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Preface

This research is spnsored by the Advanced Research Projects Agency (ARPA) and monitored by
the U.S. Army Topographic Engineering Center (TEC) under Contract DACA76-86-C-0015, titled
"Image Understanding Architecture". The ARPA Program Manager is Col. Erik Mettala, and the
TEC Contracting Officer's Representative is Ms. Lauretta E. Williams.

These efforts encompass both software development and hardware design, including some
discussion of the hardware fabrication effort at Hughes Research Laboratories.

Because a great deal of documentation has already been written as part of this effort, we have
chosen to assemble the majority of this report by editing existing documents. The report begins
with an executive summary of the major accomplishments in the contract period. The remainder of
the report presents an overview of the project, and of our efforts under this contract. The reader is
thus referred to the executive summary for a status report on the project and to the later sections for
more detailed information.
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Executive Summary

The goals of the Image Understanding Architecture (IUA) contract were to construct a proof of
concept prototype of a heterogeneous parallel processor to support machine vision, and to develop
software support and demonstration applications for the machine. These goals have been essentially
achieved, although the schedule for the program was delayed for various reasons. Primarily, the
delays were caused by problems with the MOSIS integrated circuit brokerage service. Ours was
one of the first major research efforts to try building large chips via MOSIS. As with any
pioneering effort, we encountered difficulties which have since been resolved. The chip fabrication
delays also caused slippage in other portions of the proje•,, schedule, wnich in turn required the
timetable to be stretched, which then resulted in some additional costs. Delays in receiving funding
and legal issues relating to nondisclosure agreements also incurred some delays.

In the area of software, as required by the contract, simulators were developed for the Content
Addressable Array Parallel Processor (CAAPP) and Intermediate and Communication Processor
(ICP) levels of the architecture, and these were used to evaluate the design. Some revisions were
made to the chip architecture and then incorporated in the simulators. A parallel programming
language (code generator) was developed for the CAAPP level of the architecture, based on the
FORTH programming language. A programming system for the ICP level using a standard C
compiler together with a library of routines for interprocessor communication was developed. The
functional simulator was extended to the General Purpose Processor Array (GPPA) level in that the
prototype uses the host machine as its GPPA level, and the host supports a high-level vision
system that can be used with the simulators for the other two levels. Software development tools
for the system include a debugger for the CAAPP and ICP levels, a memory management system
for the CAAPP level, various image-file conversion utilities, and a graphics-based programmer's
interface that allows the machine's status to be displayed as images and animated or static diagrams.
As part of our work on the DARPA Integrated Image Understanding Benchmark, we examined
and developed vision applications in low-level image event extraction, intermediate-level grouping,
matching models to grouped primitives, and feedback mechanisms. We examined but did not
implement any algorithms specifically for the system in the areas of planning, inference, and
control. A planning system has been implemented separately for the host processor, and we have a
high-level vision system that uses inference, but neither of these has been integrated with our
simulation environment, primarily because they and the simulations are too large to run together on
the same machine without being impractically slow. As can be seen from the list of activities
below, a significant portion of our effort has been spent on cooperating with DARPA and strategic
computing contractors to share our results and explore avenues for transferring technology.

In the area of hardware, Hughes essentially completed all of the objectives of the project. A 1/64th
scale proof-of-concept prototype of the Image Understanding Architecture has been constructed. It
contains 4096 CAAPP processing elements and 64 ICP processors. A simple array control unit has
been built that allows the machine to be tested and demonstrated with small but representative
applications. The machine is fully functional in that all of the memory, communication channels,
and processing elements operate correctly, although at a slower speed than was our original target.

Two significant problems remain in the prototype hardware that cause it to run at 2 MHz instead of
10 MHz, as was originally specified. The first problem involves a subtle interaction between two
adjacent blocks of logic in the CAAPP chip, one of which is memory. Although Hughes simulated
each of these blocks separately, they did not have the computational resources to simulate them
together. It turned out that there was an overlap between :he two blocks in which a line ran across
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some of the memory cells. Even though there was no contact between the line and the cells, it
induced additional leakage in the cells such that their refresh time could become impractically short
(i.e. they lose their contents in only a few hundred cycles). The pioblem has been addressed by
lowering voltages and increasing cycle times in the processor to reduce the leakage effect, and the
processors are now functionally operational but at a reduced speed. Fully correcting the problem
would require a revised run of silicon, which is not covered in the budget. The second problem is
that Hughes did not use enough ground pins in the CAAPP chip design. Hughes worked around
this problem by adjusting the voltages, bias, and clocking of each individual -hip in their test
fixture. Under these conditions, all of the chips function (except for the memory problem) at 10
MHz, but these conditions cannot be replicated at the individual chip sites on the boards. Again,
lowering the voltages and clock rate has solved the problem at a cost in performance. To fully
address this problem would require that the chips be recast in a different package with more ground
pins, and that the processor boards be reworked to accept the larger package. Alternatively, the
boards could be reworked at each chip site to obtain maximum performance from each chip, but
that would make replacement of faulty parts very difficult.

The major accomplishments and activities performed during the period of this report, including the
subcontract with Hughes Research Laboratories, are listed in roughly chronological order as
follows:

1. The first DARPA IU Benchmark, a suite of seven IU algorithms, was manually analyzed for the
IUA.

2. A functional specification for use by Hughes was developed for each of the IUA elements. This
included a revised CAAPP (low-level processor) instruction set, a block structure definition of
the IUA, and selection of the TMS320C25 as the processing element for the intermediate-level
array (ICAP).

3. Preparation of a set of IU Benchmark times for an Encore Multimax multiprocessor.

4. Representatives of UMass attended the first DARPA IU Benchmark workshop.

5. Representatives of UMass attended a DARPA meeting on VLSI and Architectures in December
of 1986.

6. UMass met with Hughes to further design the IUA hardware: designed the backing store
controller and instruction set, designed the ICAP bus arbiter, designed the Array Control Unit
(ACU) interface to the ICAP bus, designed the DRAM refresh system, designed the CAAPP-
ICAP Shared Memory (CISM) page mapping system, defined the CAAPP-ICAP
communication registers, designed the ICAP-SPA Shared Memory (ISSM) interface, developed
electrical timing diagrams for each inter-level interface, developed a sample program using
interlevel communication, and developed a functional specification for the ACU.

7. Hughes designed and fabricated a 32-processor CAAPP test chip.

8. UMass obtained a Texas Instruments Explorer Workstation with an Oyssey board containing
four TMS320C20 processors, to be used in simulating the IUA.

9. Hughes and UMass developed a detailed logic design of the CAAPP processor.
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10. UMass wrote a paper on the IUA for t!.e 1987 DARPA IU Workshop.

11. UMass representatives attended a DARPA workshop on Ultra-large Scale Message Passing
Concurrent Computers in February 1987.

12. UMass developed an IUA simulator for the TI Explorer/Odyssey system.

13. UMass wrote a document entitled "Philosophy of Benchmarks for Computer Architectures to
Support Machine Vision," to be circulated in the IU community for comment. Th1is was in
preparation for developing a new DARPA IU Benchmark with the University of Maryland.

14. UMass met with DARPA and ESL Corp. to discuss construction of an Array Control Unit
(ACU) for the IUA.

15. At the request of DARPA, UMass prepared an estimate of IUA processing time for

performing a typical vision interpretation and MFLOPS and MIPS equivalents for the IUA.

16. UMass representatives attended the 1987 DARPA IlU Workshop and gave a talk on the IUA.

17. UMass completed a software simulator for the CAAPP processor on the VAX.

18. UMass layed out a 64-way Fast-OR chip for fabrication through MOSIS, to be used as part of
the feedback from the CAAPP and ICAP to the ACU.

19. Hughes developed behavioral simulations of the CAAPP chip and processor daughterboard.

20. UMass met with ESL Corp. to further discuss development of an ACU.

21. UMass gave a presentation on the IUA at a Texas Instruments Satellite Symposium in April of
1987.

22. Hughes and UMass met with DARPA to discuss problems encountered in using MOSIS to
support a development effort.

23. UMass prepared transparencies for use by DARPA.

24. UMass gave a presentation on the IUA to representatives of the Defense Mapping Agency.

25. UMass gave a 6-month program review at DARPA, together with Hughes. Also met with ESL
to discuss the ACU development. ESL concluded that they did -ot wish to participate, and
UMass and Hughes were directed to prepare a new proposal regarding the ACU.

26. UMass and Hughes wrote an article on the IUA for the International Journal of Computer
Vision.

27. UMass developed a floating point subroutine package for the VAX-based simulator.

28. UMass completed the design for a crossbar-based communication network for the ICAP.

29. A UMass representative attended the International Symposium on Computer Architecture.
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30. UMass and U. of Maryland completed the specification for the new DARPA IU Benchmark
and distributed it to the IU community for comment.

31. A supplementary proposal regarding the ACU was written and submitted to DARPA by
Hughes and UMass.

32. A project summary was written for DARPA by UMass.

33. The floating point package was transported by UMass to the TI Explorer/Odyssey-based
. simulator.

34. An ICAP communication network chip was designed by UMass and submitted to MOSIS for
fabrication.

35. Hughes received a bad lot of 32-processor CAAPP test chips from MOSIS (after considerable
delays in the fabrication). Hughes was able to determine that the static structures were
functional, through microprobing of the dies, but the chip defects made the dynamic structures
inoperable.

36. UMass representatives attended the 1987 International Conference on Parallel Processing.

37. Enhancements were made by UMass to the debugging tools for the IUA simulator.

38. Comments from the DARPA IU community on the IU Benchmark specification were used to
refine the design.

39. Hughes completed the design of a 64-processor CAAPP test chip and submitted it to MOSIS.

40. A new project summary together with a quarter chart was prepared by UMass for DARPA.

41. Representatives of UMass attended the DARPA ISTO PI meeting in Gaithersburg, MD in
September of 1987.

42. The VAX-based simulator was transported to a new Sun workstation by Umass, and a
FORTH interpreter was integrated with it and the SunViews windowing system to provide an
interactive environment.

,3. UMass developed test-data generation software for the IU Benchmark.

44. The UMass Fast-OR chips were fabricated unsuccessfully due to a mix-up in communication
with MOSIS. Instead of the 2 micron process we thought we were requesting, the chips were
built with a 1.5 micron process. The chips were redesigned in CMOS (formerly in NMOS) for
resubmission.

45. Representatives of UMass attended the Computer Architectures for Pattern Analysis and
Machine Intelligence conference in Seattle, October 1987, and participated in a panel session on
vision architectures.

46. UMass added gray-scale display capabilities to the Sun-based simulator.

47. UMass implemented a memory management package for the Sun-based CAAPP simulator.
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48. UMass implemented convolution, connected component labelling, and corner detecion on the
simulator as part of the benchmark work.

49. UMass developed code for the sequential solution to the IU Benchmark and sent it to U.
Maryland for verification of portability and generality.

50. UMass developed a revised functional specification for the CAAPP processor chips, and an up-
to-date documentation set, together with Hughes.

51. The UMass ICAP communication chips were returned from MOSIS and it was found that, like
the 32-processor Hughes CAAPP test chips, the processing had resulted in a bad lot of chips.
Excessive metal spreading in Metal-2 had resulted in widespread shorts.

52. The redesigned Fast-OR chip was resubmitted to MOSIS by UMass.

53. Laser-printer screen hardcopy functions were added to the IUA simulators by UMass.

54. Separate presentations were given to the Interagency Al Steering Committee, Defense Mapping
Agency, and General Motors on the IUA project by UMass.

55. UMass and Hughes briefed representatives of DARPA on project status as of December, 1987.

56. UMass and Hughes worked with MOSIS to resolve our fabrication problems.

57. The new Fast-OR chips were received by UMass and found to be fully functional.

58. UMass met with representatives of Texas Instruments to discuss the IUA and TI applications.

59. UMass installed an LX-Unix board into the TI Explorer/Odyssey system, but found that
incompatibilities between the Odyssey and LX processors prevented their use together.

60. UMass briefed a representative of AFOSR on the IUA project.

61. UMass received the ICAP communication test chips and tested them. Three design errors were
found.

62. UMass wrote an article for the DARPA IU Workshop on the IUA programming environment
and IUA algorithms.

63. Hughes and UMass prepared the first annual report for the contract.

64. UMass wrote an article for the IU Workshop on the new DARPA IU Benchmark.

65. UMass developed a simulator for the TMS320C25 because we were unable to obtain one from
TI.

66. UMass corrected the ICAP Communication chip design.

67. UMass developed two "Grand Challenge" itatements at the request of DARPA.
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68. UMass imrlemented a "Spiral Out" operation for the CAAPP simulator on the Sun to simplify
the development of convolution operations.

69. UMass briefed a representative of ONR on the IUA project, and discussed evaluation of a
Xenologics X-1 processor for use in a future SPA design.

70. UMass met with representatives of IMS Inc. to explore the possibility tha. one of their ASIC
testers could be used as an interim IUA ACU.

71. Hughes completed construction of a daughterboard emulation/chip tester board to be driven by
their IMS test system.

72. UMass representatives attended the DARPA IU Workshop in April, 1988 and presetited two
papers.

73. UMass developed a parallel implementation of the IU Benchmark for the Sequent Symmetry
multiprocesor.

74. UMass implemented the median filter and K-curvature portions of the IU Benchmark on the
LUA simulator.

75. UMass revised the simulator to reflect (unauthorized) changes in the CAAPP Coterie network
that had been developed by Hughes under IR&D support.

76. UMass resubmitted the ICAP communication chip to MOSIS for fabrication. The corrected
design also includes some architectural enhancements.

77. Hughes tested the 64-processor CAAPP test chip and found several design errors, although
major portions of the design are functional.

79. UMass representatives attended the International Conference on Supercomputers and presented
two papers, one on the IUA, and the other, on the HU Benchmark.

79. UMass briefed a representative of the Supercomputing Research Center on the IUA at UMass.

80. The TMS320C25 simulator was modified by UMass to work as an ICAP processor simulator,
and the ICAP level of the Sun-based simulator was implemented.

81. UMass implemented the gradient magnitude portion of the LU Benchmark on the CAAPP

simulator.

82. UMass completed the timing and instrumentation report specification for the HU Benchmark.

83. UMass implemented an assembler for the ICAP processor simulator.

84. UMass implemented the Sobel portion of the IU Benchmark on the IUA simulator.

85. UMass representatives attended the 1988 Computer Vision and Pattern Recognition
Conference and presented a paper on the IU Benchmark.
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86. UMass wrote a paper for the 1988 CONPAR conference on the preliminary performance of

the IUA and the IU Benchmark.

87. UMass representatives attended the 1988 Computer Architecture Symposium.

88. UMass developed a bit-slice design for an ACU.

89. Hughes completed the layout of the backing store memory controller for the CAAPP.

90.. A UMass representative gave an invited talk on the IUA at the Supercomputing Research
Center.

91. UMass implemented a parallel version of the IUA simulator on the Sequent Symmetry, which
provides for simulation of a full-scale CAAPP array.

92. UMass implemented software to support communication between the CAAPP and ICAP
levels of the IUA.

93. The IU Benchmark was initially distributed by UMass to 20 sites.

94. Representatives of UMass attended the 1988 International Conference on Parallel Processing.

95. UMass implemented the match-strength probe and Hough probe portions of the IU
Benchmark on the IUA simulator.

96. UMass met with representatives of Sequent to discuss improving the IU Benchmark
performance on the Symmetry.

97. A UMass representative gave a presentation on the IUA to representatives of Digital
Equipment Corp. at an invited talk.

98. The revised UMass ICAP communication chips were received from MOSIS, which again had
problems with the fabrication run. Of the very small number of usable die (6), four were fully
functional.

99. Hughes submitted a complete CAAPP chip design to MOSIS for fabrication. Due to a delay
at MOSIS, Hughes took the opportunity to add some features to the CAAPP chip. The
complete design has 130,000 devices with 80,000 in the memory, occupying 60% of the chip
area. The size of the chip is 350 x 330 mils.

100. A representative of UMass attended the 1988 CONPAR conference in England, and while
there, visited labs at the University of Warwick and University College London.

101. The rectangle hypothesis generation portion of the IU Benchmark was implemented on the

IUA simulator by UMass.

102. UMass briefed the DARPA/ISTO Office Director on the IUA in October of 1988.

103. A representative of UMass attended the 1988 Frontiers of Massively Parallel Processing
Conference and gave a poster paper on the performance of the IUA on the DARPA
benchmark.
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104. UMass organized and ran a DARPA-sponsored workshop on the IU Benchmark in October

of 1988.

105. UMass completed the IUA implementation of the DARPA benchmark.

106. Hughes completed simulations of the CAAPP processor chip design and released the chip to
MOSIS for fabrication.

107. Dr. Weems attended the 1988 DARPA Principal Investigators Meeting in Dallas, TX, and
presented the results of the IU Benchmark Workshop; he also participated on a new ideas
panel session for computer architecture.

108. UMass implemented the Abingdon Cross benchmark on the IUA simulator.

109. UMass received a third run of ICAP communication chips from MOSIS and tested them.
They are slower than the earlier runs and the yield is 14 working parts out of 60.

