus no produce

innovative, cutting-edge competitive software products is a

tremendous inhibitor to actual reuse application. This is

true of the software firm, whether operating in the commercial

market or the DoD contractor arena.

56

b. Lack of Readily Aooessible Information on Reuse

Although the concept of software reuse has been

around for years, there is a dearth of information readily

available on the subject. General industry attitude combined

with the lack of standards and methodology has left software

reuse in its infancy while the primary focus of the industry

promoted evolution of program engineering.

Software reuse information is skewed by rumors and

falsehoods about the subject. This is the result of the ill

informed or misinformed generally interjecting their bias into

the available information. It is important to remember that

programmers are often paid by the number of lines of code they

generate, and consequently find it in their best interest to

inhibit something like reuse which they might perceive as a

threat to their livelihood.

This overall lack of quality information on reuse

has stunted interest in the subject and the proliferation of

usable information. The same programmers who may see reuse as

a potential financial impingement are also the same

programmers that write industry magazines. It is entirely

possible that information about reuse could be stifled for

reasons of self interest. Without accurate and adequate

information or any mechanism to spread that information, it is

doubtful that reuse will ever be implemented on a wide spread

basis.

57

C. Limited Training for Reuse

For those interested in reuse, whether they are

managers or engineers, contractors or the Government, there is

little or no training available. As mentioned earlier, there

is a dearth of standards within the industry. Consequently,

very few companies or organizations are inclined to invest

money, time, and resources into training personnel to engage

in or manage reuse of software components. The lack of

training also impacts the amount of information available on

reuse. There is a dependency cycle in which information is

needed to inaugurate training, but training is needed to

develop information. Once the cycle begins, it will be self-

sustaining. However, getting the cycle started may be a

monumental task.

d. Lack of Knowledge and Training of Data Rights and
Licensing Procedures

Although this might be considered as a topic under

the Lack of Available Reuse Information category, it is really

more of a legal problem than an information problem. Proprie-

tary rights and data rights of published or contracted

software are by law the property of the developer (except

where contracted developers give up those rights as part of

the development project) and can be used only under license

rom that development firm. For any potential reuser, there

must be a license agreement, not just to use the software, but

possibly to decompose it, alter it, and finally combine it

58

with other code from similar sources. There are a number of

problems with this concept.

First, to submit a program or programs to reuse

will require substantial documentation of the software and

testing. The producer, in order to protect his interests in

this process will need to engage in management of the software

which, for an independent producer especially, can take

considerable time. Either the producer manages the program

himself or the firm establishes an internal mechanism to

manage this process. This would require manpower, facilities,

equipment, and cash. Obviously, this investment must be

weighed against the potential profit to be made through

licensing reusable software. An additional problem is

potential liability for software problems which may come from

a firm's reused software. In an era of intense litigation

over producer liability it could be catastrophic for the

developer if his software caused a major software crash for

another developer.

For the potential reuser, the problems are even

more complex. The potential reuser must either be ready to

spend great amounts of time and money to analyze potential

reuse candidates, or he must develop a mechanism to conduct

reuse business. Although this sounds relatively simple, the

establishment of a reuse management mechanism for the

potential reuser would be costly and have a tendency to grow.

The essential structure would need to include a manager

59

steeped in software engineering as-well-as contracting. A

bevy of software engineers familiar with internal projects

requiring reusable components would be required to research

and analyze each and every potential reuse candidate program.

The section would require both lawyers and rontracting

personnel to work out the details of agreements which would

allow ttie software engineers to examine other programs as-

well-as use favorable components. And finally, any effort of

this type will require a multitude of administrative people to

manage the records and documentation.

A final problem which may plague the potential

reuser is the fact that many software forms are here today and

gone tomorrow. Although the programs are copyrighted, the

company may no longer be in business. Any reuser is still

bound by law to license the software for reuse. This means

that the reuser must find an organization or person with

proprietary rights over the software. This can be a long and

tedious process and may not be worth the time and effort to

conduct a search versus just developing the software from

scratch.

Until the legal fundamentals are worked out and

guidelines established and firms are ready to make a concerted

effort to implement software reuse, t tis area will continue to

be a problem and will definitely impact reuse implementation.

60

e. Software Common Practice of Redenign/Redevelop

Versus Hardvare Incremental Development Practice

Within the automaticn industry, there are two

distinct practices with respect to hardware and software

development and improvement. Firms generally approach

hardware upgrades or revisions using the incremental

improvement technique. Their approach to software on the

other hand, is one of new program development instead of

measured improvement.

Essentially, firms utilize existing hardware

platforms and apply focused technological improvements to

specific areas of the platform, incrementally improving

performance. There are several reasons for this hardware

improvement approach. First, the pace of hardware improvement

moves only as fast as technological advancement. Although

revolutionary improvements do happen within the industry, most

of the effort is focused on improving existing technology.

Consequently, great technological strides or revolutionary

improvements are few and far between. Second, is the matter

of economics. All of the firms in the industry are in

business to make a profit, and each firm does this in a

variety of different ways. Firms make money on providing

upgrade components to existing equipment -- again, an effort

to capitalize on technological advancement. Another method

for gleaning a profit commonly utilized by the industry is to

offer a wide variety of models utilizing common components or

technology similar to practices found in the automobile

61

industry. Finally, and most controversial, is the practice of

utilizing planned technological obsolescence and controlled

technological insertion. This method calls for utilizing

combinations ot components which have a limited or planned

life-span with respect to leading-edge technology. This

planned obsolescence is coupled with carefully calculated

technological insertion. Essentially, a firm will time the

release of technological improvements as a marketing tool to

boost sales where current machines offered for sale have lost

their technological edge to the competition. This idea ties

in to the concept of maintaining a desired level of market

share. If a firm wished to maintain its current level of

market share, the firm may hold some improvements in reserve

to counter competitive efforts by the competition to increase

market share. And finally, incremental improvements are the

backbone of the lucrative upgrade market mentioned earlier.

Software development on the other hand is viewed

as a cottage industry within the automation field. Because

software development is generally less equipment and personnel

intensive, it is viewed as being easier than hardware develop-

ment. This view is predicated on the industry's lack of

standardization with respect to almost every area of software

development. Instead of teams of engineers working together

to develop improved hardware, the software environment is

populated by individuals, meticulously and painstakingly

developing and testing a program on the targeted machine. The

62

industry views software development more as an art form than

a science. Consequently, software developers are generally

subject to less management and control than hardware

developers. This lack of tight control eliminates any

incentive within the firm to utilize software reuse. After

all, creativity is viewed as an asset in the software field

and reuse is held to be in direct contradiction to that idea.

And much like artists, software developers reflect these

values and beliefs, consequently, left to their own devices,

few opt to review old programs for usable parts or pieces.

Finally, because there are considerably fewer resources

required or utilized in software development than hardware

development, it is viewed as being considerably easier than

hardware development.

It is necessary to make a clarification at this

point. Software is commonly released in versions, with each

version representing an improvement over previous versions.

These improvements are usually nothing more than refined or

debugged previous editions of current software. Therefore,

these new versions of the software are essentially not true

revisions or design changes of the programming. Eliminating

version revisions as true improvements, actual software

improvement comes in the form of new programs, offering new

capabilities, tools, and quicker program execution.

The two different approaches stem from the manner

of development for each of these areas. Hardware development

63

is expensive due to its nature. Development or improvement of

hardware products requires expensive laboratories, equipped

with state-of-the-art test, diagnostic, and measurement

equipment, capital intensive production facilities, expensive

distribution networks, and extensive training for maintenance

personnel. Hardware is the product of teams of tightly

managed engineers operating in a structured environment.

Improvements in hardware are incremental or marginally

evolutionary versus revolutionary. Firms have found it in

their best interest to tightly manage these assets to

appreciate the highest possible return on the dollar. Whereas

software improvements seem to reflect flashes of individual

brilliance, unencumbered by management or large quantities of

equipment. Management is less apt to indulge itself in an

area that defies standard organizational structure, management

techniques, and time lines. Until the industry institutes

software standards, individualism at the expense of reuse will

remain the norm.

3. Management

a. Lack of Program Office Incentive to Initiate Reuse

Without exception, software development within the

DoD has been focused at the individual program level as

opposed to a broad-based focus aimed at multiple reusable

applications. Because each Program Manager is tasked with the

development of his particular program and will be judged

accordingly, there is little interest on the part of the PM to

64

go beyond the program mandate. Even with programs that must

be tied together, such as the Army Tactical Command and

Control System (ATCCS), which requires the interface of the

separate software development programs of the five BFAs, there

has been no effort to exploit software reuse, structure

standardization, or interface bindings.

The PM's area of responsibility, which can include

both hardware and software development, really only

encompasses a small domain with respect to either of these

areas. Consequently, the PM has only a limited ability to

influence anything outside of his mandated area of responsi-

bility. Coupled with this limited ability to influence

outside areas, is the political danger to the PM of expanding

his control or influence into another PM's domain or program.

Although the Army presents itself as an apolitical

organization, which is true of the tactical and operational

portions of the force, it is not necessarily representative of

the acquisition and procurement areas. These areas are

structured along the lines of civilian organizations and are

involved in similar pursuits. The program development and

acquisition field is mostly the domain o the Army's civilian

workforce, and very much emulates the politics the civilian

industry it mirrors. Domains of influence and spans of

managerial control within the Acquisition Corps are often

jealously guarded, with interlopers being shunted, ostracized,

or victims of political paternalism.

65

b. Lack of Personal Reooqnition or Uconomio

incentive for Developer of Reused Components

Putting all the factors together, it is obvious

that there is no incentive for the individual developer to

either develop or utilize reusable software. The developer is

generally paid on a by-line production basis, consequently, to

produce reusable code or implement such code would be

tantamount to reducing or eliminating one's livelihood.

Additionally, software development management is

generally pulled "from the ranks," perpetuating the relaxed,

almost loose management atmosphere prevalent in most develop-

ment companies. Because of the relatively unregulated

development atmosphere, there is little guidance or direction

aimed at reuse employment or development.

As mentioned earlier, the lack of industry

standards and formal mechanisms to either disseminate

information or govern rights of reusable software serves again

to inhibit the individual software developer from either

utilizing or developing reusable code. Because code and

documentation are not readily available without extensive

legal negotiations and because there is no royalty mechanism

in place to reward the developer for his efforts, there is no

incentive to move in this direction, especially for the

individual.

