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PREFACE

This book contains the Proceedings of the XVIIIth International Congress of
Theoretical and Applied Mechanics, held at th-b Technion, Israel Institute of
Technology, Haifa, August 22-28, 1992. The Congress was held under the auspices
of The International Union of Theoretical and Applied Mechanics (IUTAM) by
invitation of The Israel Society for Theoretical and Applied Mechanics and Technion,
Israel Institute of Technology and under the sponsorship of the Israel Academy of
Sciences and Humanities.

The full text of the two General Lectures, of introductory lectures of the three
minisymposia and of sectional lectures, according to the list on pages xi, xii, are
included in this volume. The contributed papers are listed by author and title; most of
them will be published in appropriate scientific journals.

The publication of these Proceedings has been handled promptly and very
capably by Elsevier Science Publishers B.V. and their editors to whom we are very
gra:eful.

Josef Singer Sol R. Bodner Alexander Solan Zvi Hashin

Haifa
December 1992
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REPORT ON THE CONGRESS

Josef Singer

The decision to accept the invitation from Israel to hold the XV[Ith International Congress
in Haifa was taken by the Congress Committee of IUTAM during its meeting in Grenoble in
August 1988. It was decided that the format of the Congress would follow the one adopted for
the recent successful Congresses in Lyngby and Grenoble. The Congress would cover the
entire field of mechanics with special emphasis on three selected topics to constitute the so-
called minisymposia.

The Congress Committee selected the following three topics for these minisymposia:

1. Instabilities in Solid and Structural Mechanics.
2. Sea Surface Mechanics and Air-Sea Interaction.
3. Biomechanics.

The Congress Committee also selected two general lecturers: Professor Anatol Roshko
(USA) to present the Opening Lecture and Professor G.l. Barenblatt (Russia) to present the
Closing Lecture; as well as 15 Sectional Lectures. The chairmen of the Minisymposia further
selected 9 Introductory Lectures for their symposia.

As in Lyngby and Grenoble, the contributed papers were presented in parallel sessions,
either as 25 minute lectures or in poster-sessions which were scheduled separately from the
lectres. There were lively e-scussions both after the lectures and in the poster-sessions, where
the second half of the sessions were devoted to general discussions guided by the chairmen.

The Opening Session of the Congress was held in the Churchill Auditorium of the
Technion at 10 o'clock on Sunday, 23rd August, 1992. The Session was opened by Professor
Josef Singer, Chairman of the Local Organizing Committee of ICTAM '92, with the following
words:

"Distinguished Members of the Dais, Ladies and Gentlemen,

It gives me great pleasure to open the 18th International Congress of Theoretical and
Applied Mechanics and to greet this outstanding gathering of scientists and engineers which
will ensure the success of the Congress.

Welcome to Israel, to Haifa and to the Technion, Israel Institute of Technology.

Let me also greet you in Hebrew (welcome to participants).

I think you will understand me better if I do not continue in Hebrew. Maybe by the time we
come to the Closing Session, your Hebrew will be good enough to permit me to address you
all in our language.

So let me introduce you to the Dais:

I will start at the far end of the Head Table. There are the Deans of the two Technion
Faculties which are most active in Mechanics:

Professor Blech, Acting Dean of the Faculty of Mechanical Engineering, and Professor
Shinar, Dean of the Faculty of Aerospace Engineering.

Next, the Secretary-General of IUTAM, Professor Schielen of Stuttgart University, who is
entrusted with the many IUTAM Symposia and other lUTAM activities.



To his left, the President of the Israel Society for Theoretical and Applied Mechanics,
Professor Hashin of the Faculty of Engineering of Tel Aviv University, an active member of
our Organizing Committee.

Next, the Secretary of the IUTAM Congress Committee, Professor Moffatt of Cambridge
University, whose guidance and tireless efforts have been essential to the success of the
scientific program and the preparations of the Congress.

To his left, the Mayor of our beautiful city, Haifa, Mr. Gurel, who graciously supports our
meeting and many other international activities.

Then our IUTAM President, Professor Germain, of the French Academy of Science,
whom many of you also remember as the Organizer of the successful Congress in Grenoble in
1988.

To his left, Professor Paul Singer, Senior Vice President of Technion, who will soon bring
to you the greetings of the Technion President.

Then the IUTAM Vice President, Sir James Lighthill, the past IUTAM President and
former Vice Chancellor of University College London.

To his left, Professor Bodner of our Faculty of Mechanical Engineering, the Co-Chairman
of our Local Organizing Committee, who gave his time and knowledge untiringly and thus
contributed so much to our Congress.

Then the Treasurer of IUTAM, Professor van Wijngaarden of the University of Twente in
The Netherlands, whose importance is self-evident.

And last, but certainly not least, the wonderful Secretary of our Local Organizing
Committee, Professor Alex Solan, Technion Vice President for Academic Affairs, with whom
most of you have already corresponded and without whose outstanding and never ending work
we could not have carried out the preparations for the Congress.

ICTAM Participants, as I look around me I see many friends, the top scientists of the
international mechanics community, the international mechanics family. I am sure that our
deliberations will not only advance our field, but will also weave many new collaborations and
friendships.

For the benefit of the delegates who are new to ICTAM, I would like to ask some of the
former IUTAM Presidents to please rise: Professor Frithiof Niordson of Denmark, and
Professor Daniel Drucker of U.S.A.

To finish the introductions, it gives me great pleasure to see here among us, my former
teacher and good friend, Professor Nicholas Hoff of Stanford University, who taught me the
meaning of theoretical and applied mechanics and much more, and whom many of you will
remember as the President and Organizer of our 1968 Congress at Stanford. Please rise
Nicholas.

Friends, I may have taken up some time with these introductions, but I remember that at
the first ICTAM I attended in Stresa in 1960, seeing the great names in the flesh was, indeed, a
great experience!

Ladies and Gentlemen, we Israelis are honored and happy to host the 18th International
Congress of Theoretical and Applied Mechanics in our old-new Land.

Though the ancient Israelis are better known for their Monotheism than for their
achievements in mechanics, one finds that they tried their hand in some large scale experiments
in mechanics.
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For example, in the Book of Exodus we hear that in their flight from Egypt, the Children
of Israel (with some assistance from the Almighty) experimented with sea-air interactions, for
we read in Exodus 14/21,22:

"And Moses stretched out his hand over the sea and the Lord caused the sea to go back by
a strong east wind ..... and made the sea dry land and the waters were divided".

"And the Children of Israel went into the midst of the sea upon the dry ground, and the

waters were a wall unto them on their right and on their left".

Would this not fit into our second Minisymposium?!

Or, in the Book of Joshua, we hear of an early experiment in the dynamics of sound
waves, for we read in Joshua 6/5:

"And it shall come to pass, that when they make a long blast with a ram's horn, and when
ye hear the sound of the trumpet, all the people shall shout, and the wall of the city shall fall
down flat".

So, there was some mechanics activity here 3,500 years ago!

In modern times, Israel has a small but very active mechanics community, whose presence
and achievements are known internationally, and whose participation in IUTAM Congresses
and Symposia has been very significant

At the Technion we were fortunate to have had Professor Marcus Reiner, well known as
one of the Fathers of Rheology, active here from 1947-1976. He built a thriving department of
mechanics, that later diffused into other departments.

In 1961 Professor Reiner organized an IUTAM Symposium on "Secondary Effects in
Elasticity, Plasticity and Fluid Dynamics", in Haifa (by the way, my wife worked with him on
the organization of that symposium) a symposium which was the occasion of the first visit to
Israel for some of you.

In 1985 Professors Bodner and Hashin organized another IUTAM Symposium on
"Mechanics of Damage and Fatigue", at Technion, which was also very successful.

Hence, an ICTAM at Haifa seem to follow logically. Well, some of us in the audience have
aged a bit since the first time Israel offered to host ICTAM many years ago, but I am happy
that we all made it finally!

We have, I believe, an excellent scientific program thanks to you the contributors and to the
excellent work of our International Papers Committee. As you know, the choice was difficult
and the 600 papers chosen out of 1,183 submitted originated in 48 different countries.
However, as we had many and continuous changes, even in the number of countries, the
program you have could be finalized only two weeks ago.

The flags on the platform represent all the countries from which papers were accepted. The
flags indicate origins of papers, but we are all here as individuals, contributing to theoretical
and applied mechanics. Individuals whose friendship and collaboration will be reinforced by
this Congress and who will assist in bringing our nations closer and improve their relations.

Before closing. I would like to thank the IUTAM Congress Committee, and in particular its
Executive Committee, the IUTAM Bureau, the International Papers Committee, as well as the
different National Committees. I will express my gratitude to my local collaborators, who
worked so hard to prepare the Congress, in more detail at the Closing Session. For now, only



sincere thanks to you, my colleagues of the Local Organizing Committee and to the devoted
staff of the Technion and Kenes teams who will also look after us in the coming days.

I would also like to thank the Israel Academy of Sciences and Humanities, the various
Israeli government ministries, our municipality, and the Haifa Tourist Board, the universities
and industrial companies, whose names appear on the program and, in particular, the U.S. Air
Force European Office of Aerospace Research and Development, and the U.S. Army European
Research Office, for their generous support.

As you know, the Israel Academy is one of the sponsors of our Congress. Its President,
Professor Joshua Jortner, who is abroad, sent us his greetings which I would like to read to
you:

"The Israel Academy recognizes the important contribution international meetings make to
the advancement and excellence of research, by providing a forum for direct contact between
scientists and engineers engaged in high quality scientific endeavor.

I am confident that the 18th International Conference in Theoretical and Applied Mechanics
will contribute to the advancement and the enhanced cooperation in these exciting and
important fields of scientific and technological research. The integration of science and
technology which is so well reflected in your Conference is of prime importance for Israel and
for the international community at large.

Please convey my compliments, on behalf of the Israel Academy of Sciences and

Humanities, to all the participants.

I wish you a fruitful and stimulating meeting."

Ladies and Gentlemen, I concur with Professor Jortner, and wish us all, delegates and
accompanying persons, a fruitful and enjoyable Congress, and a very pleasant stay in Israel.
Thank you."

Professor Singer then called on Professor Solan, the Secretary of the Local Organizing
Committee, to introduce the speakers who followed.

Mayor Gurel then brought the greetings of the Municipality of Haifa to the Congress
participants and wished them successful deliberations and a pleasant stay in Haifa and Israel.

Since the President of the Technion was abroad, the Senior Vice President, President Paul

Singer, greeted the assembly with the following words:

"Distinguished Guests and Friends,

It is my privilege and honor to welcome you, participants of the International Congress of
Theoretical and Applied Mechanics to the Technion - Israel Institute of Technology, with the
traditional Hebrew greeting - "Blessed be those who came". -This Congress is the XVIII th in
a series which started in Delft, Netherlands and carries with it by now a most famous
tradition. We are therefore very proud and consider it a great distinction, that for the first time
the Congress convenes in Israel, and the Technion Management is especially proud that our
scientists have been entrusted with the task of organizing and hosting this event.

But, there is another "FIRST" which I would like to point out to you. A perusal of the
previous sites shows that you are meeting for the first time at an altitude of several hundred
meters above the sea level, - I am confident this will bring to this Meeting "Scientific heights"
previously unknown. You have certainly chosen a very unique location: Mount Carmel (on one
of its hills we are here) - was mentioned already a few thousand years ago. For instance, in the
Book of Jeremiah one finds "To the CARMEL by the sea, - one comes". This mountain is
perceived and mentioned from very, very old times as a "SAFE SHORE". The ancient
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Egyptians used to call it "The Holy Summit" and the famous Egyptian Emperor (Pharaoh)
Ramses the Second, nicknamed it in the 13th Century B.C., "The Mountain of Strength".
Possibly the most famous personality associazed with it is the Prophet Elijah who used to
prophesize and build his favorite models and theories and indoctrinate his followers right here
on these hills. I mention this, since in the Ninth Century B.C., during the reign of King Ahab
of Israel, a very famous Assembly was organized by the Prophet Elijah on Mount Carmel in
the presence of the King, possibly the precursor of the subsequent scientific conferences held
on this mountain. About 850 people attended that famous Assembly, not very different from
the attendance of this Congress, at which some ideological differences (theories or approaches
in our present language) were confronted. Well, here the parallel stops, since meetings in those
times could have very violent endings as happened in the Assembly convened by King Ahab.

Interestingly, the location of Prophet Elijah's home-cave is determined to be in two
different places, some 300 meters apart, by the Christian and Jewish faith. Given the distance
of nearly 3000 years on the time scale, this is pretty good accuracy.

Referring anew to your Congress series, I was struck by an interesting historical
coincidence. The first ICTAM took place in DELFT in 1924, and in the very same year our
University, the Technion, opened its gates for business, enrolling its first 14 students with 7
Faculty members (a pretty good ratio we did not succeed in maintaining) - as the first
University in modem Israel - it was followed less than a year later by the Hebrew University
of Jerusalem. So, the date of your first Congress is also a cornerstone in the history of Modern
Israeli Culture.

Today, we have 19 Faculties and Departments, and a number of Research Institutes, in
most fields of Engineering and Sciences, as well as Architecture and Medicine. There are now'
over 10,000 students at the Technion, among them nearly 3,000 postgraduate students
researching and studying for higher degrees. We have about 700 full-time Faculty members
and many hundreds of associated scientists and adjunct teachers. I hope you will have the
chance to visit and meet some, though this is the week of our annual vacation.

As you know, Israel is a country of small size and limited natural resources. As such, we
put special emphasis on Science xnd Technology, the prime component in our strive to
economic independence and the building of an advanced society. In this context, we
considerably value international cooperation of which scientific congresses are an important
form.

The recent political changes in the world have opened new avenues for international
cooperation and for us in Israel they have significant implications. A sizable part of the
scientific world was practically unreachable for us; this has changed completely during the last
couple of years, - as the composition of this assembly, I believe, shows. Moreover, the
energetic pace of European unification and the related developing of special technological and
scientific collaboration schemes of international impact is also of great relevance for us. As a
result, we are undergoing here a process of orientation towards a multitude of new
opportunities, and I am confident that the outcome will benefit all those involved.

Maybe I should also mention that on historic scales (I already mentioned history before) the
direction of international exchanges has gone through cycles.Today, there is no doubt that the
leading Mecca's for Science and Technology are mostly in Europe and the United States of
America. In hi! Nobel acceptance speech in 1979, the Pakistani physicist, Abdus Salam, from
Imperial College, London, described through individual examples the clear direction of
technology transfer in the early centuries of this millennium. He mentioned the cases of
Michael the Scott and the Danish physician Henrik Harpestraeng who travelled in the 13th
Century from the underdeveloped countries of the North to the flourishing Universities of the
South, Toledo, Cordoba. In these places the Arabic and Hebrew Scholarship was then at its
peak, and scholars were attracted to these and other Southern Universities from both the
developed countries of the Middle East and Middle Asia, as well as from the developing
northern countries.



It is my wish that we here do the utmost, so that again we may confidently say "That
Scholarship will emerge from Zion". Meanwhile, on the way to this goal. I wish that your
Congress will contribute significantly to the increase of knowledge and will stimulate and
inspire you in your future work. I hope you have an interesting, enjoyable, fruitful and
pleasant week at the Technion in Haifa-"

Professor Zvi Hashin, President of the Israel Society for Theoretical and Applied
Mechanics, then brought his greetings:

"Members of the Presidium, Ladies and Gentlemen,

I have the honor and privilege to bring you the greetings of the Israel Society for
Theoretical and Applied Mechanics. Our society is one of the many national societies which are
federated into the International Union of Theoretical and Applied Mechanics (IUTAM). The
Israel Society was founded in 1950, only two years after the establishment of the State of
Israel in 1948, by my dear and esteemed former teacher and advisor Prof. Markus Reiner. He
also was the first President of the Society, until he passed away in 1976. It has been my great
privilege to replace him as President of the Society from 1976 until the present. Professor
Bodner and myself are the delegates of Israel to the IUTAM General Assembly. Professor
Singer was our member in the IUTAM Congress Committee until 1988. Since 1976 we have
consistently extended invitations to IUTAM to hold the International Congress of Theoretical
and Applied Mechanics (ICTAM), in Israel and we are gratified and honored to have been
selected during the last ICTAM in Grenoble 1988 to host this major event in 1992. We woAid
like to believe that it is a recognition of the growth and maturity of the mechanical sciences in
our country.

The Israel Society for Theoretical and Applied Mechanics is grateful to Professor Josef
Singer for having accepted its invitation to chair the Local Organizing Committee, and to all the
members of the Committee. In particular, we wish to express special gratitude to Professor Sol
Bodner, Co-Chairman, and to Professor Alexander Solan, Secretary, for the enormous
amounts of time and effort they have generously contributed to create ICTAM 18.

Thank you very much and I wish all of us a very successful and pleasant Congress."

Professor Sol R. Bodner, Co-Chairman of the Local Organizing Committee, then
presented his greetings:

"I would like to make a few remarks on this occasion.

Exactly forty years ago, as a young graduate student working with Professor Nicholas
Hoff at the Brooklyn Polytechnic Institute, I attended the 8th International Congress of
Mechanics in Istanbul. It was a wonderful affair - the scientific level of the presentations, the
extraordinary hospitality of the hosts, and the marvellous sights of the city. Present there were
the famous personalities of Mechanics - Prager, who as partial host gave a brief talk in
Turkish, von Mises, Courant, - I believe von Karman and G.I. Taylor were there, and many
others. My impression from that Congress was that Mechanics was an excellent field in which
to make a career.

Now, forty years later, the Congress has returned to the Eastern Mediterranean region and
we are again gathered at its shore. I still consider Mechanics as a field that offers continuing
possibilities for creative and intellectually demanding and satisfying work. It is impossible to
recreate the atmosphere of Istanbul of 1952. but we shall do our best to offer the hospitality of
the region.

The logo of the Congress, the ship, is taken from the emblem of the port city of Haifa, the
fancy sail of the ship is the Hebrew word Chai which means 18 and also "life", or more
literally "alive".
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I would like to add my personal welcome to all of you who came to Haifa for this
Congress."

Finally, Professor Paul Germain, President of IUTAM addressed the gathering:

"It is my privilege, as President of IUTAM, to close this uofficial opening ceremony and to
declare open our XVIII th International Congress of Th, oretical and Applied Mechanics. but
before I do it, I intend to say a few words, to thank our hosts, to recall the objectives and the
responsibility of IUTAM and to emphasize the role and the importance of such a Congress for
the modem development of Mechanics.

We are invited today by a country and a people who. at the same time are very old and very
new. Thank you, Mayor Gurel for your presence this morning and for your welcome. You
represent here both of them. A country which has to face many difficult problems, which must
fight every day to solve them, which hopes to get and which has to get, full recognition by all
its neighbours and then, which has to reach and to win the peace, a true peace, a peaceful
peace. A land to which so many in the world are so deeply related because they feel that, here,
lie some of their deepest roots. A people who, more than 3000 years ago, has begun to give
the world an incomparable source of moral and spiritual life in which so many in the world
today continue to draw inspiration, stimulation and strength. A people who was dispersed
during centuries, who has too often suffered unjustly and especially during the first half of the
century with this incomprehensible and inadmissible Shoah. A people who is today engaged
with great success in modem life and in particular the scientific life. One of the evidences is
this Technion, this very famous Institute of Technology. Our best thanks go to its President
who has accepted that our Congress be held here. Many years ago, as it was recalled, our
colleagues from the Israel Society of Mechanics asked our Congress Committee to hold one of
our international congresses in their country. Despite the high standard of their achievements in
the field of Mechanics, it was not found possible to accept their invitation on account of the
international situation until four years ago at our last meeting in Grenoble. Many unpredictable
events happened in the world since that time. But one must recognize today that the choice
which looked a little risky was a reasonable one. No special difficulty arose for the attendance
from the choice of the location. With the help of Technion and of the civilian authorities, the
Local Organizing Committee under the friendly supervision of our Congress Committee was
able to do the necessary work to hold this Congress in very good conditions. Without waiting
for the closing session which is the most appropriate time to express our recognition, we may
already express to Professor Singer and to his colleagues our gratitude.

Dear colleagues and friends, at the present time, the interactions of science and technology
with the cultural, social economical, ecological problems are very strong. As scientists we are,
each one of us, concerned by such a responsibility. Our Union provides a good tool to assume
this responsibility at the international level, by its own initiatives first and second through
ICSU, the International Council of Scientific Unions. As you know IUTAM is one of them.
ICSU with its various specialized Committees has a role which is every day more important, in
particular, as a partner on account of its scientific expertise of the United Nations and of its
numerous programs and organizations. The fears and the expectations of the people cannot be
ignored. The understanding and the appreciation of science have to be improved. I am glad to
tell you that IUTAM has significantly increased its involvement in the ICSU work, by
encouraging the operations in which the scientific content plays the principal role and by
participating in those when its own expertise is very high. The best example is the scientific
program of the International Decade for Natural Disaster Reduction run by a group of experts,
coming from various Unions, chaired by Sir James Lighthill, our former President, with a
remarkable success. The influence of IUTAM and of its voice inside ICSU is a function of the
support it received from the mechanicians all over the world. And one measure of this support
is the presence and the participation of many of them at the International Congress. It is one
first reason to express to all of you my thanks on behalf of the Bureau and of the General
Assembly.
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Congress Statisti

S AL AP L P L

Australia 6 2 2 1 2 4
Austria 5 3 - 2 - 3
Azerbaijan * * * I -

Belgium 4 1 3 1 2 - 5
Brasil 10 1 2 - 2 - 2
Bulgaria 28 3 6 3 1 - 5
Canada 28 8 15 7 9 - 18
China- Beijing 114 3 25 3 8 - 8
China - Taipei 26 4 6 3 2 - 6
Czechoslovakia 11 1 3 - 3 - 3
Denmark 10 6 3 6 2 - 9
Estonia I - I - - -

Finland I - 1 - - -
France 65 25 19 22 11 2 39
Germany 46 13 18 13 13 1 36
Greece 5 2 2 1 1 - 4
Hong Kong 1 1 - I - - I
Hungary 4 2 - I - 2
India 8 - 3 - - -
Ireland 1 - I - I -I
Israel 91 20 28 20 22 1 85
Italy 18 4 7 4 3 - 11
Japan 28 13 12 10 5 3 22
Kenya 1 - - -
Korea - - -3
Latvia 3 - 2
Lithuania 6 - 3
Mexico I I 1 - I
Netherlands 16 8 7 8 7 1 21
New Zealand 2 1 - I - - I
Norway 1 1 - I - - I
Poland 37 6 14 5 10 - 21
Portugal 5 3 1 2 1 5
Romania 28 2 - 2 - - I
Russia 304 32 58 25 12 1 32
Singapore I - 1 - - -
South Africa 4 - 1 - 1 1 2
Sweden 10 2 2 2 1 1 7
Switzerland 7 2 4 2 4 1 10
Trinidad - - - - - I
Turkey 10 2 1 1 - I
Ukraine * * 4 - 4
United Kingdom 37 14 15 13 13 3 35
USA 184 72 67 59 28 11 107
Venezuela 1 1 - - - -
Vietnam 2 - I - 1 1
Yugoslavia 11 - 5 - 4 5

Total 1183 257 342 223 171 26 525

599 394
420
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But our main task, our unique task this week, concerns mechanics and its development;
mechanics an old science, but a-. always young one. Those who like me attended many such
International Congresses can tell you how fruitful these meetings are. They give to each
participant as in any other scientific meeting the opportunity to communicate directly with the
colleagues working in the same area, by letting them know their new results and by learning
from them the latest progress. But you find more in such a Congress: the possibility to devote
one week to your own on-going education, to broaden your interest to the neighbouring
disciplines, to become aware to the new discoveries, to see the evolution of ideas, the creation
of new concepts, the fantastic improvements in theory and applications. Our two General
Lectures, our invited Sectional Lectures, our three mini-symposia with their lectures of
pedagogical character meet precisely these purposes. And one discovers that the contributions
selected by the International Papers Committee represent stones which are necessary to build
this wonderful monument of mechanics, not yet achieved, always more beautiful, more
impressive, more useful, 300 years after Newton. Yes, may all of us, and especially the
younger ones, enjoy their participation; may they draw the greatest possible benefit of this
week. For those who have prepared this meeting, that is their main wish; that would represent
the best reward.

And now, it is time to start. I declare open the XVII/ th International Congress of
Theoretical and Applied Mechanics and leave the chair to Sir James Lighthill who, within a
few minutes, after a few announcements by Professor Solan, will introduce the speaker invited
to deliver the opening General Lecturer. Thank you for your kind attention."

Sir James Lighthill then introduced Professor Anatol Roshko who presented the Opening
Lecture "Instability and Turbulence in Shear Flows".

The scientific program of the Congress was presented from Sunday afternoon till Thursday
evening in 5-6 parallel sessions. The poster sessions took place in 8-9 adjoining rooms on
three mornings, at times when no other lecture sessions were in progress. This resulted in
good attendance and very lively discussions.

The detailed statistics of the Congress are presented on the following page. It is noted that
the proportion of acceptances to submissions was almost exactly 1/2. The proportion of actual
presentations to acceptances was lower than anticipated which seems to be primarily due to
current difficulties in a number of countries for obtaining travel funds. As a consequence, the
overall attendance was also somewhat lower than expected but was more than adequate for a
very invigorating Congress.

The meaning of the symbols used in the following listing by countries is as follows:

S - Submitted abstracts
AL - Accepted as Lecture
AP - Accepted as Poster

L - Presented as Lecture
P - Presented as Poster

IL - Invited Lecture
* The numbers for S, AL, AP for Azerbaijan and Ukraine and other countries of the

former Soviet Union are included in Russia.
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The Social Program included a Welcome Reception on Saturday evening, a Dinner
Reception on Monday evening, both at the Churchill Auditorium Plaza; the Congress
Excursion on Tuesday afternoon to Rosh Hanikra and the Crusader City, Acco; a city tour of
Haifa and the Druze villages on Mount Carmel on Thursday, and other optional tours for
accompanying persons on Sunday, Monday and Wednesday as well as pre-congress and post-
congress tours to other parts of Israel. The Congress Banquet was held at the Dan Carmel
Hotel on Thursday evening.

The Closing Session of the Congress was held in the Churchill Auditorium at 5.30 p.m. on
Thursday, 27 August 1992, immediately after the Closing Lecture by Professor G.l.
Barenblatt on "Micromechanics of Fracture". The closing ceremony was opened by Professor
Josef Singer, Chairman of the Local Organizing Committee, with the following words:

"Ladies and Gentlemen,

All good things must come to an end, and the 18th ICTAM is no exception. I will not
repeat in detail my thanks to the various IUTAM committees and to the different national
committees for their excellent work and continuous assistance, nor to the Israeli sponsoring
organizations and others for their generous support.

But I would like to express, on behalf of the Executive Committee of the Local Organizing
Committee (Professors Bodner, Hashin, Solan and myself), our appreciation to our local
collaborators:

To Professor Alexander Yarin and Dr. Dan Givoli for their very significant contributions
and also to the other members of the LOC for their support.

To Dabia Sarid, the administrator of the Faculty of Mechanical Engineering, and to Bernice
Hirsch and Edna Gal, who assisted us so ably in solving the many detailed problems and last
minute rush jobs, as well as to Mottle Fein who did much of the computer programing. Also to
the Superintendents of the Technion buildings, of the Churchill Auditorium and especially of
the Lady Davis Complex, to the Technion electricians and to the staff of the Technion
dormitories. To all of them, for their help to make Technion facilities available to us during the
annual vacation week, when Technion is usually closed.

Our thanks also to the efficient Kenes staff for their excellent professional operation during
the Congress that provided us with the daily technical support for our deliberations and other
activities.

Ladies and Gentlemen,

We have had a very successful Congress, and this is primarily due to you, the lecturers,
contributors, chairmen and participants.

As you know, clouds of uncertainties hung over our preparations caused by the difficult
economic situation of the countries in Eastern Europe. The IUTAM Bureau and Executive
Committee of Congress Committee made available special funds for partial support to
participants and this helped to disperse some of those clouds. The attendance from these
countries was significantly augmented, and we have nearly the same number of participants
from Eastern Europe as attended in Grenoble and even more from the countries of the former
Soviet Union.

Friends,

We were honored and happy to be host to the 18th Congress. We hope that you not only
enjoyed the Congress, but that you will take with you fond memories of Israel and its people.
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Here are a few more words for your Hebrew vocabulary: toda raba, which means thank you
very much, shalom, which you know, and lehitraot, which means au revoir."

Professor Sol R. Bodner, Co-Chairman of the Local Organizing Committee, then
remarked:

"As one of the group that worked very hard the past few months arranging the details of
the Congress, I am very happy that the Closing Ceremony has come about. I have the
impression that the Congress events proceeded fairly smoothly and properly. From what I saw
in the various halls, the lecture and poster sessions were well attended with some very
intensive discussions.

For most of you, the participants, this Congress was probably the occasion for your first
visit to Israel. To all of you, we wish to invite you to come again whenever you can to visit
the various universities and the many sights of interest. We greatly value and appreciate the
continuous cooperation of the international Mechanics community and have been honored to be
your hosts on this occasion. The word in Hebrew is lehitraot - meaning, see you again."

Then Professor H. Keith Moffatt, Secretary of the Congress Committee, presented his
report:

"Mr President, Dear Colleagues,

I think you will agree that there is something quite unique about the International Congress
of Theoretical and Appiied Mechanics, or ICTAM as it is affectionately known. It is not just
another Conference or Symposium to add to the many that are held annually; either nationally
or internationally. Its uniqueness lies in the great historical tradition that goes back to the first
Congress of Delft in 1924, and that has been maintained and strengthened through the
succeeding decades. On your behalf, the Congress Committee strives to maintain the standard
of excellence established in earlier years, and I believe that this XVIIIth Congress in Haifa has
been quite exceptional in the quality and diversity of the lectures delivered and the posters
displayed and defended. Our Opening and Closing Lecturers and our invited Sectional
Lecturers have given us a brilliant survey of work in the fields of fluid and solid mechanics,
and I wish to thank them collectively for the great effort they have devoted in preparing their
lectures and delivering them here in Haifa.

The three mini-symposia have been equally successful and the introductory lectures have
been extraordinarily stimulating and instructive. I wish to thank the Chairmen and Co-
Chairmen of these mini-symposia for their efforts in constructing these programs, and the
Lecturers for their willing cooperation.

I wish to say a particular word about the Poster-Discussion Sessions. The Congress
Committee has always maintained that papers accepted for these Sessions must be at least equal
in quality to the standard that we set for contributed lectures. The high standard of Posters at
this Congress and the lively discussions that they have provoked testify to the success of this
policy. The poster-discussion sessions promote the development of informal contacts that can
lead to future research collaboration, and I believe that they form an important, integral and
indispensable part of our Congress structure. Participants enjoy poster-discussion sessions
precisely because of their participatory character, and time is available for discussion of
controversial issues, in a way that is generally not possible within the strict time constraints of
conventional lecture sessions.

The number of participants at this Congress has been low, although what we have lacked
in quantity we have made up in quality. Nevertheless, the decline in numbers is a matter of
great concern to the Congress Committee, and we believe that this trend can be reversed only
by a vigorous campaign in all the 40 countries of the Union to raise awareness of the
importance of the Congress, and to raise funds at National level to support increased
participation. I invite you all to advertise the Congress to your colleagues and your graduate
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students, so that they may already set their sights on participation in the XlXth Congress in
August 1996, in a location that will soon be announced by the President.

The Congress Committee is eager to be responsive to any constructive criticisms or
suggestions that participants may wish to make, which may influence the planning of future
Congresses. If you have any suggestions, please write to me and I shall make sure that the
suggestions receive careful consideration.

Now I have to report the impending retirement of nine members of the Congress
Committee and the election of nine new members. The retiring members are:

Professors Bevilacqua, Collins, Drucker, Hult, Imai, Ishlinsky, Lighthill, Miller and
Niordson.

I wish to thank all for their cooperation in the work of the Committee, and particularly
Professor Dan Drucker, Sir James Lighthill and Professor Frithiof Niordson who, as past
Presidents of IUTAM, have served also with great distinction as Presidents of the Congress
Committee.

The new members, elected by the General Assembly are, in alphabetical order:

Professors Aref (USA), Bodner (Israel), Engelbrecht (Estonia), Hutchinson (USA),
Lundberg (Sweden), Gert Meier (Germany), Pedley (UK), Sayir (Switzerland) and
Tatsumi (Japan).

I wish to welcome these new members whose election to the Committee takes effect on 1
November 1992

The new Executive Committee was appointed by the Congress Committee this morning and is
as follows:

Professor van Wijngaarden - President
Professor Olhoff - Secretary
Professor Acrivos, Professor Kaliszky, Professor Moffatt, Professor Bodner.

The Congress Committee is honoured to have two members who have served for many
years and who now serve without limit of tenure. These are Professor Nicholas Hoff, who
was President of the Stanford Congress in 1968 and who we have been very happy to see so
well and active here in Haifa throughout the week of the Congress; and Professor Y.H. Ku,
formerly of the National Chengchi University, Nanking, China, now Emeritus Professor at the
University of Pennsylvania, USA. Professor Ku celebrated his 90th birthday last year, and his
collected scientific papers of the last twenty years have just been published by the Shanghai
Jiaotong University Press. I am sure you would wish to join me in congratulating him, and
wishing him well for the future.

Finally, President, I wish to thank Josef Singer and the Local Organising Committee and
particularly its Secretary, Alex Solan, for their devoted efforts in making this Congress run so
smoothly; it is a Congress from which we have all gained intellectual stimulus and
enlightenment, and on which we will all look back with great warmth and affection."

The President of IUTAM, Professor Paul Germain then said:

"Dear Colleagues and friends,

You have heard the report of the Secretary of the Congress Committee, Professor Moffatt.
I strongly approve his statements: from the scientific point of view, the XVlIlth ICTAM was a
very good Congress. I am sure that all of you agree with me when I express our best thanks to
the Congress Committee and in particular to Keith Moffatt, to the International Papers
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Committee which had to select the papers to be presented, a very difficult task and a great
responsibility indeed, to the Local Organizing Committee, in particular Professor Solan and
Professor Bodner, who had the duty to organize the programme taking into account all the
constraints and requirements, and, last but not least, to the contributors who have delivered
their best results and made us discover new problems, new methods and new points of view.

The facilities, very well managed by the Local Organizing Committee, were also of high
standard. The outside temperature was pretty high. But the air-conditioning was running so
well that the poor Europeans who are not used to such an equipment were somewhat freezing
and they found very nice to go outside from time to time in order to get some warm air. Only
one disappointment: we were expecting a more numerous attendance.

I have now the very pleasant duty to conclude the present Congress by announcing who
receives the two LUTAM Bureau prizes. I remind you that such a prize is offered to a young
scientist for an outstanding presentation of a good paper. Two prizes are distributed, one in
fluid mechanics and one in solid mechanics. The fluid mechanics prize is given to Dr. Chen
Xie Nung for an outstanding poster presentation of a paper, co-authored by Dr. Sharma,
entitled "Slender Ship Moving at Near-Crdtical Speed in a Shallow Channel". It is shown by a
theoretical and a numerical analysis how the steady motion of the ship produces the unsteady
generation of a train of solitary waves in front of it. The Solid Mechanics prize is given to Mr.
S.D. Guest, a graduate student of the University of Cambridge for the very clear presentation
of the paper "Propagation of Destabilizing Waves in the Folding of Faceted Tubes", co-
authored by Dr. S. Pellegrino. The lecture was of high quality. The non linear complex
problem dealing with wave propagation and the motion of bifurcations was clearly outlined and
excellently illustrated by two very well chosen models.

We have now to look at the future. I have the pleasure to announce that the Congress
Committee after many discussions held during two meetings has decided that the XIXth
ICTAM will take place in Kyoto. The Local Organizing Committee will be chaired by
Professor Tatsumi. We are all confident that this first ICTAM in Asia will be the occasion of a
deep renewal of IUTAM. We expect a numerous attendance from Far East Asia. Professor
Moffatt did not want to continue to be Secretary General after 8 years of very hard and very
efficient work devoted to ICTAM. Our thanks again to Keith Moffatt. Professor Olhoff will be
his successor. He is well prepared to the job with the organization of the XVIth ICTAM in
1984 and his experience of the International Papers Committee in 1988 and 1992.

The General Assembly has chosen 19 symposia which will be held in 1994 and 1995, and
has elected the new Bureau. Professor Leen van Wijngaarden will be our next President,
Bruno Boley the Treasurer, Franz Ziegler the General Secretary. The other members will be
Professors Chernyi, Moffatt, Schiehlen and Tatsumi. I want to express my deep gratitude after
these 4 years during which I had the great honour to be the President of IUTAM. Needless to
say that I will always keep the best recollection of these 4 years I have spent with colleagues
and friends, all devoted like me to the promotion and to the development of Mechanics, all over
the world.

Thank you all of you for your dynamic participation. Good luck to everybody. I hope that
all of us will be in Kyoto in 1966."

Professor Germain then closed the I Rth International Congress of Theoretical and Applied
Mechanics.
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Abstract

Increasing attention is being paid to the large scale structure of turbulence and to the so-

called "coherent" vortical structures which have been disclosed and studied for a number of

turbulent shear flows in laboratory experiments and in numerical simulations. The coherent

structures develop from the instability waves which create the flow; they portray the genesis of

the turbulence in the primary instability of the global vorticity distribution. This is not in the

sense of classical laminar instability, which initiates transition to turbulence, but as the driving
instability in the fully developed turbulence. That instability provides the link to the amplitude

of the turbulent motion, which in classical turbulent modelling must be calibrated empirically
as a fundamental step or steps in the closure of the Reynolds averaged equations of motion.

It also rationalizes the dependence on various parameters, such as compressibility, clarifies
response to external disturbances, and suggests the possibility of "turbulence control". The

global instability is being incorporated into new models of turbulent shear flow development

and the coherent structures form the basis for new, Lagrangian models of chemical mixing and
reaction in these flows.

1. INTRODUCTION

Our knowledge of turbulent flow is still mainly empirical. Feynman has called turbulence
"the greatest puzzle in classical physics". It has been a prominent topic at these Congresses

of Theoretical and Applied Mechanics. That it continues to attract the attention and energy of
impressively large numbers of researchers attests to its technological importance and, just as

importantly, to its intellectual challenge.
Since the recognition over a century ago of its importance in engineering, the problem of

turbulence has developed in many directions and presents different points of view and different

goals for various schools of research. Still the ultimate objective for applied mechanics is the

original one, to model and "predict" turbulent fluxes of momentum and of passive scalars such



as heat. These fluxes are at the heart of practical technological problems such as the need
to predict aerodynamic drag or to compute mixing rates in propulsive devices, in chemical

engineering processes and in tike upper atmosphere, to name just a few examples. Equally

important as the urgent technological motivation has been an intense, continuing interest to
understand turbulence in a fundamental, scientific way; and each has benefitted from the other.
The pursuit of these two aspirations has been largely within the context of two dominant

approaches to the turbulence problem, namely Reynolds-equation modelling and the statistical

theory of turbulence.
The equations obtained by Reynolds in 1895 may be written in their simplest form for flow

which is incompressible (density p = const) and in which the mean values, denoted by an

overbar, ( ), are steady. Derived in an Eulerian frame, the equations are

Continuity a- = 0 (1)
axj

Momentum pa-j =Xj - Oz, + -(nj + T,) (2)

The crucial result of "Reynolds averaging" is to introduce into these mean-flow equations the
term T =_ -pui'tu, which denotes mean momentum flux resulting from correlated fluctuation
of momentum pu' and velocity ,t at a point in the flow. From its juxtaposition with the viscous

stress i,5 in the momentum equation, Tij is called the "Reynolds stress". For a Newtonian fluid,

the viscous stress is related to the velocity field by a linear relation, fij = + 24 + 1

where pt is the coefficient of viscosity, For a turbulent flow, to relate the Reynolds stress to the
velocity field is the great problem of "closure" for the Reynolds equations.

Other equations of this type include one for turbulent transport of a passive scalar c:

-0ý 0Pfij O- - (1j + Qj)

Oc
where qi = -D O and Qi =_ c'i4. Still others have been developed over the years. For

example it is possible to write an equation for the turbulent kinetic energy, k' -p tkt k, in
the form

pfi l TIJ + (RDT) -"Orj ~~ (3)
0k' )IXj Oxj On,'

The first term on the right hand side denotes the rate of production of turbulent energy by

the Reynolds stress while the last one is the rate of viscous dissipation. The redistribution
terms (RDT) contain new correlations such as p'.7 and k'... It is also possible to write a
corresponding equation for the Reynolds stress itself.

ij --- ,, + (D- ' 2 .
P171 + , h (11,1T) - 2/ OIL' - (4)

ax,. ?X,,) ox", 03.,



with additional new correlations, e.g. pit,' . appearing in the RDT. Thus, introducing such

higher order equations escalates the number of correlations which have to be "modelled" for

closure, but this may still be advantageous because now the fundamental quantity 7',j is not

modelled; its evolution is coaupui%,d from Eq. (4) in coiajunction with Eqs. (1) and (2) (Launder,

1990). We shall refer to the hierarchy of such equations as the "Reynolds-averaged equations"

or, symbolically, "'7Fh equations" and, correspondingly, to "Ne modelling".

The statistical theory of turbulence, introduced by Taylor in 1935 and developed by Batch-

elor and others, is for homogeneous fields, thus does not address the turbulent fluxes and the

all important question of the turbulence production. Instead it sets out to develop a rational
description and theory of a simpler turbulent problem, through equations for two-point correla-

tion functions. For example, f(r) =' (:' (x + r)/ correlates the fluctuating

velocity component it (t) at two points separated by a distance r. This approach has produced

a very useful language and framework for developing ideas and concepts in turbulence and has

led to important results, for example Kolmogorov's theory of an inertial sub-range of turbulence

dynamics.
In Re modelling as well as in the statistical theory, scaling methods have played a very

important role. One might even say that they have given us most of our insights into turbulence

and have provided the best vehicle for organizing our empirical knowledge of it. At its simplest
level, scaling makes use of dimensional analysis and similarity concepts to make predictions

about the scaling parameters in particular canonical flows.

An instructive illustration of this is the turbulent jet, an example of which is shown in
Figure 1. It is a photo of a rocket exhaust plume on a test stand. The thrust F of the rocket is

quoted as "3 million pounds". With that we can infer that the jet Reynolds number in the far

field, Re _= V/p./, is 2 x 109. At this value of Reynolds number the magnitude of the mean

viscous stress I -,)I in Eq. (2) is only about I1I- 7 compared to the Reynolds stress and cannot

directly affect the development of the mean flow. Thus it is assumed that the viscosity 11. drops

out of the group of governing parameters. This assumption that, at high values of Rc, turbulent

free-shear flow fields do not depend on the viscosity has support from various experimental

evidence. It implies that Tj is independent of R/ and that, in Eq. 4, the dissipation term is also

independent of R'; i.e. the velocity gradients adjust themselves, with changing /1', to balance

the dissipation required by the Rc -independent production term. (In wallflows, the viscous

terms cannot be omitted even in Eq. 2, because near smooth walls they become dominant.) It

also follows that sufficiently far from the origin of the jet, in the "far field" where the initial

geometrical details should no longer be important, the jet development depends only on the

distance xr from its origin and on global parameters, namely the thrust F and the ambient density

p. Dimensional analysis then tells us that the jet thickness 6(x) must be proportional to X and

the jet grows at a constant rate db//dr which must be the same for all free jets. Thus laboratory
measurements at Re --- 1(4, where 10)-2fT 1 j, "predict" that for all higher Reynolds
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Fig. 1. Turbulent jet from a rocket on a test stand. (From Los Angeles, Lane
Magazine and Book Co., Menlo Park, California.

numbers the turbulent jet cone, made visible by some marker as in Fig. 1, will have an angle of
about 23*. An important property of the jet is the rate at which it entrains surrounding fluid.
It literally sucks or induces fluid into itself, so that its mass flow rate increases continually

along its axis: the entrained mass flow rate is rhe(x). Again from dimensional analysis, this
entrainment rate can be related to the thrust and the surrounding fluid density by the formula
drhe/dx = const. Vip'F. From an experiment by Ricou and Spalding (1961) at Re up to 105,
the value of const. is known to be 0.28. With this we can "predict" that at 3 million pounds
of thrust the jet in Fig. 1 was entraining air at the rate 1100Kg/sec/meter. (This result will be
modified in early parts of the jet, where the gases are still hot and the density p is not uniform,

and near the top of the jet, where buoyancy may play a role.) Such entraining capability is the
basis for jet pumps, ejectors and thrust augmentors.



Similar and more sophisticated applications of dimensional and similarity arguments
(c.f. Monin and Yaglom, 1971; Tennekes and Lumley, 1972; Barenblatt, 1979) have led to
a large number of useful results and insights into various turbulent flows. Indeed, the use of
"-eddy viscosity" and "mixing length" formalisms in self-similar turbulent flows can perhaps
be better justified as examples of scaling rather than "gradient-diffusion" methods. A notable

result from this approach is von Karman's use of "mixing length theory" to derive the log law

for turbulent boundary layers and to introduce his famous constant K.

One impact of ReW averaging and of the statistical theory was to tend to encourage a view

of "fully turbulent" flow as too complicated and disorganized to contain structural features that
could be usefully incorporated into any model. By design, Re modelling and the classical
statistical theories deal only with mean quantities; the effects of turbulent motion appear in
the statistical correlations. In the Re equations these are correlations at a point, containing

no information about spatial or temporal structure of the turbulence. In the statistical theory,
spatial correlation functions (and space-time correlations) do provide some information about

turbulent structure. Such spatial correlation functions can, in principle, also be introduced into
the Re equations (Batchelor, 1953; Lesieur, 1986). In recent work (e.g. Lundgren, 1982; Pullin

and Saffman, 1993), efforts are being made to design mathematical models of physical vortical
turbulent structure for special regimes such as Kolmogorov's universal equilibrium regime.

Generally however, with a few such exceptions, arguments in turbulence modelling and theory
make much use of imagery - "eddies"; "transfer of energy between eddies"; "interfaces";
"large and small structure", etc. - without the force of true, physically appropriate models.
There is continuing need for such models, either for helping guide classical modelling or for

discovering new approaches.

2. ORGANIZED STRUCTURE IN TURBULENCE

The preceding outline of the two dominant approaches to turbulence provides background

for discussing in the main part of this talk another trend, possibly going back to Leonardo, in
which it is recognized that patterns of organized structure exist in in turbuient shear flows.

After about 1940 experimental work on turbulent flow was largely steered in the two main
directions of Re-modelling and statistical theory. The hot-wire anemometer which had been

perfected was able to obtain accurate time histories of velocity fluctuations a'(t) and thus to

provide the various correlations needed to model the Re equations as well as the correlation

functions and spectra needed in the statistical theory. Highly successful in these tasks, the hot

wire did not at first reveal anything that could be called organized structure. For one thing,

there was little incentive to examine or analyze the velocity data for anything but the mean

quantities and, in any case, even if examined in detail the fluctuation history at a single point

in any turbulent flow is not revealing, nor are the single-point correlations used in the /Fu

equations. But two point correlations of the fluctuation histories at two different points do give
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a start on defining spatial structure. [hey were first used by Townsend (1956) and his school,

e.g. Grant (1958), to find evidence of organized vortical structure in far wakes and boundary

layers. Space-time correlations, introduced by Favre, Gaviglio and Dumas (1958), revealed

moving patterns with defineable celerities, scales and lifetimes in boundary layers and in free

shear layers (Fisher and Davies, 1964). All these were the first intimations of "organized" or
"coherent" structure to be extracted from hot wire measurements in fully developed turbulent

flows.

Actually, examples of coherent structure in flows with turbulence but with a deterministic

scale were abundant. Most prominent is the example of vortex shedding from bluff bodies
and the corresponding Karman "vortex street". For a circular cylinder, vortex "shedding"

occurs from Re - 50 to the highest val1es observed in the laboratory (Re- 107), and to still

higher values in (less well controlled) geophysical flows. Turbulent motion, superimposed on
the organized, periodic motion, appears already at Re - 102. But the periodic creation and

shedding of vortical structures is dominant, at a well defined frequency fs that is related to the
body dimension and the velocity of the cylinder, expressed non dimensionally in the Strouhal
number, S _= fsd/U,. Therefore this was not usually considered to be a "fully turbulent flow",

which by implication is (statistically) featureless. The power spectrum of velocity fluctuation

in the near wake of a bluff body has a sharp peak at the Strouhal frequency, superimposed on a

broad backgiound, in contrast with the featureless spectra of homogeneous turbulence.
Far downstream of the position of the cylinder, in the "far wake", the sharp spectral peak at

fs disappears. It was in that region of "fully developed turbulence" that Townsend and Grant
found evidence of defineable structure. Taneda (1959), using flow visualization, found that the

original vortex street breaks down at some distance downstream, to be replaced by one with

larger scale but similar in its side view appearance. Quoting him, "After this, however, the

wake shows a strong tendency to rearrange itself again into the configuration of the Kdrmin
vortex street. In this way the formation and the breakdown of the regular vortex street occur

alternately as the distance from the obstacle is increased, the wave length becoming larger

and larger with every transition from one vortex street to the next. Even when the regular

vortex street is not formed, the dimension of the predominant discrete vortices which appear
in the wake always increases as the distance from the body increases." The Reynolds numbers

in Taneda's experiments were so low (< 300) that they were probably not seen as examples

of turbulent flow but later experiments by Cimbala (1984) at higher values of Re (,--, 5000),

using flow visualization and hot-wire measurements, showed similar structure appearing far

downstream where there was no Strouhal spectral peak in the spectrum. Indeed, the wake

shown in Fig. 2 was downstream of a porous flat plate (a strip of screen placed normal to

the stream) which did not shed vortices at all. At xr/d = 10 the wake contains only small
scale turbulence in fluid which has gone through the screen. Between x/d = 50 and 70 there

is a burst of organized structure, quite similar to those observed by Taneda. While in this

edge view it looks like a Karman "street", views normal to the plane of the wake show it to
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Fig. 2. Wake of porous flat plate with solidity 47%. Rc = 6000. Visualized by a
smoke wire placed at x/d = 0 and x/d = 44, resp. (Cimbala, 1984)

be three dimensional, suggestive of the mean, correIation structure inferred by Townsend and

Grant. At other times, at the same location, the wake may be more disorganized, or contain
a burst of coherent structure with a different scale. Thus, no fixed frequency shows up in

spectral measurements of velocity at a fixed position but, rather, a broad spectrum with a well

defined maximum peak which shifts continuously, to lower frequency with increasing distance
downstream, i.e. with increasing wake scale.

These trends in Taneda's and Cimbala's experiments illustrate general features of coherent
structure in fully developed turbulent flow that had also emerged from experiments on free

shear layers (also called "mixing layers"). In particular it was pictures like the one in Fig. 3,

Fig. 3. Shadowgraphs of mixing layer with velocity ratio U2/U1 = 0.38. Density
uniform. (U1 - U2 )6•/v - 5 X 10)4 , based on scale of largest structures.
Simultaneous edge and (partial) plan views. (Konrad, 1976).



showing vortical structures in a matrix of small scale turbulence, that helped confirm various

earlier indications (Liepmann, 1952) that organized structures exist in "fully developed turbulent

flows" and encouraged efforts to understand their significance and possible uses.
The following is a brief account of some of the developments from those efforts, with

emphasis on the theme of this paper that the coherent structures in turbulent shear flow result

from and exhibit the instability of the underlying, global mean flow. We discuss mainly jets,
wakes and mixing layers, which are examples of free shear flows, contrasted with wall-bounded

flows such as pipe flows and boundary layers, in which manifestations of coherent structure

are also found (Kline et al., 1967, Robinson, 1991). The wall bounded flows are considerably
more complicated than the free shear flows and identification of the coherent structures in them

is more difficult. Wall flows have a two-scale structure while free shear flows have single-scale

structure, characterized by some measure of tle local thickness 6(x). At sufficiently high
Reynolds number the development of free shear flows may be independent of viscosity, as

indicated above. In wall flows, on the other hand, the no-slip condition at the wall ensures

that viscosity is always "in the picture", creating a two-scale structure. The fundamental
difference is also reflected in the stabilities of the underlying mean flow profiles. Free shear

flows are variously described as having "inviscid", "dynamic", "inflectional-point" or "fast"

instability; wall bounded flows are "inviscidly stable" or, at best, have "slow" instability.

The no-slip condition, the two-layer structure and the slow instability in wall flows results in

coherent structure which is quite different and more difficult to understand than that in the

free-shear-layer class. In this paper only the latter is addressed.

In earlier paragraphs and in the following, reference is made to "fully turbulent flow". This

is a term that has been used, usually in connection with the self-similar canonical shear flows

(jets, wakes, mixing layers, boundary layers), to characterize the flow state at high Reynolds

number and sufficiently far downstream to have "forgotten" the details of the initial conditions.
It has also tended to suggest the loss of defineable structural features. To put this in perspective,

it is important to make a distinction between the "near field" and the "far field", e.g. the near

wake and far wake of a bluff cylinder. The near field depends on initial conditions and scales

with the initial parameters, e.g. the vortex shedding frequency is locked in to the cylinder

diameter. In contrast, the far field has forgotten the details of the initial conditions, depends

only on global parameters such as the drag force, and scales with local parameters, such as the

local thickness 6(x), which are evolving. These distinctions between near and far fields carry

over to coherent structures. In both cases the structures have their genesis in the local instability
of the flow, but they are more easily recognizeable in the near field because of fixed scales. In

the near field the spectrum of coherent structure is sharp because the scales are sharply defined;

in the far field the scales of coherent structures passing a given point are broadly distributed.
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3. STRUCTURE IN FREE SHEAR LAYERS

A good introduction to the relation of instability to coherent structure in free shear layers is a
picture, Fig. 4, obtained by Freymuth (1966), of the initial instability development in a laminar
free shear layer. The initial part of this picture displays the expected Kelvin-Helmholtz (K-H)
two dimensional "laminar" instability, whose beginnings are accurately predicted by Rayleigh's
linear stability equation for inviscid flow. The exponential growth of the velocity and voilicity
perturbations causes thickening of the mean shear layer, which eventually closes the instability
window and cuts off the wave development, by which time the wave has steepened into a
vortical structure; we call it a "coherent" structure. Its scale is related to the thickness of the
initial laminar layer. The fluctuating velocity has a characteristic frequency, connected to the
initial thickness and the initial velocity. These are near-field features.

Fig. 4. Kelvin Helmholtz instability, vortex formation and pairing in a free shear
layer. (Freymuth, 1966).

The right hand side of the picture shows a remarkable phenomenon, the "pairing" of the
vortices which form at the end of the first instability. This depicts a subharmonic response
(Browand, 1966; Ho and Huang, 1982) of the thickened layer to available disturbances; the
K-H instability in the thicker layer that has emerged from the initial instability is repeated at
a lower wave number. That is, the K-H instability results in velocity fluctuations 1'(t) and
v'(t) which cause the layer to grow through the action of the Reynolds stress, u'v,, that is
developed. When the mean thickness has grown to approximately twice the initial thickness
the "window" of instability for the initial wave number ends and the layer becomes receptive
to a lower wave number. The second instability may be viewed either as the active interaction
of two vortices from the first instability, resulting in "pairing", or as the "roll up" of (nearly
passive) vortices by the subharmonic wave. This process is repeated and the growth of the
shear layer is associated with repeated "pairing" (Winant and Browand, 1974) or amalgamation
of the coherent structures into larger ones. After the second pairing the shear layer has largely
lost memory of the initial conditions and is approaching a far-field, self-similar development,
with scales independent of initial conditions.
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More of the far field is shown in the picture in Fig. 3 obtained by Konrad (1976). Here

the total length of shear layer is 50 A0, where A0 in the initial K-H wave length, and about
5 pairings or amalgamations have occurred, while Freymuth's picture spans 9 A0 and only I
pairing has occurred. Most of Freymuth's picture is in the near field, while in Konrad's picture
the near field is to the left of the "mixing transition" (Breidenthal, 1980) marked -mt".

It is striking that the flow in the far field contains coherent structures that are similar to
those in the near field. But there are fundamental differences. One of the most important is

that, consistent with the far-field hypothesis, there is nofixed, external reference scale; the local
mean scale of coherent structures, i.e. the vortex spacing or wave length is related to the local,

evolving scale, i.e. the thickness ,(x). Since the mean thickness 6(x) increases smoothly, the
implication is that the spectrum of scales (and corresponding frequencies) at given x cannot

be sharp, since there is nothing special about any value of x. Indeed, measurements of the

spacing A(x) (Bernal, 1981, 1988) or of frequency f(x) (Winant and Browand, 1974) show
a broad distribution about a maximum value. The implication (and observation) is that, at a

given position, there are intervals of coherent wave trains, each with different instantaneous

scale, interspersed with intervals of disorganized motion.

2

0 2

XI

Fig. 5. Distribution of spacings of coherent structures in a turbulent free shear layer.
A(x) is the mean spacing at x. Vertical bars are from measurement. Curve
is a log normal distribution. (Bernal, 1981, 1988).
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How do the properties of these wave trains compare with those of classical K-H wave

properties? First, as already mentioned, the spectrum of wave lengths or spacings A of vortices

passing a given position x are broadly distributed around a mean vlaue A (x) - 3.5 6,,(x),

where 6,•(x) is the evolving "vorticity thickness". That is, although the large structure is

coherent it is not deterministic. The distribution (Fig. 5) has been measured by Bernal (1981,

1988), who constructed a statistical model, following the lead of Takaki and Kovasznay (1978),

and found it to have a log normal distribution, which is characteristic of a fractionization process

or its opposite, an amalgamation process.

Second, it is found that the most probable wave length in this distribution corresponds

to the neutral point in the window of K-H amplification rates, when this is scaled with local

parameters. Correspondingly, the frequency power spectrum, just as in the measurements of

Cimbala in the wake, has a (broad) peak at the neutral point. The explanation of why these

maxima appear at the local neutral frequency, rather than at the frequency corresponding to

the peak in the amplification curve, is as follows (Ho and Huerre, 1984; Marasli, Champagne

and Wygnanski, 1991). A wave in a spatially growing layer develops at fixed frequency. Its

amplification rate depends on the local dimensionless frequency f - fb(x)/U,; the convective

wave speed U, is nearly constant but the thickness 6(x) is increasing. Thus 1(:r) is decreasing

and the wave eventually reaches a position x where i is at the neutral value and the wave

cannot grow further. It is now at its maximum amplitude and has developed into a "coherent"

vortical structure. The corresponding frequency and the wave length, or vortex spacing, is

the most probable one for that position. That is, the most probable vortex spacing at given :r

corresponds to the frequency with the greatest opportunity for amplification up to that point.

By that time the linear theory is no longer accurate. Gaster, Kit and Wygnanski (1985)

made measurements of the velocity fluctuations in a mixing layer with local Re " 104 , using

small forcing to provide a phase reference. They measured profiles across the shear layer of

the velocity fluctuation amplitude, in effect the eigenfunction of the instability, and found that

in the initial stages of amplification it agrees well with the theoretical shape, showing a single

maximum and two side lobes. In the linear theory these lobes grow and become dominant at

the neutral point; in the experiment the tendency is the same but quantitative correspondence

is not as good as in the earlier stages. However their profiles of the phase distribution across

the layer corresponds well with the theoretical ones up to the neutral point.

Similar measurements were made by Marasli et al (1991) in the plane wake of a flat plate

at x/4o up to 1400 and local Re -,-• 103 . "For the unforced flow, the peak in the measured

spectrum of the cross-stream (turbulent) velocity fluctuations at any downstream location (in

the far wake) corresponds to the local neutral frequency from linear, spatial stability theory for

inviscid, parallel flow." That is, the trends were similar to those in the mixing layer and to

those observed by Cimbala.

Another difference between the near and far fields of a free shear layer is that the layer

emerges into the far field, after the mixing transition, with three dimensional structure. In
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particular, a secondary, spanwise instability leads to the development of streamwise vornicity

which organizes itself into a lacework of "ribs" between the primary rollers (Bernal, 1981;

Hussain, 1984; Rogers and Moser, 1992).Three dimensional rib structure has also been observed
in wakes in laboratory experiments and numerical simulations (Meiburg and Lasheras, 1990).

It may seem surprising that, in the presence of three dimensionality, the agreement with

theoretical instability calculations for two dimensional layers and wakes could be as good

as it is in the comparisons described above but, as noted, the agreement is best in the early,
low-amplitude stages of the instability, where linear theory still applies. There the spanwise
instability is still uncoupled from the primary instability. In the mixing layer, the spanwise
instability is slower than the primary, thus the latter dominates and results in quasi two-

dimensional rollers. In the wake, the spanwise instability may develop as fast as the primary
(Robinson and Saffman, 1982), resulting in structures that are fully three dimensional (wavy

or loopy); but in edge views the wake still looks like a "Karman-street" (Breidenthal, 1980;

Cimbala, 1984).
With increasing distance downstream, the primary instability and the secondary instability

both rescale themselves as may be seen in the edge and plan views in Fig. 3. In the mixing

layer, rescaling of the secondary instability lags the primary; in the wake they appear to
proceed together. This continuously rescaled large structure dominates the smaller structures

which evolve from convectively developing chaos and from higher-order instabilities.

4. IMPLICATIONS AND APPLICATIONS OF COHERENT STRUCTURE

The developing knowledge of coherent structure has been useful in various aspects of
turbulent shear flow, in ways that were usually not accessible within the context of traditional

modelling. As indicated above, they have given qualitative and quantitative insights into

traditional, measured correlations and spectra. Other phenoniena, such as intermittency at the

"turbulent interface" and the mechanics of entrainment have also been illuminated. In the

following sections, we briefly discuss other developments, in particular the appearance of new
directions in modelling.

4.1 Parametric Effects on Growth Rates.
The interpretation of coherent structure as a manifestation of the underlying primary insta-

bility suggested a connection between growth rates d6/dx and instability amplification rates

based on the mean velocity profile. A model of the direct connection took some time to work
out (see section 4.4) but even earlier the effects of various parameters could be described. It

was noted for example that density difference between the two streams of a mixing layer has an

effect on the growth rate, dS/dx, which is qualitatively the same as the effect on amplification
rate in linear stability theory; that is, lower density on the high speed side increases amplifi-
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cation rate and growth rate, respectively; and vice verse. Using results from linear stability

theory, Brown (1974) and Dimotakis (1986), obtained quantitative formulas for the effect.

Similarly, a connection with stability theory was made for the effect of compressibility

on mixing layers between high speed flows of gases. The strong effect of compressibility,

to decrease growth rate, correlates with a corresponding effect on amplification rate given by
linear stability theory (Papamoschou, 1986). When the Mach number is defined in a frame

which is convecting with the wave or, equivalently, with the coherent structure (Bogdanoff,
1982), it provides the proper reference for evaluating compressibility effects . The effects of
this "convective Mach number" on the growth rates of mixing layers for a variety of parametric

combinations of velocities (U2 , U1) and gas properties (p, pl, a2, aj) is shown in Fig. 6.

. Experimental data for shear layer In channel
"Stability theory for unbounded shear layer

* Stability theory for shear layer in channel

(-ad)o

0.5

(dSIdx),

0 1 2
Convective Mach Number Mc

Fig. 6. Effect of compressibility on turbulent free shear layers. All data normalized
at M, = 0. Growth rates from experiment. Amplification rates from linear
stability theory. (Papamoschou, 1986; Zhuang et al, 1990).

4.2 Tlurbulence Control and Sensitivity.
The existence of coherent structures suggested that they could be manipulated and the

mean flow development thus modified, i.e. "controlled" in the current idiom. An example is
the substantial reduction of the drag of a bluff cylinder that can be achieved by simply placing
a splitter plate in its wake to interfere with the formation and shedding of vortices (Roshko,
1955). But the possibility for accomplishing such control in the far-field of a turbulent shear
layer is a little more subtle because there is no fixed scale, as discussed earlier, and because
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of possible difference in the nature of the underlying instability, "absolute" cf. "convective"
(Huerre and Monkewitz, 1985).

Actually, control can be exercised in several ways. One is to change the stability scenario,
as with the splitter plate in the near wake. Another is to change the external environment, i.e. to
"change" the excitation or "forcing" to which the flow may be receptive. Such "active control"

of a turbulent jet was demonstrated in the experiment by Crow and Champagne (1971) in which
acoustic excitation ai J.he jet origin enhanced growth rates when suitable freq'tL,,.ic•;, related

to the "jet-mode" instability frequency, were used. The latter is analogous to the "Strouhal"
frequency of vortex shedding from a bluff body.

For the far field of the mixing layer, where there is no fixed scale, Oster and Wygnanski

(1982) showed that, by introducing a small, periodic oscillation at the trailing edge of the splitter
plate, they could produce a strong effect on the growth rate, dl/dx. In a later experiment,
Roberts (1985) produced similar effects by adding to the velocity of one stream a periodic

variation of about 1%. Roughly, the effect is to increase the growth rate in the early part
of the shear layer and then to stop it further downstream, at a value of x which increases
with decreasing forcing frequency. After an interval of inhibited growth, the layer resumes

its far-field growth rate. These effects and their relation to the shear layer parameters can
be understood as the instability response of the developing shear layer to periodic excitation
(Browand and Ho, 1983; Ho and Huerre, 1984) at an amplitude which, though small, takes

control away from the broad band of other, available disturbances. The periodic disturbance
forces the appropriate wave to emerge and grow until 6(x) reaches a cut-off value, after which

the forcing tends to lock in the wave. Corresponding effects on Reynolds stress and mixing
rate are quite spectacular.

This sensitivity to relatively small, imposed disturbances raises fundamental questions about
how the turbulent mixing layer sustains itself, whether by self excitation or by external forcing
from its environment. The ordinarily smooth, linear mean growth rate indicates that the shear

layer is responding to a broad band of excitation. That excitation could come from disturbances

in the free stream (which ordinarily have broad spectrum) or by Biot-Savart feedback to the
origin from the developing turbulent layer itself. It is at the splitter-plate trailing edge, the origin

of the shear layer, that the shear layer instability is most receptive to excitation. The presence
of such feedback was noted by Dimotakis and Brown (1976); its possible role in establishing

self excitation was studied by Kaul (1988). It has also been noted in connection with effects of
"outflow boundary conditions" in numerical simulations. Also relevant to the question of how

the turbulence sustains itself is the nature of the underlying instability, whether "convective"

or "absolute".

4.3 Necessity for Lagrangian Viewpoints.

An important property of coherent structures, implicit in the name, is their coherence over
significant lifetimes. This naturally makes for a Lagrangian view of them. Such a view
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is indispensable in situations where unsteady data and their corrc!ations are needed, as in

meteorology. But even for problems in which only the mean fluxes of a stationary flow are
required, as for the classical shear flows discussed above, it is sometimes advantageous oi

even crucial to first describe structures in a Lagrangian frame in order to correctly describe the
processes leading to the final, mean values.

Such a case is the problem of determining the rate of production of chemical reaction
products in turbulent mixing of reactant fluids, in mixing layers and jets. To account for

some puzzling effects in such flows, and cognizant of the observed large, vortical entraining
motions associated with the coherent structures, Broadwell and Breidenthal (1982) proposed a
Lagrangian model of turbulent mixing in which the coherent structures are viewed as "reactors"
into which the two fluids are entrained by the large scale motions, then stirred down to smaller

scales and, finally, molecularly and chemically mixed. This approach makes it possible to
rationally incorporate aspects of chemistry that are sensitive to how the reactants are brought
together. In the final result, mean values of product fluxes are obtained, but in the Lagrangian

approach some of the modelling is done before averaging. A review of the method and of
some of its developments (Kerstein, 1992) and applications may be found in a recent paper by
Broadwell and Mungal (1991).

Even in the basic problem of modelling the Reynolds stresses and the development of the
mean flow, the limitations of the Eulerian reference frame are hidden when the shear flow is

an equilibrium flow. In non equilibrium flows, e.g. relaxation from one equilibrium to another
(Narasimha and Prabhu, 1972), the "memory" implicit in the lifetime of coherent structure may

be important in the mechanics and for modelling.

4.4 New Directions in Modelling.
As stressed in the Introduction, a principal objective for a theory of turbulence, certainly for

applied mechanics, are models which predict the turbulent fluxes in shear flows, in particular

the turbulent stresses. At one extreme of possible approaches are the Re models, which are
designed for broad applicability but contain empirical closure constants. At the other extreme
is direct numerical simulation (DNS), i.e. the solution by numerical computation of the exact,

unsteady Navier-Stokes equations. Such realization of turbulent flow in time-evolving detail
in a computer is not really a "model" but rather an alternative to experimental realization in the
laboratory, an alternative which has many attractive and useful features. It is limited at present
in the values of Reynolds number (- 103) for which accurate simulation can be achieved. But
even when and if it becomes possible to numerically simulate turbulent flows at will, there
will still be a practical need and an intellectual incentive to seek the simplification and insight
provided by models.

Between the extremes of Re modelling and DNS is the possibility for models which in
some way incorporate the underlying, driving instability. Indeed, efforts to base turbulence
models on hydrodynamic instability existed even before impetus was given to such efforts by
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the observations of coherent structure. Examples include the marginal instability theories of

Malkus (1956) for turbulent boundary layers and Lessen (1974, 1976) for free shear flows;

and the wave-guide theory of Landhal (1967) for turbulent boundary layers. Theories which

more explicitly sought to derive the production of Reynolds stress from the instability include
those of Tam and Chen (1979); Zhang and Lilly (1981); and Liu (1988). Insights have also

been obtained from related efforts to model acoustic noise radiation from turbulent jets, by

associating the source of the radiation with the instability waves in the jet free shear layers
(Mollo-Christensen, 1967; Liu, 1974; Ffowcs Williams and Kempton, 1978; Tam and Morris,

1980; Tam and Burton, 1984).
The present status of these modelling approaches is well represented in the recent papers

of Morris, Giridhavan and Lilley (1990) and Liou and Morris (1992), who have constructed

models, without empirical constants, for the tvirbulent development of free shear layers. Explicit

use is made of the Rayleigh stability equations, which are for inviscid flow,

0 = A(x) RI 0(y) cxp [i(ax + Oz - wt)] (5a)

(dY2- a/w) _ (a2 +/82) d2 ii ¢=0 (5b)

for the eigenfunction ¢ uf velocity fluctuations. The distribution and evolution of it', v' and

thus of the Reynolds stress are computed, in coupled interaction with the developing mean flow

equations (1)-(3), described earlier. In Eq. (5), a and/3 are streamwise and spanwise complex

wave numbers, respectively, w is the complex frequency and fi(y) is the mean velocity profile.

(Basically, the distribution of the mean vorticity dfi/dy determines the instability.) Morris et

al. explore several methods for coupling the equations. The simplest of these is an integral
method, in which a shape function is assumed for ii(y). A set of coupled equations is obtained

for the shear layer thickness 6(x) and the fluctuation amplitude A(x). For each wave mode

A(w, /3), the equations have the form

1 dA 2  1 d6
2 dx -2(-i) + d- (6)

1 d65I d6 = C(-ai) A2  
(7)

where (-as), the imaginary part of a, is the amplification factor and C is a constant that

depends, for each shear layer, on the velocity ratio U2/U 1 and on the shape fuprtion assumed

for ft(y). If the shear layer contains more than one wave mode the right hand side of Eq. (7)

becomes a summation, or integration, over the spectrum of wave numbers. The computation

of the flow development is initiated at x = 0 (the "trailing edge") with an initial spectrum
A(0; w, [) of small amplitude, 0.01. Results for broad band as well as discrete spectra are

obtained by Morris et al.



Equation (6) is derived from the energy equation (3) for the turbulent energy production, that
is the wave energy production. At this point, modelling assumptions are introduced. The direct
viscous dissipation and the energy transfer terms, except p'u', are omitted. The justifications,
in particular for the treatment of the energy transfer from large to small scales, are based on

insights from experiment (e.g. Ho and Huang, 1982) and on the earlier models. The result is a
model with no empirical constants.

The values for growth rate d5,/dx computed from the model agree well with experimental
daia (Fig. 7). RLsults from a more genermi ,,-'ion of the model than that outlined above, which
allows for effects of density ratio or of compressibility, are also obtained. Comparison with

available experimental data for the effect of compressibility is also good. For example, it is
found that spanwise instability, represented by wave numbers fi, begins to play a significant
role only at higher values of convective Mach number (- 0.5), as had been found by Sandham
and Reynolds (1990) in direct numerical simulations.
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Fig. 7. Growth rate of free shear layer; dependence on velocity difference.
G model of Morris et al (1990); 0 A V x experimental points com-
piled by Brown and Roshko (1972).

5. SUMMARY AND CONCLUDING REMARKS

The evidence that turbulent shear flows contain organized structure, and the idea that they
are related to hydrodynamic instability in the mean turbulent flow, have been around for a
long time, cf. the reviews by Liepmann (1952, 1962). Only recently have they fully come
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together in the view that the primary instability due to the mean global vorticity distribution is

the driving mechanism for the developing turbulent flow. The genesis of the turbulence is in
that instability. Insightful theories should include that fundamental mechanism as the one from

which other aspects of the turbulence derive and to which they relate: the indeterminancy and

statistical nature of the coherent structures; the development of smaller and larger structure;

and so on. Inputs from the theories of dynamical systems, chaos and fractals should be useful

in illuminating various aspects of such theories for turbulent shear flow.
The evidence fcr the views presented is most obvious in the free shear layer, where the

primary instability creates, basically, a row of vortex structures all of one sign, and it is not

surprising that a successful model has been worked out first for that case. In plane wakes the

basic configuration is two rows of structures of opposite sign, and the same is true for plane jets,

which have not been explored as extensively. For axisymmetric wakes and jets, the coherent
structure is more difficult to discern in the far field, because probablv the primary instabilities

are helical. The existence of large structure is not apparent in the far-field picture in Fig. I but

it has been educed for similar large jets from computer enhanced video movies (Mungal et al,
1989, 1992). Morris has applied his model to the near field of round jets, i.e. to the annular free

shear layer (Viswanathan and Morris, 1992). The far field is still to be addressed but, in time,

the joining of instability theory with the mean flow equations will no doubt be extended to this
and other, canonical shear flows. All these developments are still in the exploratory stage.

I wish to acknowledge the Office of Naval Research, United States Navy for support of

research over many years. Ideas and points of view described here have developed from the
research of students and colleagues at GALCIT and elsewhere and from discussions with them.

The list of references from which I have benefited is many times longer than the one which is
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Micromechanics of fracture

G.I. Barenblatt

Theoretical Department, P.P. Shirshov Institute of Oceanology, Russian
Academy of Sciences, Moscow, Russia*

Abstract

The characteristic property of the phenomena studied by
micromechanics is the governing influence of the variations of the
material microstructure on the macroscopic behavior of bodies. In the
mathematical models of such phenomena, the macroscopic equations of
mechanics and the kinetic eqi-ations of the microstructural
transformations form a unified set that should be solved simultaneously.

Fracture occurs in the zones of high stress concentration where the
phenomenon is often complicated by phase transformations, chemical
transformations, and heat generation. This makes the application of the
micromechanical approach to fracture phenomenon very natural.

At the beginning of the present lecture, a concise general outline of
micromechanics is given. Applications of scaling, intermediate
asymptotics, and renormalization groups to the micromechanics of
fracture are discussed. Subsequently, an example of the application of
the micromechanical approach to the study of damage accumulation is
considered.

1. INTRODUCTION

Monsieur le President, Ladies and Gentlemen: First of all I want to
thank the Organizers of the Congress collectively and individually for the
honour rendered to me by the invitation to present this lecture.

The construction of continuum mechanics, - the general mathematical
model of motions and/or equilibrium of real deformable bodies usually
proceeds in the following way. After proper definition of the basic
concepts such as the observer, continuous medium, etc., the general
covariance principle and conservation laws are introduced. According to
the covariance principle, the laws of motion of the continuous media

*Present address: DAMTP, University of Cambridge, Silver Street,

Cambridge CB3 9EW, U.K.
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should be expressed via the equations equally valid for all observers. This
principle of equality of all observers claims the invariant nature of the
medium and its motions and therefore greatly simplifies the analysis.
Conservation laws express the general fact that matter, momentum,
angular momentum, energy, etc., do not arise spontaneously and do not
disappear by themselves. In combination with the covariance principle,
the conservation laws lead to such concepts as flux vector, stress tensor,
energy flux, couple stresses, etc.

Conservation laws and the covariance principle taken alone are
insufficient for designing the mathematical models of the motions of real
bodies. To achieve this goal, it is necessary to provide the continuum with
physical properties. This means that a certain apriori model of the
continuum is proposed which is adequate for the class of motions and
bodies under consideration, but is generally valid only for restricted
classes of the motions of real bodies. Such models, the so-called
constitutive equations, are represented by certain relations between the
properties of the motion (or the state) of the continuous medium and the
active internal forces.

Simplest examples are the classical models of continuous media such
as Hooke's elastic solid. This model for an ideally linear isotropic elastic
body is characterized by three constants: density p, and two elastic
constants, e.g. Young modulus E and Poisson's ratio v. For obtaining the
mathematical model for the brittle fracture phenomenon, Hooke's model
should be extended since fracture phenomena do not exist in the
classical linear elasticity problem statement. Extension of the model of an
ideal 'elastic solid for bodies with cracks assumes that the body is
perfectly linearly elastic outside infinitely thin cracks. However, cohesive
forces are acting on the crack surfaces near the edges of the cracks. The
distribution of the cohesive forces over the crack surface in the mobile
equilibrium state is autonomous, i.e. independent of the form and
position of the outside edge regions of the cracks. In this extended
model, an additional constant appears: fracture toughness or cohesive
modulus KO, which is an integral characteristic of the cohesive forces.

It as assumed in using classical models that the constants entering the
constitutive equations are universal ones. This means that these
constants, being determined from some special experiments, preserve
their values for arbitrary motions described by the considered model.

An approach similar to the classical encounters essential difficulties
when applied to many new materials entering modern research and high
technology, or even traditional structural materials under extreme
conditions characteristic of fracture regions. Researchers attempted at
first to use modified classical models, especially for new materials. So,
three, four, and even eight model constants appeared. This procedure.
however, is unreliable. It is not only the growing complexity of the
determination of new constants that arises, nor even the loss of a clear
physical sense of these constants. Much worse is that these constants, so-
to-say. "cease to be constants", i.e. the range of universality where the
constants of the model can be considered as genuinely universal ones
becomes so narrow that the models lose their predictive capability.

The reason for that is well known. Every material has its own
relaxation time c, i.e. a characteristic time when the shear stresses are
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preserved under imposed fixed shear strain. In turn, every process
introduces its own characteristic time r. Therefore, for each process in
each material a governing dimensionless parameter appears, the so-
called Deborah number,

De=r/T (I.

For "fluid-like" behavior of a material in a process, De should be De<< 1.
while for "solid-like" behavior, De>>1.

We now note that the normal duration of a human experiment
encompasses about 18 decimal orders of magnitude: from Ins = 10"9s, to
10 9 s - 30 years, so that 10 9 s<T<10 9 s is the range of the usual human
experiments. For water at normal conditions, ~- 10"12 s, while for steel at
normal temperatures and not too large stresses, C-10 12 s. Thus for the full
range of human experiments at normal conditions, De<<1 for water, and
De>>l for steel. But that does not apply to steel near the edge of an
extending crack where, due to the stress concentration and/or heat
generation, z is strongly reduced. It also does not apply for well known
synthetic materials such as silly putty, for which r-Is under normal
conditions. That material demonstrates all types of behavior ranging from
perfectly elastic and brittle when it is struck or torn quickly, to perfectly
viscous when it takes the form of a cup where it is placed for a period of
less than an hour.

For describing such mixed behavior, an approach was advanced which
seemed at first glance attractive: spatial and temporal non-locality was
introduced to the models. It meant practically that functionals were
introduced into the constitutive equations, For instance, for the so-called
"simple body",

a = u(F(0)) (1.2)

(Here a is the stress in a given particle. F(0) the strain gradient. u the

constitutive functional, and 0 is the time over the whole range from the
beginning of deformation to the actual current time t: -<O<0<t).

Without going into details, it is noted that the appearance of
functionals in constitutive equations always means that the approach is
insufficient. To demonstrate, let us consider the simplest example: gas
flow in a tube with heat conducting walls. Imagine an obviously
nonsensical case: we do not wish to introduce temperature as a
consideration. Evidently the density of a certain particle will become a
functional of pressure. It is not necessary to explain that in gas dynamics
since another way is used (although not in the mechanics of polymers).
The temperature is introduced into consideration and an energy equation
is added to the mathematical model. The temperature, however, is
nothing but the mean energy of microscopic molecular motion, and the
energy equation can be interpreted as a kinetic equation for this directly
observable characteristic of the microstructure. Introduction of the
temperature simplifies everything since at least the functionals disappear
from consideration.
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2. MiCROMECHANCS

In the last decades, and most intensively in recent years, an
alternative approach has appeared more and more frequently in research
practice. According to this approach, the properties of the material
microstructure, directly or indirectly observable, are explicitly
introduced into consideration. The equations of macroscopic motions and
those of the kinetics of microstructural transformation are considered
simultaneously.

In our opinion this is the very subject of micromechanics. Thus, in our
understanding, micromechanics is the branch of mechanics studying the
phenomena for which the variations of microstructure are of governing
influence for the macroscopic behavior of bodies.

If the time scales of the processes under consideration are such that
the variations of the microstructure can be considered either as
instantaneous or as negligible, a classical approach neglecting
microstructural variations and using finite constitutive equations -
integrals of the kinetic equations - can be applied.

Concerning the very term "micromechanics", often, and in particular
in the works of Professor J. Achenbach, Professor Z. Hashin, Professor V.
Entov and other scientists, this term is used in a more narrow sense
denoting the technique for determining macroscopic properties of
bodies on the basis of certain models of their microstructure. From our
viewpoint, this is only a certain part of the subject of micromechanics
and we prefer the wider definition given above.

We do not have time and place here for including a comprehensive
historical analysis of the origin and formation of micromechanics. It
seems necessary, however, to mention several milestone works which are
doubtless related to micromechanics in the sense just mentioned. At the
same time, they belong to researchers whose reputation in mechanics is
undisputable - they are generally accepted as outstanding representatives
of the mechanical community. The last point is specially important: the
mechanical community is rather conservative - in the good sense of the
word - in matters that concern the subject of mechanical research.
Therefore, the example offered by outstanding people within the
mechanical community is Important: to be modern in mechanics, the
researchers should know micromechanics. The first to be mentioned is
Th. von Krmn., one of the great founders of IUTAM and ICTAM's. Il a
series of papers, summarized to some extent in his Maryland lecture
entitled "Aerothermochemistry" [11, Th. von KArmAn formulated the
general problem of aerothermochemistry as the problem of fluid
dynamics with chemical transformations accompanied by heat generation.
For the transformation rate W of an active component of the mixture, he
used semi-empirical formulae of the Arrhenius type:

W-( i-a)Pexp(-U/kT) (2.1)

Here a is the mass concentration of an active component under
consideration, U - a constant called the activation energy, k - the
Boltzmann constant, p - "reaction order", - another constant. The heat
generation rate is assumed to be proportional to the reaction rate.
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It is instructive that Th. von Karman did not intend to invent a new
branch of science motivated only by the internal needs of science. Just
the opposite: he was one of the first who understood, for example, that
the problem of space vehicle reentry to the Earth's atmosphere cannot be
solved without proper consideration of the chemical transformation and
dissociation of air. Even clearer for him was the necessity to create this
new branch of mechanical science in his attempts to design a rational
theory of liquid fuel combustion in Jet engines.

In the general lecture on the XIV ICTAM 121 devoted to
"Microhydrodynamics", G.K. Batchelor summarized a series of works
concerning micromotions of small bodies in fluids. Subsequent papers of
G.K. Batchelor and his students, especially E.J. Hlinch, applied the results
and approaches of microhydrodynamical studies to create the modern
hydrodynamics of suspensions.

In his papers [3,41 entitled "Micromechanics", B. Budiansky
emphasized the growing attention of the mechanical community to "the
mechanics of very small things". He considered several problems,
seemingly special but in fact very important from the general viewpoint of
the micromechanics of solids, such as transformation - toughening due to
phase changes and particulate toughening.

It is instructive to look at the photographs of microstructural pictures
from the mentioned papers by G.K. Batchelor 121 and by B. Budiansky [31
to better represent the objects which have recently entered the fields of
interest of the mechanical community.

B. Budiansky writes [41: "Micromechanics is the currently fashionable
designation of what is really an old subject, but one that is receiving
increasing attention from theoreticians in applied mechanics. Armed
with their repertoire of analytical tools, they try to relate the overall
deformation and strength properties of the materials to the behaviors and
interactions of their microscopic constituents". Try to relate does not
always mean the use of finite equations: they can be related by differential
equations. and that is exactly the definition used here. A natural question
arises: whether the coining of a new term is important and justified,
thereby legitimizing a new branch of continuum mechanics and giving it a
status of certain independence?

I suppose, yet, it is. The examples of the theory of oscillations which
considers oscillations in a way irrelevant to their physical nature,
functional analysis, cybernetics, and to a lesser extent cynergetics,
confirm it. A general approach as well as a unified style of the analysis of
new phenomena appears, which, to a certain extent, leads to a new
general ideology. Seemingly uncoordinated results appear in unified form.
The transter of results from one subject to another becomes possible as
well as the prediction of results based on the previous experience.
Therefore the legitimization of micromechanics as a unified new branch
of continuum mechanics seems to be well deserved and expedient.

For a more or less detailed further presentation, I had to make a
choice. So, I selected the application of similarity, more exactly scaling
(renormalization group) methods, in the micromechanics of fracture and
the micromechanical analysis of damage accumulation.
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3. APPLICATION OF SIMILARITY METHODS IN MICROMECHANICS
OF FRACTURE

A. The systems of equations of micromechanical models are usually
complicated, and analytical solutions of such sets may be obtained only as
rare exceptions. Even obtaining numerical solutions involves serious
problems. Therefore, the asymptotic methods and, in particular, simi-
larity methods play an important role in the nilcromechanics of fracture.

The application of similarity methods in fracture mechanics has a
long-time established tradition. Here we will speak about scaling (or
similarity laws of the second type) which are closely connected with the
renormalization group: a concept, very fashionable now in theoretical
physics. We illustrate it firstly on a simple geometrical example. Consider
two continuous curves of diameter D. One of them is a normal circle. We
inscribe a regular n-gon with side length il in it. For the length of the
perimeter of the polygon, L, dimensional analysis gives

Ln = D(D(TI/D) (3.1)

For sufficiently small ri/D, the function c) is arbitrarily close to its limit 7r,
so asymptotically L,=xD. It is trivial that this asymptotic is invariant with
respect to a transformation group

I

L9 = Ln, D'= D, i' = XTI (3.2)

(X<lis a group parameter). We refer to this case as the similarity of the
first type, or complete similarity.

The second curve is a Mandelbrot fractal, for instance von Koch curve
[5,61. (It was B. Mandelbrot who coined the very term "fractal" and was
able in his excellent monographs-essays 15,61 to show systematically the
importance of such objects which entered mathematics and physics early
in this century for modern natural philosophy in the whole.) Then, the
asymptotic of the function cP in (3.1) at small iI/D is O-~C(7l/D)-a, where
cc=Const, O<a<l, so

Lt= Const(Dl +a/.qa) (3.3)

It is clear, that at TI/D-ýO there is no finite limit, L11-o-o. Meanwhile
LT(l' tends to a finite limit, and the asymptotic (3.3) is invariant with
respect to the transformation group

tLn= .- ILn, D' = D, 1' = X11 (3.4)

- the simplest example of the renormalization group mentioned above.
The number m=l+a is called the fractal dimension of the curve under
consideration. We refer to such a case as scaling, similarity of the second
type, or incomplete similarity.
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The natural step in micromechanics of fracture proposed by B.
Mandelbrot and his colleagues 171 was to investigate the fracture surface
of metals - whether the fracture surface is fractal and, if so, what
information can be extracted from its fractal dimensions?

An excellent result of the perfect fractality of fracture surfaces was
obtained by V.K. Horvath and H.J. Herrmann [81 for stress-corrosion
cracks (Fig. 1). More typical and natural are the results demonstrated by
R.H. Danskardt. F. Haubensack and R.O. Ritchie 19]: there exist several
intervals of fractality between the natural material length scales. The non-
trivial question is how the fractal dimension of the fracture surface is
correlated to fracture toughness of the material or, in other words, how
to use these results for quantitative strength calculations? Although this
question has no definite answer yet, it is a good problem.

The application of the similarity approach combined with
micromechanical analysis to fatigue crack studies is instructive. The
classical result in fatigue fracture is the scaling law by Paris and Erdogan
[101 for crack propagation under multi-cycle fatigue:

de/dn = A(AK)m  (3.5)

Here dt/dn is the fatigue crack velocity per cycle averaged over the
cycle and AK is the stress-intensity factor amplitude. An example of such
a "kinetic diagram" is presented in Fig. 2.