110. UMass implemented a set of trigonometric routines for the CAAPP and ICAP using
CORDIC methods.

111. A UMass paper on the ICAP communication chip was accepted by the 1989 IEEE
Conference on Circuits and Systems, and camera ready copy was prepared and submitted.

112. Hughes received and tested the 64-processor CAAPP test chips from MOSIS, and in spite of
very low yield, managed to get two of the chips to work together in a demonstration test jig.

113. UMass implemented the Weymouth-Overton edge-preserving smoothing operator on the
CAAPP simulator, using FORTH.

114. UMass briefed DARPA program managers on project status at DARPA in February of 1989.

115. Dr. Weems attended the 1989 DARPA Image Understanding Review meeting.

116. UMass received a fourth run of ICAP communication chips from MOSIS. These were tested
and the yield was found to be much better (53 of 98 parts are fully functional).

117. An annual report was prepared by UMass and submitted to ETL for review.

118. An article on the IU Benchmark exercise was written by UMass for the 1989 DARPA 1U
Workshop.

119. Representatives of General Dynamics were briefed on the IUA in an April 1989 visit to

UMass.

120. A generalized permutation routing algorithm has been developed for the CAAPP by UMass.

121. Researchers at Textron Defense Systems were briefed on the IUA by UMass at a May, 1989
meeting.
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122. UMass purchased and installed an IMS ASIC test system to act as an interim controller for the
IUA, following the lead of Hughes. The system will also be used to test custom chips
developed at UMass.

123. Dr. Weems attended the 1989 IEEE Circuits and Systems Conference with a student who
presented a paper on the ICAP communication chip. While there, they met with IMS to
discuss a faster I/O link between the Sun host and the test system.

124. Dr. Wee" . attended the 1989 DARPA IU Workshop where he presented the results of the [U
Benchmark exercise. While there, he met with Hughes to discuss project efforts.

125. The design of a new feedback concentrator chip for the IUA was completed by UMass and
submitted to MOSIS for fabrication. The design will integrate the Global-OR and Response
Count functions. The previous design performed only the Global-OR.

126. UMass developed an alternative design for an ACU, based on a SPARC co-processor. This
design was intended to explore the performance/cost tradeoffs of such an approach. It appears
that the coprocessor interface is too inefficient to control the IUA at full speed.

127. Hughes completed debugging of the CAAPP processor chip, and successfully demonstrated
its functionality.

128. Hughes decided to contract the WUA integration work to an outside consultant (VillaMar Inc.)
with lower overhead rates. However, this was delayed for some time while the contract
modification and a six-month no-cost extension were processed to allow it to take place,
which further delayed the completion of the IUA prototype.

129. Hughes completed construction of the IUA motherboard and daughterboards.

130. Hughes completed associated circuit boards for the IUA prototype.

131. Hughes tested the IUA prototype system and found numerous bugs, most of which were
corrected. The remaining problems are avoided by reducing the clock rate and voltage of the
system.
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1. Introduction

Computer vision using color imagery requires a processor capable of accepting 23 megabytes of
input per second, and interpreting it to construct a three dimensional model of the sensor's
environment. An interpretation may require hundreds of objects of many different types to be
identified. Vision researchers (Hanson, 19861 have shown that pattern recognition techniques, by
themselves, are inadequate for this task. In fact, most of what we "see" in natural scenes is really
inferred from partial information. In addition to sensory and knowledge-based processing it is
useful to introduce a level of symbolic processing. Thus, vision researchers tend to classify
algorithms and representations into three levels: low (sensory), intermediate (symbolic), and high
(knowledge-based).

While it may be argued that a general-purpose processor can fulfill the requirements of vision, the
goal of real-time performance necessitates the use of special-purpose processors. Another key to
achieving real-time performance is processing at all levels simultaneously, which leads to the idea
of linking together three different parallel processors. But because of the massive amount of
communication between levels, and the requirement for flexible, top-down control, the different
parallel processors must be designed from the start to be tightly coupled with each other. This
analysis lead to the concept of the Image Understanding Architecture (IUA).

The primary goal of the IUA project (Contract DACA-76-86-C-0015) was to build a proof-of-
concept prototype of a 1/64th slice of a parallel architecture to support real-time, knowledge-based
image understanding, and develop the software support environment that will be needed to utilize
the hardware.

The majority of the hardware effort has taken place at Hughes Research Laboratories, Malibu,
California, although UMass has principle responsibility for the design of the IUA architecture.
UMass has also undertaken some smaller portions of the hardware development (the feedback
concentrator for the low and intermediate level arrays, and the communications router for the
intermediate level array). The majority of the software effort took place at UMass, although
Hughes was also involved in some software development, both in support of their hardware
efforts, and in the form of algorithm development for specific applications on the IUA.

Our software efforts have included development of a detailed software simulation of the IUA and a
FORTH interpreter for the low-level processor of the IUA. The remainder of the software effort
has been in the development of run-time support libraries, diagnostics, and vision algorithms.
Some effort was also spent on implementing the original DARPA Image Understanding
Benchmark and on developing a successor to the benchmark.
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2. Overview of the Image Understanding Architecture (IUA)

The Image Understanding Architecture [Weems, 19891 consists of three different, tightly coupled
parallel processors. The low- and intermediate-levels are controlled by a dedicated Array Control
Unit (see Figure 1) (ACU) that takes its directions from the high level. As Figure 1 indicates, each
of these processors provides a different granularity and different modes of parallelism. We have
built a 1/64th slice of the IUA as a proof-of-concept demonstration. The discussion that follows
describes the full IUA, except where it is noted that a feature pertains only to the prototype.

At the high level, the IUA is purely a Multiple-Instruction Multipe-Data (MIMD) parallel
processor. In our original proposal, the high level was called the General Purpose Processor Array
(GPPA), but has since been renamed the Symbolic Processing Array (SPA) to avoid confusion
with scientific parallel processors. The low level, called the Content Addressable Array Parallel
Processor (CAAPP), operates in pure Single-Instruction Multiple-Data (SIMD) or multi-
associative mode, and the intermediate level operates in Single Program, Multiple Data (SPMD) or
MIMD mode. In the original proposal, the intermediate level was called the Intermediate and
Communication Processor (ICP), but was later renamed the Intermediate Associative and
Communication Processor (ICAP), to reflect the emphasis of associative processing on its design.

Briefly, the multi-associative and SPMD processing modes differ from the familiar SIMD and
MIMD modes as follows. In multi-associative mode, the PE's execute a single instruction stream,
but are arranged into disjoint groups, with each group able to locally broadcast values, and compute
its cwn summary values in parallel with other groups. In SPMD the processors execute the same
program with autonomous instruction pointers so that they can branch independently.

CONTRL SUMARY Controls CAAPP and ICAP.
CONTRO ACU Takes commands from SPA.

* Receives global summary info.

I H* Knowledge base, blackboard.

. 64 RISC processors (MIMD).
HIGH LEVEL SPA) - Instantiation of schema strategies.

* Construction of scene interpretation.

- Top-down MIMD control of grouping.

• 64x64 (4Ks Array of 16-bit processors.
IN4TERMEDIATE LEVEL ICAP SPMD/MIMD operation.

I Executes grouping processes.

- Stores extracted image events.

• 512x512 (256K) Array of 1 -bit
processing elements.

LOW LEVEL CAAP * SIMD Associative / Multi-associati% a.

I Processes sensory data.

0 S•I Stores 15 seconds of imagery.

Figure 1. IUA Ovcrv•e,

II



3. Tradeoffs in the Development of the Low-Level Processor

Our analysis of low-level vision algorithms showed that the majority would best be served by a
mesh-connected array, augmented with the features of an associative processor (i.e. global
broadcast with local partial matches, activity control with global override, and dedicated response
hardware) [Weems, 1984).

3.1 Neighbor Communication

One tradeoff is a four-way versus an eight-way mesh. We found that few algorithms take
advantage of an eight-way mesh, and the increase in performance is small unless operations take
place on eight inputs at once. Even then, the improvement does not justify the resultant cost of
tripling the number of 1/O pins on the processor chip and at circuit board boundaries.

In addition to local communication, several low-level vision algorithms require communication
between processors that are spatially distant in the mesh. We chose to enhance the mesh itself, so
that no additional connectivity is required between processors. This scheme is similar to those
proposed by [Kumar, 19851, [Miller, 19881, and [Li, 19871, and is a generalization of the propagate
operation in the CLIP-4 [Duff. 19781, and the "flash-through" mode of the ILLIAC III
[McCormick, 19631. In our scheme, any contiguous group of processors in the mesh can be
connected by a bus. For example, each region in an image could be electrically isolated from its
neighbors, allowing local broadcast and some/none operations to occur simultaneously in all
regions (Figure 2). An important result is that maximum or minimum values can be determined
within regions, which is used to label connected components. Our simulations show that this takes
roughly 50 microseconds on a 512 by 512 array, assuming a 100 nanosecond cycle. This Coterie
Network, as it is called, has many other uses, including matrix arithmetic, Fast Fourier Transform
(FF'I), convex hull computation, simulating a pyramid processor, etc.

3.2 Memory

The two obvious options for expanding processor memory are to add memory to the processor
chip, or to use external memory. We anticipate chips with more than 64 (1024 is feasible)
processors, and increased clock rate, which favors on-chip memory. However, we also saw the
need for at least tens of thousands of bits per processor, which only off-chip memory could
support. Our solution to this dilemma is to do both. Each processor contains an explicitly managed
data cache on the chip. In our current implementation, this contains 320 bits, but the architecture
provides for expansion to 1024 bits. Two pages of the cache also perform corner-turning (the
transformation of bit-serial data into bit-parallel formats). The external memory is dual-ported with
the intermediate-level processor, and is the primary data path between processing levels. The low-
level, bit-serial data must therefore be "corner-turned" on its way to the backing store, so that the
intermediate-level processor can work with it directly in bit-parallel formats. Each low-level
processor has access to 32K bits of external memory. Backing store transfers take 16 instruction
cycles per byte.

The comer-turning pages have eight-bit data paths, providing a factor of eight speed-up over the bit-
serial data path for movement of data between locations in these pages. The wider data path is also
useful for aligning mantissas in floating-point operations. The registers that control the Coterie
Network switches are also attached to the 8-bit data path, allowing the entire network to be
reconfigured with a single instruction.
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3.3 Response and Activity Control

Traditional associative processor designs use a response flag to both control local activity and
provide summary information to the central control. An opposite approach is to separate response
from activity by providing a register for each. Both, split and combined activity, and response can
be provided by allowing writes into either of the two registers, or both, simultaneously. This small
change provided a 20 percent speed improvement in equality comparisons between a local value
and a broadcast value. A similar change allows inequality tests to be performed in about 50% less
time, by permitting the response register to be loaded with an operand at the same time that a result
is stored in the activity register.

3.4 Response Count

Our analysis showed that counting processors with a specific bit set is frequently done in bursts.
For example, summing a set of values in the array involves counting the ones in each bit position
(each processor loads one bit at a time into its response register, a sum is developed by counting the
bits in each position and scaling the counts appropriately before summing them). Another example,
is creating a histogram of a set of data; which could require 256 counts for an 8-bit field (each
processor compares its value to a broadcast value, the bucket number, and if the values match the
processor sets its response bit, the table of counts then corresponds to all of the buckets of the
histogram).

For real-time applications, a count must be developed very quickly. One technique proposed by
Foster [Foster, 19711, uses a pyramid of adders. Within the processor chip, Foster's scheme is used
to produce a response count at the end of each instruction cycle. A special instruction latches the
count into a shift register so that it can output serially. The processors are able to overlap
computation with output of the current count.

A custom VLSI chip was designed with 64 serial inputs, one serial output, and six parallel outputs.
One cycle after the low order bits of a set of partial counts are input, the low order bit of the result
appears at the serial output. The high order bits of the result appear in the parallel outputs. The
process can be repeated to sum 64 inputs of any bit length with the low order portion of the result
being shifted out serially and the high order six bits available in parallel. Two levels of the chips are
cascaded to form a count for the entire array. Only 1.6 microseconds are required to count the
response registers in an array of 262,144 processors, using 65 copies of a single custom chip. The
same chip also provides the boolean summaries some/none, some/all, and exactly one responder.
It can be thought of as a general purpose 64-input reduction unit.

+4

Figure 2. Coterie Network
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Figure 4. 1/0 Architecture.

The direct access portion of the VRAM is connected to a VME port, and appears as a block of
memory in the VME address space. In the full-scale system, each processor card could have its
own VME port so that parallel I/O to the staging memory can take place. In our prototype, the
single VME port is connected to a smart frame grabber that moves data in and out through a
region-of-interest buffer.
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4. Design of the ICAP Interconnection Network

The ICAP operates in two distinct modes of control. When working with the SPA, the ICAP
operates in MIMD mode, but when interacting with the CAAPP, it is most efficient to keep the
ICAP processors roughly synchronized. The remainder of this section will focus on the latter
mode, which is called SPMD (Single Program, Multiple Data), and has a programming model that
is similar to SIMD, except that branches can be performed simultaneously rather than sequentially.
During SPMD operation, the ACU manages the stages of processing through barrier
synchronization points. Communication between ICAP processors also occurs synchronously via
reconfigurable network that is managed by the ACU. A typical scenario involves the ICAP
processors communicating via one connection pattern, then synchronizing at a barrier and waiting
for the ACU to reconfigure the network before releasing them.

The ICAP connection network is used to set up a connection pattern between the N output ports of
the processors and the N input ports of these same processors. The connection network can be
programmed on-line, to make a direct link from the output port of any processor to the input port
of one or more processors. We have built a custom VLSI chip, called the PARallel
COmmunication Switch (PARCOS), which is capable of both point-to-point and broadcast
communication, allowing the connection network to realize any of NN mappings of its input ports
onto its output ports. All of the processors can send and receive data on their links at the same time.
These links can be changed by the ACU at any time.

The 64-input, 64-output connection network for the IUA prototype uses 2 stages of 32 x 32
PARCOS chips. The PARCOS chips are connected to make a 64 x 64 crossbar switch with
broadcast capability as shown in Figure 5. A detailed discussion of the network can be found in
[Rana, 19881. While these chips have been constructed and tested, they have not yet been installed
in the IUA prototype because neither the Hughes nor the UMass budgets included the cost for
fabricating the circuit-boards to hold them. UMass assumed Hughes would build the boards
because it was up to them to decide on the physical construction of the system, including circuit-
board form factors (which are necessary to determine costs). Hughes assumed that UMass had
budgetted construction of the board because UMass was designing the custom VLSI chips.
Fortunately, the system was designed to also function without the communication network
(communication via the host instead), so this merely affects communication performance rather
than functionality. We still hope to eventually construct the boards and install them, using other
funds, once the prototype is physically installed at UMass.

4.1 The Parallel Communication Switch

The PARCOS chip consists of a communication matrix of 32 bit-serial inputs and 32 bit-serial
outputs, a control memory, a set of registers and associated read/write circuitry. The PARCOS chip
organization is shown in Figure 6. Multiple PARCOS chips can be used to build larger connection
networks, such as the 64 x 64 network in the IUA prototype.

The communication matrix of PARCOS consists of 32 tree-structured multiplexers, each of which
is a 1 of 32 multiplexer. All 32 input lines are connected in parallel to each of the 32 multiplexers.
With this architecture, multiple outputs can be connected to the same input, providing broadcast
mode capability. For any multiplexer, path selection at any level of the tree is done with a single bit
of a control word. Thus, 5 control bits are required to select I of 32 inputs for each multiplexer, or
32 x 5 = 160 bits for configuring the entire communication matrix.
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The PARCOS control memory consists of 32 control words, where each control word contains the
32 bytes of 5 bits required for one configuration. The on-chip control memory is therefore
constructed so that PARCOS can hold up to 32 of the most frequently used connection patterns for
larger networks built out of this chip. The control memory is called the Connection Pattern Cache
(CPC), because it is analogous to storing the most frequently used pages in a memory system
cache.

The connectivity information for the communication matrix is stored serially into the control
words. To write connectivity information in a control word of the CPC, first a row number is set in
the Row Select Register (RSR). RSR is mapped into the chip's memory space, allowing the address
bus in PARCOS to select the register, and the binary value on the data lines determines the row
number. Next, 32 5-bit bytes are written into addresses 0 - 31. The memory location's address is
the output port number and its contents determine which inpit port it is connected to. If only a
subset of links need to be modified, this can be done by selectively writing only into locations
corresponding to those links.
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Figure 5. A 64 x 64 Network Built with PARCOS Chips.

Reswitching the configuration of the communication matrix from one stored connection pattern in a
control word to another requires a single write instruction, where the address of a new control word
is placed in the RSR, and the control word's contents are loaded into the Control Pattern Register
(CPR), activating a new connection pattern. Notice that the CPR allows a control word to be
modified in the CPC without disturbing an existing configuration in the communication matrix. In
many cases this feature allows the time to write a new connection pattern from the ACU into the
CPC to be hidden while the processors are working on an algorithm.