66

c. Lack of Trade-Off Mechanism Between Requirements

and Reuse

A requirement is by definition, a need. Software

is written to satisfy the need. Any differentiation between

the requirement and the performance of the software does not

qualify as meeting the need. In order to implement reusable

software, the requirements must be reasonably flexible or

generic in nature. Unfortunately, however, software require-

ments are not usually flexible or generic. Consequently, it

is difficult to find the necessary middle ground to satisfy

the demands of both.

The problem stems from the development process.

The requirements for any project are drawn up early on and are

the result of mission need statements generated from the user

community. Because these needs are drawn up without regard to

software development or software reuse, no compromises or

trade-offs are established. Consequently, there is little

room for software reuse if the requirements are to be effec-

tively satisfied.

d. Lack of Reuse Cost Models or Metrics

As stated earlier, an industry wide lack of

standards in software development, architectures, and metrics

has effectively deterred the development of any reasonably

reliable cost models for software reuse. This is almost the

proverbial chicken and egg situation. In order to determine

the cost effectiveness of implementing software reuse, it is

necessary to evaluate existing software reuse cost models.

67

However, without effective and widespread utilization of

reuse, valid cost models cannot be developed. As with any new

technology, it often requires investment of a great deal of

time, money, and resources to begin the initial venture. Only

after relatively large and risky expenditures of capital does

a company normally begin to see positive returns on invest-

ment. The current state of the software reuse industry is

much the same way. The current measure of risk has so far

inhibited reuse and the associated models which could someday

prove its profitability.

e. Limited Vision or Leadership for Reuse

As stated earlier, management of software

development is very much an inside job, consequently, those

boosted to leadership or management positions are often

interested in maintaining the status quo versus implementation

of new cutting edge ideas. This is not necessarily because

those elevated to management are against new ideas, but more

because of the reputation established by the company before

the new leadership took over. Essentially, some companies are

known for certain software traits, designs, or architectures

which are accepted and expected within the industry. To break

with this established convention can be costly in terms of

lost customers.

However, the greatest inhibition comes from a

general lack of knowledge about reuse in general. For the

manager, the requisite questions of how to classify software,

68

where to find the necessary reusable software candidates, how

to navigate the legal obstacles to reuse, and how to motivate

the actual developers to implement reuse are insurmountable

simply because of the relative infancy of the field and the

lack of managerial experience or established guidelines in

this area. There is one other simple, yet looming reason for

the lack of reuse implementation by management. A great

number of those rising to managrerial positions in the software

development field do so by default. Most lack the drive and

aspirations found with managers in other areas of business.

Consequently, there is a marked reluctance to aggressively

pursue such controversial and dubious endeavors as software

reuse.

f. Lack of Knowledge and Training on Data Rights and
Licensing Procedures

Software, like nearly every other product on the

commercial market is surrounded and supported by a host of

laws designed to protect the producer's product, his ideas, or

development process from being copied without permission or

monetary compensation. Copyright laws similar to those

covering audio and video tapes and discs govern the software

industry. However, unlike audio and video tapes, software,

although relatively easy to copy or pirate, is of little use

without documentation, and of no use unless it can be

decomposed. Therefore the problem here is not piracy, but

licensing -- the authorized use of all or a portion of a piece

of software (to include documentation) by another company in

69

exchange for monetary compensation. This is a relatively new

field with respect to software, and lacks precedents for

establishment of guidelines or rules.

Because of the vagaries of software development

and business, questions and concerns addressing the potential

profitability of a program which contains reused software,

potential liability of the owner of reused code, and potential

licensing of software components which are composed of new

code as well as reused code pose special problems for software

development companies. Although many companies are faced with

similar problems which impact the decision making process,

very few face the situation wherein their product can have an

indeterminate effect when imported into another program. The

potential outcome of such a situation could be devastating if

for some reason the reuse software creates problems or systems

failure. The issue of who is responsible, the importer or the

original developer, is very much in question in such cases and

has yet to be determined in potential licensing agreements.

The issue of product liability in cases of

software failure is only one problem however. Just as

important, at least to those individuals who develop software

is the issue of by-line payments. Should the individual

developer be paid for the reuse of his product, and if so, how

much, and how should this issue be approached for a software

program which contains reused software and is itself a

candidate for software reuse?

70

This may be moot if the target software is altered

to facilitate reuse. It does however, raise another issue --

that of technical propriety. If a piece of reuse software is

altered to facilitate reuse, does the original developer

remain liable for problems? Who controls licensing of altered

reusable code?

Finally, when the Government engages a contractor

in software development, the Government generally requires the

proprietary rights with the software. This presents problems

when the software contains reused code. What are the legal

rights and obligations of the original developer of the code,

and what are the rights and obligations of the second

developer or reuser with respect to the different parts of the

code? Who is responsible for the performance of the code, and

who takes responsibility for failure?

These and other issues have yet to be addressed by

either the Government or the software industry. Until these

questions are answered however, potential legal obstacles will

continue to be major obstacles in implementing software reuse.

g. Contractors Not Paid for Productivity

It should be clear by now that the bulk of

inhibitors work in concert to prevent the widespread implemen-

tation of softwj reuse. But regardless of the wide range of

reasons for lack of implementation, the bottom line in most

cases is money. Today, contractors are not required by the

Government to utilize reuse. And because of all the reasons

71

stated above as-well-as the implications for the industry --

widespread implementation of reuse would substantially reduce

the number of competitors in the business -- there has not

been a rush to reusable software. Further, it would be

ludicrous to assume that any developer would either design a

program to be reusable or utilize reusable code without some

sort of incentive, either in terms of more follow-up contracts

or direct monetary compensation, while at the same time facing

possible elimination from the industry by the very thing under

development. An developer interested in perpetuating his

business realizes that reuse could be a serious threat to

continued operation. As pointed out earlier, software

developers view reuse with some skepticism, realizing that

widespread implementation could change the face of the

industry, eliminating some of the players and the way business

is done. For any concept with such a potentially catastrophic

impact, both the short and long term monetary rewards must be

enormous. The current system falls far short of offering this

type of reward.

h. Other Potential Reasons

Finally, there are a number of obvious inhibitors

that should be mentioned. These inhibitors need little or no

explanation, and are listed as follows:

(1) Budget and schedule pressure.

(2) Increased organizational interdependence due to reuse.

(3) Redesign versus redevelop mentality of program offices.

72

(4) Profit and greed on the part of the developer.

(5) Software is not viewed as an asset in program
development.

4. Lack of Centralised Catalog of Assets

a. Too Few Libraries

The current approach to utilizing software reuse

is to catalog lines of code and provide access to that code

through a system of libraries. These libraries would

categorize code by a multitude of characteristics and provide

the code and its relevant documentation through an automated

search and retrieval system. Currently however, there are

only a few woefully small libraries currently in existence.

Although the library concept is the most reason-

able approach to real world implementation of software reuse,

it also presents a number of unique problems. First, who is

the proprietor of the library system -- the Government,

commercial business concerns, or some non-profit organization?

Second, what categories are logical and reasonable for the

classification of the very broad spectrum of software? Next,

with such a prolific amount of software already in existence

and more being produced every day, how many of these facil-

ities will be enough to meet requirements? And finally, who

should pay for the initial capital investment necessary to

establish a series of libraries and their requisite automation

links? These issues will be some of the first and most

important to be addressed once the Government and industry

73

begin to accept and develop software reuse on an wide spread

basis.

b. No Zasy Way to Search For or Retrieve Components

Touched on earlier, reusable code will most likely

be made accessible through a series of libraries. Although

this should make the job of locating large quantities of

reusable software components easier, the task of finding the

right components within this large reservoir of software can

be monumental. A major inhibition to reuse is the time

required to locate potentially reusable software that conforms

to the needed template. Even with automated libraries, the

shear volume of potentially reusable code could literally take

weeks or months to comb. It can take twice that much time to

test.

Another problem is how to search for the necessary

code. There are millions of potential categories or software

classification, ranging from overall program classification to

subroutine and individual code segment classification. Kios

of these components fall within the domain of several of these

potential categories, making the task of assigning code to a

specific category even more difficult. Any programmer seeking

to utilize reusable code will need to have a detailed descrip-

tion of the type of code required. The process could be

equated to trying to find one specific piece of an unassembled

jigsaw puzzle. Until a coherent and easily utilized search

74

and retrieval system can be established and implemented,

software reuse cannot be a viable development tool.

c. No Defined Way to Test or Accept Components

Having examined the classification and storage

problems as-well-as the search and retrieval problems, the

next logical step is to examine testing and acceptance

criteria. Once a developer has waded through the system to

locate reuse candidate software, 't must be tested to ensure

the code fits the need or requirement. Currently however, the

only test available is to actually integrate the reusable code

into the program and test for functionality. The testing

process can be expensive and time consuming. Of great concern

to any developer is the quality of potentially reusable

software. As with any endeavor, there is a right way and a

wrong way to do things. The same is true for software.

Shoddy or unproven techniques used to develop software make

for an equally shoddy or unreliable product. Poor quality

software can make integration difficult or impossible. It can

also lead to difficultit-, when trying to layer or host

application software on top of an operating system utilizing

reused software, or vice-versa.

But of even greater concern are the proprietary

rights issues described earlier. Should the software prove

unusable, is the developer still obligated to pay user and

licensing fees? Further, does the library serve as the

licensing agent or should each interested party engage in

75

negotiation to arrive at some mutually agreeable arrangement?

And in reference to the quality issue, what is the developer's

recourse after discovering he has inadvertently reused a poor

quality piece of software? These and other questions must be

answered through the legal system, library system, and

evolving efforts to standardize the industry before they can

stifle software reuse in its infancy.

d. Configuration Manalement Across the Library
Netvork

Software products generally go through an upgrade/

update process that works to create newer and more refined

versions of a particular program. Often these changes or

upgrades are so prolific and frequent that five or more

versions of the software can be in use simultaneously. The

latest version is usually the most refined and error free of

all the configurations available. Keeping up with these

changes and associated documentation means replacing current

versions contained in the libraries with the updated versions.

This can be a costly and time consuming process, and leads to

more questions. Specifically, should upgraded versions of

software be provided to developers currently using earlier

versions of the software? Are amended licensing agreements

necessary? Clearly, as with the other categories of

inhibitors, a great deal of work will be necessary to overcome

both the obvious and subtle problems in instituting reuse on

an industry wide basis.

