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Preface

This research is spnsored by the Advanced Research Projects Agency (ARPA) and monitored by
the U.S. Army Topographic Engineering Center (TEC) under Contract DACA76-86-C-001S5, titled
“Image Understanding Architecture”. The ARPA Program Manager is Col. Erik Mettala, and the
TEC Contracting Officer’s Representative is Ms. Lauretta E. Williams.

These efforts encompass both software development and hardware design, including some
discussion of the hardware fabrication effort at Hughes Research Laboratories.

Because a great deal of documentation has already been written as part of this effort, we have
chosen to assemble the majority of this report by editing existing documents. The report begins
with an executive summary of the major accomplishments in the contract period. The remainder of
the report presents an overview of the project, and of our efforts under this contract. The reader is
thus referred to the executive summary for a status report on the project and to the later sections for
more detailed information.




Executive Summary

The goals of the Image Understanding Architecture (TUA) contract were to construct a proof of
concept prototype of a heterogeneous parallel processor to support machine vision, and to develop
software support and demonstration applications for the machine. These goals have been essentially
achieved, although the schedule for the program was delayed for various reasons. Primarily, the
delays were caused by problems with the MOSIS integrated circuit brokerage service. Ours was
one of the first major research efforts to try building large chips via MOSIS. As with any
pioneering effort, we encountered difficulties which have since been resolved. The chip fabrication
delays also caused slippage in other portions of the projec: schedule, which in turn required the
timetable to be stretched, which then resulted in some additional costs. Delays in receiving funding
and legal issues relating to nondisclosure agreements also incurred some delays.

In the area of software, as required by the contract, simulators were developed for the Content
Addressable Array Parallel Processor (CAAPP) and Intermediate and Communication Processor
(ICP) levels of the architecture, and these were used to evaluate the design. Some revisions were
made to the chip architecture and then incorporated in the simulators. A parallel programming
language (code generator) was developed for the CAAPP level of the architecture, based on the
FORTH programming language. A programming system for the ICP level using a standard C
compiler together with a library of routines for interprocessor communication was developed. The
functional simulator was extended to the General Purpose Processor Array (GPPA) level in that the
prototype uses the host machine as its GPPA level, and the host supports a high-level vision
system that can be used with the simulators for the other two levels. Software development tools
for the system include a debugger for the CAAPP and ICP levels, a memory management system
for the CAAPP level, various image-file conversion utilities, and a graphics-based programmer's
interface that allows the machine's status to be displayed as images and animated or static diagrams.
As part of our work on the DARPA Integrated Image Understanding Benchmark, we examined
and developed vision applications in low-level image event extraction, intermediate-level grouping,
matching models to grouped primitives, and feedback mechanisms. We examined but did not
implement any algorithms specifically for the system in the areas of planning, inference, and
control. A planning system has been implemented separately for the host processor, and we have a
high-level vision system that uses inference, but neither of these has been integrated with our
simulation environment, primarily because they and the simulations are too large to run together on
the same machine without being impractically slow. As can be seen from the list of activities
below, a significant portion of our effort has been spent on cooperating with DARPA and strategic
computing contractors to share our results and explore avenues for transferring technology.

In the area of hardware, Hughes essentially completed all of the objectives of the project. A 1/64th
scale proof-of-concept prototype of the Image Understanding Architecture has been constructed. It
contains 4096 CAAPP processing elements and 64 ICP processors. A simple array control unit has
been built that allows the machine to be tested and demonstrated with small but representative
applications. The machine is fully functional in that all of the memory, communication channels,
and processing elements operate correctly, although at a slower speed than was our original target.

Two significant problems remain in the prototype hardware that cause it to run at 2 MHz instead of
10 MHz, as was originally specified. The first problem involves a subtle interaction between two
adjacent blocks of logic in the CAAPP chip, one of which is memory. Although Hughes simulated
each of these blocks separately, they did not have the computational resources to simulate them
together. It turned out that there was an overlap between the two blocks in which a line ran across




some of the memory cells. Even though there was no contact between the line and the cells, it
induced additional leakage in the cells such that their refresh time could become impractically short
(i.e. they lose their contents in only a few hundred cycles). The pioblem has been addressed by
lowering voltages and increasing cycle times in the processor to reduce the leakage effect, and the
processors are now functionally operational but at a reduced speed. Fully correcting the problem
would require a revised run of silicon, which is not covered in the budget. The second problem is
that Hughes did not use enough ground pins in the CAAPP chip design. Hughes worked around
this problem by adjusting the voltages, bias, and clocking of each individual ~hip in their test
fixture. Under these conditions, all of the chips function (except for the memory problem) at 10
MHz, but these conditions cannot be replicated at the individual chip sites on the boards. Again,
lowering the voltages and clock rate has solved the problem at a cost in performance. To fully
address this problem would require that the chips be recast in a different package with more ground
pins, and that the processor boards be reworked to accept the larger package. Alternatively, the
boards could be reworked at each chip site to obtain maximum performance from each chip, but
that would make replacement of faulty parts very difficult.

The major accomplishments and activities performed during the period of this report, including the
subcontract with Hughes Research Laboratories, are listed in roughly chronological order as
follows:

1. The first DARPA U Benchmark, a suite of seven IU algorithms, was manually analyzed for the
IUA.

2. A functional specification for use by Hughes was developed for each of the [UA elements. This
included a revised CAAPP (low-level processor) instruction set, a block structure definition of
the IUA, and selection of the TMS320C25 as the processing element for the intermediate-level
array (ICAP).

3. Preparation of a set of [U Benchmark times for an Encore Multimax multiprocessor.
4. Representatives of UMass attended the first DARPA U Benchmark workshop.

5. Representatives of UMass attended a DARPA meeting on VLSI and Architectures in December
of 1986.

6. UMass met with Hughes to further design the [UA hardware: designed the backing store
controller and instruction set, designed the ICAP bus arbiter, designed the Array Control Unit
(ACU) interface to the ICAP bus, designed the DRAM refresh system, designed the CAAPP-
ICAP Shared Memory (CISM) page mapping system, defined the CAAPP-ICAP
communication registers, designed the ICAP-SPA Shared Memory (ISSM) interface, developed
electrical timing diagrams for each inter-level interface, developed a sample program using
interlevel communication, and developed a functional specification for the ACU.

7. Hughes designed and fabricated a 32-processor CAAPP test chip.

8. UMass obtained a Texas Instruments Explorer Workstation with an Oyssey board containing
four TMS320C20 processors, to be used in simulating the IJUA.

9. Hughes and UMass developed a detailed logic design of the CAAPP processor.




10. UMass wrote a paper on the ITUA for t!.e 1987 DARPA IU Workshop.

11. UMass representatives attended a DARPA workshop on Ultra-large Scale Message Passing
Concurrent Computers in February 1987.

12. UMass developed an TUA simulator for the TI Explorer/Odyssey system.
13. UMass wrote a document entitled "Philosophy of Benchmarks for Computer Architectures to
Support Machine Vision," to be circulated in the IU community for comment. This was in
- preparation for developing a new DARPA TU Benchmark with the University of Maryland.

14. UMass met with DARPA and ESL Corp. to discuss construction of an Array Control Unit
(ACU) for the IUA.

15. At the request of DARPA, UMass prepared an estimate of IUA processing time for
performing a typical vision interpretation and MFLOPS and MIPS equivalents for the [UA.

16. UMass representatives attended the 1987 DARPA TU Workshop and gave a talk on the IUA.
17. UMass completed a software simulator for the CAAPP processor on the VAX.

18. UMass layed out a 64-way Fast-OR chip for fabrication through MOSIS, to be used as part of
the feedback from the CAAPP and ICAP to the ACU.

19. Hughes developed behavioral simulations of the CAAPP chip and processor daughterboard.
20. UMass met with ESL Corp. to further discuss development of an ACU.

21. UMass gave a presentation on the IUA at a Texas Instruments Satellite Symposium in April of
1987.

22. Hughes and UMass met with DARPA to discuss problems encountered in using MOSIS to
support a development effort.

23. UMass prepared transparencies for use by DARPA.

24, UMass gave a presentation on the IUA to representatives of the Defense Mapping Agency.

25. UMass gave a 6-month program review at DARPA, together with Hughes. Also met with ESL
to discuss the ACU development. ESL concluded that they did ot wish to participate, and
UMass and Hughes were directed to prepare a new proposal regarding the ACU.

26. UMass and Hughes wrote an article on the IUA for the International Journal of Computer
Vision.

27. UMass developed a floating point subroutine package for the VAX-based simulator.
28. UMass completed the design for a crossbar-based communication network for the ICAP.

29. A UMass representative attended the International Symposium on Computer Architecture.




30. UMass and U. of Maryland completed the specification for the new DARPA 1U Benchmark
and distributed it to the IU community for comment.

31. A supplementary proposal regarding the ACU was written and submitted to DARPA by
Hughes and UMass.

32. A project summary was written for DARPA by UMass.

33. The floating point package was transported by UMass to the TI Explorer/Odyssey-based
- simulator.

34. An ICAP communication network chip was designed by UMass and submitted to MOSIS for
fabrication.

35. Hughes received a bad lot of 32-processor CAAPP test chips from MOSIS (after considerable
delays in the fabrication). Hughes was able to determine that the static structures were
functional, through microprobing of the dies, but the chip defects made the dynamic structures
inoperable.

36. UMass representatives attended the 1987 International Conference on Parallel Processing.
37. Enhancements were made by UMass to the debugging tools for the IUA simulator.

38. Comments from the DARPA IU community on the IU Benchmark specification were used to
refine the design.

39. Hughes completed the design of a 64-processor CAAPP test chip and submitted it to MOSIS.
40. A new project summary together with a quarter chart was prepared by UMass for DARPA.

41. Representatives of UMass attended the DARPA ISTO PI meeting in Gaithersburg, MD in
September of 1987.

42. The VAX-based simulator was transported to a new Sun workstation by Umass, and a
FORTH interpreter was integrated with it and the SunViews windowing system to provide an
interactive environment.

43. UMass developed test-data generation software for the IU Benchmark.

44, The UMass Fast-OR chips were fabricated unsuccessfully due to a mix-up in communication
with MOSIS. Instead of the 2 micron process we thought we were requesting, the chips were
built with a 1.5 micron process. The chips were redesigned in CMOS (formerly in NMOS) for
resubmission.

45. Representatives of UMass attended the Computer Architectures for Pattern Analysis and
Machine Intelligence conference in Seattle, October 1987, and participated in a panel session on
vision architectures.

46. UMass added gray-scale display capabilities to the Sun-based simulator.

47. UMass implemented a memory management package for the Sun-based CAAPP simulator.
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48. UMass implemented convolution, connected component labelling, and corner deteciion on the
simulator as part of the benchmark work.

49. UMass developed code for the sequential solution to the IU Benchmark and sent it to U.
Maryland for verification of portability and generality.

50. UMass developed a revised functional specification for the CAAPP processor chips, and an up-
to-date documentation set, together with Hughes.

51. The UMass ICAP communication chips were returned from MOSIS and it was found that, like
the 32-processor Hughes CAAPP test chips, the processing had resulted in a bad lot of chips.
Excessive metal spreading in Metal-2 had resulted in widespread shorts.

52. The redesigned Fast-OR chip was resubmitted to MOSIS by UMass.

53. Laser-printer screen hardcopy functions were added to the JUA simulators by UMass.

54. Separate presentations were given to the Interagency Al Steering Committee, Defense Mapping
Agency, and General Motors on the IUA project by UMass.

55. UMass and Hughes briefed representatives of DARPA on project status as of December, 1987.
56. UMass and Hughes worked with MOSIS to resolve our fabrication problems.

57. The new Fast-OR chips were received by UMass and found to be fully functional.

58. UMass met with representatives of Texas Instruments to discuss the [UA and TI applications.

59. UMass installed an LX-Unix board into the TI Explorer/Odyssey system, but found that
incompatibilities between the Odyssey and LX processors prevented their use together.

60. UMass briefed a representative of AFOSR on the IUA project.

61. UMass received the ICAP communication test chips and tested them. Three design errors were
found.

62. UMass wrote an article for the DARPA TU Workshop on the [UA programming environment
and IUA algorithms.

63. Hughes and UMass prepared the first annual report for the contract.
64. UMass wrote an article for the [lU Workshop on the new DARPA TU Benchmark.

65. UMass developed a simulator for the TMS320C25 because we were unable to obtain one from
TL

66. UMass corrected the ICAP Communication chip design.

67. UMass developed two "Grand Challenge" statements at the request of DARPA.




68. UMass imp-lemented a "Spiral Qut" operation for the CAAPP simulator on the Sun to simplify
the development of convolution operations.