Let us consider 111-131 the kinetic diagram (3.5) from the viewpoint
of the similarity approach. The average velocity dt/dn can depend on the
following quantities: AK, R=Kmin/Kmax - the asymmetry of loading, h - the
characteristic specimen size, f - frequency, KIC - standard fracture
toughntps, t - yield streýs, t - time. Dimensional analysis gives

dt/dn =(AK/ay )2 0(AK/KIc,R,z,ft) (3.6)
where
z = a y -'/KIc (3.7)

is the basic similarity parameter. An asymptotic stage is considered
where the influence of the argument ft disappears. The intermediate-
asymptotic character of fatigue crack propagation is clearly confirmed by
analysis of the fracture surface: a regular system of striations appears at
this stage. Moreover, the parameter AK/KIc is small. Then. two
possibilities appear: complete similarity when the limit of 4 at AK/Kic-+O
is finite or not. If it is finite, we would obtain the power law (3.5) with
m=2 which is practically never the case. Let us assume, however, that the
incomplete similarity (similarity of the second kind 114,151) takes place
at the intermediate asymptotic stage of fatigue crack extension, when

S= (AK/KcIca4Di(R,z) (3.8)

and ax, in principle, should also depend on the similarity parameter z.
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Figure 1. The straight line on the log-log plot of the number of "filled"
boxes of the net: covering the section of the cracked body against the box
size demonstrates the fractal character of the stress corrosion cracks in
Inconel 600 in high temperature water (after 181). (The circles and
crosses denote various methods of data processing).
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Figure 2. Kinetic diagram for fatigue crack growth in the aluminium alloy
BT-3-1 [131.
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Substituting (3.8) to (3.6) we obtain exactly the scaling law (3.5) with the
result that m depends on z, i.e. the specimen size! Experiments (see
Fig. 3) have shown that this dependence is often very strong, so the
designers should be careful in using the results of the experiments with
small specimens in predicting the life-time of large structures.

Two important notes should be added here. In fact, in the middle of
the kinetic diagram the mechanism of fracture starts to change; traces of
static fracture modes such as dimples appear on the fracture surface. It is
connected quantitatively with reaching some critical stress intensity
factor KGy equal in order of magnitude to a 'yd, where d is the
microstructural length-size. e.g. the grain-size. Therefore, the Paris-
Erdogan kinetic curve apparently consists of two sections corresponding
to AK>>KGy and AK<<KGy.This was not properly identified apparently
because the values of m corresponding to the two branches of the
diagram were sufficiently close.

The second note is that sometimes (it was n( ticed with the aluminium
alloys and required careful investigation with good statistics) the kinetic
diagrams are not single-valued curves (Fig. 4), and there exists a rather
large overlapping range (see 1131). Fracture surface analysis shows that
the upper and lower branches of this non-single-valued kinetic curve
correspond to different fracture mechanisms. Apparently these curves
explain the remarkable effect noticed by Forsyth 1161 - the alternating of
smooth and rough regions at the surface of fatigue cracks.

B. The modern tendency of using high strength materials has
advanced the problems of multiple fracture. The statistical approach
cannot be avoided here, although it is not phenomenological statistics tn
the Weibull spirit of the late thirties. A combination of the statistical
approach with modem fracture mechanics is needed here.

In some conceptual aspect, an analogy with developed turbulence was
found to be fruitful. In the turbulence phenomenon we have the fluid
instead of the deformable solid, the vortices instead of cracks and
defects. The turbulent flow contains a cascade of interacting vortices of
various length scaleE The motion of a certain small number of vortices in
the fluid can be studied more or less effectively as well as the evolution of
a small number of cracks or defects in a solid under varying load or
strain. Nothing can be performed effectively if there are multiple vortices
in a fluid flow or multiple defects or cracks in a deformable solid. So.
everything really achieved in turbulence, and the famous Kolmogorov-
Obukhov theory first and foremost, is based on the statistical approach
and similarity principles for the vortex cascade. In the studies of multiple
fracture this approach is also followed.

We assume, therefore, the physical scheme of multiple fracture in the
following way. There exists in a deformable solid a cascade of crack-like
defects, pores, vacancies, dislocations, etc. which are interacting. The
interaction of the defects could be, in principle, of two kinds: defects can
either strengthen of weaken each other. Furthermore, the stress
concentration near the tips of large defects stimulates the generation of
new small defects. On the other side, small defects stimulate the
extension and coalescence of large ones.
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Figure 3. The dependence of the exponent in the Paris-Erdogan law (3.5)
on the similarity parameter z for the steel 4340 for specimens of various
orientation {A,L,T) with respect to the rolling direction: A(O), L(*). T(x)
(1111 on the basis of data 1151).
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Figure 4. Kinetic diagram of fatigue fracture of Aluminium alloy B95 T1
for notched specimens. Two branches of the diagram with a large
overlapping region are clearly seen (1131).



The basic hypothesis of our approach, the similarity principle 1181 is
that in multiple fracture the process of the development of the cascade of
defects is statistically self-similar. This principle means that in the
development of the multiple fracture process, only the dimefnsional
parameters vary with a statistically averaged defect size Isc and mean
distance between the defects Lsc. The dimensionless statistical
properties of the cascade remain invariable.

In particular, the distribution curve of the defects size exists for a
cascade. Self-similarity means that when damage accumulation is
proceeding, the form of this curve remains fixed and only the maximum
frequency NSC and the corresponding mean defect size Isc are varying.
Therefore the size distribution can be represented in the following
universal form:

N/Nsc = O(I/tSC) (3.9)

Three basic questions appear in connection with this similarity
principle:

I. Does self-similarity of the defects cascade evolution exist for the
whole damage accumulation process or at least for a certain part of it?

II. If self-similarity is only observed on certain stages of the multiple
fracture process, what is the reason of its loss and of the transition from
one self-similar stage to the next one?

11. In general, does self-similarity of the cascade evolution have some
practical and/or theoretical interest?

Let us answer these questions successively.
I. The data processing of the defects cascade evolution in damage

accumulation has shown that the similarity principle does not contradict
at least some parts of the fracture process in creep, fatigue, and static
tension for materials of various classes. So, the pore size distribution for
iron at various strain levels coincides upon being plotted in universal
coordinates (Fig. 5).

Thereby, the pore size distributions at various stages of the damage
accumulation process can be obtained, one from another, by a similarity
transformation. Only the parameters Nsc, tsc are found to be time-
dependent. Moreover, the universal size distribution curves of the defects
obtained in the same way for different materials tested in creep, fatigue,
or static tension turn out to be rather close in spite of the differences in
material properties, as well as in the loading conditions, and especially in
the length scales - from the atomic level to blocks of rocks the size of
tens of miles (Fig. 6). This apparently means that there exists a certain
universality in the damage accumulation process, at least for a sufficiently
wide class of materials.

II. The multiple fracture process is multistage and multiscale.
Apparently, transitions occur from one self-similar stage to the next one.
The loss of self-similarity seems to be related to the loss of stability of
cascade evolution at a certain critical value of the length size t sc. On the
background of smaller defects, a new cascade appears with its own
evolution laws and new self-similar stage.
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Figure 5. Pore size distributions in natural (a) [191. and universal (b)
coordinates for crystalline iron specimens (0.006%C) tested In creep
under 9.3 MPa tensile stress and 700*C temperature. 1: E=2.1%, t=23
hours; 2: e=6.2%. t=142 hours, 3: c=9.3%, t=262 hours. NSC: maximum
frequency, ISC: corresponding pore size (after 1131).
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III. For a symmetric isolated crack of the length 1, the condition for
the critical value of the stress intensity factor K at the tip of the crack
K=K 0/4ni2 (3.10)

gives, as is well known, a finite relation between the crack length and
applied load. If there are multiple cracks in a body, then a set of 2n finite
equations (n -the number of cracks) can be obtained by application of
condition (3.10) at each crack tip. This set, however, becomes non-
constructive with growing n, while for a rather small number like
n=10-20 obtaining the solution becomes impossible even using modem
computers. The statistical self-similarity of the cascade of defects returns
us to the simplest case analogous to that of an isolated symmetric crack.
Indeed, the finite relation exists between the average crack size in the
cascade Isc and the applied load. Moreover, the principal possibility
appears to be to estimate the loading capacity as well as the life-time of a
structure using the parameter tSC and material properties.

The Paris-Erdogan scaling law (3.5). considered above in some detail,
also follows ultimately from the self-similarity of the cascade of defects in
the vicinity of the crack head. Moreover, from the self-similarity
hypothesis of the cascade of defects, the Coffin-Manson equation for low-
cycle fatigue, which is well known to experimentalists,

nf[Ael(AE)a = Const (3.11)

can be obtained by a simple analysis [121. Here nf[AE] is the number of
cycles to failure at a given strain amplitude Ae, a - a material constant.It is
interesting that the well-known Palmer-Minor damage accumulation rule
at variable strain amplitudes:

n
J dn/nf[Ac(n)]=1 (3.12)

0

also follows rigorously from the self-similarity hypothesis formulated
above.

It is also noted that the principle of statistical self-similarity of the
cascade of defects could be a distinctive bridge between
phenomenological strength studies and the microscopic studies of
dislocations, vacancies, etc. which as yet have no constructive outcome to
practical strength analysis. Remember again the analogy with turbulence.
In the theory of turbulence, the methods of practical computation of
turbulent flows are always based on the idea of the vortex cascade self-
similarity (including various subgrid simulations in numerical models)
which allows one to reduce the calculations to solving a rather reasonable
system of the equations for turbulent energy density, average vortex size
(or some related quantity), etc. A similar approach seems to be possible,
in principle, in multiple fracture studies.
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4. DAMAGE ACCUMULATION

The study of damage accumulation in a cylindrical specimen under
tension, influenced by microstructural effects, is apparently one of the
characteristic examples of the micromechanical approach to fracture
studies. Here we will discuss a tentative mathematical model of this
phenomenon.

The concept of damage was introduced to fracture mechanics by L.M.
Kachanov 119,201, F.K.G. Odqvist and J. Hult 121,221. According to this
approach the damage factor o is introduced, or, equivalently, the
continuity factor f=l-0). In the virgin material =o=0 1 '=1 and fracture
corresponds to .o=1, -#=O.

A physical interpretation of damage at a point is the properly averaged
relative amount of broken bonds between microstructural elements of the
body. Under the natural assumption that every broken bond excludes a
fixed volume of the material from carrying capacity, the simplest
interpretation of damage is obtained as:

(0 = (s-s)/S (4.1)

where S is the specimen cross-section area and Sr is the area of the part

of the cross-section where the elements are able to carry the tensile load.
A kinetic law of damage accumulation is assumed according to 119-221
which can be represented in the form

atto = (l/r) q(),(Y,T) (4.2)

Here t is the time, c - a certain constant characteristic time of the
damage accumulation process, a - the actual stress in the load-carrying
part of the specimen cross-section which is related to the bulk tensile
stress ao and damage (o for the case of the simplest damage
interpretation (4.1) by an equation,

o = (To/(1-W) , (4.3)

and T is the temperature. The dimensionless function q is assumed to be
specified for the given material. We emphasize that stress and
temperature dependence of damage accumulation rate is much stronger
than the direct dependence on the current damage. As an example, the
often used Arrhenius-type kinetic law with stress-dependent activation
energy can be considered,

q=( 1 -o)Pexp[-U-ya)/kTl (4.4)

Here k is the Boltzmann constant, U - the zero-stress activation energy, p
- a constant, "reaction order", y - the other kinetic constant. The
quantities U/kT, 'yo/kT are large, of the order of ten or even more, so
the stress and temperature dependence of the damage accumulation rate
is strong. Power-type kinetic laws are also in use.
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q=( 1-to)PIGT/ao)n (4.5)

where p, n are dimensionless constants and n is assumed to be large.
For fixed constant temperature, the relation (4.2) can be considered

as an ordinary differential equation for the damage a) as a function of time.
An important point is that its solution exists only for a finite time. When
the value (o becomes equal to one, the solution of the ordinary equation
(4.2) ceases to exist which defines the specimen life-time, to. It is noted
that due to initial damage inhomogeneity. the current damage
distribution can be nonuniform over the specimen length. According to
the approach formulated above, damage accumulation would proceed
independently in each cross-section over the specimen length. Thus
rupture and life-time of a specimen will be determined by the ultimate
damage value to=1 being reached In the inltiplly most damaged cross-
section without any influence from the neighbouring cross-sections.

We will see that the influence of the material microstructure can
drastically change the statement of this problem. Namely, a specific non-
linear diffusion-type mechanism for damage transfer appears. Therefore,
the ordinary differential equation (4.2) is replaced by a non-linear
parabolic partial differential equation with a diffusion coefficient that is
strongly stress dependent.

Indeed, real materials: metallic alloys, ceramics, composites, rocks,
etc. always possess a particular microstructure. In polycrystalline metals,
the microstructure Is formed by the grains and intercrystalllne matter,
while a supramolecular structure of various orders exists in polymers, etc.
This microstructure is microinhomogeneous; we have, so-to-say,
"microstiffeners" and "microweakeners" distributed over the material.
Damage accumulation consists in breaking bonds between the elements
of microstructure and/or inside these elements and subsequent
formation and coalescence of defects. An instructive example is the
cavitation and the formation of micro-cracks at the grain boundary facets
studied by V. Tvergaard 123,24]. Due to microinhomogeneity of the
microstructure (different grain sizes, and grain properties), this damage
accumulation process becomes microinhomogeneous. Moreover, the
breakthrough of cracks at the grain boundary facets increases the local
stresses arising under the action of the bulk tensile stress. At the same
time there is a reduction of the local damage accumulation rate in
stronger places (a compressive stress due to local "microstiffening").
Thus, in addition to the acting bulk tensile stress, a system of self-
balanced microstresses appears.Therefore the stresses in an idealized
microscopically homogeneous material differ from those really
influencing the local damage accumulation rate.

Thus, consider a prismatic bar under static tension ao and isothermal
conditions. Microscopic damage distribution and microstress fields are
stochastic. Both fields are considered as statistically homogeneous over
the cross sections, although in general, non-homogeneous over the bar
length and time-varying.

By averaging relation (4.2) which is valid for ideally homogeneous
conditions over the cross-section, we obtain
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at<(o>=( 1/,r[( 1/S) I q(,o).,TldS)] (4.6)

S

where the brackets <>, which we will further omit, denote averaging of
the ensemble. (Due to the ergodicity hypothesis which is natural here, we
can replace averaging over the cross-section by ensemble averaging).
However, the right-hand side cannot be replaced by the damage
accumulation rate corresponding to the average stress ao/(I-co) as it

should be in the microhomogeneous case; there exists a certain
additional microstress field and the stress dependence of the damage
accumulation rate is strong.

To calculate the right-hand side of (4.6), we will use the approach
often used after Khinchin and Kolmogorov in the theory of stochastic
processes. Indeed, the right-hand side of (4.6) will be replaced by an
integral over the bar length by introducing a cerfai, '_. weight function

00

(1/S) q((oacY,T)dS= j q(co,a(ý),T)p(x-ý)d4 (4.7)

S -00

Here the weight function p(x-ý) determines the relative amount of
elements of the cross-section area where the damage accumulation rate
corresponds to the actual average stress in a neighbouring cross-section
having a certain displaced coordinate 4; this always can be done. We used
here essentially the fact that the average damage (o and con'sequently the
average actual stress are the fields continuously varying over the bar
length so that the actual stress at a certain point of the cross-section,
increased or reduced by micro-stresses or microinhomogeneity,
corresponds to the average stress in a certain neighbouring cross-section.
Furthermore, under the assumption that the damage accumulation rate is
strongly stress dependent, the weight function p(x-ý) is rapidly
decreasing with growing modulus of its argument. Therefore, the limits
in the right-hand side integral of (4.7) can be taken to be infinite.

Obviously, the weight function p(x-ý) satisfies the relation

00

f p(x-•}d•=l , (4.8)

by consideration of an ideally microhomogeneous case. For the sake of
some simplification, we also assume that the weight function is
symmetric, so that

00

I (x-0 ) p(x-)d4=0 .(4.9)
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Furthermore, we introduce the microstructural length-scale X by the
relation

00

X2 =(1/2) j (x-_) 2 p(x-4)dx (4.10)
-00

It is noted that we neglected the dependence of the weight function on
the current damage for simplicity sake since otherwise X would be a
function of the current darhage.

Now we expand the function qo,o(o),T) under the integral sign in the
right-hand side of (4.7) into the Taylor series near the point 4=x:

q(wo,(,(),T) = q(co,c,(x,t).T) + (4-x)(0q)ý=x +

(x 22
+ 2 q)2=X + "" (4 11)

Neglecting the remaining terms which can be properly justified and
substituting the expansion (4.11) to (4.7), using the relations (4.8)-(4. 10),
and substituting the result in (4.6). we come to the partial differential
equation,

= (I/t)q(o,a(x,t),T) + -t q1xs] (4.12)

Obviously damage under ordinary conditions cannot heal, so that equation
(4.12) is valid only if its right-hand side is not negative; otherwise it is
replaced by

at(o = 0 (4.13)

Using the relation (4.3) between the average actual stress and the
average damage, we obtain from (4.12) an evolution equation for the
damage o:

1Ya~q ax(0l (4.14)•ta =(I/¶)q(wO,ao/(1-to),T)+1x(¢ %oa(q) 1

Thus, instead of the ordinary differential equation (4.2), a non-linear
diffusion-type equation is obtained for the damage (o, where the diffusion
coefficient is strongly stress dependent. The resultant mathematical
problem is currently fashionable among the constellation of
mathematicians concerned with blow-up and quenching problems of non-
linear partial differential equations (see the recent publications [25-281).
(Blow-up and quenching correspond to fracture; in fracture problems,
however, an additional non-linearity related to condition (4.13) is added.)
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In the simplest case of the Arrhenius-type damage kinetics of zero
order, equation (4.14) assumes the dimensionless form

2

Dow = V 2 eN' + k-V2 a 'eW = I(N) (4.15)

if I1Ž0, and ae'V =0 if 1<0. Here

0=(t/-r~exp{-U/kT), =/1o. 4---yao/kT

t=x/L, k=- 2 /L 2  (4.16)

where L is the characteristic length-size of the initial damage distribution
over the bar length.

The initial condition takes the form

V(ý,0) = M/(1-oo{()) (4.17)

where cooo() is the initial damage distribution over the specimen length.
The boundary conditions are taken in the form of vanishing damage flux
at the boundaries:

D)•(0, 0)=0, ij•{1,)=0 (4.18)

which corresponds to a periodic damage distribution of wavelength L or
strongly reinforced specimen grips. The solution should be obtained in
the region

0<!41, 0<00o0 (4.19)

Here 00 corresponds to the blow-up (fracture) time where the solution V€
at a point becomes infinite. The specimen life-time is determined by the
equation

to=0o0 eU /kT (4.20)

It is interesting to consider for demonstration purposes the results of
the numerical integration of the problem (4.15), (4.17) (4.18)*,
presented in Figs. 7,8.

In Fig. 7a, the process of damage accumulation for extremely low
k=10-5 is presented. As we see, no damage diffusion-extension of the
damaged region is observed. In Fig.7b (k=10"3 ). the extension of the
damage region is clearly observed, and it is seen that damage
accumulation in the initially most damaged cross-section commences
only after noticeable extension of the damaged region which occurs at a
time which is one order of magnitude larger than the life-time without

*Numerical calculations were performed by Dr. V.M. Prostokishin.
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damage diffusion. Figure 7c (k=10-1) is instructive: initially, damage
uniformly covers the specimen, and then damage accumulation proceeds
uniformly over the specimen. Note the damage wave propagation (curves
2-4). Figure 8 demonstrates the increase of the specimen life-time with
increasing dimensionless diffusion factor k.

It is plausible that for large stress dependence of the accumulation
rate there exists a critical value of the diffusion parameter kcr. For k<kcr,
damage accumulation proceeds non-uniformly and rupture occurs in the
cross-section that has the largest initial damage. For k>kcr damage
accumulation proceeds in the following way: initially damage becomes
uniformly distributed over the specimen and this process takes the major
part of the specimen life-time. Upon reaching uniform damage
distribution, damage accumulation continues uniformly over the
specimen length subsequently leading to fracture.

The tentative model of damage accumulation was considered here
mainly to demonstrate the approach and to discuss an apparently new
phenomenon - stress-influenced damage diffusion. I would like to repeat
here a sentence from a very comprehensive recent review by A.
Needleman and V. Tvergaard [291 devoted to plastic flow localization in
metals: "Now everybody loves a localization problem!" Localization of
plastic deformation into shear bands in ductile metals is, indeed, a
fascinating problem.The remarkable plenary lecture by J. Rice [301 at XIV
ICTAM, the book of J. Hutchinson 1311. the papers of the author of this
review as well as those of other colleagues referenced here form really
fascinating contributions. The approach, however, is based entirely on the
constitutive equations. In principle, this problem is close to the problem
of damage accumulation, and I sincerely hope that the love of localization
problems will materialize also in considering them by the approach
outlined above.

Ladies and Gentlemen, I come to the conclusion. You could have heard
in recent years the opinion that fracture mechanics, while being so
fashionable in former times, is now exhausted, that there is a crisis in
fracture mechanics, that it is unable to answer important questions of
engineers, etc.

I do not think so. Like a beautiful lady in her Balzac age, fracture
mechanics has her past deserving to be remembered and her promising
future. She attracts both young and mature people, and of course has
problems of development. I think that the micromechanical approach
which is now in development by many research groups throughout the
world will help to answer the existing questions and will propose new
fascinating challenges. Moreover. there is in this field some flavor of close
discoveries, - discoveries important not only for science and technology
but for everyday life of everybody.
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Material Instabilities and phase transitions in thermoelasticity
Rohan Abeyaratne

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cam-
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Abstract
This paper reviews recent joint work with J. K. Knowles on the propagation of phase
boundaries in a two-phase thermoelastic solid. We address some general thermo-mechanical
issues, present an explicit model, compare the predictions of the model with experimen-
tal observations, consider the influence of inertia, and describe the role of viscous and
strain-gradient effects. This paper is based on the work described in 12,3,4,7].

1. INTRODUCTION
Certain alloys can exist in more than one solid phase, each phase being associated with
a distinct crystal structure. Typically, one phase is preferred under certain conditions
of stress and temperature, while another is favored uiider different conditions. As the
stress or temperature vary, the material may therefore transform from one phase to
another, leading to a discontinuous change in the properties of the body. Examples of
such materials include the shape-memory alloy NiTi, the ferroelectric alloy BaTiO3 ,
the ferromagnetic alloy FeNi and the high-temperature superconducting ceramic alloy
ErRit 4B4. In each of these examples, the transition from one phase to another occurs
without diffusion and one speaks of the transformation as being displacive.

Consider for instance the class of Cu-Al-Ni alloys described by Otsuka and Shimizu
[361. These alloys exist in a cubic phase (aust.enite) and an orthorhombic phase (marten-
site). Under stress-free conditions, the cubic phase is stable at temperatures above the
transformation temperature OT, the orthorhombic phase is stable below it. When a
stress-free specimen of austenite is cooled from above the transformation tcrnperature,
the martensite phase is nucleated at the "martensite start temperature" M, (< OT). The
specimen now consists of a mixture of both austenite and martensite, and the phases are
separated from each other by one or more interfaces - phase boundaries; one speaks of the
phase boundaries as being coherent, implying that the deformation is continuous across
them even though the deformation gradient is not. The phase boundaries that have nu-
cleated now propagate, transforming particles from austenite to martensite as they pass
through, eventually converting the entire specimen into inartensite. If the specimen is
now heated, the whole process is reversed, with the. Martensite to austenite transforma-
tion being initiated at the "austenite start temperature:' A, (> Or). This is a rretrsible
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or thermoelastic phase transition. The values of the transformation temperature OT and
the nucleation temperatures M, and A, depend critically on the alloy composition and
the heat treatment; they also vary with the application of stress, e.g. see Figure 10 in
[36].

In die case of Cu-Al-Ni, there are in fact a number of different types of martensite,
distinguished from each other by a difference in stacking order, see Figure 15 in [36].
Consider for example the two martensites -y' and #l'. The transformation from austenite
-* y' martensite occurs under either stress-free conditions or at small values of applied
stress, while the austenite --+ 03' martensite transformation occurs only at sufficiently
large values of stress. More importantly, a phase boundary in the tormer case typically
propagates slowly, while a phase boundary between austenite and /30 martensite propa-
gates rapidly at speeds which are of the order of the shear wave speed. Thus both slow
and fast-moving phase boundaries occur, and both are of interest; see also Grujicic et al.
[22] and Nishiyama [34].

Various continuum-level issues related to reversible phase transformations in crys-
talline solids have been successfully studied using the theory of finite thermoelasticity,
e.g. Ericksen [17,18], James [25] and Pitteri [39). For a thermoelastic material, the
Helmholtz free-energy function '0 depends on the deformation gradient tensor F and the
temperature 0: 0 = 4(F,O); since the occurrence of diffusion is not envisaged here, it is
not necessary to explicitly account for the dependency on alloy composition. If the stress-
free material can exist in two phases, then the energy function ý' must have two disjoint
energy-wells, each well corresponding to one phase. At 0 = 0 T, the two minima have the
same height; for 0 > 0 T the austenite minimum is smaller, while for 0 < OT, the marten-
site minimum is smaller. In the presence of stress S, the situation may be described in
similar terms except that now one must consider the energy-wells of the potential energy
function G(F; S,0) where S denotes the first Piola-Kirchhoff stress tensor.

Much recent activity in continuum mechanical studies on thermoelastic phase tran-
sitions has been focussed on two basic issues: the first concerns energy minimizing de-
formations corresponding to the stable configurations of a body; the second is related
to the non-equilibrium evolution of a body towards such stable configurations through
intermediate states of metastability.

Ericksen 116] studied energy minimizing deformations for a two-phase material within
the one-dimensional mechanical setting of a tensile bar. He showed, in particular, that for
certain values of prescribed displacement, the stable equilibrium configurations of the bar
involve co-existent phases. The analogous issue in higher dimensions is more complicated:
typically, deformation gradient tensors F, and F, corresponding to the austenite and
martensite energy minima are not kinematically compatible with each other, i.e. F. -Fm
is not a rank-one tensor. Therefore an energy minimizing deformation cannot correspond
to homogeneously deformied states of austenite and rnartensite separated by a phase
boundary. In fact, an energy minimizer usually does not even exist, and one must
contend instead with minimizing sequences. The deforniation pat tern associated with



such a sequence characterizes tihe underlying microstructure of the material; ill Ciu-Al-Ni
for example, an austenite-martensite phase boundary separates a homogeneous state of
austenite from a fine mixture of twinned martensite. These ideas were put forward by
Khachaturyan and Shatalov [271 and Roitburd [411 using a geometrically linear theory,
and by Ball and James [8] for the finite deformation theory; see Hhattacharya [10] for
a comparison of these two theories. Ball and James [8] studied an austenite/twinned
martensite interface in detail, and showed that the consequences of their theory are in
agreement with the crystallographic theory of martensite which is a classical theory that
is not based on the idea of energy minimization. Needle-like microstructures and self-
accommodating microstructures have been explored by Bhattacharya [9] using similar
ideas. The fineness of the microstructure is controlled by surface energy, though the
effects of surface energy may be more subtle than this; e.g. see Curtin and Struthers [21]
and Kohn and Mfiller [29].

The usual continuum theory of thermoelasticity,though adequate for characterizing
two-phase energy minimizers, does not, by itself, characterize quasi-static or dynamic
processes of a body involving transitions from one phase to another. This is illustrated in
a striking manner by the tremendous lack of uniqueness of solution to particular initial-
boundary-value problems formulated on the basis of the usual theory; see Abeyaratne
and Knowles [1,3].

Quasi-static or dynamic processes generally involve states that are merely metastable
and so fall under the category of "non-equilibrium thermodynamic processes." Consider-
ations pertaining to the rate of entropy production during such a process leads naturally
to the notion of the driving force (or Eshelby force) f acting on a phase boundary, Abe-
yaratne and Knowles [2] and Heidug and Lehner [24]; see also Eshelby [19]. Knowles [28],
Rice [40]. The theory of non-equilibrium processes can then be used to argue for the
need for a constitutive equation - a kinetic law - relating the propagation speed V,, of
the phase boundary to the driving force f and temperature 0: V, = V(f, 0). The kinetic
law controls the rate of progress of the phase transition, as has long been recognized in
the materials science literature, see e.g. Christian [13]; in fact, some, though not all,
micro-mechanical models of kinetics lead to kinetic laws of the form V - V(f, 0).

The kinetic relation controls the progress of the phase transition once it has com-
menced. A separate nucleation criterion is required to signal the initiation of a transition.
(This is analogous to the roles played by a flow rule and a yield criterion in continuum
plasticity theory.) Explicit models of nucleation are more complicated to establish. A
general discussion of nucleation theory in phase transitions, from a materials science
point of view, may be found in Christian [13].

Thus a complete constitutive theory which is capable of modeling processes involving
thermoelastic phase transitions consists of three ingredients: a Ilhlmholtz free-energy
function, a kinetic relation, and a nucleation criterion. The particular initial boundary-
value problems referred to pieviously, which were i!l-posed ;1l the usual setting, were
shown in Abeyaratne and Knowles 11,3] to be well-posed and to have unique solutions
within this broadened setting.
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A number of studies have been concerned with developing explicit constitutive mod-
els. For example, Ericksen [181 and Silling [451 have constructed three-dimensional
Helmholtz free-energy functions for modeling certain crystals; Falk [201 has studied a
one-dimensional polynomial free-energy function, see also Jiang [261. Models of kinetic
relations have been constructed, for example, by Mfiller and Wilmansky [321 using certain
statistical considerations, and by Otsuka et a., [35) by assuming phase-boundary motion
to be similar to dislocation motion.

In [7], we constructed a complete, explicit one-dimensional model for describing ther-
moelastic phase transformations. In constructing our model, we were motivated by a
desire to maintain great simplicity, and to construct an analytically amenable model
that could be used to gain helpful insights, especially for fast transformations, before un-
dertaking computations based on more realistic assumptions. Our Hlelmholtz free-energy
function has two energy-wells, corresponding to an austenitic phase and a single variant
of martensite. Both phases are modeled as having the same constant elastic moduli,
coefficients of thermal expansion and specific heats at constant strain; the phases are
distinguished from each other by the presence of a transformation strain and a latent
heat. We also constructed an explicit example of a kinetic relation based on the notion
of thermal activation. Finally, the nucleation criterion considered assumes nucleation
to occur at critical values of driving force, one value signalling the initiation of the
austen.te --- martensite transition, and another, the reverse transition; this nucleation
criterion can be stated equivalentlyjin terms of temperature-dependent stress-levels (or
stress-dependent temperature-levels). The quasi-static response of this model to vari-
ous thermo-mechanical loadings was also studied in 171 and the results were compared

qualitatively with some experimental observations as described in Section 4 below.

There is a considerable mathematical literature concerned with the issue of identifying
meaningful solutions to a system of quasi-linear partial differential equations; e.g. see the
review article by Dafermos [151. In the one-dimensional purely mechanical setting of a
tensile bar, the differential equations of interest stem from linear momentum balance and

kinematic compatibility. A typical motion of the bar involves moving strain discontinu-
ities corresponding to shock waves, and possibly phase boundaries, and each discontinuity
is subject to a pair of jump conditions arising from the aforementioned physical consid-
erations, as well as to the entropy inequality fV,, > 0 arising from the second law of
thermodynamics. If the stress-strain relation is monotonically increasing, and in addi-
tion is either strictly convex or strictly concave, phase transformations cannot occur, and
all strain discontinuities are shock waves; as in gas dynamics, the entropy inequality then
serves to single out unique solutions to the Cauchy problem. The stress-strain curve

associated with a two-well energy function is not monotonic (it consists of two rising
branches that are connected by an intermediate declining branch), and the entropy in-
equality is no longer sufficient to deliver uniqueness. The standard approach to resolving
this difficulty has been to replace the entropy inequality by a stronger "solution-selecting
mechanism" or admissibility criterion. Among these, the most common in the setting of
phase transformations are perhaps the viscosity-strain gradient criterion (Shearer [43],
Slemrod [461, Truskinovsky [491), the entropy-rate shock criterion (Dafermos [15], llat-
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tori [231), and the chord criterion (Shearer (42], Pego [37]). A, alternative approach for
attempting to achieving uniqueness is to supplement the entropy inequality (which must
hold at all discontinuities) with a kinetic relation (at subsonic phase boundaries) and
a nucleation criterion. We have shown in [3] that within the context of the Riemann
problem for a special material, the lack of uniqueness remaining after imposition of the
entropy inequality is precisely that needed to accommodate these supplementary ingredi-
ents; see also LeFloch [31]. In addition, we have also shown that the three aforementioned
admissibility criteria correspond precisely to three particular kinetic relations of the form
V. -= V(f), [4,5,6].

The solution to most multi-dimensional problems involving phase transitions must be
obtained numerically. Collins and Luskin [14] and Silling [44] have studied energy mini-
mizers using, respectively, finite element and finite difference based methods. Molecular
dynamics simulations have also been carried out, e.g. Yu and Clapp [50].

The present paper reviews some of the aforementioned results concerning phase
boundary propagation. In Section 2 we describe a general three-dimensional thermo-
mechanical framework which includes the effects of inertia; this leads naturally to the
thermodynamic notions of driving force acting on a phase boundary and a kinetic law
controlling its propagation. We also describe some characteristics of the potential energy
function associated with a two-phase material. From there on we restrict attention to a
one-dimensional setting: In Section 3 we describe an explicit constitutive model. Then
in Section 4 we describe the quasi-static response of this model in a number of thermo-
mechanical loading programs, including one that displays the shape-memory effect. The
predictions of the model are compared qualitatively with experimental observations. In
Section 5 we consider the effects of inertia in the absence of thermal influences, and elu-
cidate the precise roles of the entropy inequality, the kinetic relation, and the nucleation
criterion in the context of a Riemann problem. Finally, in Section 6 we consider the
effects of viscosity and strain-gradients; by considering a phase boundary to be a suitable
limit of a travelling wave, we show that the presence of these effects leads, in a natural
way, to a specific kinetic relation. A more detailed discussion of the material in the first
part of Section 2, and all of Sections 3 and 4, may be found in [2,7]; other than for a
slight difference in the underlying constitutive model, Sections 5 and 6 are based on [3,4].

2. SOME GENERAL CONSIDERATIONS
Consider a body which occupies a region R? in a reference configuration and consider a
motion of this body on some time interval. Let St be a propagating surface in 7Z across
which the deformation is continuous but the deformation gradient tensor F suffers a
jump discontinuity; suppose that F varies smoothly on either side of St. In the present
setting, such a surface may represent either a shock wave or an interface that separates
two distinct phases of the material. Note that S, is a non-material surface, i.e. different
particles of the body are located on S, at different times.

Let n denote a unit normal vector and V, the normal velocity of a point x on St. We
shall speak of the side into which n points as the positive side of St. If p(x, t) is a generic
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field quantity that varies smoothly away from St and suffers a jump discontinuity aci oss+

Si, we let P(x, t) and P(x, t) denote the limiting values of p at a point x on St and write

[[p(x, t)] = p(x, t) - P(x, t).

Propagation: We now list the various jump conditions that must hold on Si, using
a Lagrangian description throughout. Continuity of the deformation across S, implies
that

[[vii + V.[[FJin = 0 on St, (2.1)

where v(x,t) denotes particle velocity. If p(x) is the mass density of the body in the
reference configuration and S(x, t) is the first Piola-Kirchhoff stress tensor, the balance
of linear momentum leads to

[[SnlJ + [[pvo]V. = 0 on St. (2.2)

Next, let q(x, t) represent the nominal heat flux vector and e(x, t) the internal energy
per unit mass; then the first law of thermodynamics requires that

[[Sn. vJ] + [[pe + pv v/2]]V,, + [[q n]] = 0 on St. (2.3)

Finally, the second law of thermodynamics leads to

[[p]]V,, + [[q. ni]/0 < 0 on St, (2.4)

where 0 is absolute temperature and 17 is entropy per unit mass. The various physical
quantities just introduced are assumed to vary smoothly away from S,, and with the
exception of 0, are permitted to suffer jump discontinuities across Si. The temperature
0 is required to be continuous. (In the event that heat conduction is neglected and the
process is modeled as being adiabatic, one must relinquish this assumption on temper-
ature and permit 0 to jump across St, as in the classical theory of shock waves in gas
dynamics.)

The jump conditions (2.1)-(2.4) impose restrictions on the field quantities on the two
sides of the surface of discontinuity St. When this surface corresponds to a shock wave,
there are no further conditions to be imposed on St. On the other hand if Si describes a
phase boundary, particles transform from one phase to another as they cross this moving
surface and it is necessary to account for the process (i.e. kinetics) of this transition in
a suitable manner; in order to do this within the continuum theory, one must supply
further information on St, in addition to (2.1)-(2.4). The need for such supplementary
information can be made clear by considering the physics of phase transitions as descrilbed
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in the materials science literature, e.g. [13]; or, by solving particular initial-boundary-
value problems, and thereby demonstrating the tremendous lack of uniqueness of solution

that exists in the absence of such information, [1,3]; or, by the constitutive fornialisill

associated with non-equilibrium thermodynamic processes as outlined below.

Suppose for the remainder of this section that St represents a phase boundary. Con-
sider a sub-region V of 7Z and let F(t; D) be the rate of entropy production at time t

associated with the particles in V. By using the basic field equations and jump condi-

tions, one can express r in the form

r(t;V)=) f dV + q.GradO dV+ fVndA (2.5)
-0  v 02 + 0nD V

Here 6(x,t) is the internal dissipation defined by 6 = 0t + S F /p - e (see [47]), and

f(x, t), defined by

I+ +
f = [p4]] - 2S+ S)-[FH on St, (2.6)

is known as the driving force acting on the surface Si. In writing (2.6) we have introduced

the Helmholtz free-energy per unit mass 4' = E - r7. In the case of quasi-static processes,

one can provide a purely mechanical interpretation for fn as a force per unit area exerted

pointwise on St by the body; this suggests the alternative name driving traction for f.

The representation (2.5) for r decomposes the total rate of entropy production into
the sum of three parts: the first arises from local dissipation in the bulk material away

from S,, the second is the contribution due to heat conduction, and the third represents
the entropy production rate arising from the moving phase boundary Si. Suppose from

hereon that the material is thermnoelastic, i.e. that it is characterized by a llelmholtz
free-energy potential k(F, 0) such that

?k(x, t) = 4(F(x,t),O(x,t)), S = P4'F, r/ = -77 '9. (2.7)

Then the internal dissipation 6, and therefore the associated entropy production rate,

both vanish. If the body is in thermal equilibrium, O(x,t) = constant, the entropy
production rate due to heat conduction vanishes; if the body is in phase equilibrium,
by which we mean the driving force f(x, t) vanishes, the entropy production rate due to

the moving phase boundary vanishes. Thus, the temperature gradient Grad O and the

driving force f are the "agents of entropy production" when a thermoelastic body is not

in thermal and phase equilibrium; one speaks of (Grad 0)/02 and f/0 as thermodynamic
"affinities" and the conjugate quantities q and V, in the entropy production rate (2.5) as

the corresponding "fluxes", e.g. Callen [121, Truesdell [471. Note that while q represents

heat flux, pV,, represents the flux of mass crossing the propagating phase boundary.
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The presence of non-vanishing affinities (Grad 0)/02 and f/O indicates a lack of ther-
mal and phase equilibrium; according to the theory of non-equilibrium processes as de-
scribed in the aforementioned references, the evolution towards a state of equilibrium
is controlled by constitutive laws which relate each flux to its conjugate affinity, and
possibly to other variables as well. In the present case, this suggests the need for two
constitutive relations: q = Q(GradO, F, 0) in the bulk material and

V, = V(f, O) on St, (2.8)

representing a heat conduction law and a kinetic law respectively. The entropy inequality
(2.4) can be written equivalently as

fV,. > 0 on St, (2.9)

and so the constitutive function V must be such that

V(f,O)f > 0. (2.10)

If V is continuous, this implies that V(O, 0) = 0, indicating that the flux V,, also vanishes
when the body is in phase equilibrium.

The basic principles of the continuum theory do not impose any further restrictions
on, or provide examples of, the kinetic response function V. These must be supplied by
appropriate constitutive modeling, two examples of which are given in Sections 3 and 6.
In the special case of processes taking place close to phase equilibrium, it is natural to
replace the relation (2.8) by its linear counterpart V, = v(O)f with v positive.

Energy-wells: In general, a propagating surface Si could be either a phase boundary
or a shock wave. Shock waves are intimately connected with inertia and do not exist in
the absence of such effects. In order to focus attention on features that ale unique to
phase boundaries, it is therefore useful to consider a quasi-static setting. We close this
section with some discussion on the characteristics of the potential energy function G,

G(F;S,0) = p4(F,0) - S -F, (2.11)

associated with a two-phase material. It should be noted that while the Gibbs free-energy

g(F, 0) = p4P(F, 0) - pOF(F, 0) -F is distinct from the potential energy function G, their
values coincide at extrema of G(- ; S, 0).

Let St represent a quasi-statically propagating phase boundary, and consider, and
fix, an instant t and a point x on St. At this (x, t), let n be a unit vector normal to

St, let 0 be the temperature, and let F and S be the limiting values of the deformation
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gradient tensor and the first Piola-Kirchhoff stress tensor respectively. Continuity of the

deformation requires that F=F +b ® n for a suitable vector b; continuity of traction

requires that S n =S n. In addition, suppose that the phases on the two sides of Si are

metastable in the sense that the free-energy 4,(F, 0) is strongly elliptic at F =F; see [48] for
a discussion relating strong ellipticity to infinitesimal stability. Finally, the formula (2.6)

for the driving force simplifies, in the present quasi-static setting, to f = p[[zfl - A [[F]].

We now consider the potential energy function G(F; S, 0) and examine some of its fea-

tures. Similar results hold for G(F; S, 0). Consider the set A = A(, n) of all nonsingular
+

tensors which are kinematically compatible with F:
+

A= {FIF=F+a®n for all vectors a}, (2.12)

+
and consider the restriction of the function G(. ; S,0) to the set A. On making use of

the traction continuity condition and the constitutive relations S= p,'F(F,9), one finds

that G, as a function of a, has extrema at a = 0 and a = b (corresponding to F =F

and F =F). Moreover, the requirement of strong ellipticity can be used to show that

these extrema are local minima. Figure 1 shows a schematic graph of G(F; S, 0) versus

F showing two local minima ("energy-wells") at F =F.

'G(F;0,e)

-------------------- -

F ~ F F

Figure 1. Schematic graph of potential energy function G versus deformation gradient tonsor
F.
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Finally, one sees that the difference between the values of G at the two mininma P =F

is equal to the driving force: f =G - G=9 - g. Suppose that the minimum at F =F is

less than the minimum at F =F as is the case depicted in Figure 1; then f is positive,
so that by the entropy inequality fV,, > 0, one has V,, > 0. The phase boundary S,
therefore moves into its positive side, creating more material in the low-minimum phase
at the expense of material in the high-minimum phase. Thus the phase corresponding
to the lesser minimum of G is preferred. The same is true when f is negative. Thus we
may speak of the phase associated with the lesser minimum of G as being stable (or at
least as being more stable than the phase associated with the higher minimum).

3. A CONSTITUTIVE MODEL
From here on we restrict attention to a purely one-dimensional setting for a uniaxial bar.
In the present section we describe a simple explicit constitutive model, consisting of a
Helmholtz free-energy function, kinetic relation and nucleation criterion. Its implications
will be discussed in the sections to follow.

Helmholtz free-energy function: Let 0, be the critical temperature: when 0 > 0,
the material exists in only a single phase, no matter what the stress-level. On the other
hand for 0 < 0 < 0,, we assume that two metastable phases exist if the stress cr lies in a
suitable range (0) < a < aM(O), and that only one phase exists otherwise.

The potential energy function G(y; a, 0) = p4(-, 0) - a-y that characterizes the ma-
terial must therefore be such that G(.;a,, ) has two local minima when 0 < 0 < 0,
am(O) < o, < aM(O), and a single minimum otherwise.

This implies that the stress-strain-temperature relation a = 6 (-Y, 0) = p4(y, 0) must
have the following properties: for 0 > 0,, & must be a monotonically increasing function
of -y. For 0 < 0 < 0,, & must first increase with -y on a range -1 < -y < -/'Mf(0), then
decrease over an intermediate range -yM(O) < -1 < -1,,(0), and finally increase again for
-y > ',m(9). We shall assume that " has the trilinear form shown in Figure 2:

W.Y - Ya( OT-o), -1 < -j < IrM(0), 0 < 0 < 0",
•r =•(7,) =(3.1)

P('ý - -IT) -PO(0 - OT), -Y > 71m (0), 0 < 0 < 0,,

where we have omitted displaying the equation of the declining branch. Though the
figure has been drawn with am(O) negative, this need not be the case. The restriction 3Y >
-1 arises from the requirement that the deformation be one-to-one. The relationships
between aM(O), am(0) and -yM(O), -'m(0) may be read from Figure 2. We take IM(O) and
-y,,(O) to be linear functions of 0 that coincide at 0 = 0,.

The two rising branches of the stress-strain curve are associated with distinct phases
of the material which we refer to as the low-strain phase and the high-s.rain phasf. In the
simple model here, both phases have the same constant elastic moduli ji and ericlinctits



of thermal expansion a. The constant -yT(> 0), representing the horizontal (listaice
between the two rising branches of the str(ess-strain curve, is the transforinaion t straiil.
We require OT to be the transformation tempuraluit, so that both phases exist an(d both
are stable when 0 = OT, a = 0; this means that G(. ; 0, O0,) is to have two local Kiniimna,
and that the values of G at these minima are to coincide.

I I

Figure 2. The trilinear stress-strain curve at a fixed temperature 0.

By integrating the relation pC-r,0) = 5 (-,0) with respect to 7, and enforcing the
requirements that (i) 4(-y,0) be continuously differentiable for -y > -1, 0 < 0 < 0,, (ii)
that both phases have the same constant specific heat at constant strain c = -0'e000(', 0),
and (iii) that OT be the transformation temperature, one finds

{ a2 -- Y(O - OT) - pcO log(O/OT), (3.2)

(Y - -tT)' - ua(- - "tT)(O - OT) -- pCO 1g(O/OT) + Ll (9 - OT),

where (3.2), holds for the low-strain phase, (3.2)2 for the high-strain phase. The constant
AT can be shown to represent the latent heat of the transition at the transformation
temperature 0 T. In view of the particularly simple manner in which the temperature 0
enters into the present model, one would not expect it to be realistic when 0 is far from
the transformation temperature OT.

The stress-level ao,(O), defined by

a.(O) = (PAT/-YTOT)(O - OT), (3.3)
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is known as the Maxwell stress and has the geoiuetric significance shown in Figuic 2
where the two shaded areas are equal. One can readily verify that when. a < a(jo), the
low-strain minimum of the potential energy function 1(.; a, 0) is smaller than the high-
strain minimurn, while the converse is true for a > a((0). Thus the low-strain pLase is
stable when a < ao(O), the high-strain phase is stable when a > aL.(O), and both phii.ses
are stable when a = ao(0). Observe from this and (3.3), that if the latent heat A-, > 0,
the low-strain phase is stabie at high temperatures, while the high-strain phase is stable
at low temperatures; thus AT would be positive when the low-strain phase is au."tf nite
and the high-strain phase is martensite. If the converse is true, then AT < 0.

V.

Figure 3. Phase boundary velocity as a function of driving force at various temperatures.

Kinetic relation: Let x = s(t) denote the location of a phase boundary during a
quasi-static process, and suppose that the particle at x = s- is in the high-strain phase
and the particle at x = s+ is in tie low-strain phase. The driving force f on this phase
boundary can be calculated by substituting (3.1) and (3.2) into f [=pV'j - alL,]], th,,s

leading to

f = f(a, 0)= =yT[C -ao(O)]. (3.4)

Since the bar is in a two-phase state, the potential energy function G(. ;a,0) has
+two local minima, one at -y =•, the other at -y =it, and they are separatedl by a local



maxinirmn; this is analogous to the a'ase jH,(Iclht d schhilliatrcallv in ligrire I. As thhe

phase boundary moves through tilt bar, the particle rmnic d at cly ahlead of it "julli'"

from one local uti ninium of (G to the other, aid the underlyi rig kinetic relation can be

constructed by viewing thi.- jumping process at tlt- atomic scale. Ili partir icular, if tilis

process is "thernalv-actiwvted", classical argu iietits based on tIhe idea t hat atollis j11111p

from one local mininium to the olher when thiey possess so fit-rent elnlergy to cro•ss over

the intermediate energy barrier, leads to theI following kiti(et ic relat ion:

s~ I~~0 ?{x 27AO ~a,%(0) - m(Y0)j I ~ 2rkV 7% l tU'WC ,r(0) 1
where R and r are positive( material constants, k is holtzinarm's 5colmstan. aidl ( f[)

and t(7,fO) have the meaning show ii iii Figure 2. One can ris(e (3,1) Io express (3.5) in I ie(

alternate form S' V(f,O). Graphs of V' = V/1 versus f' - flit, at different values

of temperature 0' (0-0y,)/Oj, are shown in Figure 3. One can show that I (f,O)f > 0

as required by (2.10), and also that V is ar inncreasing firnction of f at fixed 0. The

variation of V with temperature 0 at fixed f is more cOliiplicated: sce [7].

Nucleation criterion: Consider a proc('ss in which the entire. bar is in a single-phase

configuration for an initial interval of time and in two-phase states for subl)sequent tilines.

The instant of time and the point in the bar at which the transition from the single-phise

to the two-phase configuration is initiated are dletermined by a nucleation criterion.

Addressing first the question of location, in reality, the nucleation site is strongly
influenced by inhomogeneities. Since our bar is uniform, titl location of the nucleation

site is rather arbitrary. In the case of a bar rendered inhomogereous by nieans of a slight

uniform taper with the small end at x = 0, tie low strain phlase to high-strain phase

transition would necessarily commence at x = 0 and the reverse transit ion at x = L. We

shall arbitrarily assume that this is the case inn our uniforin har as well.

Turning next to the conditions ,under which nucleation occurs, we assume that each

transition is initiated at a critical value of driving force, a value f.( > 0) for tie low-strain

phase to high-strain phase transition and a value f..(< 0) for the reverse transition. By

making use of (3.4), one can restate this, for quasi-static processes, ii terms of critical

values of stress and temperature: the low-strain phase to high-strain phase transition

is initiated when a = a1,.jj(O) while the reverse transition is initiated at, a = all-tJO)

where

aL-II(O) =_ (pA7/Y )(O - 0.), alI(O)) -0..): (3.6)

0. and 0.. denote material constants which may be readily related to the critical til-
cleation values f. and f.. of driving force. Observe that when thie stress vanishes, this

nucleation criterion states that the low-strain plhrase to high-strain phase transition is

initiated at 0 = 0., the reverse transition at 0 = 0... 'lus when A-, > 0, corresponding
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to the case where the low-strain phase is austenite and the high-strain phase is ,iiarten-
site, 0. and 0.. represent the "rnartensite start temperature" anrd the "austenite start
temperature" respectively: 0. = M,, 0.. = A,. The converse is true if Ar < 0.

4. THERMO-MECHANICAL RESPONSE
Consider a bar composed of the material described in the preceding section. l'et L
be its length in the reference configuration and 6 its elongation from this state. We
consider quasi-static processes during which the bar is always at a uniform stress a(t)
and temperature 0(t). Suppose that the temperature 0(t) and one of the two mechanical
quantities S(t) and a,(t) are prescribed and that we wish to determine the remaining
mechanical variable.

Suppose that initially, for 0 < t < t., the entire bar is in the low-strain phase; by
(3.1), the elongation, stress and temperature are then related by 6/L = a/lp + o(0 - 0o).
At the instant t., the high-strain phase is nucleated at the left end of the bar so that by
(3.6)1,

Cr(t.) = (PATr/"T0T)[O(t.) - 0.1. (4. I)

For some time thereafter, the bar is in a two-phase configuration with the high-strain
phase on 0 < x < s(t), the low-strain phase on s(t) < x < L; by (3.1), one now finds
that 61/L = 7-s/ L + ac/ + a(O - 0,). Differentiating this with respect to time and using
the kinetic relation (3.5) to eliminate . leads to

6/L -61 - aO = ('YT/L)v(o,0) (4.2)

with v(a,O) given by (3.5). The response of the bar during this second stage is governed
by the initial-value problem consisting of (4.2), (4.1). If at some subsequent time the
phase boundary reaches one end of the bar, then the bar is again in a single-phase
state, and its response can be determined directly from (3.1). If the bar is entirely
in the high-strain phase, and the high-strain phase to low-strain phase transition is
nucleated at some instant t.., the initial condition (4.1) must be replaced by a(t..) =

(pAT/YTOT)[O(t..) - 0j.]

In order to study the response of the model in such processes, we carried out some
simple numerical computations for three types of loading. In all cases the bar was initially
in the low-strain phase. The specific values of the various material parameters used may
be found in [7]; in particular, we took AT > 0 corresponding to the low-strain phase being
austenite and the high-strain phase being martensite. The non-dimensional quantities
referred to in the results shown in Figures 4-7 are the stress a' = a/011T, temperature

0' = (0 - OT)/OT, elongation A' = A/LyT where A is the elongation from the initial
configuration (rather than from the reference configuration), and the elongation-rate

1= /R7,-. Consider the following three loading programs:
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Figure 4. Mechanical cycling at various temperatures, all at the same elongation rate.

0' 0

0 0

(a) q'-0.25 (b) q'- 0.75

(C) q= 1,25 (d) q'-0.75

Figure 5. Mechanical cycling at various elongation rates, all at the same temperature.
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(i) The initially stress-free bar is loaded isothermally at a constant eloingatioI-rate
6 > 0. At some subsequent time, loading is replaced by unloading at the rate -, still
at the same temperature, until the stress returns to zero. Figure 4 shows the result-
ing response for different values of 0 at the same value of i. Observe that permanent
deformation occurs at sufficiently low temperatures, but does not occur at sufficiently
high temperatures. Note also that the principal effect of raising temperature is to shift
the hysteresis loop in the direction of increasing stress, without significantly altering its
vertical thickness. Figure 5 shows the effect of different elongation-rates 6 at the Samre
value of 0. Observe that at sufficiently slow elongation-rates, the force decreases immedi-
ately after nucleation, whereas at higher rates the force increases. In Figures 5(a),(b),(c),
unloading commenced before the entire bar transformed to the high-strain phase, while
in Figure 5(d) unloading started after the low-strain to high-strain transition was com-
plete. These observations are qualitatively sinilar to experimental observations on some
shape-memory alloys, e.g. AgCd ([30]), NiTi ([36]), CuZnSi ([38]) and CuAINi (Q331).

(ii) The bar is loaded thermally at constant stress a by initially cooling it at a constant
temperature-rate 6 < 0 and later heating it at a rate -0. Figure 6 shows the resulting
response at different values of stress and the same cooling/heating rate 101. Observe
that the effect of increasing the stress-level is to shift the hysteresis loop in the direction
of increasing temperature without significant change in its thickness. This feature has
been observed in InTl by Burkart and Read [11] in experiments conducted at compirssive
stress.

A A AC) 0,-10

(a) C=Q 0b) a' - 0.5

0 0 0

Figure 6. Thermal cycling at various stresses, all at the same cooling rate.

(iii) Consider a stress-free bar at the transformation temperature; thus initially, a =

0,0 = OT,b = 0. The bar is now subjected to a four-stage thermo-mechanical loading
process: first, it is stretched isothermally at a constant elongation-rate ý > 0 (leading
to the curve OAB in Figure 7). After the bar has fully transformed to the high-strain
phase, it is then mechanically unloaded back to zero stress, still at 9 = OT, (curve 13C).
The bar is now at a = 0, 0 = 0 T, but it is permanently deformed 6 > 0. From hereon the
stress in the bar is maintained at zero. In stage three, the bar is heated at a constant
rate 9 > 0 until it is fully transformed to the low-strain phase (curve CDE). Finally it
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is cooled back to the initial temperature 0 = O, (curve EO). This returns the bar to its
original state a 0, 0 OT, 6 = 0, demonstrating the so-called slhapf-mcirory (fftcl.

0

E

O1

Figure 7. The shape memory effect.

5. INERTIAL EFFECTS
We now consider the effects of inertia, and for simplicity, make the unrealistic assumption
that the processes of interest take place isothermally, O(x, t) = constant (< 0,). All
thermal variables can now be suppressed, the energy field equation and jump condition
being satisfied a posteriori by applying a suitable distribution of heat sources. The
presence of inertial effects permit a discontinuity to be either a shock wave or a phase

boundary: the strains "7 and " on either side of a shock wave both belong to the same
phase of the material, and so are associated with the same branch of the stress-strain
curve; in contrast, a phase boundary is associated with two different phases, and therefore
with two different branches of the stress-strain curve.

Consider a bar of uniform cross-sectional area whose stress-strain relation is a = 6(Y)

with & having the trilinear form shown in Figure 2. Let x = s(t) denote the location of
a strain discontinuity during a motion of the bar. The one-dimensional counterparts Uf
(2.1), (2.2), (2.6) and (2.9) must hold at each such discontinuity. By combining the first
two of these, one finds

o = > 0. (5.1)

From (5.1) and (3.1) one sees that shock waves in both the high-strain and low-strain
phases have the same constant propagation speed c = (p/p)½. In addition, the linearity



70

of the stress response function 6(-1) between the two strains 1 and "Y allows one to infer
that the driving force f on a shock wave vanishes. Thus, in particular, the entropy
inequality f. > 0 is automatically satisfied at all shock waves in this trilinear material.

Turning next to phase boundaries, it is readily seen from Figure 2 and (5.1) that the
propagation speed I.1 of a phase boundary cannot exceed the shock wave speed c; thus
phase boundaries in this material are necessarily subsonic. (This would not be true if
the two phases had different elastic rnoduli, say PH and ptL with pt, - P'L; such a case
is discussed in [3], demonstrating that subsonic and supersonic phase boundaries behave
quite differently.) The kinetic relation is to hold at all phase boundaries. The results
that follow hold for any kinetic relation of the form S' = V(f) with V(f)f >_ 0 and V
monotonically increasing (and are not restricted to the particular form (3.5), (3.4), which
in any case was constructed by assuming the process to be quasi-static).

In order to elucidate the distinct roles played by the entropy inequality, the kinetic
relation and the nucleation criterion, we now discuss a particular initial-value problem.
We consider an infinite bar and seek solutions of the fields equations r'(y)-• - pvt = 0
and -t - v. = 0, subject to the corresponding jump conditions, the entropy inequality,
the kinetic relation, the nucleation criterion and the (Riemann) initial conditions

-/(x,0+) = 7{LL -- 0<x<0, v(x0+)= VL' -00<x<0< (5.2)
1 RI O< X<o0, IVR, 0< X< 00.

The initial strains and velocities 7L, U, vL and vR are given constants and we restrict
attention to the case where -yL and _YR are both in the low-strain phase. Finally, it will
be convenient to introduce a parameter h, having the dimension of stress, that depends
only on the given data:

h = (y/2) [7L + -YR + (vR - VL)/CI. (5.3)

We seek solutions that are piecewise smooth and invariant under the scale change
x --_ kx, t -+ kt, where k is a constant. Such solutions must have the piecewise constant
form shown in Figure 8 where -tj and vj are the constant values of the strain -"(x,t)
and the particle velocity v(x, t) in the jth-wedge of the (x, t)-plane. This solution form
involves N strain discontinuities on lines x = .jt which may be shock waves or phase
boundaries. For the trilinear material, fans cannot occur. Since the strain and velocity
fields corresponding to Figure 8 are piecewise constant, the governing field equations are
satisfied automatically. The one-dimensional versions of the jump conditions (2 1), (2.2)
and the entropy inequality fi > 0 must be enforced at each of the N discontinuities. We
momentarily postpone consideration of the kinetic relation and the nucleation criterion.

Entropy inequality: The jump conditions and entropy inequality can be invoked
to show that any solution of the form shown in Figure 8 must necessarily take one of the
two simpler forms shown in Figure 9: when the initial data are such that h > ao, where
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Oo is the Maxwell stress given by (3.3), there is a two-paramtri hr fari~ly of solut io•sl of
the form shown in Figure 9(b); the two parameters are the velocities . and 'i. of the two
phase boundaries. On the other hand, when -p < h < -,ýj, there is a solution of the
form shown in Figure 9(a) involving no phase boundaries. For initial data in the comiion

interval ao < h < aM, both types of solutions exist.

This reveals two distinct types of non-uniqueness. First, there is the lack of uniquenoess
arising because of the undetermined velocities of the moving phase boundaries; this is
exemplified in the first case. Second, for initial data such that or < h < t Iwo types
of solutions can occur, one in which the bar ultimately changes pha-se, the other inI which
it does not.

Kinetics, nucleation and uniqueness: We now indicate how the nucleation crite-
rion and the kinetic relation resolve this lack of uniqueness. Within the class of solutions
for which the bar changes phase (Figure 9(b)), it is possible to show that the kinletic
relation .S = V(f), with V monotonically increasing, serves to determine the velocities of
the two phase boundaries, so that the Riemann problem, when augmented by the kinetic
relation, has a unique solution. The only remaining issue arises for values of h in the
intermediate range (ao , oM]; in this case, it is required to choose between precisely two
solutions, in one of which the bar changes phase (Figure 9(b)), while in the other it does
not (Figure 9(a)). In order to make this choice, one appeals to the nucleation criterion,
according to which a phase transition from the low-strain phase to the high-strain phase
is initiated at a critical level f = f. of driving force. It is possible to show by invoking
this criterion that the change-of-phase solution is selected for initial data in the range
oL-H !5 h < aM, while for ao < h < aL-H the criterion picks the solution with no phase
change; here oL-HU is the nucleation stress-level defined in (3.6).

6. EFFECT OF VISCOSITY AND STRAIN-GRADIENT
By modeling the material as being thermoelastic, we neglect, in particular, the effects of
viscosity and strain-gradients. Such effects could have important local consequences in
the vicinity of a phase boundary, even if it is appropriate to neglect them when describing
the bulk behavior of the material elsewhere in the body. In this section we describe the
influence of such effects in a one-dimensional isothermal setting.

Suppose that the effect of viscosity and strain-gradient on the constitutive relation is
to replace the elastic stress-strain law a = &(,y) by

a = &(-y) + Pv-t - p , (6.1)

where the constants v, > 0 and A > 0 are the viscosity and the strain-gradient coefficient
respectively, and & is the trilinear function shown in Figure 2. A propagating phase

boundary in the elastic bar, associated with the states (Y, v) and (v, +), corresponds, in
this augmented theory, to a travelling wave that smoothly connects these two states:

-f0 v= V(0) ~= - ýt, (6.2)
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where . is a constant. The functions -Y((), v(, ) are to be twice continuously different iable
on (-cc, oo) and must satisfy the field equations (7, -pv, = 0, y -?,,. = 0 and (6.1),
and the boundary conditions (6.3). The trilinearity of ýy allows oie to deterrinne •(()
and v(ý) explicitly, though we shall not display the result here.

Such travelling waves y(s), v(ý) have a limit as the viscosity v anrd the strain-gradiuiit
coefficient A tend to zero, with the dimensionless parameter u =7 2A'2/v and the d(ata

1, ,7, +, held fixed; indeed, 7(ý), v(ý) tend to 1, , for ý < 0, and to t+ fer ý > 0 in this
limit. The limiting functions (ý), t,() satisfy all (if the differential equations and jump
conditions of the elastic theory; in addition, one finds that the limiting discontinlu: y
satisfies a particular kinetic relation .ý = '(f; w). This kinetic relation characterizes the
influence of viscosity and strain-gradient on a phase boundary even whl'n these effects
are negligible in the bulk material.

4f, f -

I,

- *

Figure 10. The kinetic relation induced by viscosity and strain-gradient effects.

The kinetic relation inherited in this way may be fully and explicitly deterinniled,
though its representation is too complicated to display here. Figure 10 describes it by
plotting f/If vs. ./c where f, = 'ptT(-•m + -W). One finds that f/f, depends only
or the three material parameters C7M/a7, tM/'ym and( ,; the figiire is plotted for fixed
values of the first two of these and for various values of w. The kinetic response funct ion
V increases mn'notonically with f for the values of the paranieters considered. It can be
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shown that V satisfies t-e requirement V(f; -')f > 0 inposed on every kinetic response
function by the entropy inequality.

The effect of viscosity and strain-gradients (c: capillarity) on shock waves ii, gas
dynamics is well-known. Here too, the (discontinuitjies are smoothed-out and replaced by
narrow zones in which the fields vary continuously but rapidly. In the limit of vanishing
viscosity and capillarity, one recovers the particular shock wave that is associated with the

states (Y, v), (Y, v) and all traces of viscosity and capillarity disappear in this limit, In
contrast for phase boundaries, the limit of vanishing viscasity and strain-gradient effects

leads to a particular discontinuous solution from among the many that can be associated
- _ + +

with the states (-I, V), ('Y, V), the particular phase boundary selected by this limiting
procedure being the one that obeys the aforementioned kinetic relation. Thus the effects
of viscosity and strain-gradient persist (in the form of a kinetic relation S' = V(f; ')
even in the limit v, A -- 0, through the presenice of the paraneter 6,;.
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SUMMARY

Instability is one of the factors which limit the extent to which structures
can be loaded or defbrmed and plays a pivotal role in the design of structures
loaded in compression but also in tension. The major issue of practical
concern is the establishment of the critical buckling load and deformation, that
is, the lowest load or smallest deformation at which alternate equilibria
become possible. This is usually established through linearized bifurcation
analyses. In practice, the critical condition can be affected by imperfections,
material nonlinearities and other factors. Incorporating these in the problem
usually requires solution of the more complete nonlinear problems.

This classical approach, that is, concern about the onset of instability, is
sufficient for the design of most structures. In the past fifteen years, a class of
structural instabilities have been identified in which the classical approach is
not sufficient. In general, these affect structures of larger size in which,
following the onset of instability, collapse is confined to a relatively small part
of the structure, that is, it localizes. However, under prevailing conditions, the
initially local collapse can propagate, or spread, often in a dynamic fashion,
over the rest of the structure. The load required to propagate such instabilities
is often substantially lower than that required to initiate them in the original
structure.

In practice, propagating instabilities are initiated from local imperfections
which locally weaken the structure and cause local changes in its geometry
(collapse). Very much like a set of dominoes once the geometric integrity of
such structures is compromised locally, the instability has the potential of
spreading over the whole structure.

The aim of this lecture is to demonstrate the breadth of relevance of the
phenomenon by pulling together results from studies of four structural
examples which exhibit this behavior. Although the practical relevance of the
examples varies from insignificant to very significant, each demonstrates
different aspects of this behavior.

The first problem is that of finite inflation of an elastic tube. This problem
demonstrates the complexity of localization-type instabilities, which in this
case takes the form of a bulge, and the subsequent propagation or spreading of
the bulge. The problem, once understood, can be solved quite adequately with
relative ease using finite-deformation membrane theory. Thus, it provides a
model problem for introducing some of the features of this type of structural
behavior.
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The second problem is that of propagating buckles in offshore pipelines
used for transporting oil and gas. Under some circumstances, a local
disturbance can initiate a collapse which can propagate dynamically along the
length of the line and totally destroy it. In this case the problem is governed by
interaction between geometric nonlinearities with inelastic characteristics of
the pipe material. The understanding of many aspects of this problem has
over the last fifteen years reached a certain degree of maturity and the
progress achieved to date will be reviewed.

The third problem is that of localized collapse and the subsequent
spreading of this collapse in shells lining stiffer cylinders. This problem has
the additional nonlinearity of contact. It can occur for linearly elastic as well
as elastic-plastic shells. The fourth problem involves a long panel with an
arch cross section, loaded by uniform pressure. It will be demonstrated that
following the classical onset of instability the panel can develop a localized
buckle which then can propagate at a relatively low pressure and collapse the
whole structure.

It will be shown that the underlying common characteristic of structures
exhibiting this class of instabilities is a nonlinear, local load-deformation
response with two branches with positive slope joined by an intermediate one
with negative slope, as shown in Fig. 1. Thus, for some range of loads, such
structures have three possible equilibria for each value of load. The one on the
first ascending branch will represent prebuckling deformations. The one on
the second ascending branch will represent buckled configurations. Under
some conditions, the two states can co-exist in the same structure.

Details of each problem including experimental and analyticallnumerical
simulations as well as a comprehensive literature review can be found in the
review article in the reference.

0
0
.J

Deformation

Figure 1. Local "load-deformation" response characteristic of this class of
problems
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Abstract
The paper presents computational approaches to predict the onset and growth of such plastic

instability phenomena as buckling, necking and flow localization. The regularization schemes
to remedy the problems associated with spurious mesh sensitivity and incorrect convergence
in finite element prediction of flow localization are discussed. The instability of thick circular
tubes deformed under pressure and combined loading, neck and bulge propagation in poly-
meric materials, wrinkling of plates and shells under forming processes, flow localization of
thermo-elasto-viscoplastic materials under various deformation rates, and flow localization of
mono- and polycrystalline solids are briefly reviewed.

1. INTRODUCTION

Instability phenomena in plastic solids under deformation present themselves in various
ways. The decrease in the stiffness due to the geometrical change and/or material softening
caused by the deformation is responsible for the occurrence of such instability phenomena as
buckling, necking and shear banding. Because the formation of these instabilities is an impor-
tant precursor to collapse or failure, the computational prediction of the onset and growth of
these instabilities is indispensable to understanding the final strength of the structures and
materials.

The purpose of the present paper is to provide an introduction to computational predictions
relating to plastic instability in solid mechanics. The basic equations, including the virtual
work principle and the weak form of the energy balance equation, and constitutive equations
covering various aspects of material response are first outlined. To clarify the instabilities
associated with the bifurcation which governs the load-carrying capability, and the forming
limit of the thin-walled bodies, the specializations and extensions of Hill's theory of unique-
ness and bifurcation [11 to cover these specific problems will be discussed. The computational
strategies for the prediction of deformation behavior deep in the postbifurcation range are
given.

With regard to shear-band-type localization, since the deformation process manifests itself
as autocatalytic, and the problem likely becomes an ill-posed one, the computational results
exhibit an inherent mesh dependence. Several adaptive remeshing schemes to resolve the
sharp strain gradients, and regularization procedures proposed to remedy the mesh-dependent
features of the computational results are briefly reviewed.
As illustrative examples, instability behaviors associated with the thick circular tubes under

pressure and combined loading, instability propagation in polymeric materials, and wrinkling
behavior of plates and shells under different forming processes are briefly reviewed. Subse-
quently, the flow localization behavior of thermo-elasto-viscoplastic material under various
deformation rates will be presented. We close with direct physical approaches to flow
localization of mono- and polycrystalline solids which strongly depend on the evolution of
microstructure, and their interaction.
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2. BASIC EQUATIONS

2.1 Governing Equations
Consider an equilibrium state fbr a body with volume V and surface S subjected to a veloci-

ty constraint on S and traction on S . An updated Lagrangian formulation is employed where
each material particle is labeled by a set of curvilinear coordinates x' with metric tensor G.,
which are embedded in the body in the current state. The weak lorm of the equation govern-
ing the rate of stress and traction yields the virtual work principle [1,21,

J(SiJ+ o iVi) 6V1jdV= f P1 6VidS, (2.1)
V •St

where 6V. is the virtual velocity satisfying the homogeneous boundary condition over sur-
face S,,. Here, SU is the Kirchhoff stress, which is identical to Cauchy stress cPi in the cur-
rent configuration. An overdot denotes a material time derivative and ( ), denotes the covar-
iant derivative with respect to current coordinates. Generally the confiuration-dependent
part of traction rate P. is a homogeneous function of degree one in the velocity V, and veloci-
ty gradient V, [31 which has a potential for a specific case. We can generalize this equation to
a dynamic case and a case with residual non equilibrium force at the previous step.

Meanwhile, the weak form of the energy balance equation for the same body subjected to
heat flux q=-niq1=Q on S with the surface unit normal ni and temperature constraint on ST is

6TpcfdV + bT O i 1 3TdV= 6 TcwPdVj 6T~dS, (2.2)V V V JS

where p , c and 0'J are the mass density, specific heat and thermal conductivity tensor,
respectively. Here, 6T is the variation of the temperature which satisfies the homogeneous
boundary condition on ST* The fraction of irreversible work, wP, which is converted to heat is
at, where a is in the range of 0.85 to 0.95 for many metals. The specific form of heat flux Q
depends on the respective boundary conditions.

2.2 Constitutive Equations
Since instability predictions strongly depend on the assumed material response, here consti-

tutive equations which have been employed in instability analysis are briefly summarized. In
elastic-plastic material response, the plastic part, DP k, of the strain rate, D =(VkJ +V 1k)/2, is
specified through various kinds of constitutive equations. Elastic material response taCes the
form of a linear relationship between the elastic strain rate, De=D. -DP.., and a suitable
objective stress rate, Ski. Then the elastic-plastic constitutive equation can be Zxpressed by

§ij=LJk1Dk, (2.3)

where Lij01 is the constitutive tensor and depends on the current stress and the deformation
histories.

Within the rate-independent response, for the rather wide class of materials which obey the
flow rule, DP.. can be expressed by

DPij=n m S"m ii/h, (2.4)

where nm , mi, and h are the normal to the yield surface, direction of plastic strain rate and
hardening m8dulus, respectively. The constitutive equations due to I flow [1,4,51 and
kinematic hardening [61 theories and to many anisotropic theories (see refs.7,8) fall into the
special case of Eq.(2.4) with n =m.. In Rudnicki and Rice 191, for material where n..m.. and
gmn is replaced by 6 an, the sp~cifiý form of ni, and mi,, for example, can be determiaed 6y the
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Gurson-type yield function [10,111. several extended versions accounting for the kinematic
hardening [12], the change in elasticity modulus due to void volume fraction 1131 and the
interaction of voids [14] were also suggested.
The deformation-type constitutive equation by Budiansky 115J was lixcuscd on as the sim-

plest model which permits the development of a corner on the yield surface. It has been
generalized to account for the finite strain 116-181 and anisotropy 1191, and extensively
employed for buckling- and shear-band-type instability analyses. The plastic strain rate is

DP, j=n Smnnii/h+(S'ij-n•Smnjj)/h., (2.5)

where h. is a new hardening modulus. This constitutive equation is validated fur the dclorma-
tion satisfying the total loading condition [151. For the strongly nonproportional stress histo-
ries, Christoffersen and Hutchinson [201 proposed the comer theory in which angular meas-
ure, 0 , of the stress rate direction with respect to corner direction of the yield surface is de-
fined. The plastic strain rate can be expressed by

2EPC 1DP.. = asi ~lS W, EP, 2--f(0))Cijkl ,Sljs , (2.6)

where C, ki is a plastic compliance tensor of Eq.(2.5). The transition function f(0) is unit y
throughout the total loading range 0:50_50 and zero for 0 _< st. Hcre, f(O) decreases from
unity to zero as 0 increases from 0 to f" effect 12
have been introduced in Eq.(2.6).

Constitutive descriptions of single-crystal plasticity in terms of crystallographic shearing on
specific slip systems have been given by Asaro and Rice 1231, and Asaro [241. In the current
configuration, the plastic strain rate is described by
DP=1 p(a)tj .a), 2pa) =se)).eame(a)+me(a)Isea) , (2.7)

where (a) designates the crystal-structure-dependent (a)th slip system with the slip direction
se*•. and normal m('). in the current state. Here, .'j.) is the shear rate on slip system (a), and the
summation in Eq.(2.4 ) extends over the active slip systems. The constitutive equation for the
single crystal can be established by Eq.(2.7) and the evolutional equation for the flow stress
on slip system (a). In the description of the hardening moduli, self-hardening and latent
hardening are introduced to duplicate the experimental observations [241. Recently, more
elaborate descriptions of latent hardening have been proposed [25}.

The materials generally possess strain rate and temperature sensitivities to some extent, and
they have an important effect on instability behavior. Generalized versions of the above-
mentioned constitutive equations accounting for the thermo-elasto-viscoplastic response of
the materials have been established 126,27] and employed in thermocoupled instability analy-
ses.

In the meantime, in order to avoid numerical instability and maintain the required accuracy,
suitable integration schemes of constitutive equations are employed [28-30]. Iterative meth-
ods, however, which can achieve numerically stable computational processes with large
increment, may have the drawback of creating problems associated with the exact account of
the deformation history.

3. BIFURCATION AND POSTRIFURCATION ANALYSIS

3.1 Bifurcation Analysis
The bifurcation criterion employed is Hill's theory of uniqueness and bifurcation [ 1] for

elastic-plastic solids. This theory states that the solution is not unique when a nontrivial solu-
tion can be found for the eigenvalue problem given by the following variational equation:
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6 1=0, I= J (Lik'D' D' + o'jV"i )V° dV- IP'V*dS. (3.1)

Here, () denotes the difference between the fundamental solution and the second one. The
surface integral of Eq.(3.1) arises from the configuration dependence of loading and ULks is
assumed to be a constitutive tensor for a linear comparison solid. When plastic loading con-
tinues throughout the plastic zone in the fundamental solution, tWe bifurcation point for under-
lying materials is also given by Eq.(3. 1).
Now, when the bifurcation functional in Eq.(3.1) is approximated by the finite element

method, we can arrive at the following homogeneous algebraic equation:

[K]{ }=0, (3.2)

where { 6*} denotes the values of V, at the nodal points. When this homogeneous equation
has a nontrivial solution, bifurcation may occur. The bifurcation condition becomes

det[K]=O, (3.3)

and the corresponding mode is obtained as the eigenmode of Eq.(3.2). At every computation-
al step of fundamental analysis, the change of the sign of det[K] is checked and then an itera-
tive method is used to determine the vanishing point of det[K].

In the course of the deformation analysis of the block and bar, Kitagawa et al. [31,321 found
that the sign of the determinant of the stiffness matrix for the finite element model, which has
the capability of expressing bifurcation mode, changes at the bifurcation points on the
fundamental path, and the associated eigenmode is the corresponding bifurcation mode. This
has been successfully applied to various kinds of bifurcation problems. A similar and extend-
ed discussion can be seen in refs. 33-35.
Next, we consider an axisymmetric body subjected to axis Ymmetric deformation. Here, x1

and x2 are curvilinear coordinates in a meridian plane and x is circumferential. Nonaxisym-
metric admissible velocities V% are considered in the forms

V~m=V mICos mx3 , V*gm2 =Vm 2sin mx3 , Vm 3 -=V m3COS mx3, (3.4)

where m is the mode number, and V is the function of x' and x2 and independent of x3.
Substituting these into Eq.(3. 1), we arrive at the bifurcation functional for mode m by

I, f(LaO D.f rk,+ ,V )rdA, ,rdS, (3.5)

where D .. and V . can be described by V and its derivatives with respect to x' and x2,
and mode number m, and so on. Here, r is tIe radial distance of a generic point in the axi-
symmetric body. A and S are the cross-sectional area of the body and its boundary,
respectively.
The finite element approximation is then employed to describe V over an element, and

the corresponding bifurcation condition in Eq.(3. 1) becomes

det[Km]=0 (m=1,2,3...). (3.6)

The first bifurcation point is referred to as the critical bifurcation point, and the corresponding
mode is the critical bifurcation mode.

When the materials follow the nonassociative flow law, the bifurcation condition in Eq.(3. 1)
becomes invalid because of the nonsymmetry of tensor Lij0 in Eq.(2.3). Raniecki and Brunhs
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[36] introduced two comparison solids, through which the search for the genuine bifurcation
state is replaced by a search for upper and lower bounds. Investigation concerning the im-
provement of the lower bounds can be seen in [371. Furthermore, for materials obeying the
nonlinear constitutive equation, Tvergaard 1381 and Triantafyllidis 1391 proposed methods to
determine the upper and lower bounds, respectively, for the first bifurcation. See also the
recent paper [401.

3.2 Wrinkling Analysis of Thin-Walled Bodies
Consider a bifurcation into a more complicated membrane and bending type of deformation

from membrane deformation. Any general point on a thin-walled body can be identified by
(yl,y 3)(I=1,2) where (yl,y2) are curvilinear coordinates on the middle plane, and the y3 axis is
perpendicular to the plane. Now, let v. and V. be the velocities of the body at (y',O) and
(y',y 3), respectively. According to Naghdi's th'n-shell theory 1411, velocity V. can be ex-
pressed as

V'=vl+y3 b1 , V 3=v 3+y 3 63, (.3.7)

where y36. describes the director or relative velocity at a point (y',y 3 ) relative to the velocity at
point (yld). Specifically, the Kirchhoff-loAve hypothesis for thin shells provides the follow-
ing relationship:

6 1 =-(V3.1+bLIvI), 63=0, (3.8)

where bJ is the curvature tensor of the middle plane and vanishes for flat plates. When
Eq.(3.7) and the corresponding velocity gradient and strain rate are substituted into Eq.(3.I)
with P*'=0, the bifurcation functional for this problem becomes

I=I fItM'EU*Md 1 d*MN+4"LI3N3d' 13d+. N3+ *I. M Vi+V* 3 MV)

+t3/12JLIJMN K*u K*MN + 4 -L13N3 K 13 K * N3 + 0 MJ( WM W * 3M W •3)} JdA. (3.9)

The details of the notations are explained in Tomita and Shindo 142]. Tensor Lik1 is the plane

stress (o 33=0) constitutive tensor, where

.'Jk =LiJk --Lij33L k33iL 3333, (3.10)

which is uniform throughout the thickness because of the assumption of a membrane state
prior to bifurcation. Adopting the Kirchhoff-LAove hypothesis in Eq.(3.8) for the bifurcation
functionals in Eq.(3.9), we can get the simplified functional of

I k=f -CLMN d*d *MN + 0 I VL *l. * o i+* M3V JLk=*~1t{LudMN (~v'Mv U+v M3vJ3)}

+t3/12T IJMNK*U K. MN+ o MJ( ) 'M (. Ij,+ wo 3 M W. .u)} ]dA. (3.1I)

Since the in- and out-of-plane deformation modes arc coupled with each other, the necking
type of mode is affected by the bending type of mode and vice versa. On the other hand, lor a
plate, we should recall that bu=0, and we can arri',t at the decoupled bifurcation functionals
1421.

Due to the complexity of constructing a finite element which satisfies the C' continuity
requirement for a general shell, the functional in Eq.(3.9) is recommended for use in such
problems. One exceptional case is the problem of an axisymmctric shell which has been
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discussed [42j. The search for the bifurcation point is the same as that explained before.

3.3 Postbifurcation Analysis
The solution of the boundary value problem at the bifurcation point can be expressed by the

sum of the fundamental solution at the bifurcation point and a suitably normalized bifurcation
mode. As discussed by Hutchinson [431, the specific amplitude of the bifurcation mode is
determined such that loading occurs everywhere in the current plastic zone, except at one
point where neutral loading takes place. The highly nonlinear nature of the postbifurcation
behavior can be clarified by employing the virtual work principle with the finite element
approximation. When the bifurcation point obtained from Eq.(3. 1) is not the real bifurcation
point, the postbifurcation behavior must be traced by the specially developed method 1401 or
calculated approximately using bodies with initial imperfections through, again, the virtual
work principle. The proper magnitude of imperfection, which depends on the problems and
the number of significant figures of the employed computational facility, and of the
incremental step must be introduced to suitably predict bifurcation and postbifurcation
behavior 131,32,44].

4. FLOW LOCALIZATION ANALYSIS

4.1 Problems Associated with Flow Localization Analysis
Once the flow localization into narrow bands of intense straining starts, problems associated

with the incompressibility of the materials, and an excessive distortion of the element due to
high deformation gradients appear. Furthermore, due to the ill-posedness of the problem, the
numerical solution of localization problems for a rate-independent solid exhibits an inherent
mesh dependence [45 1.

The problem associated with the incompressibility of the materials was comprehensively
discussed by Nagtegaarl et al. 1461, who proposed the well-known crossed triangular element.
Subsequently, many elements with reduced or selective reduced integrations 1471 and with
hourglass control 1481 have been developed. The aspect ratio of the quadrilaterals (crossed
triangular elements) is chosen so that they deform by alignment with the most critical shear
band direction 149]. By contrast, in the conventional quadrilateral elements, suitable hourglass
control must be introduced to capture a sharp shear band [291.

Regardless of the elements employed, the elements in the localized zone are excessively
distorted and the performance of the approximation of the velocity distribution becomes poor.
For this problem, Ortiz and Quigley [501 proposed the adaptive h-method in which the re-
finement of the mesh is performed in specific regions such that the variation of the solution is
within a prescribed tolerance over the element in the mesh. An adaptive remeshing algorithm
to produce constant error finite elements was also proposed [511. In the adaptive method, a
proper transfer operator must be defined to correctly redistribute the variables for the new
mesh [501. However, the problem associated with mesh dependence still remains an open
question. This will be discussed next.

4.2 Localization Analysis with Regularization
The problem associated with the ill-posedness can be resolved by introducing a suitable

length scale. The viscoplastic regularization is aimed at introducing the length scale by the
strain rate sensitivity of the material to make the original problem into a well-posed one
145,52,531. Without regularization, the widths of the computed shear bands are set by the
mesh spacings, as observed in many localization analyses. However, for mesh sizes which
appropriately resolve the localization with suitable regularization, convergence occurs with
the refinements f53]. Thus viscosity can be a regularization parameter from a computational
point of view or a micromechanical parameter to be determined from observed shear-band
width from a physical point of view 1531. The possibility of the existence of a stable stationary
shear band of a finite thickness has been shown 1351. Nevertheless, when a flow localization
developes sufficiently, the localization zones again exhibit mesh dependency 135,54,551.



The length scale can be naturally introduced by employing the nonlocal continuum. When
the magnitude of inelastic strain rate DP at location x is defined by spatial averaging while the
elastic behavior is treated as local [541, the elastic-plastic constitutive equation can be ex-
pressed by Eq.(2.3). Then the same finitf element model can be used 1561. For damaging
materials, Bazant and Cabot 1561 defined the nonlocal damage parameter expressed by spatial
averaging as in the plastic strain rate DI and succeeded in the substantial reduction of the
mesh sensitivity of the flow localizations.

Aifantis [571 introduced higher strain gradient terms in the flow stress to represent the
microstructural dependent nature of the material response. This provides a natural length scale
to the problem and makes it possible to investigate the structure of shear bands 158,591. Using
strain-gradient-dependent flow stress for the thermal softening material

= , ,T) - cV"E", (4.1)

Tomita and Nakao [60,61] showed that the finite element predictions of the evolution of shear
band thickness and strain distribution can duplicate the analytical results [591 without mesh
sensitivity. Figure 4.1 shows the finite element mesh-size-independent prediction of shear
localization and the specimen-size-independent nature of shear banding 160,611. It has been
proven numerically that the incorporation of the length scale in a different manner equally
eliminates the mesh sensitivity of the flow localization process when the length scales are
suitably estimated [621.
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Figure 4. 1 Representative strain distribution in the shear band. (a) Computational model, (b)
Effect of mesh division with specimen size I, (c) Effect of specimen size with mesh division C,
c: positive parameter in Eq.(4.1). (from 1601).

Numerical simulations using a Cosserat continuum 1631 and a constitutive equation of dipo-
lar materials 1641 clarified that the strain profile over the localization zone and the magnitude
of energy required for deformation converge to certain unique values for static as well as for
transient loading.

It is noted that a more rigorous investigation concerning the introduction of the higher-ordcr
gradient term is necessary [651. Furthermore, the problem associated with the identification of
length scales is still open. It would be natural to relate them to the size of thc real localization
zone.
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To resolve the sharp strain gradients, it has been proposed to add a highcr-order deformation
mode to the conventional finite element [66,671. In the element, velocity fields containing a
shear band/ plane can be expressed by

v.= I N via + Z Mi Yb' (4.2)1 a l

where the first term is a C0 finite element interpolation and the second stands for the incom-
patible term expressed by the localized mode amplitude j', and the shape function M.,. The
direction of the shear band/plane is estimretcd at the Gauss integration points by the shear band
analysis 1681 and the linear perturbation analysis 1691 for strain-rate-independent and
-dependent materials, respectively.
When the thickness of the shear band i- smaller than the size of the elemnt, an embedded

formulation where the bandwidth or the -)rofile of the strain fields is assumed to be known a
priori [70) restores the well-posedness of the problem for strain-rate-independent materials.
For strain rate-dependent materials, since the problem is wcllposcd, the enriched formulation
[711 with a spectral interpolation is used to approximate the localized strain fields. Then the
mesh dependence is substantially reduced in the embedded element and when used for a
coarse mesh, it predicts the effective strain much better than the standard element. Recently,
the ability of different finite element enhancements to capture localization was discussed 172].