76

S. Legal and Contractual Issues

Most of the major legal and contractual issues

concerning the implementation of software reuse have been

mentioned above. They are complex issues with far ranging

implication. Addressing these problems through the legal

system will take years, and in some cases will result in

dubious outcomes. The complexity, cost, and extent of these

issues, possibly more than any others, will prevent the

software industry from accepting and adopting reuse. Few

companies today can stand the withering legal assault that

marks a product liability suit, nor can most companies accept

the staggering fines imposed for copyright infringement or

piracy of proprietary data. Neither do most companies believe

it is in their best interest (profitable) to be obligated to

maintain possibly legally mandated technological upgrades of

software in libraries, insure reusers receive updated or

upgraded software and appropriate documentation, or maintain

large staffs of legal personnel to look after the company's

best interest with respect to reuse. Therefore, most

companies have so far given reuse a wide berth. And, because

of the drawn out legal process and exorbitant expense of

retaining the requisite legal expertise to address these

issues, firms will maintain that distance for the foreseeable

future.

77

B. BU3mKAY

Obviously, the software development cycle is a complex

process, involving risk, time, money, equipment and personnel.

Yet even more complex is the reuse equation of software

development. The PM can have either a positive or negative

effect on software development, even given a lock-step

software development process. As nearly every step, the PM or

those working for him have the ability to develop code and

implement measures to aid or retard the ability of the

software to be reused.

For every advantage demonstrated by the implementation of

software reuse, there seems to be a myriad of reuse

inhibitors. These inhibitors all fall into five specific

categories -- Standards, Training and Education, Management,

Lack of a Centralized Asset Catalog, and Legal and Contractual

Issues. And while individually most of these obstacles,

whatever the category, are small, taken is a group they are

most daunting. Unfortunately, there is no way to separate

most of these inhibitors from each other. Most are directly

related to others, b~th within and across categories, often

instilling a sense of dread and hopelessness on would-be

reusers.

While this chapter has focused on the development process

and the associated roadblocks to implementing software reuse,

the primary driver or force involved in the development

process for the Government is the Program Manager. The human

78

factor can be the greatest asset in implementing reuse, or it

can be the greatest adversary against implementing reuse.

This is the built-in bias of every software development

program. It is that portion of the program that can be both

the easiest and the hardest to change.

79

IV. THI VIEW FROM THa TOP

I. INTRODUCTION

The documented inhibitors to software reuse described in

the last chapter clearly demonstrated the propensity of

management to fail in the decision making process as opposed

to succumbing to technical shortcomings. This is simply

because most of the technical inhibitors to reuse are actual,

identifiable problems which will have real answers or

solutions. Most of these problems are being addressed and are

in the process of being resolved.

The biggest obstacle to implementation of software reuse

seems to be breaching the nearly impenetrable wall of human

nature and resistance to change. 3pecifically, the beliefs,

techniques, and bias produced by years of involvement in

program development stand as staunch testimony to the human

aversion to trying new things. Once someone learns what works

with respect to any given area of application, human nature

resists the urge to exchange that "proven" approach for an

unproven or untested method. By the time a person reaches the

position of program or project manager, he has accumulated

years of experience in program development. Unfortunately,

the greatest lesson learned seems to be that the penalty for

failure can be an abbreviated career. Consequently, the

potential for inclusion of a relatively unproven process such

80

as software reuse into a software development project by the

PM would appear to be inversely proportional to his career

aspirations. In order to either confirm or discount this

idea, at least with respect to software reuse, numerous

interviews were conducted with program, project, and product

managers as-well-as their deputy PMs, and hardware and

software division or directorate chiefs.5 What follows is a

discussion of the personal views of those most involved and

concerned with software development within DoD.

B. PROGRAX/PROJZCT/PRODUCT MANAGER

More than any other individual, the PM has the ability to

have the greatest impact on the development of any project.

The PM is ultimately responsible for program development and

necessarily has control over the assets within his organiza-

tion which have direct influence on the final product. The

PMs interviewed were involved in the development of either

systems utilizing embedded software or separate software

systems. Most, but not all, were engineers, with electrical

engineering being by far the most predominate discipline. Two

of three PMs were senior U.S. Army field grade officers, with

the other third being senior civilian Government employees.

All were at least conversant in both hardware and software

systems technology. However, as might be expected, PMs

8Interviewees were afforded anonymity, hence no names,
ranks, or program/project/product titles are given. The data
presented here are by necessity a composite picture of the
results of over thirty interviews.

81

responsible for embedded systems were generally more

knowledgeable about hardware than software. The PKs with non-

technical backgrounds were less focused on the specifics of

either hardware or software development and were much more

concerned with budget and schedule problems. All of the P~s

interviewed took control of a program already in progress.

Finally, all of the programs examined had both schedule and

budget deviations from the program baselines.

Regardless of the type of software system being developed

-- embedded, operating, or applications -- there are some

common factors with respect to software that apply to both

types of programs and affect all PMs. Although all PMs

interviewed were aware of the concept of software reuse, most

had little in-depth knowledge of particulars of the subject.

Few could either define reuse as envisioned by DoD, or

describe the necessary application environment. Fewer still

believed that their particular program could benefit from

reuse. Most of the PMs were skeptical over the viability of

their program to even be considered for reuse, either as a

recipient of reused code or as a potential candidate for

reuse in other programs. All of the PMs cited some distrust

of other PMs' software programs with respect to application

within their own domain. (It is interesting to note that

82

while being members of the Council of Colonels 9 , many of those

interviewed had only cursory knowledge of the other programs'

particulars.) 10 Additionally, most voiced concerns about

responsibility for system failure when importing or exporting

code. No PM was willing to risk further complicating his

program with software reuse, citing potential problems such as

the time, money, and resources necessary to search for a

candidate code. Nearly all expressed concerns about time

necessary to integrate reusable code into the developing

program, and the potential for schedule slippage if the

testing demonstrated problems with the imported code.

All the PMs agreed that there were significant differences

between programs employing embedded systems software and those

utilizing operating and applications software programs. All

agreed that embedded systems were by far easier to control in

terms of software development, with most conceding that

control over hardware development augmented software

development. The PMs responsible for embedded systems were

able to control both hardware and software development to be

9The Council of Colonels is an advisory and steering
committee made up of military 06 (or civilian equivalent) PMs
within a PEO. They deconflict and coordinate potential high-
level problems between related programs within a PEO wh-.ch
cannot be settled without an executive decision.

10Once the initial interview was conducted and a baseline
of current knowledge established, current trends and advances
in reuse as-well-as current and anticipated efforts by the DoD
were described and explained to those interviewed. Additional
questions concerning the potential impact of reuse on programs
were asked once the current reuse efforts were explained.

83

mututaly supportive in the development process. Those PMe

workinq on embedded systems also saw greater potential for

reuse in their programs once the concept was explained.

Specifically, they believed that subsequent upgrades to their

particular system could readily utilize reuse, baselining from

the original code, provided the intended upgrade was

compatible with current hardware and software architectures.

But again, all hedged when asked if they would willingly

import code from external sources into their programs. No

single PM was willing to accept the risk of utilizing reuse in

their program development, even when potential sources of

reusable code, similar domain architectures, and proven

techniques were readily available.

PMs responsible for the development of operating or

application software were even less receptive to the idea of

software reuse, at least from the importation point of view.

without question, all of the PIs in this category controlled

programs much larger and more complex than those involved in

embedded systems. Not surprisingly, the viewpoint that each

had the most difficult and complex program was prevalent among

all the PIs responsible for this type of development. All of

the PIs in this category held the attitude that if their

program did not develop the software, it could not be trusted

to meet their requirements. Additionally, few of the PMs

recognized any similarity between their programs and potential

reuse candidate programs. Although most PIs had no problem

84

with exporting their software to other programs, none of the

PMs were willing to take responsibility or system failures

attributable to their exported software. All the PMs believed

the burden of responsibility for selecting proper reusable

program segments and efforts to integrate selected reusable

software components rested with the gaining program PM.

All of the queried P14s stated unequivocally that

initiating software reuse was essentially outside of the PM's

charter, and should be considered exclusively the domain of

the Program Executive Office. The consensus was nearly

unanimous that the resources did not exist at the PM level to

keep up with current trends and available reuse technology.

Additionally, the PMs pointed out that they essentially

operate in a vacuum, with only limited access to information

concerning software development in other programs. Instead,

they emphasized the PEO's responsibility for overseeing and

integrating the efforts of PMs.

C. DEPUTY PROGRAM/PROJECT/PRODUCT MKAAGERB

By far the least vocal and least cooperative of those

interviewed were deputy PMs. Most, harboring further career

aspirations, were reluctant to comment one way or another on

the potential for implementation of software reuse in their

particular programs. A few however, were responsive to

questioning. All of the DPMs interviewed were Government

Civil Service employees, and possessed technical backgrounds

about evenly split between electrical engineering and

85

software/hardware engineering. Of those who cooperated, most

were aware of the concept of software reuse. The DPMs were,

by far, more knowledgeable with respect to reuse than anyone

else in the program, including the PMs. In fact, those

responding to the interviews were either directly or

indirectly involved in the DoD and DA efforts to initiate

software reuse on a widespread basis. Although many of the

DPMs were more familiar with reuse than the PMs they served,

they mirrored the general attitude of the P4s with respect to

reuse implementation. Part of this can be attributed to the

politics of survival in Government service. However, part of

the responses posted by DPMs can be attributed to their

greater depth of knowledge about reuse and its potential

benefits and pitfalls.

While the PMs recognized a r. ;nificant difference in

embedded versus application software systems development, the

DPMs generally discounted this perception. Nearly all the

DPMs thought that application of reuse was more a matter of

correctly defining requirements and domains than a systemic

characteristic of their particular type of program. Although

most conceded that the embedded type systems could potentially

be easier targets for applying reuse, all agreed that reuse

was equally applicable to software applications programs.

The responses of the DPMs, reflecting a substantially

different outlook on the potential of reuse, fives a clue to

the ultimate potential of software reuse. Of those DPMs

86

responding to questions, nearly all felt that practical,

simplified software reuse application would be a reality in

the near future. Most felt that reuse was in its infancy,

with incredible potential for application across almost every

future software development program in the U.S. Army. They

also agreed however, that to be effective, reuse would need to

be expanded to include development programs within each of the

other military Services and civilian agencies. This type of

response reflected a far greater understanding of the

potential for reuse than that represented by the PMs.