69. UMass briefed a representative of ONR on the TUA project, and discussed evaluation of a
Xenologics X-1 processor for use in a future SPA design.

70. UMass met with representatives of IMS Inc. to explore the possibility tha: one of their ASIC
testers could be used as an interim [UA ACU.

71. Hughes completed construction of a daughterboard emulation/chip tester board to be driven by
their IMS test system.

72. UMass representatives attended the DARPA TU Workshop in April, 1988 and presented two
papers.

73. UMass developed a parallel implementation of the IU Benchmark for the Sequent Symmetry
multiprocesor.

74. UMass implemented the median filter and K-curvature portions of the IU Benchmark on the
IUA simulator.

75. UMass revised the simulator to reflect (unauthorized) changes in the CAAPP Coterie network
that had been developed by Hughes under IR&D support.

76. UMass resubmitted the ICAP communication chip to MOSIS for fabrication. The corrected
design also includes some architectural enhancements.

77. Hughes tested the 64-processor CAAPP test chip and found several design errors, although
major portions of the design are functional.

73. UMass representatives attended the International Conference on Supercomputers and presented
two papers, one on the IUA, and the other, on the [U Benchmark.

79. UMass briefed a representative of the Supercomputing Research Center on the TUA at UMass.

80. The TMS320C25 simulator was modified by UMass to work as an ICAP processor simulator,
and the ICAP level of the Sun-based simulator was implemented.

81. UMass implemented the gradient magnitude portion of the IU Benchmark on the CAAPP
simulator.

82. UMass completed the timing and instrumentation report specification for the ITU Benchmark.
83. UMass implemented an assembler for the ICAP processor simulator.

84. UMass implemented the Sobel portion of the TU Benchmark on the TUA simulator.

85. UMass representatives attended the 1988 Computer Vision and Pattern Recognition
Conference and presented a paper on the IU Benchmark.




86.

87.
88.
89.

91.

92

93.
94,
95.

96.

97.

98.

UMass wrote a paper for the 1988 CONPAR conference on the preliminary performance of
the IUA and the IU Benchmark.

UMass representatives attended the 1988 Computer Architecture Symposium.
UMass developed a bit-slice design for an ACU.

Hughes completed the layout of the backing store memory controller for the CAAPP.

- A UMass representative gave an invited talk on the JUA at the Supercomputing Research

Center.

UMass implemented a parallel version of the [UA simulator on the Sequent Symmetry, which
provides for simulation of a full-scale CAAPP array.

UMass implemented software to support communication between the CAAPP and ICAP
levels of the IUA.

The IU Benchmark was initially distributed by UMass to 20 sites.
Representatives of UMass attended the 1988 Intemational Conference on Parallel Processing.

UMass implemented the match-strength probe and Hough probe portions of the IU
Benchmark on the IUA simulator.

UMass met with representatives of Sequent to discuss improving the U Benchmark
performance on the Symmetry.

A UMass representative gave a presentation on the IUA to representatives of Digital
Equipment Corp. at an invited talk.

The revised UMass ICAP communication chips were received from MOSIS, which again had
problems with the fabrication run. Of the very small number of usable die (6), four were fully
functional.

Hughes submitted a complete CAAPP chip design to MOSIS for fabrication. Due to a delay
at MOSIS, Hughes took the opportunity to add some features to the CAAPP chip. The
complete design has 130,000 devices with 80,000 in the memory, occupying 60% of the chip
area. The size of the chip is 350 x 330 mils.

100. A representative of UMass attended the 1988 CONPAR conference in England, and while

there, visited labs at the University of Warwick and University College London.

101. The rectangle hypothesis generation portion of the [U Benchmark was implemented on the

IUA simulator by UMass.

102. UMass briefed the DARPA/ISTO Office Director on the TUA in October of 1988.

103. A representative of UMass attended the 1988 Frontiers of Massively Parallel Processing

Conference and gave a poster paper on the performance of the IUA on the DARPA
benchmark.




104. UMass organized and ran a DARPA-sponsored workshop on the IU Benchmark in October
of 1988.

105. UMass completed the [UA implementation of the DARPA benchmark.

106. Hughes completed simulations of the CAAPP processor chip design and released the chip to
MOSIS for fabrication.

107. Dr. Weems attended the 1988 DARPA Principal Investigators Meeting in Dallas, TX, and
presented the results of the IU Benchmark Workshop; he also participated on a new ideas
panel session for computer architecture.

108. UMass implemented the Abingdon Cross benchmark on the IUA simulator.

109. UMass received a third run of ICAP communication chips from MOSIS and tested them.
They are slower than the earlier runs and the yield is 14 working parts out of 60.

110. UMass implemented a set of trigonometric routines for the CAAPP and ICAP using
CORDIC methods.

111. A UMass paper on the ICAP communication chip was accepted by the 1989 IEEE
Conference on Circuits and Systems, and camera ready copy was prepared and submitted.

112. Hughes received and tested the 64-processor CAAPP test chips from MOSIS, and in spite of
very low yield, managed to get two of the chips to work together in a demonstration test jig.

113. UMass implemented the Weymouth-Overton edge-preserving smoothing operator on the
CAAPP simulator, using FORTH.

114. UMass briefed DARPA program managers on project status at DARPA in February of 1989.
115. Dr. Weems attended the 1989 DARPA Image Understanding Review meeting.

116. UMass received a fourth run of ICAP communication chips from MOSIS. These were tested
and the yield was found to be much better (53 of 98 parts are fully functional).

117. An annual report was prepared by UMass and submitted to ETL for review.

118. An article on the IU Benchmark exercise was written by UMass for the 1989 DARPA IU
Workshop.

119. Representatives of General Dynamics were briefed on the IUA in an April 1989 visit to
UMass.

120. A generalized permutation routing algorithm has been developed for the CAAPP by UMass.

121. Researchers at Textron Defense Systems were briefed on the [IUA by UMass at a May, 1989
meeting.




122. UMass purchased and installed an IMS ASIC test system to act as an interim controller for the

123.

124.

125.

126.

127.

128.

IUA, following the lead of Hughes. The system will also be used to test custom chips
developed at UMass.

Dr. Weems attended the 1989 IEEE Circuits and Systems Conference with a student who
presented a paper on the ICAP communication chip. While there, they met with IMS to
discuss a faster /O link between the Sun host and the test system.

Dr. Wer ., attended the 1989 DARPA TU Workshop where he presented the results of the [U
Benchmark exercise. While there, he met with Hughes to discuss project efforts.

The design of a new feedback concentrator chip for the [UA was completed by UMass and
submitted to MOSIS for fabrication. The design will integrate the Global-OR and Response
Count functions. The previous design performed only the Global-OR.

UMass developed an alternative design for an ACU, based on a SPARC co-processor. This
design was intended to explore the performance/cost tradeoffs of such an approach. It appears
that the coprocessor interface is too inefficient to control the IUA at full speed.

Hughes completed debugging of the CAAPP processor chip, and successfully demonstrated
its functionality.

Hughes decided to contract the IUA integration work to an outside consultant (VillaMar Inc.)

with lower overhead rates. However, this was delayed for some time while the contract
modification and a six-month no-cost extension were processed to allow it to take place,
which further delayed the completion of the IUA prototype.

129. Hughes completed construction of the [UA motherboard and daughterboards.

130.
131.

Hughes completed associated circuit boards for the [UA prototype.

Hughes tested the IUA prototype system and found numerous bugs, most of which were
corrected. The remaining problems are avoided by reducing the clock rate and voltage of the
system.




1. Introduction

Computer vision using color imagery requires a processor capable of accepting 23 megabytes of
input per second, and interpreting it to construct a three dimensional model of the sensor's
environment. An interpretation may require hundreds of objects of many different types to be
identified. Vision researchers {Hanson, 1986] have shown that pattern recognition techniques, by
themselves, are inadequate for this task. In fact, most of what we "see" in natural scenes is really
inferred from partial information. In addition to sensory and knowledge-based processing it is
useful to introduce a level of symbolic processing. Thus, vision researchers tend to classify
algorithms and representations into three levels: low (sensory), intermediate (symbolic), and high
(knowledge-based).

While it may be argued that a general-purpose processor can fulfill the requirements of vision, the
goal of real-time performance necessitates the use of special-purpose processors. Another key to
achieving real-time performance is processing at all levels simultaneously, which leads to the idea
of linking together three different parallel processors. But because of the massive amount of
communication between levels, and the requirement for flexible, top-down control, the different
parallel processors must be designed from the start to be tightly coupled with each other. This
analysis lead to the concept of the Image Understanding Architecture (IUA).

The primary goal of the IUA project (Contract DACA-76-86-C-0015) was to build a proof-of-
concept prototype of a 1/64th slice of a parallel architecture to support real-time, knowledge-based
image understanding, and develop the software support environment that will be needed to utilize
the hardware.

The majority of the hardware effort has taken place at Hughes Research Laboratories, Malibu,
California, although UMass has principle responsibility for the design of the IUA architecture.
UMass has also undertaken some smaller portions of the hardware development (the feedback
concentrator for the low and intermediate level arrays, and the communications router for the
intermediate level array). The majority of the software effort took place at UMass, although
Hughes was also involved in some software development, both in support of their hardware
efforts, and in the form of algorithm development for specific applications on the [UA.

Our software efforts have included development of a detailed software simulation of the IUA and a
FORTH interpreter for the low-level processor of the IUA. The remainder of the software effort
has been in the development of run-time support libraries, diagnostics, and vision algorithms.
Some effort was also spent on implementing the original DARPA Image Understanding
Benchmark and on developing a successor to the benchmark.
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2. Overview of the Image Understanding Architecture (IUA)

The Image Understanding Architecture [Weems, 1989] consists of three different, tightly coupled
parallel processors. The low- and intermediate-levels are controlled by a dedicated Array Control
Unit (see Figure 1) (ACU) that takes its directions from the high level. As Figure 1 indicates, each
of these processors provides a different granularity and different modes of parallelism. We have
built a 1/64th slice of the IUA as a proof-of-concept demonstration. The discussion that follows
describes the full [UA, except where it is noted that a feature pertains only to the prototype.

At the high level, the IUA is purely a Multiple-Instruction Multipe-Data (MIMD) parallel
processor. In our original proposal, the high level was called the General Purpose Processor Array
(GPPA), but has since been renamed the Symbolic Processing Array (SPA) to avoid confusion
with scientific parallel processors. The low level, called the Content Addressable Array Parallel
Processor (CAAPP), operates in pure Single-Instruction Multiple-Data (SIMD) or multi-
associative mode, and the intermediate level operates in Single Program, Multiple Data (SPMD) or
MIMD mode. In the original proposal, the intermediate level was called the Intermediate and
Communication Processor (ICP), but was later renamed the Intermediate Associative and
Communication Processor (ICAP), to reflect the emphasis of associative processing on its design.

Briefly, the multi-associative and SPMD processing modes differ from the familiar SIMD and
MIMD modes as follows. In multi-associative mode, the PE's execute a single instruction stream,
but are arranged into disjoint groups, with each group able to locally broadcast values, and compute
its own summary values in parallel with other groups. In SPMD the processors execute the same
program with autonomous instruction pointers so that they can branch independently.

SUMMARY « Controls CAAPP and ICAP.

+ Takes commands from SPA.
* Receives global summary info.
» Knowledge base, blackboard.
» 64 RISC processors (MIMD).
l HIGH LEVEL (SPA) 1 « Instantiation of schema strategies.
| \ « Construction of scene interpretation.
geEEPA%__I__IL!'—;] « Top-down MIMD control of grouping.
y anm J A A— 2\
11 « 64x64 (4K} Array of 16-bit processors.
INTERMEDIATE LEVEL (ICAP » SPMD/MIMD operation.
[ ‘ 1\ ‘ » Executes grouping processes.
]
A AR » Stores extracted image events.
J=sz==2 =SSETEER * 512x512 (256K) Array of 1-bit
[ = o, = o L processing elements.
—e|___LOW LEVEL (CAAP = . SIMD Associative / Multi-associatis ».
7 \ « Processes sensory data.
™l LVOSTAGINGMEMORY ] » Stores 15 seconds of imagery.

Figure 1. TUA Overvic «
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3. Tradeoffs in the Development of the Low-Level Processor

Our analysis of low-level vision algorithms showed that the majority would best be served by a
mesh-connected array, augmented with the features of an associative processor (i.e. global
broadcast with local partial matches, activity control with global override, and dedicated response
hardware) [Weems, 1984).