5. PLASTIC INSTABILITIES IN SPECIFIC PROBLEMS

5.1 Instability Behavior of Circular Tubes
The problem of instabilities in elastic-plastic tubes has been invesligated by a number of

authors. The instability at the maximum pressure point is overcome by volume loading [73].
The bifurcation points for internal pressure [74,75i and external pressure[761 under axially
plane strain conditions, and for combined loading of internal pressure and axial force 144,77]
have been obtained by employing Eq.(3,5).

The initial-to-medium postbifrrcation behavior 175,761 and localization of the deformation
accompanied by shear bands 1781 have been clarified under axially plane strain conditions.
Tomita et al. 122,441 investigated the loading-path-dependent bifurcation and postbifurcation
behavior of tubes subjected to axial tension and internal/external pressure. The influence of
axial loads, the Bauschinger effect and corner structure on the yield surface on the onset and
growth of surface instability and shears band were investigated. In these analyses, to avoid
instability in the numerical analysis in the vicinity of the maximum pressure point, computa-
tions were performed under displacement control 1791. Quite recently, Tvcrgaard 1801 predict-
ed the nonaxisymmetric modes leading to localized necking and the subsequent shear fracture
on one side of the tube 1781 in connection with secondary bifurcation points after the
development of an axisymmetric localized bulge.

When an elastic-plastic circular tube is drawn axisymmetrically through a frictionless die,
bifurcation with short circumferential wavelength over the traction-free inner surface, a
surface-type bifurcation 181,821, or long wavelength mode, becomes possible 1831. As the
tube deforms further beyond the bifurcation point, the surface wave will grow into a consider-
able surface undulation and ultimately may lead to the development of a shear band connect-
ing the highly strained regions beneath the traction-free surfacc in a zigzag fashion 1841. In
the composite tube [851, besides the surface-type bifurcation, the boundary-type bifurcation
with large mode amplitude at the boundary plane of two materials appears. Figure 5.1 clari-
fies that the boundary-type bifurcation may cause strong strain localization which starts near
the plane and extends on either side of the plane.

5.2 Instability Propagations in Polymeric Material
The mechanical aspects of instability propagation in polymeric material have recently re-

ceived much attention. lutchinson and Neale 1861 and Chater and Hutchinson 1871 clarified
the characteristic feature of the propagations of necking in tension blocks, bulging in balloons



and buckling in tubes under lateral pressure in tcrt,is of simplified analyses. In 1further
studies, full finite element analvses for solid circular bars 188), plane strain 'blocks 1891 and
tubes ['001 have been conducted. Figure 5.2 shows cluasi-staic necck anid bulge propagations
with respect to eircumfkrcntial and axial directions, respectively, in cylinders under plane
strain and axisymmetric deformation conditions, respectively, with internal pressure. It I s
noted that the thickness nonuniformi~tv induced by neck propagation aluiig the circumfcrt-ntal
direction diministies when IhL propagation of axisymrnetric necking~ and bulging bevins. For
further discussion concerning buckle propagation, see Kyriakides 191 1.
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effect due to thermal softening, and neck propagation with a heat sourcc can be observed. The
deformation-induced heating and its conduction strongly affect the neck propagation behavior
for a relatively low rate of deformation; predictions with adiabatic assumptions do not provide
proper results.

Due to the nonuniform and three-dimensional nature of the detormation behavior of poly-
meric material, identification of the constitutive response from the load elongation curve is
quite difficult [951 and requires both precise experiments and computational simulations [941.
Furthermore, anisotropy caused by the microscopic mechanisms of the molecular chains and
to the distribution of their orientations due to the plastic deformation is quite important and
can be characterized by the molecular orientation developing with plastic straining 196j.

5.3 Wrinkling Formation During Forming Processes
In connection with deep drawing of circular cylinders, the nonaxisymmctric wrinkling behavior

of a flat flange was first investigated by employing the simplified bifurcation functional (3.11)
with b,=O in conjunction with admissible velocities v, (3.4) 197). Subsequently, it extended to
the wrinkling behavior of general axisymmetric shells 1981. The same or similar procedures
have been employed to clarify the effect of material characteristics and the restraining effect of
the blank-holding force 197,99,1001, die angles [97], normal anisotropy and details of die
geometry [981 on the onset of wrinkling during the deep drawing processes. Figure 5.4 shows
nosing ratios X,, and X, at the wrinkling and critical wrinkling points, respectively, versus
the initial thickness to mean radius ratio (t)/Ro), and the number of wrinkles m for different
die semi-angles cE. The typical wrinkle modes are illustrated in the figure.
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Figure 5.5 Wrinkling behavior of square sheet under diagonal tension. (a) Computational
model, X, Y: orthotropic axes, (b) Wrinkling modes, wo, 6 , 6* deflectional velocity, rota-
tional velocities around y and x axes, respectively, (c) Effect of work hardening exponent n,
yield stress o , normal anisotropy 7 and tensile direction T in (a) on wrinkle height h at
e=0.02 (from [21 1).



In stretch forming with a draw bead, the fundamental dclormation path includes the strong
deviation from the proportional loading path or unloading, and the bifurcation analysis men-
tioned in section 3.1 with corner theory 1201 is pcrt'Ormcd 391. Thc strong deviations from
proportional loading have an important stiffening effect in the material, and thus the onset of'
wrinkling is considerably delayed as compared with that predicted by the deformation theory
t391. Furthermore, the results clarified that the draw bead restrains puckering and promotes
the onset of localized necking, which shows good agreement with those of cxpcriments
[1011.
Stretching a square sheet along one of its diagonals (see Fig.5.5), which has been developed

to simulate the wrinkling behavior in press forming of auto body panels, has been investigated
[19,21] by employing the simplified bifurcation functional in Eqt(3.9) with bh=0 in conjunc-
tion with corn,-r theory 1201 with Hill's ortho-rpic yield function 11021. A substantial delay

of wrinkling is observed when the plate is stretched to the minimum r value direction. The
effect of the orthotropy of a material on wrinkling behavior is suppressed as compared with
that predicted with !he Jow theory type of constitutive equation I 191.
To investigate the growth rate of wrinkles and the residual height of wrinkles, three-

dimensional shell analysis with a slight initial imperfection which has a similar shape to (hat
of the wrinkling mode shown in Fig.5.5(h) has been performed. Figure (c) shows dependency
of wrinkle height h on material parameters and tensile direction. The same tendency is ob-
served for residual wrinkle height. The same problems have been recently traced 1103].
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Figure 5.6 Wrinkling behavior of rolled thin sheet metal. Wrinkling points (left) and Wrin-
kling modes (right) (from 1104)).

The same procedure may be applied to the wrinkling behavior in sheet metal rolling in
Fig.5.6. Wrinkles at 45 degrees and 0 degree with respect to the rolling direction are called
cross and vertical buckles, respectively. Figure 5.6 shows that the compressive force due to
friction or shear force induced by the slight inclination of the work roll acting at both ends of
the sheet is responsible for the formation of these wrinkles 1 1041. A different type of wrin-
kling is caused by nonuniform tension due to rolling with a crown roll [1041.

As discussed in section 3.2, since the interaction between the wrinkling- and necking-type
bifurcations may be automatically introduced for sheets with curvature, the effect of sheet
geometry and material properties on the critical stress states for wrinkling and necking can be
clarified. Furthermore, when the wrinkling is confined to a local region of the sheet metal and
such a region can be isolated from the remainder of the sheet metal, the curvature and the
thickness-dependent forming limit diagram (FLD) 1105] and wrinkling limit diagram (WLD)
[106,1071 may be established. WLD, FLD and information from the sheet forming codes
based on the membrane theory will provide information concerning the onset of wrinkling
and necking.
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Most of the problems associated with sheet metal forming with a tool fall into the category
of unilateral contact [108,1091, which is not discussed here.

5.4 Flow Localization of Thermo-Elasto-Viscoplastic Solids
Real strain-rate-dependent flow localization manifests itself as different features depending

on the rate of deformation, whereas it is essentially the same under the isothermal condition
[110,1111, meaning that thermocoupled analysis is inevitable. Plane strain tension
[29,30,55,60,61,1121, compression [261, and plane strain compression near a stress-free
surface [271 have been analyzed without the inertial effect by assuming an adiabatic process
which represents the upper bound of the temperature 129,1121, and by accounting for heat
conduction [26,27,55,60,61]. Plane strain quadrilateral elements with hourglass control
[29,1131 and crossed triangular elements 126,27,55,60,611 are employed. An intensification of
shear localization has been observed for larger specimens, and the adiabatic assumption may
provide suitable information only in the specific order of the strain rate which increases as the
specimen size decreases. Localization of the deformation is delayed by the strain rate effect
and strain gradient dependence of the yield stress, as seen in Eq.(4.1), while increase in the
curvature of the flow potential surface, heat generation and noncoaxiality of the strain rate to
deviatoric stress have the opposite effect. The results also illustrate that the effect of the inter-
action of material properties and thermal softening and growth of voids arc two competing
and interacting softening mechanisms in porous material.
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Figure 5.7 Growth of surface undulation (left) and representative viscoplastic strain distribu-
tion (right) for dynamic compression of blocks near stress free surface (from 11161).

Needleman [1141 has performed dynamic flow localization analyses for plane strain com-
pression with the strain softening constitutive equation as a simple model for a thermally
softening solid. This equation phenomenologically describes the various microscopic soften-
ing mechanisms including damage due to voids and mnicrocrack development, and texture
softening. As a result, the problem can be treated from a purely mechanical point of view.
Except for a significant delay of shear band development due to the inertiai cffect, the main
features of shear band development are the same as under quasi-static loading conditions.
Batra and Liu [1151 investigated a similar problem by introducing a temperature bump at the
center of the block showing thermally softening viscoplastic response.

Figure 5.7 shows the compression of the block near the stress-free surface [ 1161. Deforma-
tion process with heat conduction (CO) and locally an adiabatic condition (AD) have been
assumed. A competing effect of thermal softening and inertia is observed in the evolution of
undulation and representative strain. According to the experimental observation, flow stress
increases with abrupt increase in strain rate [117,118]. The effect of this material strain rate
history dependence on flow localization behavior has been investigated 11161. Figure 5.8



depicts the results of dynamic compression of plane strain blocks. Dilerncrccs observed in
representative strain distribution (c) for 11 and III are attributed to the strain rate history
dependence of the material, which certainly stabilizes the deformation. Furthermore, the
comparison between two results for I and 11 clarifies that the dynamic deformation
subsequently applied to the quasi-static deformation stabilizes the deformation, Meanwhile,
the effect of strain rate sensitivity exponent m on the flow localization behavior is quite
substantial 129,1161. In Ncmat-Nasser et al. 1291, mr was switched to units at a certain strain
rate so that the bands were broader and tended to disappear at very high strain rate. For
dipolar materials, the localization of deformation is significantly dclaycd, and localized
deformation zones are wider as compared with those for nonpolar materials I1191.
The three-dimensional aspects of localized deformation without incrtial effect I1201 and with

inertial effect 169,1131 have been investigated. Zbib and Jubran 11131 clarified the smooth
transition of plane stress to plane strain deformation by employing very thin to thick speci-
mens. The orientations of the shear band are 35.25 and 45 degtrccs, and they are consistcnt
with theoretical predictions. Again, a softening mechanism and an initial imperfection arc the
main causes of shear banding. The multiaxial effect stabilizes the deformation and causes
delay of the localization 1113,1201.
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Figure 5.8 Dynamic compression of blocks under plane strain condition. (a) Computational
model, W/L=I, (b) Boundary condition applied at both ends, 6 /L=0.002/s, 6i/L=10 4/s,
Ti= 107s, 1: constant displacement rate (5=t ) 11: displacement rate jump (u=-u to u=-u at
t=-T4, corresponding end displacement u/L=0.15) without strain rate history dependence, 11f 11
with strain rate history dependence, (c) Representative strain distribution at u/L=O. 125 (from
[1161).

5.5 Flow Localization of Mono- and Polycrystalline Solids
Physically observed features of flow localizations induced by the evolution of microstructurc

and their interaction are quite complicated, and hcnce the limitations of the phcnomcnologi-
cal approaches may be undeniable. In such a situation, an essential procedure is the direct
physical approach.

In the crystalline model, constitutive equations originated by Asaro and Rice 1231 and Asaro
1241 have been extensively employed. Peirce ct al. 11211 carried out a fir.te clement analysis
of macroscopically localized deformation in single crystals deformcd by tension by employ-
ing the two-dimensional double-slip model of lAsaro 1241. The results clarified the geometrical
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softening due to lattice rotation, and the effect of self- and latent hardening on shear
localization, which are in close agreement with experiments. When the single crystals deform
under a high strain rate, thermal softening coupling with geometrical softening causes
substantial acceleration in shear band initiation [1221. Kitagawa and Matsushita 1123,1241
clarified that when the number of slipdirections increases, the shear banding behavior
becomes close to that for J2 deformation theory.
Figure 5.9(a) shows mode I crack tip displacement in a silicon iron plate deformed under

plane strain conditions observed experimentally 1125 1, and (b),(c) depict the displacement
vector and contour of representative strain calculated using a single-crystalline model, res-
pectively [1261. Although the material properties, crack shape and loading conditions are not
always the same, good correspondence can be found concerning the formation of the sharp
corner at the crack tip ind the mnannc, of spread of the deformation field, which is limited to a
narrow band emanating from the tip in a radial direction.

1W,

(b) (c)v

tive stranStrongly distorted region [ 1
-, I I L t

In order to understand the role of grain boundaries on the localization, L/ monds et al. 1127]
investigated bicrystals which have the same geometry but have different levels of latent
hardening and grain boundaries across which crystallographic misorientation exists. It was
found that the boundaries cause a nonuniform deformation from the onset of plastic flow, and
the formation of shear bands is strongly affected by the initial misorientation across the
boundary and by the difference in latent hardening.
The primitive polycrystalline model has been constructed as a heterogeneous aggregation of

the single crystal with different slip systems 1123,1241. To account for the inhomogeneous
deformation within the single-crystal grain, the grain is divided into several finite elements
whose constitutive response is expressed by a single-crystal model such as Asaro's model
[241 with the same slip direction. The grain boundaries arc the same in bicrystals. The com-
patibility of the deformation and equilibrium are satisfied. The model provides insight as to
how the flow localization depends on the grain size, grain profile and the orientation of the
slip system. The evolution of representative plastic strain in Fig.5. 10 captures the
characteristic feature of the flow localization in tension blocks. That is, microscopically, a
heterogeneous structure of the material microscopically produces an inhomogencous
deformation field, and then surface roughness increases steadily with increase of macroscopic
strain. Irregularity of deformation develops more rapidly near the frec surface and the central
part of the body. These deformation fields cause the macroscopic shear bands seen in the



figure. As the number of grains along the thickness decreases, the deformation behavior
becomes more dependent on such initial grain characteristics as the shape, size and orientation
of the slip plane 11281.
Harren and Asaro [1291 investigated nonuniform deformation behaviors in polycrystals

using similar but more elaborate models than these mentioned above. Two-dimensional
polycrystals are the aggregate of hexagonal single crystals with three slip directions. A patchy
nonuniform deformation mode associated with the substantial jumps in current lattice
orientation, i.e., the subgrain boundary, occurred. It was also clarified, for example, that the
grain boundaries act as an impedance to the slip activity, while the triple points act as
initiators of nonuniform deformation modes. How shear bands cross the grain boundary was
elucidated, and the validity of Taylor's model was also precisely examined. However, again,
proper modeling of the grain boundary and high resolution is required for the prediction of
initial grain levei ,hear banding [129].

0 1 2 F/(B tr) 3 4

o-. 1 1 2

0.10- 4

Figure 5.10 Load vs elongation and evolution of representative plastic strain in polycrystalline
block under tension (from [123, 1241).

Solution of these problems can be expected with the recent development of mechanical
analysis employing molecular dynamic (MD) simulation, which is the most elemental
method and has potential for treatment of the dynamics of the crystal defect, such as vacancy,
dislocation and twinning. Although the large discrepancy in time and space in the continuum
analysis and MD analysis is inevitable, further development is expected, and indeed, quite
intensive studies are now under way to bridge the micro- and macroscopic deformatiun
behaviors [130].

6. CONCLUDING REMARKS

An introduction has been given to the computational prediction of plastic instabilities. The
computational strategies to predict the onset of bifurcation for general solids and thin-walled
bodies, and to mesh independent predictions of flow localization behavior were discussed.
Several topics, mainly selected from the contributions during the last decade, including
instability behaviors of thick circular tubes under various kinds of loading, instability
propagation in thermo-elasto-viscoplastic polymeric materials, wrinkling of thin walled
bodies under different type of metal forming processes, dynamic flow localization of thermo-
elasto-viscoplastic blocks and flow localization of mono- and polycrystalline solids were
reviewed.

Thus, computational studies can play an important role in understanding and modeling the
wide range of instability behavior. The prcblem, however, associated with flow localization
still to be solved is the precise prediction of the chain of events observed in deforming
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material, that is, the initial stage of deformation which includes the microscopically
inhomogeneous deformation leading to instability to tl.e final stage of macroscopic failure.
To clarify the continuous transition from micro- to macc,)scopic deformation behavior, the
development of direct physical approaches for each class ai•d bridging of the substantial gap
in size and time between the different classes are essential. The suggestive report related to
this is given in ref. 131.
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Abstract
Some of the roles of breaking in air-sea interaction are reviewed. At present we have

no rational way of theoretically predicting the evolution of an air-water interface beyond
breaking, so progress depends to a great extent on experimental measurements in both
the laboratory and the field. Even the task of identifying breaking in a random wave field
is not simple and much effort has been expended in determining rational breaking criteria
and their measurement. As a consequence of breaking, much of the local momentum flux
transmitted from the atmosphere to the ocean via the wave field is rapidly transferred
to currents. Breaking is the primary dissipative mechanism for the surface wave field,
making energy available for mixing the surface layers. Local equilibrium wave models, in
which wind input, nonlinear transfers, and dissipation due to breaking are in balance, lead
to predictions of the wave spectrum and to estimates of the dissipation. It is shown that
recent field measurements of enhanced dissipation in the surface layers are consistent with
equilibrium modelling and laboratory measurements of dissipation and mixing. Enhanced
levels of surface turbulence and bubble mediated gas transfer can lead to significant in-
creases in gas transfer across the surface with the onset of breaking. Breaking is one of
the major sources of ambient sound in the ocean. Recent results on the use of ambient
sound to identify and quantify breaking are presented.

1. Introduction

The study of surface waves has a long tradition in theoretical and applied mechanics,
but even before the formal investigation of the subject it must have been of interest for as
long as man has been involved in maritime exploration and trade. The dangers presented
to early explorers by wind and waves are readily apparent when it is observed that many
were putting to sea in ships which were barely longer than many of today's cruising
yachts. Even today, fishing vessels capsize and are lost in steep and breaking seas. While
steep and breaking seas provide the extreme environments that are encountered, it is still
surprisingly the case that most descriptions of the ocean surface, whether for engineering
or oceanographic purposes, are based on linear theory. The foundations of linear wave
theory were laid by many of the founders of theoretical hydrodynamics in the nineteenth
century. In 1847 Stokes published his investigation of weak nonlinear effects on surface
waves, but it took more than a century for the subject to extend to an investigation
of nonlinear interactions between surface waves (Phillips, 1960) and subsequently the
stability of weakly nonlinear waves (Benjamin &,: Feir, 1967).
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Convenient measures of the nonlinearity are the wave steepness ak. where a is the wave
amplitude and k is the wave number, or equivalently, u/c where u is a measure of the
horizontal fluid velocity at the surface and c is the phase speed. In breaking waves u/c
may exceed unity while ak is 0(l), and so breaking waves are strongly nonlinear. Rigorous
theoretical investigations of breaking have been confined to describing local features of
the flow (Longuet-Higgins, 1988). Numerical codes are available to describe the evolution
of two-dimensional surface waves up to breaking, but they are unable to continue beyond
the point at which the surface impacts on itself (Dommermuth et al., 1987). Thus the
study of wave breaking is based in large part on experiments in both the laboratory and
the field.

The most common expression of breaking at the sea surface is a whitecap due to the
entrained air.' Whitecaps become obvious at scales of O(lm) extending up to O(007m),
but breaking may occur without significant air entrainment down to scales of centimeters.
This lack of a universal visual feature identifying breaking and the difficulty of measuring
variables in a two-phase free-surface turbulent flow have made progress difficult, especially
in the field. However, this difficulty is justified by the importance of breaking to the
processes occurring at the air-sea interface. Breaking plays a number of related roles in
air-sea interaction. These include:

a. Limiting the height (slope) of surface waves.

b. Being a source of vorticity and turbulence.

c. Dissipating surface wave energy, some of which is available for turbulent mix-
ing.

d. Generating ocean currents by transferring momentum from the wave field.

e. Enhancing gas transfer due to surface turbulence and bubble entrainment.

f. Generating sound at the ocean surface which may be used as a diagnostic tool
for air-sea interaction studies (Acoustical Oceanography).

g. Providing passive and active microwave signatures which may prove useful in
remote sensing of the ocean.

It may seem surprising that a process which is intermittent in space and time, and
which, at least at the larger scales, is only occurring over a small fraction of the ocean
surface at any time, may be significant. We shall see below that the direct effects of
breaking are typically felt to a depth of the order of the wave height. In relatively benign
conditions this may be to depths of the order of metres, but in stormy seas this may be
depths of O(10m). The sensitivity of the atmosphere-ocean system to the conditions in
the first ten metres of the ocean are graphically presented by Gill(1982):

a. Of the solar radiation incident on the atmosphere 40% is absorbed in the first
10mn of the ocean; more in coastal waters.

'For the proceedings of a recent conference on the subject of whitecaps, see Monahan & McNiocaill, 1986.
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b. The first 0in of the water column has the same weight as all the atniosphere
above.( This has important implications for gas transfer by bubbles.)

c. The first 2.5m of the water column has the same heat capacity as all the
atmosphere above.

Now breaking is observed to begin at a wind speed of approximately 3m/s. This, together
with the fact that the momentum and mechanical energy fluxes across the air-sea interface
typically scale as the square and cube of the wind speed, respectively, implies that even
relatively short periods of high winds and waves may contribute significant fractions of
the total fluxes across the air-sea interface, with breaking absent only under the most
benign conditions.

In this paper we shall review some of the recent contributions to our knowledge of
breaking and its role in air-sea interaction. This is not meant to be an exhaustive review
of the subject, a task which would expand well beyond the format of these proceedings.
However, it is hoped that the reader will achieve an appreciation for the wide range of
techniques, both theoretical and experimental, that are being used to investigate this
important phenomenon.

2. Breaking Criteria and Detection

Historically, the first "breaking" flow to be identified was Stokes' 1200 corner flow at the
crest of a periodic wave of limiting slope (ak = 0.443). In a frame of reference travelling
at the phatse speed the fluid at the crest is at rest, and so in the laboratory frame it is
moving at the phase speed of the wave. This then satisfies the kinematic criterion that
the fluid velocity matches or exceeds the phase velocity. However, it is most unlikely
that such a flow can ever be realized, since uniform wave fields of much smaller slope are
subject to intrinsic instabilities which may lead to breaking. Melville (1982) has shown
experimentally that for wave slopes below approximately 0.3 two-dimensional waves are

unstable to two-dimensional Benjamin-Feir instabilities which lead to breaking, while at
larger slopes three-dimensional instabilities dominate ( See also Su et al., 1982; McLean
et al., 1981). Numerical solutions havw shown that uniform wave trains with slopes as
small as 0.1 may evolve to breaking following instability (Dold & Peregrine, 1986).

Stokes' limiting form gives an expression for the wave height,H, in terms of the wave

period,T, and the gravitational acceleration, g:

H = 0.027gT2 . (1)

Laboratory experiments by a number of authors ( Figure 1) have shown that breaking
occurs for average values of the numerical factor in the range 0.016-0.022, or at slopes
based on the wave height and length of approximately two-thirds that of the limiting
slope ( Coincidentally, this is close to the slope of 0.3 at which fast three-dimensional
instabilities begin.) However, as Figure 1 shows, the scatter in the data is considerable.

Field observations of breaking have been based on a so-called "jump meter" which uses
the time derivative of the surface displacement measured by a wave gauge along with
the characteristic phase speed of the wave to determine spatial gradients in the surface
displacement (Longuet-Higgins & Smith, 1983; Thorpe & Humphries, 1980). Gradients
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breaking compared with Stokes lir- tal fluid velocity in breaking and unbroken

iting form (Bonmarin, 1989). waves (Melville & Rapp, 1988).

which exceed an arbitrary threshold are considered to be breaking. Weissman et al.(1984)

have used high-passed wave gauge records to detect breaking in lake experiments. Since
large temporal gradients are reFolved by high frequency Fourier components, the jump-
meter and high-frequency approaches are related. Helthuijsen & Herbers(1986) visually
observed whitecaps at the location of a wave measuring buoy and analysed their data in
terms of the joint height-period probability distributions of both •he broken a-,d unbroken
waves passing the buoy. These distributions showed considerable overlap and no clear
threshold for breaking based on the combined wave height and period. This contrasts
with the laboratory measurements described above. However, the difficulty with point
measurements, whether in the laboratory or field, is that in a random breaking wave
field they may catch the wi:ve at ary stage in the breaxing process, and since the wave
parameters may change during that time they are not necessarily the same as those at
the instant of the onset of breaking.

This point was made very clear by a laboratory study by Melville & Rapp(1988) who
used a laser anemometer to measure the horizontal velocity of the fluid at the surface
to detect breaking. Figure 3 shows an example of a small section of coincident surface

displacement and velocity time series. Of the two waves in the frame the smaller less steep
wave is breaking while the larger steeper wave is not. The wave began breaking near the
peak of the wave envelope but decrised in amplitude and slope as it continued to break.

This example displays the danger of using observations of breaking at any stage in its
evolution to infer breaking criteria. It also points to the difficulties inherent in using the
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surface displacement or its first derivative in time as an indicator of breaking.
In recent years other non-hydrodynamic methods of detecting breaking have been in-

vestigated and exploited. These include acoustic methods (about which we will have
more to say below), and microwave methods. The use of active microwave methods to
detect and quantify breaking has been investigated by a numler of authors. Keller et
at. (1986) presented an illustrative summary of the use of coherent mlicrowave systeills
in measuring breaking waves. They pointed out that both specular, Bragg and volume
scattering may contribute to the scattered components. Banner & Fooks( 1985) associated
enhanced scattering by a quasi-steady spilling wave with the Bragg components in the
smaller-scale waves and surface disturbances that accompany the turbulence. The author
and his co-workers (Melville et al., 1988; Jessup et al, 1990, 1991a,b; Loewen & Melville,
1991) have attempted to quantify the scattering by breaking waves and correlate it with
the dynamics of the breaking waves. In laboratory studies we have found that the scat-
tering correlates with the dissipation due to breaking, although the detailed reason for
this result remains to be inve.tigated. In the field we have found that the lower order
moments of the microwave Doppler spectrum taken together provide a good indicator
of breaking and that the contribution of the breaking waves to the radar cross section
at moderate incidence angles is significant and increases approximately as the cabe of
the friction velocity of the wind. Notwithstanding these successes, the fact remains that
steep but unbroken waves may have similar microwave signatures to breaking waves, and
resolving the differences may prove difficult.

In summary, the only reliable methods for identifying breaking at all scales include
measurements of both the surface geometry and the surface velocity field. Such methods
are confined to the laboratory at present. The problem of detection and quantification
of the parameters describing breaking waves remains an imp.ediment to field studies of
breaking.

3. Momentum Flux across the Aic-Sea Interface

The wind generates waves! The wind generates currents! Even to the lay observer
these statements are obviously true. Now waves can transport momentum withi a mean
momentum flux that is proportional to the square of the wave height. What is not so
obvious is the partitioning of the fluxes across the air-sea interface between waves and
currents. If the waves were to continuously receive momentum from the wind they would
continue to grow arid the momentum flux they carry would continue to increase. The
growth of the waves is arrested by breaking and in breaking the wave field gives up part
of its momentum flux to currents. Thus breaking is an important process in thc generation
of ocean currents.

These issues were addressed by Mitsuyasu (1985). The essentials may be discussed by
considering a locally uniform two-dimensional wave field which has spatial gradients on a
scale much larger than the wave length. The wave momentum flux, Sil, is given by

.511 = I E, (2)

2
where E = lP,,y9 is the wave energy density. The momentum tiux from the air to tile
water TO is given by r( = 7, + rT, where 7,, is the flux directly into the waves, and T, is
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Figure 3. Laboratory measurements of normalized variance of the free surface dis-
placement of a wave packet as a function of downstream position. Note the de-
crease across the breaking region. Symbols refer to values of a slope parameter a0 ko

+,0.26; A,0.30; 0,0.39. (Melville & Rapp, 1986).

the remaining turbulent flux which is not coherent with the wave field. Now r,,, can be
related to the gradient in the momentum flux,

dSI _ E (3)
dx c

where /3 = E is the energy density growth rate, and c and c. are the phase and group
velocities, respectively. From laboratory experiments in the absence of breaking Mitsuyasu
found that rw = 22(ak) 2 r0 , giving significant values of 7w for representative values of the
wave slope ak. This estimate of the momentum flux directly into the wave field was
supported by laboratory and field measurements giving ratios of -' in the range 0.4 - 0.6
(Hsu et al., 1981, 1982; Snyder et al., 1981). However, field measurements of the secular
wave growth showed that -= 0 .0 5 mr; that is, only 5% of the momentum flux from thedr

atmosphere is carried by waves propagating out of the generation region. This is only
10% of the measured momentum flux from the wind to the waves. Mitsuyasu conjectured
that the remainder of rT is lost from the wave field by breaking in the generation region.

This argument was supported by laboratory experiments on unsteady breaking by
Melville & Rapp(1986). Using the dispersive properties of deep-water waves to focus
a wave packet in a laboratory channel, and by measuring the wave field upstream and
downstream of the break, we were able to measure the excess momentum flux lost from
the wave field (Fig. 3). Using field measurenients of the incidence of breaking by Thorpe
& Humphries (1980), we were able to show that Mitsuyasu's conjecture was supported
by the combined laboratory and field data. The laboratory studies were considerably
extended by Rapp & Melville(1990).



We can conclude from this work that while a significant fraction of the momentum flux
from the atmosphere (50% or so) may pass through the wave field; most of it is lost to
currents by breaking in the generation region.

4. Wind-Wave Modelling

4.1. The radiative transfer equation
While a rigorous theoretical foundation for prediction of wind-wave generation evolution

and decay does not yet exist, a sufficient number of the important pieces of the puzzle
can be assembled to formulate the problem in terms of the radiative transfer equation
(Phillips, 1977)

dN dN

dt t- + (,F + 1J).VN = -Vk.'(k)+ S,,- 1), (4)

where N(k) = /F(k) = (y/k)'/ 2F(k) is the wave action spectral density; 1(k) is the
action spectral flux due to wave-wave interactions: *5', is the wind input, and D represents

the dissipation which is thought to be due primarily to breaking. I = -V.T(k) is the
"collision integral" representing the nonlinear wave-wave interactions as formulated by
Hasselmann (1962). In operational wave models I is computed numerically. The wind
input term is based on Miles theory (1957, 1962), and empirical input (Snyder et al.,
1981; Plant, 1982) leading to an expression of the form

S, = "cos2P9O(a./c)2N(-) (5)

(Phillips, 1985), where rn and p are empirical constants an( u., is the friction velocity in
the air. The dissipation term is the least well understood. Itasselnann (1974) has made
heuristic arguments subsequently modified by Komen et al.(1984) leading to an expression
of the form

D oc &(a/&) 2(6iaPom)2 N(-) (6)

where 6 is a slope parameter and the subscript 'PM' refers to a value representative of
the Pierson-Moskowitz spectrum . Figure 4 shows an examtp!e of the spectrum and the
contributions from the various terms as computed by Komen et al (1984). According to
this model the wind input and dissipation predominate at frequencies greater than the
spectral peak, while the effect of the nonlinear interactions is to add energy at the lower
frequencies while subtracting it from the higher frequencies. Clearly, if this class of models
is representative of the physics, then the dissipation due to breaking is comparable to the
wind input and must have a profound effect on the details of the spectral evolution.

4.2. Equilibrium Models and Spectral Slopes
With the example of the success of Kohnogorov's universal equilibrium and inertial

subrange in describing turbulence spectra , it is not surprising that similar approaches
have been made in an attempt to explain the essential characteristics of the surface wave
energy spectrum. The motivation for this work has expanded in recent years with the
need to understand active microwave remote sensing systems which are directly affected
by the small scale waves having wavelengths of O(l m) or less.
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Phillips (1958) speculated that at high frequencies and wavenumbers saturation due
to breaking would occur, and that the form of the spectrum could only depend on the
frequency a and gravity g. This led to a frequency spectrum of the form F(a) = ag a-
with a becoming known as 'Phillips constant'. The deep-water dispersion relationship,
a 2 - gk, then gives a wavenumber spectrum F(k) oc k-4 . During the 1970's, as more
measurements of wave spectra became available, it became apparent that a was not
constant. On the hasis of laboratory mea-irements and diiLaLiunal analysis Toba (191'3)
proposed that F should also depend on the ratio u.,/c (where u., is the friction velocity
in the air) giving

F(a) ox (u.a/c)g2 a"- = U.ag-. (7)

This result was supported by subsequent laboratory and field data (Kawai et al., 1977;
Forristall, 1981; Donelan et al., 1985) and the parameter c/u.a has become known as
the "wave age". Kitaigorodskii (1983) followed Kolmogorov's inertial subrange idea more
explicitly considering an equilibrium region in which I = S,, = D = 0. As a consequence
of this hypothesis he found that

F(k) _ e. 3 g'1/2k-7/2 (8)
F (a) ;z 01o/3 90ý-4; (9)

this frequency spectrum agreeing with the more recent observations. Kitaigorodskii's
model was quickly followed by an equilibrium model from Phillips (1985). The basis
of Phillips' modelling was that the right hand side of Equation 4 was zero through an
equilibrium in which all terms were significant:

I+S,+D = 0 (10)

I ocS, cx D. (11)

This work provides the most readable and rational account of this class of wave modelling.
Phillips found that the energy spectrum was given by

F(k) = 0(cos O)Pu.g-" 2 k- 2  (12)

and the spectral rate of energy loss was given by

e(k) = y)3"(cos0)'Puk-. (13)

It may at first seem surprising that the very different hypotheses of Kitaigorodskii and
Phillips should give the same spectral slope of -7/2; however, as pointed out by Phillips,
the form of I, which is the same in both cases, the assumption of proportionality between
the three terms, and dimensional constraints, determine the slope. (This work also pro-
vides a general more reminder that the prediction of a spectral slope may be a necessary
but not sufficient test of a theory.)

Most recently, Banner (1990) has synthesized a spectral model based on observations.
Writing the wavenumber directional spectrum in the form

F(k,O) = F(k, Omax)D(O; k) (14)
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where F(k, O,,) oc k- 4 andD(O; k) are based on observations; he calculates a frequency
spectrum proportional to u.,a0 -'.

We summarize by noting that our inability to directly measure the spectral distribution
of dissipation due to wavebreaking is the greatest impediment to the further development
of the current generation of wind-wave models. In the absence of these measurements, the

local equilibrium hypothesis provides a rational way of estimating the dissipation based
on our better knowledge of wind input and weak nonlinear transfers. It is also consistent
with a multiple-scale approach in which on short length and time scales the spectrum is
in equilibrium, while on longer scales secular changes can occur.
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5. Dissipation due to breaking

In the absence of a direct method for testing the available models of spectral dissipation,
we can at least determine whether they are consistent with the available observations. We
consider Phillips'(1985) equilibrium model as the basis for such a comparison. Phillips'
integrated spectral dissipation rate (over the equilibrium range) , f(k), gives a total rate
of energy dissipation, co, where
Co -- ( 2-13'(3P) P•)p~u2.a ln(rCo'). (1 5)

Pa
There are a number of empirically based parameters included in this expression which
Phillips estimated to be given by the following approximate values: a - 6 - 11.10-2;
'yf33l(3p) > 4.10', and r : 0.4 - 0.7. The drag coefficient, CD is taken to be equal to

1.2 x 10-3. With these estimates we find that

E0 > 5.P•au.. (16)

Now, laboratory experiments on unsteady breaking by Rapp & Melville(1990) have
shown that more than 90% of the energy lost from the wave field is dissipated in the water
column within four wave periods of the onset of breaking; the active breaking itself lasting
for a time comparable to the wave period. This very rapid rate of dissipation was difficult
to reconcile with preconceptions until our recent work (Lamarre & Melville, 1991) showed
that up to 50% of the energy lost from the wave field is initially expended in overcoming
the buoyancy forces acting on the entrained air. (See below). As the air returns to the
surface it acts as a buoyant source of kinetic energy, but also enhances dissipation due to
the shear in the bubble boundary layers. The experiments of Rapp & Melville (1990) also
showed that the turbulent region generated by the breaking wave advected and mixed
down to a dimensionless depth kD - 0.5 - 1, where k is the characteristic wavenumber
of the breaking waves. This suggests that the bulk of the dissipation in the water column
due to breaking will take place in a layer which is much less than the wave length , and if
breaking occurs for ak - 0.3 (c.f. Figure 1), then the thickness of this highly dissipative
layer would be in the range 1 - 11 wave heights.

We can be a little more specific with these ideas by assuming that the total energy is
dissipated over a depth D at a volumetric rate (W,

fo= p,,,dz (17)

= C,, (18)

which defines the mean dissipation C, over the depth D.
In a logarithmic boundary layer the dissipation rate is typically scaled with u2/Kz

where K is von Karman's constant (0.4). This scaling gives a dimensionless dissipation
rate of unity. It is of interest to determine whether the estimated dissipation rate in the
water column under breaking waves based on the modelling of Phillips (1985) and the

measurements of Rapp & Melville (1990) gives values significantly different from those in
the classical wall layer. If we use the mean values of ( and D to scale z, we have that

fCwKZ ____ 5KPaUý,,
• O( )> (19)

U 3 W PwU w Pwu 3 w
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It remains to determine tile friction velocity in tile air, a.,, in terms of the friction
velocity in the water, u.,,,. We can investigate this relationship by considering the dispo-
sitioji of the momentum flux lost from the wave field by breaking. This momentuml flux
is transferred to currents. Given the intense mixing due to breaking we anticipate that
there will a distinct surface current within a depth of the order of one wave height from
the surface. Since we are assuming that the wave field is in approximate local equilibrium,
to be consistent we must also assume that the horizontal gradients in the current are not
large, and in consequence are changing on the same slow spatial scales as the wave vari-
ables. This implies that if such a surface current exists then the momentum flux through
its upper boundary (the surface) is almost matched by that passing through its lower
surface at a depth comparable to the wave height. Thus we expect that pau! ;.• PpwU2w,
whence, a _ (11-)10, and (wKzu > 60 = (10 - 102), say.

These estimates were motivated by recent measurements of Agrawal et al.(1992). Work-
ing from a platform in Lake Ontario they used optical, acoustical and electro-mechanical
instruments to measure the dissipation near the surface. Their principal results are pre-
sented in Figure 5, which shows the measured dissipation scaled in wall variables, as a
function of depth scaled by u!.w/g. The figure may be summarized by the observation
that for i = gz/u,,, > 10' the law of the wall scaling appears to hold, whereas for , < 10'
the dissipation rate is up to two orders of magnitude greater. How does a value of . = 10'
compare with the wave height? Agrawal et al.(1992) did not give complete information
on the supporting data for their measurements; however, they did indicate that the fetch
limited waves were of the order of 30cm significant wave height (H•,), and the winds were
greater than 8ms-'. Taking these values and assuming a value of the drag coefficient in
the air of CD = 1.2 x 10', the scaled significant wave height, Hi,, = 0.4 x 10-s. Thus
the characteristics of the measured enhanced dissipation layer are in agreement with the
estimates based on Phillips (1985) modelling and our laboratory measurements of un-
steady breaking (Rapp & Melville, 1990). While Agrawal et al.(1992) speculated that the
source of the high digsipation events was breaking waves, they stated that independent
(unpublished) estimates of energy fluxes to steep waves at frequencies greater than the
peak of the spectrum were consistent with the enhanced kinetic energy dissipation they
had measured. As shown above, enhanced dissipation also requires that the energy be
dissipated over a sufficiently small depth. The estimates presented here, which are based
on both measurements and modelling, provide support for the conclusion that the source
of the enhanced dissipation is breaking.

6. Gas Transfer

Public debate has heightened awareness of the importance of the oceans in modulating
secular changes in climate. Perhaps nothing has attracted as much attention as the influ-
ence of the increase in greenhouse gases on global warming. Quantitative estimates of the
role of the oceans in taking up increases in CO 2 are based in part on global budgets which
involve considerable uncertainty. As Baggeroer & Munk (1992) have recently observed in
their status report on acoustic monitoring of ocean warming, "... all we know for sure is
that the oceans are an important sink of heat, and C0 2, and of ignorance."

For moderately soluble gases such as CO 2 arid 02 the transfer across the air-sea in-
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terface is believed to be controlled by the aqueous boundary layer (Jaehne, 1990) and is
parameterised in terms of a gas transfer velocity k where the molar flux of gas across thc
interface, j = kAc, and Ac is the difference between the saturation and bulk concentra-
tion of the dissiolved gas. For low wind speeds, wind-wave tunnel studies have shown
that

k P 0.15Sc- 0 5ut, (20)

(Jaehne, 1990; Khoo & Sonin, 1992), where Sc = v/1 is the Schmidt number, the ratio
of the kinematic viscosity of the fluid to the diffusion coefficient of the dissolved gas. At
higher wind speeds, above 8- lOms-', there is a break point in the linear rise, with higher
wind speeds giving a correspondingly higher transfer velocity. This increase in the transfer
velocity has been attributed to the onset of breaking and bubble entrainment, but recent
experiments by Khoo & Sonin (1992) in which the turbulence is induced by agitation
from below with no breaking nor air entrainment show a similar break and enhancement
of the gas transfer. Notwithstanding this uncertainty regarding the mechanism leading to
enhanced gas transfer at higher wind speeds, Jaehne (1990) has demonstrated that the
addition of a mechanically generated breaking wave to a wind-generated wave field in the
laboratory can enhance the gas transfer by a factor of two.

The opportunites for field studies of gas transfer have improved recently with the avail-
ability of relatively rapid- response dissolved gas sensors which can be deployed on long
term moorings. In a recent field experiment in the Middle Atlantic Bight, Wallace &
Wirick (1992) deployed a pair of dissolved oxygen sensors at two depths (19m and 34m)
for a period of four months. They found that the time series of dissolved oxygen were
distinguished by sudden large increases associated with surface wave activity, followed
by longer periods of degassing between storms (Figure 6). They compared their mea-
surements with semi-empirical models due to Thorpe (1984) and Spitzer & Jenkins(1989)
(each including bubble transport) and a thin-film model (excluding bubble transport). 2

They concluded that Thorpe's model gave the best agreement with the measurements,
but by being forced by wind rather than waves it led to some discrepancies. One of the
primary causes of the enhanced gas transfer due to bubbles is the increase in diffusion
of gas across the bubble surface due to the increase in hydrostatic pressure with depth.
As noted in the introduction, the hydrostatic pressure at 10m depth is twice that at the

surface. Significant bubble populations are commonly observed at 10m depth, especially
in storms. Impediments to improved modelling of bubble transport include uncertainties
about initial distibutions of bubble sizes and subsequent breakup, turbulent transport
and surface chemistry and contamination. A more detailed review of this important and
fascinating subject is beyond the scope of this review, but the reader is referred to Thorpe
(1992) for a current assessment.

It is believed that enhancement of gas transfer by breaking is due to both the local in-
crease in turbulent intensity and the entrainment and dissolution of bubbles. Kitaigorod-
skii (1984) has modelled the influence of patches of enhanced turbulence due to breaking.
He finds that the transfer velocity k is proportional to Sc-1/2[v(,(0)]1/4, where E,(0) is
the dissipation of turbulent energy near the surface. ' While noting the similarity of the
2 Note that thee three model results are denoted by 1,2, 3, respectively, in Figure 6.
3 Note that Kitaigorodskii used the Prandtl number to denote the ratio of the diffusion of momentum to
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scaling of the velocity to Kolmogorov scaling, Kitaigorodskii asserted that the arguments
leading to this result are independent. It is of interest to determine the effects of the en-
hanced dissipation discussed in the previous section in the light of Kitaigorodskii's result.
From our estimates of Section 5 we would expect an enhancement of the dissipation by
a factor of at least 60. According to Kitaigorodskii this would lead to an increase in the
transfer velocity by at least a factor of three.

7. The Acoustics of Breaking Waves

Until recently, ambient sound in the audio range (20Hz - 20kHz) in the ocean was
broadly classified as being due to ocean turbulence (< 100Hz), shipping traffic (< IkHz),
and "wind" noise (100Hz - 20kHz), and was represented by smooth empirical spectra
(Wenz, 1962). While it was recognized that much of the wind noise was in fact due
to breaking, it is only in the last ten years that attention has focussed more directly,
and in a quantitative fashion, on the relationship between ambient noise at the ocean
surface and surface wave breaking. The beginnings of much of this work are summarized
in the proceedings of a wonderful conference which brought together acousticians and
hydrodynamicists in Lerici in 1987 (Kerman, 1988). By that time field measurements had
shown that discrete acoustic events could be identified with breaking (Farmer & Vagle,
1988) and there was considerable speculation about the source of the sound. Sources of
sound associated with the entrainment of air are almost certainly the dominant source
of sea-surface sound. After entrainment the volume of air is broken up into smaller and
smaller bubbles. At the time of its generation a bubble is not in its equilibrium shape and
as it relaxes to this spherical shape it oscillates in its axisymmetric ("breathing") mode.
This volume mode of oscillation is the most efficient for the radiation of sound and has a
characteristic frequency

W = 3-tP/pr2 , (21)

where -t is the ratio of the specific heats of the gas, P is the equilibrium pressure, p is
the density of the liquid and r is the equilibrium bubble radius. For a bubble of radius
lmm in water at atmospheric pressure, the resonant frequency is approximately 3.26
kHz. Banner & Cato(1988) presented a video recording of the sound generated in this
fashion by bubbles pinching off in a quasisteady spilling breaker. In a series of laboratory
experiments, Medwin and his colleagues (Medwin & Beaky, 1989; Medwin & Daniel,
1990) have shown that this is the dominant source of sound at frequencies greater than
approximately 400-500Hz.

We were concerned to determine whether the sound generated by breaking could be used
to do more than just identify breaking events. Preliminary experiments were undertaken
which showed that for frequencies greater than 500Hz the sound radiated by breaking
waves in the laboratory correlated with the energy dissipated (Melville et al., 1988). Now if
the causes of this correlation could be understood, and if the result also applied to the field,
then this would offer an efficient way of monitoring surface wave dissipation, a difficult
measurement to make directly (See above.) These preliminary results were confirmed
in more extensive measurements (Loewen & Melville, 1991a) which showed that of the

mass, This is usually reserved for heat transfer.
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order of 10-i of the mechanical energy dissipated was radiated as sound. Simple semi-
empirical modelling (Loewen & Melville, 1991b) showed that for gently spilling waves the
sound radiated above approximately 400Hz (Medwin & Beaky, 1989; Medwin & Daniel,
1990) could be reproduced with a simple dipole model of bubbles entrained at the surface.
Inplicit in this result is the fact that the sound radiated is proportional to the volume of
air entrained.

Whiie these results were encouraging for gently spilling waves they did not account for
the air entrainment and acoustics of more energetically breaking waves in which large
volumes of air are entrained. In these cases it more useful to consider the whitecap as
a continuum described by its geometry and void fraction field, rather than a collection
of discrete bubbles. By using the electrical conductivity of the air-water mixture in the
whitecap we were able to measure the void fraction field and hence the evolution of
the bubble cloud in unsteady breaking waves (Lammare & Melville, 1991a) . It was
found that all of the lower order moments of the void-fraction field evolved as simple
exponential or power law functions in time (Fig. 7). But the most important result of
this work was to show that the energy expended in entraining the air against buoyancy
forces could account for up to 50% of the total mechanical wave energy dissipated. This
result serves to support the earlier empirical correlation between energy dissipation and
sound radiation. Subsequent field work using similar conductivity probes showed that the
large void fractions measured in the laboratory (0(10%)) were also to be found in the
field (Lamarre & Melville, 1991b).

Bubble clouds may also oscillate as a whole in what are called "collective oscillations".
The possibility that such oscillations could occur in bubble clouds entrained by breaking
waves had been considered by Prosperetti (1988) and by Carey and Browning (1988) as
a source of low frequency sound (< 500Hz) at the ocean surface. The lowest mode of
oscillation of a spherical bubble cloud has a frequency

( 3 )i/2 ~'0 , (22)

where R is the radius of the cloud, -y is the ratio of the specific heats, PO is the equilibrium
pressure inside the individual bubbles comprising the cloud, and a is the mean void
fraction. If isothermal conditions apply -1 = 1. For example, if R0 = 0.3m, & = 0.1,
and Po = lOlkPa then Q ý= 30 x 21rrads- 1 . Confirmation of the essential characteristics
of collective oscillations in laboratory models have been obtained by Yoon et al. (1991)
who generated a vertical bubble column above a bubble generator, and by Kolaini et
al.,( 1991) who dropped volumes of water onto still water surfaces. However, Hollet
(1989) and Farmer & Vagle (1988) had earlier shown in the field that low frequency sound
accompanies wave breaking. Evidence that collective oscillations may be the source of low
frequency sound in breaking waves was provided in two complementary sets of laboratory
measurements. In both two- and three-dimensional breaking waves Lamarre & Melville
(1992) measured the void fraction. Following Lu et al. (1990) these data were then
used to predict the eigenfrequencies of the collective oscillations of the bubble clouds and
compared with low frequency sound measurements by Loewen & Melville(1992). It was
found that for spilling breaking the sound radiated below approximately 500Hz did not
vary with the strength of the break; however, on tile transition to plunging breaking the



low frequency sound was clearly a function of the strength of the break, and that spectral
peaks could be identified. The results of this comparison between measured and predicted
collective oscillation are shown in Figure 8.

The success of these relatively simple acoustic models in predicting parameters describ-
ing the sound radiated by breaking waves is reason for confidence that ambient sound
may be a useful tool for learning more about surface fluxes. For example, acoustic char-
acterization of collective oscillations may lead to estimates of the volume of air entrained
by breaking waves. This is important initial data for models of gas transfer.
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Abstract

This review summarises some recent findings about ocean surface
waves at the two extremes of scale - the expected configurations of
extreme wave groups (giant waves) on the one hand and on the other,
the processes whereby short wind-generated gravity waves are sup-
pressed by their interaction with longer waves. A simple approxi-
mate theory expresses the space-time configuration of extreme waves
in terms of the autocorrelation function of the wave field as a
whole, and this is tested by buoy and Surface Contour Radar measure-
ments made in the field during the SWADE experiment. The interac-
tions between (not so extreme) long wave groups and shorter
wind-generated gravity waves have been explored in the laboratory in
the NASA-Wallops Wind Wave facility. The short waves are suppressed
by breaking during the passage of the group, their significant slope
at the long wave crests remaining constant as the amplitude and
wavelength both dec.rease. The gradual regeneration of these waves
by the wind is interrupted in the tank by a wave energy front origi-
nating from the upwind end.

Introduction

People who look at waves on the surface of the sea must have
noticed both their randomness and their quasi-regularity. Their
detailed configuration changes constantly, yet the dominant wave
groups usually have a comforting regularity. Occasionally, an
extremely high crest or deep trough 'appears from nowhere' (as eye-
witnesses have claimed) sometimes causing damage or loss of life.
In a moderate wind, the surface may be covered by distinct wave
groups or trains a meter or two in length, but under high winds with
much longer big waves, the surface, streaked with spume and rippled
with very short capillary waves, often seems to have largely lost
these intermediate scale gravity waves. In a hard driven wind sea
when the longest dominant waves are breaking, the breaking zones
erase shorter slower waves leaving a smoother surface behind. When
the longest waves themselves are not breaking, any shorter waves
present do tend to break, intermittently and sporadically, near the
crests of the largest waves. The dynamics of the breaking process
have been elucidated greatly by the fine experiments of Duncan
(1981), Melville and Rapp (1985) and others.
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There is clearly a melange of processes occurring, and I would
like to concentrate on just two of these. The work that I review is
partly theoretical; the measurements have been made both in the lab-
oratory and in the field, and a number of people have contributed
substantially. Daifang Gu was involved with the theory and did the
data analysis of extreme waves- Mark Donelan and Edward Walsh gener-
ously provided, and allowed our use of, hard-won data from the Sur-
face Wave Dynamics Experiment (SWADE) in the western Atlantic Ocean
off Virginia; Jacob Chu and Steven R. Long conducted the
NASA-Wallops experiments and the extensive data analysis. To them
all, my sincere thanks.

Extreme Wave Form

Extreme wave events, giant waves or rogue waves, have been
responsible for many marine accidents, some involving loss of life.
They occur under storm conditions when the waves are already high,
perhaps amplified further by refraction in currents such as the
Agulhas current off eastern South Africa or the Gulf Stream. The
very highest individual waves, the rogue waves, seem to appear with
little warning and may be regarded as the statistical extremes in an
already rough random sea, occurring sporadically in space and time.
Although the occurrence of these events may be random, it is of
interest to inquire whether in the vicinity of extreme wave crests,
there is any predictable, expected configuration of the sea surface,
any 'organized structure' of the surface in space and time with
which a mariner and his ship must cope.

Any such 'organized structure' in a random sea (or random func-
tion in general) is not of course deterministic in the ýsual sense,
but the selection of regions surrounding extreme maxima does extract
a regularity from the randomness of the field as a whole. Suppose,
for example, we have an extensive record t(x.() of surface displace-
ment in a random wind-generated wave field as a function of position
and time. From this record, let us pick out the high wave crests -
extract instances of wave maxima lying between t. and •.+ dt, where
t is a large multiple of the r.m.s. wave height, and consider the
nature of the surface displacements surroundiný these maxima. At
the maxima, the surface displacements are all in essence the same,
t,. Close to the maxima, the surface displacements t < ,. The
expected or mean surface displacement is somewhat less than t while
still being very large, and the variance about this mean is small.
As the distance in space or time from the maxima increases, the
expected value of ? decreases and the variance among different real-
izations increases until ultimately, far from the extreme events,
the order is lost, the expected position of the free surface is
simply the mean water level, t-O and the variance is that of the
overall wave field. This paper is concerned with the question:
Given the existence of an extreme wave crest, what is the expected
surface configuration surrounding this -rest or, equivalently, the
mean over many realizations of extreme events, and what is the dis-
tribution of variance about this mean? This question seems to have
been asked first by Boccotti (1981-1989) of the UniversitA di Reggio
Calabria in Italy. In a random sea, one cannot predict where or
when extreme crests or troughs will appear, but one can predict what
their expected configuration will be when they do occur.

The direct calculation of the expected surface displacement
ý(x.t), given that at the origin, say, • has an instantaneous maximum
whose value t is a substantial multiple of the r.m.s. value

a-(-), is extremely cumbersome and has not been done. The defi-



nition of a maximum requires that the surface slope Vk be zero, the
curvature be negative, t be zero and the vertical acceleration
negative and conditional probabilities with all these restrictions
make for impossibly tedious algebra. Let us ask the question in a
different way.

Rather than seeking the precise points where realizations of

k(x,t) attain maxima, let us consider those regions where

t ! V(•)I- yo, where y is (formally) a number large compared with
unity. For a given N, at any instant these regions consist of iso-
lated islands each containing at least one maximum and as y
increases, the islands shrink, converging towards the maxima and
then disappearing. Our interest is in large values of y, where
there are rare, small, isolated islands in which kŽyo and let us
pose the question thus: Given that at x,1, say, t > y where y is

large, what is the expected distribution of t in the vicinity and
what is the standard deviation about this expected value? The
expected distribution in space and time describes the configuration
and evolution of the extreme wave events and the standard deviation
is the random uncertainty. This formulation allows a very much sim-
pler calculation.

Accordingly, let t3 -•(x.t), •-"(x+r.1+t), e=o2 and

p(r.t)-tz/e2, the autocorrelation function for the surface dis-
placement. From the theorem of conditional probability, the distri-
bution of U2 given that ,• 7yo is, in the usual notation,

p(R2 R1k Žya) - pQý 2-ki2ŽYe)/P(?!Žye).

and, for a Gaussian process, the righthand side is easy to calculate
(Phillips, Gu and Donelan, 1992). After some calculation, it is
found that the expected value of ý2 given that tj is > ye is then

f f2P2 1(.a 1 Žya)dt2

-yop[f(y)]-' (2.6)

where 1(y) is an integral expression whose asymptotic form is

1(y) _ I _ y-2 + 3y-4 - ... for y>>». (2.4)

In particular, when r-0.,-O. the autocorrelation function p-I so
that the average height of those waves higher than ya is yo[l(y)]Y so
that

V(x+r, t•)
__ = p(r.).

The simplicity of this result is a surprise. It is an approximation
in two senses - in the use of a Gaussian distribution and in averag-
ing over points in islands surrounding maxima rather than averaging
relative to the maxima themselves. Let us see how well this simple
approximation works.
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When r -0, we are concerned with waves measured in time at a
single point by a wave staff or buoy. In this simple case, the
direct calculation of the expected history of surface displacement
surrounding a high maximum is manageable with a narrow spectrum
approximation (Phillips, Gu and Donelan, 1992). Though more cumber-
some than the calculation leading to the result above, it does pro-
vide a theoretical check on the latter. Time series data obtained
in SWADE by a buoy at 38.37°N, 73.65°W during a storm on 26 October,
1990 appeared to be closely Gaussian, and the autocorrelation func-
tions p(t) were calculated for each of four data segments. The
records were then searched for maxima larger than a chosen multiple
of a. The time of occurrence of a high wave is denoted by tm and the
average surface displacement in the vicinity, t(t.+r) was found as a
fraction of k(C.) by averaging over the ensemble of maxima, A sample
of this is given in Figure 1, the solid line showing the expected
configuration using the direct calculation and the narrow spectrum
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Figure 1. Averaged time histories of t(t) in buoy data surrounding
high maxima with y- 2 (top) and 2.5 (bottom) compared with the
expected configuration (solid line) calculated'for a narrow
spectrum. For y-2.5 the sample size is of course smaller.

approximation, while the dotted and dot-dash lines show the means of
the displacements following and preceding the maximum. Figure 2
shows a comparison between the approximate theory (solid line) and
the measured averaged time histories surrounding maxima. The direct
calculation and the approximate theory are virtually indistinguish-
able in this case (which is typical of others examined); near the
maximum the measured average displacements are very close to the
theory but develop more random variations as the time interval
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increases and correlation is lost. Far from the maxima of course,
the expected surface displacement is zero with a standard deviation
of a, that of the wave field as a whole.

A much more interesting case, and a much more demanding test of
the result above, concerns the expected spatial configuration of the
surface surrounding high maxima. No direct calculation is available
for this, but according to the approximate theory, the expected
instantaneous configuration surrounding high crests should be given
by the spatial autocorrelation function, with t-0. This function
is of course the Fourier Transform of the two-dimensional wave spec-
trum and its form will depend on the directional characteristics of
this spectrum as well as its scalar wave-number dependence.

Extensive data on the spatial configuration of the sea surface
under various wave conditions have been obtained by Dr. Edward
Walsh's group during SWADE using their surface contour radar.
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Figure 2. As in figure 1, but now compared with the temporal auto-
correlation function p(e).

Briefly stated, the surface contour radar is an aircraft-mounted
radar altimeter whose beam sweeps to and fro transverse to the
flight path; the distance from aircraft to the water surface being
measured by the return time of the individual radar pulses. The
transverse sweeps mark out a swath along the flight track whose
width is proportional to the aircraft altitude and the measurements
provide a nearly instantaneous 'map' of the wave pattern in the
swath below. From the digitized data, the spatial autocorrelation
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function p(r) can readily be found; as before, the data are then
searched for high maxima (or low minima) and the ensemble of surface
configurations around these points is averaged to define •(t)/m.

This is to be compared with p(r)-.

As examples, consider two contrastine wave conditions encoun-
tered on 4 and 5 March 1991. For a coupe of days prior to the 4th,
the wind was fairly steady from the south, and the wave field at the
measurement region (south and east of the Gulf Stream) was uni-
modal, with dominant waves moving north, having a narrow directional
spread. The significant wave height was about 5 m. The spatial
autocorrection function of waves in the entire swath, shown in Fig-

1.0- cb)

•0 ~~600
60

(C)08

Figure 3. (a) Spatial autocorrelation function p(r) in a uni-modal
wind sea. (b, c, d), the mean surface configurations of the sea
surface surrounding high maxima with y- 2, 2.5 and 3.5 respec-
tively.

ure 3 a, is consistent with a field of rather lon*-crested waves,
with a dominant wavelength of about 250 m travelling slightly to the
right of the flight path. Maxima for k> ya were then identified for
values of y-2, 2.5 and 3.5 and the ensemble averaged surface con-
figurations in the vicinities of the maxima calculated. The results
are shown in Figures (3b, c, d). For y-2 the average configuration
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is remarkably close to p(r); as y increases, the theory should get
better but the statistics deteriorate (fewer realizations) so that
the 'noise' increases. The dominant characteristics, however, per-
sist.

During the following night there was a cold air outbreak, with
strong winds from the North-West and on 5 March, further measure-
ments were taken a little to the south of the previous site. The
combination of wind sea, originally travelling to the south east,
but refracted and scattered by passage through the Gulf Stream, a
residual 10-second swell travelling north produced a sea state with
a very wide directional spread in its dominant waves. The autocor-

I /

0-0

0- k-

-15 400 -ITO

Figure 4. (a) Spatial autocorrelation function p(r) in a wave field
with a wide directional spread of the dominant frequencies. (b,
c, d) mean instantaneous surface configurations surrounding high
maxima with y-2.2.5ancI3 respectively.

relation function p(r) had the rather remarkable form shown in Figure
(4a) and the mean instantaneous configurations surrounding high
maxima are illustrated in Figures (4b, c, d) for increasing values
of y (remember that the vertical scale is exaggerated). The waves
are evidently very short crested as is consistent with their wide
directional spread, having more the nature of a transient standing
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wave formed from wave groups travelling in almost opposite direc-
tions. The average configuration surrounding minima with y,2 is
shown in figure 5 - to a helmsman, the trough would look like a
'black hole'. Eyewitness reports of giant waves frequently
described them as "coming out of nowhere". It is interesting to
note that this location is near "the north wall of the Gulf Stream",
a region infamous for erratic and extreme waves.

-I

6000
((p)

0

Figure 5. Mean configuration surrounding extreme troughs in the
same data set as for figure 4, y-2. The bottom of the trough
(out of sight) extends to -1.

Short Wave Suppression

At the other end of the spectrum, we have the short gravity and
capillary waves. Mitsuyasu (1966) discovered that in the presence
of swell, short gravity wave components of a wind-wave field were
considerably smaller than they were without the swell, all other
conditions being the same. The effect was also observed by Phillips
and Banner (1974) and Donelan (1987) in wind-generated waves super-
imposed on continuous trains of swell. Although the phenomenon is
well known, t:r' • ' consensus ahu-.- the mechanisms involved.
Phillips and Banner ascribe it to enhanced breaking of the wind
waves at the swell crests, while Donelan pointed out that the oscil-
latory straining of the short waves by the swell can disrupt the
energy transfer to them from longer waves by resonant wave
interactions. It occurred to us that the nature of the mechanism
might be clarified if the wind waves were subjected to the passage
of a group of longer waves rather than a continuous train of them.
Enhanced wave breaking provides a rapid energy loss and if this is
the process responsible, the reduction in energy density should also
be found after a long wave group had passed. On the other hand,
wave-wave intereactions have time scales very much longer than the
wave period so the disruption of them as the group passes should
have little net effect.
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Figure 6. An x-t diagram of the wind-wave, swell group interaction
experiment.
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Figure 7. Ensemble means of the surface displacement specify the
propagation of wave groups past the measurement stations. Left
column, fetches of 5.2, 5.9m; right, 9.5, 14.4m.
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The experiments that I will describe now, then, involve a pre-
existing statistically steady wind wave field in a laboratory wind
wave facility into which, at the upstream end, groups of longer,
mechanically generated waves are injected, the time histories of the
wave fields being measured at various points down the tank before,
during and after the passage of the groups. Because of the random-
ness of the wind-generated waves and the absence of stationarity, it

0.04

0.0

0.04

0 .0 N •..., , •

0.10

0.0

0 50 0 50

Time (s) Time (s)

Figure 8. Time histories of e for the wind waves at u. - lScm/s
(left column) and 27 cm/s (right) at fetches 5.1, (top row),
5.9m, 9.5m and 14.4m (bottom row).
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was necessary to repeat each experiment a large number of times
(100), recording the data digitally in order to obtain ensemble
averages. Although initially motivated by the questions described
above, the experiment revealed a number of different phenomena and
several surprises, and to put them into context, consider the x-t
diagram of Figure 6 which provides a 'road-map', of the experiment,
with fetch down the tank plotted vertically and elapsed time hori-
zontally. Initially, there is a statistically steady field of wind
waves growing with fetch; the stationary observation points are
indicated by the horizontal lines. A group of longer waves is then
generated at zero fetch and passes down the tank, moving with its
group velocity, catching up and overtaking the wind waves whose

roup velocity is less. For each set of conditions, the experiment
s repeated 100 times with identical input pulses of the wavemaker.

The ensemble average of the surface displacement is just the (deter-
ministic) long wave group (Figure 7); when this is subtracted from
each realization, the residual is the distribution of short
wind-generated waves (as a function of time at each measurement sta-
tion) as modified by interaction with the long wave groups. Care
had to be exercised in extracting short wave information
particularly during the interaction, and details are given by Chu,
Long and Phillips (1992).
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Figure 9. Apparent frequencies of wind waves at crests and troughs
of the swell, with slope (ak) and frequency n. The solid line
is calculated from the kinematic conservation equation.

Figure 8 represents the time histories at fixed points of the
mean square surface displacement of the short waves in a representa-
tive sample of the experiments, each being averaged over the 100
realizations. It is clear that in each case, the wind waves are
suppressed immediately during the passage of the long wave group,
the event being marked by large spikes on the left of the figures
resulting from 'phase jitter' of the long waves among the different
realizations. This suggests that in these experiments, enhanced
breaking of the wind-generated waves is indeed the process responsi-
ble for suppression, since it provides a rapid energy loss mecha-
nism. This sugggestion is reinforced by measurements of the short
waves during the passage of the group. A short wave energy packet
is stretched and compressed by the orbital velocities of the longer
waves, the magnitude increasing in the first half of the overtaking
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long wave group as successive wave crests are higher and higher.
Its apparent frequency thus oscillates with increasing amplitude and
Figure 9 shows the (scaled) measured frequency variation as a func-
tion of long wave slope. The line shows what one would expect from
wave kinematics; the observed frequency is a little higher than the
line for high crests, possibly because of amplified wind drift which
is neglected in the calculation.

The mean square surface displacement of the wind waves at the
swell crests, relative to that before the arrival of the swell
group, is shown in Figure 10. In the absence of wave breaking, this
would increase with ak because of the convergence of flow at the
crests of the long waves combined with the decrease in local appar-
ent gravity. Clearly, in the experiments e decreases as successive
wave crests become higher. Interestingly, though, the 'significant
slope' (t) 1/

2 /Kd, where Xd is the dominant wavelength, remains sensi-
bly constant as Figure 11 shows - the wavelength at the crest of the
swell varies as (1 - ak) - indicating that as they are deformed by
the swell, the short waves retain a level of geometrical similarity,
as one might expect of intermittently breaking waves.

10 IQ 0 .'"3

"" 2t 0
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Figure 10. (left) Mean square surface displacement of the wind
waves at the swell crests (referred to undisturbed values) as a
function of swell slope ak.

Figure 11. (right) The corresponding significant slopes.

After the highest swell crest has swept through the short waves,
breaking appears largely to cease on the successively smaller crests
that follow. When the group has gone by, the water surface appears
much smoother than before even to the eye. This is evident also in
measurements of the mean square slope shown in Figure 12. At the
higher slopes of the swell, the wind wave slope is reduced enor-
mously; the smaller scales in the wind wave field which contribute
significantly to the slope seem to have in effect disappeared.

Following the suppression, the wind waves gradually regenerate,
though at a rate t' apparently slower than that indicated by Plant's
formula I =,04(u,/c) 2. The best-fit coefficient from these experi-
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Figure 12. Mean square slope at a fetch of 5.9m as a function of
time, measured using two probes 1 cm apart. left panel:
u.- 15cms-', ak - 0.1; right: u.- 15cms', ak - 0.26; bottom:
u.=27cms', ak - 0.26,
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Figure 13. Local spectra at diiferent phases of zhe interaction.
(1) initially undisturbed, (2) after passage of the long wave
group, (3) in the wave energy front and (4) after the recovery
phase.



132

ments is 5.2x 10-", being smaller possibly because of the local
smoothness of the water surface under these conditions.

This recovery is interrupted, particularly at small fetches, by
the sudden arrival of a front of waves longer and higher than the
original undisturbed wind waves. As Figure 7 shows, this is a con-
sistent and reproducible occurrence. Figure 13 shows Local spectra
at various points in the interaction - one is the initial field, two
the waves after suppression (note that the dominant frequency is the
same but the spectral density is reduced over the whole range),
three is the spectrum in the wave energy front with a higher energy
density and lower frequency than the initial field, four is the
spectrum at the end of the window, when the waves have apparently
returned to their initial state. When we calculate the significant
slope of the waves in the energy front, we find that this again is
the same as in the undisturbed field - they are higher because they
are longer. We do not altogether understand yet the da-ailed dyna-
mics of this wave energy front. They are clearly very different
from the sharp front in the frequency spectrum of wind waves. The
wave frequency is found to gradually decrease as the front propa-
gates down the tank, and I think its evolution involves leakage of
low frequency components ahead of the front by dispersion, which are
then amplified by the wind until they reach saturation.

Now that I have come to things that I do not understand, I think
I should stop. I am happy to acknowledge the support of the U.S.
Office of Naval Research for these projects and the grants N00014-
90-J-1623 and 1482.
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Effect of wind and water shear on wave instabilities

P. G. Saffman

Caltech, Pasadena, CA 91125

Abstract
The effect of vorticity or shear on the inviscid evolution and instability of surface

waves is discussed. The instability of a flat surface is considered in detail. For the
case of shear in the water, the instability is examined by means of Howard's semi-circle
theorem, which is shown to elucidate the qualitative nature of the instability domain.
This can then be determined numerically without recourse to analysis of the critical
layer. The dependence of growth rate on the air profile for the case of wind blowing
over water at rest is similarly considered. For bounded laminar profiles, the results are
found to be sensitive to the profile shape, and Miles's approximate formula is found
to be inaccurate. On the other hand, for unbounded logarithmic profiles, the growth
rates are. relatively insensitive to the profile shape. However, there is still disagreement
between numerical calculations and Miles's formula, which overestimates the growth
rate by a factor of two. A simple model is presented for the case of shear in both water
and air.

1. INTRODUCTION

There are tw3 problem areas in which wind and water shear, or equivalently vorticity
in the air and the water, affect the instabilities of surface waves at an air-water interface.
First, there is the question of the instability of existing waves, generated mechanically for
example, or by earlier winds. In this situation, the dynamics of the air is unimportant
and the hydrodynamics of the water motion is tl-e question. There are then three
categories of wave instability, as follows.

(i) Two- and three-dimensional long wave envelope modulations or side band insta-
bilities:
These go generally under the name of the Benjamin and Feir [1] instability. Instabil-
ities of this kind are also described by Lighthill [2] (who used Whitham's variational
principle), Zakharov [3], j4] and others. These instabilities have non-water wave inter-
est, because they exhibit the phenomenon of recurrence, and also because the envelope
modulation while weakly nonlinear is described by the cubic Schrbdinger equation.
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(ii) Resonant interactions, Phillips [5]:
This describes the transfer of energy between wave trains containing waves of wavenunn-
bers ki and frequencies wi when E k, = 0 and F >, = 0.

(iii) Two- and three-dimensional, sub- and super-harmonic instabilities of finite amn-
plitude waves of permanent form:
The two-dimension case was studied by Longuet-Higgins [6], [71. Saffman [8] and
MacKay and Saffman [91 applied Haamiltonian methods and the concept of signature
to explain qualitative ly some of the results, such as the change of stability when the
wave energy as a furction of wave height is stationary or modes collide. The three-
dimensional case was studied by McLean, Ma, Martin, Saffman and Yuen [10], see also
McLean [11], We shall refer to this as the MMMSY instability.

The phenomena in (i) and (iii) can, of course, be interpreted in terms of resonant
interactions, but it is useful to categorize them separately since small disturbances grow
at exponential rates rather than the linear rate associated with the resonances of (ii).

The resonances and envelope modulations are basically slowly varying, weakly nonlin-
ear phenomena, and the modifications due to shear will arise primarily through changes
in the dispersion equations and the speed of weakly nonlinear, uniform wave trains
(Stokes waves). For example, Li, Hui and Donelan [12] have calculated the effect of
constant water shear on the side-band instability for the case of infinite depth, and
found that small shear tends to enhance instability whereas large shear tends to sup-
press it.

The effect of shear on the MMMSY, basically short wave instabilities, is a more
difficult problem and will require massive computations in general, as potential theory
cannot be used to relate perturbations of the flow to perturbations of the surface.
Also, there is no scalar stream-function for three-dimensional long wave disturbances.
However, Benney and Chow [13] have used perturbation methods for weakly nonlinear
waves and found that weak shear generates relatively strong three-dimensional long
wave instabilities. The properties of the instability are significantly different from those
of the Benjamin and Feir type. For finite ampliftude waves and zero surface tension,
Okamura and Oikawa [14] have calculated the three-dimensional instability of waves
of permanent form which were calculated by Teles da Silva and Peregrine [15]. The
disturbance 7r'(x, z, t) of the free surface has the form

ft 27r' 27rinx7 oc e 2"p+qz) eo-t E e7• . (e)

They recover the finite depth MMMSY results (McLean [16]) for class I (which includes
the Benjamin and Feir instability as the subharmonic wave number p tends to zero) and
class II (principally period doubling) disturbances, as the shear tends to zero. They
also see the Benney-Chow long oblique waves, which are absent when there is no shear.

The second problem area is concerned with wave generation by wind or current. In
particular, we can consider the generation of waves as a problem of the hydrodynamic
instability of a uniform state. For this phenomena, there are three main categories.
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(i) Kelvin-Helmholtz (KH) instability:
T1,is is the classic instability of a vortex sheet nwodified by a density difference bet ween
the fluids on the two sides of the sheet.

(ii) Miles [17] instability:
This is the instability of a shear flow in the air over water initially at rest which call
input energy into waves whose phase speed lies between the minimum and maxirIurn
of the wind velocity.

(iii) Drift layer instability:
This is the hydrodynamic instability of a current with shear in the water, which could
be produced, for example, by the drag of the air over the water or mechanically by
running a stream over the surface, as for example in an estuary. It was investigated
by Esch [181 for gravity waves on piecewise linear profiles, by Stern and Adam [19] for
capillary-gravity waves on piecewise linear profiles and by Morland, Saffman and Yuen
[20] for capillary-gravity waves on smooth profiles.

This review will concentrate on these three mechanisms of wave generation. Note
that the discussion is limited to inviscid instability mechanisms, and the direct effect
of viscosity on the wave evolution is neglected. (Viscosity may, of course, play an
important role in the generation of the shear profiles, but this is assumed to be on a
much longer time scale than that of the instability.) Viscosity is sometimes employed
to circumvent analytical difficulties associated with a critical layer; this introduces the
Orr-Sommerfeld equation (e.g. Valenzuela [21] and subsequent studies of coupled air-
water shear flows). But a consistent purely inviscid treatment is possible and the critical
layer can be ignored except that it has an indirect effect in requiring fine resolution in
the numerical integrations when the growth rate is small.

The further mechanism (Phillips [22]), in which waves are generated by random pres-
sure fluctuations due to a turbulent wind and the main effect of shear is the modification
of the dispersion relation, will not be considered here.

2. GENERATION OF WAVES BY WATER SHEAR

We consider the instability of an incompressible, infinitely deep, steady uniform flow

u(x,y,t) = U(y), v(x,y,t) = 0. Here, x is the horizontal axis in the direction of the
flow, y is the vertical coordinate (increasing upwards), and u and v are the velocity com-
ponents. The undisturbed free surface is taken as y = 0. The air motion is neglected. It
is sufficient to consider two-dimensional motion, as the inviscid form of Squire's theorem
holds. That is, for every unstable three-dimensional disturbance there is a corresponding
two-dimensional disturbance with larger growth rate (Yih (23]). Introducing a stream
function, we consider disturbances of the form

u'(x, y, t) = i~y(y)/k eCk-t), v'(x, y,t) = (y) eik(x-t) (2)

It follows from the Euler equations, and the boundary conditions that the pressure
is constant on the free surface and the disturbance vanishes at infinite depth, that ¢
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satisfies

- U¢ = 0, (3)

with boundary conditions

(U - c)2 0¢ - (U,(U - c) + g + TO2 ) = 0 on y = 0, (4)

and

--*0 asy--oo. (5)

Here, g is gravity, T is surface tension and k is the wavenumber of the disturbance.
This is an eigenvalue problem for the (possibly complex) disturbance wave speed c. If
ci = !c 5 0, then the disturbance grows at an exponential rate and the flow is unstable.
(The roots come in complex conjugate pairs so it is sufficient to find a non-zero c'.) For
a given shear profile, with Ud = U(O) giving a characteristic speed, and

A =2- f U (y) dy (6)

a characteristic thickness of the drift layer, it follows that

c = fn (Ud, A, g, T, k). (7)

The mathematical task is to determine the values of the parameters which make C
complex.

We know that there are two kinds of eigenfunction and eigenvalue. There are the
proper ones, which are associated with a discrete spectrum. The eigenvalues are isolated,
and the eigenfunctions are non-singular. In the pesent case, the proper or discrete
spectrum contains values of c which are either complex, or real with c < 0 or c > Ud. The
improper eigenvalues are values of c for which the Rayleigh equation is singular. These
have cq = 0 and 0 < c < Ud. The spectrum is continuous and and the eigenfunctions are
singular. The continuous spectrum is needed for the initial value problem or analysis
of the Rayleigh equation, regarded as the small viscosity limit of the Orr-Sommerfeld
equation, when the proper spectrum is not complete. This is the case here, where there
are only two proper eigenvalues. But the continuous spectrum usually contributes a
disturbance which decays algebraically, and is not needed for considerations of stability.
(An exception is a vortex flow studied by Smith and Rosenbluth [24] for which the
continuous spectrum grows algebraically.) We therefore restrict attention to the discrete
spectrum.

Rayleigh's criterion (see, e.g. Drazin and Reid [25] asserts that a necessary condition
for instability is the existence of a point of inflection in the velocity profile, i.e. there
exists y, in -oo < y, < 0 such that Uy,(y,) = 0. However, on repeating the details of
the argument, it is found that Rayleigh's criterion does riot apply to this problem owing
to the different boundary condition at the free surface.
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A more powerful result for qualitative analysis of the proper eigelnvalues is I loward's
[26] semi-circle theorem, which was shown by Yih [23] to be still valid for the I)resent
problem. According to this result, the unstable proper roots of the eigenvalule problem
lie in a semi-circle in the c, - ci plane whose diameter lies on the real axis froom 0 to (ij.
We can now describe the behaviour of the eigenvalues as A 2=r/k varies from 'X" to 0.

When Ud = 0 and there is no shear in the water, the dispersion relation is c ± ±<,
where

A Aj,1CO(~ = 2A- (8)

Here A,, = 27r(T/g)1/2 and cm = (4IgT) / are the wavelength and phase sp(xx( of the
slowest capillary-gravity wave.

Now introduce shear and vary A keeping all other parameters constant. When A is
very large, the effect of shear is negligible, being confined to a relatively thin layer, and
the speeds arc given by (8). There arc thus two modes, one co-flowing (i.e. with velocity
in the direction of the shear current), and the other counter-flowing. As the wavelength
decreases, the magnitudes of the speeds (decrease.

Consider first the co-flowing wave. Clearly its speed c will be greater than Ud, as
shear convects the wave. Also, as A - 0, the speed goes to infinity as the effect of
capillarity becomes dominant. Therefore there must be a value of A such that, the speed
is a minimum, and this mininmum speed is greater than Ud. Hence, the co-flowing wave
never enters the Howard semi-circle, and this mode is stable. As the Rayleigh equation
never becomes singular, the mode is unique and there are no other members of the
discrete spectrum with c > Ud.

The situation for the counter-flowing wave is fundamentally different. The entrain-
ment effect of the shear now increases the wave speed, measured algebraically. But when
A is small, the wave speed goes back to -oo, and hence there is a value of A, A,. say, for
which the wave speed is a maximum, denoted by V, say. There are now two possibilities.
First, the entrainment of the shear is smaller than cm. Then V < 0 and c is always
real and negative, and the mode is stable. Second, the entrainment is sufficiently large
that V > 0. Then the semi-circle is entered and complex roots appear. However, as
A continues to decrease, the capillary effect eventually dominates the entrainmient and
the semi-circle is exited, the mode changing back from unstable to stable. Thus, there
will be a range of wavelengths which are unstable, the limiting values being neutrally
stable as the semi-circle is entered and left. at c = 0. The deciding factors are the values
of the ratios Ud/c.m and A/A,,,.

We now give arguments to show that. Ud,/c,,, is a necessary condition for instability,
i.e. the waves are always stable when this condition is violated. Further, when this
condition is not satisfied, unstable mnodes exist only when A exceeds a critical value
which depends oi Un)/c,,.

The transition wave numbers A or which the counter-flowing wave speed enters or
leaves the semi-circle are the cigeivalies k of tlhc equation

e',,,:, + = ' ,< 0,j )
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with boundary conditions

Ud• y - (UdUd,,y + g + k2T)= 0 on y=0 (10)

and (5). These are obtained by putting c = 0 in the Rayleigh equation (3) and its
boundary condition (4). By inspection, (9) and (10) can be scaled for a given profile
in terms of c0/Ud and A/A. Then in a A/A - co/Ud plane, the curve on which c = 0
separates the plane into an upper stable region, in which c, < 0 and ca = 0, and a lower
unstable region in which 0 < c, < Ud and c, 4 0. The separating curve passes through
the point co/Ud = 1 when A/A = 0. Now c0 and A are not independent, being coupled
by the dispersion equation (8), which is fixed when c"`iUd and Am/A are known and
can be written

C0  cm ý.A A A A,,,
d =Ud 2A-, A 2A

If cm/Ud < 1 , the dispersion relation intersects the stability boundary when A is
sufficiently large, because the minimum of the scaled dispersion relation (11) moves to
the left as A increases.

For the case of an exponential profile, U(y) = Ud e the c = 0 neutral curve can
be determined analytically, and is

A )2) (12).

To obtain growth rates, numerical methods must be resorted to in general. However,
this is fairly straightforward and care is required only when cj is very small. For instance,
the Rayleigh equation (3) can be regarded as an equation for complex k as a function
of c. The value of c, is fixed and ci is varied until the solution of a centred finite
difference approximation to the differential equation and boundary conditions gives k
real. Continuation methods can be employed to find further solutions. The critical layer
is unimportant in the calculation, except for the need to employ a fine mesh near the
value of y for which U(y) = c, when c, is particularly small.

When T = 0, the locus in the semi-circle is qualitatively different. In this case, the
co-flowing waves are again always stable, but their speed tends to Ud as A -- 0.The
counter-flowing waves are stable until their wavelength decreases to a value A, at which
they are stationary. For A < A•, the entrainment by the shear makes the speed positive,
and the waves are unstable until A = 0, when c, has reached the value Ud. For the
exponential profile,

_\ 2 r2U~ 4 gA\ -13

A2 
-Ag" (%I U + (13

The mechanism for the generation of waves by drift layer instability is qualitatively
attractive. It provides a delay mechanism for the wave generation after a wind starts
blowing, because the instability mechanism will not work until the layer thickness A
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reaches a critical value. But quantitative predictions are very poor. The necessary
condition Ud > cm is not satisfied by the wind drift layer, and the predicted phase,
speeds are of order - c, which is much too fast. On the other hand, the theo-ry may be
applicable to estuary discharge (J. Jimenez, private communication) or tidal flow (1).W.
Moore, private communication) in the presence of wind. An onshore wind, for example,
would tend to amplify counter flowing waves on an estuary current or ebbing tide which
would be unstable and produce choppiness, whereas waves would not be supported with
an onshore wind and a rising tide and the surface would remain relatively smooth.

An interesting question, currently under study, is the behaviour of the instability in
the presence of a stable long wave. This is the MMMSY problem, for the case in which
a superharmonic disturbance is unstable. For capillary gravity waves, it is possible that
there might be enhanced instability because water shear causes extra corrugation of the
interfaces (Milinazzo and Saffman [271).

3. EFFECT OF WIND SHEAR ON WAVE GENERATION

We now consider the case of shear in the air and not in the water. We neglect
surface tension, and again suppose the flow is laminar and inviscid. In this case, the
eigenfunction 0(y) for two-dimensional waves of wavenumber k satisfies the Rayleigh
equation (3) for 0 < y < oo, where U(y) now denotes the shear profile in the air. In the
water, -oc < y < 0, the Rayleigh equation reduces to

0,_ - k20 = 0. (14)

Further, 0 -+ 0 as y - ±oo, and at the interface y = 0,

[p{(U - c)2 _ (U• (U - C) + g) 011air - (15)

These e-uations again constitute an eigenvalue problem for the wave speed c.
Miles [17J and Lighthill [281 demonstrate the existence of growth by a quasi-steady

analysis of the critical layer for waves whose wavenurnber is such that 0 < c, < U"",
where c.. V/l. they give the formulae

rf3 wc e-w2 d) (16)

where r IP/P., { = ky, w = U(y) - cw, and a prime denotes differentiation with
respect to ý. A subscript c indicates evaluation at the critical layer { = kyc, which is
defined by U(yc) = c,. If c,, does not lie between the maximum and minimum values
of U(y), then 13 is defined to be zero. We shall refer to (16) as the Miles formula. In
the case of exponential profiles in the air,

U = U, (1 - -/A), (17)

the expression for 13 can be evaluated in closed form to yield

167rrk 2 AU,, 2 kA 
(1

-c•,,(2 + kA) 2(4 + kA) 2 \. - -- "
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It can be shown that Squire's theorem still holds (see Morland and Saffman 1291), and
it is therefore sufficient to consider two-dimensional disturbances.

As for the case of shear in the water, Howard's semi-circle theorem still holds and
combined with straightforward numerical methods eliminates the need for a critical
layer analysis. For a bounded flow (i.e. Uo• < oc) such as the exponential profile
(17), or an error function profile U = U, erf (2y/VJrA), there are two modes for infinite
wavelength. As A decreases, the speed of the co-flowing wave decreases until at a critical
wavelength Xk, the wave enters the semi-circle at c, = U,. As A now tends to zero, the
locus is inside the semi-circle and the co-flowing wave is unstable for 0 < A < A,. On
the other hand, the speed of the counter-flowing wave is always negative and approaches
zero as A -- 0. These waves are therefore 'always stable. Outside the semi-circle, the
phase speed is given approximately by c, = ±c,(A,) ; U, ; which is to be expected as
the air is just a small perturbation of the water motion.

The details of the complex wave speeds in the semi-circle depend on the values of r
( 10-3 for the air-water interface) and Ag/U, , and on the profile. If Ag/Uk > r,
then c,r i c,,(,) inside the semi-circle. For Ag/U2 = 0.1, kc_ - 5 x 10-3g/U. For

Ag/U, = 0.01, kci - 0.2g/U,. The growth rates for these cases given by the Miles
formula (16) are different by a factor about 2 or 1/2 depending on the profile.

If A = 0, the shear in the air condenses to a vortex sheet, and the instability mech-
anism is the classic KH instability (see Lamb [30]). The condition for the instability of
the smooth profile to be of this class is Ag/Uk <« 21rr. The complex wave speed for
the KH instability is

c = rU± ± VAg/27r - rU:. (19)

These values are retrieved by the numerical computations when Ag/U,2 -- 0 with
A > A. In this limit, the approximation c,-, c. becomes invalid for the unstable
modes since from (19) their phase velocity is approximately constant with value rU".
The KH instability becomes significant for smooth profiles when A is small enough that
waves long compared to A are KU unstable.

Unbounded profiles, e.g. lin-log profiles in which U ox y for y < y. and U oc log y
for y > y., where y. is the width of the viscous sub-layer, are of interest as models
of turbulent flow. In this case, the semi-circle occupies the whole positive c, axis,
and all wavelengths are unstable. However, the numerics is still straightforward. It
is found that the numerical results agree qualitatively with those calculated from the
Miles formula (16) provided A > u2/g, where u. is the friction velocity. This condition
ensures that the critical layer lies outside the viscous sublayer so that the Miles formula
is applicable. For further details, see Morland and Saffman [28]. However, there is
a significant quantitative difference, with the Miles formula (16) overestimating the
growth rate obtained from numerical solution by a factor of two.