Although all of the DPMs expressed concerns similar to the PMs

about the resources needed to locate, integrate, and test

potential reusable code, all of the DPMs dismissed the

problems, expressing the belief that further development and

maturity of the reuse effort would eliminate these problems

over time.

Of particular interest were DPM comments about their PMs'

lack of understanding of program particulars involving aspects

of software development. Most were critical of what they

described as the PM's under control of the development

process. Specifically, a couple of DPAs believed that the PM

assumed that the software development cycle was the e part

of the program and concentrated more on hardware development

than software development. Consequently, their programs

suffered moderate to severe teething problems with software

development costs and schedule. However, this can possibly be

87

attributed to human nature and one's belief that their way is

always the better way.

As with the PMs, the DP9s believed that initiation Af

software reuse was outside the domain of the PM. All felt it

was the exclusive domain of the PEO. Citing the PEO's broad

span of control and influence. Additionally, most of the DPMs

felt that the PEOs should develop and maintain the mechanism

(division or directorate) to ide-tify potentially reusable

software components for import into programs and export out of

programs.

D. HARDWARE/SOFTWARB DIVZBION CHIBFS

Of all those interviewed, the division chiefs (DCs) were

the most vocal and passionate concerning software reuse at the

PM level. All of the division chiefs interviewed were Civil

Service employees with either electrical engir.eering or

software engineering backgrounds. Most had been with their

particular program since its start, and all had seen PMs come

and go. The mix of programs was about evenly split between

those developing embedded software systems, software only, and

joint hardware/software systems.

All of the DCs were familiar with the concept of software

reuse. However, only about half had a good understanding of

the mechanics of reuse or its potential. While most tried

hard to stay current in the software field (regardless of

program type), most found that the demands of the job often

overrode these efforts. Even so, over half felt they were, by

88

far, much more knowledgeable than the PM about the mechanics

of the software development process, and about software in

general. Nearly all felt the PM exercised too much control

over the everyday operations of their divisions and that the

PM's lack of first hand or current knowledge of the latest

trends in both the software and hardware communities

contributed to problems with the program development.

Essentially, nearly all the software DCs felt that they were

the in-house experts on software and that their talents were

not properly utilized. Additionally, most of the DCs were

openly contemptuous of outside contractors utilized by the PM

to augment either hardware or software development. Many

expressed frustration and felt they were constantly being

"shown up" by the lack of coordinated effort within the

program. The main complaint was that outside contractors were

utilized to pursue specific ideas without the coordination of

the critical program development divisions.

With respect to the implementation of reuse to their

specific program, by a wide margin, the DCs felt that reuse

would place an undue burden on their divisions within dubious

potential for payoff. Most felt reuse would be an added

burdL.. in terms of time and manpower, and none felt that their

division would benefit by expanding the number of personnel

within the division. Only one had any real knowledge of the

DA and DoD efforts to develop and institute reuse into the

development cycle, but most distrusted higher levels of

89

management to effectively develop and implement a broad based

software reuse program that might ease the PM level burden.

Software DCs presented a constant picture of frustration and

looked upon reuse in a decidedly negative light, counting it

as just one more problem to overcome.

Because of the potential impact of software reuse on

hardware architectures, hardware development division chiefs

were also interviewed. While most has some experience with

software, few were really current in the field, and none had

any knowledge of current reuse efforts. Once the program was

explained to the hardware DCs, the most common reaction was

for the DC to point out all the potential hardware development

problems implied by reuse. Essentially, all believed that

initiation of reuse would severely limit options available to

hardware developers. All of the hardware DCs felt that

software would become the dictation precedent with respect to

any development activities, whether upgrades or new product

developments. All of the DCs expressed dismay that hardware

development would be significantly retarded in order to

accommodate reusable software, and that hardware would take a

backseat to software. This obviously reflects a fear of

loosing substantial influence within the program development

domain.

The attitude that hardware is the program driver or

central focus of program development was confirmed in the

discussions with both the hardware and software division

90

chiefs. While this is only relevant in embedded systems and

programs developing both hardware and software, it is the

predominate attitude in these programs. the hardware DCs

clearly understood they had more influence over the direction

of the program, while the software DCs clearly felt they were

often the victims of the hardware developers.

E. FINAL OBSERVATIONS

While most of those interviewed had hard and fast opinions

either supporting or condemning software reuse, all were

professional in their approach to their work. While some may

have had reservations about the implementation of reuse into

the development cycle, all admitted they would support

whatever program was put before them. All experienced

frustration at attempts to maintain currency with respect to

technological developments in their given field, whether

hardware or software development. And finally, nearly all

felt the next higher level of management held the key to

successful software reuse implementation, while simultaneously

condemning that very level of management for current program

shortcomings and problems.

As for the PMs, they held the unanimous opinion that any

PM selected for an automation program, whether hardware or

software, needed a technical background either in electrical

engineering, computer engineering, or at the very least,

computer science. Most felt that taking over a program

already under development as opposed to start-up, locked the

91

PM into an unalterable course of action, the consensus was

that once the program reached a certain level of effort, any

opportunity to altar the basic direction of the program was

lost. For example, if a software development program was

experiencing difficulty after spending significant amounts of

money, little recourse was available to the PM except to spend

even more money to fix the problems. Starting over or

scrapping a portion of the program were not considered to be

viable options by the PMs. And finally, without exception,

all of those interviewed felt that for any software reuse

program to be successful and effective, it weild need to be

top driven, administered at DA or DoD level, and controlled

locally at the PEO level.

F. SUIDRRY

As mentioned in the introduction to this chapter, human

nature and resistance to change form an nearly impenetrable

wall that may well be considered a tangible reuse inhibitor

within the program office (in the same sense that the

inhibitors described in Chapter III are tangible). The case

could be made that this is essentially another category of

inhibitor, populated by the collective fears, doubts,

mistrust, and abject pessimism of those tasked to implement

software reuse at the program management level. This was

readily demonstrated by the numerous negative responses

elicited from program management personnel with respect to

implementation of reuse into their programs.

92

Regardless of rank or position within the program

structure, all those interviewed believed that the PM had the

greatest potential impact (with respect to implementation of

software reuse) on software development, but was the least

technically competent to affect critical program changes.

Everyone interviewed also believed that software reuse would

increase the already overwhelming workload without increasing

the available program manpower. The bottom line, repeated at

every level uf management, was that software reuse will

substantially increase program risk. Without exception, all

those interviewed were admittedly risk averse. Consequently,

it comes as no surprise that there is a stone wall of human

emotion which must be breached before software reuse can

become a reality.

To effectively overcome this obstacle, it will be

necessary for the DoD and DA to address the previously

categorized reuse inhibitors and barriers. Admittedly,

elimination of these inhibitors alone will not automatically

open the doors to reuse to reuse acceptance, however, it will

serve to augment the intense education effort that must be

implemented to overcome the human aspect of the problem.

Because these inhibitors form the foundation of the human

trepidation about reuse, efforts to overcome these issues will

also work to break down the human resistance to change.

Therefore, the key to initiation of the reuse effort must lie

in solving the problems described in Chapter III.

93

V. ADDRZSSING TEN PROBLEMS

A. INTRODUCTION

The previous chapters have enamined the systemic problems

in implementing software reuse into the program software

development process and the effectiveness of the Program

Manager in influencing the infusion or omission of reuse in

software development. Although these problems are wide

ranging and seemingly all encompassing, they are not

insurmountable. This chapter will attempt to address some of

these problems and inhibitors with potential solutions.

First, possible solutions to some of the systemic inhibitors

presented in Chapter III are examined.

B. SOLUTIONS

1. Standards

a. The DOD should sponsor an effort to standardize

software requirements. metrics, notation. and desian method-

oloQies. This would serve a two-fold purpose. First,

standardization within the DoD would reduce program develop-

ment cost. Cost savings would be realized not only through

the potential implementation of software reuse, but through

the reduction of effort involved in determining program

requirements, measuring and comparing software effectiveness,

and developing the required software through the use of

standardized methodologies. Second, standardization will

94

reduce the time necessary for development of software

components. Standardization of development methodologies,

especially those which can be integrated with or imposed on

contractors' current methods will streamline the software

development process and allow a greater degree of control to

be exercised by the PM. Implementation of reuse, made

possible through widespread standardization, will enhance the

process and further reduce development times by allowing

earlier integration start times. The PM's control of the

program will be strengthened by allowing him to refer to

previously completed programs to foresee potential problems

and solutions as-well-es established time lines to measure

program schedule effectiveness. And, in a situation where

program development time is tied directly to cost, shorter

development time and fewer delays will further reduce

expenditures. Additional benefits which may be realized

through standardization would be the potential for more

competitors for DoD software development contracts, should the

DoD standard also receive widespread acceptance as the

commercial standard. Such a proliferation of standardized

methodologies, notations, and metrics could conceivably

increase contractor competition, further reducing costs and

improving the final product.

Although the initial investment in this effort

would be expensive, the potential returns are immeasurable.

As a practical approach, standardization should probably be

95

implemented through IEEE or ISO standards/specifications.

[Ref. 38:p. 21]

b. Small teams should be formed to develoR initial

architecture and interface standards/specifications for

specific domains. These teams should also establish methods

for updating and disseminating standards more quickly and

efficiently. Standardization of software architectures would

greatly reduce the number of variant systems currently being

utilized or developed and would allow greater utilization of

reuse through more commonality of software systems. Architec-

tures developed for specific domains could be developed across

the various military Services and used to expand potentially

reusable software resources by enlarging the domain envelop --

such as anti-aircraft missile technology which has application

across all Services with such things as targeting and tracking

software. Expanded domain architectures could easily provide

exponential growth in lines of reusable code, and open up

opportunities to utilize technology advances once realized

only by individual Services.

c. Update the standardized SEI Software Development

Process models to include software reuse. Adding software

reuse to the model templates would provide a convenient guide

to the time and method of inclusion of software reuse into the

software development process. Such standardized templates

would also serve to heighten awareness of software reuse.

96

Coordinated with the introduction of a reuse

template should be the inclusion of software reuse into the

software engineering life cycle. As described in chapter III,

the software life cycle should provide ample opportunity to

implement reuse at nearly every phase of the software life

cycle. In order to obtain maximum effectiveness, it is

critical that software reuse be integrated during the entire

life cycle and not just during the development phase. The

greater the focus on reuse, the wider the application and

greater the potential for overall benefit.

d. Finally. once reuse has been addressed within the

DoD. Derformance criteria for suDvliers. distributors.

maintainers based on use and customer satisfaction must be

estalih. Without the support and full cooperation of the

contractor side of the software development business, any DoD

effort to implement reuse will be an exercise in futility.