3.1 Neighbor Communication

One tradeoff is a four-way versus an eight-way mesh. We found that few algorithms take
advantage of an eight-way mesh, and the increase in performance is small unless operations take
place on eight inputs at once. Even then, the improvement does not justify the resultant cost of
tripling the number of I/O pins on the processor chip and at circuit board boundaries.

In addition to local communication, several low-level vision algorithms require communication
between processors that are spatially distant in the mesh. We chose to enhance the mesh itself, so
that no additional connectivity is required between processors. This scheme is similar to those
proposed by [Kumar, 1985], [Miller, 1988], and [Li, 1987], and is a generalization of the propagate
operation in the CLIP-4 [Duff. 1978], and the "flash-through" mode of the ILLIAC III
[McCormick, 1963]. In our scheme, any contiguous group of processors in the mesh can be
connected by a bus. For example, each region in an image could be electrically isolated from its
neighbors, allowing local broadcast and some/none operations to occur simultaneously in all
regions (Figure 2). An important result is that maximum or minimum values can be determined
within regions, which is used to label connected components. Our simulations show that this takes
roughly 50 microseconds on a 512 by 512 array, assuming a 100 nanosecond cycle. This Coterie
Network, as it is called, has many other uses, including matrix arithmetic, Fast Fourier Transform
(FFT), convex hull computation, simulating a pyramid processor, etc.

3.2 Memory

The two obvious options for expanding processor memory are to add memory to the processor
chip, or to use external memory. We anticipate chips with more than 64 (1024 is feasible)
processors, and increased clock rate, which favors on-chip memory. However, we also saw the
need for at least tens of thousands of bits per processor, which only off-chip memory could
support. Our solution to this dilemma is to do both. Each processor contains an explicitly managed
data cache on the chip. In our current implementation, this contains 320 bits, but the architecture
provides for expansion to 1024 bits. Two pages of the cache also perform corner-turning (the
transformation of bit-serial data into bit-parallel formats). The external memory is dual-ported with
the intermediate-level processor, and is the primary data path between processing levels. The low-
level, bit-serial data must therefore be "comner-turned” on its way to the backing store, so that the
intermediate-level processor can work with it directly in bit-parallel formats. Each low-level
processor has access to 32K bits of external memory. Backing store transfers take 16 instruction
cycles per byte.

The comer-turning pages have eight-bit data paths, providing a factor of eight speed-up over the bit-
serial data path for movement of data between locations in these pages. The wider data path is also
useful for aligning mantissas in floating-point operations. The registers that control the Coterie
Network switches are also attached to the 8-bit data path, allowing the entire network to be
reconfigured with a single instruction.
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3.3 Response and Activity Control

Traditional associative processor designs use a response flag to both control local activity and
provide summary information to the central control. An opposite approach is to separate response
from activity by providing a register for each. Both, split and combined activity, and response can
be provided by allowing writes into either of the two registers, or both, simultaneously. This small
change provided a 20 percent speed improvement in equality comparisons between a local value
and a broadcast value. A similar change allows inequality tests to be performed in about 50% less
time, by permitting the response register to be loaded with an operand at the same time that a result
is stored in the activity register.

3.4 Response Count

Our analysis showed that counting processors with a specific bit set is frequently done in bursts.
For example, summing a set of values in the array involves counting the ones in each bit position
(each processor loads one bit at a time into its response register; a sum is developed by counting the
bits in each position and scaling the counts appropriately before summing them). Another example,
is creating a histogram of a set of data; which could require 256 counts for an 8-bit field (each
processor compares its value to a broadcast value, the bucket number, and if the values match the
processor sets its response bit, the table of counts then corresponds to all of the buckets of the
histogram).

For real-time applications, a count must be developed very quickly. One technique proposed by
Foster [Foster, 1971], uses a pyramid of adders. Within the processor chip, Foster's scheme is used
to produce a response count at the end of each instruction cycle. A special instruction latches the
count into a shift register so that it can output serially. The processors are able to overlap
computation with output of the current count.

A custom VLSI chip was designed with 64 serial inputs, one serial output, and six parallel outputs.
One cycle after the low order bits of a set of partial counts are input, the low order bit of the result
appears at the serial output. The high order bits of the result appear in the parallel outputs. The
process can be repeated to sum 64 inputs of any bit length with the low order portion of the result
being shifted out serially and the high order six bits available in parallel. Two levels of the chips are
cascaded to form a count for the entire array. Only 1.6 microseconds are required to count the
response registers in an array of 262,144 processors, using 65 copies of a single custom chip. The
same chip also provides the boolean summaries some/none, some/all, and exactly one responder.
It can be thought of as a general purpose 64-input reduction unit.
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Figure 2. Coterie Network
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Figure 3. Memory Architecture

3.5 Input/Output

Our original I/O scheme was similar to that used in the MPP [Batcher, 1980], with data shifted in
from an array edge. With parallel mesh communication, the time required to fill a 512 by 512 array
with an eight-bit image, assuming a 100 nanosecond clock is 410 microseconds. Initially, we felt
that this would be fast enough, but later realized that even a pause of this length could interfere with
real-time deadlines. Also, in a multisensory task, the amount of I/O is much more significant.

Another consideration is that vision systems occasionally fall behind and need to subsample the
incoming stream of frames in order to catch up. It is also desirable to be able to retrieve previous
frames. We were thus faced with redesigning the I/O after beginning to design the new chip, which
greatly limited our options.

Our solution for the prototype is to associate an additional Video RAM (VRAM) with each
processor chip, connected to the South edge of the chip's mesh network (Figure 4). A special
instruction tri-states the North edge of the chip during I/O. Then the data in the serial buffer of the
VRAM is shifted in from the South, and stored by the processors, using the corner-turning
circuitry. To output to the VRAM, the Coterie Network is used to send data from the North edge of
the chip to the South, where it is streamed into the VRAM's serial port. Transfers to and from this
staging memory take only 8 microseconds for an array-sized 8-bit image. The memory is large
enough to hold sixteen seconds of imagery, providing a reasonable time window.
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Figure 4. I/O Architecture.

The direct access portion of the VRAM is connected to a VME port, and appears as a block of
memory in the VME address space. In the full-scale system, each processor card could have its
own VME port so that parallel I/O to the staging memory can take place. In our prototype, the
single VME port is connected to a smart frame grabber that moves data in and out through a
region-of-interest buffer.
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4. Design of the ICAP Interconnection Network

The ICAP operates in two distinct modes of control. When working with the SPA, the ICAP
operates in MIMD mode, but when interacting with the CAAPP, it is most efficient to keep the
ICAP processors roughly synchronized. The remainder of this section will focus on the latter
mode, which is called SPMD (Single Program, Multiple Data), and has a programming model that
is similar to SIMD, except that branches can be performed simultaneously rather than sequentially.
During SPMD operation, the ACU manages the stages of processing through barrier
synchronization points. Communication between ICAP processors also occurs synchronously via
reconfigurable network that is managed by the ACU. A typical scenario involves the ICAP
processors communicating via one connection pattern, then synchronizing at a barrier and waiting
for the ACU to reconfigure the network before releasing them.

The ICAP connection network is used 1o set up a connection pattern between the N output ports of
the processors and the N input ports of these same processors. The connection network can be
programmed on-line, to make a direct link from the output port of any processor to the input port
of one or more processors. We have built a custom VLSI chip, called the PARallel
COmmunication Switch (PARCOS), which is capable of both point-to-point and broadcast

communication, allowing the connection network to realize any of NN mappings of its input ports
onto its output ports. All of the processors can send and receive data on their links at the same time.
These links can be changed by the ACU at any time.

The 64-input, 64-output connection network for the [UA prototype uses 2 stages of 32 x 32
PARCOS chips. The PARCOS chips are connected to make a 64 x 64 crossbar switch with
broadcast capability as shown in Figure 5. A detailed discussion of the network can be found in
[Rana, 1988]. While these chips have been constructed and tested, they have not yet been instailed
in the IUA prototype because neither the Hughes nor the UMass budgets included the cost for
fabricating the circuit-boards to hold them. UMass assumed Hughes would build the boards
because it was up to them to decide on the physical construction of the system, including circuit-
board form factors (which are necessary to determine costs). Hughes assumed that UMass had
budgetted construction of the board because UMass was designing the custom VLSI chips.
Fortunately, the system was designed to also function without the communication network
(communication via the host instead), so this merely affects communication performance rather
than functionality. We still hope to eventually construct the boards and install them, using other
funds, once the prototype is physically installed at UMass.

4.1 The Parallel Communication Switch

The PARCOS chip consists of a communication matrix of 32 bit-serial inputs and 32 bit-serial
outputs, a control memory, a set of registers and associated read/write circuitry. The PARCOS chip
organization is shown in Figure 6. Multiple PARCOS chips can be used to build larger connection
networks, such as the 64 x 64 network in the TUA prototype.

The communication matrix of PARCOS consists of 32 tree-structured multiplexers, each of which
is a 1 of 32 multiplexer. All 32 input lines are connected in parallel to each of the 32 multiplexers.
With this architecture, multiple outputs can be connected to the same input, providing broadcast
mode capability. For any multiplexer, path selection at any level of the tree is done with a single bit
of a control word. Thus, 5 control bits are required to select 1 of 32 inputs for each multiplexer, or
32 x 5 = 160 bits for configuring the entire communication matrix.
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The PARCOS control memory consists of 32 control words, where each control word contains the
32 bytes of S bits required for one configuration. The on-chip control memory is therefore
constructed so that PARCOS can hold up to 32 of the most frequently used connection patterns for
larger networks built out of this chip. The control memory is called the Connection Pattern Cache
(CPC), because it is analogous to storing the most frequently used pages in a memory system
cache.

The connectivity information for the communication matrix is stored serially into the control
words. To write connectivity information in a control word of the CPC, first a row number is set in
the Row Select Register (RSR). RSR is mapped into the chip's memory space, allowing the address
bus in PARCOS to select the register, and the binary value on the data lines determines the row
number. Next, 32 5-bit bytes are written into addresses O - 31. The memory location's address is
the output port number and its contents determine which input port it is connected to. If only a
subset of links need to be modified, this can be done by selectively writing only into locations
corresponding to those links.
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Figure 5. A 64 x 64 Network Built with PARCOS Chips.

Reswitching the configuration of the communication matrix from one stored connection pattern in a
control word to another requires a single write instruction, where the address of a new control word
is placed in the RSR, and the control word's contents are loaded into the Control Pattern Register
(CPR), activating a new connection pattern. Notice that the CPR allows a control word to be
modified in the CPC without disturbing an existing configuration in the communication matrix. In
many cases this fzature allows the time to write a new connection pattern from the ACU into the
CPC to be hidden while the processors are working on an algorithm.

PARCOS is implemented on a single 84 pin, 50,000 device, VLSI chip. It is a full custom design,
built out of a 2 micron, P-Well, double metal, scaleable CMOS technology available through
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Figure 6. PARCOS Chip Organization

MOSIS. Each CPC memory bit is a 6 transistor static RAM cell. The worst case delay in
broadcast mode from one input to 32 outputs is less than 50nS.
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5. The IUA Simulator

The simulator for the Image Understanding Architecture provides a way of testing the design of,
and developing the software for, the IUA. The simulator runs under X and is currently installed on
Sun and DEC workstations and on a Sequent Symmetry multiprocessor. Several versions of the
simulator exist on each machine and differ in the size of the IUA being simulated. The larger the
IUA, the slower and larger is the simulation. The simulator supports IUA configurations with
various numbers of Mother Boards as shown in the following table.

Mother Boards 1 4 16 64
CAAPP PEs 4096 16384 65536 262144
ICAP Processors<= 64<= 256 <= 1024 <=4096

Even with the smallest complement of Mother Boards, a complete IUA is usually not simulated
due to limitations on the real ..;emory available on the host computer and the desire to avoid page
faults when running simulations. (Even the smallest configuration of the IUA contains 42 MB of
RAM.) The amounts of CAAPP-ICAP Shared Memory (CISM), ICAP-SPA Shared Memory
(ISSM), and ICAP Data Memory (IDM) are thus limited to that needed by the problem being run
on the simulator. For the same reasons, the ICAP Program Memory (IPM) is considered to be
read-only so that it need not be duplicated for all the processors.

The simulator has been constructed in a modular fashion so that the various parts may be replaced
easily for different needs such as allowing substitution of a 64 processor ICAP simulator module
for a 16 processor ICAP simulator module when the primary simulation is at the ICAP level
instead of at the CAAPP level. The user's view of the simulator is presented by the "user console,”
which contains separate windows such as a control panel, display window, and programming
terminal.