When there is shear in both Aind and water, the problem becomes more difficult. A
preliminary analysis using a piecewise linear profile indicates that new phenomena may
be present. The advantage of such a profile is that the dispersion relation is obtained
from solving a quartic, and the dependence on the various parameters is more easily
examined than is the case for smooth profiles. But there is still the difficulty of making
sense of the results when there are many parameters in the problem. The profile used
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is

0 if y < -A, ;V. + V•,y/A" if --A.. <: y < 0; (0
U(y)= W (20)

VW + V±Vy/Aa if0<y<A ;
VW,+V. ify > A,.

The main conclusion from an initial study is that water shear tends to stabilize the
Miles type instability, and extends the boundary of the region where KH instability is
seen. Also, there is a range of windspeeds for which waves with a wavelength in a range
do not grow, i.e. different wave components behave differently under a given wind in
the presence of water shear. For further details, see Caponi et al [31].
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Abstract
Living tissue adapts to its environmental mechanical loading on a daily

basis. The adaptation begins within seconds of a significant loading change
and, while the change can take months in bone, it can happen in weeks in soft
tissues. Wolff s law is one of the observations of functional adaptation of living
tissue to mechanical loading. It is the observation that the axes of the
individual bony struts in the cancellate (spongy or porous) bone coincide with
the principal axes of stress induced by the external loads applied to the whole
bone. After a brief historical introduction to the subject, two topics of current
research concerning Wolff s law are described. The first topic is a
phenomenological continuum model whose objective is to describe the temporal
evolution of both the density changes and the reorientation of the anisotropic
microarchitecture when the stress state applied to a bone is changed. The
second topic is the modeling of a possible cellular mechanosensory
transduction mechanism by which communicating bone cells (osteocytes)
sense the very small in vivo strains in the bone and signal other bone cells to
build bone (osteoblasts) or to remove bone (osteoclasts).

1. HISTORICAL BACKGROUND

The history of development of what is today called Wolff's law begins at a
meeting of a Natural Science Society in Zurich held exactly 126 years ago, in
August of 1866. In attendance were Professor H. Meyer, an anatomist, and
Professor K. Culmann who was Professor of Engineering Science at the newly
created Swiss Federal Technical Institute (ETH) in Zurich. Professor Culmann
was a leading structural engineer and his book [11 on graphical statics, the
then-current standard procedure for structural stress analysis, appeared that
year. He is credited with the creation of what we now call the two-dimensional
Mohr's circle (i.e., Mohr extended the Culmann circle to three dimensions). At
the meeting Meyer made a presentation in which he displayed preparations
and drawings of the trabecular architecture seen in a frontal section of the
pelvic end of the human thigh bone as shown in Figure 1. Note that a strut of
the cancellate (spongy or porous) bone is called a trabecula, from the Latin for
"little beam." Culmann observed that the form of the trabeculae in the pelvic
end of the thigh bone closely resembled the form of the stress flow lines (i.e.,
stress trajectories) in an object of the same shape as the bone and loaded in the
same way. He made that observation based on his experience with a crane
design that was similar in shape to the frontal section of a human
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Figure 1. On the left is Culmann's crane with the pri ncipal stress trajectories indicated. On
the right is von Meyeres sketch of the trabecular architecture in a section through the proximal
end of the human femur. Both the femur and Culmann's crane are loaded transversely at their
cantilevered ends as illustrated on the little insert at the lower far right. Taken from Wolff [2].

thigh. Figure 1, taken from an 1870 paper [2] of Wolff s, illustrates the
relationship between trabecular architecture and the stress flow lines of
Culmann's crane. The coincidence of trabecular directions with the directions
of the stress flow lines is called Wolffs law. The interaction between Meyer and
Culmann is considered by many to be the origin of what is perceived to be
Wolff s law. The name of Julius Wolff, an anatomist and a contemporary of
Meyer and Culmann, is associated with the observation because Wolff wrote
voluminously about it, Wolff [3, 4]. The meeting of Meyer, the anatomist, and
Culmann, the engineer, was an important historical event, the apparent
genesis of the important biological concept of structural adaptation. Culmann's
involvement with the ideas of structural adaptation in bone was a minor
incident in a highly successful professional engineering career. Culmann did
not publish any material on this topic, although he published a great deal on
graphical statics and a very influential 1851 article on the la~est advances in
bridge, railway and river-boat construction in England and the United States,
Charlton [5].

With the observation of Culmann as his basis, Wolff [2] in 1870 stated
that, when the environmental loads on a bone are changed by trauma,
pathology or change in life pattern, functional remodeling reorients the
trabeculae so that they align with the new principal stress trajectories. Wolff
never attempted to prove this assertion. In 1885, Roux [6], who broadly

generalized the concept of functional adaptation, produced an analysis of the
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Figure 2. Left: Pauwels' [12] sketch of the cancellous architecture in the ankylosed knee he
considered. Right: Pauwels' sketch of the principal stress trajectories in the photoelastic model
he constructed. The two transverse dotted lines in the photoelastic model are the boundaries of
the anatomically correct model of the knee.

structure of the cancellous tissue of an ankylosed knee as a proof of Wolff s law.
The development of the theory of the trajectorial architecture of cancellous bone
appears to have slowed after the 1885 book of Roux because the theory had
developed as far as it could with the then current techniques for stress
analysis.

In 1954 Pauwels [7] examined another ankylosed knee using two-
dimensional photoelastic models to estimate the principal stress trajectories in
the knee. Figure 2(a) shows Pauwels' sketch of the cancellous architecture of
the ankylosed knee and Figure 2(b) shows the stress trajectories in his
photoelastic model of the situation. Pauwels indicates that this analysis is a
proof of Wolff s hypothesis.

An increased research interest in the trajectorial theory of bone
architecture has occurred in recent yeavs. This increased research interest is
driven by two synergistic factors. First, there is the clinical need to understand
the mechanical and remodeling behavior of bone tissue because the use of
implanted bone prostheses has increased very greatly. Prostheses transfer joint
forces to the bone cortex via the trabecular network. Second, scientific and
engineering experimental techniques developed in the physical and biological
sciences and in engineering in the last thirty years now supply the technology
that blocked further development in the 1880's. For example, Hayes and Snyder
[8] employed quantitative stereology techniques and a two-dimensional finite
element mesh to study the trabecular architecture of the patella and concluded
that the trabecular structure aligns itself with principal stress trajectories.
Little et al. [9] reported a three-dimensional finite element analysis of the upper
tibia and made drawings of the stress trajectory patterns. They concluded that
these patterns are very similar to the orientations of the trabeculae in the
section views of actual tibiae.

The uaiderlying idea of the studies of Little et al. [9] and Hayes and
Snyder [81 is the same as that that underlay the analysis of Roux and of
Pauwels, namely, the verification of Wolff s trajectorial architecture hypothesis
by comparison of the stress trajectories predicted by elastic stress analysis with
the actual trabecular trajectories. Roux used rubber models in the shape of the
ankylosed knee and noted the deformation patterns of inscribed lines on the
surface of the rubber when it is loaded as a knee is loaded. Pauwels used the
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photoelastic stress analysis. Unlike the experimental models of Roux and
Pauwels, the finite element technique can be applied to the stress analysis of
objects of any shape and of any degree of anisotropy and inhomogeneity, thus
permitting cortical bone to be distinguished from cancellous bone, and
cancellous bone tissue of different densities and different elastic constants to be
distinguished in the model.

2. THE PIHENOMENOLOGICAL CONTINUUM AND MECHANOSENSORY
TRANSDUCTION MECHANISM MODELS

A phenomenological continuum model for the temporal evolution of both
the density changes and the anisotropic microstructure of cancellous bone is
described in the next three sections. In this model a quantitative stereological
measure of the mic-ostructural arrangement of trabeculae and pores of
cancellous bone, called the fabric tensor, is related to the elastic constants of the
tissue. This formulation of the elastic constitutive equation in terms of the
fabric tensor leads to a mathematical statement of Wolff s law at remodeling
equilibrium. The fabric tensor and its experimental determination are
discussed in the following section. The relationship between the elastic
constants and the fabric tensor in a local region of cancellous bone is described
in a subsequent section. A mathematical formulation of Wolffs law of
trabecular architecture at remodeling equilibrium is sketched in the fifth
section.

The remainder of this paper concerns a cellular level mechanosensory
transduction mechanism for Wolffs law. A new hypothesis is advanced for the
cellular level feedback mechanism associated with Wolff s law. The hypothesis
concerns the mechanism by which the osteocytes housed in the lacunae of
mechanically loaded bone sense the mechanical load applied to the bone by the
detection of cyclic dynamic strains. The model incorporating this hypothesis
employs a hierarchical model of bone tissue structure as the medium for the
conversion of cyclic mechanical loading applipd to the whole bone to the fluid
shear stress at the surface of the osteocytic cell process. The proposed
mechanosensory model is described in section six and the hierarchical
anatomical and permeability model levels are detailed in the next two sections.
In the final section the predictions of the mechanosensory model and their
significance are described.

3. FABRIC

It is recognized that porosity or solid volume fraction is the primary
measure of local material structure in a porous material. Porosity does not,
however, reflect any directionality of the specimen's microstructure. The fauric
tensor is constructed to represent the orientation of the local material
microstructure in many porous materials, [10-16]. The term fabric tensor is
used here to indicate any positive definite second-rank tensor in three
dimensions that characterizes the local anisotropy of the material's
microstructure. The fabric tensor is a point property (even though its
measurement requires a finite test volume) and is therefore considered to be a
continuous function of position in the material model. Methods exist to
measure fabric ellipsoius in cellular materials, cancellous bone, rocks and
granular materials and are described in [10-161.



One rather general way to -onstruct a fabric tensor for a material is from
a set of N measurements of material microstructural features, each
measurement characterized by a scalar mn and a unit vector cn (c".c"= 1),

where n = 1, 2,...N. The normahized fabric tensor II is defined in terms of the N
observai' ons as,

N N
Ii Y, mn= 1: mnen~ftn'

n=l n=1

where the encircled cruciform indicates the open or tensor product of c" with
itself. Due to the normalization, trH = 1, since C,-cn = I for all N.

The experimental procedure for the measurement of cancellous bone
fabric is described by Whitehouse [15], [16), Harrigan and Mann [121 and
Turner et al. [13]. It consists of determining the mean distance, mn, between
the change of phases, bone to void and vice versa, along each test direction c",
The work of these authors has shown that the fabric tensor is a good measure
of the structural anisotropy in cancellous bone tissue. The methodology of
making measurements is easily adapted to an automated computational
system as shown by Harrigan and Mann [12], Turner et al. [131 and
Hodgskinson and Currey [14]. The determination of H for the cancellous bone
from a horse is illustrated in Figure 3, which is taken from [14].

4. WOLFF'S LAW AT REMODELING EQUILIBRIUM

A continuum formulation of Woltffs law at remodeling equilibrium (RE)
was suggested by Cowin [17]. This formulation is based on an elastic
constitutive relation for cancellous bone in which the elastic coefficients depend
on the solid volcme fraction of bone as well as the fabric tensor. The constitutive
equation for this continuum formulation is

T = C(H, v)[E] , or Tj = Ciji.m(H, v)Ekm , (2)

where T, H, E are the stress, fabric and strain tensors whose Cartesian
components are Tij, Hij and Eij, respectively, C(H, v) is the fourth rank

elasticity tensor whose components are Cijkm, and v is the solid volume
fraction of the trabecular tissue. The quantity C[E] is the second rank tensor
with components CijkmEkm. It is assumed that all the structural anisotropy of
the material is characterized by the fabric tensor H; this assumption can be
shown to require that the material have crthotropic symmetry, [19). The
absence of bone remodeling is remodeling equilibrium. Specifically,
remodeling equilibrium (RE) is the set of conditions under which there is no
realignment of trabecular architecture and no net deposition or resorption of
cancellous bone tissue. RE is thus characterized by a particular equilibrium
architecture, denoted by v* and H*, and a particular stress and strain state,
denoted by T* and E*, respectively. The RE stress T* and strain E* may
actually be ranges of stress and strain, or some special measures of stress and
strain history. This matter is discussed by Cowin [201. It is reasonable to think
of T* and E* as long time averages of the environmental stress and strain,
although they may be other functions of the stress and strain history of the hone
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Figure 3. The fabric ellipses for cancellous bone; faces of two cubes of cancellous horse bone.

tissue.
Wolff s law of trabecular architecture is the observation that the

principal stress axes coincide with the principal trabecular directions in
cancellous bone in RE. This means that, in RE, the principal axes of stress T*
must coincide with the principal axes of fabric H*. This coincidence of
principal axes is assured if the matrix multiplication of T* and H* is
commutative, i.e., if

T*H* = H*T*. (3)

This equation, which is a simple statement of the commutability of the matrix
multiplication T* and H*, can be viewed as an algebraic statement of the
phenomenological Wolff s law. If the principal axes of T* and H* are
coincident, it is shown in [17] that the principal axes of E* are also coincident
with those of T* and H*, thus

T*H* = H*T*, E*H* = H*E*, T*E* = E*T*, (4)

the principal axes of T, E and H are all coincident or they are all distinct. Since
the eigenvectors of H are the axes of material symmetry for orthotropy, this
coincidence of the principal axes of T, E and H is equivalent to the observation
that the principal axes of T and E coincide in an orthotropic material only when
the axes of T and E are coincident with the axes of material symmetry.
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Figure 4. An illustration of the formulation of the evolutionary fabric problem considered. a.)

The remodeling equilibrium situation associated with a stress state T' that exists for t < 0. b.)

The situation at t = 0+ when a new stress state T* is applied and held constant for all subsequent
time.

5. AN EVOLUTIONARY WOLFF'S LAW

A constitutive hypothesis to describe the temporal evolution of trabecular
architecture, an extension of the formulation of Wolff s law at remodeling
equilibrium described above, was put forward by Cowin et al. [21]. That
constitutive hypothesis will be described here, without equations. This is
accomplished by describing what the theory will predict in a particular,
spatially homogeneous evolutionary fabric problem.

The evolutionary fabric problem considered is a situation in which a
spatially homogeneous trabecular architecture, characterized by the fabric H'
and a solid volume fraction vo, is in RE under the stress T' and the strain E' for

a long time (-oo < t < 0). At time t = 0' the stress is changed to a new stress T*

and held at the new stress for all time (0 < t <o-). As time becomes very large a

new RE state denoted by T*, H*, E* and v* is achieved. The two RE states of the
problem are thus characterized as follows: the one that exists before t = 0 is

characterized by T', E', H' and vo; and the one that exists as time becomes very
large, is characterized by T*, E*, H* and v*. These two stress states are
illustrated in Figure 4.

The fabric and strain tensors as they evolve in time between these two RE
states are denoted by H(t) and E(t). The various coordinate systems employed
are illustrated in Figure 5. Figure 5 is a sequence of four illustrations showing
the temporal evolution of the trabecular architecture from an RE situation
characterized by states of stress, strain and fabric denoted as T', E' and H',
respectively, to an RE situation characterized by states of stress, strain and
fabric denoted as T*, E* and H*, respectively. Figure 5a illustrates the
remodeling equilibrium situation that exists for t < 0. The principal axes of T°,
E' and H° are coincident. Figure 5b illustrates the situation when remodeling
is initiated at t = 0'. The applied stress is now represented by the temporally
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Figure 5. This sequence of four illustrations shows the evolution of the trabecular architecture
from an RE situation characterized by states of stress, strain and fabric denoted as To, E' and
H', respectively, to an RE situation characterized by states of stress, strain and fabric denoted
as T*, E* aihd H*, respectively. The clockwise sequence starting from the upper left hand
corner, (a), (b), (c) and (d) is described in the text.

constant stress tensor T*, whose principal axes make an angle t with the
principal axes of the previously applied stress tensor T'. Furthermore, the
temporally varying strain tensor E(t) has instantaneously assumed a new
value while the fabric tensor H' remains at its t < 0 value. Figure 5c illustrates
the situation at a typical time t as remodeling is proceeding. The angles that
the principal axes of strain and fabric make with the horizontal axes are
denoted by e(t) and ic(t), respectively. As time increases, the principal axes of
strain and fabric move into coincidence with the principal axes of the applied
stress. Figure 5d illustrates the new remodeling equilibrium situation which is
achieved as t tends to infinity. A new RE situation has been established; it is
characterized by states of stress, strain and fabric with coincident principal

axes denoted as T*, E* and H*, respectively, and by a solid volumni fraction v*.
The model just described is necessarily non-linear. This nun-linearity is

fundamental in that it stems from the fact that, during remodeling, the
relationship between stress and strain is changing as the stress and strain
variables themselves are changing. In order to preserve the remodeling
property of the model, terms that are of the order strain times the changes in
density and/or microstructural properties must be retained. If these terms
were dropped, there would be no feedback mechanism for architectural
adaptation and no adaptation of the trabecular architecture. There is,
therefore, no linearized version of this model of the temporal evolution of
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trabecular architecture. A significant limitation of the proposed continuum
model is the length scale below which it cannot be applied, about 5mm, because
of the inhomogeneity of the porous structure. This precludes application of the
model at a bone-implant interface.

6. MECHANOSENSORY MECHANISM

The continuum model considered above is described as
"phenomenological" because it has as its objective a description of the observed
phenomena, without addressing the mechanism that controls the phenomena.
The remainder of this paper addresses this shortc3ming by describing a model
for a cellular level mechanosensory transduction mechanism for Wolffs law.
This is a new hypothesis for the cellular level feedback mechanism, recently
advanced by Weinbaum et al. [22]. The hypothesis is that the mechanical loads
applied to a whole bone cause the movement of bone water which, in turn,
causes shear stresses on the bone cells encased in the whole bone; the bone
cells sense these stresses and communicate with other bone cells to deposit or
resorb bone tissue. The bone cells that sense the fluid movement are the
osteocytes housed in the lacunae. The strains that are detected are cyclic
dynamic strains. The model incorporating this hypothesis employs a
hierarchical model of bone tissue structure as the medium for the conversion of
cyclic mechanical loading applied to the whole bone to the fluid shear stress at
the surface of the osteocytic cell process.

There are three levels of scale in this model. The smallest scale level is
the spacing A (approximately 7nm) between the proteoglycan fibers on the
membrane surface of the osteocytic process. The middle scale level is the gap
(approximately 0.1 gm) between the wall of a canaliculus and the surface of the
cell process in the canaliculus. The largest scale level is a unit cell
(approximately a cubic voiume 40 gim on each edge) containing a lacuna and
half the length of all the canaliculi associated with the lacuna. Using viscous
fluid theory, the Brinkman approximation for fluid flow through porous media
and the Biot theory - the theory of stress-induced flow of interstitial fluid in
porous solids - we relate the fluid shear stress at the osteocytic surface to the
mechanical load applied to the bone.

7. HIERARCHICAL MICROANATOMICAL MODEL LEVELS

The purpose of this section is to describe the three hierarchical
anatomical levels of the model. An anatomical illustration of a lacuna housed
osteocyte and its cytoplasmic processes, taken from page 225 of Krstic [231, is
shown in Figure 6. A schematic model of the lacunar-canalicular porosity
associated with the fluid space surrounding the osteocytes in a trabecula is
illustrated in Figure 7. An idealized model of the cross section of a canaliculus
is shown in Figure 8. This figure illustrates the details of the fluid annulus of
the canaliculus with its cell process and fiber matrix structure. While Figure 7
is on the length scale L (approximately 40ptm) of the lacunar spacing, the field
shown in Figure 7 is 5L by 5L (200pm by 2004m); both panels of Figure 8 are on
a scale of about 1/500 that of Figure 7, approximately 0.4 tm by 0.4gm. The top of
Figure 8 shows the annular shape of the transverse cross section and the
bottom shows a longitudinal cross section. The annular region exists between
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Figure 6. Diagram of two osteocytes (1) in the } i
lamellar bone of calcified bone matrix (3).
Two neighboring lamellae (2) with different
collagen orientations (7) are visible. The 2
osteocytic cell bodies are located in lacunae
and are surrounded by a thin layer of
uncalcified matrix (4). Their cell processes
(5) are housed in canaliculi (6). Some of the
gap junctions between the cell processes are
indicated (arrows).

the surface of the osteocytic cell membrane and the surface of the canalicular
wall. Figure 8 shows an idealization of the cross-bridging fibers and the open
gap A between the fibers. The cross-bridging fibers, which traverse the annular
region, represent the cross linking proteoglycans of the surface glycocalyx
structure. It is important to note that the canaliculus shown in Figure 8 is one
of the many canaliculi indicated on the much larger scale idealization shown
in Figure 7. Figure 9 gives an enlarged view of the cross linking proteoglycan
net in a small central section of a typical canaliculus, such as the one labeled
[1] in Figure 7. Figure 9 is another idealized model of the cross linking
proteoglycan net in the annular region between the osteocytic cell membrane
and the surface of the canalicular wall. Figure 9 is on a scale of about 1/4 the
scale of Figure 8 and 1/2000 the scale of Figure 7. Although the model of the
cross linking proteoglycan net used in the analysis of [22], shown in Figure 8,
does not mimic the detail of the representation of the cross linking proteoglycan
net shown in Figure 9, the work of Weinbaum et al. [251 shows that the effective
fluid resistance is roughly the same for both periodic and random matrix
structures with the same average fiber spacing.

The four fundamental lengths that characterize the local fluid behavior
are shown in these figures. One is the center to center distance between two
lacunae L illustrated in Figure 7 and a second is the radius of curvature of the
annulus b as shown in Figure 8. The other two fundamental lengths are shown
in Figures 7 and 8: the gap height of the annulus, (b - a), and the matrix fiber
spacing A.

8. HIERARCHICAL PERMEABHILT MODEL LEVELS

The purpose of this section is to describe the three permeability constants
associated with the three hierarchical length scales A , (b - a) and L. These
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Figure 7. An idealized model of a trabecular cross section illustrating the lacunar-canalicular
porosity associated with the fluid space surrounding the osteocytes in a trabecula. The number
[11 indicates one of the numerous canaliculi that connect lacunae 121. The number [1] also
indicates the region of this Figure that is enlarged many times in Figure 8. Each lacuna 121

houses an osteocyte

"(not shown), and
"osteocytic processes
"(not shown) run from
each osteocyte about
half way down each

canaliculus to
connect, with a gap
junction (not shown),

[4] to the osteocytic
processes from the

osteocyte housed in
the adjacent lacuna.
The number [31

L indicates the unit
cell used in our
calculation of them~~m mlarge scale
permeability

L constant k, [41

indicates bone cells

it -on the surface of the
trabecula. The
linear stressS• 131 L= :=:: distribution that the

cossection is
subjected to at oneDu extreme of the cyclic
loading is indicated
by [51 and at the other
extreme by [61. This
linear stress
distribution
represents a periodic,

combined axial and
bending loading.
The length L is the

- .- center to center
[61 51 distance between two

- •lacunae.

levels correspond to the three hierarchical levels of the model described in the
previous section. The three permeability constants are denoted by kp, kp,eff and
k, respectively, and each has the units of area. The local or small scale
permeability constant kp represents the permeability of the bone fluid through
the cell membrane glycocalyx of cross-bridging fibers of the
glycosaminoglycans (GAGS) of the proteoglycans, without consideration of the
boundaries of flow, namely the surface of the cell process and the wall of the
canaliculus. In order to account for the boundary layer effects at these
boundaries of the por- space, the effective permeability kp,eff constant is
introduced. It represents an averaging of the small scale permeability kp over
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Figure 8. An idealized model of the cross
section of a canaliculus: (top) transverse
cross section showing the annular shape of the
region, (bottom) the longitudinal cross
section. This Figure is on a scale of about

bp 1/500 times the scale of Figure 7. This Figure
a,/ gives an enlarged view of a small central

- -section of a typical canaliculus, such as the
. . / - ' one labeled [1] in Figure 7. The number [11 of

/ this Figure indicates the surface of the
osteocytic cell membrane, [2] the gap junction
between two connecting osteocytic cell

[3 1 _1 processes, [3] the surface of the canalicular
wall, [4] a typical fiber traversing the annular

\ \\ region and representing the cross linking
proteoglycans. The dotted lines [5] represent
the outer edge of the viscous boundary

(a) layer.The velocity distribution varies from a
radially distorted parabola [61, to a plug flow

[7] as the effective viscous boundary layer diminishes due to an increase in the fiber density.
Three of the four fundamental lengths that characterize the local fluid behavior are shown: the

radius of
[3) curvature of

the annulus
b, the gap

7]] height of the4- [5 annulus,

--[6, (b- a), and
the open gap A
between the

------- .. -fibers. The
Ostocytic Process Connecting Osteocytic Process fourth

(2)fun damiental
length is the
center to
center
distance

- length L

between two

(b) lacunae
shown in
Figure 7.

the annular pore space of the canaliculus. The large scale permeability
constant k represents the permeability of the entire canalicular system of a
lacuna, a system consisting of all the canaliculi associated with one lacuna.
The following items are discussed below in the order indicated: the largest
scale constant k; then the smallest scale constant kp; formulas for kp,eff and k;
and the relationship of kp to D.

The large scale permeability constant k is introduced as part of Darcy's

law. If u represents the fluid velocity vector and Vp the gradient of the pore
fluid pressure p, then Darcy's law is

U = -KVp, (5)
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Figure 9. An idealized model of the cross linking proteoglycan net in the annular region
between the osteocytic cell membrane and the surface of the canalicular wall. This Figure is on
a scale of about 1/4 the scale of Figure 8 and 1/2000 the scale of Figure 7. This Figure gives an
enlarged view of the cross linking proteoglycan net in a small central section of a typical
canaliculus, such as the one labeled [1] in Figure 7. The number [1] of this Figure indicates the
osteocytic cell membrane, [2] the surface of the canalicular wall, and [3] the darkened ellipses
represent albumin molecules.

where the coefficient of permeability, K = k/g, is a ratio of the permeability

constant to the fluid viscosity g.
The local or small scale permeability constant kp for the fluid filled

matrix is introduced as part of Brinkman's [26] equation. The theory in Tsay
and Weinbaum [271 has shown that Brinkman's equation provides a highly
accurate approximation for bounded flow in a channel with cross-bridging
fibers provided the aspect ratio of the fibers is greater than five. This criterion
for the aspect ratio is easily satisfied for long slender proteoglycan fibers. We
thus describe the fluid annulus surrounding the osteocytic process by a
Brinkman equation for a fiber filled medium,

Vp =g •u + 4.V2 u. (6)

Brinkman's equation (6) reduces to Darcy's law (5) in the dense fiber limit

when kp is small and to the standard Stokes equation (i.e.,Vp = ýiV 2u) in the
limit where the fibers are dilute and kp is large. The Brinkman equation (2)
shows that the thickness of the fiber induced boundary layer is of the order 'kp.

The average velocity of flow through a canalicular pore annulus
containing the fiber matrix is obtained by dividing the volume flow rate Q
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through the canaliculus by the annular area 7r(b 2 - a2 ). The effective
permeability kp,eff is determined from the average velocity Q/n(b 2 - a2), where Q
is calculated from the velocity profiles in the annulus obtained from the
Brinkman equation (6), the fluid viscosity g, and the pressure gradient in the

axial direction of a canaliculus, [Vp, thus

kp, eff ` Q V-1(7)
cr(b2 - a2)

The large scale permeability constant k can then be determined by first
calculating the large scale volume flow rate by multiplying the volume flow
rate Q through one canaliculus by n/L2 - the number of canaliculi n per unit
area L2 crossing the face of a unit cell. The quantity nQ/L2 is equal to the
average velocity u in the axial direction of a canaliculus. Darcy's law (1) can
then be ih~verted to obtain an expression for the large scale permeability
constant k,

k = JnQ' JVpj'.()

This is the large scale permeability constant k for the unit cell illustrated in
Figure 7. The cell is assumed to have n canaliculi per unit area in each of its
three principal directions.

The value of the small scale permeability constant kP for an infinite
medium can be related to the fiber spacing parameter A. A relationship of this
type can be obtained from the rigorous solution for the flow perpendicular to a
two-dimensional square array of fibers. This solution, however, is a
complicated function of the fiber volume fraction for this geometry and Tsay
and Weinbaum [271 show that the following simple approximate formula for kp
as a function of A is accurate to within ten percent for all volume fractions less
than 0.7:

A 2.377
kp = 0.0572aQ(i-) (9)

a0

where a, is the fiber radius. A rough approximation to equation (9) is that kp is
approximately equal to the square of A; thus, since the Brinkman equation
shows that the thickness of the fiber-induced boundary layer is of the order (]7,
it follows that the boundary layer thickness is approximately equal to the fiber
spacing parameter A.

9. MODEL PREDICTIONS

The model described above, in conjunction with the theory of stress-
induced flow of interstitial fluid in porous solids (Biot theory), is used to relate
the externally applied cyclic mechanical loading applied to the whole bone to
the fluid shear stress experienced by the osteocytic cell process in a bone
canaliculus. The first step is to employ the Brinkman equation (6) to find the



fluid velocity in a canaliculus through the fiber net representing the cell
membrane glycocalyx of cross-bridging proteoglycan fibers. This velocity can
then be used to relate the fluid shear stress on the cell process to the pressure
gradient in the canaliculus. The pressure gradient in the canaliculus is
related to the applied mechanical loading by the Biot theory [281. Biot theory has
two basic assumptions: (i) Darcy's law (5) governs the flow of the interstitial
fluid; (ii), the matrix material of the porous medium follows Hooke's law. The
permeability k is employed in the Biot theory. It is calculated, as is kp,eff, from
the fluid velocity in a canaliculus determined above. The velocity is integrated
over the cross section to obtain the total flux Q which, in turn, is used in the
formulas (7) and (8) for kp,eff and k, respectively.

Biot theory is then used to calculate the pore fluid pressure relaxation
time from the expression for the large scale permeability k and known data on
the elastic constants of bone. This relaxation time has been measured
experimentally and shown to be approximately 2 sec. However, for the typical
values of a and b of the inner and outer radii of the canaliculus, 0.087 and 0.20
gim, the model predicts a fluid pressure relaxation time of the order 10-2 sec.,
much less than the experimentally measured 2 sec., if the proteoglycan matrix
were not present in the fluid annulus. However, when the annulus is filled
with a matrix whose principal component is the GAG side chains of the
proteoglycans, fibers with a typical radius of typical radius of a, = 0.6nm, one
finds for the same values of b and a that a pore relaxation time of 2 sec. can be
achieved when the fiber spacing A in (9) is 7 nm. This predicted spacing
corresponds nearly exactly with the size selective matrix structures that have
been observed at the membrane surface of endothelial cells in many tissues
where this structure serves as a capillary filter for plasma proteins, Michel
[29]. It is of particular significance that bone pore fluid is a plasma derivative
that is rich in albumin. This molecule has been hypothesized to order the side
chains of the proteoglycans, as shown in Figure 9, and thus determine the
characteristic dimension of the molecular sieve, for virtually all capillary
tissues.

The second important prediction of the model is the shear stress acting
on the membranes of the osteocytic processes. It is important to note that the
theory predicts that no fluid movement will occur, and thus no shear stress,
when the loads applied to the bone are steady. The results we report are for the
cyclic loading conditions at 1 Hz. For a matrix with the above fiber spacing one
finds that for whole bone subject to physiological strains, a peak shear stress of
between 10 and 20 dyne/cm 2 will be obtained, the maximum value depending on
the ratio of the applied bending to axial load. These shear stresses are precisely
in the same range as the fluid shear stresses acting on endothelial cells where
an adaptive remodeling of the vasculature has been observed. From geometric
considerations the portions of the membranes of the osteocytes that lie within
the lacunae would experience considerably lower shear stress levels. Although
the strain is mechanically sensed by the osteocytes, it can be communicated to
the osteoblasts and bone lining cells at the surface of the trabeculae by changes
in ion currents through cell to cell membrane ion channels in the gap
junctions at the apical ends of the osteocytic process, as shown in Figure 8b.

These theoretical predictions have important implications for the
possible nature of the excitation process that control stress-related resorption
and deposition of bone tissue. The results suggest that the same fiber matrix
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microstructure characteristic of other filtration tissues exists in the fluid
sheath surrounding the osteocytic processes. Theoretical predictions for the
fluid shear stress on the membranes of the osteocytic processes correspond
closely to the experimentally measured range of stresses where Ca++ has been
observed to be released from intracellular stores in shear stress-activated
endothelial cells. The presence of Ca÷÷ is known to control the opening and
closing of the ion channels in the gap junctions, thereby changing the potential
difference between cells. Weinbaum et al.[22] propose that the resulting change
in potential through the intracellular pathway is the electrical stimulus for the
activation of the osteoblasts.
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LIQUID LAYER DYNAMICS IN PULMONARY AIRWAYS
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Abstract
The pulmonary airways are lined with a surfactant-tich liquid layer which thickens

markedly with respiratory disease. The dynamics of this liquid layer have been investigated,
primarily through numerical simulation. Two specific cases were examined: (i) When the 1z-yer
is sufficiently thick, a fluid dynamic instability may occur, causing the liquid layer to form a
meniscus that obstructs the airway lumen. The numerical results indicate that this occurs during
deflation at approximately 25% maximal lung volume for a liquid layer initially 10 p.m thick a! ..
that the presence of surfactant can delay or even prevent this process. (ii) When a bolus
containing exogenous surfactant is instilled * +he lung, it spreads due to Marangoni convection.
The influence on spreading rate of the charactenstics of the instilled bolus and of the resident
liquid layer have been examined.

1. INTRf"DUCTION

When you exhale as far as possible, a volume of gas remains in the lung -- usually about
25% of the Total Lung Capacity (TLC) -- that cannot be eliminated no matter how much effort is
expended. While several factors contribute to this observation, the reason in many subjects,
especially those with various forms of respiratory disease, is that there is a thin liquid layer that
lines the airways of the lung from the gas exchange region in the periphery (the "alveolar zone")
all the way to ti t trachea. The liquid layer, if sufficiently thick relative to the airway radius, can
undergo a fluid dynamic instability akin to the Rayleigh instability of a liquid jet; a small
perturbation in film thickness grows for wavelengths greater than 27ta where a is the
undisturbed inner radius of the film [11. Moreover, if the liquid layer is thin relative to the
airway radius, this instability ultimately leads to the formation of an unduloid or portions of an
unduloid separated by dry regions f2l. For thicker films, as might be expected in respiratory
disease or at lower lung volumes, the instability leads instead to the formation of a meniscus that
blocks the lumen of the airway producing what is termed "airway closure" [3]. This
phenomenon is thought to be responsible for the observation that lungs trap gas at low volume
and may also be the cause of an increase in minimal lung volume in diseases which are
associated with excess airway liquid. In such diseases, airway closure, if it persists, can iead to
gas absorption peripheral to the meniscus ("atelectasis"), with a concomitant impairment in gas
exchange capability.

The thickness of the pulmonary liquid layer varies from about 0.1 pm in the smallest
airspaces, the alveoli, to about 10 ltm in the trachea in a normal, healthy lung 141, and can
increase many-fold in respiratory disease. What regulates its thickness remains largely
unknown although the epithelial cells, especially those in the alveolar zone, have the capability
of pumping sodium ion out of the airway liquid, thus setting up an osmotic gradient that draws
water out of the airway lumen and into the surrounding tissue space, the interstitium 151. In
disease, water originating in the pulmonary capillaries enters the interstitial space causing
pulmonary edema, and often leaks through the alveolar epithelium into the alveolar airspace.
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The liquid layer has many functions, among which are the transport of airborne impurities
toward the mouth, the protection of the thin layer of epithelial cells that line the airways, and the
humidification of the air that you breathe in. Although largely comprised of water, the
properties of this fluid are complicated by the presence of a potent surfactant produced by
epithelial cells in the alveolar zone, of mucus, a highly viscous, non-Newtonian substance,
introduced by goblet cells contained in the lining of the airway walls, and of proteins, some of
which are needed for normal surfactant function and others, such as those originating from the
blood plasma, which act to impair normal function of surfactant. Far from static, this layer is in
constant motion due in part to the action of ciliated cells along the airway that continually drive
the liquid toward the trachea. Additional factors that can affect the motion and distribution of
the airway liquid include coughing, transport across the airway epithelium, gravity, changes in
lung volume, and interfacial shear due to normal breathing.

One of the more fascinating yet little-studied characteristics of this liquid layer is the
potential for flows generated by surface-tension gradients (the Marangoni effect). In the normal
lung, there exists a standing gradient with surface tension low in the alveolar zone and high in
the central airways [6,71. This gradient, in combination with the cxistence of a contiguous
liquid layer, must tend to generate a steady flow of liquid toward the mouth totally apart from
flows generated by the cilia. Such naturally-occurring Marangoni flows are an aspect of liquid
transport in the lung that has never been subjected to systematic, quantitative analysis.

The role of pulmonary surfactant in disease is widely recognized. For example, in neonatal
respiratory distress syndrome (RDS) the primary pathology is a lack of normal surfactant
production. The currently accepted and generally successful treatment for infants suffering
from RDS is direct instillation of an exogenous surfactant, known as surfactant replacement
therapy (SRT) [8]. In a small but significant subgroup, however, SRT fails for reasons that are
not yet fully understood, but may be due to factors that influence the transport of exogenous
surfactant to the lung periphery. These issues have led to the recent interest in transient
Marangoni flows in thin films [9,10,11]. The observation that surfactant is efficiently and
rapidly distributed throughout the lung has also led to the notion that surfactants might be used
as vehicles for drug delivery [ 12], either by direct instillation of a bolus or via an aerosol.

In this paper, we discuss two topics related to the dynamics of the pulmonary liquid layer.
The first is airway closure which we simulate for the smallest non-alveolated airways (the
terminal bronchioles) found in the lung, including the effects on closure of endogenous
surfactant. The second is the transient distribution of a bolus of exogenous surfactant, placed in
an axi-symmetric distribution on the walls of a tube of constant diameter. In addition, some
qualitative experimental results are presented for airway closure in a large-scale model.

2. METHOD OF ANALYSIS

The purpose of this modeling study is (i) to elucidate the time-scales for airway closure and
the lung volumes at which closure occurs for a given liquid layer thickness, and (ii) to identify
the rate of spread of an instilled surfactant monolayer. For the analysis of these problems in a
thin liquid layer lining the inside of a tube of cylindrical cross-section (Fig. 1),we employ a
numerical method solving the coupled continuity, surfactant conservation and axial momentum
equations. We assume that (i) the surfactant monolayer is insoluble in the aqueous sub-phase,
(ii) that, for cases simulating expiration, the model airway retains a fixed geometry as its
dimensions decrease, (iii) the aqueous sub-phase behaves as a Newtonian fluid, (iv) surface
viscosity can be neglected, and (v) the lining is thin and disturbances are of long wavelength.
For a more detailed derivation of the following equations see [ 131.

Consistent with these assumptions, the continuity equation can be expressed as:

S+ d =0 (1)
dt dZ
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Fig. 1. Geometry used in the numerical simulations. (a) Airway closure model. (b) Surfactant
spreading model.

where A = (s2-a2)/2 (all terms are defined in the nomenclature). In order to deal with problems
in which the airway dimensions change with time, we introduce the following transformation:

z x = •(2)
L(t)

which, when introduced to eqn. (1), yields:

oA 1 d(AV) ALT+ - + = 0 (3)
td L dx L

where f is the mean fluid velocity relative to the moving wall, f = W
Applying a similar transformation to the surfactant conservation equation produces the

expression:
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where

[1 + da 4Y V'2  (5)

The axial momentum equation, with gravity oriented parallel to the tube axis is written

p- -- w- t= a r--rtE +r -- j +pg (6)
P~dtd+Urd+ z } r dr dr}

the solutions of which must satisfy boundary conditions on the radial velocity:

ds ds da daus-= +W -,I U. =-a +W,2 (7)

axial velocity at the wall

w, =xL (8)

and the velocity gradient at the interface

,(dw)i da (9UI - = -"-z (9)
Tr .dr dz

which is what gives rise to the Marangoni effect. For all cases discussed below we assume
symmetry about z = 0 and impose the condition of zero axial velocity at z = L.

The radial momentum equation is not needed since, in the long-wavelength approximation,
the radial pressure gradient can be neglected compared with its longitudinal variation.
Therefore, pressure in the liquid film is determined by Laplace's law applied across the gas-
liquid interface, used in the form:

p(z,t) = -Y+ d(r })+ pg,. (10)

where gas pressure, Pgas, is assumed constant. Combining eqns. (6)-(9) and integrating the
momentum equation across the liquid layer in the manner of Johnson et al.[31, we obtain
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This system of equations is solved numerically using a third-order Adams-Bashforth technique
for time-derivatives and central differences for spatial derivatives. In some of the following
calculations, the effects of axial inertia were negligible, resulting in a somewhat simpler form of
the equations. In addition, although surface diffusion is included in some of the foIlowing
results, it was found to be negligible in all cases when realistic numerical values are used.

For simulation of the lung during expiration, all linear dimensions are taken to vary as the
cube root of lung volume [ 141, which is assumed to decrease linearly with time:

11J3

L(t) = I I SW= L(t) (12)L~~t). =Icl- st) 3

3. EXPERIMENTS ON AIRWAY CLOSURE

To provide a qualitative illustration of airway closure, experiments were conducted in a
large-scale model of a segment of the airway tree, manufactured by a computer-aided milling
process by Hammersly and Olson [15]. Two immiscible liquids were used, silicone oil (gI =
9.7 dyne s/cm2 , p = 0.97 g/cm3) and a water-ethanol mixture (88.4% water, 11.6% ethanol by
weight) that was density-matched to minimize buoyancy effects. The water-alcohol mixture
was used to simulate the relatively inviscid air and was dyed to distinguish it from the clear
silicone oil that simulated the liquid lining in the lung.

The system was prepared for an experiment by first filling the entire network with silicone
oil, then slowly adding the water-alcohol mixture, leaving a thin, nearly uniform layer of
silicone oil on the walls of the network. The initial thickness of the liquid layer was
approximately proportional to the airway diameter for each generation (h0/s = 0.30--0.02) except
for regions of near zero thickness near the flow divider (carina) of each bifurcation. When the
entire network had been purged, the flow was stopped and a sequence of photographs were
taken during the time it took for all of the branches to become occluded by a meniscus. A
selected set of these photographs is shown in Fig. 2a-d.

Following the stoppage of flow, the uniform annular film in each airway initially grew
toward an unduloid-like shape and then finally to complete closure by a meniscus. The process
began slowly, then proceeded more and more rapidly as the amplitude of the disturbance grew,
taking a total of from about 15 to 25 minutes. The final stages in the joining of the opposing
interfaces occurred on a time scale of seconds whereas the process leading up to this event took
many minutes. By 25 minutes, all branches were occluded, producing a collection of "dog-
bone-shaped" dark regions.

Despite the tendency for the menisci to be slightly nearer the larger neighboring branch
(parent airway) in each instance, there was little evidence to suggest that a significant quantity of
liquid was exchanged between branches on the time scale of film collapse; each meniscus
occupied roughly the same fractional volume of the branch at the end of the experiment. This
may have been at least partly a result of the tendency for wall liquid to be drawn from the bifur-
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Fig. 2. Sequence of photographs showing the progression of a viscous liquid film lining the
inside walls of a plexiglas model from a layer with h0ts nearly uniform at 0.23 to a final state
with all airways occluded by a meniscus. Photos correspond to the following times, referenced
to the time that the airway shown in (a)-(c) is first purged: (a) t = 3:45 min. (b) t = 22:35 min.
(c) t = 23:05 min. (d) t = 30:45 min..

cation zones toward the center of the branch as the instability grew, leaving behind a narrowed
layer where exchange would have to take place. In every instance, the wavelength of the
instability that ultimately led to closure was comparable to the length of the branch itself.

4. PREDICTIONS OF AIRWAY CLOSURE

Airway closure was modeled for a lung during expiration using the full form of eqns. (3),
(4), (8) - (12). A single airway was considered, having the idealized geometry depicted in Fig.
la. The airway size and liquid layer thickness at maximal lung volume were selected to
represent typical values for a terminal bronchiole (see caption for Fig. 4). It is assumed that the
airway remains geometrically similar and that no liquid escapes from the ends at x = 1,-1. In
addition, the equation of state relating surfactant concentration to surface tension is given in Fig.
3, taken from the measurements of Schurch [161.

A typical result is shown in Fig. 4. In Fig. 4a, the thickness of the liquid layer is shown as
a function of time, demonstrating the transition from an initially uniform layer (perturbation
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Fig. 3 Surfactant equation of state for lung surfactant [16] used in the calculations of airway
closure. Minimum surface tension is taken to be 1 dyne/cm. Surfactant concentration is shown
here normalized to the value at a = 30 dyne/cm which corresponds to 2.3x 10's molecules/m 2,

amplitude 0.001lo0) at t = 0, through the growth of the instability and ultimate closure. For
times less than about 400 msec the layer remains fairly uniform, but thickens due to the
redvction in airway size. For t > 400 msec, the instability rapidly grows and liquid is drawn
from the ends of the tube toward the center until at t = 436 msec, the protrusion at x = 0 reaches
the centerline and closure occurs. It shotid be noted that, in all these simulations, the
approximations made in the analysis break down in the final stage of closure, but this stage
passes so quickly that it has relatively little influence on the predicted closure times 13].

For the case shown, the liquid film is at first stable to small perturbations and the initial
disturbance begins to relax toward a cylindrical surface. By the time lung volume falls to
0.89TLC, however, the film has thickened to the point that the mean inner film radius is less
than L/It and the Rayleigh instability takes over, reversing the initial tendency toward a uniform
film and generating a flow from the ends toward a growing "bulge" near the center. Given
sufficient time at a given lung volume, this instability would proceed to a new equilibrium
configuration (an unduloid) without airway closure. However, as lung volume continues to
fall, the ratio of liquid volume to tube volume increases above a critical value of 0.297 (at a lung
volume of 0.26TLC) and, rather than forming an unduloid, a closed meniscus is the stable,
minimum surface energy state. For different geometries and/or different liquid volumes, this
sequence can be altered and the critical volume condition might be met before the Rayleigh
instability causes the film to become unstable; in that case it is never possible to obtain a stable
unduloid. These events are illustrated in the stability map of Fig. 5 where a reduction in lung
volume can be viewed as moving downward along a line of fixed L/ns. For case 1, the film
begins as a stable, uniform-thickness layer, passes through a region in which the stable
configuration is an unduloid, and ends up forming a liquid bridge as a/s falls below a value of
about 0.8. Case 2 is one in which the only instability ultimately leads to a liquid bridge, by-
passing the unduloid state entirely.

The pressure distributions shown in Fig. 4b correspond to the same times and lung
volumes as shown in 4a. The interesting feature here is that the minimum pressure at the wall is
observed at maximal lung volume when the radius of curvature is largest. This counter-intuitive
result is due to the presence of surfactant at concentrations typical of those found in the lung.
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Fig. 5 Stability map for the formnation of an unduloid and liquid bridge.



As the interface contracts during expiration, the surfactant concentration rises (see Fig. 4c) and
the surface tension consequently falls. With sufficient surfactant present, it falls so rapidly that
a/a actually decreases as the airway contracts. The magnitude of the liquid pressure falls from
an initial value of about 1250 dynes/cm 2 to about 100 dynes/cm 2 and remains low for the
duration of expiration. The gradients in surfactant concentration remain relatively small until the
final stages of closure, but are, in fact, large enough to effectively "freeze" the interface due to
the Marangoni effect. Thus, closure is delayed by pulmonary surfactant as a result of two
mechanisms. First, the reduction in surface tension as the gas-liquid interface becomes
incrcasingly compressed during expiration brings about a consequent reduction in the pressure
gradient driving the instability for a given displacement amplitude. This driving force scales
with the surface tension and its reduction due to airway contraction is, in most cases, the
dominant influence. Second, the presence of a surface tension gradient produces a shear stress
at the interface (see eqn. (9)) that effectively reduces the interfacial velocity to near zero values.
By itself, this slows the instability by a factor of about four -- for a given pressure gradient and
fim thickness, the flow rate between two stationary surfaces is lower by a factor of four than
that between one stationary and one free surface. As long as the surface tension remains non-
zero, neither mechanism causes an unstable condition to become stable; they only affect the raze
at which the instability proceeds and, therefore, can influence the lung volume at which closure
occurs for a given rate of expiration.

Fig. 6 shows the results from many calculations of the type just described, both with and
without surfactant and with different values of surface tension. The two limiting cases (high
and low values of the expiration rate) can be understood as follows. In the quasi-static limit (far
to the left in the figure) closure occurs as soon as both conditions (L > ita and Viiq/s 3 > 5.6) are
first satisfied and is independent of the rate of expiration. In the limit at the right, the airway
contracts so rapidly that the instability has no time to develop and closure occurs essentially
when the volume of liquid equals the airway volume. In between these limits, a competition
exists between the growth of the instability and the reduction in airway volume. Interestingly,
the case which is thought to be most representative of the real lung (labeled case IV for
expiration rates of about 20%TLC/s) fall into this transition range, suggesting that surfactant
does indeed function to reduce the closing volume of the lung under normal conditions. Note
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Fig. 6 Closing volume for different rates of expiration. For the three curves labled Case Ill,
the surface tension is held constant at 1, 20 or 30 dynes/cm. Horizonatal lines show limits for
slow (upper) and fast (lower) expirations.
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that closing volume in a normal lung usually occurs at a lung volume of about 30%TLC,
roughly consistent with these predictions. Also consistent with these predictions, lungs with
insufficient surfactant (as in respiratory distress syndrome) exhibit gas trapping and atelectasis
at higher than normal lung volumes and often require mechanical ventilation with high airway
pressures to maintain patent airways.

Other factors, not accounted for in this model, may also be important. The airways are
compliant vessels, the stiffness of which is largely determined by the tethering forces exerted on
their external surface by the surrounding lung tissue (parenchyma). This tethering force scales
with the inflating pressure of the lung and approaches zero for lung volumes in the range of
15%TLC [171. Although the precise influence of airway compliance in the real lung is not
known, the effects of compliance nave been incorporated into a model of airway closure [181
and demonstrate that compliance hastens the closure process and would thus cause it to occur at
somewhat greater lung volumes.

5. SPREADING OF AN EXOGENOUS SURFACTANT

The geometry used to study the axial dispersion of an instilled bolus of exogenous
surfactant is shown in Fig. lb. In this model, a linear equation of state of the form, 0 = 0.ax-
off, is employed, where amax is the maximum value of surface tension. The surfactant is
deposited in an axi-symmetric distribution between x = 0 and 1 at time t = 0. This introduces a
gradient in surface tension which draws the interface to the right, dragging with it fluid in the
sub-phase. As shown in Fig. 7, liquid in the vicinity of the deposited surfactant moves outward
in the form of a propagating, shock-like disturbance of nearly constant amplitude. Over most of
the domain, flow is generated by the (nearly linear) surface tension gradient (Marangoni
convection) with capillarity associated with surface curvature playing an insignificant role. At
the leading edge of the advancing front, however, the steep gradient in film thickness gives rise
to large interfacial curvatures and capillarity becomes the dominant factor leading to pressure
gradients in the film that generate the observed flow. Surface curvature and capillarity also play
a role in the trailing region near the site of surfactant deposition, although to a somewhat lesser
extent. A simple scaling analysis, confirmed by more extensive numerical simulations [111,
demonstrates that the height of the surface film will approach twice the initial thickness of the
liquid layer and that its leading edge will propagate at a speed that scales as (aMh0gt-lt- 2)1/3.
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h__1 ,•r 0.6-

ho 1: 0.4

0.2
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Fig. 7 Dimensionless liquid layer thickness (a) and surfactant concentration (normalized by
concentration at z/L0 =0) (b) for the spreading of a surfactant from an initial deposition between
z/Lo = 0 and 1. Parameter values: h0/Lo = 0.01, ho/s = 0.01, Hbol = 0.0, Bo = 0.0. Curves
are for dimensionless times tOmaxh/(11L0 2) = 0, 2, 10, and 16.
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A refined discretization from 60 to 240 nodes dampens the waves at the trailing edge of the
propagating disturbance, but has little effect on those at the leading edge. Further refinement, to
480 nodes, produces no further change leading us to conclude that while the wave structure at
the back is a numerical artifact, the precursor wave structure is real and is presumably associated
with the dispersive character of the equation set. Subsequent results were obtained using the
coarser grid since this resolution seems adequate to capture the primary spreading behavior.

The parameters of this problem include the ratio of initial film height to airway radius
(h0/s), the ratio of initial film height to the axial extent of the region of deposited surfactant
(ho/L 0), the initial surface tension difference, the Bond number representing the ratio of
gravitational to surface tension effects, and the amount of bulk liquid deposited on the film in a
bolus along with the surfactant, characterized by the parameter Hi,0 as defined by the following
expression for the initial film thickness distribution:

h 717s+ - (13)

for -1 < z/Lo < 1 and h/ho = 1 elsewhere. Each of these was varied independently in order to
ascertain their effect on spreading behavior.

Simulations in which ho/s was varied between 0.001 and 0.04 (the range of values
anticipated in the lung) showed no significant differences from the behavior depicted in Fig. 7.
Airway curvature therefore plays essentially no role in surfactant spreading. Consequently,
models in which the effects of airway curvature are neglected would seem perfectly appropriate
for most cases.

Variations in hO/LO proved to be somewhat more significant as shown in Fig. 8. When
expressed in this non-dimensional format, the main influence of h0/Lo is on the shape of the
propagating disturbance rather than its speed of propagation with larger values giving rise to a
generally more rounded appearance and a broader, less well-defined shock zone. In
dimensional terms, since time is normalized by tLL0 2/(,maxhO) the rate at which the wave
propagates is proportional to hoVLo2; thinner films or larger regions of surfactant coverage tend
to reduce the rate of spread.
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Fig. 8 Dimensionless liquid layer thickness (a) and surfactant concentration (b) showing the
effect of changing ho/LO. Parameter values: are the same as in Fig. 7 except ho/Lo = 0.01.
Curves are for dimensionless times tamajh](tVL(t 2) = 0, 2, 10, 3nd 16.

Given this dependence of propagation speed on film thickness, it seemed reasonable to
attempt to augrrent the rate of transport by introducing the surfactant in a liquid volume
sufficient to significantly increase the underlying film thickness. However, when bolus
volumes were increased (Fig. 9), we found that the rate of propagation was virtually unaffected.
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Fig.9 Dimensionless liquid layer thickness (a) and surfactant concentration (b) showing the
effects of changing bolus volume. Parameter values are the same as in Fig. 7 except Hioi 1.0.
Curves are for dimensionless times tom ~h0/(I.o2) = 0, 2, 10, and 16.
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Fig. 10 Dimensionless liquid layer thickness (a) and surfactant concentration (b) showing the
effects of changing bolus volume. Parameter values are the same as in Fig. 7 except for Bo =
0.1. Curves are for dimensionless times t;maxho/(gL02) = 0, 2, 10, and 16.

Moreover, the additional instilled volume appears to have remained in a central pool at the site of
deposition which was proportionately of greater depth than the original case (compare Figs. 7
and 9).

Gravity was also considered by choosing values of the Bond number (Bo = 0.001 to 0.1)
corresponding to a vertically oriented airway ranging in size from a terminal bronchiole to the
trachea. Only in the tracheal simulation (Bo = 0.1) did gravity exert a significant influence,
causing the spread to be noticeably asymmetric as shown in Fig. 10. Even in this extreme case.
the rate of spread of the surfactant was only slightly increased, suggesting that, at least for
relatively small volumes of deposited surfactant, gravity plays a minor role. This is clearly not
the case, however, in experiments that have been reported in which the volume of the instilled
bolus is comparable to that of the entire central airway system 1191 in which case other factors,
not represented in these simulations, take precedence.

Lastly, we investigated the perhaps more realistic situation of placing an exogenous
surfactant on a thin film containing an endogenous surfactant layer (Fig. 11). In this case. the



propagating wave compresses the interface ahead of it, producing a secondary gradient in
surface tension due to increased concentration of the endten.,us surfttctant. This generates
flow away from the deposition site and toward more remote locations. By this mechanism, the
effect of the instilled surfactant spreads much more rapidly (compare Figs. 7 and 11).
However, because the height of the disturbance is correspondingly reduced, the amount of wall
liquid transported away from the deposition site is actually less than when there is no
endogenous surfactant. This finding is also true in cases when the volume of the bolus is
increased with endogenous surfactant present (results not shown).

0.5 2

0

Fig. 1I. Dimensionless liquid layer thickness (a) and surfactant concentration (b) showing the
effects of changing bolus volume. Parameter values are the same as in Fig. 7 except for the
presence of surfactant on the initial interface. Curves are for dimensionless times
tomaxh0/(IILo0) = 0, 1, 2 and 3.

These results can be used to predict the rate of spread of a boius of surfactant deposited in
the trachea of a newborn infant. In the absence of endogenous surfactant, and using the
parameter values given in the caption, surfactant would naverse the entire length of the trachea
(1.5 cm) in just 0.2 seconds. If we neglect the influence of bifurcations, the action of other
mechanisms such as the beating of the cilia in propelling liquid toward the mouth, and the rapid
increase in surface area per unit length of airway with distance toward the periphery, we
calculate that this front would reach the alveolar zone in about 7 seconds. Such transport rates
help to explain why surfactants instilled in the trachea of infants produce so favorable an effect,
and also argues for the use of surfactants in the delivery of other medications that need to be
drawn into the lung.

6. CONCLUSION

In this paper we have examined two problems pertaining to the stability and mobility of the
airway liquid lining as a means of raising a variety of intriguing and significant fluid dynamic
questions. As the lung and airway network expand and contract during normal breathing the
thickness of the liquid layer varies and can, if sufficiently thick, become unstable at low lung
volumes by a mechanism analogous to the Rayleigh instability of a liquid jet and form a
meniscus that blocks the airway. If this blockage persists, gas absorption peripheral to the
meniscus produces regional atelectasis and a loss of gas exchange capability. Since excess
airway liquid and atelectasis are common manifestations of respiratory disease, this
phenomenon may be critical. If atelectasis is to be avoided, the airways, if closed, must reopen
on inspiration. This raises questions concerning the movement and eventual elimination of the
liquid meniscus.
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A related set of fluid dynamic issues is raised by the presence of pulmonary surfactant
which is produced in the gas exchange region of the lung but found in varying amounts
throughout the airway tree. In lungs with normal surfactant production, a surface tension
gradient exists that has the capability of drawing liquid from the periphery toward the mouth by
the action of surface tension gradients. The importance of pulmonary surfactant is underscored
by the prevalence of pulmonary diseases in which surfactant production is imp-iired such as
neonatal or adult respiratory distress syndrome (RDS). Instillation of exogenous surfactant is
now the accepted treatment for neonatal RDS with generally excellent results. For a small but
significant subgroup, however, this therapy is ineffective. Since the efficacy of this method
may depend on how effectively surfactant is transported to the lung periphery, studies are now
underway to determine how an exogenous surfactant spreads in the lung. The spreading is
effected by Marangoni flows, raising the exciting prospect of using surfactants as a vehicle for
transporting other medications to the periphery where they can be readily absorbed.

The solutions presented here address but a few of the intriguing fluid dynamic problems
relating to the dynamics of the pulmonary liquid lining layer. Studies relating to the formation,
movement, and reopening of liquid menisci are essential to further our understanding of these
phenomena in healthy and diseased lungs. Important questions remain concerning the factors
that regulate the distribution of liquid between the vascular, interstitial and airway
compartments. The movement of airway liquid through a multiple-generation network due to
surface tension gradients, either due to endogenous or exogenous surfactant needs further study.
In particular, the potential role of instilled surfactant as a vehicle for drug delivery warrants
investigation.
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NOMENCLATURE

a = radius to free surface, cm
A = (S2- a2)/2, cm 3

Bo = Bond number, pgh0Lo/a
D, = surfactant surface diffusion coefficient, cm 2/s
g = accele.ration due to gravity, cm/s2

h = liquid layer thickness, (s-a), cm
L0  = initial monolayer half length, cm
L = airway half-length, cm
M = mass of surfactant per unit circumference, g/cm
p = pressure in liquid film, dyne/cm 2

Pgas = gas pressure in airway, dyne/cm2

s = radius to airway wall, cm
t = time, s
u = radial velocity of liquid layer, cm/s
TLC = total lung capacity
Texp = time in which the lung is emptied from TLC, s
Va = wa - xL = surface axial flow velocity relative to airway wall, cm/s
V = "if- xL = mean axial flow velocity relative to airway wall, cm/s
w = axial velocity of airway film, cm/s
W = mean axial velocity of airway film, cm/s
x = Z/L
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z = axial coordinate in airway, cm

Cc = slope of the linear equation-of-state for a vs. r, cm 2/s 2

7/ = [I + ((I/L)aa/ax) 2]-1/ 2

r = dimensionles, surfactant concentration
A. = viscosity of atiway liquid, dyne.s/cm 2

p = density of airway liquid, g/cm 3

a = surface tension, dynes/cm
amax = maximum value for o

Subscripts

a -(r-a)
s -(r=s)
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Abstract
Animals use legs and flapping wings instead of the wheels

and rotors of man-made vehicles. Some largely avoid the
energetic penalties of using reciprocating instead of rotary
motion by means of springs which store the kinetic energy that
is lost, as the body or a limb decelerates, and return it in an
elastic recoil. Pendulum mechanisms involving exchange of
kinetic energy with gravitational potential energy provide
alternative means of saving energy at low speeds.

1. INTRODUCTION

Energy saving is important to animals, in many ways. An
animal may be unable to obtain more than a limited amount of
food (and so energy) each day. Alternatively, more food may be
available only at the cost of taking risks, or of having less
time available for other activities such as reproduction. An
animal that moves economically may be able to run faster or
further for the same energy cost, so may be better at catching
prey or escaping from enemies. The structures and patterns of
movement on which economy of energy depends are largely
inherited, so can be modified by evolution - other things being
equal, animals that are more economical of energy are more
likely to survive and have offspring. This paper shows some of
the many energy-saving devices that have evolved in animals.

Unfortunately, we have to start with an awkward
complication. It is often relatively easy to predict from
engineering mechanics how a change in structure or pattern of
movement will affect the mechanical power needed for locomotion.
However, the costs that drive evolution are not work, but fuel
(food) consumption. We want to know the effects of changes not
on mechanical power but on metabolic power, the rate at which
food energy (measured as heat of combustion) is used.

We might hope to be able to calculate metabolic from
mechanical power by dividing by some constant efficiency, but
that approach would lead, in some cases, to serious errors.
Metabolic energy must of course be used when muscles do work
(conservation of energy requires it) but it is also used when
a muscle exerts tension while maintaining constant length and
so doing no work. Muscle consists of an array of inter-
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digitating protein filaments that can slide past each other,
allowing it to lengthen and shorten like a telescope. It is
made to shorten by crossbridges between the filaments which
attach, pull and detach like a team of men pulling in a rope
hand-over-hand. These cycles of attachment and detachment
continue as long as tension is being exerted, whether the muscle
is shortening or not, and each cycle costs energy.

The relationship between mechanical performance and
metabolic energy cost is imperfectly understood (Ma & Zahalak,
1991; Alexander, 1991), but to a first approximation we can
think of metabolic cost as the sum of two components:
(i) the cost of work, proportional to the work performed; and
(ii) the cost of force, proportional to the number of active
crossbridges multiplied by the number of cycles made by each of
them. The number of crossbridges is proportional to the volume
of muscle that has to be activated to exert the force, and the
rate at which they cycle is higher in muscles that can shorten
fast than in muscles that can contract only slowly. Thus
evolution can be expected to favour changes that reduce the work
that muscles have to do, that reduce the volume of muscle
involved, or that enable the animal to use slower, more
economical muscles.

2. RUNNING

The energy cost of running is particularly interesting for
the paradoxical reason that very little net work is needed, to
run at constant speed over level ground. Work is of course
required to overcome aerodynamic drag, and friction in the
joints, but the quantities are only tiny fractions of the
metabolic energy requirement (Alexander, 1977). Additional
energy costs arise because animals travel on legs rather than
wheels. It is difficult to imagine how wheels could have
evolved but La Barbera (1983) has argued that legs are in any
case preferable largely because of their capability of travel
over irreqular terrain.

To understand the additional costs of travel on legs we
must take account not only of the positive work that muscles do
when they shorten while exerting force, but also of the negative
work done when they are forcibly lengthened, degrading
mechanical energy to heat. One muscle in a leg may do positive
work while another does negative work. Alternatively, muscles
may do positive work at one stage of the stride and negative
work at another. In either case, the sum of all the quantities
of positive work performed in a journey may greatly exceed the
net work requirement. Similarly, the fuel consumption of your
car is increased if you drive with the brakes on.

The most obvious additional cost of travel on legs arises
because wheels rotate but legs reciprocate. The kinetic energy
of an animal (or of any other system of masses) can be thought
of as the sum of external kinetic energy associated with the
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movement of the centre of mass and internal kinetic energy
associated with movement of parts relative to the centre of mass
(see, for example, Alexander, 1988). The internal kinetic
energy of a wheeled vehicle may be constant, when it travels at
constant speed, but that of a legged animal rises and falls as
its legs swing backward and forward. Positive work must be done
on each leg twice in each stride, and negative work must be done
twice, to keep it swinging. The quantities involved can be
reduced by reducing the moment of inertia of the limb about its
proximal end. Specialised running animals such as horses and
antelopes have large muscles in the upper parts of their legs,
where their mass contributes little to the moment of inertia,
while their feet are slender and correspondingly light.

A pendulum can be kept swinging with very little energy
input, because potential energy changes compensate for the
fluctuations of kinetic energy. Legs may swing forward
passively in walking (Mochon & McMahon, 1980; McGeer, 1992) but
at higher speeds they have to be driven well above their
pendulum frequency. We will examine later the possibility that
legs may be spring-mounted, so as to vibrate at the appropriate
frequency, but it will be convenient to leave that until after
discussing other, more firmly established, elastic mechanisms.

We have been discussing energy costs that arise because
legs have mass and make reciprocating movements. We turn now
to other energy costs. Fig. 1 shows some simple wolking devices
which will be assumed in the discussion that follows, to have
legs of zero mass.

In Fig. l(a) each leg has two joints, powered by
appropriate actuators : a hinge joint at the proximal end, which
enables the leg to be pointed in any required direction within
a plane, and a sliding joint which allows changes of leg length.
It might have seemed more realistic to have drawn a leg with two
hinges (a "hip" and "knee") but the arrangement shown allows
the same number of degrees of freedom of movement. Suppose
that this device walks over level ground keeping the forces on
its feet vertical and equal to body weight. Suppose also that
the moment of inertia of its body is so high that the amplitude
of pitching movements is negligible. In that case, kinetic and
potential energy will remain constant throughout the stride and
no net work will be required at any stage, except to replace
frictional losses. However, at the stage shown in Fig. l(a)(i)
the hinge actuator is doing positive work and the sliding joint
actuator negative work; while at the stage shown in Fig.
l(a)(ii) the reverse is the case. Similarly, if a leg with hip
and knee joints walked in this way, the actuator of one joint
would have to do work against the actuator of the other, during
much of the stride.

This wastage of energy could be avoided by having legs with
two sliding joints as shown in Fig. l(b), or by more complicated
pantograph mechanisms such as have been used in some legged
robots (Waldon et al., 1984), but I know no cases of animals
saving energy in this way.
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Fig. 1 Diagrams of simple walking devices

Another walking style that avoids having actuators working
against each other is shown in Fig. 1(c). The torque actuator
at the proximal end of the limb remains inactive, so the ground
force is aligned with the leg. The sliding joint actuator does
negative work at the stage of the stride shown in Fig. 1(c)(i),
reducing the kinetic energy of the body; and positive work at
the stage shown in Fig. l(c)(ii), restoring the kinetic energy.
Thus positive work done at one stage is counteracted by negative
work done at another, but it is easily shown that the
quantities of work are less than in the style of walking shown
in Fig. l(a), for all reasonable step lengths. Alexander (1951)
shows similarly for a leg with two hinge joints, that positive
and negative work requirements can be minimized by aligning the
ground force with the proximal joint. The forces exerted on the
ground in walking and running by dogs, sheep and other
vertebrates tend to be aligned with the proximal limb joints,
or with points above them (Jayes & Alexander, 1978).

Even this reduced work requirement can be eliminated
(leaving only the work needed to replace frictional losses) if
the actuator of the sliding joint is replaced by a spring : the
theory is presented by McMahon & Cheng (1990). A vehicle
bouncing along on sprung legs must rise and fall, accelerate and
decelerate, but the fluctuations of kinetic energy plus
gravitational potential energy are balanced by fluctuations of
elastic strain energy.

Some of the muscles in the legs of mammals have long
tendons in series with them. These serve as springs, and have



excellent elastic properties : Bennett et al., (1986) show that
when tendons are stretched to physiologically relevant stresses,
and allowed to recoil, percentage energy dissipation is no more
than about 7%. The forces on leg tendons and the extent to
which they stretch in running, have been calculated for many
mammals (Alexander, 1988) but the most thorough studies are of
kangaroos, most recently by Griffiths (1989). He measured the
force exerted by the gastrocnemius (calf) muscle and its changes
in length, as the animal hopped. He showed that it stretched
by about 12 mm as the force increased and shortened as the force
fell, as if it were a passive spring. He also measured the
elastic compliance of its tendon and showed that 41% of the
neqative and positive work was attributable to passive
stretching and recoil of the tendon, leaving only 59% of the
work to be done by the muscle fibres.

4.7 kM 6.4 kN

tendon

Fig. 2 The force on the foot Fig. 3 At this stage
of a human runner, calculated of a galloping stride,
from force plate records. all four legs change

their direction of
movement and energy
can be saved by
elastic extension and
recoil of a sheet of
tendon in the back.

The ligaments in the arch of the human foot form an
additional spring. Fig. 2 shows a foot at the stage of a
running stride at which the forces are greatest. The ground
force and its point of application (on the ball of the foot) are
known from force plate records. The force in the Achilles
tendon and the reaction at the ankle joint have been calculated.
These three forces flatten the arch, storing strain energy in
the ligaments. Experiments with amputated feet (Ker et al.,
1987) show that the arch is a reasonably good spring, with
about 20% energy dissipation, and enable us to calculate the
strain energy stored in it. It seems that of the (kinetic plus
potential) energy lost and regained in each step, about 35% is



182

stored as elastic strain energy in the Achilles tendon and about
17% in the arch of the foot. Thus half of the negative and
positive work requirement is accommodated by deformation and
recoil of springs, leaving only half to be supplied (at
metabolic energy cost) by muscles. The muscles that attach to
the human Achilles tendon have fibres about 50 mm long, but
muscles associated with tendon springs in more specialized
running mammals have much shorter fibres. For example one of
the digital flexor muscles in the fore leg of tne horse has
muscle fibres only about 3 mm long attached to a 700 mm tendon.
Analysis of films of galloping horses shows that this muscle-
plus-tendon lengthens and shortens by about 50 mm in each
stride (Dimery, Alexander & Ker, 1986). The vestigial muscle
fibres can coutribute very little to this length change, which
must be almost entirely due to passive stretching and recoil of
the tendon. The advantage of the reduced size of the muscle
fibres is presumably that very little metabolic energy is needed
to develop tension in them.

An alternative means of saving energy is to balance
kinetic energy fluctuations against gravitational potential
energy fluctuations. In Fig. 1(d) the length of the leg is kept
constant and the ground force is kept aligned with the leg. At
the illustrated stages of the stride, kinetic and potential
energy changes art balanced and no work is required of either
actuator. 1iowever, work is required when one foot is lifted and
the other set down (McGeer, 1992). Alexander (1993) has shown
that gaits involving exchange of kinetic with gravitational
potential energy can be economical at low speeds, and that- h'aian
walking is close to making the best possible use of this
principle.

I return now to the kinetic energy changes associated with
forward and backward swinging of the legs. When quaarupeds
trot, each fore leg moves in synchrony with the diagonally
opposite hind leg. At higher speeds mammals gallop, swinging
the fore legs back while the hind legs swing forward and vice
versa. Fig. 3 shows a stage of the strike at which all four
legs change their directions of movement and internal kinetic
energy passes ti-rough a minimum. Alexander, Dimery & Ker (1985)
have shown that much of the lost kinetic energy may be stored
as elastic strain energy in a sheet of tendon in the back,
saving metabolic energy. There is another stage of the stride
at which the legs are at the opposite extremes of their ranges
of movement, at which it would again be useful to store kinetic
energy taken from them, as elastic strain energy. Bennett
(1989) has identified a sheet of tendon in the thigh as a
possible store for some of this energy.

3. FLIGHT

When insects, small birds and bats hover they beat their
wings back and forward in a near-horizontal plane, driving air
downwards in the manner of a helicopter rotor. When they fly



fast they beat their wings up and down, adjusting their angle
of attack in such a way as to supply not only the upward force
needed to counteract the body's weight but also the thrust
needed to overcome drag. In either case, we have a
reciprocating motion : kinetic energy must be supplied to the
wings twice in each wing beat cycle, and removed twice. This
may add little or nothing to the work required of the muscles,
if the inertial work required to accelerate the wings is small
compared to the aerodynamic work required for flight. Work done
to accelerate the wing at the beginning of a stroke may be
recovered as useful work done against the aerodynamic forces
that decelerate it at the end of the stroke. However, if the
inertial work requirement is large, some of it may have to be
dissipated by muscles doing negative work at the end of the
stroke.

The inertial work is relatively large in slow and hovering
flight. Ellington (1984) calculated for hovering by various
insects that the ratio of inertial to aerodynamic work lay
between 0.7 and 3. In such cases, worthwhile energy savings can
be made by elastic mechanisms. This could be done by placing
springs of appropriate stiffness either in parallel or in series
with the muscles. Springs in parallel would reduce the forces
required of the muscles without affecting their length changes
while springs in series would do the reverse. Bennett, Ker &
Alexander (1987) show that the two cases require springs of
different stiffness. Weis-Fogh (1960) described parallel
springs in the wing hinges of locusts and a series spring on a
smdi.L muscle in dragonflies. However, in advanced insects
(bees, flies, bugs, beetles etc.) the muscles themselves serve
as springs. This was demonstrated by Machin & Pringle (1959),
who showed that muscles from such insects, mounted in apparatus
that simulated the loads that would act on them in flight, could
be made to behave like springs with negative hysteresis :
instead of dissipating energy in each cycle of extension and
shortening, they did work in each cycle.

The cross-bridges seem to be the springs in these insect
muscles. In Machin & Pringle's (1959) experiments the muscle
fibres were made to lengthen and shorten by about 5% (peak to
peak). Such small length changes might be accommodated by
stretching of cross-bridges, without detachment : when a cross-
bridge detaches any strain energy stored in it is lost. The
muscles are believed to work over similarly small length ranges
in the intact flying insect. Because the range is small, a
large volume o. muscle has to be activated to supply the work
for each wing beat, so it may seem doubtful whether metabolic
energy is saved in comparison with possible alternative
arrangements that would not exploit muscle elasticity.

The wing muscles of birds are arranged differently from
those of the insects we have been discussing, with much large
velocity ratios. Consequently, they have to make length changes
of about 20% peak to peak (Cutts, 1986) and there is little
scope for exploiting the elastic properties of cross bridges.
Pennycuick & Lock (1976) suggested that useful energy savings
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might be made by storage of strain energy in bent feathers, but
Alexander (1988) argued that the mechanism could not work when
it would be most useful, in hovering. Jenkins, Dial & Goslow
(1988) Look X-ray cine film of a starling flying in a wind
tunnel and showed that the width between the shoulders increases
and decreases in each wing beat cycle. They remarked that the
furcula (wishbone) was behaving like a spring, but it is easy
to show from data in their paper that the strain energy stored
in it is only about 5% of the inertial work required to
accelerate the wings. So far, no spring has been identified
that could have an important energy-saving role in bird flight.

4. SWIMMING

Fishes swim by beating their tails from side to side, and
whales beat their tail flukes up and down. Inertial work must
be done at the beginning of each stroke, and there may be scope
for energy saving by elastic storage. Bennett, Ker & Alexander
(1987) thought that the long tendons in the tails of dolphins
might serve as in-series springs, but their (admittedly very
rough) calculations indicated that they were too compliant to
save energy. Wainwright, Vosburgh & Hebrank (1978) suggested
that the mesh of helically-wound collagen fibres in fish skin
might be a useful spring, but its geometry makes it difficult
to estimate how much strain energy is stored (Alexander, 1987)
and the possibility remains open.
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Abstract
Through the use of a feedback control strategy, one can profoundly alter the

bifurcation structure of convective flows. For instance, with the use of a feedback
controller, one can maintain the no-motion state in fluid layers heated from below
and cooled from above at significantly higher temperature differences than the
critical one corresponding to the onset of convection in an uncontrolled system.
Likewise, one can maintain steady, time-independent flow under conditions in
which the flow would otherwise be chaotic. Similarly, one can stabilize periodic
non-stable orbits which exist in the chaotic regime of the uncontrolled system.
Finally, the controller also can be used to destabilize otherwise stable flows and
thus induce chaos in laminar, non-chaotic flow. In this paper, I will discuss the
progress that has been made in achieving the foregoing in the convective loop and
the saturated porous layer paradigms.

1. INTRODUCTION

In recent years, active control strategies have been successfully used for,
among other things, noise reduction and vibration suppression. The area of active
control of fluid flow is no less important from a technological point of view; for in
many situations, it may be desirable to maintain flow conditions other than the
naturally occurring ones. Below, I mention a few examples.

In some situations, convection suppression may be desirable. For instance,
when a crystal is pulled from a liquid melt heated from below, it may be desirable to
operate at Rayleigh numbers higher than the critical one at which convection
normally begins and yet have no convection so as to minimize transport of
contaminants from the crucible walls to the crystal.

In other situations, suppression (laminarization) of chaotic or turbulent
motion and maintenance of a steady, time-independent flow may be desirable in
order to minimize flow unpredictability, remove temperature oscillations which may
exceed safe operational conditions, and/or reduce drag. For instance, stabilizing
the Blasius profile and delaying the laminar-turbulent transition in the boundary
layer flow may provide a means for reducing aircraft drag and thus obtaining
significant savings in fuel cost. Likewise, suppressing oscillatory convection in
crystal growth processes may lead to an improvement in crystal quality.

In yet other situations, it may be desirable to stabilize one of the time-
periodic orbits embedded in the turbulent attractor in order to achieve a desired
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flow behavior. Indeed, from the purely scientific point of view, the ability to stabilize
and observe various non-stable, periodic orbits embedded within the chaotic
attractor may help enhance our understanding of the chaotic dynamics and assist
us in describing various important properties of the chaotic attractor.

In still other situations, it may be advantageous to induce chaos, under
conditions in which it would not normally occur, so as to enhance mixing, heat
transport or chemical reactions in combustion chambers or chemical reactors.

Surprisingly given all the foregoing, the idea of altering the bifurcation
structure of flows through the use of active control has received relatively little
attention. Most studies to date have focused on passive control methods.

Passive control strategies do not require a direct investment of energy and
they are usually accomplished by changing the geometry of the solid boundaries.
For example, mixing can be enhanced through the use of pipes with sinusoidally
modulated walls rather than straight pipes or by introducing spoilers in the flow.
Boundary layer transition to turbulence can be delayed by using perforated solid
walls to facilitate suction (Bushnell and McGinley, 1989); and thermal convection
can be suppressed by introducing buffers in cavities. Passive devices may have
indirect energy effects as their presence may affect the amount of energy needed to
propel the fluid or to propel an object submerged in the fluid.

In contrast, active control strategies require a direct investment of energy for
actuation purposes. Examples of active control include inducement of periodic
motion of the solid boundaries, suction and/or blowing, induction of acoustic
pressure waves, and heating and cooling of the fluid to affect its viscosity. See, for
example, Liepman et. al. (1982) and Liepmann and Nosenchuck (1982) who
advocated the use of thermal actuation to suppress or enhance Tollmien-
Schlichting waves in laminar boundary layer flow. Active control strategies can be
further sub-classified into predetermined and feedback.

Predetermined control consists of pre-programmed actuation designed to
accomplish a desired outcome. The actuation, however, is not sensitive to the
fluid's behavior. For example, one may periodically modulate the motion of a
cavity's boundary to induce chaotic advection and enhance mixing (Ottino, 1991).
Another instance of predetermined control is the utilization of magnetic fields or
time-periodic modulation of wall temperature to suppress convective processes.

In contrast, a feedback controller reacts to events occurring in the fluid so as
to suppress or enhance naturally occurring instabilities. To make the concept of
feedback control more concrete, let's consider the Rayleigh-Benard problem of a
horizontal fluid layer heated from below and cooled from above (Fig. 1). In the
classical problem, as the temperature difference between bottom and top
(expressed in non-dimensional form as the Rayleigh number) increases, the state
of the system changes from no-motion to time-independent motion to time-
dependent, possibly chaotic, motion. These transitions occur because once the
Rayleigh number exceeds certain critical values, conditions are ripe for instabilities
to manifest themselves. The objective of the feedback controller is to enhance the
dissipating mechanisms so as to suppress the naturally occurring instabilities. For
example, Fig. 1 describes the control strategy (dealt with more fully later in the
paper) we used to delay the transition from the no-motion to the time-independent
motion state. In this example, a sensor measures the fluid's temperature at mid-
height and the bottom temperature is slightly modified in proportion to the deviation
of the sensed temperature from its desired (no-motion) value. At locations where
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the flow is hotter than usual and the fluid tends to ascend, the boundary
temperature is reduced to assist in dissipating the excess heat. The reverse occurs
at locations where the fluid descends. This strategy can be used to significantly
increase the magnitude of the critical Rayleigh number for the onset of convection.
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Fig. 1 A schematic description of the use of feedback control to stabilize the no-
motion state in the Rayleigh-Benard problem. 0 is the non-dimensional
temperature; x and y are coordinates in the horizontal platform; z is a vertical
coordinate; t is time; and K is the controller's gain.

For the remainder of this paper, I will focus on the use of active feedback
control strategies to modify the nature of convective flows.

2. GENERAL CONCEPTS

In this section, I will present the general concepts underlying feedback
control utilizing mathematical notation. First, let's consider the dynamic system
(i.e., the Navier-Stokes equations),

F F(B;R) (1)

where Z'- is a vector of dependent variables (i.e., velocity components, temperature,
and density); superscript dot denotes the time (t) derivative; R is the parameters'
vector (i.e., the Reynolds and/or Rayleigh number); and F is a non-linear (possibly
differential) operator with the appropriate boundary conditions. Let -=E0 denote
an equilibrium, non-transient (i.e., time-independent, time-periodic or quasi-
periodic) solution of (1). For example, E0 may be one of the non-stable periodic
orbits embedded in the chaotic attractor. As R is varied, equilibrium states may
lose stability at bifurcation points and give rise to new, non-transient, stable
solutions. Often several successive bifurcations will eventually result in chaotic
behavior. EO may be either a stable solution for a limited range of the parameters'
R (say, for RI <R<R2) or a non-stable solution for all R values. Let us assume that

for a particular process, a selected E0 has better properties than the normally
occurring flow structure. For example, in Rayleigh-Benard convection, _E0 may
represent the no-motion state which we wish to maintain under conditions in which

convection would normally occur. In turbulent boundary layer flow, EO may
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represent either the laminar, time-independent state or one of the time-periodic
orbits embedded in the turbulent attractor. Our objective is to render E0 stable in
regions of the parameter space (R) in which it would normally be non-stable.

2.1 DIRECT APPLICATION OF FEEDBACK CONTROL

Feedback control is implemented by augmenting the system (1) with the
controller C(.):

=G(-; R, K) = F(H; R) + C(Q -Eo;R. K), (2)

where C(.), the controller's output, is either a linear or a non-linear operator with
C(O; R, K)=O for all R and K values; K is the controller's gain vector; (:----E0) is the
deviation of the measured variables from their desired values; and E-0 is an
equilibrium solution which may be stable for some range of the parameters R or
non-stable for all R values. In the former case, the controller may be used to move
bifurcation points in parameter space (i.e., delay the bifurcation to higher values of
R), thus delaying the appearance of chaos. In the latter case, the controller can be
used to stabilize states which otherwise would be non-stable for all values of the
parameter R such as non-stable periodic orbits embedded in a chaotic attractor.

Note that E-=-E, is a solution of both the original system (1) and the
augmented system (2). That is, the controller preserves the system's equilibria. In
other words, the controller attempts to preserve the stability of EO in regions of
parameter space in which EEO would normally be non-stable. The proposed
method of control is not the only possible one. Alternatively, one might attempt to
achieve the desired flow behavior by generating a new flow structure (_EN) which is
an equilibrium state of (2) but not of (1), i.e., C(-EN; R,K)*O. Such a control
strategy might conceivably be necessary if none of the equilibrium states (HE-) of (1)
has the desired behavior. However, an attempt to induce a flow structure (EN)
which is not an equilibrium solution of (1) may require a fair amount of power
investment. In contrast, the stabilization of E-0 in a noise-free environment requires
an infinitesimal amount of power. Here, we discuss only the stabilization of
equilibrium solutions.

In practice, the controller C(.) can be implemented by manipulating the
system's boundary conditions. For example, one can equip some of the system's
surfaces with sensors and actuators.

In relatively simple cases, the analysis of the controlled system (2) can be
carried out using tools of stability theory to establish the effects of controller gains
on the bifurcation structure of the system. In more difficult cases, one might utilize a
"black box" approach and implement the control without knowing either the
bifurcation structure of the system (1) or the mathematical model F(.). One does
need, however, to have an estimate for E0.
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2.2 TRAJECTORY DIRECTING

A somewhat different, but related, control strategy based on analyzing the
behavior of a system's trajectories in phase space has been advanced by Ott et. al.
(1990a and b). The major advantage of this technique is that it provides a
procedure to implement control when the mathematical model for the system is not
known or is too complex to analyze. The method has been used thus far only in
low-dimensional systems. The procedure requires the identification of the non-
stable periodic orbit (P), which one wishes to stabilize and which is embedded in
the chaotic attractor, and its linearly stable (ESp) and unstable (EUp) manifolds.
This can be done by using embedding to reconstruct the phase space of the
attractor from a time series of one of the system's variables obtained by numerical
or physical experiments. Subsequently, one can construct a return map to a
selected (Poincare) cross-section obtained by stroboscopically sampling the data
at the period of the orbit one wishes to stabilize. This periodic orbit is a fixed point
on the map. The controller is applied in such a way as to force the system's
trajectories to approach the stable manifold (ESp) of the periodic orbit (P). Ott et.
al. (1990) have successfully stabilized some periodic orbits of the Henon attractor
by applying the controller once within each period. The same technique has been
implemented experimentally by Ditto et. al. (1990) to stabilize two otherwise non-
stable, periodic orbits embedded in the chaotic vibrations of a magnetostrictive
ribbon.

2.3 OPTIMAL CONTROL

Optimal control involves the minimization of an appropriately defined cost
function (Lions, 1971). For example, when one is applying heating and cooling for
drag reduction in boundary layer flow, the cost function may be defined as:

1T2
O(q) = -f dt(Jf w q(x,y,t) dxdy + D) (3)

0 s

where q(x,y) is the distribution of heating/cooling fluxes along the surface; the
integration is carried out over the entire surface over time interval T; D is the drag;
and w is a weight which represents the control's cost. In the case of convection
suppression in the Rayleigh-Benard problem, D may represent the absolute value
of the vertical velocity component integrated along a horizontal cross-section or the
Nusselt number. The objective is to obtain the distribution q which minimizes the
cost function O(q) subject to various constraints. Thus, the optimal control problem
becomes a problem of the calculus of variations.

Depending on the system's constraints, the resulting flow structure of the
controlled system may or may not be an equilibrium solution (Bo) of the system (1).
The problem can be formulated, however, as a feedback control problem in which
q=q(=.-=_0) with q(O)=0.

The advantage of the "optimal control" technique is that it provides a
systematic algorithm to obtain a desired state of the system and to optimize the
control strategy. Unlike the method described in section 2.1, one need not select a
pre-specified functional form for the operator C(-). The disadvantage is that the



method is computationally intensive and the minimization of the cost function
requires that the system (1) be solved repetitively. This may be beyond present
computational capabilities in situations in which the system (1) consists of the
Navier-Stokes equations. To alleviate this problem, Choi et. al. (1992) have
designed a simplified procedure which they have entitled "suboptimal control" and
have applied it to the stochastic Burgers equation.