Not only must DoD standards for reuse implementa-

tion be exported to the civilian software development

community (primarily the contractors/ developers who are

normally employed to develop DoD software) but acceptance of

and conformity to these standards must also be utilized as

criteria for contract award and measuring program progress.

2. Training and Education

a. The DoD must implement an extensive and intense

training effort for DoD personnel in reuse techniques and

utilization of available resources. Reuse methodologies and

97

techniques must be conveyed to those responxible for software

development through the various curricula available through

many of the DoD schools, organizations, and correspondence

courses. Reuse training material should receive wide-spread

dissemination while add-on correspondence courses in reuse

technology and management must be made available and mandatory

for Program Managers.

b. A reuse infrastructure must be established within

theDon. Essentially, a mechanism for sharing information and

disseminating the latest technologies and methodologies must

be developed to reach all aspects of software development and

management. This infrastructure should include an annual

software reuse symposium or conference and some form of

newsletter to transmit information such as lessons learned,

cost savings for programs, success stories, and legal issues

concerning such things as licensing fees and restrictions.

Such measures would serve to link the entire DoD software

development effort, providing all developers and managers with

a standardized and acceptable method for passing the most

current and critical information in a timely and efficient

manner.

c. The Qeneral awareness of the develoDment community

must be heightened with regard to reuse libraries and deposi-

tories, the user/development community must be provided with

listings of available libraries, contents, cataloging systems,

methods of utilization, and knowledgeable points of contact.

98

All the plans, libraries, depositories and

regulations of the DoD cannot foster the integration of

software reuse unless the developers are aware of the

resources at hand. Only through a concerted effort to educate

the P~s and their staffs on multiple levels and a host of

reuse subjects can the DoD hope to implement widespread

software reuse within the acquisition community.

3. Management

a. An effort should be made at the highest levels of

DoD and industry to define and develop appropriate financial

incentives and other Dromotionals for the Droduction and use

of quality reuse assets. It is clear that an undertaking of

this magnitude will necessitate the best effort from both

sides of the acquisition process. Because of the vast

potential area of impact, high level representatives from all

of the military Services, as-well-as NASA and other concerned

agencies within the Government need to meet with industry

leaders in software development and production as-well-as

hardware producers to decide on the appropriate and most

influential incentives for implementing reuse on a broad and

standardized front. Current level of difficulty in

instituting software reuse, combined with duoious returns,

makes the use of incentives to inspire reuse all the more

important. These incentives must appeal to the Program

Manager and his staff as-well-as the commercial contractor and

his developers. Participation by all of the interested or

99

concerned parties will be required in order to develop

equitable yet inspirational incentives for utilizing software

reuse. These incenti. es must apply not only to those who

utilize reusable code, but those responsible for developing

code intended to be reused, and hardware developers who must

readily utilize open architectures which readily accept

reusable software. Consequently, these incentives must be

linked and dependent upon one another to be effective in

encouraging reuse on a scale broad enough to impact all

DoD/Government development efforts.

b. The standard development temDlates utilized in the

acquisition process for software development must be revised

to include reuse plans and strategies within the acquisition

pQrj_&. The establishment of a specific review process to

determine the validity of inclusion of reuse in a program's

development must be included in the acquisition approval

process. This process should consist of incorporating

specific approval points within the acquisition cycle which

can only be passed after considering the pros and cons of

including reuse into the program. It is imperative that such

a program establish specific criteria which will force the PM

to investigate and consider the potential for including

software reuse into the program development.

c. A concerted effort must be made at the Service

Acauisition Executive level or above to provide financial and

technical SuDDort to PEOs and PMs for reuse initiatives.

100

[Ref. 38:p. 29] Any effort to push software reuse must be

endorsed by and pushed from the top down.

This is probably best accomplished through the

preparation and presentation of a business case to the Service

Acquisition Executives to highlight the Service-wide

advantages of implementing a reuse strategy for system

acquisition. The case should identify potential domain areas

for application of the proposed strategy, long-term (5 to 10

years) benefits to the various Services, and initiatives that

are currently proceeding within each individual Service.

Critical to the success of this effort should be the

demonstration of the need for additional support (technical,

financial, and moral) to the PEOs and PMs during the start-up

phase of any reuse approach. It should be shown that

relatively small amounts of money can make the difference

between success and failure for the initiation of a reuse

program, and that this money should be used to support the

initial set-up and maintenance costs for library capability,

the definition of common requirements and domain-specific

architectures, and the additional development costs of

reusable assets to support implementation. [Ref. 38:p. 20]

d. Finally, a DoD evaluation of current programs

should be Rerformed to collect data on all major orocrams

incorDoratinQ reuse. These programs should be examined to

determine "what works and what doesn't" with respect to

implementing reuse into development efforts. This examination

101

would provide valuable information to other efforts such as

the area of requirements and domain standardizatio". This

could also open the development process to incorporation of an

evaluation system of program performance that would include

software reuse. Such an evaluation should examine the PM's

conformance with the reuse plan, accomplishment of reuse

goals, effective use of tools, and identification and

resolution of problems in reuse.

4. Libraries

a. The neglect that current software libraries have

suffered must be corrected by develoDing library standards.

interface specifications, certification and acceptance

criteria. library network interconnections, library

interoDerability. and configuration management. This will

require close coordination with program/project offices to

determine actual requirements, test ease of utilization,

availability and access, and to develop quality assets.

Again, this needs to be both a multi-Service and multi-domain

project to prevent repetition of the poorly regulated,

disjointed and generally neglected system currently in place.

b. Utilizing the information gathered in the process

described above, domain suecific libraries should be develoDed

and DoDulated. These libraries must be cross-Service, open

architecture facilities, with logically conceived cataloging

systems to provide easy access to domain specific and

relatively risk free software to development projects.

102

Drawing on the PM experience and expertise in the development

process, libraries should become considerably more valuable as

a development resource. (Ref. 38:p. 24]

S. Legal and Contractual Issues

a. Of critical importance to any reuse effort will be

the establishment of a mechanism for removing barriers for

software development companies to legallv utilize software

produced from other software development companies. Current

restrictions on utilization of proprietary software and

architectures must be breached and equitable guidelines

established to facilitate fair compensation for use of

reusable code by other developers. Areas which must be

addressed range from liability assessment for DoD programs

damaged or delayed by reusing poor quality software, to

responsibility for maintenance and upgrade of software

cacheted in libraries, to royalties for the initial reuse of

software and subsequent utilization of programs containing

reused software developed by a second party.

b. Changes in the legal Rarameters of the acquisition

Rrocess. allowinQ financial incentives based on 2erformance

criteria for imolementation of reuse, should be developed and

instituted for suR2liers. developers, and maintainers. This

approach should include contractor clauses to support reuse

and evaluation criteria for RFPs. With reductions in DoD

acquisition expenditures driving reductions in the number of

firms willing to compete for defense contracts, financial

103

incentives may prove the necessary enticement to keep current

contractors interested and bring new competitors into business

with the DoD while simultaneously integrating software reuse

into the development process. This would provide not only

incentive to reuse software, but allow contractors to collect

repeatedly for development efforts utilizing previously

developed software.

C. LEVELS OF EXPERTISE AND KNOWLEDGE

Finally, that prevalent yet intangible human element

which enters into and impacts the daily business of weapon

system development must be addressed. Each level of effort

within the development process (division, product, program)

must be addressed. The level of knowledge required by the

hardware or software division chief and his personnel is much

greater and more detailed than the technical expertise

required at the PM and DPM level. Because of these differing

requirements for education and information at the various

levels, efforts to address the "human factor" must be tailored

to the specific area of effort. Any effort to dispel the

disbelief or skepticism held by those involved in software

development must be dealt with on a level which will

specifically address those particular problems and ideas.

The DoD must apply a broad-based education program to all

levels of effort involved in program development. The lowest

level needing attention is at the division level within each

PM office. This is the most technical level and accordingly

104

will require the most in-depth and detailed effort. The PM

and DPM levels, being more management oriented, will not

require f tch formal or detailed education in the actual

mechanir.. of reuse. However, at the PEO level, the

educational process must encompass everything from the broad-

based overview to the detailed functional mechanics of reuse.

This educational effort must be both formal and informal.

Formal classes must be given at all levels to educate

development and management personnel on software development

models and templates. These classes must be focused on

specific levels of program development operations, depending

on the particular audience. This instruction must include

identification of the opportunity points in the development

process to initiate or institute software reuse and the

methods required to import reusable software into the target

program. Course material must also cover procedures to

implement thorough documentation techniques to facilitate

integrating new code into software libraries. The education

process must also include overviews of programs sharing

particular weapon system application domains. These domains

must include both inter- and intra- Service applications in

order to maximize the benefit of reuse. Again, the level of

detail and complexity must be tailored to the audience and its

part in the development process.

Informal working groups, update and refresher sessions,

and in-house seminars must be conducted on a regular basis.

105

These informal tools should cover the development and release

of new reuse tools and templates within the DoD. Such a forum

would also serve as a vehicle to pass information about

concurrent development efforts which may have reuse

application or affect software development in other programs.

This is also the ideal mechanism to promote the reuse library

system by regularly disseminating information on newly annexed

code modules and documentation.

As mentioned above, the focus at the PEO level must cover

the gamut of instruction, from general overview to detailed

software reuse implementation procedures. The Program

Executive Office level of operation is critical to the

successful execution of any reuse program, regardless of the

level of application. The PEO must serve as the integrator of

reusable software into subordinate program domains and as the

primary point of contact for software development with other

PEOs. The PO should also exercise executive control over

reuse efforts within the specific program domains in order to

pass critical development information in a timely manner and

provide additional expertise to the PMs when necessary.

D. BUDRARY

Overall, the effort to implement software reuse on a scale

that will produce acceptable returns on investment and

productivity must be pushed on many fronts and at many levels.

It should be apparent that most of the inhibitors and barriers

can and must be assaulted simultaneously. Because so many of

106

them are linked together, often crossing numerous category

boundaries in scope and impact, any effort to address one

barrier or inhibitor may simultaneously affect another. The

obvious danger is advertently creating more problems in

associated or related areas through the application of faulty

solutions or poor execution of good solutions. Consequently,

all efforts to overcome these problems must be closely

coordinated and controlled.