The user console is a window which is roughly 600 rows by 800 columns in size, leaving sufficient
room to view other windows (such as a command window or editor) on the screen. This display is
split into a left and right side. The left side is the Control Panel and the right side is the Display
Window.

The Control Panel contains displays of the 1-bit CAAPP registers arranged as blocks of 64 x 64
pixels with one pixel per processor. For the smallest simulator this is the complete set of
processors. For larger versions of the simulator, this is a sub-window into the n by n array of
CAAPP processors. Associated with each register display is a button. Clicking this button with the
mouse causes the display to be shown enlarged in the Display Window. Other buttons in the
Control Panel cause other displays to appear in the Display Window or bring up pop-up windows
for special operations such as loading and saving files. Having all of the registers shown at the
same time allows the programmer to see the state of the CAAPP processors arranged in
correspondence to images stored in the array.

The Display Window consists of a foreground and background display. The background display is
always the Programming Terminal. The foreground display may or may not be present and shows
the display selected by clicking a button in the Control Panel. The foreground display leaves the
bottom sixth of the Programming Terminal always visible. The Programming Terminal allows
entry of commands and input to a running program. Output from a program can also be shown on
the terminal.
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The foreground displays include processing element (PE) registers, PE memory, a grey level
display, coterie network display, ICAP display, and PE instruction display. All of the displays can
be selected and manipulated by the user program running in the simulated ACU.

The PE register display presents a binary image indicating the status of one selected PE register
from all PEs. The user can zoom in or out from a 2 by 2 processor display up to a display showing
all the processors being simulated, even for a 512 x 512 simulation. Scroll bars on the sides indicate
what portion of the complete array is being shown. Individual PE registers may be set or cleared by
clicking with the mouse inside of the display window. The Control Panel simultaneously shows the
current row-column processor location selected by the mouse.

The PE memory display shows one location in every PE Memory as a binary image. This display
has the same functionality as the PE Register display.

The grey display shows a contiguous range of bits in PE Memory as a grey scale image. The user
can zoom in or out from a 2 by 2 processor display up to a display showing all the processors
being simulated. (Scroll bars on the sides indicate what portion of the complete array is being
shown.) The user may select from 1 to 32 bits in the range to be displayed, although the actual
screen representation may be limited by the available graphics hardware. The grey display may be
changed to an inverse grey or false color mode.

The user may select a 3 by 3 pixel array with the mouse to be shown as numeric values in a pop-up
window in either signed integer, unsigned integer, or IEEE floating point format. The location in
PE memory or CISM memory that is sampled may be different from the location shown in the
Grey Display, allowing an image to be used to guide exploration of other values that may not be
visually informative when shown as an image. The Grey Display can be overlaid with red, green,
and blue pixel maps. The overlay can be any of the PE registers or locations in PE memory.

The Coterie Display shows a graphic representation of the state of the switches ana the the electrical
charge in the network. Currently, the Coterie Display is limited to 32 by 32 PEs. A particular PE
can be dragged to the center of the display with the mouse. Scroll bars on the side indicate what
portion of the complete network is being displayed. Using function keys, individual switches can be
opened or closed in the Coterie Network.

The ICAP display shows the complete set of registers for one ICAP processor. Also shown are all
of the registers on the same Daughter Board (except for the CAAPP PE registers). When this
display is selected, a pop-up window appears which may be used to select a particular Daughter
Board, and a range of locations in ICAP Data Memory (IDM), to be displayed. A range of
locations in ICAP Program Memory (IPM), surrounding the current value of the program counter,
is also shown. Up to four breakpoints may be set for the program running in the ICAP processors.
Both the IDM range and the breakpoints may be selected using symbolic expressions.

The PE Instruction Display is a scrollable display of the last 2048 instructions sent to the CAAPP
by the ACU. The instructions are shown both in hex and in symbolic form.

The Daughter Board Simulator simulates all of the PEs, CISM, ISSM, and glue logic. While the
IUA is made up of multiple Daughter Boards, the Daughter Board simulator does not simulate
them one at a time. Instead, for efficiency, the PEs are simulated as a vector of processors. At those
places where the geometry of the IUA is apparent, the simulation applies a board-by-board
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approach. For example, the instruction “zero the Z registers" is done for all FEs in a tight loop
while the backing-store operations are done board-by-board.

The Daughter Board simulator receives instructions in the same form that the real Daughter Boards
receive instructions from the ACU. The instructions are sent on a simulated bus as 32 bit signals
and are then decoded. This provides two benefits over a more tightly coupled scheme. First, the
instruction stream on the bus is easily captured and can be used in exercising circuit boards under
test. Second, using a bus allowed quick construction of versions of the simulator that could utilize a
parallel processor. In fact, we use the same Daughter Board code for both the uniprocessor and
multiprocessor implementations. A compile time switch is used to select the data partitioning
parallel code which resides in only one subroutine. The parallel code is coupled with synchronizing
check points that are no-ops in the non-parallel versions.

The computation of execution time is also simplified through the use of the simulated bus. Because
the majority of instructions take a single clock cycle, an accumulator is used to count the
instructions sent over the bus. An ACU overhead cost is also added as appropriate. (Micro-
controller routines have lower per-instruction overhead.) For those operations such as backing-store
read where the result is not available immediately, the code that simulates the individual instruction
adds the worst case time to the accumulator. (In the multiprocessor version of the simulator, only
one processor does the addition.) For the real machine, these variable length processes will be
handled either by using feedback or by fixed time idle loops in the ACU for the worst case. For the
simulator, we took the second approach since we did not want to simulate the backing-store finite
state machine at the level needed to provide the correct timings using the feedback method.

The Coterie Network provided special problems in the simulation because it is really an analog
circuit using electrical charge propagation. As the cost of an analog simulation of the network is
prohibitive, we simulated the charge propagation digitally; permitting us to execute one cycle of 100
ns in approximately 18 milliseconds for a 512 by 512 PE simulator using 9 processors on the
Sequent multiprocessor. For the DARPA Integrated IU benchmark, this would have otherwise
required approximately 24 days of wall-clock time to run only one of the five test cases. An
analysis of the problem showed that the configuration of the network was being changed
infrequently with respect to the number of network operations performed. We thus modified the
simulator to record a list of connected PEs whenever the network is reconfigured, and this
information is used to accelerate the simulation of subsequent network operations using that
configuration. The result is that the complete set of 5 IU benchmark test cases can be run in just two
and one half days on the Sequent.

The Programming Terminal is an interactive interpreter that allows entry of commands and
programs to directly manipulate the processing arrays. The [UA Simulator has been designed so
that this module may be easily replaced by other modules. (Currently, the only module available is
for interpreting the FORTH language.) A module for Lisp could be provided as well. The interface
consists of input and output streams from the simulator, a procedure call for issuing instructions to
the CAAPP bus, and other procedure calls for changing the displays.

We felt that it was very important to provide an interactive environment so that the edit, compile,
test loop would be very fast. The programmer can rapidly prototype code interactively and then
reimplement the tested algorithm as an "ACU Macro" if desired.

FORTH is a threaded language. A few simple constructs are combined into ever more powerful
constructs. Each construct is called a word. FORTH was selected because its interpreter is small
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and fast. ** : also had access to the source code for a FORTH implementation. New features such
as floating point operations were built, in addition to interfaces to the IUA Simulator. FORTH
provides a quick way of changing a program and re-trying it, or of just entering instructions. We
provided a FORTH-based assembler for the CAAPP PE instructions so that the user is able to
enter an instruction such as

A:=B'ANDY !

and have it assembled and sent on the CAAPP bus. Each of the symbols (A, :=, B, etc) are
FORTH words that place information on the FORTH stack. This information is processed by the
FORTH word !! to produce the CAAPP bus instruction. The special words provided to interface
with the simulator allow FORTH to control all aspects of the simulation and act as the ACU.

The low level processing portion of the DARPA Integrated IU benchmark was written mostly in
FORTH with some of the simple ACU Macros such as ADD-FIELDS written in C. The major
problem encount:red with the use of FORTH was its flat name scoping, which prevented the
FORTH code from being completely modular due to name conflicts (no vocabulary facility is
available).

The following example is the definition of a FORTH word that adds two integer fields of the same
length in PE memory.

(1) : ADD-FIELDS ( length f1 £2 --) ( Add field 2 to field f1)
(2) Z:=7ZERO!

(3) 2ROLL1-0DO

(4) 1PICKI+>R X =R>A!

(5) OPICKI+DUP>R =X '+ R> A!

(6) LOOP;

Line 1 defines the word ADD-FIELDS. This word takes three arguments off of the FORTH stack.
The top stack value is the PE Memory address of the second operand. The next stack value is the
first operand/result field PE Memory address. The third value is the length of the fields in bits. This
argument protocol is documented with the comment in line 1. Line 2 clears the Z (carry) register in
all PEs. Line 3 is a FORTH indexed loop. The 2 ROLL picks up the length value from the FORTH
stack. If this value were 8, then line 3 would be equivalent to 7 0 DO which would loop over the
values 0, 1, 2, 3, 4, 5, 6, 7. The end of the loop is specified in line 6 which also ends the FORTH
word. Line 4 generates the PE instruction "loac the X register of the active PEs with the value from
memory location f2 + I" where I is the loop index. The FORTH return stack is used as a temporary
holding place for the value f2 + I. Line 5 generates the PE instruction

Mif1+]] := X + M[f1+]] A!

which causes the X register, the Z register, and memory location f1 + I to Ibe added in all active
PEs. The result is placed in memory location f1 + I and the carry goes to the Z register. For the
FORTH statement

2 10 20 ADD-FIELDS

the following PE instructions would be issued to add a pair of 2-bit values at locations 10..11 and
20..21, with the result being stored back in locations 10..11:
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Z :=7ZERO!!

X := M[20] A!
M[10} := X + M[] A!
X :=M[21] A!

M[11] := X + M[] A!

The ICAP simulator is structured to simulate one instruction from the first ICAP processor, one
instruction from the next and so forth. Because the ICAP processors run in MIMD mode, these
instructions will probably be different. As we did not want to pay the price of a gate level simulator,
we chose to imp.cment a functional simulator for the TMS320C25.

Because the simulation is on an instruction level, code written to use timing loops is not valid as the
simulator will not maintain synchronization between the various ICAP processors. A disadvantage
of this approach is that the timings are not exact. Our timing model uses the average time for an
instruction with data in on-chip memory and instructions in off-chip memory. Our experience
shows that approximately 90 percent of the data references are to the on-chip memory. With the
TMS320C25 there is a large benefit to using a small amount of contiguous data memory, which is
due not only to the on-chip data memory, but also to the addressing modes supported.

The full [UA will have 4096 ICAP processors. Each one will have 128k bytes of data memory and
128k bytes of program memory. This is a gigabyte of memory and is far more than the real
memory available on any of the machines we have used to run the simulator. In order to prevent
page faults which would have drastically increased the elapsed time for any simulation, we reduced
the number of ICAP processors and the amount of ICAP Data Memory (IDM) and ICAP
Program Memory (IPM) available in the simulator. The IUA simulator can be easily re-configured
as to the number of ICAPs being simulated (independently of the size of the CAAPP array) and the
size of IDM. The IPM is shared as read-only memory among all the ICAP processors. Even
though the ICAP processors run independently, they all have the same programs loaded in IPM;
which restricts the programmer to writing code that is not self-modifying.

Because there is a single system clock, the CAAPP and ICAP instruction streams are in
approximate synchronization with roughly a two to one execute rate. Therefore, the IUA simulator
executes two CAAPP instructions and then one instruction for each ICAP processor. Since an
ICAP instruction may take more than one cycle, a particular ICAP processor is held up if its clock
shows more time than the CAAPP has used.

The ICAP code is loaded into IPM by thc AZU. The ACU can write the same program in every
ICAP IPM directly using the CAAPP bus. i iie ACU can also write directly into any off-chip IDM
location. Because the bus is a one-to-many bus, all ICAPs receive the same data and programs.
However it is also possible for the ACU to write a loader program into IPM that causes IPM to be
loaded from ISSM by each individual ICAP processor. Since each ICAP processor sees a separate
part of ISSM, each can be loaded with a different program. This mode of operating is not supported
by the IUA simulator as there is only one IPM shared by every ICAP processor.

Code for the ICAP processors can be written in either C or Assembler. The IUA simulator
provides a loader for either special absolute code or for the TI COFF loader text format.