PARCOS is implemented on a single 84 pin, 50,000 device, VLSI chip. It is a full custom design,
built out of a 2 micron, P-Well, double metal, scaleable CMOS technology available through
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Figure 6. PARCOS Chip Organization

MOSIS. Each CPC memory bit is a 6 transistor static RAM cell. The worst case delay in
broadcast mode from one input to 32 outputs is less than 50nS.
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5. The IUA Simulator

The simulator for the Image Understanding Architecture provides a way of testing the design of,
and developing the software for, the IUA. The simulator runs under X and is currently installed on
Sun and DEC workstations and on a Sequent Symmetry multiprocessor. Several versions of the
simulator exist on each machine and differ in the size of the IUA being simulated. The larger the
IUA, the slower and larger is the simulation. The simulator supports IUA configurations with
various numbers of Mother Boards as shown in the following table.

Mother Boards 1 4 16 64
CAAPP PEs 4096 16384 65536 262144
ICAP Processors<= 64<= 256 <= 1024 <= 4096

Even with the smallest complement of Mother Boards, a complete IUA is usually not simulated
due to limitations on the real ..iemory available on the host computer and the desire to avoid page
faults when running simulations. (Even the smallest configuration of the IUA contains 42 MB of
RAM.) The amounts of CAAPP-ICAP Shared Memory (CISM), ICAP-SPA Shared Memory
(ISSM), and [CAP Data Memory (IDM) are thus limited to that needed by the problem being run
on the simulator. For the same reasons, the ICAP Program Memory (IPM) is considered to be
read-only so that it need not be duplicated for all the processors.

The simulator has been constructed in a modular fashion so that the various parts may be replaced
easily for different needs such as allowing substitution of a 64 processor ICAP simulator module
for a 16 processor ICAP simulator module when the primary simulation is at the ICAP level
instead of at the CAAPP level. The user's view of the simulator is presented by the "user console,"
which contains separate windows such as a control panel, display window, and programming
terminal.

The user console is a window which is roughly 600 rows by 800 columns in size, leaving sufficient
room to view other windows (such as a command window or editor) on the screen. This display is
split into a left and right side. The left side is the Control Panel and the right side is the Display
Window.

The Control Panel contains displays of the 1-bit CAAPP registers arranged as blocks of 64 x 64
pixels with one pixel per processor. For the smallest simulator this is the complete set of
processors. For larger versions of the simulator, this is a sub-window into the n by n array of
CAAPP processors. Associated with each register display is a button. Clicking this button with the
mouse causes the display to be shown enlarged in the Display Window. Other buttons in the
Control Panel cause other displays to appear in the Display Window or bring up pop-up windows
for special operations such as loading and saving files. Having all of the registers shown at the
same time allows the programmer to see the state of the CAAPP processors arranged in
correspondence to images stored in the array.

The Display Window consists of a foreground and background display. The background display is
always the Programming Terminal. The foreground display may or may not be present and shows
the display selected by clicking a button in the Control Panel. The foreground display leaves the
bottom sixth of the Programming Terminal always visible. The Programming Terminal allows
entry of commands and input to a running program. Output from a program can also be shown on
the terminal.
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The foreground displays include processing element (PE) registers, PE memory, a grey level
display, coterie network display, ICAP display, and PE instruction display. All of the displays can
be selected and manipulated by the user program running in the simulated ACU.

The PE register display presents a binary image indicating the status of one selected PE register
from all PEs. The user can zoom in or out from a 2 by 2 processor display up to a display showing
all the processors being simulated, even for a 512 x 512 simulation. Scroll bars on the sides indicate
what portion of the complete array is being shown. Individual PE registers may be set or cleared by
clicking with the mouse inside of the display window. The Control Panel simultaneously shows the
current row-column processor location selected by the mouse.

The PE memory display shows one location in every PE Memory as a binary image. This display
has the same functionality as the PE Register display.

The grey display shows a contiguous range of bits in PE Memory as a grey scale image. The user
can zoom in or out from a 2 by 2 processor display up to a display showing all the processors
being simulated. (Scroll bars on the sides indicate what portion of the complete array is being
shown.) The user may select from I to 32 bits in the range to be displayed, although the actual
screen representation may be limited by the available graphics hardware. The grey display may be
changed to an inverse grey or false color mode.

The user may select a 3 by 3 pixel array with the mouse to be shown as numeric values in a pop-up
window in either signed integer, unsigned integer, or IEEE floating point format. The location in
PE memory or CISM memory that is sampled may be different from the location shown in the
Grey Display, allowing an image to be used to guide exploration of other values that may not be
visually informative when shown as an image. The Grey Display can be overlaid with red, green,
and blue pixel maps. The overlay can be any of the PE registers or locations in PE memory.

The Coterie Display shows a graphic representation of the state of the switches anu the the electrical
charge in the network. Currently, the Coterie Display is limited to 32 by 32 PEs. A particular PE
can be dragged to the center of the display with the mouse. Scroll bars on the side indicate what
portion of the complete network is being displayed. Using function keys, individual switches can be
opened or closed in the Coterie Network.

The ICAP display shows the complete set of registers for one ICAP processor. Also shown are all
of the registers on the same Daughter Board (except for the CAAPP PE registers). When this
display is selected, a pop-up window appears which may be used to select a particular Daughter
Board, and a range of locations in ICAP Data Memory (IDM), to be displayed. A range of
locations in ICAP Program Memory (IPM), surrounding the current value of the program counter,
is also shown. Up to four breakpoints may be set for the program running in the ICAP processors.
Both the IDM range and the breakpoints may be selected using symbolic expressions.

The PE Instruction Display is a scrollable display of the last 2048 instructions sent to the CAAPP
by the ACU. The instructions are shown both in hex and in symbolic form.

The Daughter Board Simulator simulates all of the PEs, CISM, ISSM, and glue logic. While the
IUA is made up of multiple Daughter Boards, the Daughter Board simulator does not simulate
them one at a time. Instead, for efficiency, the PEs are simulated as a vector of processors. At those
places where the geometry of the IUA is apparent, the simulation applies a board-by-board
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approach. For example, the instruction "zero the Z registers" is done for all F-Es in a tight loop
while the backing-store operations are done board-by-board.

The Daughter Board simulator receives instructions in the same form that tne real Daughter Boards
receive instructions from the ACU. The instructions are sent on a simulated bus as 32 bit signals
and are then decoded. This provides two benefits over a more tightly coupled scheme. First, the
instruction stream on the bus is easily captured and can be used in exercising circuit boards under
test. Second, using a bus allowed quick construction of versions of the simulator that could utilize a
parallel processor. In fact, we use the same Daughter Board code for both the uniprocessor and
multiprocessor implementations. A compile time switch is used to select the data partitioning
parallel code which resides in only one subroutine. The parallel code is coupled with synchronizing
check points that are no-ops in the non-parallel versions.

The computation of execution time is also simplified through the use of the simulated bus. Because
the majority of instructions take a single clock cycle, an accumulator is used to count the
instructions sent over the bus. An ACU overhead cost is also added as appropriate. (Micro-
controller routines have lower per-instruction overhead.) For those operations such as backing-store
read where the result is not available immediately, the code that simulates the individual instruction
adds the worst case time to the accumulator. (In the multiprocessor version of the simulator, only
one processor does the addition.) For the real machine, these variable length processes will be
handled either by using feedback or by fixed time idle loops in the ACU for the worst case. For the
simulator, we took the second approach since we did not want to simulate the backing-store finite
state machine at the level needed to provide the correct timings using the feedback method.

The Coterie Network provided special problems in the simulation because it is really an analog
circuit using electrical charge propagation. As the cost of an analog simulation of the network is
prohibitive, we simulated the charge propagation digitally; permitting us to execute one cycle of 100
ns in approximately 18 milliseconds for a 512 by 512 PE simulator using 9 processors on the
Sequent multiprocessor. For the DARPA Integrated IU benchmark, this would have otherwise
required approximately 24 days of wall-clock time to run only one of the five test cases. An
analysis of the problem showed that the configuration of the network was being changed
infrequently with respect to the number of network operations performed. We thus modified the
simulator to record a list of connected PEs whenever the network is reconfigured, and this
information is used to accelerate the simulation of subsequent network operations using that
configuration. The result is that the complete set of 5 LU benchmark test cases can be run in just two
and one half days on the Sequent.

The Programming Terminal is an interactive interpreter that allows entry of commands and
programs to directly manipulate the processing arrays. The IUA Simulator has been designed so
that this module may be easily replaced by other modules. (Currently, the only module available is
for interpreting the FORTH language.) A module for Lisp could be provided as well. The interface
consists of input and output streams from the simulator, a procedure call for issuing instructions to
the CAAPP bus, and other procedure calls for changing the displays.

We felt that it was very important to provide an interactive environment so that the edit, compile,
test loop would be very fast. The programmer can rapidly prototype code interactively and then
reimplement the tested algorithm as an "ACU Macro" if desired.

FORTH is a threaded language. A few simple constructs are combined into ever more powerful
constructs. Each construct is called a word. FORTH was selected because its interpreter is small
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and fast." also had access to the source code for a FORTH implementation. New features such
as floating point operations were built, in addition to interfaces to the IUA Simulator. FORTH
provides a quick way of changing a program and re-trying it, or of just entering instructions. We
provided a FORTH-based assembler for the CAAPP PE instructions so that the user is able to
enter an instruction such as

A := B'AND Y!!

and have it assembled and sent on the CAAPP bus. Each of the symbols (A, :=, B, etc) are
FORTH words that place information on the FORTH stack. This information is processed by the
FORTH word !! to produce the CAAPP bus instruction. The special words provided to interface
with the simulator allow FORTH to control all aspects of the simulation and act as the ACU.

The low level processing portion of the DARPA Integrated IU benchmark was written mostly in
FORTH with some of the simple ACU Macros such as ADD-FIELDS written in C. The major
problem encountvnred with the use of FORTH was its flat name scoping, which prevented the
FORTH code from being completely modular due to name conflicts (no vocabulary facility is
available).

The following example is the definition of a FORTH word that adds two integer fields of the same
length in PE memory.

( 1 ) : ADD-FIELDS ( length fl f2--) (Add field f2 to field fl )
(2) Z:= ZERO!!
(3) 2 ROLL I - 0 DO
(4) 1PICKI+>R X:=R>A!
(5) 0 PICK I + DUP >R:= X'+ R> A!
(6) LOOP;

Line 1 defines the word ADD-FIELDS. This word takes three arguments off of the FORTH stack.
The top stack value is the PE Memory address of the second operand. The next stack value is the
first operand/result field PE Memory address. The third value is the length of the fields in bits. This
argument protocol is documented with the comment in line 1. Line 2 clears the Z (carry) register in
all PEs. Line 3 is a FORTH indexed loop. The 2 ROLL picks up the length value from the FORTH
stack. If this value were 8, then line 3 would be equivalent to 7 0 DO which would loop over the
values 0, 1, 2, 3, 4, 5, 6, 7. The end of the loop is specified in line 6 which also ends the FORTH
word. Line 4 generates the PE instruction "loatO the X register of the active PEs with the value from
memory location f2 + I" where I is the loop index. The FORTH return stack is used as a temporary
holding place for the value f2 + I. Line 5 generates the PE instruction

M[fl+I] := X + M[fi1+1 A!

which causes the X register, the Z register, and memory location fI + I to be added in all active
PEs. The result is placed in memory location fI + I and the carry goes to the Z register. For the
FORTH statement

2 10 20 ADD-FIELDS

the following PE instructions would be issued to add a pair of 2-bit values at locations 10.. 11 and
20..21, with the result being stored back in locations 10.. 11:
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Z:= ZERO !!
X := M[201 A!
M[101 := X -+ MI A!
X :=M[21] A!
M[II] :=X + M[] A!

The ICAP simulator is structured to simulate one instruction from the first ICAP processor, one
instruction from the next and so forth. Because the ICAP processors run in MIMD mode, these
instructions will probably be different. As we did not want to pay the price of a gate level simulator,
we chose to implement a functional simulator for the TMS320C25.

Because the simulation is on an instruction level, code written to use timing loops is not valid as the
simulator will not maintain synchronization between the various ICAP processors. A disadvantage
of this approach is that the timings are not exact. Our timing model uses the average time for an
instruction with data in on-chip memory and instructions in off-chip memory. Our experience
shows that approximately 90 percent of the data references are to the on-chip memory. With the
TMS320C25 there is a large benefit to using a small amount of contiguous data memory, which is
due not only to the on-chip data memory, but also to the addressing modes supported.

The full IUA will have 4096 ICAP processors. Each one will have 128k bytes of data memory and
128k bytes of program memory. This is a gigabyte of memory and is far more than the real
memory available on any of the machines we have used to run the simulator. In order to prevent
page faults which would have drastically increased the elapsed time for any simulation, we reduced
the number of ICAP processors and the amount of ICAP Data Memory (IDM) and ICAP
Program Memory (IPM) available in the simulator. The IUA simulator can be easily re-configured
as to the number of ICAPs being simulated (independently of the size of the CAAPP array) and the
size of IDM. The IPM is shared as read-only memory among all the ICAP processors. Even
though the ICAP processors run independently, they all have the same programs loaded in 1PM;
which restricts the programmer to writing code that is not self-modifying.

Because there is a single system clock, the CAAPP and ICAP instruction streams are in
approximate synchronization with roughly a two to one execute rate. Therefore, the IUA simulator
executes two CAAPP instructions and then one instruction for each ICAP processor. Since an
ICAP instruction may take more than one cycle, a particular ICAP processor is held up if its clock
shows more time than the CAAPP has used.

The ICAP code is loaded into IPM by the ACU. The ACU can write the same program in every
ICAP IPM directly using the CAAPP bus. "i .e ACU can also write directly into any off-chip IDM
location. Because the bus is a one-to-many bus, all ICAPs receive the same data and programs.
However it is also possible for the ACU to write a loader program into IPM that causes IPM to be
loaded from ISSM by each individual ICAP processor. Since each ICAP processor sees a separate
part of ISSM, each can be loaded with a different program. This mode of operating is not supported
by the IUA simulator as there is only one IPM shared by every ICAP processor.

Code for the ICAP processors can be written in either C or Assembler. The IUA simulator
provides a loader for either special absolute code or for the TI COFF loader text format.

While the full-scale IUA has one ACU and 64 SPA processors, the prototype hardware has one
ACU and just one SPA. In the simulator, the ACU and SPA are the same computer and the
simulator follows this simpler model regardless of how many PEs or ICAP processors are
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simulated. The ACU/SPA is the interactive module linked into the Programmers Terminal, which
is currently the FORTH interpreter.

A separate module called the ACU Macros is also part of the ACU. The ACU Macros are
procedures written in C for standard operations on the CAAPP such as ADD-FIELDS or FIND-
GREATEST. On the real IUA, these macros will be stored in the micro-code memory of the
Micro-controller that feeds the bus to the Daughter Boards. The ACU will request that a macro be
executed with specified parameters, the micro-controller will execute the macro, substituting the
parameters at the clock rate of the CAAPP while the ACU program sets up the next request. The
approach taken in the simulator has been to identify which sequences of code should be in the
micro-code memory, and what capabilities the micro-controller must have to efficiently execute
those sequences. The ACU calls the macros via a special simulator interface procedure.

Also available to the user are "User macros". These macros allow the user to provide procedures
written and compiled in C, which can either be special code for an application or candidates for an
ACU Macro. Thus, the interactive Programmer's Terminal can still be used while taking advantage
of the benefits of C. The cost to the user is that the simulator must be relinked whenever a change is
made in the C code.

5.1 Libraries

We currently have an extensive library of arithmetic subroutines for the CAAPP, including byte,
integer, and floating point arithmetic, and many of the standard transcendental functions. Thus, we
have the basis for a compiler run-time library. We also have implemented many vision subroutines,
including various convolutions, filters, edge-preserving, smoothing, convex hull, expand and
contract morphological operators, connected component labelling, boundary tracing, windowed
Hough transform, etc. In addition, we have implementations of the DARPA Integrated IU
Benchmark, the Abingdon Cross Benchmark, and an optical ray-tracing application (as an example
of a non-vision application).

For the ICAP, in addition to the compiler run-time library, we have a library that supports
communication via the serial ports, and synchronization with the ACU. We also have an
implementation of the Linda programming environment, originally developed at Yale (although it is
very inefficient, as are most Linda implementations). From the DARPA Benchmark, we also have
a model-matching algorithm that runs on the ICAP.
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6. Image Understanding Benchmark

While traditional supercomputing benchmarks may be useful in estimating the performance of an
architecture on some types of image processing tasks, those benchmarks have little relevance to the
majority of the processing that takes place in a vision system [Duff, 1986]. Nor has there been
much effort to define a vision benchmark for supercomputers, since those machines in their
traditional form have usually been viewed as inappropriate vehicles for knowledge-based vision
research. However, now that parallel processors are becoming readily available, and becau.. hey
are viewed as being better suited to vision processing, researchers in both machine vision and
parallel architecture are taking an interest in performance issues with respect to vision. We begin by
summarizing the work that has been done in the area of vision benchmarks to date, then we
examine the DARPA IU Benchmark developed under this effort.