The solutions offered above are only some of the actions

necessary to initiate reuse at the DoD level. These solutions

range from the esoteric and technical, to the simplistic and

comm sensical. Obviously, there are far more approaches to

the problem than can be described here. However, all attempts

at overcoming these barriers will have an impact, either

positive or negative, on the Army wide implementation of

software reuse. As these plans are implemented, other courses

of action will become evident and further solutions will

present themselves. Only tiz& will tell which of these

efforts will be successful and which will be shunted into

obscurity. But one thing is clear, the first step must be to

convince those responsible for software development that reuse

is the key to future program success. The more for less

military is now a reality. Excuses for inefficiency can no

longer be tolerated, the cost in t -. f time, money, and

successfully fielded systems is just too high.

107

VI. CONCLUSIONS AND RRCONNKND TIONS

A. INTRODUCTION

It should be obvious by now that the U.S. Army has begun

to address the multitude of problems associated with the

development of software for automated weapon systems. Facing

a staggering demand for sophisticated, highly automated weapon

systems requiring greater productivity from the limited and

available software-producing resources, and facing severely

shrinking defense expenditures, the military has been forced

to relook its efforts to meet these needs. The different

Services have pursued or are pursuing various individual and

joint solutions to the imminent software shortage. However,

of the currently available technologies and methodologies

available to attack this problem, the method with the greatest

potential return of investment is software reuse.

B. TRE WORK AT HAND

The Department of Defense has embarked on a host of

different programs to explore this option, with the Army

taking the lead on several. In response to pressure from

Congress, the overall lead for the Army effort has been tasked

to the Army Software Reuse Council and Working Group. Leading

the Army's effort in applying software reuse are the RAPID

software library program and the AFATDS and ATCCS

software/hardware development programs.

108

This Reuse Working Group is attempting to consolidate the

entire Army software reuse effort in order to capitalize on

economies of scale offered by a widespread program and the

obvious advantages of utilizing multiple domains and their

potential contributions and applications. Current Army reuse

efforts are focused on laying the foundation or ground-work

infrastructure to employ reuse on a Service-wide basis once

all the component management and resourcing assets are in

place.

The current plan requires that the Army implement the

following functions:

1. Specify currently existing domains within the Army and
identify criteria necessary to prioritize, select and
qualify these domains for reuse application [Ref. 39:p.
3].

2. Define potential reuse products within these selected
domains, to include domain analysis output and software
components generated by the development life cycle, as-
well-as component validation criteria for new applica-
tions [Ref. 39:p. 3].

3. Determine ownership criteria for new and reused
components [Ref. 39:p. 3].

4. Implement changes in the current acquisition process to
provide for the consideration and evaluation of reuse
during the entire acquisition life cycle (Ref. 39:p.
3].

5. Consider and evaluate proposed deviations from the
development process to integrate and utilize reusable
components during each phase of the development life
cycle (Ref. 39:p. 3].

6. Define and develop models as guides to business
decisions related to reuse implementation [Ref. 39:p.
3].

109

7. Define reuse metrics and establish guidelines and
procedures to govern collection and analysis of
pertinent data (Ref. 39:pp. 3-4].

8. Define component standards and guidelines to describe
characteristics and evaluation criteria necessary for
reuse component certification and inclusion in reuse
libraries (Ref. 39:p. 4].

9. Specify a technology base investment strategy to
recognize likely technologies, designate and track
reuse-related research and development efforts, and
identify appropriate means of transitioning these
efforts into actual practice (Ref. 39:p. 4].

10. Describe necessary training and education to impact all
levels of development decision making and influence
both the internal and external environment to
facilitate reuse [Ref. 3 9:r. 4].

11. Identify existing products and services for potential
reuse exploitation [Ref. 39:p. 4].

12. Finally, monitor, assist, contribute to , and extract
lsonz learned from concurrent software reuse efforts
by other organizations both inside and outside the
Government (Ref. 39:p. 4].

C. OVERCOMING THE BARRIEIR

These steps are necessary to overcome the myriad barriers

and inhibitors which currently frustrate wide-spread Army

implementation of software reuse. These barriers are

generally catalogued into five broad categories. First, and

maybe most far reaching, is the lack of standards in both the

hardware and software development processes, associated

development tools (metrics), and architectures. The second

category is poor or inadequate training and education for

those most able to influence software development decision

making. No less important, is the third category, management.

The lack of adequate reuse incentives for both the decision-

110

maker as well as the contractor, a situation compounded by

lack of trade-off me-hanisms, cost models, experience, and

vision provide new frontiers and challenges in software

development management. The fourth category, and possibly the

one of greatest immediate impact to the implementation (or

lack thereof) of reuse, is the lack of any centralized catalog

of assets. The lack of adequate and logically cataloged

resources, plus inefficient means of surveying and retrieving

the currently available resources, has prevented any

substantial attempt at reuse. The last category is probably

the most restrictive of the five. The fifth category is that

engaging the morass of legal and contractual issues associated

with patents, copyrights, and proprietary data rights.

Because of the complex issues and economic implications

involved in this category, it is ripe for long term dispute,

arbitration, and litigation, and may prove to be the most

difficult to competently and conclusively overcome.

Although these reuse barriers and inhibitors are

classified into five separate categories, all are related and

generally bear influence on the others. Any attempt to

overcome or solve any particular problem in one category will

necessarily cross into another category. Obviously, simple

answers or solutions will not be adequate to thwart these

barriers. Only bold, forceful, deliberate action to implement

reuse will prove successful against these overwhelming

impediments.

111

Faced with these seemingly insurmountable obstacles, the

Program Managers, as a group, have rejected the prospect of

voluntarily integrating software reuse into the

software/hardware development process. But, most PMs, being

military officers, admitted they would "soldier on" with reuse

if necessary. The consensus of those interviewed was that

reuse should not be applied to current programs, but should be

a "ground-up" proposition for new programs. All personnel

interviewed believed that software reuse will become a reality

within the Army in the near term. Those within the program

office, from PMs to DCs, believed also, that PMs should have

sufficient technical background in software and/or hardware to

be able to work competently with incoming reuse technologies.

Many of those interviewed were skeptical of the technical

skills displayed by more than a few of the currently serving

PMs.

Finally, all those interviewed believed that implementa-

tion of software reuse could only become a reality if the

program were top driven. Everyone suggested that essential

aspects of reuse implementation, such as reuse library

service, software porting studies, and reuse administration

and documentation, be at a sufficiently high level to span all

potential contributing sources within the Army (and/or the

DoD). Those interviewed recommended that whatever organiza-

tion the Army develops to provide overall operational control

of software reuse, it must be able to tie related PMs

112

together, or at least be able to interface with the PEOs and

integrate outside resources and information into subordinate

programs.

As stated before, the human element is the most deep-

seated barrier facing software reuse implementation. The

resistance to change is a powerful, institutionalized force

and will be difficult to overcome. Only through the liberal

application of time and education can this inhibitor be

eliminated.

Both technical and human barriers must be overcome to

successfully implement this program at either the Army or DoD

level. Human resistance will be conquered through education.

The technical barriers, however, will be overcome only through

a concerted, systemic effort on a broad front. The most

promising approach to implementing reuse is an Army/DoD

multilevel program currently being launched. The program

consists of implementing several initiatives spanning

standardization, education and training, management,

libraries, and legal and contractual issues. These

initiatives seek to integrate new and emerging technologies

with tools, methodologies, and templates currently being

utilized in software development. The Army and DoD are

working jointly to take advantage of lessons learned through

multiple software reuse efforts and experiments. Networks are

being established to disseminate reuse information among

interested organizations in all military Services and selected

113

Government organizations. And, possibly most important,

serious reform of the acquisition process with respect to

software and automated hardware development, is currently

being reviewed and revised. This acquisition review includes

mandatory consideration and, in some cases, inclusion in all

software acquisition and development programs and some

hardware development programs.

D. RRCOMMUMDATIONS

A great deal of attention has been placed on the

organization necessary to facilitate software reuse. A

program without a strong and effective organizational

structure has no hope of success. All parties involved in

program management, software development, and software reuse

agree that this organization must have the following

characteristics:

1. It must be either a DoD level organization to ensure it
is powerful enough to impose directives and controls on
subordinate developmental organizations and programs, or
it must be such that it is a separate organization
mirrored within all military services, tied through
administrative channels to pass information, development
techniques, and program progress.

2. The organizations must oversee all aspects of software
development, from software repositories and libraries,
to template and model development and dissemination, to
administrative and regulatory management of software
development and acquisition.

3. It must serve to link each particular program with each
of the other programs of similar domain or software
requirements, or at least link the governing PEOs of the
affected programs.

114

4. It must bear some of the decision making responsibility
for source selection, development strategy, and program
technical reviews.

5. And finally, it must be adequately funded to ensure
sufficient resources and organizational clout to affect
the direction of development programs in all effected
areas.

The wheels of change are currently turning with respect to

the creation of such an organization. It can only be hoped

that this organization can benefit from the synergy resulting

from the interaction of the strategic issues mentioned herein.

The synergistic effect should ultimately reduce the time

required to field critical systems, improve quality, and

reduce costs and risk associated with software-intensive

systems [Ref. 39:p. 4].

B. ARBAS FOR FURTHER RRSEARCH

The issues, organizations, solutions and models mentioned

here are not in themselves sufficient to overcome the time and

expense necessary to bring a sophisticated, automated weapon

system to successful production and field implementation. A

great deal of further study is needed. Even as the aforemen-

tioned solutions are being implemented and controlling

organizations formed, more questions are being raised and new

reuse inhibitors are being discovered. During the course of

this research, several related problems were uncovered. The

following areas offer opportunities for further study and will

necessarily need to be addressed in the course of Army

software reuse implementation.

115

1. Examine potential software repository standardization
and structure, to include domain classification,
retrieval and donation systems, with the object of
arriving at an optimal organizational and administrative
structure.

2. Examine potential organizational structures and program
interface mechanisms for a DoD level or Service level
software reuse advocate/control organization to oversee
implementation of software development and reuse across
a broad spectrum of applications and domains.

3. Explore recent and potential improvements in software
development templates and models utilizing the latest
software reuse technologies.

4. Examine the contractor's managerial problems,
inhibitors, and barriers in developing and implementing
software reuse, and potential Government incentives
which could be offered to contractors to overcome these
barriers.

5. Examine current DoD and Army software development and
acquisition policy for potentially advantageous changes
which might incorporate or implement software reuse as
part of the program development and review process.