While the full-scale IUA has one ACU and 64 SPA processors, the prototype hardware has one

ACU and just one SPA. In the simulator, the ACU and SPA are the same computer and the
simulator follows this simpler model regardless of how many PEs or ICAP processors are
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simulated. The ACU/SPA is the interactive module linked into the Programmers Terminal, which
is currently the FORTH interpreter.

A separate module called the ACU Macros is also part of the ACU. The ACU Macros are
procedures written in C for standard operations on the CAAPP such as ADD-FIELDS or FIND-
GREATEST. On the real IUA, these macros will be stored in the micro-code memory of the
Micro-controller that feeds the bus to the Daughter Boards. The ACU will request that a macro be
executed with specified parameters, the micro-controller will execute the macro, substituting the
parameters at the clock rate of the CAAPP while the ACU program sets up the next request. The
approach taken in the simulator has been to identify which sequences of code should be in the
micro-code memory, and what capabilities the micro-controller must have to efficiently execute
those sequences. The ACU calls the macros via a special simulator interface procedure.

Also available to the user are "User macros”. These macros allow the user to provide procedures
written and compiled in C, which can either be special code for an application or candidates for an
ACU Macro. Thus, the interactive Programmer's Terminal can still be used while taking advantage
of the benefits of C. The cost to the user is that the simulator must be relinked whenever a change is
made in the C code.

5.1 Libraries

We currently have an extensive library of arithmetic subroutines for the CAAPP, including byte,
integer, and floating point arithmetic, and many of the standard transcendental functions. Thus, we
have the basis for a compiler run-time library. We also have implemented many vision subroutines,
including various convolutions, filters, edge-preserving, smoothing, convex hull, expand and
contract morphological operators, connected component labelling, boundary tracing, windowed
Hough transform, etc. In addition, we have implementations of the DARPA Integrated IU
Benchmark, the Abingdon Cross Benchmark, and an optical ray-tracing application (as an example
of a non-vision application).

For the ICAP, in addition to the compiler run-time library, we have a library that supports
communication via the serial ports, and synchronization with the ACU. We also have an
implementation of the Linda programming environment, originally developed at Yale (although it is
very inefficient, as are most Linda implementations). From the DARPA Benchmark, we also have
a model-matching algorithm that runs on the ICAP.
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6. Image Understanding Benchmark

While traditional supercomputing benchmarks may be useful in estimating the performance of an
architecture on some types of image processing tasks, those benchmarks have little relevance to the
majority of the processing that takes place in a vision system [Duff, 1986). Nor has there been
much effort to define a vision benchmark for supercomputers, since those machines in their
traditional form have usually been viewed as inappropriate vehicles for knowledge-based vision
research. However, now that parallel processors are becoming readily available, and becau.. .hey
are viewed as being better suited to vision processing, researchers in both machine vision and
parallel architecture are taking an interest in performance issues with respect to vision. We begin by
summarizing the work that has been done in the area of vision benchmarks to date, then we
examine the DARPA U Benchmark developed under this effort.

6.1 Review of Previous Vision Benchmark Efforts

One of the first parallel processor benchmarks to address vision-related processing was the
Abingdon Cross benchmark, defined at the 1982 Multicomputer Workshop in Abingdon, England
[Preston, 1986]. In that benchmark, an input image was specified that consisted of a dark
background with a pair of brighter rectangular bars, equal in size, that cross at their midpoints and
are centered in the image, and with Gaussian noise added to the entire image. The goal of the
exercise was to determine and draw the medial axis of the cross formed by the two bars. The
results obtained from solving the benchmark problem on various machines were presented at the
1984 Multicomputer Workshop in Tanque Verde, Arizona, and many of the participants (including
members of the UMass IUA group) spent a fairly lengthy session discussing problems with the
benchmark and designing a new benchmark that it was hoped would solve those problems.

It was the perception of the Tanque Verde group that the major drawback of the Abingdon Cross
was its lack of breadth. The problem required a reasonably small repertoire of image processing
operations to construct a solution. The second concemn of the group was that the specification did
not constrain the a priori information that could be used to solve the problem. In theory, a valid
solution would have been to simply draw the medial lines since their true positions were known.
Although this was never done, there was argument over whether it was acceptable for a solution to
make use of the fact that the bars were oriented horizontally and vertically in the image. A final
concern was that no method was prescribed for solving the problem, with the result that every
solution was based on a different method. When a benchmark can be solved in different ways, the
performance measurements become more difficult to compare because they include an element of
programmer clevemess. Also, the use of a consistent method would permit some comparison of
the basic operations that make up a complete solution.

The Tanque Verde group specified a new benchmark, called the Tanque Verde Suite, that consisted
of a large collection of individual vision-related problems. Table 1 contains the list of problems that
was developed. Each of the problems was to be further defined by a member of the group, who
would also generate test data for their assigned problem. Unfortunately, only a few of the problems
were ever developed, and none of them were widely tested on different architectures. Thus, while
the simplicity of the Abingdon Cross may have been criticized, it was the respondent complexity of
the Tanque Verde Suite that inhibited the latter's use.

26




Standard Utilities

High Level Tasks

3x3 Separable Convolution Edge Finding
3x3 General Convolution Line Finding

15x15 Separable Convolution

Comer Finding

15x15 General Convolution

Noise Removal

Affine Transform

Generalized Abingdon Cross

Discrete Fourier Transform

Segmentation

3x3 Median Filter

Line Parameter Extraction

256 Bin Histogram

Deblurring

Subtract Two Images

Classification

Arclangent(image 1/Image2)

Printed Circuit Inspection

Hough Transform

Stereo Image Matching

Euclidean Distance Transform

Camera Motion Estimation

Shape ldentification

Table 1: Tanque Verde Benchmark Suite

In 1986, a new benchmark was developed at the request of the Defense Advanced Research
Projects Agency (DARPA). Like the Tanque Verde Suite, it was a collection of vision-related
problems, but the set of problems that made up the new benchmark was much smaller and easier to
implement. Table 2 lists the problems that comprised the first DARPA Image Understanding
Benchmark. A workshop was held in Washington, D.C., in November of 1986 to present the
results of testing the benchmark on several machines, with those results summarized in [Rosenfeld,
1987]. The consensus of the workshop participants was that the results cannot be compared directly
for several reasons. First, as with the Abingdon Cross, no method was specified for solving any of
the problems. Thus, in many cases, the timings were more indicative of the knowledge or
cleverness of the programmer, than of a machine's true capabilities. Second, no input data was
provided and the specifications allowed a wide range of possible inputs. Thus, some participants
chose to test a worst-case input, while others chose "average” input values that varied considerably
in difficulty.

11x11 Gaussian Convolution of a 512x512 8-bit Image

Detection of Zero Crossings in a Difference of Gaussians Image

Construct and Output Border Pixel List

Label Connected Components in a Binary image

Hough Transform of a Binary Image
Convex Hull of 1000 Points in 2-D Real Space

Voronoi Diagram of 1000 Points in 2-D Real Space

Minimal Spanning Tree Across 1000 Points in 2-D Real Space
Visibility of Vertices for 1000 Triangles in 3-D Real Space
Minimum Cost Path Through a Weighted Graph of 1000 Nodes of Order 100

Find all Isomorphisms of a 100 Node Graph in a 1000 Node Graph

Table 2: Tasks from the First DARPA Image Understanding Benchmark

The workshop participants pointed out other shortcomings of the benchmark. Chief among these
was that because it consisted of isolated tasks, the benchmark did not measure performance related
to the interactions between the components of a vision system. For example, there might be a
particularly fast solution to a problem on a given architecture if the input data is arranged in a special
manner. However, this apparent advantage might be inconsequential if a vision system does not
normally use the data in such an arrangement, and the cost of rearranging the data is high. Another
shortcoming was that the problems had not been solved before they were distributed. Thus, there
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was no canonical solution on which the participants could rely for a definition of correctness, and
there was even one problem for which it turned out there was no practical solution. The issue of
having a ground truth, or known correct solution was considered very important, since it is difficult
to compare the performance of two architectures when they produce different results. For example,
is an architecture that performs a task in half the time of another really twice as powerful if the first
machine's programmer used integer arithmetic, while the second machine was programmed to use
floating point, and thus obtained significantly different results? Since problems in vision are often
ill-defined, it is possible to argue for the correctness of many different solutions. In a benchmark,
however, the goal is not to solve a vision problem but to test the performance of different machines
doing comparable work.

The conclusion from the first DARPA benchmark exercise was that a new benchmark should be
developed that addresses the shortcomings of the preceding benchmarks. Specifically, the new
benchmark should test system performance on a task that approximates an integrated solution to a
machine vision problem. A complete solution with test data sets should be constructed and
distributed with the benchmark specification. And, every effort should be made to specify the
benchmark in such a way as to minimize the opportunities for taking shortcuts in solving the
problem. The task of constructing the new benchmark, to be called the Integrated Image
Understanding Benchmark, was assigned to the vision research groups at the University of
Massachusetts at Amherst, and the University of Maryland.

Following the 1986 meeting, a preliminary benchmark specification was drawn up and circulated
among the DARPA image understanding community for comment. The benchmark specification
was then revised, and a solution was programmed on a standard sequential machine. In creating the
solution, several problems were discovered and the benchmark specification was modified to
correct those problems. The programming of the solution was done by the group at the University
of Massachusetts and the code was then sent to the group at the University of Maryland to verify its
validity, portability, and quality. The group at Maryland also reviewed the solution to verify that it
was general in nature and neutral with respect to any underlying architectural assumptions. The
Massachusetts group developed a set of five test cases, and a sample parallel solution for a
commercial multiprocessor.

In March of 1988, the benchmark was released, and made available from Maryland via network
access, or by sending a blank tape to the group in Massachusetts. The benchmark release consisted
of the sequential and parallel solutions, the five test cases, and software for generating additional test
data. The benchmark specification was presented at the DARPA Image Understanding Workshop,
the International Supercomputing Conference, and the Computer Vision and Pattern Recognition
conference [Weems, 1988]. Over 25 academic and industrial groups, listed in Table 3, obtained
copies of the benchmark release. Nine of those groups developed either complete or partial versions
of the solution for an architecture. A workshop was held in October of 1988, in Avon Old Farms,
Connecticut, to present those results to members of the DARPA research community. As with the
previous workshops, the participants spent a session developing a critique of the benchmark and
making recommendations for the design of the next version.




International Parallel Machines Hughes Al Center

Mercury Computer Systems University of Wisconsin
Stellar Computer George Washington University
Myrias Computer University of Massachusetts®
Active Memory Technology SAIC

Thinking Machines® Eastman Kodak

Aspex Lul.* University College London
Texas Instruments Encore Computer

IBM MIT

Carnegie-Mellon University® University of Rochester

Intel Scientific Computers® University of Nlinois®

Cray Research University of Texas at Austin®
Sequent Computer Systems* Alliant Computer®

Table 3: Distribution List for the Second DARPA Benchmark
* Indicates Results Presented at the Avon Workshop

The remainder of this section summarizes those results and recommendations, following a bnef
review of the benchmark task and the rationale behind its design.

6.2 Benchmark Task Overview

The overall task that is to be performed by this benchmark is the recognition of an approximately
specified 2 1/2 dimensional "mobile” sculpture in a cluttered environment, given images from
intensity and range sensors. The intention of the benchmark designers is that neither of the input
images, by itself, is sufficient to complete the task.

The sculpture to be recognized is a collection of two-dimensional rectangles of various sizes,
brightnesses, two-dimensional orientations, and depths. Each rectangle is oriented normal to the Z
axis (the viewing axis), with constant depth across its surface, and the images are constructed under
orthographic projection. Thus, an individual rectangle has no intrinsic depth component, but depth
is a factor in the spatial relationships between rectangles. Hence the notion that the sculpture is 2
12 dimensional.

The clutter in the scene consists of additional rectangles, with sizes, brightnesses, two-dimensional
orientations, and depths that are similar to those of the sculpture. Rectangles may partially or
completely occlude other rectangles. It is also possible for a rectangle to disappear when another
rectangle of the same brightness or slightly greater depth is located directly behind it.

A set of models is provided that represent a collection of similar sculptures, and the recognition task
involves identifying the model which best matches the object present in the scene. The models are
only approximate representations of sculptures in that they allow for slight variations in component
rectangle's sizes, orientations, depths, and the spatial relationships between them. A model is
constructed as a tree structure where the links in the tree represent the invisible links in the
sculpture. Each node of the tree contains depth, size, orientation, and intensity information for a
single rectangle. The child links of a node in the tree describe the spatial relationships between that
node and certain other nodes below it.