6.1 Review of Previous Vision Benchmark Efforts

One of the first parallel processor benchmarks to address vision-related processing was the
Abingdon Cross benchmark, defined at the 1982 Multicomputer Workshop in Abingdon, England
[Preston, 1986]. In that benchmark, an input image was specified that consisted of a dark
background with a pair of brighter rectangular bars, equal in size, that cross at their midpoints and
are centered in the image, and with Gaussian noise added to the entire image. The goal of the
exercise was to determine and draw the medial axis of the cross formed by the two bars. The
results obtained from solving the benchmark problem on various machines were presented at the
1984 Multicomputer Workshop in Tanque Verde, Arizona, and many of the participants (including
members of the UMass IUA group) spent a fairly lengthy session discussing problems with the
benchmark and designing a new benchmark that it was hoped would solve those problems.

It was the perception of the Tanque Verde group that the major drawback of the Abingdon Cross
was its lack of breadth. The problem required a reasonably small repertoire of image processing
operations to construct a solution. The second concern of the group was that the specification did
not constrain the a priori information that could be used to solve the problem. In theory, a valid
solution would have been to simply draw the medial lines since their true positions were known.
Although this was never done, there was argument over whether it was acceptable for a solution to
make use of the fact that the bars were oriented horizontally and vertically in the image. A final
concern was that no method was prescribed for solving the problem, with the result that every
solution was based on a different method. When a benchmark can be solved in different ways, the
performance measurements become more difficult to compare because they include an element of
programmer cleverness. Also, the use of a consistent method would permit some comparison of
the basic operations that make up a complete solution.

The Tanque Verde group specified a new benchmark, called the Tanque Verde Suite, that consisted
of a large collection of individual vision-related problems. Table I contains the list of problems that
was developed. Each of the problems was to be further defined by a member of the group, who
would also generate test data for their assigned problem. Unfortunately, only a few of the problems
were ever developed, and none of them were widely tested on different architectures. Thus, while
the simplicity of the Abingdon Cross may have been criticized, it was the respondent complexity of
the Tanque Verde Suite that inhibited the latter's use.
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Standard Utilities High Level Tasks
3x3 Separable Convolution Edge Finding
3x3 General Convolution Line Finding
I5x 15 Separable Convolution Comer Finding
15x 15 General Convolution Noise Removal
Affine Transform Generalized Abingdon Cross
Discrete Fourier Transform Segmentation
3x3 Median Filter Line Parameter Extraction
256 Bin Histogram Deblurring
Subtract Two Images Classification
Arctangent(Image l/Imagc2) Printed Circuit Inspection
Hough Transform Stereo Image Matching
Euclidean Distance Transform Camera Motion Estimation

Shape Identification

Table 1: Tanque Verde Benchmark Suite

In 1986, a new benchmark was developed at the request of the Defense Advanced Research
Projects Agency (DARPA). Like the Tanque Verde Suite, it was a collection of vision-related
problems, but the set of problems that made up the new benchmark was much smaller and easier to
implement. Table 2 lists the problems that comprised the first DARPA Image Understanding
Benchmark. A workshop was held in Washington, D.C., in November of 1986 to present the
results of testing the benchmark on several machines, with those results summarized in [Rosenfeld,
1987]. The consensus of the workshop participants was that the results cannot be compared directly
for several reasons. First, as with the Abingdon Cross, no method was specified for solving any of
the problems. Thus, in many cases, the timings were more indicative of the knowledge or
cleverness of the programmer, than of a machine's true capabilities. Second, no input data was
provided and the specifications allowed a wide range of possible inputs. Thus, some participants
chose to test a worst-case input, while others chose "average" input values that varied considerably
in difficulty.

lIxl1 Gaussian Convolution of a 512x512 8-bit Image
Detection of Zero Crossings in a Difference of Gaussians Image
Construct and Output Border Pixel List
Label Connected Components in a Binary Image
Hough Transform of a Binary Image
Convex Hull of 1000 Points in 2-D Real Space
Voronoi Diagram of 1000 Points in 2-D Real Space
Minimal Spanning Tree Across 1000 Points in 2-D Real Space
Visibility of Vertices for 1000 Triangles in 3-D Real Space
Minimum Cost Path Through a Weighted Graph of 1000 Nodes of Order 100
Find all Isomorphisms of a 100 Node Graph in a 1000 Node Graph

Table 2: Tasks from the First DARPA Image Understanding Benchmark

The workshop participants pointed out other shortcomings of the benchmark. Chief among these
was that because it consisted of isolated tasks, the benchmark did not measure performance related
to the interactions between the components of a vision system. For example, there might be a
particularly fast solution to a problem on a given architecture if the input data is arranged in a special
manner. However, this apparent advantage might be inconsequential if a vision system does not
normally use the data in such an arrangement, and the cost of rearranging the data is high. Another
shortcoming was that the problems had not been solved before they were distributed. Thus, there
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was no canonical solution on which the participants could rely for a definition of correctness, and
there was even one problem for which it turned out there was no practical solution. The issue of
having a ground truth, or known correct solution was considered very important, since it is difficult
to compare the performance of two architectures when they produce different results. For example,
is an architecture that performs a task in half the time of another really twice as powerful if the first
machine's programmer used integer arithmetic, while the second machine was programmed to use
floating point, and thus obtained significantly different results? Since problems in vision are often
ill-defined, it is possible to argue for the correctness of many different solutions. In a benchmark,
however, the goal is not to solve a vision problem but to test the performance of different machines
doing comparable work.

The conclusion from the first DARPA benchmark exercise was that a new benchmark should be
developed that addresses the shortcomings of the preceding benchmarks. Specifically, the new
benchmark should test system performance on a task that approximates an integrated solution to a
machine vision problem. A complete solution with test data sets should be constructed and
distributed with the benchmark specification. And, every effort should be made to specify the
benchmark in such a way as to minimize the opportunities for taking shortcuts in solving the
problem. The task of constructing the new benchmark, to be called the Integrated Image
Understanding Benchmark, was assigned to the vision research groups at the University of
Massachusetts at Amherst, and the University of Maryland.

Following the 1986 meeting, a preliminary benchmark specification was drawn up and circulated
among the DARPA image understanding community for comment. The benchmark specification
was then revised, and a solution was programmed on a standard sequential machine. In creating the
solution, several problems were discovered and the benchmark specification was modified to
correct those problems. The programming of the solution was done by the group at the University
of Massachusetts and the code was then sent to the group at the University of Maryland to verify its
validity, portability, and quality. The group at Maryland also reviewed the solution to verify that it
was general in nature and neutral with respect to any underlying architectural assumptions. The
Massachusetts group developed a set of five test cases, and a sample parallel solution for a
commercial multiprocessor.

In March of 1988, the benchmark was released, and made available from Maryland via network
access, or by sending a blank tape to the group in Massachusetts. The benchmark release consisted
of the sequential and parallel solutions, the five test cases, and software for generating additional test
data. The benchmark specification was presented at the DARPA Image Understanding Workshop,
the International Supercomputing Conference, and the Computer Vision and Pattern Recognition
conference [Weems, 19881. Over 25 academic and industrial groups, listed in Table 3, obtained
copies of the benchmark release. Nine of those groups developed either complete or partial versions
of the solution for an architecture. A workshop was held in October of 1988, in Avon Old Farms,
Connecticut, to present those results to members of the DARPA research community. As with the
previous workshops, the participants spent a session developing a critique of the benchmark and
making recommendations for the design of the next version.
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International Parallel Machines Hughes A] Center
Mercury Computer Systems University of Wisconsin
Stellar Computer George Washington University
Myrias Computer University of Massachusetts*
Active Memory Technology SAIC
Thinking Machines* Eastman Kodak
Aspex Ltd.* University College London
Texas Instruments Encore Computer
IBM MIT
Carnegie-Mellon University* University of Rochester
Intel Scientific Computers* University of Illinois*
Cray Research University of Texas at Austin*
Sequent Computer Systems* Alliant Computer*

Table 3: Distribution List for the Second DARPA Benchmark
* Indicates Results Presented at the Avon Workshop

The remainder of this section summarizes those results and recommendations, following a brief

review of the benchmark task and the rationale behind its design.

6.2 Benchmark Task Overview

The overall task that is to be performed by this benchmark is the recognition of an approximately
specified 2 1/2 dimensional "mobile" sculpture in a cluttered environment, given images from
intensity and range sensors. The intention of the benchmark designers is that neither of the input
images, by itself, is sufficient to complete the task.

The sculpture to be recognized is a collection of two-dimensional rectangles of various sizes,
brightnesses, two-dimensional orientations, and depths. Each rectangle is oriented normal to the Z
axis (the viewing axis), with constant depth across its surface, and the images are constructed under
orthographic projection. Thus, an individual rectangle has no intrinsic depth component, but depth
is a factor in the spatial relationships between rectangles. Hence the notion that the sculpture is 2
1/2 dimensional.

The clutter in the scene consists of additional rectangles, with sizes, brightnesses, two-dimensional
orientations, and depths that are similar to those of the sculpture. Rectangles may partially or
completely occlude other rectangles. It is also possible for a rectangle to disappear when another
rectangle of the same brightness or slightly greater depth is located directly behind it.

A set of models is provided that represent a collection of similar sculptures, and the recognition task
involves identifying the model which best matches the object present in the scene. The models are
only approximate representations of sculptures in that they allow for slight variations in component
rectangle's sizes, orientations, depths, and the spatial relationships between them. A model is
constructed as a tree structure where the links in the tree represent the invisible links in the
sculpture. Each node of the tree contains depth, size, orientation, and intensity information for a
single rectangle. The child links of a node in the tree describe the spatial relationships between that
node and certain other nodes below it.

The scenario that the designers imagined in constructing the problem was a semi-rigid "mobile",
with invisible links, viewed from above, with bits and pieces of other mobiles blowing through the
scene. The state of the system is that previous processing has narrowed the range of potential
matches to a few similar sculptures, and has oriented them to correspond with information
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Figure 7: Intensity Image of Model Alone Figure 8: Image of Model with Clutter

extracted from a previous image. However, the objects in the scene have since moved, and a new
set of images has been taken prior to completing the matching process. The system must make its
final choice for a best match, and update the corresponding model with the positional information
extracted from the latest images.

The intensity and depth sensors are precisely registered with each other and both have a resolution
of 512 x 512 pixels. There is no averaging or aliasing in either of the sensors. A pixel in the
intensity image is an 8-bit integer grey value. In the depth image a pixel is a 32-bit floating-point
range value. The intensity image is noise free, while the depth image has added Gaussian noise.

A set of test images is created by first selecting one of the models in a set. The model is then rotated
and translated as a whole, and its individual elements are then perturbed slightly. Next, a collection
of spurious rectangles is created with properties that are similar to those in the chosen model. All of
the rectangles (both model and spurious) are then ordered by depth and drawn in the two image
arrays. Lastly, an array of Gaussian-distribution noise is added to the depth image array.

Figure 7 shows an intensity image of a sculpture alone, and Figure 8 shows the sculpture with
added clutter.

Processing in the benchmark begins with some low-level operations on the intensity and depth
images, followed by some grouping operations on the intensity data that result in the extraction of
candidate rectangles. The candidate rectangles are used to form partial matches with the stored
models. For each model, it is possible that multiple hypothetical poses will be established. The
benchmark then proceeds through the model poses, using the stored information to probe the depth
and intensity images in a top-down manner. Each probe can be thought of as testing an hypothesis
for the existence of a rectangle in a given location in the images. Rejection of an hypothesis, which
only occurs when there is strong evidence that a rectangle is actually absent, results in elimination of
the corresponding model pose. Confirmation of the hypothesis results in the computation of a
match strength for the rectangle at the hypothetical location, and an update of its representation in
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the model with new size, orientation, and position information. It is possible for the match strength
to be as low as zero when there is no supporting evidence for the match and a lack of strong
evidence that the rectangle is absent, as in the case of a rectangle that is entirely occluded by another.
After a probe has been performed for every unmatched rectangle in the list of model poses, an
average match strength is computed for each pose-that has not been elrminated. The model pose
with the highest average match strength is selected as the best match, and an image is generated that
highlights the model in the intensity image. Table 4 lists all of the steps that make up the complete
benchmark task.

The benchmark specification requires that this set of steps be applied in implementing a solution.
Furthermore, for each step, a recommended method is described that should be followed whenever
possible. However, in recognition of the fact that some methods simpiy may not work, or will be
extremely inefficient for a given architecture, implementors are permitted to substitute other
methods for individual steps. When it is necessary for an implementation to differ from the
specification, the implementor is expected to supply a justification for the change. It is also urged
that, if possible, a version of the implementation be written and tested with the recommended
method so that the difference in performance can be determined.

6.3 Benchmark Philosophy and Rationale

In writing an integrated image understanding benchmark, the goal is to create an interpretation
scenario that is an approximation of an actual image interpretation task. One must remember,
however, that the benchmark problem is not an end in itself, but is a framework for testing machine
performance on a wide variety of common vision operations and algorithms, both individually and
in an integrated form that requires communication and control across algorithms and
representations. This benchmark is not intended to be a challenging vision research exercise, and the
designers feel that it should not be. Instead, it should be a balance between simplicity for the sake of
implementation by participants, and the complexity that is representative of actual vision
processing. At the same time, it must test machine performance in as many ways as possible. A
further constraint on the design was the requirement that it make use of as many of the tasks from
the first DARPA benchmark as possible, in order to take advantage of the previous programming
effort.

The job of the designers was thus to balance these conflicting goals and constraints in developing
the benchmark scenario. One result is that the benchmark solution is neither the most direct, nor the
most efficient method of solving the problem. However, making the solution more direct would
have eliminated several of the algorithms that are important in testing certain aspects of machine
performance. On the other hand, increasing the complexity of the problem to necessitate the use of
those algorithms would have required significant additional processing that is redundant in terms of
performance evaluation. Th,!s, while the benchmark solution is not a good example of how to build
an efficient vision system, it is an effective test of machine performance both on a wide variety of
individual operations and on an integrated task. Moreover, having taken a lesson from the Tanque
Verde Suite, the benchmark design attempts to minimize the effort required of the participants,
while maximizing the information obtained.

The great variety of architectures to be tested is itself a complicating factor in the design of a
benchmark. It was recognized that each architecture may have its own most efficient method for
computing a given function. However, the purpose of the benchmark requires that the tasks and
methods be well defined so that the results from different machines will be comparable. Otherwise,
the results will include a significant factor that depends on the cleverness of the programmer. Thus,
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the benchmark specification requests that participants do not take shortcuts in the solution, and that
they use the recommended methods whenever possible. It should be noted that the recommended
methods are not always the most efficient techniques because they were chosen to be as widely
implementable as possible. Thus, while the processing time for a given step or for the entire task
may not be the best performance that a machine can muster, it will be comparable to the results
from others. Participants were also encouraged to develop timings for more optimal solutions, in
addition to the standard solution, if they so desired.

The designers also recognize the tendency for any benchmark to turn into a horse race. However,
that is not the goal of this exercise, which is to increase the scientific insight of architects and vision
researchers into the architectural requirements for knowledge-based image interpretation. To this
end, the benchmark requires a much more extensive set of instrumentation than simple execution
times. Participants are required to report execution time for individual tasks, for the entire task, for
system overhead, input and output, system initialization and loading any precomputed data, and for
different processor configurations if possible. Implementation factors that are to be reported include
an estimate of the time spent implementing the benchmark, the number of lines of source code, the
programming language used, and the size of the object code. Machine configuration and technology
factors that are requested include the number of processors, memory capacity, data path widths,
integration technology, clock and instruction rates, power consumption, physical size and weight,
cost, and any limits to scaling-up the architecture. Lastly, participants are asked to :omment on any
changes to the architecture that they feel would contribute to an improvement in performance on the
benchmark.