3. EXAMPLES OF THE IMPLEMENTATION OF FEEDBACK CONTROL
STRATEGIES

In this section, I describe some of the work that has been done at the
University of Pennsylvania on feedback control of convective flows in a thermal
convection loop (Singer et. al. 1991, Singer and Bau, 1991, Wang et. al., 1991)
and in a saturated porous layer heated from below and cooled from above (Tang
and Bau, 1992a and b). To date, we have been able to demonstrate both
theoretically and experimentally in the case of the thermal convection loop that a
feedback controller, such as the one described in section 2.1, can successfully and
profoundly alter the bifurcation structure of convective motions by effecting small
perturbations in the boundary conditions. Currently, we are verifying that similar
results can be achieved in a fluid layer heated from below and cooled from above.
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3.1 THE THERMAL CONVECTION LOOP

Consider a thermal convection loop constructed from a pipe bent into a torus
and standing in the vertical plane as depicted in Fig. 2. The diameter of the pipe is
d; and the diameter of the torus is D. q is the angular location of a point on the
torus. The time-independent wall temperature of the pipe Tw(q), which may vary
with the angular location q, is symmetric with respect to the torus axis that is
parallel to the gravity vector. Variations in the wall temperature may cause a
spatial temperature distribution inside the fluid which, under appropriate
conditions, may induce fluid motion in the loop. The convection in such loops has
been investigated by, among others, Creveling et. al. (1975) and Gorman et. al.
(1984, 1986).

The motion in the loop can be described within the framework of
Boussinesq's approximation by using a one-dimensional model consisting of
mass, momentum and energy balances (Bau and Wang, 1991):

U = u(t), (4)

u -Ra PT cos(O)dO - Pu, and•r (5)

u d + (0)- T].
T=-uo-+ Bd 02 (6)

The fluid is assumed to be incompressible and Newtonian. In the above, all
quantities are non-dimensional. The length scale is the torus' radius D/2;

Ra = gflAT91 is the loop's Rayleigh number; P3 is the thermal expansion coefficient;
DP

g is the gravitational acceleration; and AT is the averaged wall temperature
difference between the loop's bottom and top. The time scale is -T= poCpd/(4h),

where Po is the fluid's average density, Cp is the thermal capacity, and h (which we
assume to be constant) is the heat transfer coefficient between the fluid and the
pipe's wall. P=32v t/d 2 =8 Pr/Nu is the loop's Prandtl number, where v is the

kinematic viscosity. Pr=v/o. and Nu=hd/k are the conventional Prandtl and Nusselt
numbers, respectively. a and k are the fluid's thermal diffusivity and conductivity.
B=(d/D) 2 /Nu is the Biot number.

The system (4-6) exhibits multiple, non-transient states {uo(t), To(0,t)} which
may exist only for certain Ra values and whose stability characteristics may vary in
accordance with the magnitude of the Rayleigh number. Our objective is to
stabilize and destabilize some of these equilibrium states through the use of
feedback control. Our control strategy is to measure the deviation of the actual
temperature from its desired value at various locations around the loop and modify
the wall temperature accordingly. For example, a convenient input signal to the
controller is AT3-9(t)-AT3.9,0(t), where AT3-9(t) and AT3-9,0(t) denote,
respectively, the actual and the desired temperature differences between positions
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3 and 9 o'clock around the loop. The wall temperature is modified in proportion to
the above deviation, i.e.,

T(O,t)=Tnominai(O)+C[AT3 .9 (t)-AT 3 -9,0 (t)], (7)

where the controller C(.) is typically chosen to be a linear function of its argument.
To facilitate the analysis, the temperature distribution in the fluid and the wall

is expanded into a Fourier series in terms of 0 (Malkus, 1977).

T,.(0,t) = WO(t)+W,,(t) sin(nO), and
n=1 (8)

T(O, t) = So(t) sin(nO) + C. (t) cos(ne).
,=o (9)

Expansions (8-9) are substituted into equations (4-6). By requiring that the
equations be satisfied in the sense of weighted rosiduals, the infinite dimensional
system (4-6) is transformed into an infinite set of ordinary differential equations.
Three of these equations, similar in nature to the Lorenz (1967) equations,
decouple from the rest of the set and can be solved independently with exact
closure. In other words, the entire dynamics of the system can be captured by three
ordinary differential equations:

U
w-=c-U,

P (10)
c_-Us-c (l )

s =uc-s +RaW, (12)

In the above, the dependence on the Biot number, B, was removed via the
simple, algebraic transformation {u, c, s, Ra, P, t) <- 1/(1+B) (u, Ra C1, Ra S1,
Ral(1+B), P, t(l+B)2 ). The quantities c and s, respectively, -;:esent the
temperature differences in the fluid between positions 3 and 9 and 6 and 12 o'clock
around the loop. Wi represents the difference in the wall temperature between
positions 6 and 12 o'clock. For the uncontrolled case, without loss of generality, we
set W1 =-1.

The three ODEs (10-12) possess a number of equilibrium, non-transient
solutions, some of which are listed below:

(A) no motion state (u=O);
(B) time-independent motion, either in the clockwise 'denoted B-) or

counterclockwise (denoted B+) direction (u=+±-17- 1);
(C) chaotic motion; and
(D) periodic motions of various periodicities (i.e., for certain values of the
Rayleigh number, one observes stable periodic solutions. Also, non-stable
periodic orbits are embedded in the chaotic attractor).
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Some of the above solutions and their stability characteristics are depicted
schematically in Fig. 3 for a loop Prandtl number P=4 which we estimate to
approximate the loop Prandtl number of our experimental apparatus (Singer,
1991). In Fig. 3, we denote stable and non-stable solutions by solid and dashed
lines, respectively.

Briefly, if one were to follow the chain of events in the uncontrolled system as
the Rayleigh number (Ra) increases, one would observe no net motion in the loop
for Ra<l. At Ra=l, the no-motion solution loses its stability through a supercrtical
pitchfork bifurcation and is replaced by time-independent motion. Depending on
random disturbances, this motion will be either in the clockwise (B-) or
counterclockwise (B+) direction. The motion solution is stable for 1<Ra<16. At
Ra=16, the steady solution loses stability through a subcritical Hopf bifurcation.
The resulting limit cycle is non-stable and its period increases to infinity as the
Rayleigh number decreases to Rahom- 7 .3 7 8, where the periodic orbit becomes
an homoclinic orbit and passes through the no-motion state (A). At Ra=Rahom,
there is a bifurcation (the homoclinic explosion) which results in an assortment of
non-stable periodic and non-periodic orbits known collectively as the non-
wandering set which is initially non-attracting. As the Rayleigh number is further
increased beyond RaA-15.984<RaH, the non-wandering set becomes a strange
(the Lorenz) attractor. The chaotic regime exists for Ra>RaA with occasional
windows of periodic behavior. Non-stable periodic orbits of various periodicities
are embedded in the chaotic attractor. In the chaotic regime, the motion in the loop
consists of irregular oscillations with occasional reversals in the direction of the
flow as shown, for example, in Fig. 3 for Ra=3RaH(4)=48. In Fig. 4, the
experimentally observed temperature difference between positions 3 and 9 o'clock
are depicted as functions of time. Qualitatively similar behavior is exhibited by the
variable c when the equations (10-12) are integrated numerically. The positive and
negative values of c in Fig. 4 correspond to flow in the counterclockwise and
clockwise directions, respectively.

For example, the control (7) for suopressing chaotic motion is incorporated
into the mathematical model by setting,

W = -I - -L-(COt)- C)
Ra (13)

where for demonstration purposes, proportional control is employed. In the above,
c(t) and co denote, respectively, the actual and the desired temperature differences
between positions 3 and 9 o'clock.

With the use of similar control strategies, we can alter the bifurcation
structure depicted in Fig. 3. More specifically, we can:

(i) maintain the no-motion state at significantly higher temperature differences
between the heated and the cooled portions of the loop than the critical one
corresponding to the onset of convection in the uncontrolled system (verified
thus far by theoretical calculations only, Singer and Bau, 1991);
(ii) maintain steady, time-independent flow under conditions in which the flow
would otherwise be chaotic (verified by experiments and theory, Singer et. al.,
1991, and Wang et. al., 1992).
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(iii) stabilize periodic non-stable orbits which exist in the chaotic regime of the
uncontrolled system (verified thus far by theoretical calculations only, Singer
and Bau, 1991); and
(iv) induce chaos in otherwise laminar (fully predictable), non-chaotic flow
(verified by theory and experiments, Wang et. al., 1992).
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temperature differences AT3-9 depicted counterclockwise motion solution under
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Fig. 6: The temperature difference Fig. 7: The experimentally measured
between positions 3 and 9 o'clock is temperature difference AT3-9 is
depicted for Ra=50 and P=4 as a depicted as a function of time for similar
function of time for the controlled (K=- conditions to those in Fig. 6. The
35, solid line) and the uncontrolled controller was activated 33 minutes into
(K=O, dashed line) systems. the run.

For example, we stabilized the time-independent motion (B+), by employing

the control strategy described by equation (13) with cq(t) = -IR-T1. Fig. 5 depicts
our theoretical results pertaining to the effect of the controller's gain on the location
of the Hopf's bifurcation point RaH. Clearly, negative (positive) values of K serve to
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stabilize (destabilize) the counterclockwise motion solution. As the magnitude of
the controller's gain decreases, the magnitude of the Rayleigh number at the Hopf
bifurcation point increases and the onset of chaos is delayed.

Another interesting phenomenon exhibited in Fig. 5 is that for sufficiently
high values of the controller's gain (i.e., K>1.63), the Hopf bifurcation becomes
supercritical. For example, in an experiment (Fig. 5) in which we set K=i.7 and
gradually increased the Rayleigh number, we observed bifurcation from time-
independent to stable, time-periodic flow.

Figures 6 and 7 illustrate the impact of the feedback control on the system.
In Fig. 6, the theoretically obtained temperature difference between positions 3 and
9 o'clock is depicted as a function of time for the controlled (solid line) and
uncontrolled (dashed line) systems for the same nominal operating conditions
(Ra=50-3RaH). The uncontrolled system exhibits chaotic oscillations while the
controlled system exhibits laminar behavior. Similar behavior is observed in
experiments. Fig. 7 depicts the experimentally obtained temperature difference
between positions 3 and 9 o'clock as a function of time for the same nominal
operating conditions as in Fig. 6. To illuminate the impact of the feedback control,
the behavior of the uncontrolled system is depicted for about 33 minutes prior to the
application of the controller. Witness that once the controller has been engaged,
the seemingly random, violent oscillations disappear and the flow is "laminarized".
The relatively low amplitude oscillations seen in the system after the application of
the controller are attributable to the fact that our experimental system is relatively
noisy and sensitive to changes in the environment.
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Fig. 8: The controller is being used to Fig. 9: Stabilization of an otherwise
induce chaos at Ra=0.6RaH with non-stable periodic orbit embedded in
K=35W/C. The figure depicts the the chaotic attractor for Ra=50.
temperature difference between
positions 3 and 9 o'clock as a function
of time.

We can also induce chaos under circumstances in which chaos will not
normally occur by using positive feedback (K>O) in (13). In this case, though, we
will need to destabilize simultaneously both the counterclockwise (B+) and the
clockwise (B-) time-independent motion states. This we accomplish by employing
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the control strategy W, =-l---[Sgn(c)c(t)-c0 ). The experimental results of this
Ra

strategy are depicted in Fig. 8, where we show c(t) as a function of time for
subcritical Rayleigh numbers Ra-0.6 RaH=10. To illustrate the difference between
the uncontrolled and the controlled systems, we initially depict the uncontrolled
behavior for t<10nq. Witness the relatively time-independent, counterclockwise
motion. The controller was activated at t=1800s. It caused flow instabilities to
amplify, as is evident in Fig. 8, until eventually chaotic flow developed.

Finally, we can use the controller to stabilize one of the otherwise non-
stable, periodic orbits embedded in the chaotic attractor. We do this by employing
a control strategy similar to the one described by equation (13), with co(t) now
representing the periodic orbit we desire to stabilize. The periodic orbit was
identified by examining a return map. Alternatively, one can employ one of the
techniques described in Mindlin and Gilmore (1992). The controller can be
employed either continuously in time or at discrete time intervals such as once
every period (i.e., K=K05(t-nt), where 8(-) is the Dirac delta function, 1 is the
period of the orbit we wish to stabilize, and n is an integer) or when the orbit passes
in close vicinity to a point on the periodic orbit we wish to stabilize. Fig. 9 depicts a
representative result of the "cs"-plane projection of a stabilized periodic orbit under
conditions in which, in the absence of the controller, the flow would be chaotic
(Ra=50).

As we have seen, the thermal convection loop paradigm exhibits
complicated temporal behavior. Next, I describe a strategy for controlling
convection in a system which is not only temporally but also spatially complex.

3.2 THE LAPWOOD PROBLEM

Let us consider thermal convection in a saturated porous layer confined in
an upright box, heated from below and cooled from above. The side walls of the
box are insulated. As in the case of the thermal convection loop paradigm, as the
temperature difference between the bottom and top (or the Rayleigh number)
increases, the equilibrium state of the system undergoes a sequence of
bifurcations from no-motion to time-independent, cellular motion to oscillatory,
chaotic flow. Our objective is to shift the bifurcation points with the aid of a
feedback controller. I describe below only the stabilization of the no-motion state
(Tang and Bau, 1992 a and b).

I use, respectively, the height of the box (H), the thermal diffusion time H/a

(where a is the equivalent thermal diffusivity of the porous medium), and the

nominal temperature difference (AT*) between the bottom and top of the box as the
length, time and temperature scales. In the uncontrolled system, the non-
dimensional bottom and top temperatures are assigned the values one and zero,
respectively. The non-dimensional, horizontal dimensions of the box are Lx and
Ly. The motion of the fluid is described by the Darcy-Oberbeck-Boussinesq (DOB)
equations (i.e., Joseph, 1976):
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Lu= B-(-u-Vp+RO)

b =X-'(U, -u.VO+V O)' (14)

where uT={ux,uy,uz} is the divergent free (V.u = 0), non-dimensional velocity vector
which satisfies the impermeability boundary conditions on all solid surfaces; x and

y are horizontal, Cartesian coordinates; z is the vertical coordinate; 0=T-(I-z) is the
deviation of the non-dimensional temperature from the linear (conduction) profile;

R = gA3HAT" is the Darcy-Rayleigh number- g is the gravitational acceleration; X is
va

the medium's permeability; [5 and v are, respectively, the thermal expansion
coefficient and the kinematic viscosity of the saturating fluid; p is the pressure

deviation from its hydrostatic value; B = A (usually, B<l); c is the porosity;

and X = (PoCp)eq is the ratio between the equivalent thermal capacity of the
(Pocp)f

medium and that of the saturating fluid.
The DOB equations admit the no-motion solution {u, 0)=0, which for R<Rc is

globally stable. The magnitude of Rc depends on the aspect ratios Lx and Ly. For
example, for an unconfined fluid layer with rigid bottom and top boundaries,
Rc,=4R2 (i.e., Lapwood, 1948). At R=Rc, the no-motion state loses stability through
a supercritical bifurcation into time-independent, cellular motion. The linearized
problem of stability is self-adjoint, thus the growth rate at the onset of instability is
real. In other words, the bifurcation occurs through a real eigenvalue, and the
"principle of exchange of stability" is valid.

To extend the range of stability of the no-motion solution to higher values of
the Rayleigh number, we modify the bottom temperature in proportion to the
deviation of some interior temperatures from their (no-motion) conduction value.
We will assume that the temperature distribution is measured at some horizontal
cross-section, i.e., at z=0.5, as a function of the horizontal co-ordinates (x, y). The
controller will sense the deviation 00.5=0(x,y,0.5,t) of the actual temperature from

its desired value (0=0) in the plane z=0.5. (For R>Rc, in the absence of the

controller, 00.5 * 0). It will, then, modify sliqhtly the spatial distribution of the base's
temperature in proportion to the measured deviation and its time derivative, i.e.,

0(0,x,y) = C(Q0 .5) = -KpOo. 5 - Kd 0 5  (15)
dt

where Kp and KD represent, respectively, the gains of the proportional and the
differential controllers. Note that boundary condition (15) replaces the boundary
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condition 0(x,y,0,t)=0 in the uncontrolled problem. This can be accomplished in
practice, for example, by embedding a network of computer-controlled heaters in
the base plate and varying their heat input in an appropriate manner.

Next, we investigate the linear stability of the controlled system in the
presence of the controller. The analysis is somewhat more complicated than in the
uncontrolled case since the system (14-15) is no longer self-adinint and one
cannot ignore the possibility of the no-motion state undergoing a Hupf bifurcation
resulting in time-periodic motion. As in the classical case, the disturbances can be
decomposed into even and odd modes with respect to the mid plane (z=0.5). The
odd modes, which lose stability at R=167E2 (r=4), have a node at z=0.5. Thus, the
control strategy employed here (equation 15) will affect only the stability
characteristics of the even modes. The results of the analysis are summarized in
Fig. 10, where we depict the ratio between the Rayleigh numbers of the controlled
and uncontrolled systems at marginal stability (r=R/4it 2 ) as a function of the
proportional controller's gain (Kp) for various gains of the differential controller
(KD=0., 0.02, and 0.06) for a box with aspect ratios Lx=Ly=l. The various symbols
in Fig. 10 represent the "most dangerous" modes (n,m). The first number (n)
represents the number of cells in one direction and the second number (m)
represents the number of cells in the other direction. For example, the modes (1,0)
and (1,1) correspond, respectively, to unicellular two and three-dimensional
convection. The solid and dashed lines represent, respectively, bifurcations
through real and complex eigenvalues. The figure demonstrates that through the
action of the controller, the critical Rayleigh number at the onset of convection can
be increased by as much as a factor of 4. Through optimization, a further increase
in the critical Rayleigh number may be attainable.

We have also successfully applied similar techniques to stabilize the no-
motion state in the Rayleigh-Benard problem (Tang and Bau, 1992c).

n, rn)S 1, !W
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Fig. 10: The critical normalized Rayleigh number (r) at the onset of convection is
depicted as a function of the controller gain Kp for KD=0.0, 0.02, and 0.06. The
symbols represent the various modes (n,m). The solid and dashed-dot lines
correspond, respectively, to bifurcations into time-independent and time-periodic
convection.
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4. CONCLUSION

As the simple examples described here indicate, the bifurcation structure of
convective flows can be modified in a significant way through the use of feedback
control. In the future, similar techniques may profoundly impact diverse
technological processes, enabling us, for instance, to substantially reduce drag in
turbulent flows and significantly modify convection in crystal growth and material
processing industries.
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Abstract
I describe two examples of the application of mechanics to biological rod-like structures

at the molecular level.
The first is the filament of a bacterial flagellum. This is a slender but rigid corkscrew-

like structure by which a bacterium propels itself through the water. The filament, of diameter
20 nm, is built from identical subunits in a definite cylindrical lattice. The fact that the
filament is curved rather than straight poses a paradox, which can be resolved by mechanics.

The second example is DNA, the material of heredity. This molecule is a rod of
diameter 2 nm, with a double-helical structure. Mechanical properties, such as intrinsic
curvature and flexibility, are a function of the sequence of bases along the molecule; and they
are used in the recognition of particular sequences of DNA by protein molecules. Again,
mechanics enables us to understand the behaviour.

I also make some general remarks about some hazards which are likely to emerge when
we try to apply mechanics to problems in molecular biology.

1. INTRODUCTION

In this talk I intend to discuss two specific examples of the application of mechanics - as
we understand that term here in IUTAM - to the solution of structural problems in molecular
biology. The first example is a slender, rigid, corkscrew-like filament, the bacterialflagellum,
which is part of the machinery for propelling bacteria through water: it is a filament of
diameter 20 nm, and is made from a single type of "building block", which is a molecule of
the protein flagellin. The problem is to understand the principles of construction of the
filament. The second example is the double-helical DNA molecule, a thread of diameter 2 nm,
which carries the complete genetic information in every cell of a living organism. Here the
problem is to understand the mechanical properties of the thread - such as its intrinsic
curvature and flexibility - in terms of its base sequence, and how these play a role in the ways
by which DNA works within the cell.

I thought it would be more interesting to present here two examples of this genre rather
than one, in spite of the obvious difficulty inherent in such a plan over the time available for
necessary detail. My main aim will be to try to convince you that mechanics has some
interesting applications in the field of molecular biology - even if you are quite unfamiliar with
biology as a discipline.

Let me begin by making some general remarks about collaboration between mechanics
people and biologists. Both groups work, of course, within the same general framework of
"scientific method"; but in practice there is usually a high barrier between the two sets of
people. One element of this barrier is jargon: each side coins words and expressions which
will be convenient for the communication of ideas and thoughts. However, as most of us are
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aware, jargon within any field can actually inhibit clear, productive thought. Thus, someone
from outside a given field often has a double task in penetrating the jargon to the core ideas of
the subject. I shall try, of course, to keep this talk relatively free from jargon.

In trying to overcome barriers between ourselves and biologists, it is necessary for us to
talk with biologists; and even more important for us to listen to them. For a tremendo..s
wealth of experimental observation is available in biology; and a mechanician must hope that
somewhere among the data a suitable problem may be found. We are definitely not in the
business of having a solution and looking for a suitable problem to which it may be applied.
Rather, we are looking for tractable problems among a veritable haystack of empirical data.
This is an area of work where, if one can but state the problem, one has already come a long
way towards its solution.

A special difficulty which mechanics people will experience in this field is that biologists
talk and think a great deal about "structure" at many different levels. Most biologists have
"hands-on" experience with three-dimensional chemical model structures of the ball-and-spoke
variety; and many are also competent crystallographers. When they discuss possible
alternative structural conformations for a molecule - whether large or small - they find it
natural to think in terms of "minimum energy" configurations. Very few biologists have ever
encountered what we call the concept of stress; which is, of course, absolutely central in all of
our applied-mechanics approach to engineering structures. This difference in outlook can be a
big stumbling-block to cooperation.

As I have intimated, this lecture will be rather scanty on details. Those who seek a more
complete description of the work will get help from the bibliography.

2. CONSTRUCTION OF THE BACTERIAL FLAGELLUM [1-41

I was fortunate to have been given this problem by my friend Aaron Klug. His main
interest is the structural organisation in biological systems; and he detected in the bacterial
flagellum a paradox which seemed to be beyond the range of crystallography or chemistry or
thermodynamics; but which he thought might be susceptible to an attack from the standpoint
of structural mechanics [5].

The main dimensions of a bacterial flagellar filament are as shown in the sketch of
Figure 1. The filament is of length a few microns (gam) and diameter 20 nm. It has the form

0.021pm =20 nm

2p~m 70.2gim______

(a) (b)

Figure 1 (left). Sketch of Salmonella bacterium "at rest", showing the cell ("body"), rotary
motors and "normal" flagellar filaments.

Figure 2 (right). The surface lattice for a "straight" flagellar filament, to a mnach larger scale:
this is an "unrolled" sheet which was formerly wrapped around a short piece of filament. The
position of each subunit is marked by a spot; and the two sides join at the open spots.
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of a "rigid" and uniform helix, typically with radius 0.2 r.tm (= 200 nm) and pitch 2 ýin. The
filament is built from a single kind of protein building block or subunit, and the simple
cylindrical surface lattice of the filament contains near-longitudinal 11 -start helices, as shown
in Figure 2. This and other information about the packing-pattern of the flagellin molecules
comes from electron microscopy by image-reconstruction techniques [61; while data on the
overall helical shape comes from both electron- and light-microscopes [7,81.

The paradox perceived by Klug is this. If all the building blocks in the cylindrical lattice
were in a strictly equivalent relationship with their neighbours, then the rod would be straight.
But the rod is actually curved into a helical shape. How, then, is the construction arranged?

Our early thinking about this problem suggested that the solution might lie in the idea of
some sort of "bistable switch" between two states [9], either within the subunit or at an
interface or connection-point between neighbouring subunits. (In terms of the mechanics of
the complete assembly, there can hardly be a difference between these two situations.) At the
molecular level, a bistable feature of this kind had already been found within the four parts of
the haemoglobin molecule [10].

On the whole, progress was slow until we took into account data which increasingly
became available on a range of different helical forms which a flagellar filament can adopt in a
variety of different circumstances: the filament is polymorphic. Briefly, there are (i) different
natural helical shapes in different mutants of salmonella and E. coli. bacteria [71; (ii) different
shapes under different environments - such as different acidity and salt content of the
surrounding water [11]; (iii) different forms when flagellin monomers from different strains
are mixed and co-polymerised into artificial helical filaments [7]; and (iv) changes in helical
shape when a filament is subjected to torsional stress [12], and particularly when its rotary
motor reverses direction, as sketched in Figure 3 [13,14]. Furthermore, it turned out that the
"family" of distinct helical waveforms which can be built under all of these different
circumstances had a limited number of members, as shown in Figure 4: the same helical
forms appeared over and over again in the different assays.

(a) (b)

Figure 3 (left). (a) In smooth swimming, the various filaments (cf. Figure 1) associate to
form a single bundle. (b) Occasionally the rotary motors go into reverse, and a new
waveform is seen at the distal end. These sketches were taken from light-microscope assays
[141.

Figure 4 (right). Sketch of the family of discrete helical waveforms of flagellar filaments
which are made by copolymerisation of protein monomer subunits from two strains of
bacteria [1], and which appear also in other assays.
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Now to a structural engineer investigating the building of a helical rod in a curious way,
it seemed obvious that one should map the available data on radius and pitch of the various
polymorphic helices into a space of (uniform) curvature ic and twist r. When we did this and
took account of the helical handedness of the discrete forms (right-handed (+) or left-handed
(-)) [8] we found that the points corresponding to the family of discrete forms lay on a single
arc [2-4]; and indeed that they lay close to an array of 12 points equally spaced on a sinusoidal
curve, as shown in Figure 5.

At this stage it became not difficult to envisage a situation in which the subunits - which
are represented, conventionally, by featureless spots in Figure 2 - were rectangular in shape,
and connected at their comers in a chess-board fashion, with one type of corner-connection
having a bi-stable feature, as shown in Figure 6(a) [2,3]. The different helical forms could
then correspond to a number (from 0 to 11) of entire longitudinal strands of connections being
one configuration rather than the other, as shown in Figure 6(b). If we then arranged that the
chain of "I" (or B) connections was slightly longer than the corresponding chain of "0" (or A)
connections, then the different numbers of "1" connections would produce different amounts
of curvature in the filament; and indeed, provided that the strands of "1" connections were all
bunched together in one portion of the circumference of the rod, as shown in the examples of
Figure 6(b), the points in the K, t plot all lay on a single, sinusoidal arc as shown in
Figure 6(c). The points are equally spaced in the t direction because each additional strand of
"1" connections introduces an equal extra twist to the filament overall, as explained in the
caption of Figure 6(b).

The way in which the strands of "1" connections produce curvature may be seen from a
simplified "lion's cage" model [21, shown in Figure 7, in which two rigid discs are separated
by II parallel elastic bars, some of which (in the "1" state) are slightly longer than the others
("0" state) when they are relaxed. It is an elementary matter to show that the angle of tilt
between the discs - which corresponds, of course, to curvature in the filament - is
proportional to sin(nt/1 1), where n is the number of bars in the longer, "1" configuration.
The complete range of 12 possible states includes two straight forms (n = 0, n = 11): one of
these has left-handed twist and the other right-handed twist.

6 [3 4 1
45

o2
I .x

-2 0 2 4 6 8

twist 0

Figure 5. Twist-curvature plot of helical forms observed in homopolymers from different
strains or mutants of bacteria (e) and copolymers of subunits from two different strains (cf.
Figure 4) (o). Arbitrary units for curvature and twist. Point X on the right corresponds to a
mutant with straight flagellar filaments having right-handed twist, as in Figure 2 [6]; and point
X on the left corresponds to another "straight" mutant, discovered later, with filaments having
left-handed twist.
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Figure 6. (a) Proposed near-rectangular subunit, showing inter-connections with identical
neighbours. The rule of connection is that C joins to E, and D joins either to A or the
neighbouring point B. (b) Four possible packing arrangements in the surface lattice (cf.
Figure 2), in which the subscript indicates the number of near-longitudinal (vertical) strands of
connections in the longer "1" configuration, corresponding to connections B in (a). The
horizontal lines are circumferential. Note how the inclination of the near-longitudinal columns
of subunits with respect to the circumference changes as the number of "1" strands increases,
as a direct consequence of the geometry of packing; so that the overall twist of the filament
changes in proportion to the number of "I" strands. (c) Curvature (K), twist (') plot for the
twelve theoretical packing states (of which four are shown in (b)) together with the helical
shape (for a given contour length) of the corresponding waveforms. The geometrical
parameters of the model have been chosen to fit the experimental observations from Figure 5
and from other sources, which are marked by open symbols.
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In principle, of course, there could be several different configurations with, say, n = 9
sets of longitudinal strands in the "I" configuration and two sets in the "0" configuration.
Why, then, have we chosen only one, as shown in Figures 6(b) and 7, in which these two are
bunched together on one side of the filament? It is clear that such a "bunching" feature will
make the range of distinct states lie on the single arc as in Figure 6: but can we adduce any
physical reason for this restriction?

A plausible answer is that if the two slightly shorter rods in the model of Figure 7 were
not adjacent to each other in a single group, then the elastic strain energy would be greater. It
is straightforward to obtain this result; and indeed a similar result holds for all values of n [2].

Let us now look more closely at the "chess-board" model of the arrangement of
subunits. The essential feature of the chess-board scheme is that it provides a way of
disposing subunits on the known surface lattice while providing for longitudinal strands of
connection which can give the short/long "0/1" feature that is needed for curvature. It is
crucial, of course, to the model that the "0/1" pattern should propagate unchanged along the
entire length of a filament; and again an elastic calculation - though admittedly on a plane grid
of elastic units - shows that the "0/1" switch will not propagate in any direction of the surface
lattice (Figure 2) other than the near-longitudinal 11-start direction [3].

Some features of the structural model are critical, while others are not. Thus, the
general layout, with a single "0/1" bistable feature for each subunit, and an otherwise simple
elasticity, are all crucial. But it is probably not essential to have the subunits planar, for
example. We have also assumed tacitly that inter-unit contacts are of the "frictionless spherical
joint" variety. This is not unreasonable as a picture of connections between adjacent protein
molecules; but, again, it is not an essential feature.

Some may object, of course, that our flat subunits do not look at all like protein
molecules. The key point here is that our unit is, strictly, a model for the proper spatial
connection between the four points at which the molecule connects to its neighbours.

We were led to use the scheme of four connecting points for each sub-unit by the
following reasoning; which turned out to be incorrect, as we shall see. (There must, of
course, be an even number of connecting points per subunit if two units connect at each joint.)

C

10B 

A

E

Figure 7 (left). "Lion's cage" model to explain how curvature of the filament depends on the
number of longitudinal strands of connections in the "I" (long) and "0" (short) configurations.
Here the strands are represented by rods which are bistable in their relaxed form - as shown -
but are otherwise linear-elastic. When the two short rods are connected up to the discs, the
discs tilt relative to each other, corresponding to curvature in the filament.

Figure 8 (right). Six-connected version of the model subunit, in which the four-connected
"surface" unit of Figure 6(a) is equipped with an inward-facing extension which, inter alia,
ensures that the subunits pack in a unique surface lattice.
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Thus, if one rigid block is fixed, and another rigid block is then connected to it by means of a
spherical joint, the act of coupling removes three degrees of freedom from the second block:
for, whereas it originally had 6 independent degrees of freedom in 3-space, it now has only 3,
in the form of 3 components of rotation. Hence we may say that a spherical joint removes 1.5
degrees of freedom per connecting block. Therefore a block withfour connecting points loses
a total of 6 degrees of freedom when it is connected up; and so it becomes fixed in space, and
part of a rigid structure.

This argument is almost entirely satisfactory provided the blocks are built into the correct
surface lattice. But in fact the four-connected subunits of the type which we are discussing
can clearly be builk i, i,,6 an arbitrary cylindrical surface lattice, and not only the specific lattice
of Figure 2 in which we are interested. So what determines a specific surface lattice? fhe
only acceptable answer to this question is the subunits themselves. The details of the surface
lattice must be a consequence, somehow, of the geometrical design of the cubunit: and the
subunits can then self-assemble into the correct packing pattern.

The extra geometrical constraints that produce the proper global packing pattern can be
provided by the addition of two further points of connection with neighbouring units. A
possible arrangement is shown in Figure 8 [4]. It is clear that the total number of units
around the circumference of the cylinder will be determined by the geometrical layout of the
inward-projection; and indeed the overall twist of the assembly to ensure correct closure is
also fixed by the additional geometrical constraints.

The scheme which I have outlined here enables us to see, in principle, how a single kind
of subunit can build only into one particular surface lattice with, indeed, a specific number of
longitudinal strands of connections in the "1" configuration: the assembly simply will not fit
together in any other way. And a very small change in the geometry of the subunit would
make the units assemble only into another, specific member of the discrete family of
waveforms.

There is not much point in pursuing a detailed analysis of the small changes in geometry
of the subunit which would effect changes between particular helical forms within the discrete
range of available states. The crucial point is that the changes are small; and moreover they are
of the kind which would be produced in the actual protein by a variety of means, such as a
change of hydrogen activity, or a mechanical torque. And it is not difficult to see that a
copolymerisation of two different monomers, each of which by itself would construct a
particular member of the family of distinct helical waveforms, could construct, between them,
an intermediate member of that family.

In summary, we have here a "mechanical" model which produces all of the main aspects
of the known behaviour of the bacterial flagellar filament. The essential features of the design
are clear, but much of the detailed geometry of the subunit is still uncertain. The data now
available on the detailed shape of a subunit [ 15-17] are much better than they were in the mid
1970s, when the work which I have described was done; but they are still insufficient for the
construction of a physically accurate model. It seems likely that new experimental techniques
will enable some progress to be made on this problem within the next few years. A
particularly interesting recent result is that the part of the flagellin molecule which is
responsible for the special scheme of construction of the filament occupies only a small
fraction of the molecule, at the two ends of the protein chain [ 18].

3. STRUCTURAL MECHANICS OF DNA [19-231

It has been well known for nearly 40 years that DNA, the molecule within every cell of
our bodies, that stores our individual genetic "design blueprint", has a double-helical
structure, as shown schematically in Figure 9. Attached to each of the helical "backbones" or
strands are chemical bases of four different kinds - A, T, G, C - which carry the genetic
information in three-letter code-words. The bases form pairs in a cross-chain sense; and since
things are so arranged that A always pairs with T and G with C, as in Figure 9, the second
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strand carries the complement of the code-message of the first. The helical strands are made
from sugar-phosphate units, and their degrec 9f intertwining is such that there are about 10
base-pairs in one double-helical turn of DNA.

When a cell is about to divide into two cells - this being the basic scheme for growth or
construction in all living organisms - the DNA has to be duplicated, so that a complete and
accurate copy of it can be incorporated in each daughter-cell. This is achieved in the cell by
first separating the two strands from each other and then assembling onto each, from availabl,,
"spare parts", the missing complementary strand.

All of this is well-known, high-school science. What is perhaps not so well-known is
that the DNA thread in any "chromosome" or packaging unit in the cell is extremely long in
comparison with ius width: its aspect ratio is typically about 2 x 10". Thus, if we were to
enlarge a piece of DNA by a linear factor of 106, it would be like a piece of string 2 mm in
diameter and about 40 km long. On the same scale, the diameter of a single cell would be
about 10 m. We have to conclude that there is a colossal packaging problem, to get the DNA
thread bundled up into the available space, and without tangling.

Nature uses a hierarchy of packing procedures to achieve this massive degree of
compaction. The details are rather complicated; but for present purposes it suffices to say that
the DNA thread in the cell is wrapped round a series of "bobbins" made from special proteins
called histones. The DNA wraps twice round each "histone spool" in a left-handed
superhelical sense, as shown schematically in Figure 10. There are about 80 base-pairs in
each turn of DNA around the spool. The picture of Figure 10 is not drawn to scale: in fact,
the total volume of DNA in the arrangement is approximately equal to the total volume of
histones.

Figure 9. Double-helical structure of DNA: a schematic view showing the "anti-parallel"
directions of the two chains, and bases, base-pairs and base-pair steps.

protin spool two loops

Figure 10. DNA wrapped around histone spools.
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I have used the word "superhelical" here to describe this wrapping of DNA around a
spool to distinguish the path of the DNA thread from the right-handed helical twisting of the
two strands about each other, on a much smaller scale, within the DNA thread itself.

Before we can proceed further, I must explain some simple labelling conventions. Each
of the sugar-phosphate chains has a distinct sense of direction, which can be seen directly
from the atoms in "all-atom" pictures (cf. Figure 12, below) but which has to be shown by an
arrow in a schematic drawing like that of Figure 9. The sequence of DNA is described by
giving a letter-by-letter description of the bases along one strand, in the conventional direction.
Later on we shall discuss double-helical DNA as an assembly of base-pair steps ("dinucleotide
steps"). For example, base-pair steps TC (o), CG (o), AA (A) and AC (A) may be seen on
the ;r"nd which runs from left to right in Figure 9. These same four steps would be read - in
the opposite order - as GT (A), TTI (A), CG (e) and GA (o) with reference to the other
strand. Thus the step TC (o) may be described alternately as TC or GA, while the step A may
be described alternatively as and TT or AA; but step CG (e) reads the same with respect to
either strand. Altogether, there are 10 different kinds of base-pair step, according to
sequence.

Two further points need to be made here. The first is that A and G bases ("purines") are
larger than T and C bases ("pyrimidines"). I nis difference will play a part in the structural
mechanics of DNA, as we shall see. The second is that modem analytical technology makes it
a relatively straightforward matter to determine the precise sequence of a given piece of DNA a
few hundred base-pairs long.

3.1. Some questions about DNA
I propose now to discuss some questions about DNA for which applied mechanics can

help to provide some answers. I shall necessarily be brief; but I hope to be able to give
sufficient detail for the discussion to be comprehensible. Full details may be found in the
book which my collaboratot Horace Drew and I have written recently [231.

3.2. Why is DNA double-helical?
If DNA were stretched out to make a plane "ladder", there would be gaps between

successive base-pairs, because the bases are 3.3 A thick (1 A = 10-10 m = 0.1 nm) whereas
the standard length of the segments of connecting chain is about 6 A. One step of such an
artificially straight ladder is shown schematically in Figure 11 (a).

The DNA molecule is surrounded by water in the cell. Now the bases are hydrophobic;
and thus they hate to have water sandwiched between them. The twisting of the plane ladder
into a double-helix - shown for one step in Figure 11 (b) - thus allows the bases to stack
directly onto each other, while the 6 A chain-lengths adopt a spiral shape so that they climb by
only 3.3 A per step. A simple geometrical calculation, based on the dimensions shown in
Figure 1 l(a), indicates an angle of helical twist in (b) of about 34%, which is typical of actual

helical

6 A;

(a ) ". . .. . . 18 . . . . . ... (b )

Figure 11. (a) A base-pair step of an artificially straightened "ladder" of DNA. (b) The
same, but with the base-pairs arranged with helical twist, so that they can stack directly onto
each other.
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DNA. (Such a calculation is, however, too crude to predict whether the double helix will be
left- or right-handed.)

This picture of the double-helical structure of DNA leads to an important point. The
sugar-phosphate chains are often described as "backbones" in textbooks, as if they were
providing some rigid support to the base-pairs - as if to the treads of a spiral staircase. In
fact, the structure is controlled by the base-stacking arrangements; and the flexible chains have
to adjust their positions accordingly. These chain-links provide some constraint, of course, to
the relative positions which can be adopted by the stacking bases; but they are not in
themselves the primary structural element of the double-helix.

3.3. Why is DNA wrapped around the histone spools in a left-handed
fash! on?

When the coded message of DNA is being read by the machinery within the cell, it is
necessary for the two sugar-phosphate strands to come apart, so that the special "reading-
enzymes" can gain access to the individual bases on one particular strand of the DNA.

Left-handed wrapping of the DNA around the spools is helpful in this respect. Thus, if
we remove a spool and pull the now naked segment of DNA out straight, the DNA becomes
strongly untwisted if the wrapping around the spool was in a left-handed sense. You can
easily demonstrate this effect yourself, by wrapping some electric power cord around a beer
can, removing the beer can, and pulling the cord out straight [24,25,231.

Thus Nature provides a neat and simple way of untwisting DNA when this is needed,
as the first stage in the process of separating the two strands. In general, of course, it is not
an easy matter to untwist a piece of string: there is a difficult problem in gripping the filament
strongly enough. The arrangement in which the DNA goes in a left-handed sense round the

B A B A

Figure 12 (left). All-atom representations of DNA in the classical "B" and "A" forms,
showing two double-helical turns.

Figure 13 (right). Rigid-block representations of the base-pairs of DNA in the classical "B"
and "A" forms. The sugar-phosphate chains are not shown, in order to display the geometry
of the base-pair steps; and only one Lelical turn is shown. (The scale is different from that of
Figure 12.)
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removable histone spools provides a way of gripping and untwisting the DNA - in addition,
of course, to achieving an overall compaction in length of the DNA,

3.4. How does DNA change from the "B" to the "A" form?
For this third question we must go back almost forty years, to the time when

Rosalind Franklin obtained the first x-ray diffraction pictures, from samples of random-
sequence DNA which had been prepared by pulling a tangled mass of DNA threads out into
fibres: this procedure aligned the individual pieces of DNA with respect to each other, and
allowed the x-ray method to reveal the mean or average configuration of the DNA molecule
[261.

This exercise produced two distinct diffraction patterns: "A" when the fibre was dry,
and "B" when it was wet. When these diffraction patterns had been analysed properly, so that
the detailed structure could be discerned, the two corresponding kinds of DNA were both
right-handed double helices: but there were some clear differences between them, as may be
seen from Figure 12. Thus, relative to the "B"-form, a piece of "A"-form DNA having the
same number of base pairs: (i) is shorter, (ii) is fatter, (iii) has its bases tilted with respect to
the overall axis, and (iv) has about 10% less helical twist per base pair [271. The first three of
these features can be seen clearly in Figure 12.

For many years it was not at all clear what mediated the "B"-to-"A" transition when the
water-activity was reduced. Usually the "backbone" was adduced as being somehow
responsible - even though it could hardly explain the well-established fact that DNA having
specific base sequences switched more readily to the "B" form with increasing water activity
than DNA having other sequences.

As soon as we accept the idea that the double-helical structure of DNA is driven by the
arrangements for stacking the bases on top of each other, we can begin to see how the
transition between the two forms comes about. What we need is an interpretation of the two
pictures in Figure 12 from the point of view of the stacking arrangements within a typical base

roll

slide

Figure 14. Definition of the "roll" and "slide" relative motions at a base-pairs step: "helical
twist" is shown in Figure 11 (b).

Figure 15. Propeller-twist in two base-pairs. The bases are shown here as if they were all of
the same size.



216

step. This is shown in Figure 13, where the base pairs have been drawn as rigid blocks, and
the sugai _:'bosphate chains have been omitted entirely [191. At this point we need to introduce
a technical definition. The so-called "minor-groove side" of the DNA has been marked in
Figure 13 by marking the edges of the blocks in black. (See also the shading in Figure 11,
which serves the same purpose.) This feature can also be seen in Figure 12: the "groove" is
the space between the sugar-phosphate chains.

To go from the characteristic "B" step to the characteristic "A" step we need simply to
apply both the "roll" and "slide" internal motions, as defined in Figure 14. These are in fact
two of the six degrees of freedom which one rigid block has, in general, with respect to its
neighbour; and of the six these two are the least constrained by the combined effects of the
stacking arrangements and the sugar-phosphate links. A third degree of freedom, helical
twist, is what we have already seen in Figure 11 (b). The transition from the "B" to the "A"
form requires, on average, a change in roll angle of 12% and a change in slide of about 3 A.

In recent years it has become possible to examine the stacking arrangements within the
base-pair steps of DNA to atomic resolution by means of x-ray analysis of single crystals that
have been made from very pure samples of short pieces of DNA having identical sequences.
Such structures are almost always rather irregular, with strikingly different geometries in
individual base-pair steps, although the double-helical structure appears to be uniform to first-
order [28,291. An almost-universal feature which emerges from such studies is that the base-
pairs are not actually planar, but have "propeller twist" [28,301. This is sketched in
Figure 15. It can be seen from Figure 16 that if two propeller-twisted base-pairs are stacked
onto each other, then geometry requires that the "slide" motion will be directly linked to the
"roll" motion. And this is precisely the arrangement which we have already described as
being characteristic of the "B"-to-"A" transition.

What, then, "drives" the transition? The explanation is, broadly, that in "wet"
conditions, the hydrophobic forces make the base-pairs "cover" each other as well as possible,
thereby giving low "slide", as in Figure 16(a). But in "dry" conditions the hydrophobic effect
is weaker, and other stacking-forces push the base-pairs into an "offset" or high-slide
position, as in Figure 16(b). (Unfortunately, these pictures are too crude to show this effect
convincingly.)

It is not obvious from what I have said so far that the "A"-to-"B" transition will take
place as a clear "switch" - as it does in practice, when the water activity is steadily reduced -
rather than in a "smooth" fashion. The key to the situation is that in double-helical structures
which have been studied by single-crystal x-ray methods, certain kinds of base-pair step,
particularly of the kind Pyr-Pur (Pyr = pyrimidine, i.e. A or G; Pur = purine, i.e. T or C)

(3Y) so slide = I A (5Y) (3') slide =2A W 5)

S .i .. ... ........ "-...

(5') roll= 0 (3') (5') roll = 20" (3')

Figure 16. Two distinct stacking-arrangements of a base-pair step, showing the coupling
between roll and slide on account of propeller-twist. The sugar-phosphate chains run in the
"5' -4 3'" direction (cf. Figure 9), so the smaller (Pyrimidine) h,(- precedes the larger
(Purine) base on each chain.



adopt either a high-slide, high-roll or a low-slide, low-roll configuration; but not an
intermediate form. This is the situation shown in Figure 16. It seems that it is base-pair steps
of this kind which produce the "switch" feature of the transition in a tract of DNA. Other
types of step prefer a fixed configuration: for example, AA steps always have a low-roll, low-
slide shape; and thus they are reluctant to move over into the "A"-form.

3.5. How does DNA curve around a histone spool?
The bending of DNA is more complicated than the bending of an ordinary elastic rod for

two main reasons, First, it is clear that the helical structure of the DNA will play an important
part in bending. Second, the relative rotations at base-pair step level which are necessary for
changes in curvature in DNA can occur most easily by means of "roll" within the individual
base-pair steps.

Figure 17(a) shows schematically a piece of DNA which has been bent into a curve of
about 4.5" per step, on average [20]. (This is precisely the degree of curvature required for
bending DNA around a histone spool: 360* in 80 steps.) The curvature is produced by
positive roll in some base-pair steps, but negative roll in others which are half-a-turn of helical
twist away. Simple geometry shows that curvature requires a periodic variation of roll, at a
period equal to the helical repeat of the DNA. In Figure 17(a) the roll angles vary
sinusoidally with position along the molecule. A different way of achieving the same overall
curvature is to have alternating patches of "B"-form and "A"-form DNA (as in Figure 13),
with the pattern
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location of base pair step on histone spool

Figure 17 (left). Two double-helical turns bent through a 90" curve (a) by a smooth variation
of roll angles and (b) by step-wise variation of roll.

Figure 18 (right). Total number N of (a) AA = TIT and (b) GC base-pair steps in (many pieces
of) curved chicken DNA, plotted against location on the histone spool (cf. Figure 10). The
overall length of the DNA is 145 base-pairs, but the data were symmetric, and so could be
plotted, as shown, from end to centre.
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repeating every 10 base pairs, as in Figure 17(b). Plainly, there is no unique way of
imparting a given curvature to DNA.

Now if a piece of ordinarily-straight DNA is to be curved tightly around a histone spool,
it is necessary for changes of roll to occur at some of the base-pair steps along the mo' ',cule.
It should be clear from previous remarks that some specific types of base-pair steps prefer a
low-roll position, while others prefer a high-roll position; and that others readily adopt either a
low-roll or a high-roll configuration.

Figure 18 shows the results of sequencing pieces of DNA from chicken blood cells
which are known to have been wrapped twice round histone cores [311. More than one
hundred distinct 145-base-pair lengths of DNA of this kind were sequenced, and statistical
analyses were performed on the positional preferences for various kinds of base-pair step.
Without going into much detail, we can see immediately that the frequency of occurrence of
steps AA and steps GC at different positions around the circumference of the spool varies
periodically with position. In both cases the periodicity is about 10 base pairs; i.e. it
corresponds to the helical repeat of the DNA. But closer examination shows that AA steps
prefer to occupy "low-roll" positions - where the minor-groove side of the DNA faces
inwards - while GC steps prefer "high-roll" positions.

Time does not permit me to go through the details of this substantial assay; but I may
remark that the positional preferences of this kind that are shown by particular dinucleotide
steps are in general accord with configurations that are found in single-crystal assays on the
same types of step.

3.6. How do proteins recognise particular sequences of DNA?
There are many biological processes in which a particular protein has to search, and

find, and attach itself to a specific sequence - such as ACAATATATATTGT - in a very long
piece of DNA. Such a sequence, for example, might mark the start of a gene.

Recognition processes, whether between protein and protein or protein and DNA, have
a strong geometrical component. Thus, for strong oinding or attachment of one to the other
there must be not only a good geometric fit but also an arrangement of atoms within the mating
surfaces which allow the formation of a sufficient number of specific hydrogen bonds. In this
way, particular proteins can find and bind to specific sequences of DNA by what is usually
called a "direct reading" process.

But there is also a second, different element in the recognition process, which has only
recently been elucidated. The binding of "434 repressor" to the 14 base, pair DNA sequence
ACAATXXXXATTGT provides a good example [321: here X denotes a variable base.

For binding to take place, the two 5-letter end-sequences of the DNA must be exactly
as given above. But it turns out that a rather wide variation of sequence is tolerable within the

Figure 19. Schematic view of the binding of 434 repressor protein to DNA, showing a central
"bend" of about four base-pairs which are not in direct contact with the protein.
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central four-base region. And indeed the strength of binding depends significantly on the
DNA sequence of this somewhat variable portion.

Figure 19 shows a sketch of the binding arrangement. The two end regions of the
DNA are tightly bound to the protein by "direct reading" recognition. Notice that the shape of
the protein is such that the central portion of DNA has to bend through about 20" in order to
fit. Now we have seen above that different dinucleotide steps have different positional
preferences in DNA that is curved; and it turns out that there is an excellent correlation
between the strength of binding on the one hand and the position preferences - as determined
from the chicken blood cell DNA wrapped around histone spools (cf. Figure 18) -
corresponding to the sequence of the central region in the 434 recognition sequence.

4. CONCLUSION

In this lecture it has been appropriate to present the various thoughts and ideas by means
of words and pictures. In particular, I have not employed any mathematical symbolism,
although in a full account (e.g. [231), there would be plenty of mathematics. (For example, a
full treatment of base-pair stacking in a piece of DNA clearly requires careful computation of
finite angular rotations.)

In fact, the main task in each of the two problems which I have described has been to set
up a suitable conceptual reference-frame for thinking about the structural mechanics of the
situation. As I have tried to demonstrate, the resulting models enahbe us to explain, within the
framework of structural mechanics, a rather wide - nge of physical : ýcnomena.

The thought-processes which lead to these appropriate models have involved structural
mechanics at a most elementary level. Thus, for example, in each of the two problems we
have used, in different ways, the primitive observation that a rigid body has six degrees of
freedom in three-dimensional Euclidean space. It is perhaps rare nowadays to find problems
where the key to the solution lies in such a simple and elementary idea. But we have, of
course, also employed other considerations than those of elementary kinematics. For the most
part these have involved, explicitly or implicitly, some linearisation of the various equations
and an invocation of elementary elasticity, coupled with some simple ideas of mechanical
bistability. The fact that the various models produce satisfactory results in spite of ample
linearisations suggests that the underlying ideas are both robust and appropriate to the
problems under investigation. And indeed, we may perhaps put both of our problems into the
category of those that are solved in the first instance by a judicious amount of
oversin'plification. It remains to be seen, of course, whether there are many more problems in
molecular biology which will yield to the same mode of attack.

5. REFERENCES

1. Calladine, C.R. (1975) Ncture 255, 121.
2. Calladine, C.R. (1976) J. theor. Biol. 57, 469.
3. Calladine, C.R. (1978) J. molec. Biol. 118, 457.
4. Calladine, C.R. (1983) Sci. Prog., Oxf., 365.
5. Klug, A. (1967) Symposium of the International Society for Cell Biology, Vol. 6 (ed.

by J.F. Danielli) pp. 1-18. Academic Press, New York.
6. OCBrien, E.J. & Bennett, P.M. (1972) J. molec. Biol. 70, 133.
7. Asakura, S. & lino, T. (1972) J. molec. Biol. 64, 251.
8. Shimada, K., Kamiya, R. & Asakura, S. (1975) Nature 254, 332.
9. Wakabayashi, K. & Mitsui, T. (1972) J. Phys. Soc. Japan 33, 175.
10. Perutz, M.F. (1970) Nature 228, 726.
11. Kamiya, R. & Asakura, S. (1977) J. molec. Biol. 108, 513.
12. Hotani, H. (1982) J. molec, Biol. 156, 791.



220

13. Macnab, R.M. & Koshland, D.E. (1974) J. molec. Biol. 84, 399.
14. Macnab, R.M. & Ornston, M.K. (1977) J. molec. Biol. 112, 1.
15. Shirakihara, Y & Wakabayashi, T. (1979) J. molec. Biol. 131, 485.
16. Namba, K., Yamashita, I. & Vonderviszt, F. (1989) Nature 342, 698.
17. Trachtenberg, S. & DeRosier, D.J. (1991) J. molec. Biol. 220, 67.
18. Vonderviszt, F., Aizawa, S.-I. & Namba, K. (1991) J. molec. Biol. 221, 1461,
19. Calladine, C.R. & Drew, H.R. (1984) J. molec. Biol. 178, 773.
20. Calladine, C.R. & Drew, H.R. (1986) J. molec. Biol. 192, 907.
21. Calladine, C.R., Drew, H.R., & McCall, M.J. (1988) J. molec. Biol. 201, 127.
22. Drew, H.R., McCall, M.J. & Calladine, C.R. (1990) DNA topology and its biological

effects (ed. by N.R. Cozzarelli & J.C. Wang) Chapter 1, pp. 1-56. Cold Spring
Harbour Laboratory Press.

23. Calladine, C.R. & Drew, H.R. (1992) Understanding DNA: the molecule and how it
works. Academic Press, London.

24. Cozzarelli, N.R., Boles, T.C. & White, J.H. (1990) DNA topology and its biological
effects (ed. by N.R. Cozzarelli & J.C. Wang) Chapter 4, pp. 139-184. Cold Spring
Harbour Laboratory Press.

25. Fuller, F.B. (1971) Proc. Nat. Acad. Sci. USA 68, 815.
26. Judson, H.F. (1979) The eighth day of creation. Simon & Schuster, New York.
27. Alden, C.J. & Kim, S.-H. (1979) J. molec. Biol. 152, 723.
28. Wing, R.M., Drew, H.R., Takano, T., Broka, C., Tanaka, S., Itakura, K. &

Dickerson, R.E. (1980) Nature 287, 755.
29. Kennard, 0. & Hunter, W.N. (1989) Quart. Rev. Biophys. 22, 327.
30. Nelson, H.C.M., Finch, J.T., Luisi, B.F. & Klug, A. (1987) Nature 330, 221.
31. Satchwell, S.C., Drew, H.R. & Travers, A.A. (1986) J. molec. Biol. 191, 659.
32. Koudelka, G.B., Harrison, S.C. & Ptashne, M. (1987) Nature 326, 886.



Theoretical and Applied Mechanics 1992
S.R. Bodner, J. Singer, A. Solan & Z. Hashin (Editors)
Elsevier Science Publishers B.V. 221
@ 1993 IUTAM. All rights reserved.

Viscous fingering as a pattern forming system

Y. Couder

Laboratoire de Physique Statistique de P'Ecole Normale Sup~rieure
24 rue Lhomond, 75231 Paris Cedex 05. France

The conference I gave in Haifa corresponded very closely to a review article
that I had written earlier(1 ). In order to avoid repetition I will only give here a brief
summary. The interested reader can find more complete information in the above-
mentionned article and in the references therein.

Saffman Taylor viscous fingering is the process which occurs in a Hele Shaw
cell when a fluid of small viscosity forces a fluid of large viscosity to recede. In such a
situation the pressure field in the whole cell is Laplacian and the interface, which
moves with a velocity proportional to the local pressure gradient, is unstable. As
the interface is stabilizedat small scales by surface tension, the instability has a
characteristic length-scale called the capillary length I which can be found by the
linear stability analysis of a plane front. Experimentally the viscous fingering is an
unbounded instability and creates typical patterns, the problem being to understand
their formation.

Amongst the large variety of morphogenetic instabilities, two are of a
particular interest for comparison with Saffman Taylor viscous fingering: the
dendritic crystal growth and the diffusion-limited aggregation (DLA).

Dendrites are formed during the growth of a monocrystal in a melt or in a
solution in conditions far from equilibrium. Here, due to the growth of the solid its
surface moves with a velocity which is proportionnal to the gradient of either the
temperature or the impurity concentration. Both these quantities have a diffusive
field, comparable to a Laplacian field in the limit where the diffusion length is very
large. The front is stabilized by surface tension through the Gibbs-Thomson effect so
that there is also a typical length scale 1s to this instability. The dendrites form
needles with a parabolic tip, the direction of their growth corresponding to one of
the main cristallographic directions of the cristal.

Diffusion limited aggregation is a model system introduced by Witten and
Sander in which random walkers moving on a lattice are emitted far away from a
central seed. If a walker visits any of the sites neighbouring this seed it remains
there. The process is repeated, each walker stopping whenever it visits a site
neighbouring an already occupied point. It was shown that the probability of visit of
a given site by the walker obeys a Laplacian law and that a region of the aggregate
grows with a velocity proportionnal to the local gradient of this probability. The
typical scale Iu of this system is simply the mesh size of the computing grid.

In very general terms the growth morphologies obtained in Saffman Taylor
fingering and their comparison with those of the two other systems show that three
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factors are determinant.
- The geometry: for Laplacian systems the geometry of the fixed boundaries define
families of possible analytic solutions for the possible shapes of the interface as well
as the selection amongst them.
- The isotropy or anisotropy of the system
- The length scales involved in the growth. These are usually the instability length
scale 1. and the total width of the moving front. If these length scales are of
comparable order of magnitude stable curved fronts can be obtained. If they are very
far apart, fractal growth will occur in the intermediate range separating them.

The geometry.
The simplest problem in viscous fingering is the growth in a linear channel. If

the width is of the order of a few I a single finger moving steadily along the cell is
obtained occupying half of the cel%'s width. This is one of the archetypes of stable
curved fronts and its investigation has a long history. A family of solutions was
found in the initial work of Saffman and Taylor if surface tension was neglected.
However it is only much later that the selection of the actually observed fingers was
understood as resulting from the effect of isotropic surface tension. The only other
geometries in which the understanding of the stable fronts has reached the same
level is that of the recently introduced sector-shaped cells. In these geometries the
observed fingers als• occupy a fraction of the cells' angular width. This fraction is an
increasing function of the cell's angle.

The isotropy or anisotropy of the system.
If either a local disturbance of the tip or anisotropy is imposed to a Saffman-

Taylor finger growing in a channel, the finger becomes narrower and more stable. In
the limit of a wide channel it becomes obvious that the finger's tip is parabolic, is
followed by lateral side branching and has the general aspect of a cristalline dendrite.
The introduction of these disturbances thus lifts the specific selection due to
isotropic surface tension. The new finger is no longer selected by its width but by the
radius of curvature at its tip which is proportionnal to 1c* The striking aspect of this
result is that this is precisely, due to their anisotropy, the type of selection of the
dendrites. The isotropy or anisotropy of a system is thus an essential ingredient in its
growth morphology because it changes the selection mechanism. In general terms
the isotropic fronts undergo a selection related to the large scale of the system while
the anisotropic ones are selected by the small scale of the system.

The length scales.
Within the limit of infinite viscosity contrast and very rigid glass plates, it is

possible to obtain fractal growth in viscous fingering. This occurs whenever the
length scale of the front width is very large compared to Ic and was mostly observed
in radial geometries. The resulting fractal dimension is similar to that of diffusion
limited aggregation.

Recent experiments on very unstable Saffman fingering were done in those
geometries in which the stable curved fronts are well known, i.e. the linear channel
and the sector shape cells. For each of these experiments a large number of identical
runs were performed so as to obtain a statistical analysis of the occupancy of the cell
by the patterns. The result is that the region of the cell with a mean occupancy larger



than average has the shape and width of the stable curved front in this geometry. it
thus appears that the selection mechanism has survived the finger instability.
Diffusion limited aggregation numerical experiments were done in the same
geometries. They form patterns that are fractal in a much larger range because the
scales are further apart from each other. However their averaging produces the same
results. We can note that this averaging method works both for isotropic or
anisotropic fractal growth, the average isotropic fractal pattern being selected by its
large scale and the average anisotropic patterns on its small scale. A theoretical
interpretation of these results in terms of a modified mean field theory has been
given recently.

(1) Y. Couder, Growth Patterns: from stable fronts to fractal structures in Chaos,
Order and Patterns , Edited by R. Artuso, P. Cvitanovic and G. Cassati, Plenum New
York 1991
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Mechanics in sport
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Abstract
Sports offer many examples that illustrate both simple and complex aspects of

mechanics. This paper considers examples that require only an introductory under-
raduate course in mechanics, but often show surprising or thoughtprovoking results.
everal of them will deal with official rules for track and field events, and the

implication of those rules on the recorded result. Other examples deal with the
precision by which some movements must be executed, and the surprising ability of the
human brain to cope with this. One aim of the paper is to provide the unversity
teacher with material that can be used to illustrate some principles of mechanics.

1. INTRODUCTION

There is a rich but scattered literature on various aspects of the mechanics of sport.
Frohlich [1] has written a "resource letter" on the physics of sports, with references to
general books and also to 90 specialised articles on particular sports, ranging from
archery and athletics to cycling and karate. There is also a selection of reprints on the
physics of sports [2). In the general field covered by the present article, two books
stand out as exceptionally good. One is "The physics of ball games" by Daish [3]. It is
divided into two parts The first part contains a general treatment of various ball
games, and the second part gives a mathematical treatment at the level of under-
graduate courses. The other book is "Dyson's mechanics of athletics", originally
written by Dyson and with its latest edition revised by Woods and Travers [4]. It gives
a detailed description of the mechanics of track and field events, with a large number
of illustrative drawings, but with a minimum of algebra.

Much of what is published on the mechanics and physics of sports deals with sports
that are strong in the US, e.g., baseball and golf. In addition to references given by
Frohlich [1], one ma, mention books by Watts and Bahill [5], Adair [6], Schrier and
Allman [7], Brody [81, Cochran and Stobbs [9], Brancazio [10] and de Mestre [11], and
recent papers on the aerodynamics of sports balls (baseball, golf, cricket) [121 and on
features of a baseball bat [13]. Below we shall discuss how an athlete's result may
depend on parameters that are restricted, by the rules of the sport, to have certain
values. In major league baseball, the coefficient of restitution of the ball is required to
be 0.546*0.032. Kagan [14] has considered the mechanical implications of such a
variation.

The classic book "Bicycling science" by Whitt and Wilson is out in a new and
revised edition [15]. It contains many data on the energy required in transport, with
emphasis on bicycles.
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Biomechanics is not treated in the present paper. This broad field covers subjects
ranging from how runners save energy by bouncing on their tendons and ligaments and
on their running shoes [161 to how a videofilm of athlete's motions can be digitalised to
guide improvements in the performance in sports [171. The book by Hay [18] is a
standard reference on biomechanics and sport.

2. EFFECT OF INCLINED TRACKS AND FIELDS

The international rules for the athletic throwing events (shot, discus, hammer,
javelin) say that "the overall downward inclination of the landing sector, in the
throwing direction, shall not exceed 1:1000". (In this paper, exact quotes from the
International Amateur Athletic Federation Handbook 1992-93 [19] are within
quotation marks.) Similarly, the overall inclination of the tracks in the running
direction shall not exceed 1:1000. What is the advantage of a maximum allowed
inclination in throwing and in 100 m sprint?

2.1. Throwing events
Let the implement strike the field at a distance L from the athlete. With a

maximum allowed inclination, that point lies L/1000 below the true horizontal plane.
If the trajectory of the landing implement makes an angle ý to the horizontal plane, it
will move an additional distance L/(1000 tanV) before it strikes the field. 1. in hammer
throwing the trajectory follows fairly well an ideal parabola, with p ~ 450. Then tanp
z 1 and we get the simple rule that the recorded length is as much longer as the
landing point lies below the ideally horizontal field, see Figure 1. The world record is

450 450

H

.........................

Figure 1. A throw following the parabola of maximum range will come as much
farther as the landing point lies below the ideally horizontal plane.
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presently 86.74 m, so the advantage of a maximum allowed inclination is about 9 em.
We remark that in hammer throwing (and also in discus and javelin) the recorded
length is given to the nearest even centimeter below the measured length, or the
measured length if that is obtained as a whole even centimeter. In shot putting, the
recorded length is given in whole centimeters.

In javelin throwing the measurement is made at the point where the metal head
first strikes the ground, even if the javelin afterwards falls flat. The javelin may often
seem to land at a small angle o to the horizontal plane, but this is largely an illusion.
Even if the javelin axis is almost horizontal, the trajectory of the center of gravity (and
hence also of the metal head) approaches the ground more steeply. For an estimate we
can take tany - 1, as for hammer throwing. The present world record is 94.74 m, so
also in javelin throwing does the maximum allowed inclination of the field give an
advantage of about 9 cm.

In shot putting the world record is 22.47 m, and hence the advantage of an inclined
field is at most about 2 cm. Shot puts that under ideal measurements differ by 0.9 cm
may sometimes be recorded as being of equal length, according to the rule cited above.

2.2. 100 m sprint
The throwing events allowed a satisfactory treatment based on elementary

mechanics. The sprint events are considerably more difficult to discuss. For illustrative
purposes we shall treat them under some elementary, although possibly dubious,
assumptions.

As a rule of thumb, a reasonably well trained person walking in mountain areas can
climb 300 m in a hour. The famous Baedeker tourist guide suggests 320 m/h for
vertical ascent, while the instruction of the Austrian army says 300 m/h when carrying
a load. These numbers correspond to a power of about 80 W, for the increase in
potential energy alone. When the climb is of more limited duration, man can produce a
much higher power. For instance, the 1987 record for running up the stairs in the
Empire State Building in New York (320 m vertically) is 10 min 59 s, corresponding to
a power of somewhat more than 300 W for the change in potential energy. All the
previous excercises require the burning of oxygen. In sprint, the athlete makes direct
use of chemical energy stored in the muscles. To get a crude estimate we assume that
he can develop 1.5 l. W.

Now consider 100 m sprilit, and let there be an upward inclination of 1:1000, i.e. a
totA of 0.1 m. Suppose that the athlete needs an extra time t', so that the energy Pt'
corresponds to the increase in potential energy due to the slope. With a power P = 1.5
kW, t' will be about 0.05 s. For all races up to and including 10 000 in, times are
recorded to within 0.01 s.

If there is a downward slope along the running direction, it is not obvious how the
gain in potential energy can be used to increase the speed. However, between two
consecutive steps the body follows a trajectory that is similar to that described by the
implements in throwing events, although with a much smaller angle ýo. If the character
of the leg motion is not changed due to the inclined track, each step in free flight will
be longer by a factor [I + 1/[(1000 tanyp)]. Therefore, with an inclined track the steps
need not be taken so often and the muscles may provide more energy per step, leading
to an increased running speed. With tang2 = 1 and a power consideration as above we
again get about 0.05 s advantage. With a realistic and much smaller tanv, the advan-
tage would be quite significant. However, it is not clear that the power can be used as
we have assumed, and it is not clear that the inclined track will not slightly but
detrimentally affect the leg motion.

As a final illustrating calculation we again assume that the athlete can directly
benefit from the gain in potential energy. McFarland [20] considered the effect of the
reduced air pressure in Mexico City and assumed that the reduced energy waste on air
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resistance, compared to the sea level, could be used directly to increase speed. From his
data we find that a gain in energy by about 1 kJ during the 100 m race results in a
time that is shorter by 0.09 s. In our case an athlete of mass 75 kg gains 73 J in
potential energy on a track with maximum allowed inclination, corresponding to an
advantage of 0.007 s, i.e., a negligible amount.

3. RULES ON THE EQUIPMENT

3.1. The hammer
A hammer consists of a metal head, a wire and a grip. "The head shall be of solid

iron or other metal not softer than brass or a shell of such metal, filled with lead or
other solid material with a minimum diameter of 110 mm. It must be completely
spherical in shape." Further, its "centre of gravity shall be not more than 6 mm from
the centre of the sphere". The centre of gravity is normally not at the centre of the
sphere, in spite of the requirement that the head shall be "completely spherical in
shape", because the head must have some kind of attachment to the string. The rules
suggest an ingenious way to test whether the head satisfies the requirement on the
centre of gravity. "it must be possible to balance the head, less handle and grip, on a
horizontal sharpedged circular orifice 12 mm in diameter", cf. Figure 2. Of coursc it is
then understood that the head must balance for all of its orientations.

Or l2mmC.

SALANQ0

ROM 10G1 Rim

Suggested apparatus for testing centre of
gravity of Hammer head

Figure 2. Illustration in the International Amateur Athletic Federation Handbook [191.

3.2. The hammer cage
"All hammer throws shall be made from an enclosure or cage to ensure the safety of

spectators, officials and competitors. The cage should be designed, manufactured and
maintained so as to be capable of stopping a 7.26 kg hammer head moving at a speed
of up to 29 metres per second." One may wonder, why 29 m/s?

The well known expression for the length s of a throw over a horisontal plane, with
an elevation angle a to that plane and with the neglect of air resistance, is

s = v sin(2e) (1)
g
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The maximum range is v2/g, for a = 450. The present world record in hammer
throwing is 86.74 m. Therefore a lower limit to the velocity v is 29.2 m/s, neglecting
the small correction related to the fact that the launch is not exactly from where the
distance is measured. Since air resistance is not entirely negligible (cf. Section 4.1) the
actual speed at which it might hit the cage in a world record throw must be somewhat
larger than 29 m/s, although not as much as 30 m/s. Obviously the rules do not allow
for a safety factor.

When throwing the discus one may either use a (slightly modified) cage for hammer
throwing or a specially designed cage. The latter should be "capable of stopping a 2 kg
discus moving at a speed of Lp to 25 metres per second". The present world record is
74.08 m. Arguing as above for the hammer, the discus record corresponds to a release
speed of at least 26.9 m/s, i.e., significantly higher than the design value of 25 m/s for
the cage. The apparent inconsistency is resolved if we note that a discus "rides" on the
air and therefore may travel farther in a normal atmosphere than in vacuum. Actually,
a head wind will often increase the length of a discus throw [4,211.

3-3. Geometrical specifications on the implements
The hammer is specified geometrically by the diameter of the head (110 - 130 mm),

by the entire length of the hammer measured from inside the grip (1175 - 1215 mm)
and by the position of the centre of gravity (±6 mm). All three parameters affect the
distance D from the grip to the centre of gravity, which thus may vary from 1175 - 65 -
6 = 1104 mm to 1215 - 55 + 6 = 1166 mm. To this we should add a distance of almost
1 m, corresponding to the length of the arms. However, it is difficult to analyse how D
(with arm length added) affects the length of throw. The release velocity depends on
both D and on the angular velocity w of the string at the moment of release. An
increase in D is likeiy to decrease w. In fact, if w had been independent of D, the largest
and the §mallest D allowed by the rules would result in throws that differ in length by
12 %, i.e., about 10 m for a world class result. Obviously an argument based on a
constant w is useless. In this context it can also be remarked that the rotational motion
of the hammer does not have the athlete as its centre. If that were the case, the
borizont&! o'.ntripetal force would be up to 3 times the weight of the athlete and that
can not be achieved with any reasonable frictional force between the athlete and the
ground. The motion is more like that of the Earth and the Moon, rotating about a
common centre of gravity.

In discus and javelin throwing, the air affects the trajectory of the implement. This
is reflected in the precise specifications on the implement geometry. The discus
geometry is specified by 5 lengths, and the javelin by 5 lengths along its axis and 10
values referring to various diameters. In 1984 new rules were introduced for the javelin,
moving the centre of gravity to the rear by 4 cm and making the rear end somewhat
thinner. That reduced the world record by about 15 m. In hammer throwing the effect
of the air is difficult to estimate more precisely, because of the string and grip attached
to the head. In Section 4.1 we crudely estimate it to reduce the length of a throw by
about 2 m. In major events the hammers are provided by the organisors. Since the
diameter of the head, according to the rules, should lie between 110 mm and 130 mm,
two acceptable hammers may differ in the area of the head by 40 %, while still having
the same mass. Air resistance is proportional to the cross sectional area, so the two
hammers may be expected to give recorded lengths that differ by more than a meter
(cf. Section 4.1).

Continuing on an analogous theme, we note that in discus throwing the range of
supply of equipment for competition must be in the range 2.005 kg to 2.025 kg,
according to the rules. It is difficult to calculate what a difference by 0.020 kg in mass
does to the length of a throw because the ability to exert muscular force on the
implement is not independent of its opposing inertial force. However, we are somewhat
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helped by the fact that the discus for women has a mass of 1 kg, and the world record
(76.80 m) is longer than that for men (74.08 m). In view of known differences between
men and women in other sports requiring strength, it seems likely that the mass
difference of 1 kg affects the length of a throw by, say, 20 m. A mass difference of 0.020
kg would then correspond to almost half a meter in the recorded result, if we can
extrapolate linearly from the 1 kg through the 2 kg discus.

4. AIR RESISTANCE AND WIND VELOCITY

Air resistance affects the results not only in the throwing events but in many other
sports as well. One may think of the world record by Beamon in the long jump at the
Olympic games in 1968 in Mexcico City, that is often given as an example although we
shall see below that the effect was quite small. In golf there is not only a retarding air
resistance. The Magnus effect on a spinning ball may help to carry the ball typically 75
m farther than in an air and 50 m farther than in vacuum [9]. In this Section we shall
compare a dimensionless "figure-of-merit" for the ordinary air resistance on various
balls and then discuss wind speed versus air pressure for some sports.

4.1. A figure-of-merit for air resistance
The standard expression for the air resistance F acting on a body with a smooth

surface moving with a speed v in air of density p is

F = 1 CdApv 2  (2)2

Here A is the cross sectional area and Cd(Re) is a drag coefficient that varies with the
Reynolds number Re. For a sphere with radius r,

Re = 2 rv 13)
Vk

where v is the kinematic viscosity of air. For a sphere, in air at normal pressure and
temperature, Re = 12.8. 104rv, if v is expressed in m/s and r in m. For 103 < Re < Rec
z 2. 105, and for a sphere, we may take Cd = 0.5. When Re > Rec, Cd(Re) decreases
significantly, i.e., the air resistance is lowered.

In a uniformly retarded linear motion, the distances covered in a time t, with initial
velocity vo and retardation a, is

s = vot - at 2  (4)

If a is small it is useful to introduce a dimensionless quantity ý that measures how the
retardation affects s. We define

at2  at (5)S2-ot - 2v,--5

which yields

s = vot(1 - ) (6)
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Similarly, the velocity v after a time t is

v = Vo- at = vo(1 - 24) (7)

Let m be the mass of the moving body, and take a = F/m, with F from Eq. (2).
Further, let t = to be the time of interest (e.g., the time to complete the trajectory of a
ball). Since to is usually not directly available, we replace it by io/v. where [o is a
characteristic length, e.g., the length of a throw. Then

1 CdApv (11) ( =I (CApfa)
o M2vom 4 ~~Cm (8)

In Table 1 are summarised characteristic parameters and the resulting C for some
sports. For all cases we have taken Cd = 0.5. When the trajectory of the object is not
straight, the relation between to, vo and to is complex. We have taken vo to be the
speed of release etc., without resolving it into vector components. The distance to is
chosen to be the straight distance between the end points of the trajectory of interest.
Variations in 4 by 50 % are not significant.

Table 1

Parameters governing the air resistance

Sport Area Mass Speed Length 4 Re

A (cm 2) m (kg) Vo (m/s) to (m)

Shot 95 7.26 15 22 0.005 100 000
Hammer 95 7.26 29 90 0.02 200 000
Golf 14 0.046 70 200 1 190 000
Tennis 32 0.058 60 20 0.2 240 000
Table tennis 11 0.0025 25 7 0.5 60 000
Soccer 380 0.43 30 30 0.5 420 000
Long jump 5000 70 10 8 0.01 500000

The values in Table 1 for the ball games do not include any effect of a spinning ball.
The density of air is taken to be that at sea level. The velocities are those at the start
of the trajectory, for world class performances.

We see that for soccer Re > Re, so Cd is significantly smaller than the value 0.5
assumed in Table 1. This rectaces 4 to about 0.3. A kick that would carry the soccer
ball about 40 m if the standard value Cd = 0.5 is used, actually travels about 60 m [3].
In golf Re < Rec according to Table 1, but our estimate of Rec refers to a smooth
surface of the ball. Golf balls have dimpled surfaces which considerably reduces the air
resistance. For long jump, Re estimated from a sphere may be less relevant.

The approach in the beginning of this Section assumed that << 1. It is obvious
that the ball games cannot be treated by considering air resistance as a small
perturbation.

4.2. Wind speed versus air pressure
The expression (2) for the air resistance contains a velocity v which of course is to

be taken relative to the air. A tail wind with a speed v' would reduce the retarding
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force F. This is insignificant when << 1. In fact, ý does not contain v - v' because
the tail wind gives a second-order effect when ý << 1.

In the track and field events long jump, triple jump and running up to and including
200 m, the international rules state that "if the wind velocity measured in the direction
of jumping" (etc.) "averages more than 2 metres per second, the record will not be
accepted". The wind speed is measured and averaged automatically, during a certain
time that varies with the event.

The air resistance depends not only on the speed through the air but also on the air
density, i.e., indirectly on the altitude. The air pressure at sea level is about 1010 hPa.
In Mexico City, located at an altitude of 2200 m, the pressure is about 780 hPa. From
the gas law, pV = RT, we get that the density p is proportional to the pressure p, at
equal temperatures T. Hence p is 23 % lower in Mexico City than in, e.g., Rome. Now
compare an event in still air in Mexico City with an event with a tail wind in Rome.
The air resistance in the two cases is the same if there is a tail wind v' in Rome so that
(v-v') 2/v? = 780/1010. When v ; 11 m/s, as is approximately the case in 100 m sprint,
v' = 1.3 m/s. McFarland [20] has considered how much the lower air resistance in
Mexico City affects the time for 100 m sprint. He allows for the varying speed during
the run, and assumes that the kinetic energy (i.e., the speed) increase corresponds to
the lower energy loss due to air resistance at low pressure. This model calculation
suggests that running in Mexico City ,ather than at sea level, and in both cases in still
air, gives an advantage of about 0.09 s. Based on this result we would expect that a
maximum tail wind of 2 m/s gives an advantage of about 0.13 s.

The combined effect of the low air density in Mexico City and a maximum allowed
tail wind of 2.0 m/s there, would be equivalent to competing at a place where the air
pressure is reduced to 52 % of that at sea level. This combined effect may lower the
time by 0.2 s in 100 spcint.

We finally note that a change in temperature affects the air density. An increase by
20 oC, which is not unreasonable if we compare, e.g., Stockholm and Rome, corre-
sponds to a difference in p by 6 % when the pressure is held constant. That means an
advantage by 0.02 s in 100 m sprint, but only about 1 cm in long jump. In hammer
throwing its effect is larger than about 10 cm, i.e., larger than the effect of a maximum
allowed inclination of the field.

5. RECORDS AND GRAVITATION

The acceleration of gravity, g, varies from place to place. One might first think that
high altitudes would reduce g significantly, but that is a small effect compared to the
variation of g with the latitude ýo. It is a good approximation to take

g = 9.832 - 0.052 cos 2p (m/s 2) (9)

The dependence on W has two causes, one being a "direct" centrifugal effect due to the
rotation of the earth and the other coming indirectly from the fact that the rotation
also changes the shape of the earth to a somewhat flattened sphere. The actual
acceleration of gravity may differ slightly from the result of Eq. (9) due t(. local
variations in the mass distribution on the Earth, but for our purposes Eq. (9) is
sufficient. From it we get the results of -'able 2.
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Table 2
The acceleration of gravity, g (m/s 2), in some cities.

Stockholm 9.818 Rio de Janeiro 9.788
Berlin 9.813 SPo Paulo 9.789
Mexico City 9.780 Melbourne 9.800

Now consider a standard parabolic trajectory, for which s = v2sin(2a)/g. With a
given launch speed v and elevation angle a, a change in g changes the distance s by As.
From Eq. (9) we can write

As/s = JAg/g[ = 0.0053 cos 2 p (10)

One of the classic world records is that of the Japanese Tajima, whose 16.00 il in
triple jump at the Olympic games in Berlin in 1936 was not matched until 1950, when
Ferreira da Silva from Brazil also reached 16.00 m, in Sao Paulo. The following year he
jumped 16.01 m in Rio de Janeiro. However, we see from Table 2 that the lower
acceleration of gravity in StLo Paulo and Rio de Janeiro, compared to Berlin.
corresponds to an advantage of about 4 cm for Ferreira da Silva. This fact started a
public discussion at the time, whether not Tajima's result was still the best. The same
argument, when applied to hammer throwing, gives an advantage to competitors in
Mexico City, over those in say Stockholm, by 34 cm. This is from the differen.o in
gravity alone. About an equally large advantage may come from the lower air pressure,
and hence reduced air resistance on the hammer, in Mexico City, cf. Section 4.2.

McFarland [201 has simulated numerically a long jump, a triple jump and a high
jump in Mexico City and in Moscow, allowing for variations both in gravity and in air
resistance. He concludes that the famous world record by Beamon got an extra length
by about 2 cm from the decreased gravity, 3 cm from the reduced air pressure and
another 3 cm from the fact that there was a maximum allowed tail wind of 2 m/s.
These results of his detailed calculations are in all essentials in agreement with the
results we arrive at using the simplified arguments in this paper.

A word of caution is appropriate when one discusses the effect of reduced gravity on
sports records. In some textbooks one is asked to estimate the world record in high
jump, if competitions could be held on the Moon where the gravity is only 1/6 of the
value on the Earth. Obviously the record would not be 6 times higher on the Moon
than on the Earth, because what matters is how much the centre of gravity is raised in
the jump. For a world class male athlete on the Earth, it is raised from about 1.1 m to
about 2.4 m when the bar is passed. About 8 or 9 meters would then be a reasonable
answer to the Moon problem. However the altered gravitý certainly also affects the
athlete's approach and take-oh". !`at will be less forceful on the Moon.

We now return to throwing events. The inertial forces are much more important
than gravity forces during the athlete's throw. Cor;ider, as an illustration, shot
putting. For our purpoue a crude model is sufficient. We assume that during the final
stage of the put, the launch velocity v is reached in a uniformly accelerated motion
over a distance h. That acceleration requires a force Fj = mv2/(2h), or Fi = 400 N if il
= 7 kg, h = 2 m and v = 15 m/s. During the throw the athlete also raises the shot and
so has to overcome the gravity force. The difference in g between Stockholm and
Mexico City corresponds to a change in the gravity force on the shot by 0.2 N, or
1/2000 of Fi. The arm and other parts of the athlete's body must also be accelerated
and raised in the gravity field, but that will lead to approximately the same ratio
between altered gravity force and inertial forces. If the total force applied by the
athlete is constant (i.e., iodependent of the small gravity changes) the launch velocity
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would increase by 1/4000 and the length of the throw by 1/2000 in our example. That
means 1 cm in a 20 m shot put, to be compared with about 6 cm from the effect of the
reduced gravity force during the free flight of the implement.

6. THROWING AT A TARGET - THE PRECISION OF RELEASE

In some sports an implement is released towards a mark or another implement at
some distance, and the aim is to come as close as possible to the target. Here we shall
first consider sports akin to boule, and then curling. Finally, references are given to
work on tennis, golf and basketball.

6.1. Varpa, boule and related sports
A vertical stick is placed 20 m from the competitors, who are throwing flat stones

(real stones, or cast metal discs) trying to land as near the stick as possible. This
particular version of a universally spread game is called varpa and has its roots on the
island of Gotland, in the Baltic Sea. Boule is a similar game, with metal balls thrown
at another ball at a distance of about 15 m. In one version of the varpa one measures
the distance between the stick and the nearest part of the stone. A champion has an
accumulated distance to the stick of about 400 cm after a completed competition of 36
throws, i.e., about 10 cm per throw.

In order to come close to the target, the direction sideways has to be correct. We
shall neglect that and focus on the problem of landing the stone at the correct distance
from the launch point. Suppose that a pointlike mass is thrown so as to land within the
distances d ± b. We neglect air resistance and use the result for the parabolic
trajectory, i.e., we require that

v 2

d-b< 1-sin(2a)<d~ b (11)

When d = 20 m and b = 10 cm, the inequality is fulfilled for all elevation angles a and
launch speeds v that lie within the shaded area in Figure 3. The allowed interval in
launch speed, for an angle a = 450, is (14.00±0.04) m/s. It is remarkable how well the
human brain is able to achieve such a fantastic precision. But it is not necessary to
exemplify with a champion. Even an unexperienced person can come within 1 m of the
stick 20 m away, after a short practice. That requires a launch velocity (14.00±0.35)
m/s, i.e., a variation by less than 2.5 %. For completeness it should be noted that the
distance to the stick is measured from the closest part of the stone. Since the stone has
a certain size the requirements on v and a are somewhat less stringent than obtained
in our model of a pointlike particle.

6.2. Curling
In curling a stone slides over the ice towards a target about 36 m away. We analyse

this in an idealised model where a mass m moves over a horisontal surface with a
constant coefficent of friction f. The speed of delivery is v. After a time t the mass
stops, at a distance s. Thus

v -at - 0 (12)

s = vt - at2/2 (13)
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Figure 3. The "window of acceptance" for the launch velocity v and the elevattion
angle a• in the sport varpa, where a flat stone is thrown towards a stick at a distance of
20 m and the center of the stone lands within 10 cm of the stick.

The retardation is a = gf, where g is the acceleration of gravity. Hence

f = 2s/(gt 2) (14)

The typical time for the stone to slide to the target is t = 22 s. With s = 36 m, Eq.
(14) gives f = 0.015. The coefficient of friction between the curling stone and the ice is
very low!

In analogy to the discussion above for varpa we now ask what is the allowed interval
for the velocity of delivery if the stone is to stop within a certain distance interval.
Eliminating t in the equations above gives

v = V2g--g-- (15)

With, say, s = (36M0.5) m and f = 0.015 one has v = (3.25d0.03) m/s. Several factors
complicate the situation in the real world of curling. The ice is not flat but has bubbles
from being sprinkled with water. The underside of the stone is not flat, and it is in
contact with the ice only along its rim. Further, the stone is given a slight rotation,
that leads to a curl in the path and to complicated frictional forces. During a
competition the coefficient of friction may change, and different rinks can have
frictions that vary by 20 % or more. On the other hand the rules allow the sweeping of
the ice with brooms, in front of the stone while it slides forward. That may affect the
sliding distance by several meters. However, we should note that an increase in s by 3
m, in our model example only requires that v increases from 3.25 m/s to 3.39 m/s, so v
still has to be controlled within a few per cent.
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6.3. Other sports - tennis, golf and basketball
We end by giving references to some works on the required precision in other sports.

With computer techniques one may realistically calculate the trajectory of a tennis ball
or a golf ball, even when it is spinning in air. In tennis one can define an "acceptance
window" in speed and velocity of a returned ball, so that it clears the net and hits
inside the court. An advanced popular book has been written by Brody (8]. He has also
written some more technical articles on tennis [22,23). Similar work, but relating to
golf, has been published in a popular and lavishly illustrated book by Cochran and
Stobbs [9j. Holmes [241 has modelled golf putting.

Shots in basketball are particularly complex when performed while the athlete is in
the air, since the launch velocity is affected by the translational and rotational motion
of the body, as discussed by Brancazio [10,25]. Townend [26] has considered the free
(ie., penalty) shot in basketball, with particular emphasis on the launch angle, the
speed and the height of the launch point.

7. CONCLUDING REMARKS

In the first part of this paper we considered various factors that the athlete has no
control over, but which will affect the recorded result. Table 3 summarises some of the
findings. The columns refer to (i) the efffect of a maximum slope of 1:1000 of the field
or track; (ii) variations in the acceleration of gravity between a place close to the
equator (e.g., Mexico City, Sao Paulo) and a place further to the poles (e.g.,
Stockholm); (iii) reduced air pressure at high altitudes (e.g., Mexico City) compared to
sea level; and (iv) maximum allowed tail wind of 2 m/s. The numbers given are of
course only approximate and of varying uncertainty, as discussed above. Each entry
refers to the size of the possible improvement due to the factor under consideration.
The units in Table 3 are meter (hammer, long jump) and second (100 m sprint). It is
seen that the combined effect of the most favourable inclination, gravity, air pressure
and tail wind implies a total advantage of about 1 % of the recorded result in hammer
throwing and long jump and about 2 % in 100 m sprint.