The scenario that the designers imagined in constructing the problem was a semi-rigid "mobile",
with invisible links, viewed from above, with bits and pieces of other mobiles blowing through the
scene. The state of the system is that previous processing has narrowed the range of potential
matches to a few similar sculptures, and has oriented them to correspond with information
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Figure 7: Intensity Image of Model Alone Figure 8: Image of Model with Clutter

extracted from a previous image. However, the objects in the scene have since moved, and a new
set of images has been taken prior to completing the matching process. The system must make its
final choice for a best match, and update the corresponding model with the positional information
extracted from the latest images.

The intensity and depth sensors are precisely registered with each other and both have a resolution
of 512 x 512 pixels. There is no averaging or aliasing in either of the sensors. A pixel in the
intensity image is an 8-bit integer grey value. In the depth image a pixel is a 32-bit floating-point
range value. The intensity image is noise free, while the depth image has added Gaussian noise.

A set of test images is created by first selecting one of the models in a set. The model is then rotated
and translated as a whole, and its individual elements are then perturbed slightly. Next, a collection
of spurious rectangles is created with properties that are similar to those in the chosen model. All of
the rectangles (both model and spurious) are then ordered by depth and drawn in the two image
arrays. Lastly, an array of Gaussian-distribution noise is added to the depth image array.

Figure 7 shows an intensity image of a sculpture alone, and Figure 8 shows the sculpture with
added clutter.

Processing in the benchmark begins with some low-level operations on the intensity and depth
images, followed by some grouping operations on the intensity data that result in the extraction of
candidate rectangles. The candidate rectangles are used to form partial matches with the stored
models. For each model, it is possible that multiple hypothetical poses will be established. The
benichmark then proceeds through the model poses, using the stored information to probe the depth
and intensity images in a top-down manner. Each probe can be thought of as testing an hypothesis
for the existence of a rectangle in a given location in the images. Rejection of an hypothesis, which
only occurs when there is strong evidence that a rectangle is actually absent, results in elimination of
the corresponding model pose. Confirmation of the hypothesis results in the computation of a
match strength for the rectangle at the hypothetical location, and an update of its representation in
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the model with new size, orientation, and position information. It is possible for the match strength
to be as low as zero when there is no supporting evidence for the match and a lack of strong
evidence that the rectangle is absent, as in the case of a rectangle that is entirely occluded by another.
After a probe has been performed for every unmatched rectangle in the list of model poses, an
average match strength is computed for each pose that has not been eliminated. The model pose
with the highest average match swrength is selected as the best match, and an image is generated that
highlights the model in the intensity image. Table 4 lists all of the steps that make up the complete
benchmark task.

The benchmark specification requires that this set of steps be applied in implementing a solution.
Furthermore, for each step, a recommended method is described that should be followed whenever
possible. However, in recognition cf the fact that some methods simpiy may not work, or will be
extremely inefficient for a given architecture, implementors are permitted to substitute other
methods for individual steps. When it is necessary for an iniplementation to differ from the
specification, the implementor is expected to supply a justification for the change. It is also urged
that, if possible, a version of the implementation be written and tested with the recommended
method so that the difference in performance can be determined.

6.3 Benchmark Philosophy and Rationale

In writing an integrated image understanding benchmark, the goal is to create an interpretation
scenario that is an approximation of an actual image interpretation task. One must remember,
however, that the benchmark problem is not an end in itself, but is a framework for testing machine
performance on a wide variety of common vision operations and algorithms, both individually and
in an integrated form that requires communication and control across algorithms and
representations. This benchmark is not intended to be a challenging vision research exercise, and the
designers feel that it should not be. Instead, it should be a balance between simplicity for the sake of
implementation by participants, and the complexity that is representative of actual vision
processing. At the same time, it must test machine performance in as many ways as possible. A
further constraint on the design was the requirement that it make use of as many of the tasks from
the first DARPA benchmark as possible, in order to take advantage of the previous programming
effort.

The job of the designers was thus to balance these conflicting goals and constraints in developing
the benchmark scenario. One result is that the benchmark solution is neither the most direct, nor the
most efficient method of solving the problem. However, making the solution more direct would
have eliminated several of the algorithms that are important in testing certain aspects of machine
performance. On the other hand, increasing the complexity of the problem to necessitate the use of
those algorithms would have required significant additional processing that is redundant in terms of
performance evaluation. Thns, while the benchmark solution is not a good example of how to build
an efficient vision system, it is an effective test of machine performance both on a wide variety of
individual operations and on an integrated task. Moreover, having taken a lesson from the Tanque
Verde Suite, the benchmark design attempts to minimize the effort required of the participants,
while maximizing the information obtained.

The great variety of architectures to be tested is itself a complicating factor in the design of a
benchmark. It was recognized that each architecture may have its own most efficient method for
computing a given function. However, the purpose of the benchmark requires that the tasks and
methods be well defined so that the results from different machines will be comparable. Otherwise,
the results will include a significant factor that depends on the cleverness of the programmer. Thus,
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the benchmark specification requests that participants do not take shortcuts in the solution, and that
they use the recommended methods whenever possible. It should be noted that the recommended
methods are not always the most efficient techniques because they were chosen to be as widely
implementable as possible. Thus, while the processing time for a given step or for the entire task
may not be the best performance that a machine can muster, it will be comparable to the results
from others. Participants were also encouraged to develop timings for more optimal solutions, in
addition to the standard solution, if they so desired.

The designers also recognize the tendency for any benchmark to turn into a horse race. However,
that is not the goal of this exercise, which is to increase the scientific insight of architects and vision
researchers into the architectural requirements for knowledge-based image interpretation. To this
end, the benchmark requires a much more extensive set of instrumentation than simple execution
times. Participants are required to report execution time for individual tasks, for the entire task, for
system overhead, input and output, system initialization and loading any precomputed data, and for
different processor configurations if possible. Implementation factors that are 10 be reported include
an estimate of the time spent implementing the benchmark, the number of lines of source code, the
programming language used, and the size of the object code. Machine configuration and technology
factors that are requested include the number of processors, memory capacity, data path widths,
integration technology, clock and instruction rates, power consumption, physical size and weight,
cost, and any limits to scaling-up the architecture. Lastly, participants are asked to comment on any
changes to the architecture that they feel would contribute to an improvement in performance on the
benchmark.

6.4 Results and Analysis

Due to limitations of time and resources, only a few of the participants were able to complete the
entire benchmark exercise and test it on all five of the data sets. In almost every case, there was
some disclaimer to the effect that a particular architecture could have shown better performance
given more implementation time or resources. It was common for participants to underestimate the
effort required to implement the benchmark, and several who had said they would provide timings
were unable to complete even a portion of the task prior to the workshop. Despite requests to
groups that did not attend the workshop that they submit belated results to be included in this report,
not one new benchmark report has been received. Thus, the results presented here are those that
were provided by the workshop participants. In a few cases, the results have been updated,
corrected, or amended since they were originally presented.




Low-Level, Bottom-Up Processing

Intensity Image Depth Image

Labei Connected Components 3Ix3 Median Filter

Compute K-Curvature 3x3 Sobel and Gradient Magnitude
Extract Comers Threshold

Intermediate Level Processing

Sclect Components with 3 or More Comers

Convex Hull of Comers for Each Component

Computc Angles Between Successive Corners on Convex Hulls

Select Corners with K-Curvature and Computed Angles Indicating a Right Angle

Label Components with 3 Contiguous Right Angles as Candidate Rectangles

Compute Size, Oricntation, Position, and Intensity for Each Candidatc Rectangle

Model-Based, Top-Down Processing

Determine all Single Node Isomorphisms of Candidate Rectangles in Stored Models

Create a List of all Potential Modcl Poses

Perform a Match Strength Probe for all Single Node Isomorphisms (see below)

Link Together all Single Node Isomorphisms

Create a List of all Probes Required to Extend Each Partial Maich

Order the Probe List According to the Maich Strength of the Partial Match Being Exiended

Perform a Probe of the Depth Data for Each Probe on the List (sec below)

Perform a Match Strength Probe for Each Confirming Depth Probe (sce below)

Update Reclangle Parameters in the Stored Model for Each Confirming Probe

Propagate the Velo from a Rejecting Depth Probe Throughout the Corresponding Partial Match

When No Probes Remain, Compute Average Match Strength for Each Remaining Model Pose

Select Model with Highest Average Match Strength as the Best Maich

Create the Output Intensity Image, Showing the Matching Model

Depth Probe

Select an X-Y Oriented Window in the Depth Data that will Contain the Rectangle

Perform a Hough Transform Within the Window

Search the Hough Array for Strong Edges with the Approximate Expecled Oricntations

If Fewer than 3 Edges are Found, Return the Original Model Data with a No-Maich Flag

If 3 Edges are Found, Infer the Fourth from the Model Data

Compute New Size, Position, and Oricntation Values for the Rectangle

Match-Strength Probe

Select an Oriented Window in the Dcpth Data that is Shightly Larger than the Rectangle

Classify Depth Pixels as Too Close, Too Far, or In Range

If the Number of Too Far Pixels Exceeds a Threshold, Return a Veto

Otherwise, Select a Corresponding Window in the Intensity Image
Select Intensity Pixels with the Correct Value

Compute a Match Strength Based on the Number of Correct vs. Incorrect Pixels in the Images

Table 4: Steps that Compose the Integrated Image Understanding Benchmark

Care must be taken in comparing these results. For example, no direct comparison should be made
between results obtained from actual execution and those that were derived from simulation
[Carpenter, 1987]. No matter how carefully a simulation is carried out, it is never as accurate as
direct executior. Likewise, no comparison should be made between results from a partial
implementation and a complete one. The complete implementation must account for overhead
involved in the interactions between subtasks, and even for the fact that the program is significantly
larger than for a partial implementation. Consider that a set of subtasks might appear to be much
faster than their counterparts in a complete implementation simply because less paging is required
to keep the code in memory. It is also unwise to directly compare the raw timings, even for similar
architectures, without considering the differences in technology between systems. For example, a
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system that executes a portion of the benchmark in half the time of another is not necessarily
architecturally superior if it also has a clock rate that is twice as high or if it has twice as many
processors.

In addition to the technical problems involved in making direct comparisons, there are other
considerations that must be kept in mind. For example, every participant expressed the view that
given more time to tune their implementation, the results for their architecture would improve
considerably. What is impressive in many cases is not the raw speed increase obtained, but the
increase with respect to the amount of effort required to obtain it. While this has more to do with
the tools available for developing software for an architecture than with the architecture itself, it is
still important in evaluating the overall usefulness of the system. Another major consideration is the
ratio of cost to performance, since many applications can afford to sacrifice a small amount of
performance in order to reduce the cost of the implementation. In other applications, the size or
weight or power consumption of a system may be of greater importance than all-out speed. One of
the purposes of this exercise has been merely to assemble as much of this data as possible so that
the performance results can be evaluated with respect to the requirements of each potential
application of an architecture.

Thus, in what follows, there is no single best architecture and there are no winners or losers. Each
has its own unique merits and drawbacks, of which nor.e are absolute. To play down the direct
comparison of raw timings, the results for each architecture will be presented separately. The order
of presentation is random, except that the sequential solution is presented first to provide a
performance baseline, and then complete parallel implementations are presented, followed by partial
implementations. Results that were based on theoretical estimations are not included in this report.
The timings in all of the tables are in seconds, for the sake of consistency. Where a timing is zero, it
indicates that the processing time was less than the resolution of the timing mechanism employed.
Blanks in the tables indicate values that were omitted from the reports that were supplied by the
implementors.

6.5 Sequential Solution

The sequential solution to the benchmark was developed in C on a Sun-3/160 workstation. The
solution contains roughly 4600 lines of code, including comments. The implementation was
designed for maximum portability and has been successfully recompiled on several different
systems. The only portion that is system dependent is the actual result presentation step, which uses
the graphics primitives provided for drawing on the workstation's screen. The implementation
differs from the recommended method on the Connected Component Labelling step by using a
standard sequential method for computing this well-defined function. The sequential method is
designed to minimize array accesses and their corresponding index calculations, which is not a
problem for array processors, but incurs a significant time penalty on a sequential machine.