6.4 Results and Analysis

Due to limitations of time and resources, only a few of the participants were able to complete the
entire benchmark exercise and test it on all five of the data sets. In almost every case, there was
some disclaimer to the effect that a particular architecture could have shown better performance
given more implementation time or resources. It was common for participants to underestimate the
effort required to implement the benchmark, and several who had said they would provide timings
were unable to complete even a portion of the task prior to the workshop. Despite requests to
groups that did not attend the workshop that they submit belated results to be included in this report,
not one new benchmark report has been received. Thus, the results presented here are those that
were provided by the workshop participants. In a few cases, the results have been updated,
corrected, or amended since they were originally presented.
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Low-Level. Bottom-Up Procemsing
Intensity Image Depth Image
Label Connected Components 3x3 Median Filter
Compute K-Curvature 3x3 Sobel and Gradient Magnitude
Extract Comers Threshold

Intermediate Level Processing
Select Components with 3 or More Comers
Convex Hull of Comers for Each Component
Compute Angles Between Successive Corners on Convex Hulls
Select Corners with K-Curvature and Computed Angles Indicating a Right Angle
Label Components with 3 Contiguous Right Angles as Candidate Rectangles
Compute Size, Orientation, Position, and Intensity for Each Candidate Rectangle

Model-Based. Top-Down Processing
Determine all Single Node Isomorphisms of Candidate Rectangles in Stored Models
Create a List of all Potential Model Poses
Perform a Match Strength Probe for all Single Node Isomorphisms (see below)
Link Touether all Single Node Isomorphisms
Create a List of all Probes Required to Extend Each Partial Match
Order the Probe List According to the Match Strength of the Partial Match Being Extended
Perform a Probe of the Depth Data for Each Probe on the List (swe below)
Perform a Match Strength Probe for Each Confirming De th Probe see below)
Update Rectangle Parameters in the Stored Model for Each Confirming Probe
Propauate the Veto from a Rejecting Depth Probe Throughout the Corresponding Partial Match
When No Probes Remain, Compute Average Match Strength for Each Remaining Model Pose
Select Model with Highest Average Match Strength as the Best Match
Create the Output Intensity Image, Showing the Matching Model

Depth Probe
Select an X-Y Oriented Window in the Depth Data that will Contain the Rectangle
Perform a Hough Transform Within the Window
Search the Hough Array for Strong Edges with the Approximate Expected Orientations
If Fewer than 3 Edges are Found, Return the Original Model Data with a No-Match Flag
If 3 Edges are Found, Infer the Fourth from the Model Data
Compute New Size, Position, and Orientation Values for the Rectangle

NMatch-Strength Probe
Select an Oriented Window in the Depth Data that is Slightly Larger than the Rectangle
Classify Depth Pixels as Too Close, Too Far, or In Range
If the Number of Too Far Pixels Exceeds a Threshold, Return a Veto
Otherwise, Select a Corresponding Window in the Intensity Image
Select Intensity Pixels with the Correct Value
Compute a Match Strength Based on the Number of Correct vs. Incorrect Pixels in the Images

Table 4: Steps that Compose the Integrated Image Understanding Benchmark

Care must be taken in comparing these results. For example, no direct comparison should be made
between results obtained from actual execution and those that were derived from simulation
[Carpenter, 19871. No matter how carefully a simulation is carried out, it is never as accurate as
direct executior. Likewise, no comparison should be made between results from a partial
implementation and a complete one. The complete implementation must account for overhead
involved in the interactions between subtasks, and even for the fact that the program is significantly
larger than for a partial implementation. Consider that a set of subtasks might appear to be much
faster than their counterparts in a complete implementation simply because less paging is required
to keep the code in memory. It is also unwise to directly compare the raw timings, even for similar
architectures, without considering the differences in technology between systems. For example, a
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system that executes a portion of the benchmark in half the time of an3ther is not necessarily
architecturally superior if it also has a clock rate that is twice as high or if it has twice as many
processors.

In addition to the technical problems involved in making direct comparisons, there are other
considerations that must be kept in mind. For example, every participant expressed the view that
given more time to tune their implementation, the results for their architecture would improve
considerably. What is impressive in many cases is not the raw speed increase obtained, but the
increase with respect to the amount of effort required to obtain it. While this has more to do with
the tools available for developing software for an architecture than with the architecture itself, it is
still important in evaluating the overall usefulness of the system. Another major consideration is the
ratio of cost to performance, since many applications can afford to sacrifice a small amount of
performance in order to reduce the cost of the implementation. In other applications, the size or
weight or power consumption of a system may be of greater importance than all-out speed. One of
the purposes of this exercise has been merely to assemble as much of this data as possible so that
the performance results can be evaluated with respect to the requirements of each potential
application of an architecture.

Thus, in what follows, there is no single best architecture and there are no winners or losers. Each
has its own unique merits and drawbacks, of which norne are absolute. To play down the direct
comparison of raw timings, the results for each architecture will be presented separately. The order
of presentation is random, except that the sequential solution is presented first to provide a
performance baseline, and then complete parallel implementations are presented, followed by partial
implementations. Results that were based on theoretical estimations are not included in this report.
The timings in all of the tables are in seconds, for the sake of consistency. Where a timing is zero, it
indicates that the processing time was less than the resolution of the timing mechanism employed.
Blanks in the tables indicate values that were omitted from the reports that were supplied by the
implementors.

6.5 Sequential Solution

The sequential solution to the benchmark was developed in C on a Sun-3/160 workstation. The
solution contains roughly 4600 lines of code, including comments. The implementation was
designed for maximum portability and has been successfully recompiled on several different
systems. The only portion that is system dependent is the actual result presentation step, which uses
the graphics primitives provided for drawing on the workstation's screen. The implementation
differs from the recommended method on the Connected Component Labelling step by using a
standard sequential method for computing this well-defined function. The sequential method is
designed to minimize array accesses and their corresponding index calculations, which is not a
problem for array processors, but incurs a significant time penalty on a sequential machine.

Timings have been produced for the sequential code running on all five data sets, and on three
different machine configurations. The configurations are a Sun-3/160 (a 16 MHz 68020 processor)
with 8MB of RAM, a Sun-3/260 (a 25 MHz 68020) with 16MB of RAM, and a Sun-4/260 (a
16MHz SPARC processor) with 16MB Timings have been produced for the sequential code
running on all five data sets, and on three different of RAM. The extra RAM on the latter two
machines did not affect performance, since the benchmark was able to run in 8MB without paging.
The 3/260 was equipped with a Weitek floating-point co-processor, while the 3/160 used only the
standard 68881 co-processor. Table 5 shows the results for the Sun-3/160, Table 6 shows the Sun-
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Daus Set Sans* Test Tos&2 TesL3 Test4

Filer Syn User Systmi User Sysixin User San User Syserns
Ttl79494 294 335.96 2.10 - 326.14 2.40 549.30 2.2 552F29

Overhead 4.02 1.06 4.06 U .0 1.14 4.60 1-04 4.51 0.94
Mtscellanoxis 2.24 0.04 2.18 0.04 2.16 0.06 2.12 0.02 2.10 0.02

6iiup002 0.00 0.04 0.00 0.02 0.04 0.00 0.02 0.02 0.00
IMagnput 0.60 0.68 -0,68 0.54 1.32 0.78 13- 0.74 1.42 066
Image utput2..24 0.30 0.30 0.28 0.06 0.24 006 0.24 0.08 026

Moel0 0.04 0.96 0.02 0.94 0.02 0.92 0.02 0.96 000

Itecunsngifrnm ntensuity' 6.42 0.08 4.00 0.14 4.34 0.04 5.36U 0.08 5.10 0.24

Treace rbegionhtin - - 0.52 0.00 0.00 0.00 0.00 0.00 002 0.00 0.02 000
Pansal tmac 1.240 0.06 24.78 0.04 025 0.00 67.28 0.10 66.64 0.2
K-cucature -briobeth 24.026 0.06 24.74 0.02 2572 0.00 6664 0.00 65.82 0.12
Firmdwerivaietc 0.02 0.00 0.02 000 0004 0.00 0.12 0.02 0.20 002
Acm-aotieong adetcount 024. 0.06 24.72 0002 2582 0.00 6610 0.00 60.7 0.08

Fial corerdeteton 3.26.5 0.50 01.6 0102 0187 0.0 20.2.5 0.32 204.68 0.44
Cout comtenhrs b 72.88 0.00 3.28 0-00 5802 0.0D 4.8 0.0 6 422 .00 0.06
Windovelechuol 0.08 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.10 0.00

Teasatforighst angle ont7.80 0.00 3.028 0.02 5800 0.06 47.72 0.02 41.88 0,06

Finoal etnle hypouhs i 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.02 002 0.02

Soobel t1n~ 32.30 036 81031 012 125.9 0.12 135.186 016 1635.4 0.28
Intilgraphsmatech 14.08 0.02 0069 000. 06 2.2 0.00 6&3 0004 15.48 0.024
MacR dt ectangleprmtudst 0.14 0.00 0010 0.00 000 0.00 0046 002 0024 0.00
Matchlipeanksi 024.8 0.00 0226 0.04 1664 0002 0.4 0.00 0474 0.02
Crate probe listou 0.00 0.00 0.00 000D 0.00 0.00 0.02 0-00 0.00 0.00
PauImateeschso 24.804 000 122.8 004 264502 146 0.00 14748 0.006.4 O2

Mate stieredgt 1whs2.2 006 247 0.02 ___ _ 259 0.0 866 .0 6.2 01

Avndors lemach uo 0. 6400 O2 00 0.96 000 0.1 0.84 1 0.88
Translifated n ant o un 24.0 .206 2.2 02 256.56257.005 266 .250 2726570 55

Roatcexensioy 3deg6e4 8.5 3594 0.14 28.0 05 .2 22.6 04

M ~ ~ ~ ~ ~ ~ ~ ~ ~ al 5:tc Sun3prbs/2.8 0103.86.0 .0 Results . 4.0 00

Wido clcon0.8 0.0 0.0 .0 .0 .0 .0 .0 35 00



Daa• Set S•A9 Teat Tosi2 Trot3 ToA

Uses Sy m ,-e System U,. Ss US.r Syn Cm Sy,,,,
Total 293.42 " 5.% 1 .48 2.06 116.96 2.56 19133 3 M192.3" 320
Overhead 226 0,66 2-46 0.519 76 0.6 2.50 094 Z72 072
Miscellaneous 1.23 0.00 124 000 1.24 0.02 122 0.02 122 000
Startup 0.02 0 0X O 0.00 0.00 0.02 0.00 0.04 002 0.00
Image nput 0.30 0.50 0.50 050 1.00 0.48 076 072 0.92 054
ImVgeoutput 0.S 0.14 0.26 0.018 006 0.16 006 014 0.03 0.11

0,4 0.02 0.46 000 0.46 000 0.46 0.02 0419 0.00
1 aI oW-rinnected componets 14.14 0.39 1420 0.26 14.10 0.36 14.46 012 1440 0.26

Recungles from in.tensit 3.60 0.14 2-36 0,02 1"4, 0.001- 3 12 004X 2.90 O16

Mi0ce0laneous 1.21 002 112 0.00 1022 002 0 26 000 0.00 000
Trace reio h ouldal 0.29 0.02 0.20 0.00 0AS 0.00 0.14 0.02 0.26 0.04
KTcurvstuoe 0.02 0.02 0.44 0.02 0.42 0.00 0.60 000 049 0.02
K-curvetunle uothinsh , , 0.08 0.02 0026 0.00 0042 0.02 0.50 0 00 0.56 002
Fiast dertvaerve 0.20 0.02 016 0.00 0.60 0.00 4.64 0.00 0.26 0.00

S7oherml d3e3cunn 0.02 002 33.42 033 0.06 0.00 0.28 0.004 0.14 000
Final comr dtmection 0.2D0 0.06 012 .0 63 0.00 0.17 0.00 0.03 010

count comners0 0.00 0.00 006 0.00 0.04 000 04 00 0200 000
Convet hull 0.02 0.00 0.04 000 0.04 000 030 0.00 0.04 0.00
,Teat for right angle 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.04 O.O
Final rectanglei hyprahe.•i 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0-060 0.00 0.02

Redian mter 112.50 1.20 59.96 0.42 42.64 0.46 42.16 0.34 46.42 0.54
Sce 33.96 2.04 35.12 0.39 37.90 0,44 39ý02 0714 3214 042

Initairaltph Match 6.10 0.06 596 002 6.30 0.20 17.02 030 16.80 0.14
lMatch data rectangles 0.09 0,00 0.06, 0.00 0.04 0.00 0,14 002 0.12 000

0.c1hk O 0 0.00 0.04 0.00 0.04 0.00 0 30 0.00 0.26 0.00

listac ehm 0.00 000 0.00 0.00 0.00 0.00 0 .0 00 0.00 0,00
Pa"'.1 Mth S.92 0.06 5.96 0.02 6.30 0.20 16.59 0. 28 16.42 0.14

• Match str-ongth prorbch.. 510 0.06 5.9.4 0.02 6.30 020 16.34 0122 16.04 0.14

Window selction 0.00 0.00 0.00 0,00 0.00 0.00 0.10 0.02 0.02 0.00

Classficauon and count 590 0.06 5.94 0.02 6.30 0.13 16.24 018 16.02 0.10
Match extension 109.13 1.2 3.73 0.14 6.02 0.22 6932 0.76 70-42 0.74
Match sterngth prohb 17.54 0.02 0.73 0.00 1.40 000 11.60 006 10.20 0.10
Window selection 0,04 O.O 000 0.00 0.00 000 0.04 0.00 004 0.00
Classfication and count 17.50 002 0.79 0.00 1.40 0,00 11.56 006 10.16 0.03
Iliough pr.a 91.44 1.26 3U0) 0.12 4.62 020 57.30 0.66 5930 0.64
Window selection 004 0.00 0.00 0.00 0.00 0.00 0.04 002 002 0.00

H.ough trnsform 90.64 1.24 2_931 0.12 4.60 020 56.40 0.64 59- 0 062
Edge peak detwuon 0.76 0,02 0.02 0.00 0.02 0.00 012 000 0.73 0.02
Rectangle parameter update 0.00 0.00 0.00 0.00 0.00 0.00 004 0.00 0.00 0.00

Result preentauon 6.68 0.00 3.64 0.00 4.72 0.00 4.30 0.20 423 002
Bnt match aloction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Imaegmegneration 6.6 0.00 3.64 0.00 4.72 0.00 430 002 4.21 002

Statistics
Conneted €orn na 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
,Depth pixels > threshold 21256 14542 12939 13514 13325
Element an tual pre lsta 331 19 27 4410 249
llough probes 55 3 5 97 93
Initial match strength probe 23 20 is 142 142
Extenison mat. air. prohes 60 3 -5 110 97
Models mrnatnin 2 I 1 2 1
MMei eselected 10 1 3 7 a
Averge match strength 0.64 0.96 0.94 014 0.33

Translated to 151.240 256.256 257,255 257.255 257.255

Rotated by (degrea) a5 359 114 22 22

Table 6: Sun-3/260 Results
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Dt set UsW =q wa Tes T=&2 Mir Tcs&

"Total 117.21 3.30 40.19 -. 445 35.8|r 2.06- 75.41- S0.71 2.

overch.ad 149 1.35 234 1.50 431 1.36 2.62 1.46 466 J3 0
Mtsmllaneots 1.23_ 0.0 1.167 0.01 ! 24 0,10 164 0.77 1.43 0.4

Startup 0.0231 0.05 0.32 000 003 0.02 03O1 0.05 0.01 0.06

Image npu 0.33 0.40 0.27 0.50 0.33 0.47 035 0.46 0.38 047

Image ,otiutr 0.10 0.00 0.12 0.10 0.05 1.11 0.05 010 0.09 0.09
Medel input 0.52 0,02 0.50 0.02 0.50 0.04 0.00 0104 0000

[.sleA conctd coampoent 4.390. 0.5 0.09 000 00 0.23 4.36 0.26 4.33 0.20
ReCFnga ,from intensty 100 .009 0.60 0.00 0.67 004 006 0.10 0. 0.00

MCncllaorom 0.31 0.00 0.32 0.00 007 0.02 0.33 0.05 0.32 0-02
TCacegion h•rndlry 0.06 00 0.04 0.00 004 001 0.04 0.0 0.00 0.00

tK-curvature 0.21 0.00 000 0.00 0.11 0.00 0.0 0.00 0.01 000
K-cuirvatune hyotheng 0.22 001 000 000 000 0.00 0.00 0.001 0.22 0.00
Fir deivative 0.12 020 0,09 017 0.06 0.6 0.14 0.04 0.0 01.9
7Sohe-cluami dctiun 0.04 0901 0.01 017 0.00 0.01 0.02 0.0 0.04 0.00
Final corne detction 0.04 0.01 0.01 0.00 0.03 0.0 00.02 0 0.09.16 0.00
Ma.t dametn 0.00 0.00 0.00 0.03 0.02 00.00 0.05 0.0 0.04 0.02
CMach hull 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00
Teat for nght angles 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01
Finalrctangle hypothesi 0.01 0.01 0.00 3 0.0 0. 0.01 9.6 0 0.07 0.03 0.00
Medtan fiplr 30.33 0.20 14.47 0.17 11.14 0.16 11.16 0.14 19.15 0.19
Sobel 11.21 0.95 11.26 0.17 11.17 0.10 1.11 0.30 11.15 0.30
Initial graph match 3.41 0.01 3.36 0.10 3.35 0.01 30.01 0.09 9.83 0.11
Match data rec•nglea 0.03 0.0 0.00 0.03 0.79 0.00 6.65 0.01 0.04 0.02
Match link o 0.00 0.00 0.01 0.01 0.02 0.00 0.22 0.01 0.19 0.00
Create P ar oelist 0.03 0.00 0.02 0.00 0.01 0.00 6 12 0.00 .512 0.01
Partal match 3.28 0.01 3.33 0.06 3.45 0.0I 9.62 0.07 9.49 0.09

.Match stregth 0 3.97 0.10 3.33 0.60 3.47 0.01 9.44 007 9.30 0.02
Window selecuon 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.04 0.01
Classification and cotint 3.15 0.00 3.23 0.06 3.38 0.01 8.95 0.05 9.65 0.02

Match extnsaton 60.96 0.26 2.06 0.12 3.35 0,07 36.18 0.23 38.10 0.26
Match strength indese 9 0.159 0.00 0.0 0.00 0.1 0.00 6.63 0.02 6.06 0.02
Window selectuon 0.00 0.00 0.00 0.00 0.0 0.00 0.03 0.01 0.01 0.00
Cl-passfc tation 3 count 9.60 0.00 0.44 0.00 0.78 0.00 6.12 0.00 5.56 0.02
[laugh probes 50.99 0.21 1.61 0.12 2.56 0.09 29.32 0.20 31.71 0.22

Window selection 0.03 0.00 0.02 0.00 0.01 0.00 0.09 0.01 0.04 0.00
Hough transform 50.65 0.12 1.60 0.11 2..54 0.07 29.96 0.09 31.32 0.12

Edge peak detetion . 0.1 0.00 0.01 0.00 0.01 0.00 0.24 0.02 0.21 0.00

Rectangle parameter ujdate . 0.03 OO 0.0 0 0. .00 0.00 0.00 0.03 0.01 0.06 Or0

Result poemtaioa 3.37 0.01 1.65 0.00 2.24 0.00 207 0.00 2.02 0.00
Beast match selecion 0.06 6.40 0.02 0.00 0.02 0.00 0.14 0.00
Image eleratieon 3.31 0.01 1.65 0.00 722 0.00 1.97 0.00 1259 0.00

Statistics

Connected c~omegr ts 134 35 34 114 102
Right, angb extracted 126 le92 210 R19s
Recta~ngles. dc- , 27 21 16 42 39
Depth pixelts > threshold 21254, 14531 12892 19579 19822

Elements an initrial prb list 381 19 27 31t9 248

Hiough probes. 55 3 5 93 92
Initial match strength probes 29 20 is 142 142

Extension mat. sty. probes 60 3 5 105 97
Models :reaning| 2 1 1 2 1

Model seac- 10 1 s 7 8
Average match strength 0.64 0.96 0.94 0.94 o.9g

Translated to 151.240 256.256 257.255 257,255 257 2.55
Rotated by (degrees) 85 359 114 22 2

Table 7: Sun-4/260 Results
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3/260 results, and Table 7 gives the execution times for the Sun-4/260. The timings were obtained
with the standard system clock utility which has a resolution of 20 milliseconds on the Sun-3
systems, and 10 milliseconds on the Sun-4.