6. A thorough examination should be conducted to study the
legal inhibitors and barriers from both the Government
and contractor perspectives, with an objective to find
legal work-arounds which will foster greater contractor
participation in developing and utilizing reusable
software.

While these offered areas of further study a certainly not

a complete list of potential subjects, it does cover some of

the more difficult, non-technical issues which must be

overcome before the DoD is able to successfully implement

software reuse on a scale that will provide economic dividends

for the developing agency. Much work remains to be done,

especially in the area of convincing those most responsible

for developing and utilizing reusable software that it is a

worthwhile idea. However, even as the program is being

116

inaugurated at the DA level, work continues at all levels to

win the software reuse battle.

117

"APPZNDIX A

PROGRM OFFICE QUESTIONAIRE

The following questions were asked of selected Army
Program Managers as a means of acquiring information for this
thesis. Cooperative responses to initial questionnaires were
given a second, follow-up questionnaire, or in some instances,
visited by the author to interview the PM and his staff. The
second questionnaire was targeted at not only the Program
Manager, but the DPM and the subordinate program Division
Chiefs in an attempt to get a more well-rounded picture of PM
operations.

A. Initial Questionnaire

1. Does your project require software development or
acquisition as part of the program?

2. Is a significant amount of your program budget and
time devoted to software development issues? If so, ho much?

3. Is your project software developmental or is it an
upgrade of currently utilized or existing software?

4. Does your system software share utilization with any
other system under development or currently in the field?

5. Does your system software have potential to be
utilized by other systems?

6. Do you know of any other system currently being
developed or already fielded which might have software that
could be utilized by your system?

7. Does your project office engage in any form of joint
software development effort with any other project?

8. Is there any exchange of information concerning
software problems and development with projects and programs
either inside or outside your own PEO structure?

9. Has your project software development affected the
cost or schedule of your program?

10. Are you familiar with the current effort by DoD to
initiate a Software Reuse Program?

118

11. Would your project software development benefit from
a centralized library of existing programming and cataloging
of developmental efforts?

12. Do you think future programs would benefit from such
a centralized library?

B. Follow-up Questionnaire

The intended target of any particular question is given in
parenthesis before each question. In some instances, the
questions are the same as those found in Questionnaire One,
but are iivtended to illicit information from different
individuals within the PM office. Those interviewed or
surveyed included Program Managers, Deputy Program Managers,
Hardware and Software Development and Management Division
Chiefs, and in some cases, technical specialists.

Although the initial questionnaire was intended to be
answered by the PM, in some instances, the DPM responded.
Consequently, some of the follow-up questions are intended to
be answered by either the PM or DPM, depending on who
responded to the initial questionnaire.

1. (PM/DPM) How much control do you exercise on a daily
basis within your organization concerning software develop-
ment?

2. (All) What is your background with respect to
hardware and software technology, engineering, and development
methodologies?

3. (PM/DPM) How competent are your subordinates (Deputy
PM, Division Chiefs, etc.) with respect to software and
hardware development and the latest emerging technologies,
including software reuse?

4. (All) How open are you lines of communication inside
your organization?

5. (All) How open are your lines of communication to
organizations outside your program, such as the PEO, other
programs within the PEO, and programs outside the PEa?

6. (DC) How knowledgeable are the PM and DPM in matters
of software/hardware development and emerging technologies
such as reuse?

7. (DC) How much direct control or influence does the
PM/DPM exercise over your division and its efforts on a daily
basis?

119

8. (All) Does your system software share utilization
with any other system under development or currently in the
field?

9. (All) Does your system software have potential to be
utilized by other systems?

10. (All) Do you know of any other system currently being
developed or already fielded which might have software that
could be utilized by your system?

11. (All) Are you familiar with the current effort by DoD
to initiate a Software Reuse Program?

12. (All) Would your project software development benefit
from a centralized library of existing programming and
cataloging of developmental efforts?

13. (All) Do you think future programs would benefit from
such a centralized library?

120

APP3NDIX B

DRFINITIONS

Ada
A comprehensive, Pascal-based programming language developed
for the DoD to implement both business applications and
embedded applications (such as rocket guidance systems).

Application Software
Higher order language programs that can perform specific,
user-oriented tasks.

Architecture
A structural concept for a complex software application and
a definition of the software components that populate the
structure.

Assembly Language
Computer languages that allow the use of mnemonic names for
machine language instructions and operands in the place of
the binary machine codes.

Automated Weapon System
Weapon system utilizing and/or incorporating digital
information system(s) as an integral part of either the
actual weapon or its command and control element or both.
The computer hardware and software in an automated weapon
system perform such tasks as input/output control, system
diagnostic functions, and program function execution such as
acquiring, tracking, and closing on designated targets.

Bit
A unit of information storage capacity, as either of the
binary digits 0 or 1 in a computer memory. [B(inary) (dig) IT]

Critical Path
The longest path through a project from beginning to end.
It includes all the activities that, if delayed, would stall
the project's completion.

Do Loop
A program execution command used o implement repetitive
operations within an executable function.

121

Domain
A specific phase or area of the software life cycle in which
a developer works. Domains define developers and users
areas of responsibility and the scope of possible
relationships between products.

Domain analysis
The process of identifying the preliminary requirements for
software parts to fill common needs of a selected
application domain through an intensive examination of
applicable architectures. The process consists of
developing a preliminary model and classification scheme for
the domain and refining the model and identifying common
objects, structures and function which are candidates for
reusable software parts.

Embedded Computer System
A computer system as an integral part of a larger system
such as a weapon system or communication system which cannot
be separated or deconstructed into functional component
parts without degrading or incapacitating the system
capabilities.

Granularity (of software components)
Granularity refers to the number and size of software
modules or sub-components which compose the varying parts of
a software program. Essentially, the smaller the modules
and their component parts, the greater the software
granularity.

Hardwired
An industry term referring to hardware solutions to software
application problems. Essentially, this term refers to
physical work-arounds through electronic engineering
applications utilized where software solutions are not
practical or possible.

Higher Order Languages
Computer programming languages utilizing statements which
typically resemble mathematical formulas or English
expressions much more than assembly language commands.
Examples of HOLs include FORTRAN, COBAL, CNS-2, and Ada.

Instruction Set Architecture
The internal and fixed repertoire of instructions that
compose the required integration pathways describing the
hardware/software interface.

122

Life Cycle
The stages and processes through which software passes
during its development. This includes requirements
definition, analysis, design, coding, testing, and
maintenance.

Machine Language
The binary codes which are understood directly by the
computer hardware.

Metrics
Quantitative analysis values calculated according to a
precise definition and used to establish comparative aspects
of development progress, quality assessment or choice of
options.

Mnemonic
A symbolic name used in a computer program rather than an
actual numeric address.

Operand
A field specifying where in the computer the data for a
particular operation or function is located.

Software
The combination of computer programs and documentation
needed to cause computer hardware to perform a certain task
or tasks.

Software Bindings
A software component that provides an application with a
means to access other software written in a language
different from that of the application.

Software Component
This refers to named modules of reusable information that
can be manipulated by a target reuser. Software components
may be further decomposed into other components and software
units.

Software Module
The discrete components of a software program. Each module
is separate and distinct from other modules such that a
change in one component has minimal impact on other
components.

Software Object
A software system element with State, Behavior, and
Identity. Similar objects are grouped in a single Class or
Subclass.

123

Software Part
A piece of data resulting from some phase of the software
life cycle. Examples include: executable code, a
requirement specification, an interface specification, and
a data flow graph design. A software part can be catalogued
as a collection or hierarchy of smaller parts.

Software Portability
The ease with which software can be transferred from one
computer system or environment to another.

Software Reuse Technologies
Technologies, tools, and programs developed to foster
software reuse. These are generally innovative, leading
edge approaches that can include both software and hardware
systems.

Software Spoilage
The portion of a software program that is lost or damaged or
does not readily present itself to software porting.

Software Unit
Any logical set or groupings of instructions to a computer,
such as a module or package.

Taxonomy
The science, laws, or principles of classification.

124

APPENDIX C

ACRONYMS

ADAS Architecture Design and Assessment System

AFATDS Advanced Field Artillery Tactical Data System

AR Army Regulation

ASSET Asset Source for Software Engineering Techniques

ATCCS Army Tactical Command and Control System

BFA Battlefield Functional Area

CAMP Common Ada Missile Packages

CARDS Central Archive for Reusable Defense Software

CASE Computer-Aided Software Engineering

CECOM Communications-Electronics Command

COTS Commercial Off-The-Shelf

DA Department of the Army

DARPA Defense Advanced Research Projects Agency

DC Division Chief

DISA Defense Information Systems Agency

DoD Department of Defense

DOS Disk Operating System

DPM Deputy Program/Project/Product Manager

DSMC Defense Systems Management College

FAR Federal Acquisition Regulation

FY Fiscal Year

GOTS Government Off-The-Shelf

HOL Higher Order Language

125

IDA Institute for Defense Analyses

JIAWG Joint Integrated Avionics Working Group

JLC Joint Logistics Commanders

NASA National Aeronautics and Space Administration

NDI Non-Developmental Item

NSIA National Security Industrial Association

PDSS Post Development Software Support

PEO Program Executive Officer

PM Program/Project/Product Manager

RAPID Reusable Ada Products for Information System
Development

SCSI Small Computer Systems Interface

SEI Software Engineering Institute

SLOC Software Lines of Code / Source Lines of Code

STARS Software Technology for Adaptable, Reliable Systems

VHSIC Very High Speed Integrated Circuit

126

LIST OF RUFEZRNCIS

1. U.S. Department of the Army. Army Acquisition Executive
Support Agency. "Life Cycle Software Engineering
Centers." Army Research. Development. and Acauisition
Bulletin, (Nov-Dec 1990), pp. 26-29.

2. Biggerstaff, Ted J., and Alan J. Perlis, editors. 1989.
Software Reusability. Vol. 1, "An Expansive View of
Reusable Software," by Ellis Horowitz and John B. Munson.
New York: ACM Press (Addison-Wesley Publishing Company).

3. Distaso, Jack R. 1989. "Ada: Experience and Trends."
In Managing Software Into the '90s... Acauiring the
Competitive Edge: Proceedings of the Army Software
Conference in Eatontown. New Jersey, by the U.S. Army
Communications-Electronics Command, p. 124.