Timings have been produced for the sequential code running on all five data sets, and on three
different machine configurations. The configurations are a Sun-3/160 (a 16 MHz 68020 processor)
with 8MB of RAM, a Sun-3/260 (a 25 MHz 68020) with 16MB of RAM, and a Sun-4/260 (a
16MHz SPARC processor) with 16MB Timings have been produced for the sequential code
running on all five data sets, and on three different of RAM. The extra RAM on the latter two
machines did not affect performance, since the benchmark was able to run in 8MB without paging.
The 3/260 was equipped with a Weitek floating-point co-processor, while the 3/160 used only the
standard 68881 co-processor. Table 5 shows the results for the Sun-3/160, Table 6 shows the Sun-
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Data Set Samole Test Teat2 Ten3 Tend
User Symem User System User Sysiem Usex S User Sysiam
Total 794,94 204 33596 210 - 32684 240 549.30 252 530,26 290
Overhead 402 1.06 4.06 0.8 4.50 1.14 2.60 1.04 458 0.94
Muscellaneous 224 0.04 218 0.04 Z16 0.06 2.12 0.02 210 0.02
Sarup 0.02 0.00 0.04 0.50 0.02 0.04 0.00 0.02 0.02 0.00
Trmage input 0.60 068 058 0.54 1.32 0.78 1.50 074 1.42 0.66
Tmage output 0.24 0.30 0.30 0.28 0.06 0.4 0.06 0.4 0.08 0.26
Model input 0.92 0.0 0.96 0.02 0.94 0.02 092 0.02 0% 0.00
Tahel connccled components 27.40 0.38 27.46 0.36 28.12 0.28 2786 0.36 2788 0.3
Rectangics from intensity 6.42 0.08 4.00 0.14 4.34 0.04 5.36 008 5.10 024
Miscellaneous 206 0.06 I 0.02 154 0.02 1.94 0.02 192 006
Trace region houndary 0.52 0.02 0.28 0.02 0.38 000 042 0.00 0.38 006
K-curvature 1.62 0.00 0.30 0.00 0.82 0.00 2 000 110 [
K-curvature smoothing 1.2 0.00 062 0.00 0.70 0.00 0.96 0.00 .02 002
First denvauve 0.46 0.00 0.2 002 0.24 0.00 0.28 0.02 0.2 002
7£10-crossing detecuan 0.26 0.00 0.06 ~0.00 0.04 0.00 0.18 0.00 024 002
Final comer detection 0.20 0.00 0.16 0.02 QE 0.02 0.28 0.02 0.16 0.04
Count comers 0.00 0.00 0.00 0.02 0.02 0.00 0.00 002 000 000
Conves hull 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.04 0.00
Teat for nght angles 0.00 0.00 0.02 0.02 0.00 0.00 0.04 0.00 0.00 0.00
Final rectangle hypothesis 0.02 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.02 0.02
Mecdun hlier 246,06 060 11862 0.26 92.58 0.28 90.70 0.2 90.66 024
Sobel 135.3 018 133.14 0.16 13592 018 135.12 0.16 135,14 0.28
Triual graph match 244 0.06 24,94 0.06 26.02 0.02 6330 0.14 €748 014
Match data recungles 0.14 0.00 0.0 0.02 0.08 0.02 0.26 0.04 0.24 0.00
Match links 0.2 0.00 0.06 0.00 0.08 0.00 0.74 0.00 0,58 0.02
Creaic probe list 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 002 000
Parual maich 24.04 G.06 24.78 0.04 25.86 0.00 67.28 0.10 66.64 612
Maich sirength probes 24.02 0.06 24.74 0.0 2582 0,00 66.64 0.10 6582 0.12
Window sclecuon 0.02 0.00 0.02 000 0.00 0.00 0.12 0.02 0.10 0.02
Classification and count 24.0 0.06 24.72 0.02 25.82 0.00 66.50 0.06 65.70 0.08
Match extension 326.54 0.50 11.46 0.12 18.72 0.20 20258 0.32 204.68 0.44
Match strengih probes 72.88 0.10 3.28 0.00 .50 0,06 4782 0.06 42.00 0.06
Window selecuon 0.08 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.10 C¢.00
Classilfication and count 72.80 0.10 328 0.00 5.0 0.06 4712 0.02 4188 0.06
Hough probes 253.32 0.38 316 0.12 12.84 012 15376 0.2 16198 0.36
Window sclection 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.2 0.02
Hough transform 232,20 0.36 310 0.12 12.78 012 151.86 0.16 160.34 0.28
Edge peak detection 1.08 0.02 0.06 0.00 0.06 0.00 1.76 0.00 1.54 0.02
Rectangle parameter update 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.04 0.00
Resull prescntation 24.80 0.00 12.28 004 16.64 0.02 14.78 0.00 14.74 0.02
Beat match selection 0.00 0.00 0.00 0.00 0.00 0.00 002 000 0.00 000 |
Image gencraion 24.80 0.00 12.28 0.04 16.64 0.02 14.76 0.00 14.74 0.02
Sutistics
Connected components 134 35 M 114 100
Right angles extracted 126 99 92 210 197
Rectangies detected 25 21 16 42 39
~Depth pixels > threshold 21256 14542 12898 18584 18825
Elements on iniual probe hist 381 19 27 400 249
Hough probes sS 3 S 97 93
Iniual match strength probes 28 20 15 142 142
Extension mat. str. probes 60 3 3 110 97
Models remaining 2 1 1 2 1
Model selccied 10 1 S 7 3
Average maich strength 0.64 0.96 0.94 0.84 0.88
Translated o 151.240 256,256 257.255 257,255 257.255
Roued by (degrees) 35 359 114 22 22

Table 5: Sun-3/160 Results




Data Set Sampie Teat Tos2 Tend Tond
User S User Sysam User Sysiam User Symem User Sysam
Toul W—h 206 11696 356 19138 T 192 38 1%
Overhead 226 066 246 0.58 276 0.68 2.50 094 172 [%7]
Miscellanoous 128 0.00 1.24 0.00 1.04 0.02 1.2 0.02 1.2 000
Startup 0.02 0.0 000 0.00 0.00 0.02 0.00 004 002 0.00
“Tmage mnput "0.30 .50 0.50 0.50 1.00 0.48 0.76 (%] 09] 0.54
Tmage output 0.8 014 0.26 0.08 006 0.16 0.06 D14 0.08 0.18
Madel input 0.48 0.02 046 0.00 .46 0.00 0.3% 0.0 048 0.00
Tahel connectod components 14.14 0.33 14 20 0.26 14.10 0.3 14.46 012 1440 0,26
Reclangies fram intenmity 160 0.14 136 0.02 244 0.04 312 004 2.90 0.08
Misocllancous 1.28 0.02 112 0.00 1.2 0.02 1.26 GO0 1.08 0.00
Trace region houndary "0.8 0.02 0.2 0.00 0.18 0.00 0.14 002 0.26 004
K-curvature 032 002 0.44 0.02 042 000 0.68 0.00 048 0.02
K-curvature smoothing 0.8 0.02 0.26 0.00 042 0.02 0.50 0.00 0.5 000 |
Fim denvauve 0.20 0.02 016 0.00 0.10 0.00 0.18 0.00 0.26 0.00
Zxero-crossing detection 0.02 0.0 0.04 0.00 0.06 0.00 0.18 0.00 0.14 0.00
Final comer desection .20 0.00 012 0.00 0.04 0.00 0.18 0.00 0.04 0.00
Count comen 6,00 0.00 000 0.00 0.00 000 000 000 000 000 |
Convea hull 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.04 0.00
Teat for nght angles 0.00 0.00 002 6.00 000 0.00 0.00 0.00 0.04 0.00
Finsl rectangle hypathesis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Median filter 112.50 1.20 59.86 0.42 33.64 0.46 3264 0.34 4212 0.54
Sobel 38.96 204 18.12 0.38 37.90 0.44 38 02 074 1814 042
Tmual graph maich 610 0.06 €06 0.02 €38 0.20 17.02 030 16.80 0.14
Maich data rectangles 0.08 0.00 6.06 0.00 0.04 0.00 0.14 002 0.12 0,00
Match Links 0.10 0.00 004 0,00 0.04 0.00 0,30 0.00 0.26 0.00
Create probe st 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Parual match [ X7) 0.06 596 002 .30 0.20 16.58 0.28 16.42 0.14
Maich suength probes 590 0.06 394 002 6.30 0.20 16.34 [%7] 16.04 014
Window selecuan 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.02 0 0.00
Chassificauon and count 5.90 0.06 594 0.02 6.30 0.18 1624 0.18 16.02 0.10
Maich extension “109.18. 1.8 378 0.14 02 0.2 69.32 0.76 7042 0.74
Maich surength probes 17.54 0.02 0.78 0.00 1.40 0.00 11.60 0.06 10.20 0.10
Window selecuon 0.08 0.00 0.00 0.00 0.00 000 004 0.00 004 0.00
Clasaification and count 17.50 002 0.78 0.00 140 000 1136 0.06 10.16 0.08
Tiough probes 91.44 1.26 300 0.12 262 0.20 57.30 0.66 59.80 064
Window sclecton 0.04 0.00 0.00 0.00 0.00 0.00_ 0.04 0.02 0.02 0.00
Hough transform 90.64 1.24 298 0.12 4.60 0.20 §6.40 0.64 $9.00 0.62
Edge peak detoction 0,76 0.02 0.02 0.00 0.02 0.00 082 0.00 0.78 002
Rectangic parameicr update 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
Result presentauon 6.68 0.00 3.64 0.00 4.72 0.00 4.30 0.20 428 0.02
Hest match seloction 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00
Tmage genention 668 0.00 164 0.00 a.72 0.00 4.0 0.02 [¥:) 0m
Sutsics
Connecied canponents 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detecied = 21 16 a2 9
Depth pircls > threshold 21256 14542 12898 18584 18828
Elementa on iniual probe Lst 381 19 b2 X0 249
Hough probes 55 3 3 97 93
Imius} match strength prohes 28 20 15 142 142
E mat. sir. proh 60 3 ) 110 97
Models remaiing 2 1 1 2 1
Model selecied 10 1 S 7 3
Averzge maich stongth 0.64 0.96 0.94 084 0.88
Translated 0 151,240 256,256 257,258 257255 251,258
Rotated by (degrocs) 35 s 114 22 22

Table 6: Sun-3/260 Results




Data Sat Sample Test T2 Testd Tand
User Syman User S User Sysiam User Sysam User Symem
Total T17.21 380 4019 "il;A 3888 306 1841 264 3015 260
Overhead 749 1.85 2% T.58 743 1.3 2.62 1.46 266 145
Miscellancous 1.3 1.20 1.17 0481 124 0.70 1.4% 0.77 143 0.4
Stanup 0.02 0.03 0.00 0.05 0.03 0.02 0.0 005 0.01 0.06
Tmage inpt 0.33 0.48 0.27 0.58 0.33 0.47 0.3% 0.46 0.38 047
Tmage output 0.10 0.11 0.12 0.10 0.05 .11 0.05 0.10 0.09 0.09
Vodel mput 0.52 002 .50 0.02 050 0.04 0.50 004 049 004
T.abel conntecied components 9 0.35 229 0.27 [K]) 0.3 4.36 0.26 433 0.8
Recrgles (ram intcnaity 1.01 009 0.68 000 067 0.04 0.86 0.10 0.8/ 0.04
Miscellancous 0.31 0.05 0.32 0.00 0.27 0.02 0.33 0.05 0.32 0.02
Trace regioa boundsry 0.06 0.01 0.04 5.00 0.04 0.01 0.04 0.00 0.03 0.00
K-curvawre 021 0.00 0.05 6.00 0.11 0.00 0.08 0.00 0.08 000
K-curvature smoothing 0.2 000 0.16 0.00 0.15 0.00 0.21 0.01 022 000
First derivalive 0.12 6.00 0.09 0.00 0.06 0.00 0.14 0.00 0.08 0.00
7cro-crossing detection 0.04 001 0.01 0.00 0.00 0.01 0.02 0.00 0,04 0.00
Final comer detaction 0.04 0.0 0.01 0.00 0.03 0.00 0.02 0.02 6.06 0.00
Count comers 0.00 0,00 0.00 0.00 0.00 0.00 000 000 0.00 002
Coaves hull 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 .00 0.00
Test for nght angles 0,00 0.00 0.00 0.00 0.00 000 001 0.00 901000 ]
Final rectangle hypothesia 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
Meduan filier 30.33 0.20 1447 0.17 1114 0.16 11.16 014 1118 019
Sobel 11.21 0.95 11.26 0.17 .17 0.10 .11 0.30 1115 0.30
Tnital graph match 341 0.01 3.36 0.10 3.53 0.01 10.01 0.09 383 0.11
Mawch data recungics 0.03 0.00 0.00 0.03 0.02 0.00 0.05 0.01 0.04 0.02
Match links 0.07 0,00 0.01 001 0.02 0.00 0.2 0.01 0.8 0.00
Create probe List 0.03 0.00 002 0.00 .01 0.00 0.12 0.00 0.12 0.01
Partial maich kF:] 001 333 0.06 348 0.01 962 0.07 9.49 0.08
Match strength probes 321 0.10 333 0.60 347 0.01 944 0.07 930 008
Window sdectuon 0.00 0.00 0.01 0.00 0.00 0.00 0.01 6.00 0.04 0.00
Classuficauon and count 315 0.00 1) 0.06 338 0.0t 8.85 0.05 8.65 0.02
Match exlcnsion %0.08 0.26 206 0.12 335 008 3618 0.3 1810 0.2
Maich strengih probes 9.89 0.02 0.43 0.00 0.79 0.00 6.63 0.02 6.06 0.02 ‘
Window sclection 0.00_ 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.00
Classification and count 9.60 0.00 0.44 0.00 0.78 0.00 6.12 0.00 5.56 0.02
Tlough probes 50.99 0.21 161 0.12 2356 0.08 29.32 0.20 377 02
Window selection 003 6,00 0.00 0.00 0.01 0.00 0.09 0.01 007 0.00
Hough Uansform 50.65 012 1.60 011 254 0.07 28.86 0.08 31.32 0.12
[ Edge peak deteciion 0.15 0.00 00! 0.00_ 0.01 0.00 0.24 0.02 0.2 0.00
Rectangle parameter update 003 _ 0.01 0.00 0.00 0.00 0.00 0.03 0.01 0.06 0.00
Result presentation 3.37 0,01 167 0.00 234 0.00 2.07 0.00 202 0.00
Bext match sclection 0.06 0.00 0.02 0.00 0.02 0.00 0.10 0,00 0.04 0.00
Image genenstian 331 0.01 1.65 0.00 222 0.00 1.97 0.00 1.98 0.00
Sungics
Connected components 134 35 k2] 114 100
Right angles eatmcted 126 99 [ 210 9
Recangles deiocicd 2 21 16 a2 39
Depth pixels > threshold 21254 14531 12893 18579 18822
[~ Elements an imial probe fist 381 19 ] %0 pL0]
Hough probes 5S 3 5 93 92
Iniusl match strength probes L} 20 13 142 142
Extension mat. str. probes 60 3J 3 105 97
Models remaning 2 1 1 2 1
Model sclected 10 1 5 7 3
Avcrage match strength 0.64 0.96 0.94 0.84 0.88
Translated 10 151,240 256.256 257,255 257.255 257255
Rotated by (degrees) 85 359 114 22 22