6.6 Alliant FX-80 Solution-

The Alliant FX-80 consists of up to eight computational elements and up to twelve I/O processors
that share a physical memory through a sophisticated combination of caches, buses and an
interconnection network. The computational elements communicate with the shared memory via
the interconnection network which links them to a pair of special purpose caches that in turn access
the memory over a bus that is shared with the I/O processor caches. The FX-80 differs from the
older FX-8 primarily in that the computational elements are significantly faster.

Alliant was able to implement the benchmark on the FX-80 in roughly one programmer-week. The
programmer who built the implementation had no experience in vision and, in many cases, did not
even bother to learn how the benchmark code works. The implementation was done by rewriting
the system dependent section to use the available graphics hardware, compiling the code with
Alliant's vectorizing and globally optimizing C compiler, using a profiling tool to determine the
portions of the code that used the greatest percentage of CPU time, inserting compiler directives in
the form of comments to break implicit dependencies in four sections of the benchmark, and
recompiling the new version of the code. Alliant provided results for five configurations of the FX-
80, with 1, 2, 4, 6, and 8 computational elements. In order to save space, only two of the
configurations are represented here. Table 8 shows the execution times for a single FX-80
computational element, and Table 9 shows the results for an FX-80 with eight elements. Another
point that was noted by Alliant is that the C compiler is a new product and does not yet provide as
great a degree of optimization as their FORTRAN compiler (a difference of up to 50% in some
cases). They expect to see significantly better performance with later releases of the product.

6.7 Image Understanding Architecture

Because the IUA is still under construction, the simulator was used to develop the benchmark
implementation. The benchmark was developed over a period of about six months, but much of
that time was spent in building basic library routines and additional tools that were generally
required for any large programming task. A 1/64th scale version of the simulator (4096 low-level,
64 intermediate-level, and one high-level processor) runs on a Sun workstation, and was used to
develop the initial benchmark implementation. The implementation was then transported to a full-
scale IUA simulator running on a Sequent Symmetry multiprocessor. Table 10 presents the results
from the IUA simulations with a resolution of one instruction time (0.1 microsecond). There are
several points to note about these results. Because the processing of different steps can be
overlapped in the different processing levels, the sum of the individual step timings does not always
equal the total time for a segment of the benchmark. Some of the individual timings represent
average execution times, since the intermediate level processing takes place asynchronously and
individual processes can vary in their execution time. For example, the time for all of the match-

strength probes is difficult to estimate since probes are created asynchronously and their processing
is overlapped. However, the time for a step such as match extension takes into account the span of
time required to complete all of the subsidiary match-strength probes. Lastly, it should be
mentioned that the intermediate-level processor was greatly underutilized by the benchmark (only
0.2% of its processors were activated), and the high-level processor was not used at all. The low-
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DaSet V Test Te92 T4a13 Tr4
La Syn ULr Syu saw Syaa La Syata La Syata

Total 2.858 .531 302.700 1.861 93.311 1.828 336.759 3049 339130 3032

Overhead 7.968 0.776 7.925 0.777 7.897 0.775 7.900 0.764 7T895 0.763
Meesslanmus 0.627 0.030 0.585 0.033 0.559 0.033 0.554 0,030 0.554 0031

Startup 0.030 0.031 0.029 0.033 0.029 0.031 0.029 0.032 Ot29 0.029
Imase input 5.692 0515 5.691 0.051 5.691 0.505 5.697 0.509 5690 0.504
Image output 1.039 0.17S5- 1.039 0.179 1.038 0.183 1.039 0.171 1.040 0.177
Model input 0.580 0.021 0.058 0.017 0.580 0.018 0.580 0.017 0.5O0 0.019

Label connected oom n ients 16.917 0.268 16.830 0.258 16.800 0.253 16.948 0.247 16.930 0.259
Rectangle from uinteLity 2.760 0.590 1.791 0.267 1.874 0.252 2.312 0.681 21286 0.643

Miscellaneous 1.005 0.231 0.928 0.097 0.931 0.094 0.986 0.255 0983 0.239
Trace region boundary 0.312 0.075 0.172 0.021 0.183 0.019 0.255 0.062 0.221 0.054

K-curvaturc 0.592 0.037 0.287 0.017 0.308 0.017 0.438 0.045 0.432 0.045
K-curvature 'nnvt hmg 0.362 0.037 0.176 0.018 0.188 0.017 0.269 0.045 0.264 0.044
Firt denvative 0.158 0.037 0.077 0.017 0.082 0.016 0.119 0.045 0.117 0.043
Zerm-coaming detecuun 0.170 0.037 0.076 0.017 0.099 0.017 0.135 0.045 0.133 0043
Final comer detection 0.135 0.042 0.060 0.022 0.069 0.022 0.103 0.051 0.101 0.049
Count comers 0.006 0.037 0.003 0.017 0.002 0.017 0.007 0.044 0.006 0042
Convex hull 0.013 0.026 0.006 0.017 0.006 0.017 0.015 0.042 0.015 0.040
Teat for nght angles 0.006 0.013 0.005 0.011 0.004 0.009 0.009 0.022 0.008 0.02-
Final rectangle hypothesis 0.003 0.013 0.003 0.011 0.002 0.009 0.006 0.022 0.005 0.021

Median filter 77.294 0.170 43.652 0.160 31.886 0.163 31.919 0.154 31.980 0.166
Sohel 26.147 0.001 26.079 0.001 26.063 0.001 26.128 0.003l 26.129 0.003
Iniutal mraph match 2.458 0.088 2.397 0,063 2.569 0.055 7.117 0.368 7.011 0.373
Match data rectangles 0.067 0.023 0.051 0,012 0.046 0.014 0.129 0.047 0.111 0.041
Match Linka 0.067 0.002 0.024 0.004 0.022 0.004 0.262 0.013 0214 0.023
CreWaidob eliect 0. 0.002 0.00 1 0.002 0.00 0 0.003 0.004 0.05 0,06 0.003
Paltal match 2.321 0.062 2.320 0.046 2.499 0.036 6.722 0.307 3.6804 0.307

Match streneth dtohet 2.305 0.045 2.303 0.032 2.486 0.024 60502 0.20 6429 0.229
Window seleciuon 0.009 0.032 0.003 0.011 0.002 0.008 0.020 0.076 0.020 0.077
Classificatuon and count 2.29 0.015 2.298 0.011 2.482 0.008 2.471 0.076 6.397 0.076

Match extensin 68.025 0.385 2.149 0.083 3.817 0.091 42143 0.600 44.806 0.584

Match stmnpx',h pt'obea 7,139 0.096 0.311 0.005 0.568 0.008 4.600 0.168 4.216 0.155

Window selecuon 0.009 0.032 0.003 0.002 0.001 0.003 0.15 0.056 0.014 0.052
Classification and count 7.125 0.032 0.3.0 0,002 0.566 0.003 4.576 0.056 4.03 0.002

.H|ough probe 60.754 0.202 1.833 0.068 3.'241 O.071 37.330 0.301 40.320 0.312

Window selection 0.008 0.030 0.00I 0.0X02 0.001 0.003 0.014 0.051 Oý014 0.051

Cnough transform 60e259 0.03 2 1.306 0.061 3.210 0.361 36.650 0.097 39,604 0.I10
Edigte peak deection 0.474 0.031 0 9026 0.002 0030 0.03 0.642 0.050 0.681 0.050
Rectangle parameter update 0.008 0.030 0.000 0.002 0.001 0203 0015 0.391 0.14 0.051

Respt presenatione 3.269 0.002 1.860 0.002 2.388 0.002 2.177 0.002 2.174 0.002
Besn match selection 0.003 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.002 0.001
Image generation 3.266 0.001 1.959 0.0301 2.387 0.001 2.174 0.001 2.172 0.001

Stati ii393
Con•nected compo~nents 134 35 34 114 100

Right angles extracted 126 99 92 210 197

Rectanglies detected 25 21 16 42 39

Depth pi sels > threshold 21266 14542 12999 18572 18813
Elements on inius prb List 374 19 27 389 248

Hlough probes 55 3 5 93 92
Initial match strength probes 28 20 i5 142 142
Extension mai. sir. 1wohea 60 3 5 105 97

Models a•raiig 2 I I 2 I

Model selected 10 3 5 7 8
Averge match strength 0.65 0.96 0,94 0.84 088
Translated to 151.240 256,256 257,255 257.255 257,255
Rotated by 85 359 114 22 22

Table 8: Alliant FX-80 Single Processor Results
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Dat Set Test Tma Teat3 ToU4

Usr S I Uwr Sm User Systan wUm Sy User Stxm
TotaU 57.177 2.93!5 31.06 2.082 30.872 2-043 50357 3577 50.153 3467
Overbead 7.940 0-847 7903 0.825 7.897 0.813 7.891 0.820 78"9 0822
MtS•HctanFon 0.601 0042 0558 0.039 0.558 0.039 0.553 0041 0560 0058
SLtuip 0.030 0.056 0.029 0,047 0.029 0.042 0029 0043 0 029 0.033
Imapeut 5.690 0.549 5.695 0.541 5.691 0.532 5690 0542 5690 0536
image output 1.039 0.173 1.040 0172 1.038 0.177 1 039 0173 1 039 0,173
,Model nput 0.580 0023 0.580 0.021 0.580 0.017 0580 0017 0580 0017

IAhe connected comn tw 6.930 0.295 6.864 0.272 6849 0.270 6979 0273 6.992 0272
Recinan fmtenimty 2.776 0.686 1.799 0.314 1.882 0.29 2.329 0785 2.309 0711
Mtsc.ll0naiua 1.010 0.277 0.931 0.120 0.934 0.113 0.994 0303 0.990 0.290
Trace region houndam 0.312 0.084 0172 0.023 0.133 0.022 0227 0071 0.224 0.063
K-curvature 0.594 0.042 0.287 0.020 0.308 0.019 0438 0051 0433 0.049
K-cr-atur smoothing 0.364 0.042 0 176 0.019 089 0.019 0270 0052 0267 0050
First dervative 0159 0042 0077 0.019 0.083 0.019 0.120 O051 0120 0050
'eio-cfsasing dei•ecusn 0.171 0.049 0.077 0.020 0.100 0.019 0.136 0051 0135 0.050
Final comer detection 0.136 0.048 0.060 0028 0.070 0.025 0.103 0057 0.130 0.055

-7oumn consen 0.OG7 0.04, 000O3 0.019 0.003 0O019 00OO8 0050 00307 0.052

"Co•vex hull 0014 0.030 0.007 0.019 0.007 0.019 0.016 0047 0.016 0.045
"Testfon right angles 0.006 0.016 0 0(5 0.013 0.004 0.010 0.010 0025 0009 0023

Final rectangle hvypothesis 0.004 0.015 0.003 0.013 0.002 0.010 0007 0.026 0005 0023
Medam filter 9890 0.223 5.637 0220 4.111 0212 4110 0214 4.109 0209
Sdisl 3.798 O.0O2 3.789 0.001 3.7117 0.00 3.795 0.001 3.795 0001
Inual grap match 2.455 0.123 2.399 0.094 2.569 .086 7.130 0485 7014 0459
Match data rectangles 0.068 0.048 0052 0.O28 0.046 0.033 0.131 0102 0.112 0.083
Match hlnks 0.068 01)(4 0.024 0009 0.022 O.O0 0.263 0030 0.213 0.020
Creole Probe list 0,002 0.001 0.0X)2 0001 0.002 0.001 0 005 0.001 0.006 0 004
Partial match 2.317 0.070 2.322 0.055 2.499 0.043 6.732 0.351 6.682 0351

Match suruatth prohes 2.301 0.050 2.304 0.037 2.485 0.027 6.509 0.259 6.429 0.263
Window selection 0004 0.017 0.014 0.012 0.002 0.009 0.023 0.087 0.025 0087
'lassificaiuon and count 2.294 0.017 2.298 i,.012 2.482 0.009 6.473 0085 6390 0087

"Match ezioWio 20.105 0.455 0.786 0.107 1.376 0.122 15.926 0.739 15.145 0.702
Matchs usr h p•roh 7.121 0.111 0.311 0.006 0.567 0.009 4.609 0.195 4.219 OI85
Window selecswuo 0.010 0.037 000 0.002 0.001 0.003 0.019 0.065 0.016 0.065
Classificauon snd count 7.105 0.037 030 0.002 0.565 0.003 4.580 0.066 4.193 0060

71-ough •prb 12.847 0.243 0.4681 0.086 0.799 0.099 10.996 0.378 11.350 0.366
Window selection 0.008 0.033 0.001 0.002 0.001 0.003 0.014 0.057 0.024 0.057

"=lou9h transform 12.353 0.110 0.441 0.078 0.767 0.086 I0.315 0.151 10.629 0.140
Edge peak dertion 0.472 0.034 0.026 0.002 0.030 0.003 0.645 0.057 0.682 0.057
Rectangle paramet update 0.009 0.033 0.000 0.002 0.001 0.003 0.013 0.056 0.014 0057

Result pferenatiuon 3.265 0.002 1.859 0.002 2.382 0.002 2.178 0.002 2.173 0.002
Bern match selection 0.003 0.001 0.001 0.001 0.002 0.001 0.004 0.001 0.002 O.00
image guseratuin 3.262 0.001 1.858 0.001 2.381 0.001 2.174 0.001 2.171 0.001

Connected coponenta 134 35 34 114 100
t tr•san Iextracted 126 99 92 210 197

Rectanglem detected 25 21 16 42 39
Deph pixels > threshold 21266 24542 12288 18572 18813
Elements on inatial pmhe List 374 19 27 389 24S
I lfmijprobes 55 3 5 93 92
Iniual ma•ch attrgth prn-•o 2S 20 15 142 142
Extenion mat. sii. probes 60 3 5 105 97

Models remaining 2 I I 2 I
Model selected 20 ! 5 7 8
Avenge match surngh , 0.65 0.96 0.94 0.84 0.88
Translated to 151.240 256.256 257.255 257.255 257.255

L Rotated hby 85 359 114 -2 22

Table 9: Alliant FX-80 Results with Eight Processors
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Data.Set Sehi Teat Tezt2 Tes.3 Tea4