4. U.S. Department of the Army. Office of the Secretary of
the Army. Strategic Force. Strategic Vision for the
1990s and Beyond, by the Honorable Michael P. W. Stone
and General Gordon R. Sullivan. A Statement on the
Posture of the United States Army, Fiscal Year 1993.
Washington, DC, U.S. Government Printing Office.

5. Konda, Suresh, Patrick D. Larkey, and W. Gary Wagner.
National Software CaDacity: Near-Term Study. Technical
Report produced by the Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, May 1990.
DTIC, CMU/SEI-90-TR-12.

6. Department of Defense. Defense Systems Management
College. Mission Critical Computer Resources Management
Guide (1990). Washington, DC, U.S. Government Printing
Office.

7. Pasztor, Andy. "U.S. to Upgrade, Not Replace, Its F-16
Fleet." Wall Street Journal. 9 April 1992. sec. A, p.
5.

8. Kitfield, James. "Is Software DoD's Achilles' Heel?"
Military Forum. Washington, DC, U.S. Government Printing
Office. (July 1989), pp. 27-35.

9. "Suggestions for DoD Management of Computer Software."
Managing Software: The Journal of Defense Systems
Acquisition Management 5 (Autumn 1982).

127

10. Boehm, Barry W. and Thomas A. Standish. "Software
Technology in the 90's: Using an Evolutionary Paradigm."
C 16 (November 1983), pp. 29-32.

11. Coles, R. J., et. al. "Software Reporting Metrics." A
Technical Report by Mitre. Washington, DC (November
1985).

12. Blanchard, Benjamin S. and Wolter J. Fabrycky. Systems
Engineering and Analysis. 2d ed. Englewood Cliffs, NJ:
Prentice-Hall, 1990.

13. Arthur, Lowell J. Measurina Prourammer Productivity and
Software Quality. New York: John Wiley & Sons, 1985.

14. DeMarco, Tom. Controlling Software Proiects: Manage-
ment. Measurement. and Estimation. New York: Yourdon
Press, 1982.

15. U.S. Department of Defense. "Software Documentation."
Proceedings of the Joint Logistics Commanders' Joint
Policy Coordinating Group on Computer Resource Management
in Monterey, CA, November 1981.

16. U.S. Department of the Army. Program Executive Office:
Strategic Defense. "Reusable Software Acquisition
Environment Guidebook for the STARS Program." A
Technical Report prepared for UNISYS Defense Systems by
DSD Laboratories, Inc., Sudbury, MA, (22 Nov. 1991).

17. Baker, Brian, and Anna Deeds. "Industrial Policy and
Software Reuse: A System Approach." In Reuse in Practice
Workshop at the Software Engineering Institute,
Pittsburgh, PA, July 11-13, 1989.

18. U.S. Department of the Army. U.S. Army Communications-
Electronics Command. "The Business Issues Associated
with Software Reuse." A report of a study conducted by
the National Security Industrial Association's Software
and C3IC Committee's Joint Sub-Committee on Software
Reuse. 15 December 1990.

19. U.S. Department of the Army. Program Executive Office
for Command and Control Systems. "Mission Statement for
PEO Command and Control Systems." Prepared by the Army
Acquisition Executive Support Agency, Alexandria, VA,
June 1991.

20. DoD Instruction 5000.2, "Defense Acquisition Program
Procedures," February 23, 1991. Washington, DC, U.S.
Government Printing Office.

128

21. DoD Directive 7920.1, "Life Cycle Management of Automated
Information Systems (AIS)," October 17, 1978.
Washington, DC, U.S. Government Printing Office.

22. DoD Directive 3405.1, "Computer Programming Language
Policy," April 2, 1987. Washington, DC, U.S. Government
Printing Office.

23. DoD-STD-2167A, "Defense System Software Development,"
February 29, 1988. Washington, DC, U.S. Governmnt
Printing Office.

24. U.S. Department of the Army. U.S. Army Signal Center.
"Information Sheet: Tactical Automatic Switch (TAS)
AN/TTC-38," May 20, 1987. Fort Gordon, GA.

25. U.S. Department of the Army. U.S. Army Signal Center.
"Applications Guide: The AN/TTC-39 Circuit Switch,"
August 1B; 1986. Fort Gordon, GA.

26. Grier, Peter. "DoD's Computer Hardware Paradox."
Military Forum. Washington, DC, U.S. Government Printing
Office. (July 1989), pp. 36-40.

27. Arango, Guillermo Francisco. "Domain Engineering for
Software Reuse." PH.D. dissertation, University of
California (Irvine), 1988.

28. Jones, T. Capers. "Reusability in Programming: A Survey
of the State of the Art." In Programming Productivity:
Issues for the Eighties. Washington, DC: IEEE Computer
Society Press, 1986, pp. 372-377.

29. U.S. Department of the Army. Program Executive Office
for Aviation. Software Reuse Rationale. A technical
report generated by the Joint Integrated Avionics Working
Group, St. Louis, MO. May 26, 1989.

30. Druffel, Larry E., Samuel T. Redwine, Jr., and William E.
Riddle. "The DoD STARS Program." Computer 16 (November
1983), pp. 9-11.

31. Roberts, Russel. "The "RAPID" Way to Software
Development." Army Research. DeveloDment. and
Acquisition Bulletin. (July-Aug 1991) pp. 31-32.

32. Palmer, Constance. "Reuse in Practice." Position paper
presented during the Reuse in Practice Workshop, in
Pittsburgh, PA, July 11-13, 1989, by McDonnel Douglas
Missile Systems Company, 1989.

129

33. Donaldson, Cammie. "Knowledge-Based Reusable Software
Synthesis System in NASA." In Software Reuse Issues --
Workshop Proceedings (Conference Publication 3057) 17-18
Noy 1988, by NASA Langley Research Center.

34. Voigt, Susan, and Carrie Walker. "Reuse Research Plans
at Langley Research Center." In Software Reuse Issues --
Workshop Proceedings (Conference Publication 3057) 17-18
Kay1988, by NASA Langley Research Center.

35. Bishop, Dr. Peter C. "Technology Transfer in Software
Engineering." In Software Reuse Issues -- Workshop
Proceedinas (Conference Publication 3057) 17-18 Nov 1988,
by University of Houston at Clear Lake.

36. Department of the Army. Program Executive Office for
Command and Control Systems. ATCCS Primer. An informa-
tion pater published by PM CHS, Fort Monmouth, NJ,
Summer, 1991.

37. Rubey, Raymond J. Software Management Guide. Hill Air
Force Base, UT: Software Technology Support Center,
April 1992.

38. Minutes of the DoD Reuse Impact Team. By Harry F.
Joiner, Chairman. Fort Monmouth, NJ, March 3-4 1992.

39. Army Software Reuse Plan (Strawman). Plan produced by
the Army software Reuse council and Working Group in
response to a directive from the Senate Appropriations
Committee. Provided by Stanley H. Levine, PM CHS, Fort
Monmouth, NJ, Dec, 1992.

130

BIBLIOGRAPEY

Adams, Susan. Sun Catalyst Portina Reference Guide. Mountain
View, California: Privately printed, 1991.

Berube, Margery S., Diane J. Neely, Pamela B. DeVinne, eds.
The Armerican Heritage Dictionary, 2d ed. Boston: Houghton
Mifflin Company, 1982.

Boillot, Michel. Understanding FORTRAN, 2d ed. New York:
West Publishing Company, 1981.

Bowes, Robert J. "Technology Transition Reuse Acquisition
Issues." Notes from a presentation to Software Reuse
Working Group. Fort Monmouth, New Jersey. (3 Dec 1991).

Ehrlich, Eugene, Stuart Berg Glexner, Gorton Carruth, Joyce M.
Hawkins, eds. Oxford American Dictionary. New York:
Avon Books, 1982.

Horowitz, Barry M., Phd. The Importance of Architecture in
DOD Software. Bedford, Massachusetts: Mitre Corp., 1991.

Hughlett, Eric C. "A Framework for Software Development."
M.S. Thesis, Naval Postgraduate School, 1990.

Jones, Wilbur D. Jr., ed. Glossary: Defense Acauisition
Acronyms and Terms, 4th ed. Fort Belvoir, Virginia:
Department of Defense, Defense Systems Management College,
1989.

Laird, Charlton. Webster's New World Thesaurus. New York:
Warner Books, Inc., 1982.

Schildt, Herbert. DOS Made Easy. Berkeley, California:
Osborne McGraw-Hill, 1988.

TRW Systems Engineering and Development Division, Space &
Defense Sector, Common ACCS Support Software (CASS)
Development. Final VO.4 Software Evaluation Report:
Workstation Management Block. Redondo Beach, California:
TRW, Inc. 31 March 1992.

Turban, Efraim. Decision SuDvort and Exoert Systems. New
York: Macmillan Publishing Company, 1990.

131

U.S. Army Communications-Electronics Command, Center for
Software Engineering, Software Technology Division. Sary
of Available Ada Bindings. Fort Monmouth, New Jersey: U.S.
Army Printing Office, 1991.

U.S. Department of the Army. U.S. Army Signal Center.
ADblications Guide: The AN/TYC-39 Circuit Switch. Fort
Gordon, Georgia: U.S. Army Printing Office, 1986.

U.S. Department of Defense. DOD Directive 5000.1: Major and
Non-Major Defense Acquisition Programs. [Washington,
D.C.]: U.S. Department of Defense, 1991.

U.S. Department of Defense. DOD Instruction 5000.31: Interim
List of DOD A&Wroved High Order Proaramming Languages

QHOL's). [Washington, D.C.]: U.S. Department of Defense,
1976.

U.S. Department of Defense. DOD Standard 2168: Defense
System Software Ouality Program. [Washington, D.C.): U.S.
Department of Defense, 1988.

U.S. Department of Defense, Department of the Army. Army
Reaulation 73-1: Test and Evaluation Poli v.
[Washington, D.C.]: U.S. Department of Defense,
Department of the Army, 1992.

U.S. Department of Defense, Department of the Army.
DeDartment of the Army PamDhlet 73-1: Test and Evaluation
Procedures and Guidelines. Vol. 6. Software Test and
Evaluation Guidelines (Draft). [Washington, D.C.]: U.S.
Department of Defense, Department of the Army, 1992.

132

INITIAL DILTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Prof. David V. Lam (Code AS/Lt) 2
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Ronald A. Weitzman (Code AS/Wz) 1
Naval Postgraduate School
Monterey, California 93943-5000

5. CPT Donald F. Burns III 2
135 Malibu Dr.
Eatontown, NJ 07724

133