Table 3
Summary of advantages related to various factors, given in meters (hammer, long
jump) and in seconds (100 m sprint)

Sport Slope Gravity Air Wind

Hammer 0.1 0.3 0.5 0.2
Long jump 0.01 0.02 0.03 0.03
100 m sprint <0.02? <0.01 0.09 0.13

In the last part of this paper we considered the precision by which an athlete has to
release an implement in order to succesfully reach a certain target. Often the speed
given to the implement must be controlled to within I %, which is an impressive
*ndication of how well the human brain can coordinate movements.
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Aerodynamic sound associated with vortex motions:

observation and computation
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Abstract
Theory of vortex sound in the aeroacoustics can describe characteristic features of

the waves radiated by localized vortex motions at low Mach numbers. Some evidences
and illustrative examples are presented from our studies to show remarkable agreement
between observed and computed wave profiles emitted by the vortex motions with or
without presence of solid body. Among the cases to be discussed here are (i) head.
on collision or oblique collision of two vortex rings, (ii) vortez-cylinder interaction, (iii)
vortez-edge interaction. Corresponding to each of the three cases, the radiation patterns
are characterized by the quadrupole, dipole and cardioid type, respectively. Monopolar
(isotropic) component detected in the experiment is likely due to the viscous dissipation
of kinetic-energy. In the oblique collision of two vortex rings, reconnection of vortex-
lines occurs, and causes a violent motion of the vorticity, resulting in excitation of a
characteristic type of acoustic wave.

1. INTRODUCTION

In the theory of vortex sound at low Mach number and high Reynolds number [1-8],
the source flow is characterized by a localized vortex motion scaled on a length 1 which
is regarded as the vortex size too. This flow field is surrounded by outer wave field
scaled on the length \ ýý cr = O(l/M), where r = 1/u, u being a typical velocity of
the flow field. The sound speed and density in the undisturbed uniform medium are
denoted by c and p0, respectively. Typical Mach number M is assumed to be much
less than unity: M = u/c < 1. This enables separate analysis of the two fields: inner
flow and outer wave regions, because of the compaciness of the source flow, I < A. The
theory of vortex sound is one of the most successful parts in the theory of aerodynamic
sound [9-12].

In our investigation of the vortex sound in the past decade, evidences showing the va-
lidity of the theory are accumulating. Our experimental and theoretical studies include
three typical cases. The first one is the sound generated by two interacting vortices in
free space in the absence of external body: i.e. (i) head-on collision and (ii) oblique
collision of two vortex rings. In the first stage of the collision, the vortex interaction is
almost inviscid. This is followed by the second viscous stage : cancellation of opposite
signs of vorticity at the time of collision, reconnection of vortex-lines, or turbulent dis-
integration. Acoustic waves generated by these motions were detected experimentally
and investigated in detail. The second case is the sound wave generated by a vortex
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interacting with a solid body of length scale 1. Presence of an external body in the
vicinity of an eddy causes emission of waves of the dipole type [13], whereas the waves
in the former case are characterized as the quadrupole. The third case considered below
is the wave generation by a vortex ring moving near an edge plate whose size is larger
than the scale A. Remarkable feature of the wave field are the effects of the edge and
non-compactness of the plate, giving rise to the scattering of waves by the edge plate.
Here the temporal wave profile depends on the time history of the vortex motion [291.

In the present paper, asymptotic representation of the velocity potential of the inner
flow is sought first, and then the solution of the outer wave equation is determined so
as to be matched to the inner solution. This method is especially successful to the first
case of the vortex sound in free space, and also applicable to the second case of compact
body. The third case must be treated differently because of the effect of scattering. Main
interest here is comparison of the wave profiles thus determined computationally with
the corresponding profiles detemined experimentally. The vortex motions considered
are three dimensional. Although two dimensional problems of sound generation by
rectilinear vortices were studied in the early times of development ([2], see [10] for
reviews), experimental observations and validation are rare.

2. MATHEMATICAL FORMULATION

Basic equation of the aerodynamic sound is given by the Lighthill's equation [9]:

02

Pt- C2V 2p = (1)

where Tj pvv 1j + (p - c2p)6&j -- ,j
p is the pressure, p the density, vi the i-th component of velocity and -'ij the viscous
stress tensor. Summation convention is assumed on the right hand side (rhs) of (1) and
henceforth.

In the inner region scaled by the length 1 and time r, the ratio of the two terms
on the left hand side is estimated as LpoI/Ic 2V2p = 0(t2/c r 2) = O(M 2 ). In the first
approximation neglecting terms of O(M 2 ) and hence the term ptt, the equation (1)
reduces to the Navier-Stokes equation for an incompressible fluid, governing solenoidal
vortex motion treated as a source flow.

The solenoidal velocity field v(x, t) can be represented in terms of a vector potential
A(2,t): v = V x A. Given the vorticity w(x,t), the vector potential is expressed as

A(x,t) = - f W(y't) d~y (2)

(e.g. see [14]). At a large distance r = fxj away from the localized vorticity region having
either a compact support of w(y,t) or such a property that Iw, decays expoentially as
r - co, the factor 1/1z - yj can be expanded in a Taylor series which is convergent for

lylix/i < 1, and the velocity field v(x,t) tends to be represented asymptotically by a
velocity potential t. Asymptotic expansion of the potential -t(xt) which is obtained
after some nontrivial calculation for r/l -- oo is given in the form [15],

'1(z, t) = -Do(X, t) + Q, o,1 + Qa, 0a,- + Qj 0 0 jk I + 0(r) , (3)
r r r
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where 8i = 8/Oxi, and

Q,(t) = J x w)1 d~y , (4)

Qij(t) = (Y- (yx w× i d~y ' (5)

2--- (y ×x y) y.k d3 Y ' (6)

The vector x = (xi) is used for the point of observation and y - (y') for the point of

integration (the souce point). It is almost trivial to show the following properties,

Qi,(t) = 0 , Qik(t) = 0 , Qii,(t) = 0 (7)

by the orthogonality of the two vectors y and y x wo. The resultant impulse of the vortex
system is defined by 47rQi, which is an invariant of motion for unbounded fluid wihtout
external body.

The first term I0(x,t) represents the effects which cannot be represented by the
expression (2) (e.g. fluid compressibility or presence of a solid body in the inner region).
The compressibility of the source flow ( Idiv v) being O(M 2 )) is assumed to be localized,
apart from the generated acoustic wave which is of larger scale A > I and treated in
the next stage. From the theory of irrotational motion with localized rate of expansion
A = div v, the first term bo is given by the following asymptotic expansion [14],

1 1 1 1-)
Ro= °(t)- + 1?.(t) O' + R4j(t) 613- + Rijk(t) 8 t 3 Ok- + O(r (8)

r 7 r r

where R 0 , &R, - -.. are all functions of time t and determined by the distribution of
A(z, t). Presence of a solid body in the vicinity of the vortex motion can be represented
by an additional velocity potential whose asymptotic expansion is again of the form (8)
[141. In the case of solid body, the first monopole term must vanish by the condition of
no net outflow over the body surface. Thus both effects of compressibility and presence
of solid body are represented by the expansion (8).

Corresponding pressure field at large distances from the vortex motion is given by
the linear approximation, p(l)(m, t) = -pott, namely

Wp(Z'a t) - OP .1 - b1-I+0r

-poPo - - poP' 6,- a pi P e900l- - pPj O, O9jOk ± + O(r-) (9)
r 7"r r

where the over-dot denotes a time differentiation, and Po(t) = Ro, PJ(t) = Q, +
Ri, P1j(t) = Q1j + RP., Pijk(t) = Q3,j + Rip, ..

In the outer region, the rhs of (1) becomes vanishingly small and the pressure is gov-
erned by the wave equation: ptt-c 2V 2p = 0, because of the (assumed) adiabatic relation
dp c'dp. The wave pressure p(W) matching to the inner solution (9) asymptotically as

x /A --* 0 is given by the multi-pole expansion,

p(M)(Zt) = PO(4) Io 0- -8 o [0010 P I + ,.. (10)

where t. = t - r/c is the retarded time. This is verified as follows.
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Obviously, each term of (10) satisfies the wave equation. Matching of the two solu-
tions p(') and p(W) is carried out in an intermediate region. In terms of the inner variable
defined by the normalization i --- x/1 (and f r/l), the outer variable i- zi/A and
intermediate variable t. are given by

: = Mi = M= (M (11)

where a is a parameter in the range 0 < a < 1. Normalized retarded time is f, = t,/r -
-• f= f - M'-, where 1 = t/%, f = r/A, ý = M"-I' = M=f. Using ý, we have

f = M-`4 and f = Ml-ý. Thus in the limit M --+ 0 with keeping t and Ci fixed (the
intermediate limit), we obtain F --+ oo and f -- 0. As an example we consider matching
of the second order term. The third term of the inner pressure (9) is written as

_p•• Ij M~a .(,, 02 1

-'p0 Pj(j) asaj = -P 81. 1i

whereas the third term of the outer wave pressure (10) is

P0 M13 Ot (;(E =-P0 t OG +1 ' [ -4 (12)

where the superscripts (i) and (w) are used to distinguish the functions in the two
regions. It is found that both expressions have the same order of magnitude M' and
we have P( = in the intermediate limit as M --+ 0. Crow [4] shows that the
second term of the order O(M,2+2 ) in the parenthesis [] on the rhs of (12) can be
matched to the term in the next approximation (effect of compressibility, e.g. the term
Ptt) of the inner expansion. Precisely speaking, an arbitrary term C(-)6bi can be added
to P(7)(i) in the leading order matching. If so, in the next order O(MaM2 (1a-)) =
O(Ma+ 2 ), the second term in [] of rhs of (12) will ,nclIde the additional term of the form
(ýV2(ý/2) = 0/c. This arbitrariness drops out when we introduce a monopole term of
the form P -")= -(M2/12)6(1) by the consistency argument. Then the combined outer
solution -C(f - )/ + V2[C(f - f)/i] vanishes identically [4]. Matchings of the other
terms are verified similarly. In particular, in the matching of the fourth terms, another
arbitrariness in the dipole term comes in, but can be dropped out by the same reasoning.

The origin of the first monopole term of (10) is considered by Kambe [16] (see also
[17, 181). It is shown from the dynamical equation of motion (Navier-Stokes equation)
that

Po(t) = _5 -3 /1(t), K(t) = 2(yt)d'y (13)
127r c2  2

where K is the total kinetic energy and 7 the ratio of specific heats (-Y = 7/5 for
the air). We assume that significant effect of the compressibility of the vortex motion
appears only in this isotropic term due to the assumption of the compact source flow and
M < 1, mentioned in the beginning. The rest factors Pi, Pi, Pjk ,' •. of the multipole
components of p(') are given by Qj, Qij, Q1ik ,... associated with the vorticity w and
RA, , A, P-ii. , ... representing the influence of a solid body. The functions Q1 , Q, ,.-.
are integrals of the moments of the vorticity w(y, t) as given in (4)-(6). Thus the
multipole components of the generated wave p(w) are expressed in terms of the vorticity
of the source flow. This is called as vortez sound. The the second term of (10) represents
dipole emission due to change of the total impulse 47rQi and/or presence of a solid body.
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3. COLLISION OF TWO VORTEX RINGS

We first consider the vortex sound in an unbounded fluid with no solid body, gener-
ated by collisions of two vortex rings. In this situation, the impulse 4rQi is conserved,
and hence the dipole term disappears. In fact, the dipole emission (considered in the
next section) is related to the rate of change of the resultant external force Fi(t) exerted
on the fluid [13] which is absent by the assumption. Therefore Pij and Pip, are given
only by Qi, and Qijk respectively. The pressure in the acoustic far-field (j -4 oC,
much simplified in its form because the space derivatives applied to r-1 in (10) becou.•:•
higher order of smallness than those applied to the functions of t, as (ý --+ oo). Thus
the pressure observed at a point X = (zX,X 2 , X3 ) in the acoustic far-field is given as

(Po P0 )(t+).!.. Po (4) XiXjzk + (14)
PM (X, t) P0 " C2  3 1 Q r

where superscript (n) denotes the n-th time derivative. The second quadrupole term
(M6hring's quadrupole [6]) can be shown to derive from the non-isotropic part of the
Reynolds stress poviv3 [16]. The conservation of the resultant moment of impulse (an-
gular impulse) leads to the symmetry property Qj = Qj (and Q$) = 0, etc. by (7)).
The first isotropic (monopole) term arises when the total knetic energy K of the sys-
tem changes, but vanishes identically in an inviscid fluid. ilere we have written the
formula up to the third order terms. An experimental observation (described in § 3.2.)
is showing existence of this order.

Using the length scale 1, the vorticity scale w = u/1 and the time scale r = 1/u, the
scaling law of the wave pressure of the quadrupole sound is deduced as follows. The
tensor Qii is normalized by 14u and hence Q(ý) by 14 u/-r = 1u4 (the first monopole term
gives the same by (13) ). Thus we find the scaling law for the quadrupole sound as

-Po? 1u po4PQ ~ OJU -• PU 4 1

2 r C
2 

r7

The sound intensity Iq is given by p2/poc. Hence we obtain the well-known intensity
law [9]: IQ - (pou./c')(1/r)2 c us.

3.1. Head-on collision
Axisymmetric collision of two vortex rings [17] is a particularly simple example of

the vortex sound. In an inviscid fluid, the first term of the formula (14) vanishes and
the second quadrupole term reduces to

9ldz

2 0
S$... .. ~ __-

2R,-'

Figure 1. Directivity of the acoustic Figure 2. Head-on collision of two vortex
pressure: I - 3 cos2

2. rings (definition sketch).
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PO Q(3)(t') (I -3c s21(5

12C2 r1

where the vorticity is assumed to have only azimuthal O-component W(s, z) in the cylin-
drical coordinate system (z, *, 0), leading to

Q(t) f fW(u,,Z) a 2 Z dodz ,(6

with z = z3 and or = z + zX and 9 = arccos(z/r). In this case the temporal behavior

of the pressure is described by the single scalar function of 3rd-order derivative Q(3)(t),
and spatial distribution is given by the axisymmetric four-lobe directivity (Figure 1).

(a) Computation
Suppose that we have two vortex rings having a common symmetry axis z with one

vortex being a mirror image of the other with respect to the plane z = 0 (Figure 2), and
that they approach each other according to the equation of motion. When the vortex is
characterized by its strength -r, ring radius R(t) (core radius 6) and the distance Z(t)
from the symmetry plane z = 0, the interacting motion of two vortex rings of very thin
cores is described by a system of first-order ordinary differential equations [19] originally
derived by Dyson [201. Then the profile function Q(t) is expressed by -2FR 2 (t)Z(t).
The wave pressure form is given by Q(M)(t), which is calculated numerically by solving
this system of differential equations and shown by the curve I in Figure 3, together with
the observed one E (see (b) ). When the two vortices come close to each other, forward
speed IZ(t)I decreases, but the ring radius R(t) grows rapidly, and the cores of the two
vortices get closer to come into contact [191. The first peak of the profile corresponds
to the initial inviscid stage of the colliding motion.

Effect of finite core-size and core deformation on the wave profile is studied in detail
by the contour dynamics [21]. This analysis suggests that the dip observed in the
curve _Q(3)(t) is due to core deformation, although the core size used in the numerical
simulation seems to be larger than in the experiment and the fluid is inviscid.

A numerical simulation of axi-
symmetric viscous vortex collision -
was carried out to estimate the
profile function Q(3)(t), shown by Q(3)(t) / I
the curve V in Figure 3, at the 8. RoU4/
Reynolds number Re _ 1.3 x 103, / ;,
based on the initial translation E,
velocity U = [1(0)1 and ring dia- 4. /
meter 2R0 = 2R(0) [31). . t

(b) Observation 0 2 58
Experimental observations of 58#

the corresponding acoustic waves -4 V
due to the vortex collision are .
reported in [17] and [221. In the -8,
latter study, the waves were
observed in all directions at
0 = 10' to 3500 with 100 interval Figure 3. Temporal profiles -Q( 3 )(t) (normalized):
in a meridional plane including I, inviscid; E, experimental; V, viscous simulation.
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the symmetry axis X3.
The observed pressures at 35 stations are represented in the truncated Fourier series:

p(O, t) = ao(t) + al(t) cos 0 +bi(t) sin0 + a2(t) cos 20 + b2 (t) sin 20. The two terms ao(t)
and a2 (t) cos 20 are found to be dominant and rewritten as

Pmq(O, t) = pm(t) + pq(t)(1 - 3 coS2 0)

where Pm and Pq represent the monopolar and quadrupolar components respectively.
Significant amplitudes of p..(t) and pq(t) are detected (Figure 4). This experimental
study suggests that there exists monopole component associated with dissipation of
the kinetic energy (13). The Reynolds number Re is of the order 10" or larger in
this experiment. A general feature of the observed curve pm implies, helped by (13) and
(10), that the kinetic energy K decreases like a step function (or rather like the function
- tanh) at the time around t -z 2000(ps).

An experimental visualization in color was made recently in water at lower Reynolds
number of the order 10' [23]. This clearly shows, when the two vortex rings are close to
one another, reconnection of vortex lines and formation of smaller rings by instability.
At higher Reynolds number, turbulent disintegration is observed.

1200 1600 2000 2400 (ps)

0.04-P
•"~~~~~~~ .' In g••,,. ... e /L.L_ .' ),.L-,*A t

-0.04M

(U 33.4m/s, Ro = 4.7mm)

Figure 4. Observed temporal profiles of p,(t) and pq(t).

3.2. Oblique collision
Oblique collision of two vortex rings at right angles is studied experimentally and

computationally [15]. Evidently this oblique collision (Figure 5) has no axisymmetry
like that in the previous case of head-on collision. This requires an increased amount
of data for the analysis. At the oblique collision, opposite senses of vortex lines are
forced to come in contact at the inner part. This event is followed by violent mo-
tion of vorticity and excitation of acoustic waves. Analysis of the wave data provides
some information of the complex vortex motion associated with vurtexhne reconnection,
sometimes turbulent.

Consider a problem that the initial state is given in such a way that two vortex rings
are set to move along the paths intersecting at right angles at the origin and collide with
one another. The bisecting straight line between the two paths of the vortex center is
taken as the polar axis 0 = 0 (along the x3 axis) of the spherical coordinate system. The
plane perpendicular to the X3 axis is the (zX, X2) plane on which 0 = ir/2. There are
two symmetry planes including the x: axis: one includes the trajectories of the vortex
centers which is defined as (X 2,X3) plane and the plane (xi, z3) perpendicular to it is
also a symmetry plane which bisects the two trajectories. The plane 4 = 0 is taken
along the positive x, axis. Thus the two vortex rings (centers) move toward the origin
along the direction of the angles (0,q') (7r/4,7r/2) and (7r/4, 37r/2) before colliding
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0.lms 0.9ms 1.2ms 1.4ms

Figure 5. Schlieren photographs of the oblique collision of two vortex tings
(made by shock impulse from the two nozzles seen above).

interaction. From the geometrical arrangement just mentioned, the acoustic pressure

p(g, 0, t) is characterized by the symmetry:

p(0,-01,t) = p(0, 0,t) , p(O, + -7r,t) = p(,0,,t) . (17)

The formula (14) is rewritten by using the spherical polar coordinates (r',9, 0): X, =
r sin 0 COS 0, M2 = r sin 0 sin 0, X3 = r cos 0. Then the n-th order form, like the expression
F 2 = CGijx1/r 2 for n = 2 or F3 = Cijk iXjXk/Tr for n = 3, can be represented in terms
of the n-th order (or lower order) spherical harmonics,

Pock), Pn1W C)Cos , sine0), ... , PC)(CcS os , sin nO), (18)

where C = cos9, Po(C) and P,(C), (k = 1,---,n) are the Legendre polynomials. In
fact, we have F = (1/3)(-Cll - C22 I- 2' 33 )JP' 1 (i/6)(Cll - C 22 )P2 cos 2i '+ ( iinear
combination of P2' cos 4, P2 sin 4 and P2 sin 20 ). Similarly, regarding the third-order
form F3 , we give an explicit expression to the terms to be uJsed later:

F33 0+ •223)P3 cos 20 + (19)

where Q(4) are used in place of Ctjk, and the tilde symbol denotes 1 = (4) + Q +4)

Q(4) etc.. The coefficient of P3 of (19) reduces to Q) (115)Q( by the relations (7).
In view of the symmetry (17), the pressure is represented as

p(8,4,t) = Ao(t) + A1(t)P°(cos 0) + A 2(t)P2(cos ) cos 24

+Bi(t)P3'(cos9)+B 2(t)P32(cos9)cos24 , (20)

where higher order terms are omitted since observed amplitudes are not significant.
Thus it is found that the far-field acoustic pressure (14) is represented in terms of the
five normal modes with five coefficient functions of time [Ao(t),Al(t),A 2(t),Bl(t),B 2(t)].
Here the Legendre functions are P2 = (1/2)(3cosS2  - 1), p2 = 3sin2 , .-- , and
P3 = (1/2)(5cos 3 0 - 3cos0), P3 = 15(cos0 - cos'9), .
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(a) Observation
The acousttic waves emitted by the 900 collision were detected at 102 different

angular positions on the three great circles of radius r = 620mm on the three orthogonal
pianes: (1) 0 = 7r/2,31r/2; (2) q0 = 0,7r; (3) 0 = r/2 . The trajectories of the vortex
cores in the (z 2, X3) plane observed by a photosensor are shown in Figure 6, where the
ring radius Ro= R(O) of the single (unperturbed) vortex is 4.7mm. ( U 27m/s)

vortex ring X3 vortex ring 0 .

-0.02q

0.02'A,

0 0 -0 A2. .
-.0002 2

a b B20t

Figure 6. Observed core trajectories of
two colliding vortices in the (z 2, z3 ) a•,
plane including the vortex center..-..- .. .
The marked positions a and b 4,7 5.1 5.5
correspond to the times of Figure 7 t (ms)
(broken lines).

Figure 7. Main mode amplitudes of
observed waves.

The symmetry relation (17) is found to be consistent with the observed data, In
fact, the acoustic pressure detected in the plane 0 = 7r/2 can be expanded into Fourier
series with respect to the angle 4, and it is found that the Fourier coefficients of sinm4
(m = 1 -- 4) and cos m'o (m' = 1,3, 4, 5) are negligible.

Three sets of profile functions of [Ao, A,,A 2,B 1, B 2] can be determined from the
observed data. It is found that they coincide almost with each other. These profiles are
shown in Figure 7.

(b ) Computation
Numerical simulation of the vortex collision at right angles, which corresponds to the

experiment, was carried out by M. Takaoka in order to estimate the acoustic emission,
using the method of [24]. The incompressible Navier-Stokes equation is solved numeri-
cally, together with the continuity equation, by the spectral method on 64' grid points.
Imposed boundary conditions are 27r periodicity in the three coordinate directions.

The isotropic component is proportional to the second time derivative of the kinetic
energy, and the auadrupole components and higher modes are related to the change of
moments of vorticity distribution. Using the data from the simulation, we can calculate
the tensors Qii(t) and Qi 1 k(t) of (5) and (6). Thus we readily obtain the main mode
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coefficients {A0 , An, A2 , 1 ,/3 2 1. The main mode amplitudes of the computation and
the observation are qualitatively similar, but quantitatively different, probably because
of the difference of the values of the Reynolds number. Unfortunately, the Reynolds
number of the computer simulation is smaller by two orders of magnitude than that of
the experiment.

(c) Implication of dominant wave components
Observed amplitudes A, and A2 of the two quadrupoles P. and P2 cos 244 in (20)

are significantly large. The amplitudes Al(t) and A2 (t) are considered as consisting of
three longitudinal quadrupoles Q11, Q22, Q33 (to the directions X , X 2 , X3), as understood
from the form of the coefficients of F2 . It is probable that there exists non-negligible
amplitude in the monopole.

Out of the two third-order components, the amplitude B2 of P3 cos 2q0 is negligibly
small, but the appearance of the mode P3 is substantial. To see the significance of this

mode P3, we examine its coefficient B, which is given by Q(, ft) - Q (t), where

Q3 =3- (y x w) 3)3 y d'y, Q3k - (Y X w) 3 y' d'y

P3 -= (Y X W)3 = y YW -- y2WI = Y. X. ,

the vectors y. = (Yl,y2) and w. = (w1 ,w2 ) Lcing projection of y and w to the plane
(z-, 2 ). Restricting our attention to the location of vortexline reconnection at the inner
part of the collision and reminding the geometry of the vortex"'nes, it is expected that
the variable p3 (near y. = 0) changes its sign before and after the reconnection, and

that its rapid change will give substantial contribution to the terms Q(34(t) and Q(4)(t).
Thus it is suggested that the significant amplitude B,(t) observed in the cxperiment
(see Figure 7) is representing an acoustic signal of a local violent motion a t the inner
part of the collision. The observed acoustic pressure shows a characteristic, asymmetric
directivity at the tiD,2s when the B 1 mode is substantial (see Figure 8). As a test
observation, we took a shadowgraph (Figure 9) of the waves generated by the core
collision with the vortex speed much higher than Lhat of the acoustic measurement. It
is supposed that the wave generation corresponds to the phase a of Figure 8.

00

900'i -. 90 . ..:

180°
1808

Figure 8. The asymmetric directivity
of the acoustic pressure at the times Figure 9. Waves generated by the c,,re
a and 3 marked in Figure 7 collision at a higher vortex speed
positive (o), negative(e). (taken by T. Minota)
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4. INTERACTION OF A VORTEX RING WITH A BODY

Presence of a solid body in a flow causes a considerable increase in the intensity
of generated sound. The degree of increase depends on the boundary conditions. If
the body is finite with its dimension being small compared with a typical wavelength,
then the sound wave generated by nearby iis charactcrized by a dipole emissio
whose intensity is proportional to the sixth power of the typical velocity u. On the
other hand, the intensity of sound generated by eddies in the vicinity of a sharp edge
of a flat semi-infinite plate (considered in the next section) is proportional to the fifth
power of u and the wave field takes a cardioid directivity pattern. [ see 171 for general
formulation; [25] for a circular cylinder; (261 for a sphere ; (271 for a wedge.]

Solenoidal vortex motion in the neiborhood of a solid body at rest is dominated by a
dipole field. This is interpreted as follows. The first and second terms of (8) disappear
by the conditions of vanishing net outflux across the body surface and no translational
motion of the body (14], respectively. However, the impulse 47rQ1 (the coefficient of the
second term of (3) ) changes according to the momentum exchange between the body
and the surrounding fluid. The rate of change of 47rQi(t) is given by the resultant force
F(t) exerted on the fluid by the relation, 4rQi = F1 (see (191).

It is shown [7] that the temporal wave profile is determined by the following integral
which is a function of time t:

H1(t) f w(yt) 'I1(y)d3y (21)

where w is the vorticity of the source flow and the function 'I'(y) (i = 1,2, 3) is a vector
potential (with div 'Q = 0) for the velocity of an imaginary potential flow (around the
body) of a unit velocity at infinity in the i-th direction. The function 4iP(y) represents
the presence of the body in the vicinity of the vortex motion.

4.1 General formula
If the eddy and the body without sharp edge are both compact relative to the

acoustic wavelength, the acoustic pressure obtained by Curle [131 is expressed as

p(Xt) = 1 Xi F )(t - r (22)pý, ) 4rc _r2 c

in the far-field where -Fi(t) is the force exerted on the body by the surrounding fluid,
represented by an integral of the stress over the body surface. The expression (22) is
clearly a dipole wave with its axis in the direction of Fi(t)

A different expression of the acoustic pressure is obtained by Obermeier 1281 and
Kambe 171 for the same problem. The pressure generated by the interaction of a solid
body and a closed-loop vortex (a) as

p(X,,t) --_ Po x, fii,( _, r) (23)
47rp r2 c

where the function [1i(t) of (21) reduces to

11'(1) r ' ', .ds -r I' f( , ,) dS = I'J,(t). (2,1)

The constant I' is the strength of the vortex, the infinitesimal variables ds and dS are
a line element of the closed loop a and an elernnt of the open surface S bounded by
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1r, respectively, and n is a unit normal to the surface S. The function J1(t) denotes the
volume flux of the potential flow %Yj passing through the loop a'.

To obtain the scaling law of the dipole emission, we note that 11i is normalized by
ul3 since r -' ul and IV x jI4 being of order unity away from the body. Thus the scaling
law is po uPIs pou 3 1

PO UP1 OUI
PD ý -_ - -

c T2 r c r

The sound intensity is ID - (pou 6/C3)(1/r)2 cK uO.

4.2 A vortex passing nearby a circular cylinder

(a) Computation
Consider a circular vortex ring of radius R (core radius 6) passing by the side of an

infinite straight circular cylinder of radius a (Figure 10). The x3 axis is taken along
the cylinder axis. (In this case, %P3 denotes a uniform flow to the cylinder axis.) If
the vortex is sufficiently distant from the cylinder, the vortex path can be regarded as
rectilinear. It is assumed that the vortex ring keeps its circular form (approximately)
and the ring center moves within the plane (x1 , x.2), which means that the normal to
the ring plane lies within the (xi, x2 ) plane. The above expression (23) reduces to

1800

(0o) ••.t = 1695(ps)

+ _ rcylinder

// / 900 vortex

flowF /
/2 0.

,,/ / b 1c

W cm

44 190

i iIZ1

2100

R vortex ring InlP

Figure 10. Schematic diagram of Figure 11. Dipole character of the far-field
the problem and the flow F acoustic pressure p(0, t) and corresponding
to the observation direction. vortex position relative to the circular

cylinder at three times, where U =27m./s,
R :: 4.7mm and a -,4.5mm
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p(, )= tsi + (t'cosJ+ j2 (t)sin¢] (25)
c 47rc r

_ Po r sin 1(t) cos(o - O(t)) (26)
47rc r

where J2 = j2 + j2 and tanO = j 2/J1 , since j 3 is taken to be zero and qP, (i = 1,2)
has only the X3• component: (0, 0, Ti). The angle 0 denotes the azimuthal angle of the
projection of the position vector x on the (zl, x2) plane, measured from the r, axis. The
angle 9 is the polar angle of the direction x from the x3 axis. Evidently the directivity
of the acoustic emission (26) is of dipole character with its axis in the direction O(t)
determined by j, and J2. The coefficient J(t) is the second time derivative of the
volume flux J(t) passing through the vortex ring of the flow F around the cylinder
to the direction of observation 0 ((251, Figure 10). Note that the wave pressure (26)
vanishes toward the cylinder axis 9 = 0 and ir. Thus the non-compactness of the body
to the direction of the cylinder axis does not "nfluence the characteristic feature of the
wave field.

(b) Observation
Corresponding acoustic waves were detected at various angles 0 in the plane 0 = 900

and various angles 0 in the plane 4 = 00 and 1800. Average wave observed at every 100
position (in the plane 0 = 900) is expanded into Fourier series with respect to 0. It is
found that the main component is given in the form,

Pob,(O, t) = -a(t) sin 0 + b(t) cos 4,

in accordance with the expression (25), and the dipole character is clearly seen in Figure
11. The solid curves a, b in figure 12 are the observed profiles. The broken curves show
computed (normalized) amplitudes a = -J 2 and b = Ji for the vortex ring moving along
a straight line parallel to the x2 axis but with observed variable speed (the velocity
decays gradually). Agreement in absolute values between the observed and predicted
profiles are fairly good.

-0.04-

1.0 1.4 1L8 2.2 2.6 3.0

t (ma)

Figure 12. Comparison of the coefficients a(t) and b(t): observation (solid) and
computation with 6/R =0.15 (thick broken) and 0.1 (thin broken).
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5. INTERACTION OF A VORTEX RING WITH AN EDGE OF
A FLAT PLATE

Presence of a flat plate with a sharp edge in the vicinity of a vortex alters the wave
field significantly, as well as the inner field bounded by the plate. When the edge plate
is non-compact, the temporal wave profile depends on the history of the vortex motion,
which is the scattering effect of the edge. This effect is taken into account by using
the low-frequency Green's function [5], and the formulation is made differently from the
previous ones ([291, [30], [10]).

In the present case of a vortex ring moving near the edge of the plate (Figure 13, the
edge being taken as the z3-axis, the polar axis), the plate is placed at Y2 = 0 (Y1 < 0)
or ±= 180'. The wave pressure generated by this interaction is obtained [7, 291 as

Po sin 0 (sinO)1/2 r (27)P(X, t) =2 (27
I(2)11  f(t - .)

where f(t)=fiJj (t - d (t):r = (28)

the latter expression is obtained from (21) like (24) with *'i = 'i' = (0,0,ik(y)). The
streamfunction 0(y) is defined by _y1/ 2 cos 10, representiong a hypothetical potential
flow around the edge from below to above the plate, where Y = (yj + 2/)'/2. Note
that the velocity V x @ of the hypothetical flow is scaled as L-1/ 2 (L being the nearest
distance to the edge), and that the time scale for the flux change should be given by
"rL = L/u. Using the argument which is similar to the case of dipole, we obtain the
scaling law of the wave pressure for the edge sound as

po ulL' /212 1 _pOU
5 /2  lI\)2 1

PE c 1
2 1 2 1 C'--

The acoustic intensity IE defined by p2E/poc is now proportional to u5-L -'. The angular
dependence of the wave pressure (27) is given by the function F(O, ) sin 4 (sin 0)2

2 \(t) tr
2.0 1.5 11(t)

f W)

\ ,1.0 0.75
fi(t)

half-plane/o'e

0

rinUMIL

.............................

Figure 13. Trajectory of the vortex -4 -2 0 2 4

ring moving near the edge and the Figure 14. Three functions, f(t), 11(t), 11(t)
streamlines given by -0 =const, for the angle of trajectory a = -17r.
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12, P.(0, 0)
° 

0.W

plate 14*plt

a _Vw/2 L = 9.6mnr

U90=U30.4m/s R =4.7MM
-90*

Figure 15. Polar plot of the acoustic pressure Figure 16. Perspective profile of
observed at a fixed time to with 9 = 7r/2. the observed wave:
The solid curve is j,,p(to) sin ½€. p.(0, t) = frp (t) sinI

(Figure 15). In the plane perpendicular to the x3 axis (8 = 7r/2), the directivity of the
acoustic intensity is the cardioid, ', - sin 2 '0 on a fixed circle r =const and 0 =const.

(a) Computation
The temporal wave profile of the pressure is represented by f(t) of (28)

I

f(t) = J(.--w)2IIF(w)exp[--iwtldw = ( 11(t) (29)

[26], where H(t)/r is the volume flux of the flow -0 passing through the vortex ring

of radius R (core radius 6), and IIF(w) is the Fourier transform of lt(t). The vor-
tex trajectory is a straight line with the angle a to the y, axis. The three functions
f(t), fI(t), ft(t) are shown in Figure 14 for a = -7r/2. It is observed that the curves
f(t) are intermediate between I1(t) and JI(t). This intermediate behavior exhibited by

the half-integer differential operation (d/dt)½ is related to the scattering of the wave by

the non-compact edge plate. It is interesting to compare this with 11(t) of (23) for the
compact case.

(b) Observation
The sound emission f.ii a vortex ring travelling near the edge of a flat plate along

a nearly straight path was investigated in a laboratory experiment [29]. Both of the
spatial profile F(O, 0) and temporal profile f(t) were found to agree with the predicted
ones described above.

The pressure p(4, t) observed in the plane 0 = 90' is expressed by a truncated Fourier
series. It is found that the main component is of the form p.(O, t) = f,(t) sin 10 in
accordance with (27). Experimental study was done mainly for the vortex path of
a = -- 7r/2. Figure 15 is a polar plot of the pressure p.(q, t) at a fixed time to: p.(4, to).
A perspective plot of the pressure profile p.(0,t) is illustrated in figure 16. The half-
plane lies at 0 = ±180', on both sides the pressure takes opposite signs. The vortex
moved from the positive to negative y2 -axis with the translation velocity U = 30.4m/s,
R = 4.7mm and L = 9.6mm.

Figure 17 shows comparison between the observed curve and computed curves on
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0 400 800 1200 1600 2000
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Figure 17. Comparison of fep(t) and Figure 18. Observed power laws
corresponding computed curves, of Ap (Pa) vs. U (m/s).

the absolute scales. The solid curve is the experimentally determined profile feb(t) and
the broken curves are the computed ones of p/F(0,9 = 90') obtained by using (27, 28)
for the relative core size 5/R = 0.2 (thin broken) and 0.3 (thick broken). Agreement of
the two curves is remarkable.

6. CONCLUSION

Concerning the problem of the vortex sound, a new formulation is developed for a
compact source flow of localized vorticity distribution, based on asymptotic expansion
of the velocity potential of the inner flow. This is successfully applied not only to
the sound generation by two interacting vortices in free space, but also to the case
of wave generation by a vortex interacting with a compact external body. The third
case of the wave generated by a vortex moving near a non-compact edge plate must be
treated differently, taking account of the scattering effect. In each of the three cases, the
computed wave profiles show remarkable agreement with the observed ones, implying
validity of the theory of vortex sound. Figure 18 is a summary of our experiment,
illustrating observed power laws (in the log-log plot) of the acoustic pressure (peak)
amplitude Ap versus the translation velocity U of a single vortex (in isolated state).

In the section 3.1 of head-on collision of two vortex rings, a consistent account is
given by relating the phases of the vortex collision with those of the wave profiles. A
new feature is noticed concerning asymmetric wave emission in the oblique collision in
the section 3.2.

Finally, some remarks are to be made about other successful comparisons between
observation and computation, which are out of scope of the present article. Acoustic
noise of dipole-type is investigated recently, based on the computer simulation of a
uniform flow around an aerofoil, and compared with correspoiiding experiment at MA =
0.23 and Re = 3 x 10i (with reference to the chord and the freestream velocity) [32].
Fair agreement is found between the two noise spectra obtained from the computer
simulation and the experiment. The computed data shows structure of the surface
dipole over the wing surface. Another study [33) of a shock wave interacting with a
vortex filament also revealed reasonable agreement between the observation and the
calculation.
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Nonlinear Membrane Theory
A. Libai

Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel

Abstract
Nonlinear membrane theory can be regarded as an approximation to the nonlinear

behavior of shells of finite thickness under suitable conditions, or else studied as a
mathematical model, complete in itself, for shells which are formally assumed to be in-
capable of carrying moments. Selected topics of interest in the statics of nonlinear
elastic membranes will be discussed. These include: the basic equations, the behavior of
a membrane adjacent to a stressed initial state, the undeformed membrane, boundary con-
ditions, membrane edge effect, lines of rotational discontinuity, axisymmetric mem-
branes, cylindrical membranes, wrinkle fields and others. The intrinsic form of the
shell equations will be adopted in most of the discussions. Cases with small-strain geo-
metric nonlinearities as well as some finite strain problems will be considered.
Emphasis will be put more on general and formulative issues rather than on specific
solutions, but the analysis of a specific case will be outlined.

1. INTRODUCTION

Membrane theory is commonly regarded as an approximation to the shell problem,
obtained by formally suppressing the stress couples and transverse shears in the shell
equations, compared with the tangential force resultants ("membrane forces"). The
suppression takes place in the force equilibrium equations, force boundary conditions,
energy, and moment equilibrium around the normal to the shell. There is ample experi-
mental and theoretical evidence to the effect that membrane theory is a valid "interior"
approximation to the shell equations, which dominates the behavior far from boundaries
and discontinuities (either in the geometry or the loading), for deformation processes
with a typical length measure 'r' of the reference surface, and provided that there
exists adequate support at the shell boundaries. Processes with length measure vrT-t,
where t is the shell thickness (such as buckling, short-wavelength vibrations, edge
effects), and also those involving substantial inextensional deformations, are to be
treated by the more general bending theory. Also, bending corrections- to the membrane
solution which are based on its deformation patterns can be calculated. These can be
used to estimate the accuracy of the membrane approximation and to correct the stress
levels (which are of a lower order in t/r). Chapters on membrane theory can be found in
many standard books on shell theory [1-13]. Some consider nonlinear behavior speci-
fically [7-14].

Another approach to membrane theory regards membranes as two-dimensional deformable
sheets, plane or curved, which are formally incapable of carrying any stress couples or
transverse shears, and can sustain tangential force resultants only. These are the
"ideal" or "true" membranes (the term "ideal" membranes will be used to distinguish them
from "shell membranes" which can carry stress couples, as previously discussed). The
theory of ideal membranes can be formally modelled as a complete entity in itself.

Several important characteristics distinguish the behavior of ideal membranes from
shell membranes. To name a few:
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(1) Ideal membranes cannot sustain compressive stresses, whereas shell membranes can
carry compressive stresses until buckling takes place.

(2) Ideal membranes exhibit "wrinkle fields" or "tension fields" to compensate for the
nonexistence of compressive stresses. In shell membranes, postbuckling behavior is
out of the scope of the model, but the approximation of an "incomplete tension
field" can be sometimes used to investigate the transition from postbuckling to
wrinkle-fields [15].

(3) Ideal membranes can accept lines of angular discontinuity in the deformation
pattern on the boundary or in the interior. In shell-membranes, angular continuity
is preserved.

(4) In the same vein: existing lines of angular discontinuity in an ideal membrane can
be smoothed out under suitable conditions. In shell-membranes, the theory breaks
down near such lines.

(5) Large inextensional deformations can be sustained in an ideal membrane, but not in
a shell membrane.

(6) A large variety of kinematic and force boundary conditions can be imposed on an
ideal membrane within the scope of the model (with obvious exceptions - such as
imposed stress couples or transverse shears). Exact edge conditions can rarely be
specified for a shell-membrane. Bending or 3D theories are used for edge effect
analysis, with component 3D, bending and nonlinear membrane effects.

(7) The "undeformed *ape" of an ideal membrane needs only a metric specified in a 2D
(curved) space u (a=1,2) plus a specified closed line in this space. It can be"packed in a box". A shell membrane starts from a 3D thin walled body which con-
stitutes its undeformed shape. Not all the geometrical properties of this shape
appear in the equations, but they are necessary for the analysis of its
limitations.

The question as to whether ideal membranes do actually exist as physical entities
need not be answered: the analyses of mechanics problems involve some degree of ideal-
ization and modelling of the behavior of the physical world, and the success of a model
should be measured by its ability to predict this behavior in some approximate sense.
With this in mind, several classes of shell problems can be modelled as ideal membranes.
Among those, the most important is the asymptotic behavior of thin shells as (t/r)
approaches zero. In fact, ideal membrane behavior can be arrived at solely by this
limiting process. Other classes of problems which can be modelled as ideal membranes
include shells made from special materials (biological membranes, cloth and other thin
films, inflatables), problems involving large loads of the pressure variety, many large
strain problems, etc.

In what follows, no direct distinction between the two types of membranes will be
made. The typing, if needed, should be based on the problem at hand. For example, com-
pressive stresses will be included in the analysis, but problems related to wrinkle
fields will also be discussed. Boundary conditions for an ideal membrane will be looked
at, with the understanding that in a shell membrane this may be just a component of a
more complex edge effect problem.

A "real" shell is, of course, a thin 3D continuum. Shell theory is an approximation
to 3D behavior. Membrane Theory is an approximation to shell theory and, putting aside
special cases, the behavior of ideal membranes is a subset of Membrane Theory. However,
if the parameters and objectives are right, the latter can give very good predictions of
the behavior of this 3D body under conditions involving strong nonlinearities which,
otherwise, would have been extremely difficult to treat.
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2. NONLINEARITIES IN MEMBRANE THEORY

These follow the usual classification into geometrical and material nonlinearities.
Small strain theory with nonlinearities due to the inextensional component of the defor-
mation and to local strain gradients is the more common case. Tension field theory can
be included within this class since the wrinkling process involves mostly geometrical
changes. A special subclass of the above is "rigid-inextensional" theory which assumes
that the strains are zero and that deformation can take place through inextensional
and/or wrinkle fields only.

The relative simplicity of the application of two-dimensional hyperelastic consti-
tutive relations to ideal membranes has led to the development of the materially non-
linear large strain membrane theory which, in addition to many practical uses, can be
applied to problems involving the loss of stability in tension due to combined material
and geometrical effects.

The main feature that nonlinearity adds to membrane theory is shape-adaptability:
both geometry and membrane forces participate simultaneously in taking on the applied
loads. This is facilitated by considering equilibrium with respect to the deformed con-
figuration. The process gives rise to a sixth order partial differential system which
can accommodate, in most case, three boundary conditions. This should be contrasted with
linear membrane theory which is taken with respect to an undeformed geometry and can
accommodate, in principle, only two boundary conditions. In some cases of well supported
membranes (such that the boundary conditions prevent inextensional deformations), linear
membrane theory yields good predictions away from the boundary. In such cases, the corr-
esponding small strain noninear theory predicts the formation of boundary layers of
thickness rvr at the edges, where E is a typical strain measure of the membrane.

A well studied group of problems which belong to this class is the axisymmetric de-
formation of membranes of revolution. However, as the strain increase, the boundary
layers are obliterated and boundary effects extend over a large part of (he membrane.
See section 5 for more details.

At the other extreme lie cases where almost all of the deformation is inextensional
and the contribution of the strains is minor. For a trivial but illuminating example,
consider a rectangular ideal membrane sheet in the xy plane, clamped along its edge x=0
and loaded along its edge x=a by a uniform line load P in the z direction. In its de-z
formed shape, the sheet rotates through 90' and a line of angular discontinuity forms
along x=O. The addition of normal pressure causes the deformed shape to be curved but
!he essential feature of almost inextensional deformation is preserved.

The "spherical barrel" example of section 7 serves to demonstrate some of these
cases. This is a truncated ideal spherical membrane attached to rigid rings which are
pulled apart by forces P. The membrane collapses in to form a cylindrical wrinkle field.
For small P, "rigid-inextensional" theory holds with the wrinkles extending clear to the
rings. For larger P, a narrow unwrinkled axisymmetric boundary layer is formed adjacent
to the rings. For larger P, the boundary layer no longer exists. The unwrinkled
stretched membrane which covers a large part of the surface is analyzed by axisymmetric
large strain theory.

3. A REVIEW OF THE MEMBRANE EQUATIONS

(a) Notations
Tensorial component notation is adopted in the general discussion. Physical

components are used in examples. Vector notation is used as needed, referred to a fixed
Cartesian coordinate system x,y,z. The membrane is to be analyzed in three possible
states: Current state (denoted with an upper bar), undeforined state (without bars), and
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reference state (denoted with a subscript or superscript (o)). The latter is a known
deformed state with respect to which incremental solutions are sought.

In the sequel, a comma, a double vertical bar, and a single vertical bar, denote
partial and covariant differentiations with respect to the current and reference states,
respectively. Upper case letters denote full quantities and lower case letters denote
incremental quantities (from the reference state). A membrane is identified either by

the position vector R(u a) of material points on its deforming reference surface, or by

its current metric and curvature tensors Aq and Bap, respectively, which satisfy the

three continuity equations of Codazzi-Mainardi and Gauss [16,17]. Associated quantities

are A=det(Aot3), permutation tensor £e3' unit normal N and Christoffel symbols f:•y, given
-( 1ak~

by f -IA (A), +Ax1 3 -A X). The corresponding quantities in the undeformed and

reference states are R, A p etc. and R(o), A(Op) etc., respectively.

The boundary of a membrane is a curve r with arclength parameter s:F: ua = (s),

where ds 2  Ao du aduI3.

Unit vectors along the curve are -, v-, N where X I=u, and V a XC 3

The normal (K n) and geodesic (K g) curvatures along the curve are:

n

The symmetric force resultant tensor Rap acts on elements of the current membrane, in
current directions and is measured in terms of the current metric. Kirchhoff
("engineering") resultants act in the same directions but use the undeformed metric.

They are given by /A-N = A'Nct13.

The loading vector per unit deformed/undeformed area is p=p R,o•+pN/p=p°tR,C+pN.

Components with respect to undeformed directions (fot) or to cartesian directions

(feei) are occasionally used.

Two-point tensors and vectors associated with the geometry of the deformation are the
Green Strain Tensor Eot3, change of curvature tensor Kot3 and displacement vector V. These

are given by 2E -A A K -B xB ; V=R-R=v R,o +wN=v e..

(b) A Review ot the Basic Equations
The important issues are the choice of variables and choice of directions. The

intrinsic form utilizes A Ic and B(XP as geometric field variables and relates the

equations to the current directions. The displacement form utilizes the displacements

(v ,w) as field variables and relates the equations to the undeformed directions. Other
variants are possible too. The equations are occasionally related to extrinsic
directions such as the axial and radial directions in membranes of revolution or
Cartesian directions. The intrinsic form is preferred in the sequel.
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(b.1) Equilibrium

The fundamental form is the vector equation of equilibrium (V/'T C),ao+i/ p=0 where

Ta='-R ,p is the stress resultant vector.

Alternate component forms with respect io the current directions are: N&al3 epa=0;

N ~~+5=0 or A (/ Na1 3 3, +TPNU^t+pP=0, N +p=O.

Component forms with respect to the undeformed directions utilize the "displacement

gradients" and "rotations" defined by S =vaf I A-B aw; (ot=-(w,a+BrvP). The equations

are [18]:

[ Ap+ S Y)NpIIa+ B (P13 Nap + f = 0

[Ayp + S.~ ByNa13 - (q,3N a') I + f = 0

(b.2) Kinematics and Compatibility

The A a and Bap must satisfy the continuity (compatibility) equations of surface

theory. These are [16]:

(94y- rFB p3, = 0 Codazzi equations

+A8 Aap',Y8 + AýkaF•IP J = 0 Gauss equation.

In the case of small strains, simplified equations are available, which are linear in
the strains and their first order derivatives [19,20,14]. See section 4(a).

For the displacement formulation, the strain-displacement equations are [18]:

=p 71(Sao +s + Sa~Sp +

(U.3) Constitutive Relations:
Only hyperelastic materials are considered. Let 4) (Eaxp) be the strain energy density

per unit undeformed area. Then N =2 - +- -. ti-• . Methods for obtaining t, have been

discussed elsewhere. See, for example Green and Adkins [10], Wu [21], Libai and Simmonds
[13]. Approximate strain energy functions for many biological membranes have been
obtained, although these apply under restricted conditions only [22,23].

"Rigid-inextensional" behavior where all the Eap are set to zero (except for

wrinkling) is also a constitutive relation.
While the assumption of dependence on the Ep only appears to be valid for ideal

membranes, this is not necessarily true in "shell membranes", where, in the most general
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case, dependence on the K ao might be expected too. However, to conform with common
usage, the possible dependence on the Kap will be ignored in the sequel.

(b.4) Boundary Conditions
These come out of the virtual work identity for the deformed membrane

JT*Sivd-S + JJ.S-Vd~a = JfJT-a.8V ,d-a

F a a

where T* is the applied force per unit length and 5V is the virtual displacement.
Integration by parts yields the work form of the equilibrium equations and also the
boundary conditions (T*-Tav ).sV=O.

The natural conditions in component form are T* T*'X - NlaVa ; T*- VS a V

and T*-N=IT*Jcos(T*,N)=O. The first two conditions equate the applied shearing and
normal forces m the tangent plane to the corresponding stress resultants. The third is
a condition on the field variable N itself (since the direction of T* is known). It is
an equilibrium condition, but it sets up a kinematic requirement on the direction. At a
free edge, t*=O and only two conditions can be applied. This agrees with the nature of
the membrane equations, as will be seen later. The vector form of the boundary
conditions can also be related to undeformed directions, leading to natural conditions
in the displacement formulation [18]:

10 + S.0] N°Dva = T*.R,-

-0PNapV, = T*.N .

Again, if T*=O, then, from the first equation N°ov,,=O and the second equation is
identically satisfied, so that no condition on pp can be set

The kinematic conditions emerge from 8V=a In the displacement formulation they
require the specification of the displacements v ,w from the undeformed configuration.
Taken with respect to the current state, the conditions 6yct=0 , 5w=O may be used in
problems with evolving kinematic conditions. More commonly, they are translated into
conditions on the intrinsic quantities on the boundary: the extensional strain 6 s, the

normal curvature Kn and the geodesic curvature K g. For example, if the boundary does not
deform, then es=0, Kg=Kg, Kn=K . In many engineering applications, the curvatures and

strain are the obvious data.
A more general approach relates the natural and kinematic conditions to the behavior

of a surrounding "boundary beam", where the ordinary differential equations of the beam
become the boundary conditions of the membrane (24]. It is also possible to utilize var-
iational formulations for a direct derivation of the boundary conditions in intrinsic
form. As a word of caution, it must be emphasized that the boundary conditions strictly
apply to ideal membranes only. In shell-membranes the bending component of the boundary
conditions is always present to some degree. Also, compressive boundary loads may cause
wrinkling in ideal membranes.
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(c) Angular Discontinuities
Conditions of kinematic and static continuities exist across internal lines in the

membrane: The deformed position and stress resultant vectors must be continuous, and,

unless the normal force across the line vanishes, the unit normals N" must coincide. The
latter can also be obtained from the elementary observation that membrane equilibrium
cannot be locally maintained in the presence of an angular discontinuity with a noi.-zero
tensile force (see Fig. 1). This leads to two conclusions: (a) preexisting lines of

Z A. Not in equilibrum

B. Shell Membrane

of //C. Ideal Membrane

Figure 1. Angular discontinuity with tensile force.

angular discontinuity are smoothed out by a nonzero tensile force. (b) If the force
vanishes, then a line of angular discontinuity is permitted (even if it did not pre-
exist). As before, the above is strictly valid for ideal membranes under tension only.
In shell membranes the membrane state breaks down near the line and bending effects in-
termix. Hence, the immediate region near the fold should be taken out of the analysis.
Yet, the procedure of disregarding very local bending zones is common in the analysis of
sufficiently thin highly loaded shell membranes. They can be thus analyzed as ideal
membranes.

4. THE NATURE OF THE MEMBRANE PROBLEM

(a) Behavior of the Equations
The membrane field equations form a sixth order nonlinear partial differential

system. Compared with linear theory, the nonlinear terms raise the order from four to
six. They occur in the highest derivatives and involve the current state of stress of
the membrane. Consequently, the membrane may behave in radically different ways,
depending on the nature of the state of stress and deformation in the neighborhood of
different solutions. A helpful and convenient method for the study of'the system in a
specific region of its variable-space is to expand it around a solution point
("reference state") in the region, and consider the perturbation series from this point.
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Properties near this state can me gleaned from the linear terms in the expansion in the
sense of "small deformations superposed on large" which has many applications in
Nonlinear Mechanics [9,25]. In membranes it has been used to investigate stability and
vibrations [18,26-29] but has additional practical applications in cases where a
solution is sought which is "not far" in some sense from a known state [18.24,14,30].

e -• •( o) , -fi -B( ° -• a •-( -~ .a(°)
Let (o) denote the reference state. Let: e -E r E(0) -- B(O) y( X -i -r=1" O)

a UP~ be the , k X= p y 0-fna1P=N(XP-NO)P Ap , Ap be the increments from the reference state. Restrictions are(0) ar
imposed that the e(0O and __, be sufficiently small such that lineari:ation can be per-

formed in these variables, and that no wrinkling takes place. Substitution into the
field equations yields the following set of incremental equations:

(o)Icy + =

n(XB (0) + NaP k + no'Pk +A
_ (o)ap _ _

e137(k -31 B .1)3ý =0

Bak +~4 +a I ~k KeaX
(o) ap IU (4 2p K~ oe X

naO = CaP YSe = [4,E ap.Eyj] (O)e. 8

where K is the Gaussian curvature of the reference state (o), and all tensorial opera-

tions are performed in this state. For quadratic strain energy densities, the Cafts is
the linear elastic tensor. Since the ko are not assumed to be small, nonlinear (under-

lined) terms are retained (in fact, were the (o) system chosen as the undeformed state,
then a small-strain-finite-rotation membrane theory would have resulted!). In the above,

the cofactor tensor is defined by fsaost1= ps3f and the incremental Christoffel tensor

is given by its linearized form:

For a complete linearization, the underlined terms should be dropped. Henceforth, Apa=_-O
is assumed for simplicity. To facilitate further study, a D.M.V.-type approximation is
made by replacing tangential equilibrium and compatibility with a stress function F and
curvature function G:

n kXP = G aJ3 + Rk

where the Ri are lower order remainder terms. This approximation has a wide range of

applicability in shell theory. For the present study it suffices to note that it is also
useful for a qualitative evaluation since it preserves the highest derivatives of the
system (however, more exact substitutions are available, as will be seen later).
Furthermore, the incremental constitutive relations are assumed to be isotropic with
effective moduli Et and V (this is exact for quadratic strain energies). Substitution



and rearrangement yield:

Lb(F) + Ln(G) + Ap = RN (normal equilibrium)

1 V4 (F) + Lb(G) = RB (compatibility)

Here, Ri are remainder terms involving lower order derivatives and the differential

operators Lb, Ln and V4 are

Bo , = "curvature operator"Lb(f) =-- 0

Ln(f) = Na• f o = "stress operator"

V4 (f) = f• = "biharmonic operator"

Further elimination yields the nonlinear membrane equation:

I LnV4(F) - LbLb(F) - Lb(Vp) = RF

For the corresponding displacement formulation, see Budiansky [18].

Discussion:
(1) The system is always twice elliptic, but the third operator depends on the

reference state of stress. This influences the boundary conditions which can be
assigned. At a free edge, for example, the stress operator is parabolic and only two
conditions can be assigned (see previous discussion).

(2) The operator I Ln is of the order of the strains c of the reference state. If

it is small compared with rLb then a boundary-layer type solution is to be expected of

size rWo. This breaks down if Fo=0(l) or if Lb(F)=0 (in the latter case are included
00

problems of linear membrane theory where the boundary conditions are inappropriate for

Lb [21).

(3) The number and arrangement of boundary conditions does not depend on LbW in

contrast to linear theory, where it controls the behavior. However, for small strains
and appropriate boundary conditions, Lb is dominant away from the edges.

(4) If an unloaded state is chosen as reference, then Nap)=0 so that L =0. The(o) n
equations uncouple and reduce to the fourth order linear membrane system which can
accommodate only 2 boundary conditions and depends heavily on Lb. Singular perturbation

techniques may be needed to start a nonlinear problem from this state.

Choice of reference state:
(1) A convenient reference state is one which has a simple geometry and can be easily

analyzed. It need not even have the same boundary data as either the undeformed or final
states. For example, a pressurized circular membrane is a good cheice for problems
involving oval or incomplete cylinders.
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(2) In cases with sufficiently rigid boundaries and small strains, the Not. of the(o)
linear membrane solution plus the B1(o) of the undeformed state can be used for

approximate analysis. In shell-membranes this has the advantage of easy merging with
bending effects where appropriate.

(3) Obviously, the chosen state should be sufficiently "close" to the final solution
in order to ensure meaningful results (easier said then done).

(b) Dependence on the initial shape
A study of the intrinsic form of the equations shows that the only initial data which

is formally needed is the metric Acxp (which appears in the constitutive relations) and

the definition of the boundary F:uq=ua(S). All other properties of R, including the
undeformed curvatures B (3 do not appear -i the equations. The boundary data and loading

are usually related to the final form (e.g. pressure) or to extrinsic directions (e.g.
axial loads in a shell of revolution), but rarely to the initial shape. It follows that
all membranes having the same AP and I" should have the same final state. This includes

the class of surfaces which are isometric to the initial surface, including those with
any number of angular discontinuities (folds). For all practical purposes, the membrane
can be, initially, even "packed in a box".

The displacement formulation requires an initial surface to measure the displacements
from. There is some arbitrariness in the choice since any surface from the isometric set
can be chosen. If the initial metric plus kinematic boundary data ensure the existence
of a unique B ap in the class of smooth functions, then the resulting surface is commonly

chosen for R. It should be, however, noted that this is an artifice, since the boundary
data is provided for the final state only, and a deformation of the boundary between the
initial and final states is possible. To cite an example: the shapes of the ends of a
closed pressurized cylindrical membrane are assigned to be plane ellipses. Yet, the
initial shapes can be circular, with specified edge displacements as kinematic boundary
conditions. This choice of initial shape might be easier to solve than the choice of an
initial elliptical shape.

A shell-membrane does have a unique undeformed body to start from. The need for it
arises whenever an interaction with bending theory is required. However, it is not a
part of the formal membrane data, unless it is chosen as the initial state.

(c) Wrinkling and Tension Fields
Very thin shells and other shells having low bending rigidities can support little

compressive stress before they buckle. If such shells are pulled in one direction and
compressed in the other (such as when subjected to shear), a large number of
high-aspect-ratio buckles forms with creases oriented in the tension direction. As the
bending rigidity goes down, so do the buckling stress and the distance between crease
lines. In ideal membranes, the instability stress approaches zero and the number of
buckles becomes very large, thus forming a typical "tension field", which is not an
uncommon sight in very thin, flexible membranes. The assumed inability to carry
compressive stresses is common to all ideal membranes. It has been initially used by
Wagner [31] to examine the postbuckling behavior of thin plates in shear, and was shown
by Steigmann [321 to be exact. Several investigators undertook the study of tension
fields in plane membranes [33-38]. Wrinkled biological membranes, were studied by
Danielson et al. [39]. Curved wrinkled membranes, which are of more interest in this
review, were studied by Kondo [40,41], Wu [42,43], Zak [44] and others. A more extensive
study of the foundations of plane and curved tension field theory was initiated by
Pipkin [451, Stclrgmnn [46] and in collaboration [47,48]. A numerical approach was



developed by Roddenian et al. [491. The instability due to Arinkling of bent piessurized
cylindrical membranes was investigated by Coner and Levy [501. Koga 1271 and !LukasieicN&1
et al. [511. The ponding instability of partly wrinkled spherical membranes was analyed
by Glockner and his associates [52-561, Croll [571 has studied the formation of wrinkles
in transversely loaded plates and Libai analyzed boundary layers adjacent to ,rinkles
[581. The list is not exhaustive and will, in all probability expand in the near future
as partial wrinkle fields will be routinely incorporated into nonlinear membrane
analysis. Also, more effort should be put into "incomplete tension fields" which
describe the transition front shell to wrinkled membrane, and into the wrinkling of
biological membranes.

The underlying idea of tension field theory is to replace the complex wrinkled
surface (with its random form of detailed wrinkles) with a smoothed out "pseudo surface"
[431 or "wrinkle surface" which could be imagined as a continuous distribution of
wrinkles or fibers, and constitutes a regular surface in space. This is equivalent to
the concept of a generalized curve or surface in the calculus of variations [591. The
pseudo-surface should satisfy the equilibrium equations, with one of its principal
stress resultants being positive and the other set to zero. [or convenience, a
non-material orthogonal coordinate system which coincides with the principal stress
directions is employed. Nontensorial notation is used, where N1 is the nonvanishing

principal resultant, e are unit vectors in the principal directions and Ao=7 A . Then:

- - = __ -I - _, Nlel' T•2=0 ell - A A e2 + --A N, p=p() + pN.t 11P=1') 2e1

A2  rI

The vector and component equations of equilibrium become, respectively:

(NIA 2 el), 1 + AIA 2 P = 0

(2 N),1 + AIA 2 P(I) = 0

1,2 N I+ AIA 2 P( 2) = 0

where both NI! and the geometry (A 1,A2 ,r') are unknowns. The nature of the loading

determines the properties of the stress trajectories:

(1) If P( 2 )=0, then e,,I is parallel to N and the trajectories are geodesics.

(2) If p=O, then -- 0 and the lines are asymptotic (with K,<).

(3) If both are zero, then e 1,=0. The lines are straight, and the surface is ruled.

(4) If p(l)=0, then the force-per-element (NIA 2 ) is constant. Thi s is analogous to
flow lines in fluid flow.

The geometric variables (Ai,A 2 ,r ,r2,r 2 ) are connected through the continuity
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equations of Codazzi and Gauss.
To tie the solution to the rest of the membrane and to the initial metric, consti-

tutive relations are needed. Only isotropic membranes will be considered at this stage
(non-isotropic membranes were studied by Mansfield [60] and Roddeman [49]). Here, the
principal directions of stress and strain coincide. The condition N 2=0 can be used to

eliminate the true principal strain E2 2 from the constitutive relations, which leaves

NI=f(E1 ). The difference between the apparent strain E22 of the pseudo-surface and the

true strain is the "pseudo strain" E 2 E2 2* -E 2 2 . It was introduced by Wu [43] and is used

as an extra variable in lieu of the extra equation N2 =0 which was imposed on the field

equations. The constitutive relation does not add an additional variable, but should be
used to relate the tension field to the material system. If there are no additional
symmetries, the problem may be complex [46].

Other methods for constitutive modification where employed by Reissner [33] who used
a special orthotropic material law and Stein et al. [34] who introduced a variable
Poisson ratio. More recently, Pipkin [45] introduced a "relaxed" energy density to
account automatically for the modified constitutive relations.

The boundary conditions with the unwrinkled portions of the membrane are obtained
from continuity requirements:

(1) The resultant NI>0 is continuous across the boundary.

(2) N2 =0 as the boundary is approached from the unwrinkled side.

(3) If N1 *0, then angular continuity is preserved.

(4) Positional continuity is maintained, thus implying E*2 =0.
Examples: See section 5 for the axisymmetric case. See section 7 for the edge zone

near a wrinkle field. Further investigations and details may be found in the literature
cited above.

5. AXIMEMBRANES

These are membranes whose undeformed shapes are surfaces of revolution and are axi-
symmetrically deformed. Because of their relative "simplicity" they have been studied
extensively in literature and solutions to many nonlinear problems exist. Hence, their
discussion here will be limited in scope. More information and details can be found in
the literature and some have been gathered in chapters in books. Examples are Green and
Adkins [10] who discuss constitutive relations and some finite strain problems, and
Libai and Simmonds [13, chapter 5] who made a more extensive survey with examples.

The reference surface of the undeformed membrane is defined in a fixed cylindrical
coordinate system (r,0,z) by its meridional position vector R=r(s)er+z(s)ez where s is

arclength. The angle a between R,s and er satisfies r,s=coscx; Z,s=sincx. The

corresponding quantities in the deformed meridian are r, z, a. A nontensorial approach

is adopted. Meridional and circumferential stretches are defined by Xs=d- and X -r

respectively. Stress resultants are Ns and No (or Ns and N. per unit undeformed length).

The loading vector is p=pHer+pvez and may depend on the field variables. The equilibrium



equations are

(rNs sin),s + rpv = 0 (rN Scosa),s = N0 -

In the case of uniform pressure p one may also use the parily integrated form:

rNssinz = 2 p r - cI (rN s,,s = N 0cosa

To these are added the equations of geometry and constitution:

r,, = (rx0 ),s = ,Cosa z,s = X sSina

Ns = O'ks NON = 0'4)0

where (,(Xs•,X) is the strain energy density. For boundary conditions, the position or

stress resultant vectors should be specified, subject to overall equilibrium. The system
is 4th order (but can be usually reduced to second order plus two quadratures). It is a
two-point b.v.p. which requires appropriate numerical procedures (e.g. Runge Kutta plus
shooting) or approximate techniques for solution.

Pressurized wrinkled aximembranes with meridional tension fields: Here N0 =0. Further

integration yields rNs=r Ns=c2 - The meridian of the pseudo-surface can be expressed

explicitly in terms of the Jacobi elliptic function dn with modulus k:

-=2 pc.( -_ where k2 -2(1+ / -

To relate the result to the undeformed surface, the equations N0 =0 and Nsr(s)=c 2 are

used in the constitutive relations to eliminate 1-0 and express X s in terms of s. This
establishes s(s)=J'k ds. If stretching is neglected (X2=1) then s= s. The constants ci

s 1
are obtained from the edge conditions of the wrinkled zone.

Aximembranes cannot deform inextensionally: any radial displacement and any nonuni-
form axial displacement produce straining (an exception is near the apex where a local
semi-inextensional deformation is possible). However, if wrinkles are permitted, then
inextensional deformation become possible and even common [13,42,52-561. Barring
wrinkles, it follows from small strain moderate rotation theory that linear theory is
valid interior solution for many aximembranes, with narrow boundary layers of size rV.
added to account for support conditions. Many studies of this phenomenon exist [61-65].
The use of nonlinear correction for internal continuity finds its use in toroidal
membranes [66,671. In problems involving large strains, boundary layers usually do not
exist, and problems associated with inflation and stability are the more important
topics. Constitutive relations assume a major role and combine with the evolving
geometry to produce limit point [10,68] or bifurcation type [69-72] instabilities.

Aximembranes can be classified by their undeformed shapes. Within each class the
small-strain problem is studied separately. Some cases will be briefly reviewed:

Plane Circular Membranes: The small strain moderate relation theory is due to Fdppl
[73]. A less restrictive theory is due to Reissner [74]. Many solutions for pressure
and/or end loaded circular and annular membranes are found in the literature. Some were
summarized by Libai and Simmonds [13]. More have recently appeared [75-79]. In the case
of large strains, inflation [10,80-83] and deformation under concentrated loads [84-861
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are some of the studies of interest. The inverse problem of deformation into a
predetermined inflated shape has also been considered [81,82,87,881.

Spherical Membranes: Small strain problems lead to the study of edge effects. Shallow
spherical membranes were treated by Dickey [76]. The common large strain problem is that
of the inflation of spherical balloons. Of special interest is the possible existence of
a maximum pressure. In volume-controlled problems, a further increase; in volume would
lead to a decrease in the pressure. this trend may reverse itself at higher volumes, and
is strongly material dependent [10,69]. The bifurcation of a spherical balloon into a
nonspherical shape has also been studied [69-72].

Circular Cylindrical Membranes: In the small strain range the main issue is the edge
effect due to kinematic constraints or nonaxial end loads. Also if the end load is
radial, a small part of the cylinder deforms into an annulus, while the rest remains
cylindrical. At the line of angular discontinuity, Ns=0 [13,62]. The large strain

problem has the first integral [89] D-Xs ,X =C, where C is a constant of integration.
s

This has been used to reduce the large strain problem of pressurized cylindrical
membranes to quadratures [13,90,911. The stretching of a cylindrical membrane attached
to rigid end rings has also been studied [82,90]. Finally, as in spherical membranes,
the possibility of a maximum pressure exists here too [92,68].

Toroidal Membranes: The important issue in the small strain theory for circular
toroidal membranes is adjustment of the apparent discontinuity at the apex. This was
accomplished by Jordan [66] and by Sanders and Liepin [67]. Problems involving large
strains were treated by Kydoniefs and Spencer [93]. The major difficulty in nonsymmerric
pressurized toroidal ideal membranes (where r(a=0)•r(a=nr)) lies in the fact that a

necessary condition for equilibrium is r(a-=0)=r(a-=n). This must hold regardless of the
magnitude of the pressure. Slight asymmetries can be taken care of by local nonlinear
rotations which, as pointed out by Kuznetsov [941, are nearly inextensional at a=0,tr.
However, if the asymmetry is substantial, then large strains are required to take place
even if the pressure is very small. This "toroidal paradox" was used by Goldenveizer [21
in discussion of the existence of membrane solutions, however, if wrinkling is accepted
, a part of the deformation process, then a solution might be possible, and should be
tried. To account for axial equilibrium, the tension field must be meridional (N0 =0)

wherever it occurs. In addition, wherever Ns=0, a circumferential line of angular

discontinuity is permitted. The membrane is unstable at its undeformed form, so that
large scale wrinkling takes place even at low pressures.

For the shape of the membrane in unwrinkled regions, the general equations should be
used, but if the pressure is low, the extensional strains can be neglected and the
forces calculated by linear membrane theory. In the wrinkled regions, the theory for
wrinkled axisymmetric membranes [43,47] applies, and the shape can be calculated without
difficulty, as was seen earlier in this section.

Large Strain Asymptotic Behavior: In the case of very large strains a simplified
asymptotic analysis can be made. Of some interest is the possible tendency of closed
inflated aximembranes to assume a spherical shape as the pressure and stretches become
very large. This was shown for a class of materials of the Mooney type by Isaacson [95],
Wu [21] and Sagiv [96]. Antman and Calderer [97] investigated the restrictions that must
be put on the energy density of a spheroidal shell is to approach a spherical shape. The
behavior of Neo-Hookean membranes with very large meridional strains was studied by
Foster [98].
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6. CYLINDRICAL MEMBRANES

In this section, some problems related to pressurized and stretched noncircular
cylindrical membranes are discussed. Included are cases where the boundary has a non-
circular (oval) form, or where processes cause an initially circular membrane to become
non-circular in its deformed state. The general procedure is that of an incremental
analysis, with the pressurized and stretched unbounded circular cylindrical membrane
taken as the "reference state" (section 4a). This is a point in the solution domain. for
all cylindrical membranes. It has a simple unvarying geometry to which all homogeneous
pressurized oval membranes tend, far enough from their ends. The main restriction is
that the i'mal deformed state should be sufficiently "close" to the reference state so
as to make an incremental analysis (including linearization in the metric and its first
order derivatives) valid in some approximate sense.

Let x and s denote longitudinal (generator) and circumferential (hoop) arclength
coordinates in the reference state. The membrane material is assumed to be nonlinearly
homogeneous and orthotropic, such that a circular cylindrical membrane of length L and

radius r is transformed by pressure p and total tension T into a circular cylinder of

length L and radius rr. Let No-x - rx--- and )= Ps=Pr be the physical Cauchy stress

resultants in this reference state. Let nx, n., , nE, •t s K , K I t be the incre-

mental stress resultants, strains and curvatures, all measured with respect to the
Cartesian metric (x,s). Then, using (4a), the following field equations result:

(nx - Pses + Pxex),x + (nt + 2P•et),s = 0

(n s - Pxx + Pses),s + (nt + 2Pxet),x = 0

PK + PK+In + n K + 2nt)= 0
Px ss T -s nxx ss tt

0

1 2 (Kt _ 2 t),x

_I =0(K5 - £E), - I
(s r x t,s

-K + + +KE - 01 trx _______

Sx x,ss s,xx t,xs x s t

= fn -f n

Es f fsn s f xsn x

2 = ftnt

where the fi are constitutive coefficients obtained by inverting the incremental consti-

tutive relations of the reference state in terms of Cauchy resultants. For quadratic
energy densities, these are the elastic constants, in which case the equations should be
similar to those of Libai [30] and Danielson and Simmonds [99]).
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Following section (4a), but without making the approximations therein, stress and
curvature functions are defined by putting nt=-F, xs and Kt=G, xs Substitution yields:

nx = (I + ax)F, s F ; ns = (I + s)F,xx + asF,

E = fx( + P3x)F, ss - s(I + XS)F xx

FES = fs(I + s )F, xx- fxs(I + 03sx)F, ss; 2Et =-ftF xs

s = Gss + I- C x=Gxx =--(+ x - 2ftF,)xx
0 0

where the oti and are constants having the order of magnitude of the strains at the

reference state, and are easily calculated [100]. Introduction into the remaining two
equations leads to one 4th order and one 2nd order equation in F and G. These are non-
linear due to the (FG) and (GG) terms - as is common in similar formulations.

In many practical applications all the nonlinear terms in the increments may be
suppressed (at least as a first approximation). If, in addition, the strains at the
reference state are small, the equations simplify to

I G, + V 4 F + [fxF,s + (2f - fs)F,]= 0
r xx 1 '1xss t xs xx

0 _2

PxG, + PsG, + I F 2 2 Psf F, = 0x xx soss r40 xx rd0 sxs ss

where the modified biharmonic operator Vi is defined by

V 4 F= fF, + fRx + 2(f - f )Fxxs

Further elimination yields the 6th order equation

r2oV4(PxF, + PsF,s) - F, = (Pxf + Psfx- 2Pf)F, - PsfxFssss

In the DMV approximation, the right hand side of the equation is set to zero. For

quadratic energy densities of isotropic membranes, set: fx=fs=Et, f vI, f +v

V14F-V 4 F. As a practical application, consider the problem of an oval cylindrical

membrane subjected to uniform pressure p and an equally distributed tensile force Px=T/S

on its boundaries x=0,L. Diaphragm-type supports maintain the oval shape r. Small strain
theory is assumed. The reference surface is chosen to be a circular cylinder with radius
r and length L0 which are obtained by applying the loads to the isoperimetric cylinder

with radius ra=S/2r and length L. The approach consists of applying to the incremental
r -r I n = 0.

problem the boundary conditions Es=r K (s)__ - xa o
Of the three conditions, that of es leads to an edge-effect correction, which is

strongly affected by Px , while that of K s affects large parts of the membrane ("slow



decay"), which is of more interest. A similar situation exists in the semi-renibrane

analysis of tubes [101] where the effects of c s tend to be suppressed,

Solutions to the case of lateral pressure (Px=O) were studied by libai 124] who also

suppressed the boundary conditions on E Is and used a Fourier expansion in the s

direction. The solutions possess important features which compare favorably with those
of the more common linear membrane analysis of an oval. The latter has sone serious
deficiencies which render it unacceptable in many applications: (a) It requires the
continuity of r(s) and its derivatives (up to the 4th !). (b) It does not tend to the
circular form far from the edges. In fact, it diverges as L---o. (c) It has no decay
mechanism for boundary disturbances. (d) It cannot accommodate boundary conditions along
its generators (important for cylindrical panels).

The behavior of the incremental solution relates to the parameter y ....- E s ( •

a
(a) It yields smooth solutions even if the slope or curvature cf the initial form have
discontinuities. (b) It approaches the circular shape as y increases. (c) The typical
decay length 0 for end disturbances with harmonic index n is

Ox=rn 3 /2 C - 1 4=- 3/ 27 1 /4 . (d) It can accept "flexible" boundary conditions along the

generators [30]. (e) It approaches the linear membrane solution for y<<I, and the oni-

ginal shape as p-0). (f) For large n, it approaches th, solutions of the biharmonic
equation of plane elasticity. The method is being applied to other problems [100]
including those of cracks in cylindrical membranes.

An akin problem is that of nonlinear effects in beam-bending of tubes (Brazier
Problem). Here, circumferential shell bending is commonly assumed to resist the
ovalization which accompanies the beam bending of circular cylindrical tubes. However,
if the tube is thin and not very long, membrane resistance to ovalization which comes
out of the supports provides the dominant mechanism. Pressurization enhances the effect.

7. EXAMPLE: EDGE EFFECT IN A PARTLY WRINKLED AXIMEMBRANE

Consider a truncated ideal spherical membrane of radius R, connected to rigid rings
of radius rc along its boundaries ,=xczc, 0a=l-a c (Fig. 2). If the rings are pulled apart

by forces P, the spherical membrane collapses inward, and a meridional tension field in
the form of a pseudocylinder is created. It extends almost to the supports, but a very
narrow wrinkled region forms near the rings [471. The equations in the unwrinkled region

are those of aximembranes (section 5). Axial equilibrium yields 2nrrN rsin(x=P. The other

equations can be reduced to a second order equation in y=cot0x as function ol ox=s/R. The

boundary conditions at ac is r c=rc (or X0 = 1). At the boundary of the wrinkled region

=(X~B. the conditions are those of continuity: ccB=ir/ 2 and N0 =0. These can be converted

into y=y,cc=0. Note that aoB is also unknown, so that three conditions are needed for the

differential equation and a 1.

The availability of two conditions at a B facilitates the soluhion of the equ-tion as
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Figure 2. Partly wrinkled truncated spherical membrane.
(a) Original (b) Wrinkled (c) Wrinkled with edge zone

an initial value problem starting fron, a B by either a power series or numerical

integration [58]. The condition X 0 =1 determines ac and consequently (B" In small strain
theory, the equations are:

(sinaoy,(), - (csca)y = ( -cosa]

(sina)yo w at a = c P= 1 aty o• c 27 =-fR-Et

Construction of a formal power series solution yields the 1st order solution:

B ac = Sa + 0(c) (a 4 ir/2).
c

Near zc=7r/2 this solution breaks down and an additional term is needed, yielding

a B - ac = 2v + 0(3 /2 ) (a c - 7r/2)

Large-strain results for a Neo-Hookean material were obtained by numerical integration.
These indicate the breakdown of the edge effect for large strains, as expected. All the
other relevant parameters of the problem were also calculated [58].

Boundary layers 0(c) are unusual in shell theory. In small strain theory they could
be virtually ignored if not for the large rotations within the layer which indicate the
possibility of strong interaction with bending effects in thin shell-membranes. They are
not easily "captured" by pure numerical methods, unless looked for.



8. REFERENCES

I S.P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed.,
McGraw Hill, 1959.

2 A.L. Goldenveizer, Theory of Elastic Thin Shells, Pergamon Press, 1961.
3 H. Kraus, Thin Elastic Shells, Wiley, 1967.
4 V.V. Novozhilov, Thin Shell Theory, 2nd ed., Wolters-Nordhoff, The Netherlands.

1970.
5 W. Fliigge, Stresses in Shells, 2nd Ed., Springer Verlag, 1973.
6 C.R. Calladine, Theory of Shell Structures, Cambridge University Press, 1983.
7 P.L. Gould, Analysis of Shells and Plates. Springer Verlag, 1987.
8 K.M. Mushtari and K.Z. Galimov, Nonlinear Theory of Thin Elastic Shells, Israel

Program for Scientific Translations, Jerusalem, 1961 (NASA- 1'*-l-62).
9 A.E. Green and W. Zerna, Theoretical Elasticity. 2nd Ed., Clarendon Press, Oxford.

1968.
10 A.E. Green and J.E. Adkins, Large Elastic Deformations, 2nd Ed., Clarendon Press,

Oxford, 1970.
11 F.I. Niordson, Shell Theory, North Holland, 1985.
12 J.W. Leonard, Tension Structures, McGraw Hill, 1988.
13 A. Libai and J.G. Simmonds, The Nonlinear Theory of Elastic Shells, Academic Press,

San Diego, 1988.
14 A. Libai and J.G. Simmonds, Nonlinear Elastic Shell Theory, in Advances in Applied

Mechanics (Hutchinson and Wu, eds.), 23, 1983, 271-371.
15 P. Kuhn, Stresses in Aircraft and Shell Structures, McGraw Hill, New York, 1956.
16 L.P. Eisenhart, An Introduction to Differential Geometry, with Use of the Tensor

Calculus, 1947.
17 D.J. Struik, Lectures on Classical Differential Geometry, Addison-Wesley, 1950.
18 B. Budiansky, Notes on Nonlinear Shell Theory, ASME J. Appl. Mech., 35 (1968)

393.
19 W.T. Koiter, On the Nonlinear Theory of Thin Elastic Shells, I-Ill, Proc. Kon. Ned.

Ak. Wet., B69, 1966, 1-54.
20 D.A. Danielson, Simplified Intrinsic Equations for Arbitrary Elastic Shells, Int. J.

Eng. Sci., 8 (1970) 251.
21 C.H. Wu, Large Finite Strain Membrane Problems, Q. Appl. Math., 36 (1979) 347.
22 Y.C. Fung, On Pseudoelasticity of Living Tissue, Mechanics Today, 5 (1980) 49.
23 A.E. Evans and R. Skalak, Mechanics and Thermodynamics of Biomembranes, CRC Press,

Boca Raton, Florida, 1980.
24 A. Libai, The Nonlinear Membrane Shell with Application to Noncir,-'lar Cylinders,

Int. J. Solids Struct., 8 (1972) 923.
25 A.E. Green, R.S. Rivlin and R.T. Shield, General Theory of Small Elastic

Deformations Superposed on Finite Elastic Deformations, Proc. R. Soc. London, A2 11
(1952) 123.

26 A.H. Corneliussen and R.T. Shield, Finite Deformation of Elastic Membranes with
Application to the Stability of an Inflated and Extended Tube, 'Arch Rat. Mech.
Anal., 7 (1961) 273.

27 T. Koga, Bending Rigidity of an Inflated Circular Cylindrical Membrane of Rubbery
Material, AIAA J., 10 (1972) 1485.

28 R.T. Shield, On the Stability of Finitely Deformed Elastic Membranes, ZAMP, 23
(1972) 16.

29 A. Needleman, Necking of Pressurized Spherical Membranes, J. Mech. Phys. Solids, 24
(1976) 339.

30 A. Libai, Pressurized Cylindrical Membranes with Flexible Supports, lASS Int. Symp.
on Pneumatic Structures, Delft, 1972.



276

31 H. Wagner, Ebene blechwantrAger mit sehr diinnem stegblech, Z. Flugtech.
Motorluftschiffart, 20 (1929) 200 (translated as NASA TM 604-606).

32 D.J. Steigmann, Proof of a Conjecture in Elastic Membrane Theory, J. Appl. Mech. 53
(1986) 955.

33 E. Reissner, On Tension Field Theory, Proc. 5th Int. Cong. Appl. Mech., 1938,
359-361.

34 M. Stein and J.M. Hedgepeth, Analysis of Partly Wrinkled Membranes, NASA TN D-813,
1961.

35 G.P. Cherpanov, On the Buckling Under Tension of a Membrane Containing Holes, PMM,
27 (1963) 275.

36 E.H. Mansfield, Tension Field Theory, Proc. 12th Inst. Cong. Appl. Mech., Springer
Verlag, Berlin, 1969, 305-320.

37 E.H. Mansfield, Load Transfer via a Wrinkled Membrane, Proc. R. Soc. London, A316
(1970) 269.

38 C.H. Wu and T.R. Canfield, Wrinling in Finite Plane-Stress Theory, Q. Appl. Math. 39
(1981) 179.

39 D.A. Danielson and S. Natarajan, Tension Field Theory and the Stress in Stretched
Skin, J. Biomechanics, 8 (1975) 135.

40 K. Kondo, On the General Theory of the Curved Tension Field, J. Soc. Aero. Sci.
Nippon, 10 (1943).

41 K. Kondo, I. Takeshi, S. Moriguti and T. Murasaki, Tension Field Theory, Memoirs of
the Unifying Study of the Basic Problems in Engineering Science by Means of
Geometry, Vol. 1 Division C, 1955, 417-441.

42 C.H. Wu, The Wrinkled Axisymmetric Air Bags Made of Inextensible Membranes, J. Appl.
Mech., 41 (1974) 963.

43 C.H. Wu, Nonlinear Wrinkling of Nonlinear Membranes of Revolution, J. Appl. Mech..
45 (1978) 533.

44 M. Zak, Statics of Wrinkling Films, J. Elast. 12 (1982) 51.
45 A.C. Pipkin, The Relaxed Energy Density for Isotropic Elastic Membranes, IMA J. of

Appl. Math., 36 (1986) 85.
46 D.J. Steigmann, Tension Field Theory, Proc. R. Soc. London, A429 (1990) 141.
47 D.J. Steigmann and A.C. Pipkin, Axisymmetric Tension Fields, Z. Angew. Math. Phys.,

40 (1989) 526.
48 D.J. Steigmann and A.C. Pipkin, Wrinkling of Pressurized Membranes, ASME J. Appl.

Mech., 56 (1989) 624.
49 D.J. Roddeman, J. Drukker, C.W.J. Oomens and J.D. Janssen, The Wrinkling of Thin

Membranes, Part I - Theory, Part II - Numerical Analysis, J. Appl. Mech., 54 (1987)
884.

50 R.L. Comer and S. Levy, Deflection of an Inflated Circular Cylinder Cantilever Beam,
AIAA J., 1 (1963) 1652.

51 S.A. Lukasiewicz and P.G. Glockner, Stability of Lofty Air Supported Cylindrical
Membranes, J. Struct. Mech. 12 (1985) 543.

52 D.J. Malcolm and P.G. Glockner, Collapse by Ponding of Air-Supported Spherical Caps,
Proc. ASCE, 107 (1981) 1731.

53 G. Ahmadi and P.G. Glockner, Collapse by Ponding of Pneumatic Spherical Caps Under
Distributed Loads, Can. J. Civ. Engr., 40 (1983) 740.

54 S.A. Lukasiewicz and P.G. Glockner, Collapse by Ponding of Shells, Int. J. Solids
Struct., 19 (1983) 251.

55 W. Szyskowski and P.G. Glockner, Finite Deformation and Stability Behaviour of
Spherical Inflatables Under Axisymmetric Concentrated Loads. Int. J. Non-Lin. Mech.,
19 (1984) 489.

56 W. Szyskowski and P.G. Glockner, Finite Deformatic- and Stability Behavior of
Spherical Inflatables Subjected to Axisymmetric Hydrostatic Loading, Int. J. Solids
Struct., 20 (1984) 1021.



57 J.G.A. Croll, A Tension Field Solution for Nonlinear Circular Plates, in Aspects of
the Analysis of Plate Structures, Dav al., Eds., Clarendon Press, Oxford, 1985,
309-323.

58 A. Libai, The Transition Zone Near VNrinkles in Pulled Spherical Membranes, Int. J.
Solids Struct. 26 (1990) 927.

59 L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, W.B.
Saunders, Philadelphia. 1969.

60 E.H. Mansfield, Analysis of Wrinkled Membranes with Anisotropic and Nonlinear
Elastic Properties, Proc. R. Soc. London, A.353 (1977) 475.