Total 0.044415 0.0455559 0.0455023 0.41090 0.3971859
Overhead 0.0139435 0.0139435 0.0139435 00139435 0.013q435
Miseilantous 0.0092279 0.W9W9 0.0092V79 0-00922r9 0 0092274
Saru, 0.0033692 0.00386"2 0.0031692 0.003S612 0.00316112
Image UInPI 0.0000020 0.0000020 0.00M0020 0.0000020 0.O000020
Image outpt 0.0000020 0.0000020 0.0000020 0.0000020 00000020
Model input 0.0001302 0.0001302 0.0006302 0.0008302 0.0008302

label connected component 0.0000596 0.0000596 0.0000596 0.0{X0596 0.0000596
Recutagl from intensity 0.0161694 0.0125419 0,013470M 0.0131378 0.0129635
Miuceanmim 0.0003227 0.000242 1 0.0002010 0.0006216 0.0002421
Trace region boundary 0.0033792 0.0054722 0.0011672 0.0010912 0.0012132
K-curvature 0.003M256 0.0019936 0.0023136 00015376 0.0017296
K-curvature smoothing 0.00055 25 0.0005525 000M 0.000525 0.0005525
First dervative 0.0003777 0.0003771 0.0003777 0.0003777 0.0003777
7jes.•o,.amgsi detection 0.0000101 0.0"00200 0.0000101 0.0000101 0.0000101
Final coner detection 0.00002218 0.0010021 0.00001 Is 0 0081)01I1 0.0{100111
Count cortnt 070000020 0.0000020 0.0000020 0.0000020 0.0000020
Convesx hull 0.0036694 00019109 0.0015290 0.0025947 0.0026463
Test (or right angles 0.0006122 0.0006009 0.0005906 00006421 0.0006421
Final rectangle hypothesis 0.0067177 0.0067877 0.0071S21 0.0067177 0.0064229
Median filter 0.0005625 0.0005625 0.000562B 0.0005625 n1 (005625
Sobel 0.0026919 0.0026919 0.0026919 0.0026919 v o026919
Initial graph match 0.0121176 0.0076429 0.0066134 0.2124236 0.0122296
.Match data mctangles 0.0029096 0.0015672 0.0013264 0.0134,15 0.0106136
Match links 0.0099872 0.0056950 0.0049762 0.0995542 0.0712324
Create probe list 0.000096 0.0002299 0.0001130 0.0009252 0.00108618
Partial match 0.0033716 0.0077033 0.0068704 0.1821976 0.153441$

Match sareth probes 0.0009275 0.0011460 0.0012215 0.0025175 0.0212640
Window selection 0.0002100 0.0003000 0.0002700 0.0005700 0.OXk)4800

Classificauon and count 0.0001043 0.0001490 0.0001341 0,0()2831 0.0002394
Match extenstoi 0.0300650 0.0017674 0.0024156 0.0199214 0. 12 77396
Match stroneh probes 0.00"26500 O.0002146 0.000$95 0.0543250 0.0071766
Window se.leton 0.0006000 O.D000300 0.0000900 0.0012300 0.0016200
Classification and count 0.0002980 0.0000149 0.000X447 0.0{06109 0.0001046

Hough probes 0.0069430 0.000325I 0.0005092 0.00{4591 0.010996"

Window seletion 0.0000675 1,3400345 0 40000090 0.0001755 00002385
Hough transform 0.0053010 0.00022r3 0.0003036 0.00•99 0.0053477

-dge peatk detecuon 0.0011745 0.UOD00T3 O.OWO1566 0.0030537 0.004 14"9

Ri-tangle parameter updatd 0.0003000 0.0000200 0.000{M00 0.000790 0.0010600
Reult presdentatio 0.0022826 0.U09432 0.0011944 0.00"5765 00029766
Ban match selection 0.s0000 0.0000,03 0.0000h405 h.000ol06 0.000397
Image genersaon 0.0022352 0.00091 g5 0.0011396 0.0029464 0.0029464

Statistics
Connected •comroners 134 35 341 114 100

Right angle extracted-
Recuangkis detected 31 23 19 60 55

Elements on inital prohe list
[laughprIe 44 S 1 84 100
Initial match stregth pr bes 24 20 15 61 80

Extaetnon mat, at. probe 20 I 3 41 54
Models rmnamnig 3 I 1 2 1
Model selected 10 I 5 7 1
Average match strength 0.45 0.16 0.14 0.1_ 0 14
Translated to 151.240 256.256 257,255 257255 257255
Rtated by 95 359 113 23 23

Table 10: Image Understanding Architecture Results
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level processor was also idle roughly 50% of the time while awaiting requests for top-down probes

from the intermediate leveL

6.8 Aspex ASP

The Associative String Processor (ASP) is being built by the University of Brunel and Aspex Ltd.
in England [Lea, 19881. It is designed as a general purpose processing array for implementation in
wafer-scale technology. The processor consists of 262,144 processors arranged as 512 strings of
512 processors each. Each processor contains a 96-bit data register and a 5-bit activity register. A
string consists of 512 processors linked by a communication network that is also tied to a data
exchanger and a vector data buffer. The vector data buffers of the strings are linked through another
data exchanger and data buffer to another communication network. One of the advantages of this
arrangement is a high degree of fault tolerance. The system can be built with 1024 VLSI devices, or
128 ULSI devices, or 32 WSI devices. Estimated power consumption is 650 watts. The processor
clock and instruction rate is 20 MHz. Architectural changes that would improve the benchmark
performance include increasing the number of processors (improves performance on K-curvature,
median filter, and Sobel), increasing the speed of the processors and communication links (linear
speedup on all tasks), and adding a separate controller to each ASP substring (gives approximately
an 18% increase overall).

Because the system is still under construction, a software simulator was used to implement and
execute the benchmark. The benchmark was programmed in an extended version of Modula-2 over
a period of three months by two programmers, following a three month period of initial study of
the requirements and development of a solution strategy. A Jarvis' March algorithm was substituted
for the recommended Graham Scan method on the convex hull. Table II lists the benchmark
results for the ASP. Timings were not provided for several of the steps in the model matching
portion of the benchmark, possibly because a different method was used. Startup and model input
times were not listed separately, perhaps because those operations are done outside of the
simulation. The miscellaneous time under overhead accounts for the input and output of several
intermediate images. The miscellaneous time under the section that extracts rectangles from the
intensity image accounts for the output and subsequent input of data records for corners and
rectangles. No indication was given on whether any data rearrangement took place as part of these
1/0 operations.

6.9 Sequent Symmetry 81

The Sequent Computer Systems Symmetry 81 multiprocessor consists of multiple Intel 80386
microprocessors, running at 16.5 MHz., connected via shared bus to a large shared memory. The
particular configuration used to obtain these results included 12 processors (one of which is
reserved by the system), each with an 80387 math coprocessor, and 96 MB of shared memory.
The test system also contained the older A-model caches, which induce a considerably greater level
of traffic on the shared bus than the newer B-model caches. An improvement of 30 to 50 percent in
the overall performance is possible with the new caching system. Sequent was to have provided
timings for a system with the improved cache, but they have not yet done so. The timings presented
in Table 12 were obtained by the benchmark developers at UMass as part of their effort to ensure
the portability of the benchmark to different systems.

About a month was spent developing the parallel implementation for the Sequent. The programmer
who did the work was familiar with the benchmark, but had no previous experience with the
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Da" Set Sam Test Teaz2 T01113 TMaA

ToisL 0. 1307200 00359600 0.0391100 0 1130700 0. 112030
Overhead 0.0008200 004)06200 0.0008000 0,0001000 0.000800
qiuzwllaneous 00002360 00002560 0.0002560 0 0002560 0000260
Sunupi
lImae cInpu 0.0000312 0,0000532 0.000012 0.00005 12 0.0000512
Image output 0.0000512 0.00001)52 00000512 0.(0"102 0.0000512
Mode) inputi

LAWe omiiacted componnts 0.039200D 0.0223000 0.0229000 0.0348000 0.031 3000
Reccianale from n Ufevialtv 0.0033100 00029200 00028800 0)0031900 000D33500
M.Aacelluieaiu 0.0000`761 0.004)860fi 0.0000942 0 0(K3)795 0(00007 34
Trace rgettio hnundary 0.0000041 0.00311)7 0 000(J07 00(33.34 o0000047
K-ciurv&awe 0.0007900 0,(tXflloo 0.0007800 0.041)7lt00 0.000780
K-cizrva~iute smoothing 0.0004500 0.0004500 0.0004500 0.0(3)4500 0.0004500
First derivative 0000032D 0 O00320 0.0000320 0 (XX)0320 000O00320
lAr-criuaung dcaettunn 0.0000045 0.00ft)045 0.0000045 00(8K)0045 0000004
Final corner detection 0,000003 0.00(11)38 0.0000018 0(N1110019 0ý0000038

Cut0.0000400 0.000)0380 0.0000380 0 0318)530 0.00M00380

Windex heeull 0.0003200) 0.0003320 0.00020820 0.0(0055 00 090433600
-r. f.aarighto andgcoe n 0,00011100, 0.0009400 001094,00 0003544)0 0.003600

Macheteaw 0.0835200 0.0002470 0.0"02400 1)0(332630 0,0002290

Match strength prohw
Window selection 0.00032000 0.00013240 0.0000380 0.0009200 000098600
flasatficaucon and couint 0.0035000 0.01)0405 0.0003520 000)15200 0.005450

%latch peUMtih

Windw . slection 0.0002880 0.0000240 0.0000360 0.0005800 0.0007300
floult transform 0.0790000 0.0054000 0.0304000 0.0630000 0.0690000
Edg pea dctection 0.0007700 0.0000)640 0.0000990 0.0015400 0.001 7600
Rectangle parameter update 0.0002160 0.0000090 0.0000100 0.0002340 0.0002360

REtu presentation 0.00011500 0.0004400 0.0004700 0.0004700 0.0030300
13w Imateii selection 0.0000D250 0.0000150 0.0000350 0.0000296o 0.0000150
Imane Xginremums 0.0007200 0.0003200 0.0003500 0.00011400 0.00093 00

Satsusuca
Connected comsponents 34 33 13339
Rpigt angles extracted 99 92 230 197
Rectangle& deteted 21 16 42 39

tk > thlai~reshtold 14533 32919 18582 38837
MElenaon initial prohe list
[ltough probes 3 5 97 93
Initial match strength pri*iea 20 Is 342 342
Eximajson mat. sir. proes 3 130t 97
Models rmnaining 1 2 1
Model selected 31_________ 5 7 8
Average match strength 0.96 093 03.4 0.81

"T I'tatd to256.256 257.255 257,255 257.n55
Rotrate,.d y to359 114 22 22

Table 11: Aspex ASP Results
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Data Set Sample Test Test2 Test3 Test4
Single Eight Single Eight Single Nine Single Eight Single Nine

Total 889.66 251.33 300.34 73.88 282.71 77.87 562.15 174.96 578.14 139.72
Overhead 5.84 6.00 5.57 5.93 5.62 5.87 5.75 5.86 5.65 5.90
System time 3.60 9.40 2.00 5.40 2.10 6.40 2.80 7.60 2.90 8.80
Label conn. components 19.27 12.68 19.34 15.83 19.29 16.01 19.60 16.84 19.58 16.89
Rectangles from intensity 4.18 1.45 2.62 0.92 2.74 1.92 3.42 1.42 3.38 1 .89
Median filter 239.24 31.00 114.12 15.25 85.81 11.08 85.83 11.45 85.79 11.11
Sobel 110.89 15.00 113.21 15.46 110.80 14.83 110.84 15.20 110.81 14.73
Initial graph match 18.52 3.08 18.53 3.76 19.90 4.35 52.53 7.21 51.63 7.17
Match data rectangles 0.17 0.04 0.11 0.03 0.09 0.03 0.26 0.13 0.22 0.06
Match links 0.19 0.24 0.06 0.20 0.06 0.65 0.74 0.29 0.59 0.78
Create probe list 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Partial match 18.15 2.80 18.35 3.52 19.74 3.66 51.52 6.78 50.81 6.32
Match extension 470.90 161.34 16.16 5.97 24.08 9.38 271.07 103.99 288.21 69.10
Result presentation 20.82 20.78 10.80 10.76 14.47 14.43 13.11 12.99 13.09 12.93

Table 12: Sequent Symmetry 81 Results

Sequent system. Part of the development period was spent back-porting modifications to the
sequential version of the benchmark in order to enhance its portability. The low-level tasks were
directly converted to a parallel implementation by dividing the data sets among the processors in a
manner that completely avoided write-contention. About half of the development time was spent
adding the appropriate data locking mechanisms to the model-matching portion of the benchmark,
and resolving problems with timing and race conditions. It was only possible to obtain timings for
the major steps in the benchmark, because the Sequent operating system does not provide facilities
for accurately timing individual child processes. The benchmark was run on configurations from
one to eleven processors, with the optimum time being obtained with eight or nine processors.
Additional processors resulted in an overall reduction in performance, which was due to a
combination of factors. As the data sets were divided among more processors, the ratio of
processing time to task creation overhead decreased so that the latter came to dominate the time on
some tasks. We also believe that some of the tasks reached the saturation point of the shared bus at
about eight or nine processors, since the one run that was observed on a B-model cache system
showed performance to improve with more processors. Table 12 shows the performance obtained
for a single processor running the sequential version of the benchmark, to provide a comparison
baseline, and the performance on the optimum number of processors for each data set.

6.10 Warp

The CMU Warp is a systolic array consisting of ten high speed floating point units in a linear
configuration iKung, 19841. Processing in the Warp is directed by a host processor, such as the
Sun-3/60 workstation that was used in executing the benchmark. The benchmark implementation
was programmed by one person in two weeks, using a combination of the original C
implementation and subroutines written in Apply and W2. The objective of the implementation was
to obtain the best overall time, rather than the best time for each task. While it would seem that the
latter guarantees the former, consider that the Warp and its host can work in parallel on different
portions of a problem. Thus, even though the Warp could perform a step in one second that
requires four seconds on the host, it is better to let the host do the processing if it would otherwise
sit idle while the Warp is computing. Thus, the Warp implementation of the benchmark exploits
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Data Set Sample Test Test2 Test3 Test4

Total 43.60 20.30 22.30 58.10 55.30

System 3.00 2.30 2.50 4.30 4.90
Overhead
Miscellaneous 3.56 2.24 2.30 5.52 7.30
Startu• 5.76 6.04 5.96 5.88 6.00
Image input 3.52 3.72 5.40 5.34 5.34
Image output

Model Input n1.30 1.18 1.02 1.08 1.06
Label connected components 3.98 4.04 4.60 4.54 4.56
Rectangles from intensity
Miscellaneous
Trace region boundary
K-curvature___ 3.14 2.24 2.20 2.272 2.54
K-curvature smoothing 1.38 0.64 0.78 0.98 0.90
First derivative 0.42 0.24 0.28 0.34 0.40
7x•ro-crossing detection 0. 32 0.06 0.12 0. 14 0.22

Final corner detection 0.16 0.10 0.12 0.22 0.20
Courn corners 0.02 0.02 0.04 0.06 0.06
Convex hull 0.02 0.00 0.02 0.08 0.06
Test for right angles 0.00 0.00 0.02 0.02 0.02
Final rectangle hypothesis 0.04 0.00 0.02 0.02 0.04

Median filter 10.70 8.70 1.38 1.40 2.00
Sobel 0.48 0.48 0.72 0.94 0.92
Initial graph match 0.42 0.24 0.22 1.22 1.38
Match data rectangles 0.20 0.16 0.16 0.40 0.68
Match links 0.22 0.08 0.06 0.82 0.70
Create probe list
Partial match

Matchpstrength probes
Window selection
Class.ificat ion and count

Match extension 24.80 3.64 4.58 38.60 41.20
Match strength probes 9.10 2.64 2.86 13.60 13.50
Window selection 0.02 0.02 0.02 0.24 0.18
Classification and count 9.00 2.56 2.82 23.20 23.10

Hough probes 15.30 0.96 1.68 23.30 25.80

Window selection 0.02 0.00 0.02 0.12 0.06
Hough, transform 12.80 0.88 1.44 19.30 20.00
Edge peak detection 2.38 0.08 0.22 3.80 5.58
Rectangle parameter, update 0.02 0.00 0.00 0.00 0.08

,Result presentation 2.60 2.26 2.52 2.24 2.26
Rest match selection 0.02 0.00 0.00 0.02 0.02

Image generation 2.54 2.20 2.46 2.16 2.18

Statistics
Total match strength probes 91 23 20 247 239
Hough probes 58 3 5 97 95

Table 13: Results for the Warp
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both the tightly-coupled parallelism of the Warp array, and the loosely-coupled task-level
parallelism present in the benchmark.

Table 13 lists the results for the Warp. Timings were not provided for a few of the steps, but the
totals include all of the processing time. The Miscellaneous category under Overhead is the time
required for downloading code to the Warp array at various stages of the processing. A figure for
the total system time was provided, rather than a breakdown of system time by task. The overall
Total includes the system time, which is listed on the line below the Total. Note that sums of the
times for the individual steps will not equal the Total time because of the task-level parallelism tfhat
was used.

6.11 Connection Machine

The Thinking Machines, Connection Machine model CM-2 is a data-parallel array of bit-serial
processors that are linked by an N-dimensional hypercube router network tHillis, 19861. In
addition, for every 32 of the bit-serial processors, a 32-bit floating-point coprocessor is provided.
Connection Machines are available in configurations of 8192, 16384, 32768, and 65536 processing
elements. Results were provided for direct execution on the three smaller configurations, and
extrapolated to the largest configuration. The development team at Thinking Machines spent about
three programmer months converting the low-level portion of the benchmark into 2600 lines of
*LISP, which is a data-parallel extension to Common LISP. There was not enough time to
implement the intermediate and top-down processing portions of the benchmark before the
workshop, and other projects have taken priority over completing the benchmark since then.
However, there was also some concern as to whether the Connection Machine would be the best
vehicle for implementing the other portions, since they are more concerned vith task parallelism
than data parallelism. It was suggested that if the model data base included several thousand models
to be matched, then an appropriate method might be found to take advantage of the Connection
Machine's capabilities.