Table 7: Sun-4/260 Results
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3/260 results, and Table 7 gives the execution times for the Sun-4/260. The timings were obtained
with the standard system clock utility which has a resolution of 20 milliseconds on the Sun-3
systems, and 10 milliseconds on the Sun-4.

6.6 Alliant FX-80 Solution - T R

The Alliant FX-80 consists of up to eight computational elements and up to twelve [/O processors
that share a physical memory through a sophisticated combination of caches, buses and an
interconnection network. The computational elements communicate with the shared memory via
the interconnection network which links them to a pair of special purpose caches that in turn access
the memory over a bus that is shared with the I/O processor caches. The FX-80 differs from the
older FX-8 primarily in that the computational elements are significantly faster.

Alliant was able to implement the benchmark on the FX-80 in roughly one programmer-week. The
programmer who built the implementation had no experience in vision and, in many cases, did not
even bother to learn how the benchmark code works. The implementation was done by rewriting
the system dependent section to use the available graphics hardware, compiling the code with
Alliant's vectorizing and globally optimizing C compiler, using a profiling tool to determine the
portions of the code that used the greatest percentage of CPU time, inserting compiler directives in
the form of comments to break implicit dependencies in four sections of the benchmark, and
recompiling the new version of the code. Alliant provided results for five configurations of the FX-
80, with 1, 2, 4, 6, and 8 computational elements. In order to save space, only two of the
configurations are represented here. Table 8 shows the execution times for a single FX-80
computational element, and Table 9 shows the results for an FX-80 with eight elements. Another
point that was noted by Alliant is that the C compiler is a new product and does not yet provide as
great a degree of optimization as their FORTRAN compiler (a difference of up to 50% in some
cases). They expect to see significantly better performance with later releases of the product.

6.7 Image Understanding Architecture

Because the IUA is still under construction, the simulator was used to develop the benchmark
implementation. The benchmark was developed over a period of about six months, but much of
that time was spent in building basic library routines and additional tools that were generally
required for any large programming task. A 1/64th scale version of the simulator (4096 low-level,
64 intermediate-level, and one high-level processor) runs on a Sun workstation, and was used to
develop the initial benchmark implementation. The implementation was then transported to a full-
scale IUA simulator running on a Sequent Symmetry multiprocessor. Table 10 presents the results
from the IUA simulations with a resolution of one instruction time (0.1 microsecond). There are
several points to note about these results. Because the processing of different steps can be
overlapped in the different processing levels, the sum of the individual step timings does not always
equal the total time for a segment of the benchmark. Some of the individual timings represent
average execution times, since the intermediate level processing takes place asynchronously and
individual processes can vary in their execution time. For example, the time for all of the match-
strength probes is difficult to estimate since probes are created asynchronously and their processing
is overlapped. However, the time for a step such as match extension takes into account the span of
time required to complete all of the subsidiary match-strength probes. Lastly, it should be
mentioned that the intermediate-level processor was greatly underutilized by the benchmark (only
0.2% of its processors were activated), and the high-level processor was not used at all. The low-
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Dats Set Sonple Test Tex2 Test3 Tend

User Sysam User Sysiam User Sysiem User  Sysem Usa Sysem
Toul 204 858 23531 102.700 1861 93311 1828 136759 _ 3.049 139130 3032
Overhead 7.068 0.776 7925 0.777 7897 0.775 7900 0764 7895 0.763
Miscellancous 0.627 0,030 0.585 0.033 0.559 0.033 0.554 0030 055 0031
Swanup 0.030 0.031 0.029 0.033 0.029 0.031 0.029 0032 009 0029 |
Tmage wputl 5.692 0.515 3601 6,031 3691 0.505 _ S5.697 0509 5600 03504
Tmage output 1.039 0.175 - 1.039 0179 1.038 0.183 1.039 - 0.171 1.00 0177
Model input 0.5%0 0.021 0.058 0.017 0.530 0.018 0.580 0017 0.580 0019
Label connected components 16917 0.268 16330 0.258 16300 0.253 16948 0247 1693 0259
Rectanglcs from wntensity 2760 0550 - 1.791 0.267 1.874 0.252 2312 0681 2286 0.643
Misccllancous 1.005 0.231 0928 0.097 0.931 0.094 0.986  0.255 0983 0239
Trace region boundary 0.312 0.078 0.172 0.021 0.183 0.019 0.255 0062 0.221 _ 0.054
K-curvature 0.592 0.037 0.287 0.017 0.308 0.017 0438 0045 0432 0045
K-curvature smoothing 0.362 0.037 0.176 0.013 0.133 0.017 0269 0045 0.264 0044
Fum denvauve 0.158 0.037 0.077 0.017 0.082 0.016 0119 0.045 0117 0043
Zero-croeting detecuon 0.170 0.037 0.076 0.017 0.099 0.017 0.135 0045 0.133 0043
Final comer detection 0.135 0.042 0.060 0.022 0.069 0.022 0103 0081 0.101 ___0.049
Count comens 0.006 0.037 0.003 0.017 0.002 0.017 0.007 0044 0.006 0042
Convex hull 0.013 0.026 0.006 0.017 0.006 0.017 0.015s 0042 0.015 ___0.040
Test for nght angies 0.006 0.013 0.005 0.01) 0.004 0.009 0.009 0.022 0.008 0.021
Final rectangle hypothesis 0.003 0.013 0.003 0.011 0.002 0.009 0.006 0022 0.005 0021
Median hitcr 77.294 0.170 43652 0.160 31886 0.163 31919 0.154 31880 0.166
Sobel 26.147 0.001 26079 0.001 26063 0001 26128 0.0t 26129 0.001
Tnital graph match 2.458 0.088 2.397 0.063 2.569 0.055 7117 0.368 7011 0313
Maich data recuangies 0.067 0.023 0.051 0012 0.046 0.014 0129 0047 0111 004
Match Links 0.067 0.002 0.024 0.004 0.022 0.004 0262 0.013 0214 0023
Creatc probe list 0.002 0.001 0.002 0.001 0.002 0.001 0.005 __ 0.001 0.006 0003
Parial maich 2.321 0.062 2.320 0.036 2499 0.036 6.722 __ 0.307 6650 0.307
Match strengih probes 2.305 0.045 2.303 0.032 2.486 0.024 6502 0228 6429 0229
Window sclecuan 0.009 0.032 0.003 0.011 0.002 0.008 0.020 __ 0076 0.020 0077
Classificaton and count 2.299 0.015 2.298 0.011 2.482 0.008 6471 0.076 6.397 0.076
Match cxiension 63.025 0.385 2.149 0.083 3817 0.091 42243 0.600 44806 0584
Match strengih probes 7139 0096 0.311 0.005 0.568 0.008 4600 0168 4216 0.155
Window sclection 0.009 0.032 0.000 0.002 0.001 0.003 0.15 0.056 0014 0.052
Classification and count 7.125 0.032 0.310 0.002 0.566 0.003 4.576 0.056 4.193 0.052
Tough probes 60,154 0.202 1.833 0.068 3.241 0.071 ___37.330 __ 0.301 20320 0312
Window selecuon 0,008 0.030 0.001 0.002 0.001 0.003 0.0i4 0051 0014 0051
Hough transform " 60.259 0.082 1.806 0.061 3210 0061 36650 _ 0.097 39604 0.110
Edge peak detection 0474 0.031 0.026 0.002 0030 0.003 0642 0.050 0.681 __ 0.050
Rectangle parameter update 0.008 0.030 0.000 0.002 0.001 0.003 0.015 0.051 0.014 0.051
Result preseniation 3.269 0.002 1.860 0,002 2.388 0.002 21770002 2174 0002
Best maich sciection 0.003 0.001 0.001 G.001 0.001 0.001 0.004 __0.001 0.002___ 0,001
Image genention 1.266 0.001 1.859 0.001 2.387 0.001 2.174 0.001 2172 0.00!
Sutiscs
Connected components 14 35 k2] 114 100
Right angles extracied 126 99 92 210 197
Recungies detected 23 21 16 42 39
Dopth piacls > threshold 21266 14542 12888 18572 18813
Elements on imua) probe list 374 19 77 39 248
Hough probes 55 3 ] 93 92
Iniial maich strength probes 28 20 1§ 142 142
Extension mat. str. probes 60 3 S 108 97
Madels remaining 2 1 1 2 1
Model sclccted 10 1 s 7 3
Average msich strength 0.65 0.96 0.94 0.84 0.88
Translaied 1o 151.240 256,256 251.255 251.255 257,255
Routed by 85 359 114 22 22

Table 8: Alliant FX-80 Single Processor Results
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Deta Set Sample Test Tad ) Tend
User Symem Uner Syuam User S User  Symam User  Svaom
otal 57177 2935 31.056 2082 0812 = z"AoaT— 50357 3577 50153 3467
Overhead 7.940 0847 7.903 0.825 7897 0813 7891 0820 7899 0822
Miscellanoous 0.601 0,042 0,558 0.039 0,558 0039 0553 0041 060 0058
Starup 0.030 0.036 0.029 0.047 0.029 0.042 0029 0043 0029 0033
Tmage input 3690 0.549 3.695 03541 3691 6532 S630 0542 S600  033%
Image output 1.039 0.173 1.040 0172 1.038 6177 1039 0113 1030 0173
Model put 0.580 0023 0.580 0021 0.580 0017 05RO 0017 0.580 _ 0.017
Tabel connecied components 6.930 0.293 6364 0.272 6849 0.270 6979 0273 6992 0272
Recungics from intensity 2.776 0.686 1.799 G.314 1.882 0295 2329 018% 2309 0751 ]
Miscellaneous 1.010 0.277 0931 0.120 0934 0.113 0.9%a 0303 0990 0290
Trace region houndary 0.312 0084 0172 06,023 0.183 0.022 0227 0071 0274 0063
K-curvature 0.594 0.042 0.287 0.020 0.308 0.019 0438 0081 0433 0.049
K-curvature smoothung 0.364 0.042 0176 0.019 0,189 0.019 0270 0052 0267 0050
First denvauve 0.159 0042 0077 0019 0.083 