61 E. Bromberg and J.J. Stoker, Non-Linear Theory of Curved Elastic Sheets, Quat. Appl.
Math., 3 (1945) 246.

62 W. FlUgge and P.M. Riplog, A Large Deformation Theory of Shell Membranes, Tech. Rep.
No. 102, Div. Eng. Mech. Stanford Univ., 1956.

63 E. Reissner, The Edge Effect in Symmetric Bending of Shallow Shells of Revolution.
Comm. Pure Appl. Math., 12 (1959) 385.

64 A.E. Clark and O.S. Narayanaswamy, Nonlinear Membrane Problems for Elastic Shells of
Revolution, Proc. Symp. on the Theory of Shells, D. Muster, Ed.. 1967, University of
Houston Press, 83.

65 F.Y.M. Wan and H.J. Weinitschke, Boundary Layer Solutions for Some Nonlinear Elastic
Membrane Problems, ZAMP, 38 (1987) 79.

66 P.E. Jordan, Stresses and Deformations of the Thin Walled Pressurized Torus, J.
Aerospace Sci., 29 (1962) 213.

67 J.L. Sanders, Jr. and A.A. Liepins, Toroidal Membrane Under Internal Pressure, AIAA
J., 1 (1963) 2105.

68 R. Benedict, A. Wineman and W.H. Wang, The Determination of Limiting Pressure in
Simultaneous Elongation and Inflation of Nonlinear Elastic Tubes, Int. J. solids
Struct., 15 (1979) 241.

69 A. Needlman, Necking of Pressurized Spherical Membranes, J. Mech. Phys. Solids, 24
(1976) 339.

70 V.I. Feodosev, On Equilibrium Modes of a Rubber Spherical Shell Under Internal
Pressure, PMM, 32 (1968) 335.

71 A. Needleman, Inflation of Spherical Rubber Balloons, Int. J. Solids Struct., 13
(1977) 409.

72 R.T. Shield, On the Stability of Finitely Deformed Elastic Membranes, ZAMP, 23
(1972) 16.

73 A. Fbppl, Vorlesungen Uber Technische Mchanik, Vol. III, Teubner, Leipzig, 1907.
74 E. Reissner, On Finite Deflections of Circular Plates, Proc. Symp. Appl. Math. I AMS

Providencee (1949) 213.
75 R.W. Dickey, The Nonlinear Circular Membrane Under a Vertical Force, Q. Appl. Math.,

41, (1983) 331.
76 R.W. Dickey, Membrane Caps, Q. Appl. Math., 45 (1987) 697.
77 H.J. Weinitschke, On Finite Displacements of Circular Elastic Membranes, Math. Meth.

in the Appl. Scd., 9 (1987) 76.
78 H.J. Weinitschke, Stable and Unstable Axisymmetric Solutions for Membranes of

Revolution, Appl. Mech. Rev. 42, part 2, (1989) 289.
79 S.P. Joshi and L.M. Morphy, Large Axisymmetric Deformation of a Laminated Composite

Membrane, ASME J. Appl. Mech., 57 (1990) 150.
80 W.W. Klingbeil and R.T. Shield, Some Numerical Investigations on Empirical Strain

Energy Functions in the Large Axisymmetric Extensions of Rubber Membranes, ZAMP, 15
(1964) 609.

81 L.J. Hart-Smith and J.D.C. Crisp, Large Elastic Deformations of Thin Rubber
Membranes, Int. J. Eng. Sci., 5 (1967) 1.

82 W.H. Yang and W.W. Fang, On Axisymmetrical Deformations of Nonlinear Membranes,
ASME J. Appl. Mech., 37 (1970) 1002.



278

83 P. Pujara and T.J. Lardner, Deformations of Elastic Membranes: Effects of Different
Constitutive Relations, ZAMP, 29 (1978) 315.

84 E. Schwerin, Uber Spannungen und Formanderungen Kreisringforminger Membrananen,
Zeit. f. Tech. Physik, 12 (1929) 651.

85 J.P. Fulton and J.G. Simmonds, Large Deformations Under Vertical Edge Loads of
Annular Membranes with Various Strain Energy Densities, Int. J. Nonlinear Mech., 21
(1986) 257.

86 J.G. Simmonds and M.A. Horn, Asymptotic Analysis of the Nonlinear Equations for an
Infinite Rubber-Like Slab Under an Equilibrated Vertical Line Load, J. Elasticity,
24 (1990) 105.

87 C.H. Wu, Tube to Annulus - an Exact Nonlinear Membrane Solution, Q. Appl. Math., 27
(1970) 489.

88 H. Vaughan, Pressurizing a Prestressed Membrane to Form a Paraboloid, lnt. J. Eng.
Sci., 18 (1980) 99.

89 A.D. Pipkin, Integration of an Equation in Membrane Theory, ZAMP, 19 (1968)
818.

90 C.H. Wu, On Certain Integrable Nonlinear Membrane Solutions, Q. Appl. Math., 28
(1970) 81.

91 W.L. Yin, Nonuniform Inflation of a Cylindrical Elastic Membrane and Direct
Determination of the Strain Energy Function, J. Elasticity, 7 (1977) 265.

92 A.D. Kydoniefs and A.J.M. Spencer, Finite Axisymmetric Deformation of an Initially
Cylindrical Elastic Membrane, Q. J. Mech. Appl. Math., 22 (1969) 87.

93 A.D. Kydoniefs and A.J.M. Spencer, The Finite Inflation of an Elastic Toroidal
Membrane of Circular Cross Section, Int. J. Engng. Sci., 5 (1967) 367.

94 E.N. Kuznetsov, The Membrane Shell as an Underconstrained Structural System, ASME J.
Appl. Mech., 56 (1989) 387.

95 E. Isaacson, The Shape of a Balloon, Comm. Pure Appl. Math., 18 (1965) 163.
96 A. Sagiv, Inflation of an Axisymmetric Membrane: Stress Analysis, ASME J. Appi.

Mech., 57 (1990) 682.
97 S.S. Antman and M.C. Calderer, Asymptotic Shapes of Inflated Spheroidal Nonlinearly

Elastic Shells, Math. Proc. Camb. Phil. Soc., 97 (1985) 541.
98 H.O. Foster, Very Large Deformations of Axially Symmetrical Membranes Made of

Neo-Hookean Materials, Int. J. Eng. Sci., 5 (1987) 95.
99 D.A. Danielson and J.G. Simmonds, Accurate Buckling Equations for Arbitrary and

Cylindrical Elastic Shells, Int. J. Eng. Sci., 7 (1969) 459.
100 A. Libai, The State of Stress Near a Longitudinal Slit in a Membrne Tube-Formulation

of the Problem, Report to the Fund for the Promotion of Research at the Technion.
101 E.L. Axelrad, Theory of Flexible Shells, North Holland, 1987.

APPENDIX: SOME TOPICS IN CYLINDRICAL SHELL-MEMBRANES

(a) Nonlinear Bending of Finite Length Membrane Tubes

A circular cylindrical tube subjected to a beam bending moment M(x) deforms
nonlinearly due to the "ovalization" of its cross sections, until it collapses or
buckles locally. In very long tubes, ovalization is resisted by circumferential shell
stress-couples, and is known as the Brazier effect. However, in finite-length tubes,
membranes resultants which stem from the supports participate in this resistance and
even dominate it for appropriate geometries.

The membrane tube problem can be stated in terms of a simplified mixed variational
equation 5U*(F,G)=0, where:
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= N/(2E~t) - N',/(2E, t)]dA - L (ETd
0

8

with: 0 = s/r; q = 0 + G,s y =f cosqds

0

Nx =-[(Fqq + F)q,s],s Nxs = r(F,qq + F)qs]x

I = r3 t ; = fty2 ds: cross-sectional moments of inertia.

Solutions can be obtained by expanding F and G as truncated Fourier series in 0,
starting with m=2. The strongest nonlinearity is due to T, and in most cases q may be
replaced by 0 in Nx and N xs. It has been demonstrated before that the dominant Fourier
component of the ovalization is m=2. Putting

F = r2 f(x)sin(20) ; G = - rg(x)cos(20)

into the reduced functional and performing 8U* = 0, differential equations and boundary
conditions are obtained:
(r2/Ext)fxx + (rM,/2Exl) 2(I/T),g = 0

f/Ext - r2(f/4E xst - g/1 8),xx = 0

(2g - 9f/Exst),xf = ; g8fx = 0

2 3 4
T = I(1 - 2g - 8/9 g + 28/9 g + 32/75 g .....

Traction boundary conditions are the specification of f and fx(Nx and Nxs). The
kinematic conditions are the vanishing of their coefficients: the geodesic (warping) and
normal curvature changes.

Equilibrium paths (up to collapse) and local buckling curves for finite length tubes
subjected to a constant bending moment and with diaphragm and clamped support conditions
were presented by Libai and Bert in ICIAM '92. Good correlation with previous numerical
work on local buckling was observed for membranes with (L/r)(t/r)l/2<l.2. Beyond this,
circumferential shell bending effects became significant.

(b) The Decay of Edge Disturbances in Loaded Cylindrical Shells and Membranes

The addition of a bending term -DV 8F to the DMV form of the cylindrical membrane
equation converts it to a DMV cylindrical shell equation which is suitable for the
qualitative analysis of edge effects and their decay into the shell. To study decay from
the curved edge, a solution F=Cexp(-x/d)cos(ms/r) is put into the equation. Here, d is a
characteristic decay length and m is the harmonic index. This yields a characteristic
equation in d:
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1m2 2 xe m2s D 1 m2 4 0

Here, the first term is the nonlinear membrane effect (with initial strains Ex=Px/Et,

£s=P/Et), the second is the bending effect, and the third is the linear membrane

effect. Decay lengths are given below for some important special cases:

i l) Axisymmetric linear bending (m=0, ex=O): d/r=O[(t/r) /2.

(2) Axisymmetric nonlinear membrane (m=0, D=0): d/r=-0(Exl/2).

(3) Slow decay, linear bending (F x=Es=0): d/r=-O[(r/t) /2m-2.

(4) Slow decay, nonlinear membrane (D=O): d/r=-O(Es 1/4 m' 3/2

(5) Slow decay, nonlinear membrane (D=O, cs=0): d/r=_0( x 1/2rm- I

(6) Plane sheet (l/r=O, m=O): d/t=0(Ex 1/2)

Cases (l)-(2) typify rapidly decaying edge disturbances due, for example, to radial and
rotational continuity requirement. Cases (3)-(5) represent the slow decay of
circumferentially varying edge input. As is well known, linear membrane theory cannot
handle the diffusion or decay of nonuniform input. For example, nonuniform loads Nx
applied to the edges, retain the same nonuniformity through the membrane, even for very
long shells, contrary to St. Venant's principle. Linear bending (case 3) or nonlinear
membrane theories (case 4) provide weak mechanisms with long decay lengths. This
justifies the approximation F,s>>F,x made in these cases. Note that for thin, highly

stressed shells, the membrane decay length may be considerably shorter than the linear
bending length and be the dominant effect.

Case (6) represents the decay of a bending-membrane edge disturbance from a long

stretched sheet. As d--)O the ideal membrane case is approached. This occurs as (t3 /2 , E,

P- l/2)--_., and demonstrates the three main reasons for asymptotic ideal membrane
behavior: thickness--)O, rigidity--4O, loads->oo.

The characteristic equation is also useful for the evaluation of the relative

importance of nonlinear membrane effects (e x, ,x) vs bending effects (t2/12r 2 ) in

shells. In many practical cases, the first may be large compared with the second. For
example, if ex=0.01 and r/t=100, then the nonlinear membrane term would be a thousand

times larger than the bending term. This simple example should explain why nonlinear
membrane theory is important.
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Abstract

Wave propagation, wave breaking, and the concoumi taut wave-mdindiced nloentllunl
transport are ubiquitous processes in the Earth's atmnosphere and oceans, a classic ex-
ample being the surface gravity waves from storms in the Southern Ocean that drive
mean longshore currents on California beaches. Such processes are not only interesting
in themselves, but are also fundamental to making sense of the various 'wave-turulIence
jigsaw puzzles' with which the atmosphere and ocean. separately and ill conibination.
confront us. For instance, what used to be regarded as an enigmatic 'negative viscos-
ity' of the subtropical atmosphere is now straightforwardly comprehensible in ternis
of Rossby wave propagation and breaking. Other examples include understanding (a)
why the mean east --west winds in the equatorial lower stratosphere reverse every 14 1I
months, throughout a belt encircling the globe, (b) why the lowest temperatures on
earti (as low as 110K, or -163'C) are found not in the winter helnisphere but near
the summer pole, at altitudes between 80 and 90 km, (c) why the c-folding atmospheric
lifetimes of certain man-made chlorofluorocarbons are of the order of a century, and (d)
why the greatest concentrations of stratospheric ozone are found where photochemical
ozone production rates are least.

This lecture will discuss some of the theoretical-mechanical concepts relevant to un-
derstanding these phenomena, including the concepts of wave 'momentum' and wave
'breaking'. There emerge, somewhat unexpectedly, what might prove to be some useful
new ideas about the problem of water-wave generation by wind. The nmin point is
that the water waves can be systematically amplified by certain irreversible, ratchet-
like, non-superposable effects that depend on spatio-temporal inhomogeneities, such as
wind gustiness and wave 'groupiness'. These include the effects of what might be called
'Rossby lee waves' in the airflow downstream of water-wave groups. The resulting wave
drag can amplify non-breaking water waves and might, for instance, help to explain the
growth of the 'energy front' reported by 0. M. Phillips in this Proceedings.

1. INTRODUCTION

I want to widen the context of this Minisymposiun and talk about soine phenonwiia
and concepts that appear fundamental to a whole range of problems in atmosphere
ocean dynamics. I also want to say something about that old but still problematic
topic, the generation of water waves by wind. I cannot claim to be an expert on that
problem, let alone on air-sea interaction in general, but it is possible that a fresh look
from another perspective might help to advance our nunderstandling.
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The atmosphere and oceans used to be thought of simply as 'turbulent' fluids on a
vast scale, and early attempts to understand them often involved Reynolds averaging
together with the hope that the resulting eddy-flux terms might be able to be charac-
terized, at least roughly, in terms of the notion of ýeddy diffusivity'. It was therefore asurprise when even the signs of these fluxes sometimes turned out contrary to expec-

tation. This was found, for example, from global-scale atmospheric 'general circulation
statistics' (e.g. Lorenz 1967); and for a time the phenomenon was thought, of as a kind of
mysterious 'negative eddy viscosity' (Starr 1968). This meant of course that no-one un-
derstood what was going on. Eastward momentum was seen to be transported poleward
by large-scale eddies, against the local mean horizontal shear in subtropical latitudes.
The eddy viscosity became infinite a little further poleward. Many other such exam-
ples are now known, one of the most conspicuous being the celebrated 'quasi-biennial
oscillation' (QBO) of the equatorial lower stratosphere, to be described in §4.

The mystery was gradually solved as it was recognized how important for this pur-
pose, as well as ubiquitous, are the various wave propagation mnechanisms that operate
in the atmosphere and oceans, such as internal gravity wave and Rossby wave* propaga-
tion. Among the important pioneering contributions were those of Charney and Drazin
(1961), Eady (unpublished, but see Green 1970), Booker and Bretherton (1967), Wallace
and Holton (1968), Lindzen and Holton (1968), Dickinson (1969), and Rhines (1975),
Today we have a relatively clear view of these problems, both through data from clever
terrestrial and space-based observing techniques, and through a better understanding
of the basic theoretical principles and of how to applv both numerical and idealized
theoretical-mechanical modelling. Such modceiitng i:, used not only in hypothesis-testing
thought-experiments, but also as pointing toward better ways to make observational
data tell us, in a dynamically intelligible way, more about what is going on in the real
atmosphere and oceans (e.g. Thorncroft et al. 1993, & refs.). Better understanding
includes seeing what is robust about an idealized model, hence which aspects of it are
likely to carry over to more realistic situations. This lecture will mention a few such
models and their contribution to our present-day understanding. Also touched on will
be the intimate relation between wave propagation mechanisms and shear instability
mechanisms, and the concept of 'wave breaking' and its frequent relevance -- when
appropriately defined - to phenomena involving wave-induced momentum transport.

It is interesting to view the wind-wave problem from the conceptual vantage point
thus arrived at. There emerge what may turn out to be some new ideas about wave
generation mechanisms, to be discussed briefly at the end of -.he lecture. Besides being of
general significance for our understanding of ocean waves and air-sea interaction, these
ideas might help to explain, for instance, the growth of the 'short wave energy front'
seen in the experiments described in Professor Phillips' Minisymposium Lecture in this
Proceedings and in Chu et al. (1992). The key is to recognize all the wave propagation
and wave breaking mechanisms that come into play, in the air as well as in the water.

2. THE MIDDLE ATMOSPHERE: SOME OBSERVED FACTS

The phenomena to be discussed, including the phenomenon of 'negative viscosity'.
are seen very clearly in what is now usually called the 'middle' atmosphere (but still.
occasionally, the 'upper' atmosphere). It comprises the stratosphere, extending to about
50 km altitude, and the mesosphere above it, extending to somewhere between 80 and

*Rossby waves (historically, 'Kelvin -Kirchhoff-Rayleigh--Rossby waves') may also be called 'vorticity

waves' or, more generally, 'potential-vorticity waves' (§6 below). 1 am following today's established
usage.
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100 kin. Figure 1 includes the bulk of the minddle at iiiospliere: it shows a typical Illearl
.Januiar-vtemiperaturie distrtibutionas a ifunttl(t(ionof altitude ai' I la(1titudel(. Thel unitsonif
right-hand scale are e-folding pre'ssulre scale heights, roughly 7 km.i st) that t he altitude
rantigeis from s~ea level to rouighly -85 kmi. (oehr bv hsattd.tu tue
rise steeply into what is called the thermosphere, where simple thermiodynianjics and
continuum mechanics break down andl plasmna physics liecoines Impllortanit, ) This See-
tioni and1 §§4.8 sketch b~riefly somei( of what is ktiowrnl andl unxderstoodI abliot the miiddle
atmosphere: a More eXtenlsive discussion and bibliography can be foundl ill a reccitt e
view of mnine (1992) written for a nion-specialist audience of physicists, and Iii other,
more specialized review maite rial cited thlerelin' see for Instance the book by Andrews.
Holton and Leovy (1987).
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Figure 1 Tciiiperatures '1 between sea level and about 85 kill for typ~ical Januiary conditions (degrees
Kelvin, longitude and time averaged). Northward is t~oward thle right, and the right-hand altitude scale
is in C-folding pressure scale heights. roughly T kil. Fronm satellite and (it her observations anlalvzed iby
Barneitt and Corriey (1985).

The light shading in Figure 1 shows the warmest regions., andl the (lark shading the
coldest, in January. Some of these features can be undlerstood largely fromn considera-
tions of radiative heat transp~ort. For instance thr- high templeratulres T Z 260 K near7
scale heights or 50 kin, defining the 'stratopause*. are largely dute to heating by absorp-
tion of solar ultraviolet radiation by ozone, balanced by infrared c7ooling to space. T
increases southwardl at the st ratopause mainly because the diurnally averaged normal
solar irradiance has anl absolute riaxirnutm at the south pole at the Decemnber solstice.
an(1 throughout a substantial part of December andl January. The south pole is then.
so to speak, the sunniest place onl earth.*

A nmbmler of other fe'atures are not so simplly explained. One exairijle Is the very
cold region at the to1) left of the p~ic~ture, where thie lowest mevan temperature plotted 'is
T 150 K. In fact. indlividu1.al rocket. soundings have shown temperatures as low as 110 1K

*For solar declination (a relative to a spherical, rotat ing earth, the fractional lenigthI of day A( @1 at
latitude 6 is r- arccos[mnaxf{- I, niri( . -. tan (1tarl 6)}] . and the diurnally averaged vertical rouillonenlt
of solar irradliance is the fill solar irradiancernultiplied by A(6) sin nsin6+ ±7-,-l sill irA() 0)1 cos (I Cos(,;.
This has an absolute InaxirriunIl at, tle southl pole when (a is withiln 2.80 of its min itnum value -2..
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on occasion. At these altitudes, the sunniest place on earth is also the cold-st place
on earth. Until about a decade ago, this was regarded as one of the great enigmas of
atmospheric science, the enigma of the 'cold summer mesopause'. There is no doubt that
the observed temperatures are far below what they should be on the basis of radiative
heat transport and photochemistry alone. Temperatures substantially higher than their
radiative values also occur. They occur, for instance, throughouM most of the depth of
the north-polar region on the right of Figure 1.

Let us note one other observed fact, at first sight having little to do with the observed
pattern of temperature anomalies, but actually closely connected. This is the now-
notorious fact (with its potentially serious implications for the stratospheric ozone lay(.er)
that the man-made chlorofluorocarbons known as CFC-11 and CFC-12 have very long
atmospheric lifetimes, of the order of a century. These are c-folding times. Even if all
leakage of these CFCs into the atmosphere could be stopped tomorrow, it would take
several centuries for their concentrations to decrease to, say, 1% of present values.

How are these facts connected? The connecting link is indicated in Figure 2. which
shows an estimate of the mean circulation of the stratosphere and mnesosphere. It
is the mean in a sense very roughly equivalent to a Lagrangian mean with suitable
re-initialization of particle ensembles (see the caveats in my 1992 review and its bib-
liography). This mean circulation gives us a roughly correct explanation both of the
temperature anomalies and of the observed lifetimes of CFCs. and the lifetimes of cer-
tain other long-lived chemical tracers. The temperature anomalies are accounted for by
adiabatic expansion in the rising branches of the circulation, and adiabatic compres-
sion in thc descending branches, pulling temperatures away from the radiative values
toward which they would otherwise tend to relax. The rising branches carry chemical
tracers upward, for example CFCs and other tropospheric tracers through the tropical
stratosphere. The rate at which they are carried upward governs the rate at which they
are exposed to sufficiently energetic solar ultraviolet radiation, and hence destroyed
photochemically. This is the main way in which CFCs are destroyed, removal rates at
sea level being relatively small. The typical strength of the mean circulation required
to account for the observed temperature anomalies also gives a CFC destruction rate
consistent with the observed lifetimes.

Again, the rising branch of the circulation at higher altitudes, shown schematically
by the heavy dashed curve at the top left of Figure 2, explains the extraordinarily low
summer mesopause temperatures. The circulation also carries small amounts of wa-
ter vapour upward to the mesopause. A phenomenon observed at these altitudes, the
sporadic formation of 'noctilucent' and 'polar mesospheric' clouds, requires a supply of
water vapour as well as exceptionally low temperatures.* Water vapour is photochemi-
cally destroyed near the mesopause, where ultraviolet photons are even more energetic
than in the stratosphere. Considerations like these, and other observational evidence,
give confidence in the picture suggested by Figure 2.

The mean circulation is also part of what controls the distribution of ozone, and the
rate of replenishment of the ozone layer. The photochemnistry of ozone is complicated and
can interact more subtly with the fluid dynamics than, for instance, CFC destruction,
which depends mainly on total exposure to ultraviolet photons. Ozone can be expected
to be more sensitive to processes hidden by the averaging in Figure 2; we return briefly
to this point in §8.

*See for instance Thomas et a]. (1989, & refs.). These incidentally are the world's highest clouds, by
far, occurring at altitudes around 83-85 km. Anyone who lives between about 50' and 60' latitude can
observe them a.s an electric blue glow above the poleward horizon, sometimes intricately patterned, on
a few clear nights after midnight in the two months following midsummer.
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Figure 2. Light curves: mass transport streamlines of the longitude and time averaged global-scale
circulation in an altitude range between about 3 and 9 pressure scale heights (cf. right-hand scale
in Figure 1), estimated from satellite data for January 1979 by Solomon et al. (1986). The pressure
altitude is in nominal kilometres, defined as 1/7 of a scale height. The circulation is defined in a quasi-
Lagrangian sense giving a simplified, but roughly correct, indication of the vertical advective transport
of chemical tracers (and is broadly consistent with direct observations of such tracers). The lime for
a notional fluid element to rise from the tropical tropopause to, say. 40 km is typically of the order of
two years. Heavy dashed curve: qualitative indication of the extension of the circulation into the upper
mesosphere and lower thermosphere.

How is the mean circulation driven? This again forces us to consider processes hidden
by the averaging. The key point is that the Earth is a rapidly rotating planet. It is
rapidly rotating in the sense that the distribution of angular momentum M per unitn mass
in the atmosphere is dominated by the Earth's rotation, and only weakly affected by air
motion relative to the Earth. In the extratropics there is a strong latitudinal gradient
of M. So a circulation like that shown in Figure 2 cannot persist unless something
exerts a persistent torque on the extratropical atmosphere, in an appropriate sense (in
fact, against the Earth's rotation everywhere except in the summer mesosphere, where
it must be with the rotation). In a thought-experiment in which this torque is switched
off, the circulation begins to die down, and temperatures to relax toward their radiative
values (e.g. Haynes et a]. 1991, & refs.).

It is now believed on good evidence that in the real middle atmosphere this torque
arises from wave-induced angular momentum transport, in fact mostly from Rossby
waves and internal gravity waves generated in the troposphere. The Rossby waves
account for most of the lower part of circulation shown in Figure 2, and the gravity
waves account for the upper mesospheric branch. The sense of the angular monteutmt
transport is related to the phase speeds of the waves and to the dtifferent places wherre
they are generated and dissipated, and not locally to such things as the sign of the
mean shear. It is no wonder, then, that attempts to apply ideas like 'eddy viscosity,
can produce incongruous results, such as negative or infinite eddy viscosities.
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3. WAVE-INDUCED MOMENTUM TRANSPORT

The fact that wave propagation and diffrz 'tion are generally accomt,aiied by a sys-
tematic flux or transport of momentum is a well-known rule in theoretical physics.
applying to waves in fluids as well as to the more obvious case of wavevs m ;vacuum.

such as photons. The key phenomenon i, that, if progressive waves are gentnrated Il one
place A and dissipated in another B, this is accompanied by an irreversible. cuemulative
transport of momentum from A to B. The sense and rate of this transport is usually
given, to some useful approximation. by what might be called the phot on analogy, or
.quasimomentum rule' (§5).

The physical reality of such wave-induced momentum transport is easy to demon-
strate in the laboratory. For instance, it manifests itself in the phenomenon known as
the 'sonic wind' or 'quartz wind' (e.g. Lighthill 1978a.b), in which a piezoelectric trans-
ducer emits a beam of ultrasound that transports nomenituin from the transduccr to
locations where the waves dissipate. The resulting mean force on the fluid often gene r-
ates a turbulent jet. One can demonstrate what is fllndamentallV the same thing Withhot
any special apparatus at all, using capillary-gravity waves at frequencies of or(der 5 Hz.
This was done during the lecture using a small cylindrical wavenmaker (Figure 3a) ani I
a glass dish containing water with chalk dust on the surface. Making the wavemaker
oscillate vertically shows that the observed mean flow (arrowed curves) is predominant l1v
wave-induced, and not Rayleigh---Schlichting boundary-layer streaming from the surface
of the wavemaker. The latter has the opposite sense (e.g. Lighthill 1978a, p.3 4 8: Van
Dyke 1982, Fig. 31). Carefully stopping the wavemaker and observing the persistentce
of the mean flow shows that it is more than a *Stokes drift': irreversible. cumulative
momentum transport has indeed taken place. With a larger area of water. one Can use
a curved wavemaker to focus the waves on a more distant spot (Figure 3b). illustrating
the fact that the wave generation and dissipation sites can be well separated spatially.

/ '

(a) Wavemaker (h)

Figure 3. Simple demonstrations of momentum transport by 5 liz surface (-apilary-gravity wav•,s (svee

text). Configuration (a) works well with a wavemaker whose diameler - 3 to 4 cn, and coonfiguration
(b) with a waveriaker whose radius of curvature > 50(cm, Fromi Mlclntyvre and Norlon ( 1990).

This last point is underlined by the classic work of Munk ct al. (1963) in which,
following earlier work by Barber and Ursell, they demonstrated that surface gravity
waves generated by storms in the Southern Ocean cart, and often do. propagate ;1ro1ss
the Pacific all the way to beaches in California, where they break and generate lohmshlrc,
mean currents (see also Snodgrass et al. 1966). This is a clear case of irreversible wave-
induced momentum transport over many thousands of kilonietres! The internal gravity
waves that sustain the miesospheric circulation of Figure 2 also, dissipate mostly b'V
breaking. They have sources mostly in the denser layers of the atmosphere far below.
so that horizontal momentum is transported over vertical (list ances not of thIusajds.
but certainly many tens, of kilomietres (e.g. Fritts 1984, 1993).

Essentially the same things happen with Rossby wawvs. ,exce~pt that Rosshy wave
dynamnics has a peculiar ýone-signedness' that call c, mstraiii tih sense of the 1oeliotlietill



transport in a ratchet-like, way. As we!l its b~eing itrsngfor this reason, 1.theca of
R~ossby waves is argutablyl the sinioTlest to understand from first pruinip"-~. Tlii~wll %ý1 In'
seen in §7. First, however. I want t~o aitention an exiiiiipe In lig ine nalilvt
other kinds of waves, in which the wave-induitced nioninatuim tratisport initeracts Wit Ii
wave refraction to produce an interesting feedb(Ilack oscillation of the mean Plox that
has been observ.ed bo0th inl the lab~oratory andl in thie real at mosplierc the recllrai ti
'quasi-biennmal uscillationý or *Q2B() and then I wanit to touch) briefly oni tlie 1)hiotoli
analogy and on what Is sonietiflis called wave .tuonlciet innl'

4. THE QBO AND ITS LABORATORY ANALOGUE

The 'laboratory QBO' was demonolitratedl in it famlous" experinlic nt by Plumb11 wit
McEwan (1978). The system used was a salt ~tratified fhilid conitalined ill a largeIt'La);
ratorv annulus. of depth 50 cmi and gap widthi 12 cnil. Internial gravity waves are eXcited(
by making a flexible lower boundary oscillate lin at .tandioli" w~ave. eCuiv~th 'ut to equia~l
amuplitudles of clockwise and anticlockwise p~rogressiVe waves. Thec response of t lie fluid
breaks this svimietri (the( auniiiuus is at rest relative to tit(e laboratory. andtI li Eardtl s
rotation can be neglected): and a wav-e-induced mean flow arises. hiorizontally aroiit lcI
the annuluis. Soon a regimec Is estalblislieti displaying a cliaracto rjst ic spacet ilie signla.
tire, iii which tlhe mecan flow reverses periodically at at giveni altit tide, and dt es s-o earlier,
at higher altitudes. Tlis, was ilbist ratetl by a movie of the original experliment ;liownl
in the lecture,

The two miechaniismns involved are first thie wvave'-induic-d ingular nliomnentutm t rams
port. runitila tively chianging the me1anl velocity profile as the( wae ijssip~ate' (%viscously
tin this case). and seCOlilh rlme effec(t of ri(,tean shear. iii Doppler shift ing antd refractinig
tile waves (somlewhiat like the selective surface-wave refraction that canl make at bathiti:b
vortex appear. at first glance. to be rot ating, t lie wronp, way '), in thie Plumb %[(-Ewalt
experiment the wave (lissilpation rate is least, and the Vertical grouip velocity greatest,
when the waves propagate agatinst thle mnean flow. Suich waves thierefore jwlenet ate hilgh-
est. They transport aniguilar nioniet itnn in thit' saime senise it., thei(r intrinsic aitgulai

phase speed anld canl thlerefore reverse the mean muotion where they dlissiita te. first at
higher and then at lower and lower alt itud(es Iin the aiutilus. -Matliheniat':cal mlodels that
express these ideas tend to beh1ave nion -chatot ical'y. and to produce the spacet ilnec sigina-
tuire very robustly (ei. odeni anld Holtoni 1988: Hlaynies et al. 1993). as lonig asý waves
of sutflicient anmplitutde are excited iillO Iotlsnss clockwise aitd antl iclockwise'.

Thesam sa ct inesiga Uii ( lb -l ot ealyperi( lie~) is consit l~( H slyt w"N.peseut t inl
the mimeari east West wimiolso~f the tropical lower stra tosphlei e. t hiroughiolut a belt ericire~li ug
the glol)(. at a Itittildes b~etweeni ab~out 16 and 35 kin ain( lat itutdes 1 etw'-ee abhout it 15.
Whereas iii tlie( labl oratory it typically takes about hialf anl lio'ir for the ineami flw t
reverse. In thie real st ratospht're it takes about 14 ±ý 3 niont his. Thec wintirvrsl ar(e
clea rly sceen Iin tlie tropical -a diosonide dLata. that bi )ca inc routit el v av'lilab1 d from Ti.tlie
early 1 950s ontwardls, alid tlhere is indirect evideumee for thieir exist('Iice miall" de1Ca tlcs
lw)ftome theni (HFainlilton andI Garcia 1984: Teitelbauiln et al. I93). Although our detailed
Iumidterst amiding Is mu olimplete. it see inls overx\ helmi nglv hilei V t hat t lie rt'seii lbl ;ice to
the labora tory experimniit anld to utia t li('n1iat a-al tno0det<. Of it IS' lit it cHcit lent a alit
thlat h~e 111 lean flow chanlges are wave I rix * -uii tnt iuci tlie( sat ut way. iidt 't N, 1 ci*-1 in

wave thrivinig was t boughit of at all Iin t his conitext t lie observecd (2130) ui> - to 1e
aniotlher great enig-ma of atmii(sph~ieric scit 'itee a stronig case' had alt-eat ly 1 e 'li miad e
for the existeimee of sonite ,,tra jige kind of eddy or- fluiet iat ioll m1di ieed anlgular un nulelltu in
traii15)( rt . again entailing 'ti#'ga t ive eddy vi-w-(osit v, 'itlhot it 'ome vsItl ici 'Add. tlra sjit rtý

it sienelyd impossible to make dyntam ical scu'se ( if tile 0lbse rvt't I i tati flow chi;1tiges. tin
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the. basis of careful physical arguments and nume11rical experliments, \\allace anld 11?lto~i
1968). It wais ouR- after this that the realization caine ( Liudze-. and Holt on 196, ) that
wave- inrduced angular mnomentiiii transp~ort couldi bellav( inl Just the required niantier.

W~e do not vet have a convincing qItiantitartive nio)del of tlhe real Q13. lincludilng, for
instance. the effect C the inear, upxvelliiig illustrated inl Figure 2. This alvect-s taigii-
lar momentum upward on a comiparable tiniescale. andl we lack sufficietit qu1anltitatiVe
knowledge of its strength and seasonal variation. There isalso uncertailtitv over exact Iv
which wave types are significant in the tropical strzitoslihere. It usedl to be assuillc.: that
the princip,,l such wave types are the e(quatorially trap~ped Nelvin and] Rosshy gravity
waves (e.g. Andrews et al. 1987. Gill 1982). There is ob~servationial support for this
in the case of the Kelvin wave. whose observecl ainijlituile is not far fromi having anl
app~ropriate order of magnitude. But. it has seemned miore and mnore likely, for instance.
thait planetary- scale Rossby waves originating in t he extratropical troposphere are inor('
significant than eqjuatorial Rossby gravity waves mieaning locally significant 'in the
tropics (e.g. Dickinson 1968: Liindzeni and Tsay 1973: Andrews aind McIntyre 1976:
Dunkerton 1983, Takahashi and Boville 1992: O'Sullivan and Hitchmian 1992. seeýý

below) as well as kidirectly significant through the strength of the mnean upwellinlg.
W~e have even less knowledge, either observational or theoretical, of possible wvave

generation mechanisms. The real QBO seemls to ivlehighly colilpli('ated. chiaotiC.
nnierwave ger. -aionrocesses rlanyilth roposphevre, both tropicall and ex-

tratropi.:al) to which there is a robustly noni-chaotic response in thetrpclsaophe
with, it might be added, p~otentially import ant consequences, for- long-range weather

forecasting, suc'h as a feedback ox, the dlepth of cumulionimibus convection and( heirce
on tropical cyclone intensities and El iNifio timnings (Gray et al. 1992). These aispects
remain a challenge and opp~ortunity for the future.

5. LONG-DISTANCE TRANSPORT AND THE PHOTON ANALOGY

The'photon analogy' or 'quasimionlentumn rule' says that the rate at. which mnomentumil
is transported fromn location A to location B, when a wave packet is generated zi A anld
dissipated at B. is the same as if

(a) the fluid were absent. and
(b) the wave packet had_ a certain amount, of nionientumi q that it

carries around with it, like, a photon in a. vacuumil.
The quantity q is not actually a momentumi. It is a property of the Wave 1)ackli tha mnay
inore aptly be called its quasirnorentuxn or pseunlomo~melitum. inl order to dlist inguishi it
from momentum. Momentum, in the presenice of a. material mnediumii, Is ai fandainvietllv
dhifferenit quantity.* Hence the alternative termn 'qua,.inliomientumi ride'. Indeed a better.
more precise statement is that "thie rate... is the samne as if

(a) the fluid were absent, and
(b) the wave packet hiad miomentumi equial to its, quasinionientlunil.

The 'luasiniomlentuni is a waIve property in the Sense that it canl be eva1lua(ted froni liii-
earized wave theory alone. InI thie sinplje(,t theoretical approxilnat ionls (slow ilodlillat ~io

*This is because its conservation co~rresponds to a dlifferent. t ranslat jonal syimnlet ry {(f di. propagating
inedium rather than of the total phyvsics). rilier is no widelyI agre-ed name for q. Other n aies ie
with diffecrenit. kinds of waves include 'wave- vect.or', 'Poyntitngs nionijenttn' Aim Iiiiko wski niioniifit iiin..
,radiation niornerittni'. 'acouistic 1imoirientitlni, 'crystal iitotiiettuiri, -plimottoitnoeinitin'i 'IItensor nmo-
nientitun' 'field momneritum, 'canonical inomentitni. 'wave nionoie'it Iim'. antd nioluentutnt'. Ihis, hias
led to somne ron fusion. F'or the basirs plus somne hist ory goinug bac'ý to t he t titne of Ralvicgli. I '(witInig.
Abraham, an(] Minkowskj, and for keys to the literature. the readr 'r ay consult moy 191 essaN and its
bibliography, also Loudon and P'aige (199)1, p. 236), IPemerls (1991 §~j !4 t ,ai ISeed(10. V0,)



as vwell as snilall ail)Iit itlde ). wec iimv t aoe (I TA when' i> lii.t I ttliC WW'(' 1111, i2'&
ill tilt setist' discuissed e~g. hy [Ircrli,'roi tm; Gt11 it l¶i- t, k I- rlie \\'a'Vt'tilhtV %4e1

tor, and Z', Iis the intrinsic frequency,(1 .orfr-4ijeticy ()opph'r *"hiftd I') t it 1cthcic ffi ~;tnm
moving with the local inean flow. Like E, q 1, U! tr %Vin wa;emtiphittitle' o.

The analogy SillIn lia ri ze. a body of sýp'ciai a11A en'-clill rt"lult " froml t1f~ bet tsIn whtich
(a is Cons1idered smnall and in win1ch wave indut'(til mnit ltnii 'm 11railsj I~t . ;11( ;111 111 it,
sOciated njt'aneffects, -irc self- conl~isit itly dtI'-cri I ed co-rn 't It) Oi -)I A,, j', ýcl knoiitwn

thet ~t'reica clcuatons~'iibe('vlalor~i e ate Itricky.eqilat trial oh~b raxir v %N*;1%"C
being a case inI poinit ( Andrew, and Miehitvie I 978; ý9. k-r's Such d icorit'> airo' oftcii

quialitative'ly applicable. anld mlay also) be tj1atiaittat ivt'l applicabh' to) impor-tant pirt>
of the problem. such aus the part co)ncetijet withi wa-;ve jut Iaited niolMnem,11? urn railý-por he

tenthe sites of wave Ireiierat ion and lisp tiiAmp tlit cý wIt-in the Mit'evem iint. Watv
field canl inl somei cases lhe t ruly stinal II tin l relt 'an! t 'S"I '. 1ineasu1rc byI wavesojc~

as for instance inI lie (-as( of Surface gra vitv %vav'esc s; gt1j;~jleSi ';
of the theory and the photoin anailogy c~ext cl to tiuhite a' pnqitutde a, well (Audr'vý 'w> an
:\Jchiitv-rt l9,Sa~b ). The atnalogx- has relecvanice to all lhe sIit atl ios ;Iiuel all1 the wv
ty~pes unetit ;oiied in this lec'rure. inchIteliiw, tlie eqtia t (ra I IKelvil andl -~It gai

waves that are thought to cointribute to the( real Q13().
But wvait. I hecar someone say, '''llv all this harslt iu 1bout all ;nlg h

the 'ats if' and the -quasi .tot say miotlhtijig of tlie -pcildo- 7 Isn't this C(inplica;tinI(-
thinigs unne~lcessarily'! Surel wave packets- illit fluid rca llv tlh) have n1(iiout 'i uilm q. which~l
they really do carry around with tiiithei. juist likc pli oiisv IIIa a' itmn VC111.is It ult t well
known that dissipatlingta), Wa exciaig Vthe I'llntz Iini t natigqwthI the uileanI

flow? How could they do such a t hing if they didn't relyhave mt anen(,It 1111 q to
('X('lIkTgv" Besides. hlow else, could those wvaxes that p)ropaiga te aross" tlie Paicifiv. after
generation by stornis inl the far i 50itil. drti ve l( tiislore (u'1 Virrtms onut northbern I ac'tlit's?
InI that situnat ion we(1 nor have a st eady waveim tak-er. ;1nt( Iwe d( xot Iiavc a stetadyv
.radiation stress* spannitng t he whol1e oceat ftr w weeks omi end. So sun 'ly wave pa'kct"'[.
and finite wavetrains . mnust just carry tllile ncti mi With tiheuii A iid wthat about tlit
niiesospheric c'irculation anid the noctiluct'c t iit c Ins? 13('al int eriia gra'i t v waves, art
highly intermittent. anid isolat''d wave packets are aigaini. arguably, a m1oms' rele~vant

ida~lization than steady' waves spatinitlig the Whole dept hi 4 tlie miiddle at imiosphit're.

Well. what really happens is intecresting, and worthI a brief (digre'ssio~n. Take for III
stance anl idlealizedI version of the situnation lit mnid-Pacifit'. Figiirt -4. from my1,, 1981 essay.v
shows an isolated, nion-dissipating. two-dimemisiotial packet of surface gravity wvaves. on
deep water. More pirecisely. it shows s(misheitialthe leading-ourdtr theoretcicl
solution describing the dlist uirlanct' and it -1c~u~)ivn O 2 ) eoiyfed1l'ia)(

from th(e work of Loiigui(t -Higginis aniý, Ste(wart (1962), That soitlution can 1c iv~ t sdo
comphute the total momient urn of the propaga Iii ls r ic.I r c o th I' ha t~i

idlea to b~e li terally trute. in t it iiiailint'i Just t'xixisaged. it would be necessary fr t lia
Imoilentumli to be well definled and equal to q. It turnvs ouit that Iit this eas-e th lie oie'lii
tumn Is indleed well defined. Bilt a care'ful comut ittat io n slut Axs x''at Longute -Hi~giuis and
Stewart also found, niamiely that thme Iloliomneituln is n1ot t'tjtial to (I (scet figure caption')
To leading order, it is ze'ro!

This is not a paradox. Rat her, it Is oil(' of manyu cutetl mt re'xamplehs Shoewinig that . flu
waves in material miedia, the photon idea caim ad 1m~'taken it 1t'rallv as a genleral priuuciple.
Ini order for tie' photon Idea to miake sense lit ti.eneral InI fact to ii ahke st'iis' t )iitsidl
a very linlited st't of cirvt'iminstances, it Is ite Iced cruciald to regard. it asý anl anlab ig.
ixe.,, to retain the wvords 'as IF' lrecedli i itt'iis ((11) amid (b)t aliovXe. atI dt o i outitemi'l to
recognize thet dlistinct ion la'ween tmie uit'iit andIrusui )mtitii Thust, ,t atet. tlim
anialt igy is hoth Iiisefiil. anld cap ablt' ()f genit ral Insu'et ice 1 j~ stlfica toi in ( hit' approtachi IS'
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to use 'generalized Lagrangian means' in conjunction with Kelvin'. circulation tieoeici
(Andrews and McIntyre 1978a); the importance of the circtilatioi tlhorenfi in thi kind of
problem was recognized by Rayleigh (1896), and its connection with the photon analogy
was, I think, first recognized by Bretherton (1971). Additional consideratiols that have
improved our general understanding, but have yet to be fully work(d out, ca- hIe found
in my paper with Norton (1990). But, to return to the idealized *Pacific* problevi., how
then does the whole thing work fluid-mechanically?

The main point is this. As a wave packet propagates past any given fluild eleilment
between its generation and dissipation sites, it gives rise to an 0(a") 4 11jiar forcing
whose time integral is zero for that fluid element. Details are, complicated but the most
significant aspect of this forcing can be thought of, for present Jturposes, as coming from
the divergence of a radiation stress spanning the region occu pied by the wave packet
(and satisfying Newton's third law of 'action and reaction'). This causes the given fluid
element first to feel a mean push. and then a mean pull, against other fluid elem(ents in
the region. Consequently, the time-integrated force on the given fluid element is zero.
Corresponding statements are true of the other aspects of the O(a2) mean forcing. such
as apparent mass sources and sinks (e.g. Andrews and McIntyre 1978a).

Computing the O(a 2 ) response to a given O(a'2 ) mican forcing is a linear problerm.
Therefore, during a time interval in which one or more wave packets propagate from A
to B, one can regard the O(a 2 ) mean forcing as the sumn of two contributions: first a
steady forcing, corresponding to a steady wavetrain and its radiation stress spanning the
entire region between A and B - and conforming to the photon analogy and second
an oscillatory forcing in the same region whose time integral vanishes everywhere.

It is only the first of these two contributions that is interesting from the present
viewpoint, i.e. that corresponds to the notion of a cumulative., irreversible wave-induced
transport of momentum from A to B. The second, oscillatory contribution evokes a
response that is non-cumulative, because of the vanishing of its time integral. It tends
moreover to be strongly dependent on circumstances such as conditions at remote
boundaries, and how the waves were generated. Its details can be complicated. For
instance if one were to include stable stratification and Coriolis effects in a less idealized
model of the Pacific ocean, then the O(a2) response to the passage of a non-dissipating
wave packet would be quite different from that shown in Figure 4. It would involve the
excitation of very weak O(a 2 ) internal Corioiis-gravity (inertio -gravity) waves over a
large area of ocean. In fact something similar happens even in the special case of Fig-
ure 4 (see my 1981 essay for further discussion) since in general there are very distant.
very weak, fast-propagating, ultra-long O(a 2) surface gravity waves, which I have not
attempted to depict in the figure but which embody significant amiounts of momentunm,
and which depend on how the wave packet was generated.

In summarn, then, what is complicated, and circumstance-dependent, is the detailed.
unsteady O(a ) mean response of the fluid medium to the generation, propagation and
dissipation of a wave packet, or of many wave packets. What is simple, and general.
is the fact that the time integral of this O(a2) response is zero apart from the cu-
mulative contribution given by the photon analogy. This is true, in a wide range of
problems of this kind, whether or not any well-determined, well-localized (a2') meian
momentum appears ternorarily within the fluid as wave packets propagate past, or
whether for instance O(a ) mean momentum is temporarily taken up by distant bound-
aries, aýs is sometimes signalled by divergent momentum integrals in idealized versions
of the problem --- or whether O(a 2 ) mean momentum is taken up by distant long-wave
disturbances, as in the problem of Figure 4 and its variants.

Another thought-experiment of fundamental interest in this comiection is to scatter
the wave packet of Figure 4 from an imnnmiersed obstacle, and ask what the nman recoil



force is. Onet( hill(s that it I" gir't ii hy ill(-)10 (i prhialll i!V ;Iiipl(y6II lIy tir es t- iI l
a gai ii is *despite, the fact that. III This ca-c.% liii wavel p~lt-rkt Irs;r, well ileicIl 1lit t14 11u11rn
equal to Zero. \V'lilt hiappeils is h it ha t re1ly4 VCNWI I, f~i:,t pr pini;ti liog , lnit bI a t tý i\;1

0(a2) (list urlbancies. of the kind( atlready re fern s 0l to- ran I-;I(I t (.1 dii iiiIll,- Ici t io*rt ii (I

process. Oil( (-ail detrivet it general resuilt . coIllIWi'-'IIIg ;Iii u 111 ia )1 I 'I*~tx IcIt , I it a

theoreml. that shlows whyr thec ijet effect ou all t h i'(lh tr phit'umticia' llteit I'e l-iveui h1

the 1)hotoil atialogy illnai stt~l hi S 15C'5cac- iiicIltttiii, thijAý oic IJIC',llt \01Vh ls hiw w
there' are someW Cxcepl~toiliil probut'lems foIr whilch till(-at 1lt hgy fa-ils.

Figure .1 V acket of strface gravitv waves, propuagatitng towýard t lle right In deepl waOter antI Itl ;ifttOMiIM~

nying 0(ia 2 ) ve~l.C I ty field p~loitl te ilarit it atvely except thlat thle Stokes drift (rivar t li, wufc) iot
depicted. The total mlotnefrit in of thre wave packet is we~ll defitiet rd, ;t rilt]cnlrst, ilie mtttttimeis tit t I))ie

Stokes dIrift. which, for these part ic i~trl Wav'.etjiLs q. phi, i lit. mtouttivnitl of ilth rettirit flov. uitoer
neath, which equals -q (because' 1'c! r-flow acceleralt ill react iota feel t lit' fret, sirfiace a tibt ,e
rigid -for further dliscussioni ee McIntyrre 1 98 1).

6. ROSSBY WAVES, VORTICES AND SHEAR INSTABILITIES

Of all the examtnjhle of irreversib~le V~ave-Iii(liit''( ilt utieritin 1-tIatlspotrt . soit it of lthom,
associated with ilossiw waves are argtilahbl thle simplest ais well ais anitintg the mo1(st
important. P o55hy waives and rela ited plileuoflica ate- tiblyiji toils Ill t lie attiit 15)1 ire it 0(
o),(Ceanls, anld are fundatriental to ahlmo(st every aspect of large- scale atmostphe) ire ''ai

dynamiics. For e'xamplle. it is Rosshy waves mid related plixilotneita that dirivte llt st of I t('
Mean circulation illulstrate'd Iin the lower par't (If Figure 2. Te'Ra Itsslw -wave t'lasticjty
to which the wave propala t loll o)wes its t'XIstelive Is 11111)1 rt alit allst I for itist a rice. III

-strongly inhibititng the tiirhtleiit t r;Iispt rt of chilexijeals jutt I thlt Antarctlttit'oom h101 1'iIc.

or of drier air intott tlt nmtoist eye wall If at t ropical cyclt lut. A ,,till widter jit er; 'retat i~ll
of 'relatedl plieilriotiaei '. . meaning 1)1(0lifnlella (It pt't ii ig t)IlPtlh urosb t'listicit iv'.wt1111

*lie key step is to colllitet' a e(rt am tt'arslat iotal AN Inficit r~v operlat lori gIving aI tutu,(rv;t Iott law" for
theI( stun of thbe qtiasirniomui'tt alt oft t(re wave abdai lit' tiometitti n of t lie Immersed~'t ob~t acitt Hcrt' art-
,exceptional, vases llecatist' this I ratislt loii al sirttr op-ratiott is singular. [Ie siingiilarit , i, st rorig
enoulgh, iii1 somie cases, to inlvalitjlate th Ia txt tl'nioti of Nuot hersli'ý holIr'tt. I et ad- will be girt-ti Itt a
fort. ic-orrririg papter wit i S. 1). Niolits ( I 1993). 1 tli' tvt'ret onle of tIhv'sv t'Xtt'pt otis hrtchancte sortit' t 11r1'

ago, via some very careful 9(a,') calrillatiotis I Nchit vrt 1972. I 1973 lhe t'Xi.tt'rito'suc td~I- nxr.'j III" ott

is a tellirig corifir-':atiort t hrat the pbotonl atralov I!, otll'. ;il aialog\. highklyitsiefrt wilvti vallkill but ot.
Iii getteral. to) be taken lite'rally.
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include many important types of shear lustatilitiCS. all th. way fr,,oi ordinary .,mall.
scale shear instabilities to the large-scale. buioyancy-p)owee(Td "baro(-cinic instalbilitis"
that can lead to the formation of common types of atmospheric and oceanic eddies and
vortices, including extratropical weather cyclones (Hoskins et al. 1985. & refs.).

Rossby waves and related phenomena occur in dynamical systeiis of the gencric form
DQ/Dt = 0, U = I(Q) , (6.A~iJ,

where DiDt = Ot + u - V = O0 + tO, + v'v. the two- dimensional material derivative.
and where I(.) is a time-independent functional of the ,haterially conserved scalar field
Q. The simplest case is the familiar case of two-dimensional iinviscid. incomprlessible
vortex dynamics, for which

I(Q) = (-0, af)V- 2 Q, (6.2)

where Qr = Q = V• - 71Y, the ordinary vorticity and. to make the inverse Laplaciaxi
unambiguous, suitable boundary conditions are unlderstood such as evanescence of lul
at infinity. Note that (6.2) implies V. u = it, + Y Z 0. The next simpl-st case is ,he
same thing on a rotating earth whose vertical component of absolute vorticit:, is Q,.
say, a prescribed function of horizontal position but not of time. Then, retaining the
notation u = (i. v) for the relative velocity anid Q, = t,, - i,, fok the relative vorticity.
we may take Q Qe + Qr in (6.1) anrd retain (6.2) unchanged, remembering that Q,. is
prescribed. The notation in (6.1) has been chosen tý, emphasize the fact that the single
scalar field Q contains all the dynamical inlfo:mation. At every instant, the Q field can
be 'inverted' to recover the velocity field u. One may call I(.) the "inversion ftlnctional'.

In more realistic models of the rotating, stratification-constrained. vortical flows that
occur in the real atmosphere and oceans, the saie generic mathematical structure (6.1)
applies, in many a'ases to remarkable accuracy. This is why simple two-dimensional
vortex dynamics has always been such an important idealization in the context of
atmosphere-ocean dynamics. The coordinates x and y now measure horizontally-
projected distances along the (approximately horizontal) stratification surfaces. DiDt
and d = (u, v, 0) are still two-dimensional on each such surface, and mi, + r'y is still
zero' to some useful approximation (more precisely. has typical magnitudes K< typi-

cal magnitudes of v, - u_). What is new is that the inversion functional I(.) is now
three-dimensional. Away from the equator, it still has the qualitative character of (6.2)
but with V 2 more like a three-dimensional inverse Laplacian. in coordinates verti-
cally stretched by Prandtl's ratio, the ratio of the buoyancy to Coriolis frecquenciCs.
Distortions of the stratification surfaces are also determined as part of the inversion
operation. One may generally characterize such stratified, rotating flows as approxi-
mately 'layerwise two-dimensional'. In the most accurate models, which include models
whose validity extends into the tropics, Q is the Rossby -Ertel potential vorticity. and
inversion is no longer a linear operation (e.g. Hoskins et al. 1985, & refs: Thorpe 1985:
Davis 1992; Raymond 1992).

One has here, incidentally, a framework for the general characterization of coher-
ent structures such as vortices and vortex pairs. in atmosphere ocean dyn(lamnics
amounting to variations on a theme from Professoi Rosh.bko's Opening Lecture in this
Proceedings. For instance a 'vortex', in any dynamical system of the form (6.1). is
the coherent structure represented by a strong, isolated anomaly in the Q field together
with the induced velocity and any other relevant fields in and around it. where induced"
means given by whatever inversion operator I(.) characterizes that dynamfical system.
Atmospheric cyclones and anticyclones, and oceanic Gulf Stream rings and 'Meddles"
(e.g. Armi et al. 1988), are all cases in point. Figure 5 illustrates one such structure in a
model atmosphere, somewhat idealized but instantly recognizable to any meteorologist
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familiar with large-scale atniosplihric behaviour. It is a cyclo iiB' carthI co-rot iltt big
t~ratrolpical vortex indtuced by it strong. c'ompa~ict antonirial inl thelit Rssby Erte]l)O Iiilt ial
vorticity field near the tropopause. Coherent strirelt urs such] it,, thiest' are o fitctliI()
tanit for weather dlevelopmients, in which falst atlvectioii of potenit nal-vorticity ajiile
near the tropopause is an impiortanit asp~ect of the (ylilai~lics. alplroxilltiatel% ýsattsfyjiiii
eq. (6.1a.) over tiniescales of several (lays.
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Figure 5. Section across the axisymnmetric structure induc ed hy an isolated, axisyninietric, cyclonic
potential-vorticity anomaly (stippled region) near a model troj)opaluse (heavy cuirve) across whlich the
Rossby--Ertel potential vorticity has, a strong discontinuity, by a factor of 6. Thie famirly of thinl cures
some of which are closed are isopleths of tangential velocity, at :3 rns-'intervals the greatest velocities
> 21 mns- being at the tropopause -- and the other family of thin curves, mnore nearly horizontal, are
the stratification surfaces. These are isopleths of potential temperature 0 defined to Coincide with
actual temperature at pressure 1000mnb or 1000 hPa, plotted at 5K intervals. Anontualy' mneanis a
potent ial-vort iciity contrast on a 0 surface (Hoskins et a]. 1995, eq. 29)- The induced surface-pressure
minimum is 41 hPa below ambient. The structure is typical for middle larit odes; the Coriolis paramneter
is 10' s- (as at latitude 43.3'N). The dlorriain shown has a radius of 2500kin. Fromn the work of Thorpe
(1985)y

Now to 'Rossby-wave elasticity'. The simplest example occurs inl the strictly two-
dimensional dynamical system specified by (6.2) with Qr Q - Q, i'r, - ay, anld Q,.
a linear function of y so that when u = 0 we have

OQ/Oy = OQe/Oy =/3 =constant . (6.3)

This is Rossby's famous 7/3-plane' or 'nearly flat earth' model, with ('?. Y) ta~kenl to be
Cartesian. Thien (6.1) is satisfied in this case without linearization, ats it happens

by expressions of the form u = (-O , -),',(x~y,t) ( Qr V2 C.,) W ith1 " y( x. !, t ) -,
Cos ly Cos I{k(x - ct)}1, provided that the phaseI speed C anld the WilVellilrnber components
k, I satisfy the dispersion relation

The one-signedness p~reviously referred to shows up here: (6.4) is a foriniula for c. an1d
not c 2as in classical smiall-vibration p~rolblenms in lion-rotating reference franiies,. X\' canl
see tije reasons for the one-signedness and appreciate its robuistness its follows.

By (6.1), the contours of constant Q are also) material contours. If a distuirbance
makes these contours u ndlulate ats suggested inl Figuire 6, then Q, iln (6.2) wvill be al-
ternately positive arid negative as indicated by the phlis and minuiis signs in Figure 6.
Then sinlce( 4'ý V 'Q, the contours of ]j', canl be p)ictulredl as the cquipotcniials of the
electrostatic field dine to a pattern of alternating positive aito negattive, charges (withI the
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sign changed), or as the topographical co(itolirs giving th (l displaceitiint of a stretched
elastic membrane that is pulled up ( -) and pushed down (-f ) altertiately III thle samie
pattern. Hence Q, will have hills and valleys ceintr(ld respectively on the 1in1us and the
plus signs, imiplying that the strongest north-south velocities (at right angles to the
electric field in the electrostatic analogy) will occur at intermediate positions, a qu1arter
wavelength out of phase with the displacement, and in thle sense shown by the he•avy.
dashed arrows in Figure 6. If one now makes a moving picture in one's inind's eve of
what this induced velocity field will do to the material contours. one can sce at onc(,
that the behaviour must be oscillatory, and also such that the undulations propagate
from right to left only.

The same physical picture exhibiting one-way propagation applies wheCn Q,. = 0 but
Q has a background gradient OQoiOy due to a mnean shear flow u ti (y) , 0})

OoI y = - 2 uo0 I y2 = -u 0,.,, (6.5

so that Q = Qo(y) + Q'(x. y. t) and iý, = - ifu,)(y)d) + -"(x. y. ) and. for small
disturbances,

(at + uoar)Q' - u0Yuw'? = 0 , /,' = -'2 Q' (6.6)

essentially the Rayleigh equation. It is no surprise, therefore. to find that the simplest
classical shear instabilities, such as the instability of the u() = tanh y shear layer, or
its Rayleigh (piecewise linear) counterpart, can be understood (consistently with the
Rayleigh, Fjortoft and Arnol'd stability theorems) in terms of a coupled pair of Rossbv
waves, in a certain frame of reference, each of which propagates against the local mean
flow and phase-locks with the other in such a way as to bring it to rest. Furthermore.
each Rossby wave makes the other grow exponentially, via a reduced phase shift between
disturbance velocities v' and the sideways displacements r/' of the Q contours (Lighthill
1963, Bretherton 1966, Hoskins et al. 1985 §6b). The Miles (1957) wind-wave instability
is in some ways fundamentally similar, except that one of the Rossby waves is replaced
by the surface gravity wave, and there is a mismatch between the strengths of the gravity
and Rossby elasticities leading among other things to relatively slow growth.

7. ROSSBY-WAVE BREAKING: A DEFINITIVE EXAMPLE

In Figure 6 the Q (material) contours are depicted as undulating reversibly. the
situation described by linearized, dissipationless wave theory. Indeed, for linearized
theory to be self-consistently and generally applicable, along with associated ,'onrept s
such as the principle of superposition, the undulations must also be gentle. Strictly
speaking, the sideways slopes (ay/Ox)Q must be infinitesimal. The opposite extreme.
that of infinite sideways slopes followed by sideways overturning, and rapid. irreversible
deformation, lengthening and folding of the Q contours, is a comnnonplace occurrence
and can be recognized as a Rossby-wave version of 'wave breaking'. An idealized example
is shown in Figure 7; see also Figure 9 below. This phenomenon. in a variety of forms.
is ubiquitous in the real atmosphere and oceans and plays an important role in the
irreversible transport of momentum and angular inomeinturn by Rossby waves.

The case of Figure 7, known as the Stewartson Warn-Warn (SVWW) Rossbv-wave
critical-layer solution, is now described in more detail. It is important out of all propor-
tion to the restrictive idealizations used because it is an unequivocal example, described
by an analytical solution, of irreversible wave-induced angular momentum transport due
solely to wave breaking, with no other wave (dissipation mechanisms involved.

We return to the dynamical system described by (6.1)- (6.3), but now introduce an
undisturbed flow uo( y) having constant shear uy. say. Again the Q contours are malde to
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£ Q =constant

Figure 6. Sketch of the Q contours and the Q-anomaly (Q') pattern, and the induced velocity field
giving rise to the sideways 'Rossbv elasticity' in a simple, non-breaking Rossby wave.

undulatc, this time by introducing a gently undulating boundary near some value Y5' of y,
exciting Rossby waves of constant phase speed c and y-lengthscale uO, 13. The boundary
displacement amplitude is of order e uoy/f3 where E. is a small dimensionless parameter.
The x-wavelength 27r/k of the undulation is assumed long enough, >> 27r uoq/ii, for
the inverse Laplacian V- 2 in (6.2) to be approximated by (O/Oy)- 2 , simplifying the
mathematics. (The lengthscale uoy!/O then corresponds to the lengthscale I` in (6.4)
when c : I-1 uOy.) Under these restrictions and with suitable choices of Yo, this problem
can be solved analytically (Stewartson 1978, Warn and Warn 1978). The Q contours
behave in an approximately undular manner except in a narrow region surrounding the
critical line, or y-location where uo(y) = c. This narrow region, the 'critical layer', is
separated from the undulating boundary by a distance Z uov/fl and has width of order

b = I/2 Uo ,// 3 
. (7.1)

The 'inner problem' for this region is mathematically the same as the nonlinear pen-
dulum problem, incompressible fluid flow replacing incompressible phase-space flow. It
is analytically soluble in terms of elliptic functions, and the solution confirms that the
region is, indeed, a region of Rossby wave breaking in the sense envisaged. Figure 7
shows the solution at four successive times. Q contours are overturning sideways, and
deforming in a manifestly irreversible way.

Let us suppose that the resulting rearrangement of the Q field has, in a coarse-
grain view, something of the character of a mixing layer as shown in idealized form in
Figure 8a. Then it is a trivial matter to see that there must be an associated irreversible
transport of momentum. Let 6Q(y) be the change in Q represented by the difference
between the solid and dashed lines in Figure 8a, and bi(y) the corresponding change in
u. Application of the inversion operator (6.2) gives (since 6Q = Q = -6bft here) the
parabolic profile

bfY½ 0(9(yý2 4 2 2b (y7.2bm
S0bm) (y < 1b, or y> ibm) (7.2)

where bn is the breadth of the mixing layer. Negative momentum

6M 0C 6bi(y)dy =-Obm 3  (7.3)

has been transported irreversibly into the region where Q has been rearranged. This
phenomenon is robust: any change ýQ(y) qualitatively like that in Figure Sa will be
associated with a momentum change of the order of magnitude, and sign, indicated by
(7.3). For instance the SWW solution has a limiting value of 6M as t -4 00, which
can be expressed in the form (7.3) with the value of bm shown by the bar at the centre
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of Figure 7d. This value of f).. may be thought of as an 'eflecttive ,nixiang width, fol
the SWW solution. In this case the inonent uri (7.3) has come fromu the w;:vt, s lmrce
comprising the undulating boundary at large 1'. Whein 3. or more gtenerall" rw h, itial
gradient O(Q, + Qo)/ 8 y, is positive, this monwntum is necessarily negative amother
manifestation of the one-signedness of Rossby dynamics.

The SWW solution provides us, incidentally, with a definitive couiterexainple to
arguments saying that Q-mixing scenarios like that of Figure 8a are imIpossible because
they violate momentum conservation. These arguniints overlook thle possibility of wave
induced momentum transport from outside the region. Further historical remarks and
references, going back to various issues surroundfing. for instance. G.I. Taylor's 'vortiitv
transfer theory', and its recent developments including links with the photon anialogy.
can be found in my 1992 review and in the paper with Nortoii (1990).

Another interesting point about Figure 7 is that the predicted Q configuration be-
comes shear-unstable after the contours first overturn. So if any noise is present initially.
the actual evolution is quite different in detail. In typical cases the result is an appar-
ently chaotic form of Rossby wave breaking, arid an increase in the effective mixing
width bm by a modest factor such that &M (cx brn3 ) increases in magnitude by a fac-
tor 2 or 3. Figures 8b,c, from the definitive study by Haynes (1989), show the Q and
6ii profiles, defined as Eulerian x-averages, in one such case. The 6i- profile has the
approximately parabolic form suggested by the idealization (7.2).

The foregoing examples are conceptually important in another way, already hi.1ted
at. The inviscid, two-dimensional fluid-dynamical system under consideration is known
to have mathematically regular behaviour, over arbitrarily long time intervals. The
examples are therefore cases of wave dissipation and irreversible momentumn transport
that do not depend on overtly dissipative processes like viscosity. The irreversibility
involved is a purely fluid-dynamical irreversibility, precisely that associated with the
persistent lengthening of the Q contours as time goes on, and familiar from other fluid-
dynamical paradigms such as 'random straining' and 'turbulence' (e.g Batchelor 1952).

8. THE DEFINING PROPERTY OF WAVE BREAKING, THE STRATO-
SPHERIC 'SURF ZONE', AND OZONE CHEMISTRY

What should one mean by wave breaking for general, non-acoustic* waves in fluids?
Even in the most familiar case, ordinary surface gravity waves, the phenomenon usually
recognized as breaking has an extensive 'zoology' of shapes and time-evolutions. The
same is true of internal gravity and Rossby waves. The question does not seem to have
any natural answer from a 'zoological' or morphological viewpoint. However. a natural
answer does suggest itself if one wants the concept of 'wave breaking' to be relevant to
the general question of wave-induced momentum transport, or, more precisely, to the
question of when wave-induced momentum transport becomes irreversible.

One can then use the rapid, irreversible material-contour deformation illustrated
above as the defining property of wave breaking. 'Rapid' means that deformation rates
are comparable, at least, to the local intrinsic wave frequency. Such a definition is en-
tirely compatible with the accepted phenomenology, and relevance, of wave breaking
in the case of surface gravity ,vaves and longshore ocean-beach currents. The case for
such a generalization is carefully argued in three papers with T. N. Palmer (19835).
It avoids 'zoological' definitions, and requirements to decide whether 'turbulence' is in-
volved, but does take account of the relevant general theorems, particularly Kelvin's

*Shock formation in acoustic waves seems best kept conceptually separate, if only because its essential

dependence on the existence of overtly dissipative processes (microscopic irreversibility).
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Figure 7. ('ontour-s of constant Q for lthe SWv X soht ii on, a special bu13t cle'ar-cuit. examplpe of lhussry -
wave breaking (cont rast the purely uiidular. noir-lreakirig iPossby wave in Figure 6). and] thle coinsequient
irreversible wave- ind uced miomenturm transport. See also Figure!). Iliey?-scal(' [iits beeni exp~and~ed Ir;isng
the re-scaled coordinrate Y = y/b wit~h b =(1l/2 ur)y /AI the range -5 < V < 5 is plot ted. Four successive
stages in the evolution are shown, at timies 1, 1.51 2, 3t jil niits of 211/2 (k b ury )- 1 . where A- is tIhe x'-
wavenurinher. The vertical bar in paniel (d ) gives the effective mnixinrg scale b,,- b; cf. (7.2), (7.3t) and]
Figure 8a. Front Killworth and McIntyre (1985), after St~ewartsoi (1978) arnd Warn and( Warn ( 1978),

(a) Y bi y(,

bm ________ 021Y) i(

Figu~re 8. 9-mrixing scenarios and assoclat.(d nironient ur change; see (7.2), (7.3): (a) thre simiiplist ic,
but qualitatively relevant, idlealizat ion t hat. assirnrres p~erfect 9-minixinrg over width brr ( b) art act ial

Etilrianmea Q~y proilefronta accurate, quasi-chaotic Rossln-wave crit ical-laver ono P.I
Hlaynes, personal comnmunicationr); and (c) the approximoately parabl ric p~ r()rr lie corresponidinig to
(b), showing the rn1oinentiJni change dire to thre Hlosshv wave breaking (firsi oIf (7.2) and (if (7.3)). As
in Figure 7, tie re-scaledl coordinate Y =y/b is rused, over tOw sarire range -5 to1 5(I ur,/ .

circulation theorem arnd the Way it mnanifests it sclf InI exact., formally comp1 le'teC IHim-
ries of wave nmean interaction. The relevanlt mate(rial (contouirs are dlefl~ined to be throse
that would otherwise tilundla te reversib~ly undI~er the genleralizedI elasticityV. or restoring
mechaniism, that gives rise to the wave propagationl.

Figure 9. of which anl anilmated versionl wils SeenCI ill tlie lectire, Show-, a less, Idealized
exarnlple of Ro(ssby wave lbreakiiig anud its effects, takeni front thre work of Norton (1993).
The parameter conditions are far closer to t hose III thme real stra tosp~here than tho se
aJsslumeId by critical-layer theory. Here t lle dvmliariiical systvitl co~mpmrises the( siraib nw
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water equations on a sphere, solved numerically by a high-resolution pseudospctral
method. The projection is polar stereographic, and the winter northern hemisphere
is shown. An axisymmetric initial state is disturbed by smoothly distorting the lower
boundary in a large-scale pattern so as to imitate the effect, on the real stratosphere, of
planetary-scale Rossby waves propagating up from the much denser troposphere below
(Charney and Drazin 1961). The result looks remarkably similar to what is seen in the
real winter stratosphere at altitudes of the order of 25 to 50 kin.

The left panel of Figure 9 shows Q, now the shallow-water potential vorticity, defined
as absolute vorticity over local layer depth. The model problem still has the generic form
(6.1) to excellent approximation, but with a shorter-range potential-vorticity inversion
operator* I(.). The central region is the model's 'stratospheric polar vortex', where the
relevant material contours, which in this experiment lie initially along latitude circles,
are almost coincident with the Q contours and undulate nearly reversibly. In this region
there is little Rossby-wave breaking. This is illustrated by comparison with the right
panel, which shows the behaviour of some material contours computed very accurately
using a high-precision 'contour advection' technique adapted from the work of Dritschel
(1988). Outside the polar vortex, in middle latitudes, is a region in which the waves
are breaking vigorously. There, the initially-latitudinal material contours are deformed
rapidly and irreversibly, and mixed into a broad, 2D-turbulent 'Rossby-wave surf zone*;
e-folding times for contour lengthening were estimated to be about 4 days (Norton, op.
cit.). This 'surf zone' is the real-stratospheric counterpart of the idealized Rossby-wave
critical layer. It is far broader, and very different in detail, but it illustrates equally
well the robustness and one-signedness of the angular momentum transport associated
with irreversible Q-rearrangement. As already suggested, such Rossby-wave breaking
is an important part of how the mean circulation illustrated in Figure 2 is driven.
Furthermore, its recognition in models of the global-scale stratospheric transport of
trace chemicals like CFCs is beginning to lead to improved realism in the predictions
of such models, both via a more realistic mean circulation, and also via a more realistic
representation of the quasi-horizontal turbulent transport (Garcia et a]. 1992).

This latter aspect may be especially important for ozone photochemistry (and rele-
vant to some current controversies about ozone depletion - see §10 of my 1992 review).
This is because ozone photochemistry by its nature could be more sensitive than, for
instance. CFC photochemistry, to the timing of a typical molecule's excursions across
the 'surf zone'. Timescales for such excursions are comparable, at certain altitudes, to
photochemical timescales. Together with the mean circulation itself, these complicated
fluid motions control the rate at which ozone is produced photochemically, mainly in
the high tropical stratosphere, and carried thence to the extratropical lower strato-
sphere where it accumulates (unless destroyed by 'ozone-hole chemistry') in far greater
concentrations than can be produced by tropical photochemistry alone.

Model simulations like that of Figure 9 are also relevant to understanding the Antarc-
tic ozone hole. The contours in the right-hand panel of Figure 9 can be regarded as iso-
pleths of an advected passive tracer, the advection being very accurately simulated, with
no artificial diffusion. The simulation shows that, at least in the model, chemical sub-
stances in the surf zone do not penetrate past the region of strong Rossby elasticity con-
centrated in the steep Q gradient near the vortex edge. This is believed to be important

*To rough approximation, this I(-) is given by (6.2) with V- 2 replaced by (V 2 - K2 ) -, corresponding
to an elastic membrane tethered by local springs, somewhat like a spring mattress, with a latitude-
dependent e-folding scale i-' (the 'Rossby radiuis') of about 1400 kin at the pole. 2000km at 450N,
and 3000 km in the tropics. McIntyre and Norton (1990, 1993) give examples of much more accurate
(but much more elaborate) potential-vorticity inversion operators I(-) for shallow-water models.
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Figure 9. W inter hemnisphere in a high-resolution, sliallow-.wah r numek(rical niodeI of' the st ratosphiere.
from Norton (1993). The mean depthI is 4 kin, arid the( numerical resolution (t rianigular I ruiicai~ion
at total wavenumber 127) corresponds to a mesh size roughly I' latitude. Left, panel: potentit al x'or-
ticity Q, contour interval 4 x 1O-ý in -' zero contour dotted. (Negative Q values would, in a
three-dimensional nmodel, signal the thtree-di mensional mnode of' lossby-wave breaking pointedI out by
O'Sullivan and Hitchman 1992.) Right panel: isopleths of' an advected tracer field, initially axi~syni-
metric and coincident with the Q contours, showing the flufid-dynamical irreversibility characteristic of
Rossby-wave breaking and two-dimensional 'tujrbulence'. This was computed with iiear-perfe~ct. accul-
racy using a high-precision 'contour advection' techique. introduced ind(epenidently by Norton (1993)
and by Waugh and Plumb (1993) using an algorithm developed in another cont~ext. by IDritsclici ( 19881).

for ozone-hole chemistry. The same phenonmenon has b)een (denmonstrated in thec labora-
tory by Sommeria. et al. (1989, 1991). The contour-ad vertion technique. co~lccieifd of as
a benchmiark numerical tracer ad~VectionI algorithmn, was introduced independlentlJy Iw
Norton (op. cit.) and by Waugh and Plumb (1993).

Recentlyl O'Sullivan and Hitchia~n (1992) have shown that anl entirely different inode
of Rossby-wave breaking is possible near the equator. where time pot~ential vorticity
itself changes sign. It conforms to the general wave-breaking dlefinition, with three-
dimensional rather than layer wise- two- (11inem nsion al material contour (lefo rmnations', aris -
ing from an asymmetric inertia~l (quasi-centrifugal) inistability. Among other tihings, this
may have new implications for the quantitative modelling of the QBO.

9. WIND-GENERATED WATER WAVES: TWO NEW MECHANISMS?

What does this old but, elusive problemi look like from the foregoing p)(rslpe(tivc(' The
first point is that Bossby-wave (lymlaiics is invoilved,. albeit on mmnuii faster timmiescali's
than before. The velocity p~rofile in the air, whether or not alplroximtlately logarithmlic.
will uisually have a strong curvature t,, near time water stirface (! .-vertical). Thevrefore
there is a vertical gradient of spanwise vorticity and1( hence, III thie pr('s('It hi nguagcý a
Rossby elasticity, in the airflow just above the water waves; recall (6.5) awid Figure 6.
That is why the miles inviscid winld wave instability, for instance, can b)e regardled as
a. coupled -Rosshy-wave. gravity-wave' instability. One (-ani think Ill. termis of a pair of
pha~se-locked, coutnterjproJpagat ing waves, a lbackwar( -pjropaigat jug fl 0551 y wave Iin the
air coup~led to a, forward-propagating gravity wave Ili thie w0ter. (Othecr e'xaimpIles of
Rossby-wa~ve, gravity-wave instabilities go back to 0. 1. Taylor's work ini thev 1930s onl
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the 'Taylor--Goldstein equation'; see also, e.g., Griffiths et al. (1982), Hayashi and Young
(1987), and Sakai (1989).) In the Miles instability, the Rossby elasticity is relatively
weak. This implies not only that the water wave largely determines the phase speed c,
but also that the growth rate is slow and that the most significant Rossby effects occur
near the critical line uo(y) = c, where intrinsic phase speeds are slow. The matheimatical
underpinning for these statements is well known and is given in detail by Miles (1957)
and Lighthill (1962).

Now the self-consistency of the linearized instability theory requires that conditions
near the critical line resemble those in Figure 7a. In the present language. the Rossby
wave is not only weak and slow, but is also in the earliest stages of wave breaking.
in the generalized sense already referred to. The later stages can be expected to look
more like those of Figure 7b-7d and beyond, with a small value of the effective mixing
scale bin, viewed in a suitably undulating coordinate system. This suggests that the
idealized scenario represented by the inviscid Miles mechanism lacks robustness, when
taken literally. The delicate phase-locking and synchronization of the normal mode's
displacement fields will be disrupted by Rossby wave breaking before much vertical
rearrangement of spanwise vorticity can take place (and long before the water waves
break). The outcome will be net vorticity rearrangement, in the airflow, over only a small
effective mixing depth bin, of the same order as the scale b given by (7.1) except that
the lengthscale u 0oy/3 is replaced by a typical value of -Uoy/uovy near the critical line.
There is a correspondingly small net wave-coherent momentum transport 6M a bm3
from air to water, having the order of magnitude implied by (7.3) with ;I again replaced
by a typical value of -u 0 yy near the critical line.

However, there is one important feature of this idealized scenario that does, on the
other hand, look robust. This is the sign of the net wave-coherent momentum transport,
which tends to be such that the water waves are amplified when travelling in the same
direction as the wind. More precisely, the sign is determined by the sign of -UOYY and
the one-signedness of the associated Rossby-wave dynamics --.- the same one-signedness
that so strongly controls the sense of the mean circulation throughout most of Figure 2.
In the wind-wave problem the sign is determined quite independently of whether or not
we have strictly x-periodic waves and delicately synchronized exponential, normal-mode
growth.

This sign-robustness must imply a kind of 'ratchet effect'. Almost any spatio-
temporal intermittency - whether it be any tendency of the water waves to arrange
themselves in groups through, for instance, subharmonic instabilities, or any gustiness
of the wind that might be modelled as an intermittency in quantities like -uOY ..
will tend to favour intermittent wave-coherent momentum transport whose effects are
cumulative. They may possibly also be such as to reinforce the intermittency. There is
no longer any reason, moreover, why the effective depths b, associated with any Rossby
wave breaking should be especially small.

More generally, the sign-robustness points to the likely effectiveness of any process in
which wave-coherent undulation of the airflow over the water waves causes Rossby wave
activity in the air to increase in total amount, or to dissipate, or both. The relevant
measure of 'activity' for this purpose is a suitably defined quasimomentumn (Killworth
and McIntyre 1985; Shepherd 1990, & refs.), since the photon analogy can be shown
to apply here, in the required sense. Any such process will result in wave-coherent
momentum transport in such a sense as to amplify the water waves. This could well be
important for the real wind-.wave problem, despite the added complexities of turbulence
and other three-dimensional effects. There appear, in part'ticular, to be two distinguish-
able mechanisms whose possible role deserves closer attention, both theoretically and
experimentally.
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One is simply local Rossby wave b~reakinlg characterized by ielatively hiirgc effect IVe
depthis b1,, .If. for Instance, a gus-t protluces anl effectiVC that tlieiil (i1('ot lilt( crS
a wave group,. leadling to rapid vertical rearranigemlent of spaiiwise vorticity ( redulilci
- u0 ), then the water waves will lbe corresponling-lv amiplified for a short tuiei. 'Flie
transient nature of such phenomena would add to the well-known difficuilties of observilfna
the associated pressure ph,-se shift experiment ally. The ot her imechanlisii, wl tich III
reality might tend to occur at the same timle, Is the formation of Rossbv, lee waves III
the airflow. This will give rise to 'wave resistance, InI the usual way. not d(I '~edIIg oil
wave breaking of any 'kind. Indeed the lee-wave mlechianismi should be at its mlost. efrejenit
when both Rossby wave breaking- and water wave breaking are( unimportant. Thent ori
should get unseparated flow oV%( r the water waves (e.g. BamR ~r 1990. k- refs.) and~.
for at least some -uio', profiles, anl efficienit shledd~ing of Rossby-wave quasimniomnenitiunl
into t~he downstream airflow. It seems possible that the amnplifyinig wave group ill the
experiments of Chu et a]. reported by Professor Phillips, which they call the -short wave*(
energy front", might depend onl the Rossby lee,-wave miechianism andi the experiment~s
might offer a chance to study it under controlled conditions.

These ideas might also help resolve somie longstanding questions about the effects
of three-dimensional turbulence onl different t~imescales, fromn the relatively lonig, *dis-
sipative' tmniescales required torstr uOJi profiles. tethe relatively shot eaic
tiniescales onf which rapid- distortion theory might be app~ropriate. mierely muodifyi ng
the Rossby elasticity in the air --- as with internal gravity waves inl the Important
observational study by Finnigan an'1 Einaundi (1981), in which elddv-viscosity or other
steady-state dissipative turbulent modelling was shownm to be wrong b~y -all order of mnag-
nitude'. In some wind--wave modlels, turbulent processes are modelled semi-emlpirically
for instance by adding something like anl eddy vizscosity to the Miles theory. Such de-
vice-, (drastically modifying the type of behaviour suggestedl by Figure 7) would seem
unavoidable in models that insist on .r-periodicity, or on horizontal statistical stationi-
arity and linear superposability of wave- coherenit processes. But a physically correct
turbulence model might necd to bring lin a wider range Of tinw"scales. This suggests
that it could be fruitful to try to mnodel the spatio- termporal interinittenicy of the, water
wvaves and the airflow explicitly.

Acknowledgemnents: Early versions of the ideas developed here were part, of an essay that shared the
1981 Adamns Prize in the Universityv of Canibridge. Their development has been influenced by many
colleagues going back to early ideas fromn I. P'. Bretherton, D. 0. Gough , T Matsuno, P.. E. Peierls,
E. A. Spiegel. and most recently P. 1., Haynes, W . A. Norton, and other co-authors with whom 'it.
has beern a pleasure to work. The experimental dlemonstrations in F'igure 3 were stimulated by one
of M. S- Ionguet-Higgins' beautiful wave-tank demionstrations, and G. 1. Baretablat t stimulated nue to
thinl- harder abo,,j real turbulent, airflow over water. Support fromn the Natural Environment Res. arch
C7ouncil (through the UK Universities' Global Atmospheric Modelling P~roject and through the Brit ish
Antarctic Survey), the Science and Engineering Rese;-rch Council, the UK Meteorological Ottice, and
the US Office of Naval Research is grat~efuilly acknowledged.

REFERENCES

Andrews, D)- G., [Holton, J . R. , Leovy, c. B3., 197: M1iddle Atmosphere Dhiainics. Aademiuc P ress,
'189 pp.

Andrews, D. G., McIntyre, MI. . 1976: P~lanetary waves in) horizontal atr( vertical shjear: t he getier-
alized Eliassen Palm relation and] thne mean zonial acceleratijon. Jt Innos. Sci.. 33, 2031 2014M. [Sýev
pp. 2043 5]

Andrew.,, 1D. G_. McIntyre, NI- E., 197 8 a: Ani exact theory of nionlinear waves oni a L~agranngian-nicall
flow. .1. Fluid Mech., 89, 609-0(46. [Note the cav-atOs about. L~agranngiai uneanis in § It (re~garding
cases like that of' Figure 7 above), and(, in McIntyre I 980.1

And rews, I). G!McIntyre. MI. E-,* 1978b,: OnI wave-act ioni anid its relatives .1. Fluid Med-c., 89. 6417 661
( orrigendrn~l~r 95, 7.96).



302

Armii, L.. Hfebert, D_. Oakey. N_, Price, J. kicilaNdon. 1'. 1. lo~shy. 'I , iii ick, B. 1%9xs: 'I lie
history and decay of a Medite' raneani salt lens. Nat nre. 333. 649 65 1

Banner, MI. L., 1990: The iniflu ence of wave breakin g on it surrface pressure listri-6tim iti ii winld wave
int eractions. J. Fl, id Meet)., 211, 463 -195,

Barnett., J. J.. Corniev, MI., 19F5: Middle atmospliere reference nirodel derived from satellite dat a. lin
Handbook for MIAP, voL 16. ed. K. Labitzke. J. .1 Barnett, B. E-Idwards, pp.47 1 13. Available from
SCOSTEFP seoretariat, Uniive'rsity of Illinois. 1406 W. Greeni St. U -rbana. 11l- 61141 1O ' .S.A.

Batchelor, G. K.. 1952: The effect of lioniogeticous t urbulenice onl material lines arid su rface4s. Proc.
Roy. Soc. A 213, 349-366.

Booker, J. H4., Brethertori, F . P., 1967: T he critical layer for inrterna, gravity waves ini a shear flow. J.
Fluid Mechl., 27, 513 539,

Bretherton, F. P., 1966: Barocliziic inistahility anid the( short wavelength (,it.-ofl i, lernis of pot ential
vorticitv. Q. J. Roy. Met corol. Soc., 92, 335 3,15.

Bretherton. F. P., 1971: The general linearised theory of wave propagation, Artier. Math -Soc. 1eci ures
in Applied Mathematics. 13, 61 102. [See §6]1

Bretherton, F. P., Garrett, C. J. Ri., 1968: Wavetrairis iii inhoinogericous inoving rinedia. Proc. Roy'.
Soc. Lond., A 302, 529-554.

Brillouin, L., 192t5: Onl radiation stresses. Annales, deIC Pysique. 4, 52A 5W6 (In French.)
Charricy, J. G., Drazin, P. G., 1961: Propagation o1 planetary-scale dist urbrances fromt the lower into

the uipper atmosphere. J. Geophys. Iles.. 66. 83- 109.
Chu, J. S., Long, S. R., Phillips, 0. W,. 1992: Measurements on thle interaction of wave groups 'A ith

short~er wind-generat,-d waves. J. Fluid Mcecli., 245. 191 210
D)avis. C. A., 1992: Piecewise potential vorticity inversion. J, Atmios. Sci.. 49. 1397 1-111.
Dickinson. R. E., 1968: Planetary Rossby waves propagating vertically through weak westerly wind

waveguides. J. Atmos. Sei.. 25. 984 -1002. [See p. 1001 for tile suggestion about thle QBO.]
Dickinson, R.. E-1 1969: Theory of planetary wave-zorial flow interaction. .1. Atrnos. S'ri.. 26, 7:3--81.
Dritschel, D. G., 1988: Contour surgery: a topological reconnection schemne for extended integrations

using contour dynamics. J. Coinput. Phys.. 77. 240- 26G.
Dunikerton, T. J., 1983: Laterallty-propagati ng, Rossby waves ini the easterly acceleration phase of the

quasi-biennial oscillation. Atmos.- Ocean. 21, 5,5 68.
Finnilgan. J. J., Einaudi, F., 1981: The interaction between ant internal gravity waves and the planetary

boundary layer. Part It: effect of the wave on the turbulence structure. Q. J. Roy. Mfeteorol. Soc..
107, q07-832-

Fritts, D. C., 1984: Gravity wave saturation in the middle atmosphere: a review of theory and obser-
vations. Revs. Geophys. Space Phys. 22. 275 308.