Table 14 summarizes the results for the Connection Machine on the low-level portion of the
benchmark, with times rounded to two significant digits (as provided by Thinking Machines). A
32K-processor CM-2 with a Data Vault disk system and a Sun-4 host processor was used to obtain
the results. The results that were supplied were for only one data set, and did not indicate which one
was used. It is interesting to note that several of the tasks saw little speedup with the larger
configurations of the Connection Machine. Those tasks involved a collection of contour values that
had been mapped into 16K virtual processors, which are enough to operate on all of the contour
points in parallel, and so there was no advantage in using more physical processors than virtual
processors. It was suggested that the Connection Machine might thus be used to process the
contours for several images at once in order to make use of the larger number of processors. On the
other hand, for those tasks that are pixel oriented, 256K virtual processors were used and therefore
a proportional speedup can be observed as the number of processors increases.

6.12 Intel iPSC-2

The Intel Scientific Computers iPSC-2 is a distributed memory multiprocessor that consists of un
to 128 Intel 80386 microprocessors that are linked by a virtual cut-through routing network which
simulates point-to-point communications. Each of the microprocessors can have up to 8 MB of
local memory, and an 80387 arithmetic coprocessor. The benchmark implementation for the iPSC-
2 was developed by the University of Illinois at Urbana-Champaign using C with a library that
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supports multiprocessing. The group had only etiough time to implement the median filter and
Sobel steps of the low-level depth image processing. However, they did run those portions on five
different machine configurations, with 1, 2, 4, 8, and 16 processors, and on four of the five data
sets. Table 15 presents their results, which are divided into user time and system time (including
data and program load time, and output time).

Configuration 8K 16K 32K 64K

Total (low level tasks only) 1.26 0.91 0.71 0.63
Overhead

Miscell. neous

Stanup 0.10 0.10 0.10 0.10
Image input 0.155 0.155 0.155 0.155
Image ouIput
Model input
Label connected components 0.34 0.21 0.14 0.10
Rectangles from intensity
Miscellaneous

Trace region houndary 0.44 0.30 0.23 0.17
K-curvature 0.019 0.019 0.018 0.018
K-curvature smoothing 0.0056 0.0055 0.0062 0.0055
First derivative 0.00038 0.00037 0.00037 0.00037
Zero-crossing detection 0.00021 0.00020 0.00019 0.00019
Final corner detection 0.0058 0.0053 0.0053 0.0053
Count corners 0.018 0.016 0.016 0.016
Convex hull 0.041 0.038 0.039 0.038
Test for right angles

Final rectangle hypothesis
Median filter 0.082 0.041 0.025 0.015
Sobel 0.052 0.026 0.014 0.008

Table 14: Results for the Connection Machine on the Low-Level Portion

Configuration 1 2 4 8 16
User System User System User System User System User System

,Median Filter

Sample 176,47 0.00 97.93 11.52 43.46 11.23 22.27 3.1 11.14 3.82
Test 75.45 0.00 37.72 10.88 18.99 10.84 9.66 3.15 4.84 3.87
Test2 60.84 0.00 30.36 11.48 15.25 11.45 7.63 3.73 3.81 4.19
Test3 60.83 0.00 30.36 11.12 15.25 11.23 7.63 3.49 3.82 4.03

Sobel
Sample 78.63 0.00 39.32 3.53 19,68 3,00 9.84 2.37 4.92 2.91
Test 80.82 0.00 40.42 3.47 20.25 2.89 10.15 2.43 5.10 2.82
Test2 80.82 0.00 40.42 1.46 20.25 1.99 10.15 1.87 5.10 2.50
Test3 78.63 0.00 39,31 2.62 19.68 2.51 9.84 2.17 4.92 2.69

Table 15: iPSC-2 Results for Median Filter and Sobel Steps
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Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 0.6 14.6 16.5 0.6 2.3
Label connected components 3.5 12.0 0.1 30.0 4.9 9.1
Rectangles from intensity 0.8 5.8 19.1 2.5 0.6
Median filter 30.9 16.8 0.7 0.6 11.9 24.5
Sobel 17.0 6.3 3.2 0.5 5.8 1.1
Initial graph match 3.1 4.3 14.4 0.0 1.2 1.0
Match data rectangles 0.0 0.2 3.5 0.0 0.5
Match links 0.0 0.1 10.5 0.1 0.5
Create probe list 0.0 0.0 0.1 0.0
Partial match 3.0 4.0 4.0 1.1

Match extension 40.9 34.2 35.6 63.9 61.9 56.9
1 Result presentation 3.1 5.4 2.7 0.7 8.0 6.0

Table 16: Distribution of Processing Time for Data Set Sample

Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 1.5 26.4 30.9 2.3 3.1
LUbel connected components 8.2 28.9 0.1 63.4 9.4 19.9
Rectangles from intensity 1.2 6.4 27.5 8.1 0.9
Median filter 35.2 17.7 1.2 0.2 34.6 42.9
Sobel 39A 11.4 5.9 1.7 34.4 2.4
Initial graph match 7.4 7.5 16.8 0.0 6.0 1.2
Match data rectangles 0.0 0.2 3.4 0.0 0.8
Match links 0(0 0.1 12.5 0.1 0.4
Create probe list 0.0 0.0 0.3 0.0
Partial match 7.3 7.2 16.9 5.8

Match extension 3A 2.7 3.9 0.4 5.9 17.9
Result presentation 3.6 5.6 2.1 1.2 5.8 11.1

Table 17: Distribution of Processing Time for Data Set Test

Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 1.7 26.5 30.6 2.0 3.2
Label connected components 8.6 21.6 0.1 57.3 9.8 20.6
Rectangles from intensity 1.3 6.6 29.6 7.2 1.3
Median filter 28.2 13.1 1.2 1.3 26.9 6.2
Sobel 41.3 11.5 5.9 1.6 34.8 3.2
Initial graph match 7.9 8.1 14.7 0.0 6.7 1.0

Match data rectangles 0.0 0.? 2.9 0Q0 0.7
Match links 0.0 (.1 10.9 0.3 3.7
Create probe list 0.0 0.0 0.2 0.0
Partial match 7.9 7.7 15.1 6.4

Match extension 5.7 4.6 5.5 0.4 9.2 20.5
Result presentation 5.1 7.2 2.6 1.1 7.9 11.3

Table 18: Distribution of Processing Time for Data Set Test2
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Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 1.0 16.2 3.3 0.7 1.6
Label connected components 5.1 13.4 0.0 30.8 4.9 7.8
Rectangles from intensity 1.0 5.8 3.1 2.8 0.7
Median filter 16.5 8.0 0.1 0.5 13.2 2.4
Sobel 24.5 7.0 0.6 0.6 17.1 1.6
Initial 3graph match 12.4 14.1 26.9 0.0 8.1 2.1
Match data rectangles 0.1 0.4 3.2 0.1 0.7
Match links 0.1 0.5 23.6 0.1 1.4
Create probe list 0.0 0.0 0.2 0.0
Partial match 12.2 13.1 43.7 58.3

Match extension 36.8 30.9 21.5 0.2 50.9 66.4
Result presentation 2.7 4.0 0.7 0.4 3.5 3.9

Table 19: Distribution of Processing Time for Data Set Test3

Architecture Sun-3 Alliant IUA ASP Sequent Warp

Overhead 1.0 16.3 3.5 0.7 1.6
Label connected components 5.1 13.5 0.0 26.3 5.1 8.2
Rectangles from intensity 1.0 5.7 3.3 2.8 0.7
Median filter 16A 8.1 0.1 0.4 13.5 3.6
Sobel 24.5 7.1 0.7 0.5 17.5 1.7
Initial graph match 12.2 13.9 20.7 0.0 8.2 25
Match data rectangles 0.0 0.4 2.7 0.0 1.2
Match links 0.1 0.4 17.9 0.2 1.3
Create probe list 0.0 0.0 0.2 0.0
Partial match 12.1 13.1 38.6 8.0
Match extension 37.1 30.9 32.1 0.2 49.8 74.5
Result presentation 2.7 4.1 0.7 0.9 3.6 4.1

Table 20: Distribution of Processing Time for Data Set Test4

6.13 Comparative Performance Summary

As previously mentioned, the direct comparison of raw timings is not especially useful. We have
attempted to provide as much information about each benchmark implementation as is necessary
for others to make informed and intelligent comparisons of the results. For example, a valid
comparison of architectural features should take into account the technology, instruction rate, and
scalability of the processors that were actually used to obtain the results. On the other hand, a
comparison that seeks to establish the currently available machine with the best cost to performance
ratio should look at the timings with respect to both the programming effort required and the price
of the hardware. The authors hope to develop and publish some direct comparisons of architectural
features, once a few more implementations are added to the sample and a reasonably broad set of
scaling functions is established.

In the meantime, one interesting comparison that can be immediately drawn from the data, which
requires no scaling for technology, is the relative amount of processing time that each architecture
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expends on each portion of the benchmark. This function, which is just the percentage of the total
time taken for each step, provides an indication of those tasks that each architecture excels at and
those that it struggles with. Tables 16 through 20 compare the efforts for the different architectures
on each of the major benchmark steps, for the five data sets. It should be noted that the data sets,
Test and Test2, require very little mode! matching effort since they involve very simple models.
The other three data sets involve more complex models, which is easily seen in Tables 16, 19, and
20. Only the complete implementations are listed, since a total time for the benchmark is required to
compute the values in the tables. Blanks in the tables represent information that was missing from
the reports by the different groups.

6.14 Recommendations for Future Benchmarks

At the conclusion of the Avon workshop, a panel session was held to discuss the benchmark, ways
it could be improved, and future benchmark efforts. The general conclusion of the participants was
that the benchmark is a significant improvement over past efforts, but that there is still work to be
done.

One of the major complaints was the sheer size and complexity of the benchmark solution. The
sample solutions are a considerable help in this regard, but a great deal of work is still required to
transport them to parallel architectures. Several people expressed the opinion that a FORTRAN
version should be made available so that the benchmark would be taken up by the traditional
supercomputing community. It was pointed out that most groups don't have the time or resources
to implement such a complex benchmark, and that it would be almost impossible to tune it for
optimum performance as is done with smaller benchmarks. A counter-argument was voiced that
most vision applications are not highly tuned, and that the benchmark might therefore give a more
realistic indication of the performance that could be expected. Suggestions for reducing the size of
the benchmark included removing one of the top-down probes (although there was no consensus
on which one should be removed), and simplification of the graph matching code through increased
generality.

On the other hand, several people complained that the benchmark task was too small. The groups
that had benchmarked data-parallel systems all indicated that they would like to see data sets
involving thousands of models so that they could exploit more data parallelism, rather than being
forced into a task parallel model. Of course, those who had benchmarked multi-tasking systems
took the opposite view. It was then s- ,gested that an interesting variation on the benchmark would
be to provide a range of data sets with model-bases ranging through several orders of magnitude.
Such data sets would provide another dimension to the performance analysis, and thus, some
insight into the range of applications for which an architecture is appropriate. Beyond simply
increasing the size of the model-base, several of the vision researchers expressed a desire to see a
broader range of vision tasks in the benchmark. For example, motion analysis over a succession of
frames would test an architecture's ability to deal with real-time image input and would help to
identify those with a special ability to pipeline the stages of an interpretation. However, there was an
immediate outcry from the implementors that the benchmark is already too complex. It was then
suggested that an optional second level of the benchmark could be specified that would be based on
the basic task, but extended to include image sequences and motion processing.

An important observation was made in that the complexity of the benchmark was not the issue, but
the cost of implementation. It was suggested that the benchmark might be more palatable if it was
reorganized to be built out of a standard set of general purpose vision subroutines. Even though a
group might still have to implement all of those routines, they would then at least have a library that
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could be used for other applications, over which they could amortize the cost. The benchmark
specification would then be a framework for applying the library to solve a problem, and could
involve separate tests for evaluating the performance and accuracy of the individual subroutines.

Part of the discussion focussed on the fact that the benchmark does not truly address high-level
processing. However, as the benchmark designers were quick to point out, there is no consensus
among the vision research community as to what constitutes high-level processing. Until an
agreement can be reached on what types of processing are essential at that level, it will be pointless
to try to design a benchmark that includes the high level. It was also noted that the current top-down
direction of low-level processing by the benchmark has some of the flavor of the high-level control
of intermediate- and low-level processing which many people feel is necessary. In the end, it was
decided that the community is not yet ffady to define high-level processing to the degree necessary
to build a benchmark around it.

Another point was that a standard reporting form should be developed, and that the sequential
solution should output its results to match that form. Although the benchmark specification
included a section on reporting requirements, the sequential solution did not precisely conform to it
(partly because many of the reporting requirements were for aspects of the implementation that
went beyond the timings and statistics that were to be output). In fact, most of the groups followed
the example of the reporting format for the sequential solution, rather than what was requested in
the specification. It was also noted that because the benchmark allows alternate methods to be used
whenever dictated by architectural considerations, the reporting format can not be made completely
rigid.

The conclusion of the panel session was to let the benchmark stand as specified for some period of
time, in order to allow more groups to complete their implementations. Then a new version of the
benchmark should be developed with the following features: It should be a reorganization of the
current problem into a library of useful subroutines and an application framework. A set of
individual problems should be developed to test each of the subroutines. A broader range of data
sets should be provided, with the size of the model-base scaling over several orders of magnitude,
and perhaps a set of images of different sizes. The graph matching code should be simplified and
made more general purpose. A standard reporting format should be provided, with the sample
solutions generating as much of the information as possible. Lastly a second level of the
benchmark might be specified that extends the current problem to a sequence of images with
motion analysis. The second level would be an optional exercise that could be built on top of the
current problem to demonstrate specific real-time capabilities of certain architectures.
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7. Conclusions

The three-level structure of the Image Understanding Architecture supports the necessary hierarchy
of abstractions for the different representations and operations that we believe are needed to
generally solve the vision problem. Each level is constructed to perform a suite of tasks most
appropriate for that level of abstraction.

The CAAPP is optimized to perform local operations on neighborhoods of pixels and to provide
feedback to the higher levels of processing about the state of the computation and statistics about
low-level data. It excels at very tightly-coupled fine-grained parallelism. The mapping of one pixel
onto each processor ensures that the maximum amount of parallelism available in the low-level
vision tasks will be utilized. The reconfigurable nature of its Coterie network supports
communication among groups of processors that correspond to image events. The global summary
feedback capabilities and I/O subsystem of the CAAPP make it especially well suited for real-time
applications. Of course, its unique feature is its interface to the ICAP level.

The ICAP is designed to support the necessary tasks of building an intermediate symbolic
representation of the image and operating on that representation. These operations need two primary
capabilities: data manipulation and communication. The data representations used by the CAAPP
need to be transformed by the ICAP into a more accessible format, and then passed to neighboring
ICAP cells to perform merging and grouping operations.

The high level tasks which perform knowledge-based inference and manipulation of object models
are run in the SPA. To support distributed artificial intelligence processing, powerful processors are
needed with large amounts of memory. The communication between processes will primarily be in
terms of a blackboard system managed by the processes themselves. As these processes run and
make requests via the ACU to the ICAP (and sometimes directly to the CAAPP) they will extract
information about the image and post the results of their analysis on the blackboard for other
processes to use. The end result will be an interpretation of the image achieved by cooperation of
the set of object processes.

The IUA simulator, parallel language extensions to FORTH, debugger, subroutine libraries, and
applications provide an environment for developing code and demonstrating the IUA prototype.
The simulator, in particular, permits the programmer to directly observe the status of algorithms
running in the machine as they are executing. The wealth of visual information its displays provide
is very helpful to both experienced and novice programmers.

The IUA prototype hardware has been completed, and is fully functional, although it operates at a
speed that is less than originally specified. The sources of this reduced performance have been
determined, and could be corrected if funding were available. The hardware has been demonstrated
running several vision algorithms.

The DARPA Integrated Image Understanding Benchmark is another step in the direction of
providing a stand' -d exercise for testing and demonstrating the performance of parallel architectures
on a vision-like task. While not perfect, it is a significant improvement over previous efforts in that
it tests performance on a wide variety of operations within the unifying framework of an overall
task. The benchmark also goes a long way toward eliminating programmer knowledge and
cleverness as a factor in the performance results, while providing sufficient flexibility to allow
implementors to take advantage of special architectural features.
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Complete implementations have only been developed for a handful of architectures to date, but it is
hoped that others will be added to the sample. In the meantime, it is possible to draw a few general
conclusions from the data that has been gathered. It is clear that a tremendous speedup is possible
for the data parallel portions of the interpretation task. However, every one of the architectures in the
sample devoted the greatest percentage of its overall time to the model matching portion of the
benchmark on those data sets that involved complex models. One conclusion might be that this
portion of the task simply doesn't permit the exploitation of much parallelism. However, when the
model matching step is viewed at an abstract level, it appears to be quite rich with potential
parallelism, but, in the form of task parallel direction of limited data parallel processing. While this
style of processing can be sidestepped by increasing the size of the model-base so that the entire
task becomes data parallel in nature, the inclusion of true high-level processing will force us back to
dealing with this processing model. Thus, one potential area for research that the benchmark points
out is the development of architectures, hardware and programming models to support task
parallelism which can direct data parallel processing in a tightly coupled manner.
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