Fritts, D. C.. 1993: Gravity wave sources. source variability and lower and miiddle atmospheric efrects.
fit: Coupling Processes in thle Lower and Middle Atmosphere, ed. E. V. Thrane, T. A. Blix, D. C.
Fritts; Dordrecht, Kluwer. 191-208.

Garcia, R. R., Stordal, F., Solomon, S., Kiehil, 31. T.. 1992: A new numerical model of the middle
atrnoslphcre. 1. Dynamics anid transport of tropospheric trace source gases. .1. Geophys. Iles., 97,
12967--1299t.

Garrett, C., Smith. J., 1976: Onl thle interaction between long arid short. surface waves. .1. Phys.
Oceanography, 6, 925-930.

Gill, A. E.. 1982: Atinosphere-Ocean 1)'ynarnics. Academnic Pi~ess. 6 62 pp.
Gray, W. M., Sheafl'er. 3. D., Knaff, J. A., 1992: rInfluenceof the stratospheric QHO on IKNS() variability.

J. Meteorol. Soc. Jlapan, 70, 975 99-5.
Green, I. S, A.. 1970: Transfer properties of the large-scale eddies and thre gen, ral circulation of the(

atmosphere. Q. J. Roy. Meteorol. Soc., 96. 157- 185.
Griffiths. R.. Wv., Killwor,.h, P. D_. Stern. M. E., 1982: Ageostrophic inst ability of oceanl currents, .J.

Fluid Mech.. 117. 343- 377.
Hlamiltron, K., Garcia, R. RI., 1984: ILong-period variations ini tii(, solar sernidirirnai ainiospheric tide.

J. Geophys. Res., 89, 11705-11710).
Hfayashi, 'r .-Y., Young, WV. R,., 1987: SU. ble arid un~stable. ,,hear miodes of rot at ing parallel flows in

shallow water. ). Fluid Mech., 184, 477 504.
Hlaynes, P. I., 1989: '[le effect of harotropic instability oil the nonlinear evoluttion of a Hosslw wave

critical layer. J. Fluid Mechl., 207, 231 266.
Hlaynies. P. iI., Marks, C. ., Mcintyre, M,. E., Shepherd. T, (;., Shin e, Kx. P_. 1991: ()ii tike "downward



303

control" of extratropical diabatic circulations by eddy- induced mean zoiial forcus J. Ait mo. Sci., 48.
651-678.

Haynes, P. H., et aL., 1993: Notes on thie U K National Sutninier School in Geophysical and EnvIroirnrIental
Fluid Dynamics. In preparation.

Hoskins, B. J., McIntyre, M. E., Robertson, A. W_. 1985: On the use and significance of isentropic
potential-vorticity maps. Q. J. Roy. Meteorol. Soc., 111. 877 946. Also 113, 402 40l.

Killworth, P. D., McIntyre, M. E., 1985: lDo Rossby-wave critical layers absorb, reflect or over-reflect.
J, Fluid Mech., 161, 449-492.

Lighthill, M. J., 1962: Physical interpretation of the mathematical theory of wave generation by wind.
J. Fluid Mech., 14, 385--398,

Lighthill. M. J., 1963: Boundary layer theory. In: Laminar Boundary Layers, ed. L. Rosenhead; Oxford
University Press, 46-113. [See p.93.]

Lighthill, M. J., 1978a: Waves in Fluids. Cambridge University Press, 504 pp.
Lighthill, M. J., 1978b: Acoustic streaming. J. Sound Vib.. 61, 391-418.
Lindzen, R. S., Holton, J. R., 1968: A theory of the quasi-biennial oscillation. J. Atmnos. Sci., 25.

1095-1107
Lindzen, R. S., Tsay, C. Y., 1975: Wave structure of the tropical stratosphere over the Marshall Islands

area during 1 April - 1 July 1958. J. Atmnos. Sci.. 32, 2008.2021.
Longuet-Higgins, M. S., 1969: Action of a variable stress at the surface of water waves. Phys, Fluids.

12, 737--740.
Longuet-Higgins, M. S., Stewart, R. W., 1962: Radiation stress and mass transport in gravity waves.

with application to 'surf beats'. J. Fluid Mech., 13, 481-504.
Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. Geneva,

World Meteor. Org., 161 pp. [See especially pp.85,150.]
Loudon, R., Paige, E. G. S., 1991: Alan Frank Gibson. Biogr. Mern. F. Roy. Soc. London. 37, 221-244.
McIntyre. M. E., 1972: On Long's hypothesis of no upstream influence in uniformly stratified or rotating

flow J. Fluid Mech., 52, 209-243.
McIntyre, M. E., 1973: Mean motions and impulse of a guided internal gravity wave packet. J. Fluid

Mech., 60, 801-811.
McIntyre, M. E., 1980: Towards a Lagrangian-mean description of stratospheric circulations and chem-

ical transports. Phil. Trans. Roy. Soc. Lcnd., A 296, 129-148.
McIntyre, M. E._ 1981: On the 'wave momentum' myth. J. Fluid Mech., 106, 331-347.*
McIntyre, M. E., 1992: Atmospheric dynamics: some fundamentals, with observational implications. In:

Proc. Internat. School Phys. "Enrico Fermi", CXV Course, ed. J. C. Gille, G. Visconti; Amsterdam,
Oxford, New York, Toronto, North-Holland, pp. 313-386. [A list of bibliographical updates and minor
corrections is available from the author, on paper or by email (mem24phx.cam.ac.uk). For caveats
about Lagrangian means, see also the 1980 paper cited above.]

McIntyre, M. E., Mobbs, S. D., 1993: On the 'quasimomentum rule' for wave-induced mean forces on
obstacles immersed in a fluid medium. To be submitted to Proc. Roy. Soc. Lond. [See McIntyre 1973
for an exception to the rule.]

McIntyre, M. E., Norton, W. A., 1990: Dissipative wave-mean interactions and the transport of vorticity
or potential vorticity. J. Fluid Mech., 212, 403--435 (G. K. Batchelor Festschrift issue.); Corrigendum
220, 693.

McIntyre, M. E., Norton, W. A., 1993: Potential-vorticity inversion on a hemisphere. J. Atmos. Sci.,
to appear.

McIntyre, M. E., Palmer, T. N., 1983: Breaking planetary waves in the stratosphere. Nature, 305,
593-600.

McIntyre, M. E., Palmer, T. N., 1984: The "surf zone" in the stratosphere. J. Atm. Terr. Phys.. 46.
825-849.

McIntyre, M. E., Palmer, T. N., 1985: A note on the general concept of wave breaking for Rossby and
gravity waves. Pure Appl. Geophys., 123, 964-975.

Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185-204.
Munk, W. H., Miller, G. R., Snodgrass, F. E., Barber, N, F., 1963: Directional recording of swell from

*There is a slip on p. 339, sixth line from bottom: 'length of the wavet rain' should read 'wavelength'.
Also, I now think that the statement on p. 338 about, a horizontal distance of order II >> cr (with
c = (gl) /0, tenth line from bottom) is wrong. The main points are unaffected.



304

distant storms. Phil. Trans. Roy. Soc. Loud., A 255, 505 584.,
Norton, W. A., 1993: Breaking Rlossby waves in a inodel stratosphere diagnosed by a vortnx-followifg

coordinate system and a contour advection technique. J. Atinos. Scl., submitted.
Okuda, K., 1982: Internal flow structure of short wind waves. Part 2. The streamline pattern. J_

Oceanog. Soc. Japan, 38, 313-322.
O'Sullivan, D. J., Hitchnian, M. H., 1992: Inertial instability and Rossby wave breaking in a numerical

model. J. Atmos. Sci., 49, 991-1002.
Peierls, R., 1991: More Surprises in Theoretical Physics. Princeton, 106 pp.
Phillips, 0. M., 1977: The Dynamics of the Upper Ocean, 2nd edition Cambridge _'Lniversit) Press,

336 pp.
Plumb, R. A., McEwan, A. D., 1978: The instability of a forced standing wave in a viscous stratified

fluid: a laboratory analogue of the quasi-biennial oscillation. J. Atrmos. Sci., 35, 1827-1839.
Rayleigh, Lord, 1896: The theory of sound, volume 2. New York, Dover (reprinted 1945), 504 pp. [See

§352.1
Raymond, D. J., 1992: Nonlinear balance and potential-vorticity thinking at large Rossby number Q

J. Roy. Meteorol. Soc., 118, 987-1015.
Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mechi, 69, 4117 4-13.
Sakai, S., 1989: Rossby-Kelvin instability: a new type of ageostrophic instability caused by a resonance

between Rossby waves and gravity waves. J. Fluid Mech., 202, 149 176. [See also Griffiths et a].
1982, Hayashi and Young 1987.]

Saravanan, R., 1993: Idealized modelling of tropospheric processes in the mechanism of the quasi-
biennial oscillation. Manuscript in preparation. (The author may be contacted at the National
Center for Atmospheric Research, Boulder, CO., U. S. A.)

Shepherd, T. G., 1990: Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid
dynamics. Adv. Geophys., 32, 287-338.

Snodgrass, F. E., Groves, G. W., Hasselmann, K. F., Miller, G. R., Munk, W. H_. Powers, W. IH., 1966:
Propagation of ocean swell across the Pacific. Phil Trans. Roy. Soc. Lond.. A 259, 431--497. [All
the way to Alaska, via several recording stations including New Zealand.]

Solomon, S., Kiehl, J. T., Garcia, R, R., Grose, W., 1986: Tracer transport by the diabatic circulation
deduced from satellite observations. J. Atmos. Sci., 43, 1603-1617.

Sommeria, J., Meyers, S. D., Swinney, H. L., 1989: Laboratory model of a planetary eastward jet.
Nature, 337, 58-61.

Sommeria, J., Meyers, S. D., Swinney, H. L., 1991: Experiments on vortices and Rossby waves in
eastward and westward jets. In: Nonlinear Topics in Ocean Physics, ed. A. R. Osborne; Amsterdam,
North-Holland, 227-269.

Starr, V. P., 1968: Physics of negative viscosity phenomena. McGraw-Hill, 256 pp.
Stewartson, K., 1978. The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid

Dyn., 9, 185-200.
Takahashi, M., Boville, B. A., 1992: A three-dimensional simulation of the equatorial quasi-biennial

oscillation. J. Atmos. Sci., 49, 1020-1035.
Teitc: )aum, H., Vial, F., Bauer, P., 1993: The stratospheric quasi-biennal oscillation observed in the

semidiurnal ground pressure data. J. Climate, submitted.
Thomas, G. E., Olivero, J. J., Jensen, E. J., Schrider, W., Toon, 0. B., 1989: Relation between

increasing methane and the presence of ice clouds at the mesopause. Nature, 338, 490-492.
Thorncroft, C. D., Hoskins, B. J., McIntyre, M. E., 1993: Two paradigms of baroclinic-wave life-cycle

behaviour. Q. J. Roy. Meteorol. Soc., 119, 17--55.
Thorpe, A. J., 1985: Diagnosis of balanced vortex structure using potential vorticity. J. Atmos. Sci.,

42, 397-406.
Wallace, J. M., Holton, J. R., 1968: A diagnostic numerical model of the quasi-biennial oscillation. J.

Atmos. Sci., 25, 280-292.
Van Dyke, M., 1982: An Album of Fluid Motion. Stanford, Parabolic Press.
Warn, T. and Warn, H., 1978. The evolution of a nonlinear critical level. Stud. Appl. Math., 33,

2021-2024.
Waugh, D. W., Plumb, R. A., 1993: Contour advection with surgery: a technique for investigating fine

scale structure in tracer transport. J. Atmos. Sci., submitted.
Yoden, S., Holton, J. R., 1988: A new look at equatorial quasi-biennial oscillation models. .. Atmos.

Sci , 45, 2703-2717.



Theoretical and Applied Mechanics 1992
S.R. Bodner, J. Singer, A. Solan & Z. Hashin (Editors)
Elsevier Science Publishers B.V. 305
© 1993 IUTAM. All rights reserved.

COMPUTATIONAL ASPECTS OF INTEGRATION
ALONG THE PATH OF LOADING IN ELASTIC-
PLASTIC PROBLEMS

J B Martin

FRD/UCT Centre for Research in Computational and Applied Mechanics, University of
Cape Town, 7700 Rondebosch, South Africa

Abstract

The determination of the mechanical response of a body subjected to sonic prescribed
history of loading is the classical problem in the analysis of elastic-plastic bodies. Closed
form solutions are not possible, except in a very limited number of problems, and numer-
ical methods must be adopted. Spatial discretisation is most commonly carried out by
the finite element method, and the process is well understood. Time discretisation, and
the associated algorithms to advance from one time step to the next, however, have been
the subject of considerable discussion in recent years.

Work contributing towards this problem has been carried out in the Centre for Research
in Computational and Applied Mechanics at the University of Cape Town, resulting in
a coherent overall framework. This paper is intended to summarise and consolidate the
major features of this framework.

The process begins with the time discretisation of the continuous problem. The backward

difference algorithm is adopted because of its relevance in plasticity: this step is equivalent
to replacing the elastic-plastic material by a nonlinear elastic material for the time step.
The minimisation of the potential energy of this nonlinear elastic problem leads to a
nonlinear programming problem. If the elastic-plastic material is stable, the nonlinear
programming problem will be convex.

The minimisation of the programming problem can be carried out by a two step iterative
process which can be identified with the conventional Newton-Raphson algorithm. In the
first (predictor) step, the nonlinear functional is approximated by a quadratic functional
whose minirnisation is a linear problem. The choice of quadratic functional affects the

convergence of the problem; several choices are possible. The second (corrector) step
involves the calculation of the properties of the nonlinear functional for the state predicted
by means of the approximation; this requires a local calculation and can be identified with

the return algorithm.

The spatial discretisation is now introduced into the predictor step - this is essentially the
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discretisation of a linear problem. The final finite element formulation is thus achivved.
Several other questions are amenable to analysis in this approach, and generalisatioll to
trapezoidal and midpoint rules is possible. These issues will be discussed briefly.

1 Introduction

Our purpose in this paper is to sumnarise and review work carried out at tho, Centre
for Research in Computational and Applied Mechanics at the University of Cape Town
in recent years [1 - 21] on the topic of the time integration of the classical problem
in plasticity. What is sought is insight into the mechanics of the integration process, as
opposed to a purely mathematical approach to the integration of the differential equations.

The work referred to in [1-21] is framed largely in terms of an internal variable theory of
plasticity: this theory has provided several insights which are not immediately clear in
the conventional formulation. In this paper, however, we will present the concepts in a
conventional formulation.

We shall consider an elastic-plastic body subject to some quasi-static loading history.
We shall assume that the displacements are small, and that the material is stable. The
basic incremental equations will be formulated, and time discretisation will be achieved
by using the backward difference scheme. On this basis we will show that the incremental
elastic-plastic problem reduces to a nonlinear elastic or holonomic problem, with which a
convex nonlinear programming problem can be associated.

We will then discuss a two step iterative algorithm for the minimisation of the program-
ming problem; this can be identified with the conventional Newton-Raphson method.
Issues of convergence can ,Aso be clearly understood. Finally, the backward difference
approximation can be relax -d, giving an equivalent trapezoidal and midpoint rule.

2 , Formulation of the incremental problem

We consider a body of volume V and surface S. The coordinates of a point in the body
are denoted by xi, i = 1,2,3, and time is denoted by t. The strain - displacement
relations are

l (tOui Oui (
2, = a \xj ÷ x,, )(1

where u,(xi, t) is the displacement field and qj(x,, t) is the strain tensor.

The equilibrium equations are

O(---- + Fi = 0 on V, (2)
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where Fi(xi, t) are body forces and aj(xi, t) is the stress tensor. In addition

aij v.; = pi on S, (3)

where pi(xi, t) are surface tractions, and vi is the outward normal to the surface.

The loading history comprises specified body forces Fi(xi, t) on V, surface tractions
pi(xi, t) on part of the surface Sp, and prescribed displacements ui(xi, t) on the remainder

of the surface S,,. For simplicity we shall assume that u,(x,, t) = ) on .

The governing equations are completed by the constituitive relations. We assume that

the strain cij can be divided into elastic and plastic components, cf, c':

S= + e. (4)

The elastic strain is given by

Kj = Dijkl (ki, (5)

where Dijk, is the compliance tensor. We define a yield function

€ = 0(aij, Hý,) (6)

where H., are internal variables which control hardening. Then

0 ' A (7)

with

A=0 if €<0 (8)

or = and O-i•<0. (9)

These are the cases of elastic behaviour and unloading from a plastic state. For the c,,e
of plastic loading,

A >0 for 4=0 and -dŽijO. (10)

We note that during plastic deformation
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* =0 .+ H0. (11)

Depending on the specific form of Ha, and ensuring that equation (11) is satisfied, we
may show that

A=G ý k, G>0. (12)

In addition, we must specify evolution equations for the internal variables II". XVe note
that Hl =0 for 0 < 0 or = 0 and (D9/0)oajo',j > 0.

The constitutive equations are invertible, and may be written in the form

dij = Bq1k f,, (13)

where Bijk1 = BjkI(E6.j, Ha). For stability, we require that 'j cij _ 0, and hence that B1 jki
is positive semi-definite. Equation (13) can be integrated with respect to time along any
given strain path in order to determine the stress response.

3 Discretisation in time

We now introduce a time discretisation. We suppose that we know the solution at time
t,-,1 and we denote the fields by Fi'-l,pn- , 0- 0- ,n-1 At a subsequent instant t,-
we know F", p!' on Sp, u• on Su, and we must find u! on V and Sp, f-n, crn.

Let

AU' -= U, _U-,, Afn = _ n-I (14)

The kinematic equations (1) are linear, and hence we can write for time tn:

o'j +Fn=O on V, 
(15)

Ox3

,inj V4 = Pi on S, (16)

= "2 + , (17)

To these equations we must add a set of discrete constitutive equations relating A(' and
aor' in order to complete the governing equations for time t,,.
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4 Discrete constitutive relations

As a result of the time discretisation, we must introduce an additional assumption in order
to be able to integrate the constitutive equations (13) over the interval t,,-, ,I,. Physically,
this can be interpreted as choosing a path in strain space along which the strain changes
from the previous value c'- to the new value , as shown, diagrammatically in Figure 1

'Il

Figure 1: Assumed path in strain space

"T here are a variety of possible choices, but one which has particularly desirable properties
i-, the minimum work path [22,12]. The minimum work path is defined as a path in strain
space for which the integral

W4/ = F[" %Edj~t (IS)

takes its least value W,2 for givenyo '- and arbitrary ('. The integral It', is evaluated
by integrating the constitutive equation (13) along the path. The ninimmum work path is
not unique, in the sense that there may exist a family of paths for which the work is the
least value WO,.

The function W,• has several important properties. If the elastic-plastic material is stal)le,
WnO°{ CI HJ..(t,-_ ) } =W/',{IA( !-' /I (t,1_ )) will be a convex function of A("

Further, it is a potential function which provides the stress associated with c" at, the end
of the path. Thus
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_ n aw, (1a)

For conventional plastic materials, the minimum work path [23] is characterised by a
straight line path in internal variable space. Alternatively, it is a path such that the
plastic strain direction is fixed. This implies that, for a stress change from 0,' to
the path in stress space , as shown in Figure 2, is divided into two parts: first an elastic
segment, with the stress path remaining inside the yield surface, and second, a segment
in which the stress remains constant at yield (for an elastic, perfectly plastic material) or
moves out along a normal to the yield surface for a hardening material. Integration of
the constitutive equations along this path is generally fairly straightforward, and in most
cases equation (18) can be evaluated explicitly.

, /,

Figure 2: Minimum work path for an elastic, perfectly plastic material

In the case of an elastic, perfectly plastic material the path in stress space is particularly
straightforward (see Figure 2): a stress change occurs first, accompanied by elastic strain
changes, and the the stress remains constant while plastic strain changes take place. It is
evident from Figure 2, for an elastic, perfectly plastic material, that if the yield surface
is convex, "e may write

(o ~ >Jf 0. (20)

This may be recognised as an incremental form of the principle of maximum plastic work;
it is the existence of this inequality, and its appropriate generalisation for hardening
materials, which leads to the convexity of WV.
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The minimum work path assumption in fact corresponds to a backward difference assump-
tion for plastic strain rates: if we were to put

3= {(1 - a~ + aq 1, (21)

and to integrate the constitutive equation (13) over the interval t, -, t,, we would recover
the minimum work path with a = 1.

5 The incremental problem

The incremental problem is now defined in terms of the field equations (15-17) and the
constitutive equation (19). We may recognise that the constitutive equation is essentially
a stress-strain relation for a nonlinear elastic or holonomic material, with Wn' playing
the role of a strain energy function. Thus, as a result of the minimum work path or
backward difference assumption, the incremental problem in plasticity is transformed

into an incremental holonomic or nonlinear elastic problem.

The problem may be equivalently stated in the form of a programming problem, in which
we are required to minimise the potential energy of the holonomic problem. The solution
to the incremental problem is given by the fields AOu, AOi, which give the least value of

the functional

j'` W.`(Ac,)dV - Fj-AujndV - jp'AuidS. (2

The functional U° is convex if W,° is convex. When the incremental solution is obtained,
equation (22) is updated, with (n + 1) replacing n.

6 Solution algorithm

We now consider an appropriate algorithm for finding the least value of the functional
U°. The simplest and most direct algorithm is a two step algorithm. In the first step,
which we shall refer to as the predictor step, we approximate the nonlinear functional

U,° by a quadratic functional: the minimisation of this quadratic approximation is then a
linear problem, and leads to improved estimates of the kinematic variables. In the second
step, which will be referred to as the corrector step, we recompute those properties of the

functional U, which are needed to proceed with the next iteration.

We shall consider each of these steps in turn for the (i + 1)th iteration: we have estimates

Au•", A 0, and we seek improved estimates Au4('+l), AA (+'). We put

=Au!,(i+) - Au"S, Ai I = ) z (23)
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The functional U, is then written as

ft+ Li1)dV - J JQ(Aui" + Aai)dV - -'+Ai
U.- W,*(q +~~S (24) - , ,

6.1 The predictor step

In the predictor step we simplify the nonlinear problem by introducing a quadratic ap-
proximation to the function W,. Some flexibility is permissible in the choice of the
approximation: we write

W j + A~ij) = W,(AE A+jj 1 :3 Akt

W,(AEf 1 ) + aA'L\,j + • C'jk A~iA , (25)

Substituting IW, in equation(25) for WO, in equation (24) we may define a new functional
U,' given by

sl = U",(Au",, i ) + U,, (26)

where

U10 j i Ck A' 23A&kdV- F-{ AfJidV+f p-AitidS-fc ai'A~ijdV}. (27)

The least value of (,, gives values AfLi, ALij and hence improved estimates Az(i++),

A0((+') from equation (19). What is significant is that 0,0- is a quadratic function, and
hence the problem of finding its least value is a linear problem. A variety of choices of C"'ij,

can be made: these will be discussed in detail when we refer to the rate of convergence
of the algorithm.

6.2 The corrector step

We note that in the expression for (U, given in equation (27), we need to know F>, pj',
which are part of the data, and a", which is not given. Thus before advancing to the

next iteration we must compute &7I+,) this is the corrector step.
The stress +1 depends on the strain at the end of the n-th time sthp, an(] the strain

at the end of the (i + 1)-th iteration for the (n + 1)-th time step, or the total accumulated
increment Ae.(i+1). The accumulated increment is assumed to take place along the path
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designated in Section 4, and the constitutive equations are integrated along this path. WeV
note thus that the computation of r.+I) is a local calculation at each point in the body.tj

If the backward difference assumption is adopted, integration of the constitutive equations
reduces to the problem of determining A since we can put

np.i(-(n+,),Af(I1)-(28)
0,0+,) = + I,) jk,(A•.n(i+1) _ pni ),

where Cjk1 = D-11 are the elastic constants.

It is convenient to define an elastically predicted stress a' E(i+), defined by

nE(i+1) (n-i) (?AU (i+1)
a = r + Cijklf-i(kl •

Then, if Hnj are internal variables associated with the i - th iteration, we note that

0,7 i+i) = OrnE(i+i), A '( + ) --0, if O(OrnE(i+1), H• ) 0 (30)
0*1 r~~+) nEtj l -j o, C - 0. (30)

If (E( H,) > 0, then A + 0. The computation of a is then generally
represented graphically, and is referred to as the return algorithm. The simplest case, that
of an elastic, perfectly plastic material, is shown in Figure 3. The minimum work path,(-) n~i+1)

as described earlier, is made up of an elastic change from or}-l) to ani , followed by
plastic strain changes at constant stress if or-i('+i) lies on the yield surface. In Figure 3,

for the case where Ac6 'i+1) $ 0, we show the vectors (0  1(i+1) - i)) and CijkA AE(i+l),

which make up o-2) It can clearly be seen that if oYENi+1) is given, we can drop a,2) 2Smia,3lghl m r
perpendicular back onto the yield surface in order to find Similar, slightly more

elaborate rules of the same type can be constructed for hardening materials, for both
continuously differentiable and piecewise continuously differentiable yield surfaces.

FetefE(i+ l)

Figure 3: Returni algorithmr for an elastic perfectly plastic material
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We emphasise, however, that the return algorithm is not a heuristic choice, but can be
set up rigorously for any elastic-plastic material in terms of the minimum work path.
Alternatively, in the internal variable formulation the return algorithm corresponds to
a local minimum principle [201. Piecewise linear yield surfaces are included in these
formulations.

7 Convergence

The steps of the iterative algorithm are shown diagrammatically in Figure 4. The sketch
shows the function U° we set out to minimise, together with the i - th estimate of the
solution. The approximating quadratic function U.01 is also shown, leading to the (i+1)--th
estimate. The corrector step permits us to re-establish the new estimate on the original
functional U2,.

Un: quadratic approximatiou Un

predictor

corrector [

Figure 4: Steps in the iterative algorithm

Thus at the end of the two steps of the iteration we can compute Uv(Au!'(+ 1), Ac(i+l)).

A comparison of UO,(Aui , At) and U•(Au'(t+I), A•('+ 1 )) provides us with information
on the convergence of the algorithm: it is clear that a sufficient condition for monotonic
convergence is that

U,o(LAUn(i+i), Atn (i1l) :5 U'ý'(AU~i Aen ). (1
Frhr s) (31)

Further, since by the definition of the process,

_ni4N~~~) Af.i%) : nAniAo), (32)
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it follows that the sufficient condition for monotonic convergence 's tiiet if

A~ý(+1 An(+1): o A~ _<,+ , A .n3i+))

In geometric,, terms, this implies that sufficient conditions for monotonic convergence
can be met if the least value of the functional U"o lies within the lunctional U,°. Whether
or not this occurs depends on the choice of the predictor modulus C .

It can be shown that this condition is met if Cijk, is chosen as the elastic constants C,,kj
[13,16]. However, the disadvantage of this choice is that the rate of convergence is very
slow. Improvements can be made by choosing the secant modulus [13] or a softened elatic
modulus -' (7•ij, where 0.5 < -' _< 1 [24. The improvements, however, are not substantial,
and the rate of convergence remains slow.

The rate of convergence can be increased substantially if the consistent tangent predictor

[25] is chosen: here we put

CT o i (34)

We note that if AeF = 0,

,q02 Wno -Cikt, (35)OA% jOAC-kt lc

i.e. the consistent tangent predictol simply the elastic modulus. It is also important
to note that in the first iteration in a load increment Ac71 7= 0 at all points in the body,
and hence the elastic moduli are chosen as the elastic predictor for this iteration. This
ensures convergence in the first step even when the load increment represents unloading.

in general, however, the consistent tangent predictor does not meet the sufficient condition
for monotonic convergence of equation (33). This follows because the least value of the
functional U,, does not necessarily lie within the functional U,, and therefore constraint
(33) is not met in all circumstances.

8 Line search algorithm

Convergence of lk- algorithm with the consistent tangent predictor can be assured if a
line search algorithm [25,26] is adopted. In our present context, this can be demonstrated
by simple geometric arguments.

In the line search algorithm we compute Atj, A{j as before, but we consider improved
estimates
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. ... + a.A flC+ zjA + a(A• (.(;)

where a > 0 is a scalar multiplier.

Consider first the approximating quadratic function U,"' given in equations (26) and (27).
We may put

U' (Au" + aAfii, AOc.' + aAij\) -=

gl(AUni, Afni) + a2 I 2ivkIA L\.[kj dV
n ,"U ' Aei ) 5 -CijkAAij•(k d

p- oi F dV+ . (37)

U;- , (Aj

As expected, this function has its least value for a 1; note also that U,'(Aui +
aAift,, Ai + aAiij) = U-(AQ, Ai ) for a = 0 and a = The function is shown
diagrammatically in Figure 5.

t

Ta)0 2

Figure 5: Convergence of the line search algorithm

Now consider the nonlinear ,unctiopal U°(Au"4 + aAtl, A irst, we ncte
that

0,6(a = 0) = U,'(a = 0). (38)

Further, we see that
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dU°- d 11U0'• =

dWa da

The function U°(a) is also plotted diagrammatically in Figure 5. The geometry of this
function permits us to reach two conclusions. First, the least value of U' will occur for
a > 0, and will be less than U.(AO, s' following fromn equations (38) and (39).
Second, UtT(a = 1) may be less than or greater than U,(a =0). Thus, if the line search
algorithm is not routinely used, the iteration may or may not provide an improved estimate
in the sense of an improved value of U". However, if U,/(a = 1) >Ž U,(a = 0). it is clear
that there exists a value a', 0 < a' < 1, for which UJ(a = a') < U,(a = 0).

In general, the application of the line search algorithm involves finding, at least approxi-
mately, the value of a which provides the least value of T,',(a). This may occur for a < 1, or
for a > 1: in either case monotonic convergence is assured and the opt ilnumn imll)rovCilnent
%r the iteration is found.

9 Spatial discretisation

With the framework described above in place, we may now consider the implementation
of the finite element discretisation. This is applied to the weak form of equations (26)
and (27), i.e. the mninimisation of U0,1 or U,. This is a quadratic form, and standard finite
element discretisation procedures may be applied. The discrete form of equation (27) will
b)e

UT -AL'< 1
\i - Ait"'R, ('10)

where Ait is the vector of improvements in the nodal displacements, K' is the consistent
tangent matrix and R' is the residual. The tangent matrix K' will be symmetric if C'ijki

is symmetric, as is the case with the choices of C: jk' which have been discussed. It may be
noted that the magnitude of the residual depends on the difference between the external
nodal forces associated with E7". pn and the internal nodal forces associated with a'!.
When the external and internal nodal forces are in equilibrium, R' = 0 and equation (10)
gives Aii = 0, indicating that the iteration is complete.

10 Generalised trapezoidal rule

The development of the solution algorithm has been presented in terms of the adoption
of the minimum work path as the strain path for the increment. This is equivalent to a
backward difference assumption in the approximation of the plastic strain over the interval
(see equation 21).

Experience has shown that the backward difference assumption is robust an(] (tf(,ctive

(27]. It also has the advantage of providing a symmetric consistent tangent iti ffness mnatrix
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and unconditional B - stability. Nevertheless, the backward diffleretIC approximatioii is
associated with linear rather thani quadratic convergence. First attempts to forimulatc- a
trapezoidal rule led to non-svmin etric operators.

Ortiz and Popov [28] proposed a general class of integration algorithms, including bhoth
a generalised mid- point rule and a generalised trapezoidal rule, These rules do nut
provide symmetric operators, except for the special case of the backward difference r'ul,
in each case; this is a major disadvantage. Sinio and Govindjee [29] have shown that
a midpoint rule can be formulated which provides both quadratic convergence and a
symmetric operator. It can be shown simply that this is eqIuivalent to a generalised
trapezoidal rule with a symmetric operator.

Full details of the development have been given by Rencontre. Caddeni and Martin IN1!
and Cadderni [21]. The assumed strain path over the interval remniulls the saille: the

initial stress is aj , and the final stress is cr. The strain path is niad. utp of two parts.
and elastic part and a part where plastic strain takes place with a fixed d irect ion in si rai n
space. In computing the strain increment, however, we include a part of the plastic s; rain)
at the end of the previous increment and a part of the plastic strain at end of the currient
increment. Thus, we put

"-A0. Dijk1 ia( .0 (7)) + (I - a)A P(n-I) + 7(=1 - o• + •,.q .1

where 0 < 1.

When a = 1, we recover the backward difference formulation. The rule is shown diagramn-
matically in Figure 6 for a perfectly plastic material. Note that (1 - is knlown
from the previous increment; if i,- lies inside the yield surface A(,) will of course
be zero. This is the essential difference from the trapezoidal rule of Ortiz and Popov [28],
where the direction of the plastic strain associated with ai, was assmned known. but
not its magnitude.

We note also that Af" will be zero if (T"J lies within the yield surface. In the case of

unloading, where - I) is not zero, we see that Ac" may thus involve plastic strain
projected from the previous increment. This suggests that the generalised trapezoidal
rule may not be optimally accurate for unloading steps, where the backward difference
assumption is more effective.

The operator for the generalised trapezoidal rule so defined is symmetric, is incondi ion-
ally1 B - stable for a > 1, and provides second order accuracy for a = 1; it is indeed
directly equivalent to the generalised midpoint rule of Sino and (;ovivdjee.
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Figure 6: Generalised trapezoidal rule for an elastic perfectly plastic material

11 Conclusions

A coherent overall framework for the iterative solution of the incremental elastic-plastic
problem which is based on the physical concepts of extremal paths and piecewise holo-
nomic materials has been presented.

The underlying physical concepts allow several insights which are not accessible in a purely
mathematical treatment, and work is continuing to attempt to exploit these insights.
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AND CREEP CRACK GROWTH UNDER NEUTRON IRRADIATION
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Abstract
Nuclear fusion technology is currently making remarkable progress, and the structural design of

the experimental reactors is becoming one of the most crucial problems in this technology. The
present paper is concerned with the constitutive modeling of inelastic behavior and damage
evolution of materials under thermal and neutron-irradiation conditions applicable to the rational
structural analysis of nuclear reactor components. After discussing the mechanisms and the
physical theories of neutron irradiation reported so far, a constitutive model of creep, swelling and
damage under irradiation was developed. It was assumed that the creep under irradiation can be
decomposed into irradiation-induced creep and irradiation-affected thermal creep. The applicability
of the pToposed constitutive equations was demonstrated by analyzing the creep, swelling and creep
damage of type 316 stainless steel under various conditions of irradiation. As an application of the
proposed equations, creep crack growth under neutron irradiation was also analyzed.

1. INTRODUCTION

Polycrystalline metals exposed to the irradiation of fast neutron at elevated temperatures not
only show salient intrinsic phenomerq -f irradiation growth, swelling, irradiation creep,
irradiation damage, etc., but also are subjected to significant influence on their mechanical
behaviors of deformation and fracture under stresses [1-4]. Fuel cladding tubes of FBR(Fast

Breeder Reactors) f5-7], for example, are irradiated by fast neutron flux of the energy

E>O.1MeV at the temperatures of 400-700"C, and their mechanical behaviors have been

investigated extensively.
Another and more important objective of irradiation effects is the plasma facing components

of fusion reactors. Hitherto, the central problem of the nuclear fusion has been concentrated to
the realization of the fusion reaction. However, a plasma-burn experiment due to D-

T(Deuterium-Tritium) fusion reaction was demonstrated in the JET(Joint European Torus) in
November 1991 for the first time in the history, and the success of this experiment has

confirmed the feasibility of the controllable nuclear fusion reaction. This success implies that

the problems of nuclear fusion arc coming to the engineering stage, and the intensive
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international collaborations for the conceptual and engineering design of the experimental fusion
reactors have been already effected.

The Tokamak type fusion reactor of ITER(Intemational Thermonuclear Experimental

Reactor) project, in particular, is supposed to have the burn time of 1000 sec and burn cycles of

105, and the neutron energy and the neutron wall loading are 14.1MeV and 1MW/m 2,

respectively. If Type 316 stainless steel is employed as the first wall material, it will be subject

to the maximum temperature of 400'C and the displacement damage of 31.4 dpa during the
whole life; the material will undergo swelling, irradiation creep, irradiation damage under

considerable cyclic thermal stresses.

The recent development of the nuclear fusion technology is making the struýiural design of

the experimental fusion reactors one of the most essential problems in that technology. Though

a number of investigation have been performed on the creep and damage under neutron

irradiation, they are mainly concerned either with the kinetics of the interstitial atoms, vacancies

and dislocations, or with crystal physics and metallurgy, and thus continuum mechanics

theories on the constitutive behavior of material under irradiation have been still undeveloped.

The present paper is concerned with the mechanical modeling of creep, swelling and

damage of polycrystalline metals under thermal and neutron irradiation conditions applicable to

the structural analyses of nuclear reactor components under multiaxial states of stress. A

constitutive equation of creep, swelling and damage under irradiation will be formulated in the

framework of continuum mechanics, and by taking account of physical mechanisms of neutron

irradiation. Continuum damage mechanics will be employed to describe the irradiation damage

and final fracture of materials. It will be assumed that the creep under irradiation is

decomposed into irradiation-induced creep and irradiation-affected thermal creep. The

proposed constitutive equation was applied to analyze the creep and damage of type 316

stainless steel under various conditions of irradiation. Finally, the utility of the proposed

equations was demonstrated by analyzing the creep crack growth by means of local approach of

fracture based on finite element method.

Since the irradiation-induced creep is weakly dependent on temperature 12, 8], the effect of

temperature variation will be disregarded in this paper. Though the bubble formation at grain

boundaries, driven by helium generation, may affect the mechanical behavior of austenitic

stainless steels at high temperatures [3, 8], it will not be taken into account because of the lack

of experimental data.

2. MECHANISMS AND PHYSICAL THEORIES OF IRRADIATION-RELATED

CREEP

Preceding to the continuum mechanics modeling of creep and damage subject to the

irradiation effects, let us first review the current understanding of the physical mechanisms and

mechanical aspects of the relevant phenomena.
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2.1. Mechanisms of irradiation related creep
When a fast neutron collides with an atom in a crystal, the atom is knocked on from the

lattice cite, and gives a pair of an interstitial atom and a vacancy (Frenkel pair). If the primary
knock-on atom has sufficiently high energy, the atom will hit another atom, initiates a sequence
of collision and knocking-on of the constituent atoms, and thus induces a collision cascade in
the crystal [1, 31. Then, a part of the resulting interstitial atoms and vacancies may annihilate
by recombining with each other or by clustering, or may be absorbed by sinks such as voids,
dislocations and grain boundaries [1-41.

Interstitial atoms have larger mobility than vacancies. A part of interstitial atoms coalesce to
form dislocation loops, or are absorbed by existing dislocations to facilitate their climb. The
annihilation or absorption of interstitial atoms increases the number of lattice sites, and brings
about dilatation (swelling). The excess vacancies, on the other hand, aggregate to form voids,
and contribute to void swelling. Thus when polycrystalline metals are subjected to irradiation at
elevated temperatures, in addition to the ordinary thermal creep, the coalescence and the
absorption of interstitial atoms together with the aggregation of vacancies give rise to
irradiation-induced creep and swelling.

Though the motion of dislocations under stress may be accelerated by their facilitated climb
due to the absorption of interstitials, they may be decelerated at the same time by the formation
of dislocation loops, dislocation networks, vacancies, clusters and precipitates brought about
by the irradiation. The ordinary thermal creep caused by stress-controlled dislocation motion,
therefore, is significantly affected by the neutron irradiation. Thus, the creep under irradiation
may be divided into irradiation-induced creep and irradiation-affected thermal creep. The
dilatational part of the irradiation-induced creep is identified asswelling. The term irradiation
creep will represent the creep which is obtained by subtracting the stress-free swelling from the
irradiation-induced creep.

2.2. Physical models of irradiation-induced creep
Though a number of physical models have been proposed so far to describe the creep under

irradiation, they have been focused mainly on irradiation-induced creep, or irradiation creep and
swelling [1-3]. One of the most successful models to describe the irradiation-induced creep is
the Climb-Enhanced Glide (CEG) mechanism, originally due to Ansell and Weertman [9].
Absorpt.on of interstitial atoms brought abouf b. ,- facilitates the e1:rnb and glide of

dislocations. By postulating the operation of the Frank-Read dislocation source and assuming
that the creep rate is proportional to the climb velocity, we have the creep rate as follows 12,31:

ik(g 2 /G 2 )S I

where () is the time derivative, and k, uy and S stands for a material constant, modulus of
rigidity and the swelling rate. This mechanism postulates the flow of excess interstitials into
dislocations, and the creep rate is proportional to the rate of point defect nucleation, and hence
to the swelling rate S. By assuming that the climbed dislocation segment can bow and glide
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according to the Mott-Friedel equation for dislocation-bowing, Gittus 110, 11], furthermore,
developed the following equations:

k = k(/G)S (2)

Dj = klq9og,, (3)

where iii O.,Di and WD are the strain rate tensor, deviatoric stress tensor and the dislocation

flux, respectively.

Heald and Speight [12], on the other hand, by taking account of the elastic interaction of a
point defect with the strain field around an edge dislocation, proposed Stress-Induced

Preferential Absorption (SIPA) mechanism. Namely, the magnitude of the long range force
between an edge dislocation and an interstitial atom depends on the relative orientation between
the directions of applied stress and the Burgers vector, and the dislocations of different Burgers
vectors have different rates of interstitial flux. Therefore, dislocations of the preferential
odientation may easily absorb interstitials, easily climb and give rise to the macroscopic creep
rate in the corresponding direction. Since the anisotropic rate of dislocation climb is
proportional to the rate of nucleation of point defects Ki,the creep rate is finally given as follow

[1, 2, 12]:

kYk.,- (4)

The SIPA mechanism has been ascertained to explain a number of important features of creep
under irradiation, especially when the swelling is not significant. Since the CEG and SIPA
mechanisms are not mutually exclusive but may operate concurrently, the total creep rate can be
given by the combination of these two mechanisms [13]:

r - kj-gS + k~Kjo (5)

Finally the nucleation of irradiation-induced interstitial loops also depends on the direction
of the applied stress; they nucleate preferentially on crystallographic planes nearly perpendicular
to the applied stress. Brailsford and Bullough [14], for example, assuming this SIPN (Stress-
Induced Loop Nucleation) mechanism, derived the following equation:

- -kb2p,° (6)

where b and PD are the Burgers vector and the dislocation density of the interstitial loops. The

SIPN mechanism is valid for low dislocation density, but has a serious restriction. Namely,
according to this model, once a prefered loop orientation is nucleated, the strain rate will be
controlled by the irradiation dose rate, but is not affected further by the applied stress.

The swelling rates S in eqs. (1), (2), (5) and (6) have been given by the rate theory based
on the diffusion rates and density of interstitials and vacancies [1, 3, 13], or by the empirical
equations expressed in terms of stress, flux of irradiation and temperature [2, 7, 15].
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3. MECHANICAL MODELING OF CREEP, SWELLING AND DAMAGE
UNDER IRRADIATION

In nuclear reactor components operating at elevated temperatures, besides the irradiation-
induced creep discussed above, the stress-controlled thermal creep under irradiation is also
predominant. Thus for the engineering design of the reactor components, we need not only to

reformulate the above irradiation-induced creep in terms of mechanics, but also to develop a
rational constitutive equation which unifies the irradiation creep, swelling, thermal creep and

damage and can be easily incorporated into the computer algorithms.

For this purpose, we will note that the creep under irradiation e' can be divided into the

irradiation-induced creep E and the irradiation-affected thermal creep er , the former is

caused exclusively by the irradiation and may occur even under vanishing stress, while the

latter is the ordinary thermal creep but accelerated or decelerated by irradiation.

3.1. Mechanical modeling of irradiation-induced creep [16-181
For the mechanical modeling of irradiation-induced creep EJVC let us first postulate two

important mechanisms of CEG and SIPA. According to these mechanisms, as described in the
preceding sections, the rate of irradiation-induced creep i tc will be specified by the current

state of stress a,, and the current rates of nucleation of interstitial atoms and vacancies, with

respect to the current state of internal structure of the material developed by the irradiation. The

rates of nucleation of interstitial atoms and vacancies will be proportional to the neutron flux 0,

and the state of the internal structure of the material will be identified by the densities and

configurations of interstitial atoms, vacancies and dislocations brought about by the irradiation.

Since the dislocation density, above all, is identified by the neutron fluence 4D = f 0 dt [2, 20],

we will assume that the internal state of material can be described by 4I. The rate of irradiation-".1C
induced creep c 1 may be represented as follows:

iiC =Faj (Cl , 101) (7)

In contrast to the dislocation-controlled thermal creep, the distribution of dislocations and

the internal structure of the material caused in the irradiation-induced creep will have not

significant anisotropy. Thus, in view of the linear stress dependence of CEG and SIPA

described by eqs. (2) and (4), the general form of eq. (7) may be expressed as an isotropic

tensor function of stress cria of the order one and zero.
IC

Y~ -7(9PP4'5 1 + 4,4')a~A*I+ i40(, 4D)ar, (8)

where symbols r7, ý, and care material functions of 0 and 4D, and 6bj denotes the Kronecker

delta. If we decompose the stress and strain into isotropic and deviatoric parts, eq. (8) leads to

Pic . i(1/3 +E .C
-=(k/3)ik+) E Dij (9a)
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•ck 3= 3r+ (3,. + •')at,*, (9b)
Jic "(9c)

where o and UoD. are the deviatoric parts of P' and or,, respectively.
•IIC

The symbol 6 kk of eq. (9) stands for the volumetric strain rate, and hence corresponds
exactly to the swelling rate S. Therefore, in view of the incubation period of swelling [2, 7,
21) and the linear dependence of creep and swelling on the neutron fluence 4) [2, 211], and
employing the transient expression of Bates and Korenk [7], we finally have the constitutive
equation of irradiation-induced creep and swelling [ 16, 18]:
E Dc =- (1 / 3),60 + (3/ 1)rP1aD8 ~ (10a)

D~ii ) Oj 1a

S= C[1 - eR(x" ) /{1 + eR(X-0)}] (1 + Qrt) * (lOb)

where C, P, Q and R are material functions of 0 and (D, and X stands for the incubation fluence
for swelling. Where symbol ( ) , furthermore, represents the Macauley bracket.

3.2. Mechanical modeling of irradiation-affected thermal creep [16, 18]
Irradiation-affected thermal creep is brought about by the ordinary thermal creep affected by

the irradiation effects. The thermal creep of polycrystalline metals at elevated temperatures, on
the other hand, is induced by the diffusion controlled dislocation motion activated by stress,
and is usually accompanied by creep damage; the creep damage occurs as a result of the
nucleation and growth of grain boundary cavities brought about mainly by the grain boundary
sliding [22].

By examining the results of creep tests under irradiation [2, 6, 23], and by comparing the
results with those of the ordinary unirradiated tests, the effects of the concurrent neutron
irradiation on creep may be

1) acceleration and deceleration of dislocation motion as a result of the nucleation of point
defects, void clusters, dislocation networks and the precipitation of inclusions.

2) deceleration of nucleation and growth of grain boundary voids and the delay of the onset
of the tertiary creep [6], probably due to the supply of interstitial atoms from rich source of
point defects.
These features imply that the mechanisms of thermal creep and creep damage per se are not
changed by the irradiation, and the rates of creep and damage will be subject to quantitative
change depending on the neutron flux 0 and the neutron fluence 4).

Thus, if we postulate the Kachanov-Rabotnov creep-damage theory 1241 together with the
strain-hardening hypothesis of McVetty type creep law [251, and assume that the effects of
irradiation on the constitutive and the evolution equations can be described through the change
of their material constants, we have [16, 181

•rc -(3/2)A" "a'" "aDi +(3/2)A(O,o)[urEQ/(1-OD)l"•"')YDr 1/(1 -D) (Ila)
B- 0, )r)/(1- D)l k(#A) (11 lb)
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where &o) and U7,,,are the maximum principal stress and the equivalent stress. The symbols .4,

B, it and k are material functions of 0 and 4P, while.4 *, o* and n* arc material constants for the
transient creep law [25]. The symbol D in eq.(1 1), furthermore, is an internal state variable

describing damage state (damage variable), and defined as follows:

D = 0, at t = 0 (initial undamaged state)
D = 1, at t = tR (final ruptured state) (12)

According to Gilbert and Chin's experimental data for 20% cold worked type 316 stainless

steel at 650TC [5] (see Fig. 3 below), no significant difference is observed in the stress-

dependence of rupture times among unirradiated creep, creep under irradiation and post-
irradiation creep; this implies

k (0•, () = ko (13a)

As regards the creep exponent, the results observed in Reference [2] allows us to assume

n1(0,0) = nto (13b)

Since the material functionA (0, (D) is related to the creep rate, it depends on the behavior of

irradiation-induced internal defects. The effects of fluence () on the microstructure of the
material is cumulative, and develops dislocation structures. The dislocation density and

configuration will tend to an asymptotic state as (I) increases [2, 20]. The effect of , on the

other hand, is brought about by the interaction of the irradiation-induced defects with the

existing defects 126]. Namely such interaction is governed by the rate of increase of point
defects induced by the irradiation together with the rate of their annihilation due to their

absorption by the existing sinks, such as point defect clusters, dislocation networks, etc. Thus,

sufficiently large value of 0 again leads to a stationary defect structures 1261.

Furthermore, the function B('O, 4)) is related to the rate of creep damage. The creep

damage in polycrystalline metals is brought about by the formation and the development of
microcavities on the grain boundaries, which are governed mainly by the local diffusion of

atoms and the matrix creep [22]. The effect of () on the material is embrittlement due to the

formation of point defect clusters and the sessile dislocation networks. The effect of 0, on the

other hand, supplies interstitial atoms, which in turn decelerate the formation of grain boundary

cavities and retards the material damage. Increase in both of 0 and 4), therefore, will lead to an

asymptotic state of damage rates. In view of these microstructural mechanisms, we will

assume the following functions forA and B:

A(O,(P) = ,40[1 + a,(1 - e-G:*)][ 1 + a 3 (1- e -4 a)1 (1 3c)

B(O, (P) = B0[1 + b1 (1 - e-b10)][1 +b3(1 -e-' )1 (13d)

where a,, a2, a3, by, b2, b3 and b, are constants that can be identified by comparing the creep

curves of unirradiated creep, creep under irradiation and of post-irradiation creep under constant

stress.
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3.3. Constitutive equation of creep, swelling and damage under irradiation
Summarizing the results of the preceding discussions, the constitutive equations of

irradiation creep and swellinzg are given by eqs. (10), (11) and (13) as follows [ 16, 18]:

ic r* fir +E Ei/
c-a **n n-1

-(3/2)A o e aEQ OD# (14a)

+ (3/2)A0 11 +a,(1-e-a,")][1 +a3 (1 -ea4)][a /(1- D)°"[xe, 1:/(1 - D)j

D= B011 + bj(1 - e-bzl )]1[+ b3(1 - e-b'4)][o(1)/(1 - D)] (14b)

S =C[1 -eR( e )/(I + eR(x-0'O)] (1 + QcrM ) 0 (14c)

By taking • = 411 0, eq. (14) is reduced to the thermal creep under unirradiated condition,

while the cases of 0 , 0, 4) -fodt and 0 - 0, '1 e 0 account for the creep under irradiation and

the post-irradiation creep, respectively. Thus eq. (14) furnishes a unified constitutive equation
for unirradiated creep, creep under irradiation and for post-irradiation creep.

3.4. Analysis of creep under irradiation of 20% cold-worked type 316 stainless steetI

To evaluate the validity and the applicability of eq. (14), we will now perform the following
analyses for 20% cold worked type 316 stainless steel at 650"C.

Material constants in eq. (14) can be identified by the procedure discussed in the preceding
papers [17, 181, and can be determined by use of the experimental results of References 15, 6,
20, 21, 23]. The material constants of eq. (14) thus determined are as follow:

Ao - 3.20 x 10-' 3MPa-no • hr-', n - 3.50, B0 - 6.00 x 10-`0MPa-k. • hr-', k0 - 2.80

A* - 1.30 xl0-7MPa-'", a' - 8.50 x 10"3 hr-', n* = 2.00

x = 5.00 x 1022n .cm -2, C - 4.00 x 10-2(n "cm --. hr)-' -hr',
Q - 4.75 x 10-3 MPa-', R - 1.25 x 10-'(n cm-2)-' (5b)

a , = 5.00 x 10-2, a2 - 2.60 x 10 -9(n.cm-2 hr)-', b, - -0.95,

b2 = 4.5 x 10-' 9(n• cm- 2 •hr)-', P = 2.50 x 10-(MPa• n cm-2 " hr)-' (1c)

a 3 - -9.00 x 10- 2, a4 - 2.60 x 10-2 1(n cm-2)-',
b3 - 1.30, b4 -2.60 x 10-2'(n .cm -)-I (15d)

where the material constants of eqs. (15a) through (15d) were identified by the test results of

unirradiated creep, swelling, creep under irradiation and postirradiation creep, respectively.

Fig. 1 shows the results of prediction of swelling for 20% cold worked type 316 stain!ess
steel at 400"C. The solid lines and the symbols are the predictions of eq. (14) and the

corresponding experimental results of Porter, Takata and Wood [21 1. The calculations were

performed by use of material constants related to stainless steel at 650'C, and the material
constants of eq.(15) were modified by use of temperaturc dependence of swelling identified by

the experiments 151.
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As shown in Fig.1, eq. (14) represents the continuous transition from the incubation to the
steady-state period without changing the characteristic of incubation and steady-state periods.
Fig.1 suggests the validity of eq. (14).

Figs. 2 and 3 show the comparison between the experimental results [5] for unirradiated
creep, post-irradiation creep and creep under irradiation, and the corresponding predictions of
cq. (14). The symbols in the figures stand for the results of experiment, and the temperature,
stress and irradiation conditions are entered in the figures.

Fig. 2, to begin with, represents the creep curves for different conditions of irradiation. It
will be observed that the constitutive equation (14) describes accurately the essential features of
irradiation creep; i.e., creep curves under irradiation including transient creep stage,
embrittlement due to prior irradiation, and the retardation of the start of the tertiary creep and
increase of tensile ductility due to neutron flux. Fig. 3, on the other hand, shows the stress-
rupture time relations for unirradiated, post-irradiation and under-irradiation creep, predicted by
eq. (14). It will be observed from Fig.3 that eq. (14) describes the dependence of rupture times
on the irradiation conditions observed in the corresponding experiments.

4. ELABORATION OF CONSTITUTIVE EQUATIONS FOR CONSIDERABLE
VARIATION OF STRESS STATES

4.1 Elaboration based on creep-hardening surface model of variable stress creep [191
Components of nuclear structures are often subject to large change of stress states, not only

in their magnitude but also in their direction. The first wall of fusion reactors, for example, is
subject to reversed thermal stress due to the intermittent burn of plasma. This change in stress
induces significant transient increase of creep rates, and has a large influence on the initiation
and the growth of creep cracks in the materials. The irradiation-affected thermal creep of
eq.(11) is based on the strain-hardening theory of creep, and cannot be applied adequately to
the problems of large stress variation [25]. Thus we will extend the creep-hardening surface
model of variable stress creep [27] to include the effects of irradiation and material damage.

In the case of the classical strain-hardening theory, in particular, the thermal creep rate ji2CTc
is expressed as a function of stress and the history of creep strain rTc as follows [27]:

i-r . (3/2)f(la; qXa / aT), 4- (2/3)1Y2(i•)i/c)/2 (16a,b)

where crEQ and o'rD denote the equivalent stress and the deviatoric stress, respectively. The

symbol q in eq.(16a), furthermore, is a creep-hardening variable (i.e. an internal state variable)
representing the state of creep-hardening of the material.

The conventional theory represented by eqs.(16a,b), however, cannot describe the transient
increase of creep rate which is observed after stress reversals or change in stress direction [27],
because the creep-hardening variable q cannot adequately describe the recovery of material
hardening after the stress change. In order to overcome this difficulty, Murakami and Ohno
[27] introduced a hyper-sphere (creep-hardening surface) in a creep strain space as follows:
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(2/3)(e-c-a,)(.,aJc - a,)- P2  0 (17a)

where al and p denote center and radius of the hyper-sphere, respectively. The evolution

equations of these variables arc given as follows:
(1-A)innn, g -=0 and (dg/de")' >0

0 g<0 or (dg / qw)t';7 O (17b)

=.(2/3)"yAi,'Cni g-=0 and (dg/ C)O >0
g<O or (dg/derc)ir sO (I7c)

nW . (,-7r - a,)/[(,c T - ad X(rd - a,), 12(ld

where A is a material constant specifying the rate of development of p. Thus, the creep-

hardening variable q representing the state of creep hardening under a given deformation history

is specified by use of a,, and p in eq.(17) as follows:

q -, [1/(2,k)][p + (,Tc - aj oa)Gj/loE)1 (18)

If we employ the Bailey-Norton creep equation of constant uniaxial stress

C TC A t'"i" (19a)

and postulate the strain-hardening hypothesis, we have the following equation of multiaxial

creep [27]:
STC li/or" If/ on 1/m

4 - (3/2)mA EQ q (or.,m /ao) .- (3/2)f(arw; q)(cr //or.) (19b)

where A, n and m denote material constants.
In view of the concept of continuum damage mechanics, the damage state of material under

creep can be expressed by a damage variable D. If we employ the creep damage theory of

Kachanov-Rabotnov, eq. (19b) can be extended to incorporate the effects of creep damage as

follows:

, (3[ -D)]3 /, 1(1/ D)] q =Bfa" 1 (1-DD)]/( (20a,b)

where a(') denotes the largest principal stress, and B and k are material constants. The

hardening parameter in eq. (20a) can be given by eqs. (17) and (18).
Since the essential mechanisms of irradiation-affected thermal creep are unchanged from

those of the creep and damage under unirradiated condition, the constitutive equation of

irradiation-affected thermal creep _qrC and the related evolution equation of creep damage can

be provided from eqs. (17),(18),(20) by replacing the coefficientsA, m, it B, k and A with the

corresponding material function of 0 and (D.

To recapitulate eqs. (14), (17)-(19) and the above argument, the constitutive equations of
creep, swelling and damage under irradiation under multiaxial and variable states of stress are

expressed as follows:
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•C - PIC flu
E -.. +Ces

= (1/3)S•5 + (3/2)P(TuDj

+ (3 / 2 )m 0A ( 4 ). O) *' ° q ( ,/0- / ,. 0 1(. - D ) -N [OI D , ( 1( I - D ) ] (2 1 a )

q = [1/(2Ao0)][p +(ec - a)(o /oEQ)I (21b)

• -i)€tn g - 0 and (dg/ld T C) L> 0
a.j 0 g<0 or (Qg/ltrc)ic50 (21c)

/3g -0 and (dg/dgIc) yc >0

{( 2 /3 ) l I2 A O i " t ?; i 4< r ( d / ) J t  ( 2 1 d )0 ~~ 9<0 or (dg / drc)i ,rc !<0

(= c (j - a i)/(ek',c a,)(eTC _k) (21e)

D = B(0,,I)[acr(/(1- D)] (21f)
ý = C[1 - eR(x -4) /(1 + e'(x- A) (1 + Q(Y ) (21 g)

where A(O,b) and B(,, 4) are again given by eqs. (13c) and (13d).

4.2. Analysis of creep under irradiation subject to variable states of stress
The material constants of eqs. (21) can be determined by the procedures similar to that of

Section 3.4 and Reference [27]. The material constants were identified for the 20% cold
worked type 316 stainless steel at 650TC and were given in Reference t191.
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Fig. 4 Creep strain Oc, under uniaxial stress reversals between Y, = 70 MPa and

-70MPa with an interval of 1000 hours
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Figure 4 shows the predictions of cq.(21) for the creep subjected to uniaxial stress reversals

under three different conditions of irradiation. Thc stress changes between (Y7 ;=70MPa and
-70MPa with the intervals of 1000 hours as shown in the figure. It will bc observed that eq.
(21) describes well the transient increase of creep rate after stress reversals under each
irradiation condition. Conventional strain-hardening theory expressed in eq. (16), in general,
cannot describe this increase in creep rate, and accordingly underestimates the relaxation of
stress. It means that conventional strain-hardening theory predicts smaller redistribution of
stress in the materials.

Rupture time under stress reversal conditions in Fig.4, however, becomes about twice as
long as the rupture time under the constant stress conditions of Fig.1. It is because the
maximum principal stress, which governs the process of creep damage [see evolution 'equation
of creep damage (210] is zero when stress is negative or,1 -- 70MPa. Noting the behavior of
creep under irradiation, the absolute value of the creep rate under positive stress a1 1=70MPa is

found to be larger than that under negative stress (711 =-70MPa for neutron fluence larger than
-= 5 x 1022 n cm -2, and this can be accounted for by the swelling at a constant rate after the

incubation period. Thus, creep under irradiation is found to increase with stress cycles in
contrast to the creep under other irradiation conditions.

(a) 2.0 (b) 2.0(20 Mpa Type 316 s.S. ( . 0MP Type 316 8.s.
-- 20% c.w. - 20% c.w.

1.6 ... 1 T=6500
C a 1.6 0 T=650°C

t0 hr - -60. fir
- -60 - 10 0oo0 2000 3000

1001.2 200 Under- u" 1.2 4012 MPg
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-- 35 2 1 lx01... .. '- t hrt Under-
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0.4- t.4 q5.1022 xCrn 2
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2  .lO22

Fig. 5 Creep strain under change of stress lirection between 0' and 150* at the interval of 1000 hours.
(a) Axial creep strain e',. (b) Shear creep strain 2c' /(3)•.2

Finally, Figs. 5 (a), (b) show the axial and shear creep strain predicted by eq. (21) under
different irradiation conditions brought about by the multiaxial and non-proportional loading.

The alternative stress change between 0 and 150° in y, -(3) 2 Yr2 stress plane under constant
equivalent stress of 70MPa at intervals of 1000 hours are shown in the figure. Unfortunately,
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there are no experimental data corresponding to Figs.4 and 5 under post-irradiation and
irradiation conditions to confirm the validity of eq. (21).

5. ANALYSIS OF CREEP CRACK GROWTH UNDER NEUrRON IRRADIATION

As an application of the constitutive equations developed so far, we will elucidate the effects
of neutron irradiation on creep crack growth observed in nuclear reactor components. For this
purpose, the constitutive equation (14) was incorporated into a computer code of finite element
analysis (FEM), and the creep crack growth in a plate of 20% cold worked stainless steel at
650"C under unirradiation, post-irradiation and irradiation conditions was analyzed t28] by a
local approach to fracture in continuum damage mechanics. The material was assumed to show
elastic-creep behavior. When the damage variable D of an element calculated from eq. (14b) has
attained to a critical value, the element is assumed to be ruptured. The aggregation of these
ruptured elements is identified as a macroscopic crack.

The mesh division by simplex elements employed in the analysis is shown in Fig. 6. The
plate is subject to the constant distributed stress co in the direction perpendicular to the initial
crack, and was assumed to be in a state of plane stress. Number of elements and nodes in Fig.
6 are 485 and 286, respectively. The material constants of eq.(15) together with the following
value of the modulus of rigidity were employed:

G=54.8GPa (22)

o,,

IfI

4W x

a, 25 ~~2

1=75

Fig. 6 Finite element discretization of a cracked plate subject to uniform tension
under neutron irradiation
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Fig.7 shows the relation between the incipient creep crack growth rate v and the tensile

stress ao under different conditions of irradiation entered in the figure. The conditions of

irradiation correspond to a fuel cladding of fast breeder reactors. The corresponding results of a

simplified analysis by a double cantilever beam (DCB) model 129] were also entered in the

figure by dashed lines. As observed in the results of FEM analysis, the crack growth rate under

neutron irradiation is about 1/20 of that of unirradiated condition. The crack growth rate of the

post-irradiated material, on the other hand, is 5 times as large as the unirradiated condition. It

should be noted that though the creep crack rate is suppressed by the irradiation and the crack

growth under irradiation looks more stable, it will be accelerated by about 100 times once the

neutron flux vanishes. The creep crack growth rates predicted by DCB model is 2-4 times

larger than those of FEM analysis, but shows similar results.
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C.-) , Under-Irradiation
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10-6 - !! ! =lxlO1
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Distributed stress Go MPa

Fig. 7 Relation between tensile stress and crack growth velocity under
different conditions of irradiation

6. CONCLUSIONS AND REMARKS

To facilitate engineering design of nuclear reactor components under intensive irradiation,

especially of future fusion reactors, constitutive models unifying irradiation creep, swelling and

thermal creep should be developed on the sound bases of physics and continuum mechanics. In

the present paper, a constitutive equation for this purpose was developed by dividing the creep
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rate into irradiation-induced creep and irradiation-affected thermal creep, with special emphasis

on austenitic stainless steels. The resulting constitutive equation was applied to analyze the

creep crack growth under neutron irradiation to elucidate the effects of concurrent and prior

irradiation on creep crack growth rates.
Though a great deal of results have been accumulated so far in the phiysical and metallurgical

investigation on the mechanical behavior of materials under neutron irradiation, they hardly

have a relation with the current development of the theories of plasticity, viscoplasticity and

damage. To narrow the gap between the present knowledge of irradiation creep and the current
state of design technology developed so far for fusion reactors, the collaboration of continuum

mechanics and metallurgical physics will be able to do a significant contribution.
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Abstract
This lecture addresses energy-related aspects of anelasticity. Anelasticity also means irreversi-

bility and dissipation. To study the behaviour of irreversible media (anelastic materials and
structures), an interesting and important direction is to consider their description in the general
framework of thermodynamics. Considerable progress has been achieved and various approaches
are proposed in this direction. The most usual one is based on a systematic description of irre-
versible systems via the expressions of two potentials : the free energy and the dissipative
potential. This approach is associated with the work of several authors in different domains
such as metal plasticty, friction, fracture and damage mechanics. Our objective is to present this
description in relation with common and practical models of anelasticity. Some general results
of the literature concerning the quasi-static response of irreversible systems are presented. In
particular, when the behaviour is time-independent (e.g. plasticity, contact with dry friction,
brittle fracture or brittle damage), general results concerning stability and bifurcation analysis
can be expressed in an unified framework. This framework will be presented and illustrated by
recent examples.

1. INTRODUCTION

Thermodynamics provide the largest framework for the description of the irreversible behavi-
our of anelastic media (materials or structures). In this direction, considerable progress has been
achieved and various approaches have been proposed. For example, the functional approach
found in Coleman & Gurtin's work has been successfully applied to visco-elasticity in the fif-
ties. In the last two decades, significant results have been however obtained within the so-called
internal variable theory. In particular, the introduction of internal state variables can be com-
plemented by a systematic description of the material behaviour via the expressions of two
potentials : the free energy and the dissipation potential (cf. [1-3] for example). This approach
is associated with the works of several authors, in particular Biot, Mandel [4-5] in visco-elasti-
city, Moreau, Mandel, Rice, Halphen & Nguyen .. [6-91 in plasticity and visco-plasticity, Lem-
aitre & Chaboche [101 in damage mechanics. ..etc. It provides a systematic and general frame-
work for the description of usual laws and for the mechanical modeling of new phenomena. It
is now widely accepted and becomes more and more popular for the description of anelasticity.

Our objective is to present this approach and to underline some general results concerning the
quasi-static evolution of irreversible systems. In particular, when the behaviour is time-inde-
pendent as it is in the context of plasticity, contact with dry friction, brittle fracture and brittle
damage, general results concerning stability and bifurcation analysis can be expressed in an uni-
fied framework. These results are, illustrated by some recent examples borrowed from the litera-
ture.
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2. THERMODYNAMIC FRAMEWORK

The notions of state variables, state equations, free energy, complementary laws and dissipa-
tion potential D are here assumed for all dissipative systems. This approach leads to the defini-
tion of specific models of materials and structures denoted as standard materials and standard
systems.

2.1. Standard materials
A material can be described by states variables q = (e,a) where e is a deformation and a den-

otes internal parameters . By unit reference volume, the associated free energy is W(c,a). The
dissipation is

d = a.i - (1)

where a denote the dual stress associated to c. Dissipation represents a product of fluxes and
forces :

d = (a-aR).i + A.A (2)

where aR and A denote the associated forces

aR = W,c , A =- W,a (3)

To simplify the presentation, it will be accepted here that the deformation is not a dissipative
mechanism, all dissipative mechanisms are taken into account by a. It follows then from (2)
that :

a = aR (4)

To complete the constitutive equations, complementary relations between forces and fluxes
must be introduced. These complementary laws of evolution can be conveniently expressed
under the form

A -- D,- (5)
or under the dual form

a6 'A (6)

where D (&,q) denotes the dissipation potential , a function of & depending eventually on the
present state q, D* is obtained from D by Legendre transform. If the dissipation potential is
assumed to be convex, the notion of differentiation in (5) can be understood in the sense of
sub-gradients, cf. Moreau [6], and this enables us to include in the same framework the impor-
tant case of non-differentiable dissipation potentials associated with time-independent dissipa-
tive processes.

Finally, the constitutive equations of a standard material are described by the expressions of

two potentials W and D.

This description is sufficiently large to include most models of anelasticity

For example, in Maxwell's model of linear visco-elasticity, state variables are (,cv ), free

energy W(E,cv ) = (c-c ).L.(c-tv ) and D = i.N.iv
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If ev is replaced by EP and D = k lip I while w is unchanged, relation (5) gives

0= k p if 0# and IJl < k if p =0

The obtained model is the elastic-perfectly plastic material with Mises criterion and normality

law:

f(o)=Io'I-k: 0 , P = f, with p>_0, f<_0 ,uf=0.

In the same spirit, the model can be extended into finite strain with the decomposition F = Vu
=E.P (cf. [7, 11]):
Mandel's model of perfect plasticity consists in choosing e = F and a = P , W = W(E) =
W(F.P-') . In this case, a = W,F is the unsymmetric Piola-Kirchoff stress tensor and A = -W,p
= a.E . The plastic criterion is f(O) < 0 , 0 denotes the stress tensor •' = detP P.A and the
flow rule is P = f,A with f= f( detP P.A).

Standard models of plasticity have been much discussed at small strain. Most models with
associated flow rules are standard models. For example, Chaboche's model of cyclic plasticity
[10) is an extension of Ziegler-Prager or Mroz's model of combined isotropic and kinematic
hardening [12]. Camclay model is a popular standard model in soil mechanics. The notion of
visco-plastic potential D*(a) has been discussed in particular by Rice [81. Standard models of
damage mechanics are considered in [10] etc....

It is important to underline that the description of standard models is stable with respect to
the choice of state variables and with the expression of forces and fluxes.

For example, if an arbitrary regular change of variable 6 = fl(a) is introduced, the new asso-
ciated force is B = - w,p = A . o,# while = #,, . &. It is clear that A.& = B.f and all
the principal ingredients of the model (free energy, forces, dissipative potential, convexity)
remain available.

Forces A and rates & can also be transported by convection to a different configuration to
new forces B = L(q).A and new fluxes b = L(q)T -1 .& where L(q) denotes a state-dependent
linear operator. The dissipation potential D can be then written in terms of new fluxes as it has
been proposed in different models of plasticity at finite strain.

If c = A(t) is a given function of time, the following equations are obtained

A = - W,, (A,a) = D,- (&,A,c). (7)

Thus the evolution of internal parameters oz(t) satisfies a differential equation with initial condi-
tion

W,, + D,a = 0 , a(0)=a 0  (8)

which can also be expressed in an equivalent way as

A = - W,• (40(t),0)
& = 'A (A,A(t),a) (9)
(0) = ao
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2.2. Standard systems
Equations (8) also describes the quasi-static evolution of discrete or continuous structures, cf.

Biot [4].

For a system defined by parameters q - (u,*) where u are reversible parameters, a irreversi-
ble parameters, and A(t) are (displacement or force) control parameters, let W(q,A) be the whole
free energy of the system. This energy results from the contribution of reversible energy stored
by all different elements.

If the system is dissipative, let us introduce as in the previous section the dissipation potential
D(&,q) in the sense that:

d = A .de with A = D,- (10)

The equation describing the dynamic evolution of the system has then the general form

W, + D,4 + F(q,A) + J =0 (I0)

q(O) =Qo, 4q(0) = po

where F denotes external forces and J inertia forces.

If the external forces F are conservative, by definition F - ,q where 41(q,A) denotes
the force potential. It is convenient to include the force potential 4I, in the expression of W
(which represents then the total free energy of the system) to write the quasi-static equation
of evolution in the previous form (8)

W9 + O, o = 0 (12)

3. TIME-INDEPENDENT PROCESSES

3.1. Quasi-static evolution of time-independent processes
We are interested principally in the particular case of time-independent processes. This is an

important case since it includes all usual descriptions of dry friction, plasticity, fracture and
damage.

Such phenomena are associated with positive homogenous dissipation potential of degree one

D(m4,q) = m D(4,q) if m > 0 . (13)

This function is not differentiable when q - 0, the set C of sub-gradients at this point is a
convex set in the force space A and represents the domain of admissible forces. This domain is
state-dependent C = C(q) when D depends on the present state q. It can be convenient to rep-
resent this domain C by inequalities f(A,q) •5 0 .

Conversely, D is recovered from C by Hill's principle of maximum dissipation

D(4,q) = Max A * i (14)
A*G C

In the spirit of the previous examples of plasticity, equations (14) can also be written follow-
ing (11) or (13) as :
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W,u --0 , (5
A - W,a (15)
1 =Nc(qj (A),

4 (0) = q

where NC denotes the operator of normality, NC (A) is a normal to convex C at point A.

In (15), the first group of equations W,u = 0 gives the possibility to eliminate completely
the reversible variables u as u = u(aA) when W,uu is not singular. This yields a more com-
pact equation of evolution for a

A =- W'* 9

dr = Nc(,(A ) (16)
a(O) = ae

where W = W(a,A) = W(u(aA),a,A) is the reduced expression of energy.

3.2. Incremental response
It is well-known that normality law represents an incremental law

For example, in plasticity, iP = p f,, with AL >_ 0, f < 0 and pf = 0. Plastic multiplier p is an
additional unknown but equality p f = 0 provides an additional equation. If r.h.s. derivability
is assumed, it follows that jA f + p f = 0 . Thus if the plastic criterion is satisfied, i.e. f = 0,
the plastic multiplier A is then given by equations A Ž_ 0, f _• 0 , p i 0 . This is the usual way
to address elastic-plastic response.

However, it is also possible to express the same result directly from the dissipation potential.
The following equivalent equations are derived from normality law and from r.h.s. derivability
[13] :

- k.& + q.D,q (0,A) = 0 (17)
- Ai.•a + 4 . D,q (Sa,q) > 0 (18)

V 6q = (SuSa) such that 6a is an admissible rate i.e. a vector of the normal cone 6a E Nc
(A).

If the admissible domain C does not depend on the present state q, equation (17) gives the
orthogonal condition A.& = 0 which is for example the well-known relation r •P = 0 of perfect
plasticity at small strains.

When A is computed from A = - W,, , equations (17) and (18) lead directly to the follow-
ing characterization of the rate response :

The rate 4 = (fi,&) is a solution of the variational inequality

(W,U".I+ W,'u .&+ W,UA.,).6u = 0
(19)

(W,,,,.6 + Waa.dt + W,,.) ).( d+

( D,q (6ck,q) - D,q (6,q)) . 0

for all admissible rates bq = (Su, 5a).
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3.3. Some general results on the incremental response
The incremental response has been studied in the context of plasticity [14-17]... or for contact

problems with dry friction [18-19]. Variational inequality (19) can be studied by standard meth-
ods of convex analysis [201. The following remarks are straightforward :

- This variational inequality is not symmetric when D uepends on u. If D depends on a, it is
symmetric if and only if the term Sa . D,, (&,cc) is symmetric. The dependence of the dissipa-
tion potential on the present state is thus a source of mathematical difficulty. It is useful to
recall that a non-symmetric variational inequality admits no associated extremum principle.

- Existence of a rate response i associated with an arbitrary implied control rate A is ensured
by the following positivity condition :

Sq . W,qq . 6q + 6q . D,q (So , q) > 0 (20)

for all admissible rates 6q = (Su,Sa) .

- Uniqueness of the rate response is ensured if the foltowing inequality is satisfied for any
couple of .,dmissible rates 6q1 * 6q2 :

(Sql-6ql) . Wqq . (6ql-6ql) + (Sq 1 -_q 2 ) . (D(6got,q) - D(Saltq)) > 0 (21)

- Variational inequality (19) is a mixed formulation in which the principal unknown is 6 =
(ui). It may be more convenient in some situations to eliminate fi or a and to retain only e
or 6 as principal unknown :

In plasticity for example, in the case of simple plastic potential, the plastic strain rate can be
eliminated. The resulting rate displacement problem with unknown 6 has been discussed in
detail [14-171 in small and finite strains. The associated expressions of (20) and (21) for an elas-
tic-plastic solid is, [15] :

J 6a .VWudV + Su . ,uu * Su >0 (22)

f (SC1-ar 2).(VSu 1-V6u 2) dV + (/u1-_u2). ' 6,uu-(5ul -Wu1 ) > 0 (23)
V

for all admissible rates of displacement.

However, in the case of multiple plastic potential, the plastic criterion is represented by sev-
eral inequalities and such elimination is not possible. It is thus necessary to retain as principal
unknown the couple q = (u,a).

Another possibility is to eliminate u and keep a as principal unknown following the reduced
formulation (16). Such formulation has been discussed by Maier [21] in plasticity for the study
of the quasi-static evolution and of the asymptotic behaviour of elastic-plastic structures such
as elastic or plastic shake-down. In fracture mechanics, a represents the crack surfaces or crack
lengths, the elimination of displacement u is also necessary. The expressions of (20) or (21)
associated with the reduced formulation (16) are

So. W ,,,. Sn + ba . D,. (Sa,aoA) > 0 (24)

(Wal-Wa) . W,. . (Sal-S6al) + (25)
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(6al-baZ) . ( D,a (6,a,^) - D,a (6a 2 ,aA)) > 0

3.4. Bifurcation and stability analysis
It has been established by Hill [15] that positivity condition (23) is a sufficient condition of

non-bifurcation. Bifurcation analysis in plasticity has been extensively studied [22-241 and most
analyses are based on Hill's result. It is relatively clear that if two different rates exist then
bifurcation occurs eventually. However the possibility of smooth bifurcation, i.e. two responses
with same tangent but different curvatures for example, can also be i'3cussed in the light of
Hill's criterion (23) by considering higher order terms.

In this spirit, conditions (21) or (23) or (25) represent the same criterion of non-bifurcation.

Condition (22) has been proposed by Hill [15] as a sufficient condition of stability of the pre-
sent equilibrium of an elastic-plastic system. It appears as a direct generalization of the well-
known criterion of second variat;i- in elastic buckling. Much discussions have been devoted for
a full justification of Hill's result, cf. [13, 25, 261 in connection with the notion of dynamic
stability i.e. stability in the sense of Lyapunov.

An equilibrium is stable if small perturbations of the system imply only small perturbed
motion near equilibrium. The energy Ep injected into the system by perturbation forces during
time interval [0,t] is :

Ep Pt) = K(t) + -O(t) - 4D(O) with

(26)

t

4D(t) = W(q,A) 4 Jto D(&,q) dt

where K(t) > 0 denotes the kinetic energy and 4)(t) the total energy which is the sum of total
free energy and dissipated energy of the system at time t. In general, the total energy is a path-
dependent functional.

It has been established that [26]

4o(t) - 4ý(0) = 624D L + higher order terms... (27)

with 624 = f OVudV + u.ii', 1 u . d

Thus, if (22) is satisfied then it will be necessary to inject energy to remove the system from
equilibrium. The system will have no natural tendency to change itself without external actions.
The considered equilibrium satisfies certain notions of stability qualified as static stability or
directional stability [13, 19, 26].

To obtain a complete justification of dynamic stability, iL is necessary to derive further esti-
mates on the perturbed motions. References [13, 25] provide ,ume discussions on this difficult
subject. In particular, when dissipation potential D is state-dependent, the loss of symmetry in
the rate response is an important difficulty and the problem is still open to further invc tiga-
tions, However, if D is state-i ndependent, then dynamic stability is also ensured, at least for
discrete systems.

In the same spirit, conditions (20) or (22) or (24) give the same criterion of (static or
directional) stability. When D is state-independent, the considered equilibrium is also dynami-
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cally stable, at least for discrete systems. Stability criterion (20) or (24) has been discussed for

various problems of plasticity, friction, damage, fracture [27, 28].

Note that if D is state-independent, then stability criterion (24) is

SA. 6ar > 0 V 68a admissible, where 6A = W, . 6U. (28)

It is important to underline that bifurcation does not mean exchange of stability as in theclassical context of elasticity, cf. [29, 30]. This result is well understood after Shanley's discus-
sion on the buckling of elastic-plastic columns (Fig. 1) [13, 28]. Condition (20) for example is
less restrictive then (21).

4. ILLUSTRATIONS

4.1 System of in:eracting linear cracks
The study of crack propagation and stability is a classical problem in Fracture Mechanics. In

brittle fracture, when Griffith's criterion for c sck propagation is assumed, a large body of
research work has been dedicated to the two-dimensional problem of one linear crack in plane
strain, plane stress or antiplane shear. Its generalization to a system of interacting linear cracks
or a plane crack of arbitrary shape has been also discussed.

An elastic solid with Griffith cracks is a system undergoing irreversible transformation subse-
quent to crack propagation. Its quasi-static evolution fits perfectly in the framework of time-
independent standard dissipative systems. For example, the quasi-static behaviour of a system
of interacting linear cracks can be compared to the quasi-static behaviour of a descrete elastic
plastic structure. The equations of evolution of these systems are of the same mathematica!
nature.

Consider the following crack propagation problem in brittle fracture, [28, 32-34]. An elastic
solid V with m linear cracks of lengths ti is subjected to a loading path defined by load param-
e'cis V. The quasi-static response t(t) associated with a given loading path )(t) from a given
initial configuration to is discussed. The cracks are assumed to propagate in their direction (no
crack kinking). The response of the solid is reversible if there is no crack propagation. Thecrack lengths t(t) represent clearly a system of geometric parameters describing the irreversible
evolution of this system. It is thus natural to take t as parameters a.

Total free energy of the system is :

W(u,tli) = f w((u)) dV - f Td u dS

Displacement at equilibrium u = u(t,A) can be eliminated and leads to the definition of total
free energy at equilibrium W(t,A) = W(u(t,A),t,A).

Generalized torce A,= - represents the energy release rate G, associated to the i-th

crack length.

In brittle fracture, the Griffith criterion consists in adopting the following crack propagation
law

If ; < G, then 4 0 (no propagation)
If ;•, = G, then % > 0 (possible propagation)
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where G, denotes a critical surface energy. Most often, Gc is a constant of the considered mat-
erial. In some applications however, G, may also be considered as a function of the effective
length of propagation Aý4 = 1i - ý-° in order to take into account the stabilizing effect due to
the near-tip plastic strain. The associated dissipation potential is

D(=,t) G= (Atie) if 4Ž0 , =+oo otherwise

where I denotes the set of possible propagating cracks i.e. such that Ai = G, (Ai.

The rate problem is now described by variational inequality

4Ž0 , iE I and satisfy:
(29)

S+w,i.) 5  f + 0

where 4ý,jj = W,ij + G', bii

The present state (f,A) is stable in the dynamic sense if the following condition is satisfied

8g. I .,.j . 61j > 0 V U * 0 ,6I i_ 0 ,iE_ (30)

The present state (t,A) is not an angular bifurcation state if

Matrix O,ij , (ij E I) is positive-definite. (31)

If GC is a constant, the stability criterion is

- 6G. 61 > 0 for any•Ut # O, 64Ž :O , ie 1 (32)

where SG = - W, .6St.

For example, Fig. 2 represents an elementary system of two cracks simulating the delamina-
tion of laminated composite [35-381. The analytical solution can be constructed and compared to
experimental results [351. It may be interesting to compare also this system to previous Shanley's
model of elastic-plastic column of Fig. I .

4.2 Propagation of a plane crack or a damaged zone
The propagation of a plane crack of arbitrary shape f) in a three-dimensional solid is an

important problem in fracture mechanics. The study of interface cracks in thin films or lami-
nate composites provide in the same spirit similar examples of plane cracks of arbitrary shape,
[35-401. In damage mechanics, some models of brittle damage also lead to the extension of a
damaged zone, [41-461.

These examples are here considered in order to illustrate general results when the irreversible
parameter c is a plane surface fI of boundary S , cf. Fig. 3. The solid is assumed to be elastic.
the potential energy at equilibrium is W(fl),) = W(u(f,A),fl,A) with

W(uOA) = JV W(Ou)) dV - ,fS T(A).u ds

To follow the general description, it is necessary to make the derivation W,O and W,fln b\
techniques of derivation with respect to a domain. It is established that
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W,6 = - G 6fl ds (33)

where G denotes the energy release rate at a point of the moving surface S and represents the
local value of generalized force A associated with the motion of fl.

For a plane crack in a three-dimensional solid, G is the limiting value of local Rice-Eshelby
integrals

G = JO with JO = Lim J(Wni- n.oau,n )dF (34)

For a damage zone, the expression of G is

G = [W - n.a.u,n ] (351

For a delamination crack in a composite plate or a thin film

G = [W - n.N.u,n - n.M.VVw.n] (36)

The second derivative of energy is

6fl. W,nn . 6ul = - 6G + SO.6f1 ds (37)

where SG denotes the variation of G following the motion 6fl of fl and R is the curvature of S.
A symmetric expression of the second derivative can be obtained from the expression of SG in
terms of Su(6fn), cf. 113]. The boundary perturbation problem to obtain 6u(6f0) is a familiar
problem of shape optimization.

The propagation law :

If G(s) 5 GC then tils) = 0 (no propagation) (38)
If G(s) = GC then f(s) _ 0 (possible propagation)

is a&sociated with dissipation potential :

D(6l,fl) = fS G, f}s) ds for f(s) > 0 (39)

When GC is a constant, the total energy depends only on the present state

O(OA) = W(f1,A) + GC J' dV (40)

The rate problem of propagation of the damaged zone fl is given by variational inequality
(19) which can be now written as :

S(s) _ 0 on S, and satisfies V 6fls) 0 0 onS,
(41)

(6fl- ).( ,n 0 wn+ . ) > C

where SC denotes the portion of S such that G(s) = G,
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Stability and bifurcation again can be discussed as in previous chapters. For example, the fol-
lowing proposition is obtained :

The present equilibrium is stable in the dynamic sense if the quadratic form 60 . O,nn . 601
is positive definite on the set of admissible rates 6(s) _> 0 on S,

The stability criterion can also be written as

J - 6G. 60 ds > G for any 6flS Osuch that6ft(s) Ž0 on S . (42)

As an illustration, consider the torsion of a brittle elastic cylinder (461 Fig. 4. If t is the length
of the cylinder and At the torsion angle between the two extreme sections, the displacement u is
given by :

u"=-A yz ,u9 =, xz,u =,"rt(x,y)

where tl(x,y) denotes the warping function. The expression of energy is

W(,i,flAj) = A2 "I g [(17,x - y)2 + (11'y + x)2 I dV

Equilibrium equation W,,, = 0 leads to :

A??=0in V-f0, -= n. y -n xonS

For example, for a cylinder of circular section, these equations give the trivial equilibrium ) =
0.

The dependence di?(dO) can be obtained directly from the derivation of the previous equations
with respect to fl. The following equations are obtained for a circular section

A(dy?)=0in V-41, a(df)n = R dl,,

00

Let df6() = dao + > (daj cosjO+ dbj sin jO)

j=l
be the Fourier expansion of dft. The following result is obtained

O0

d -l ,nn . dn = 2 A2 lue 2rR2 da0
2 

- - [ daj2 + dbj2
j=l

This form is not positive definite on the set ( daj , j = 0,1,.. ) such that the rate dft(O) is non-
negative. Thus, trivial equilibrium is not stable.
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Bifurcated branches

Y

)r. ./'/ with imperfections
T
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Figure 1. Plastic buckling 
XT/

of Shanley's column (a). .
Bifurcation diagrams are given
by force-displacement curves (b) -,

or by plastic strain curves (c).

Figure 2. An elementary system simulating
delamination of composites.
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a 1

Figure 3. Propagation of a plane crack
of arbitrary shape :
(a) in a three-dimensional solid,
(b) in the interfaces of multilayered
composites.

Figure 4. Torsion of a brittle elastic
circular cylinder. Trivial response is
instable under force or displacement control.
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Abstract
A descriptive treatment of light emission from pulsating bubbles (sonoluminescence),

sound generation by rain falling on water and breaking waves, and the propagation of
shock waves in bubbly liquids is presented. The first section contains a brief survey of
some occurrences of bubbles in literature and in the figurative arts. Considerations on
the etymology of the word are presented in the appendix.

1. INTRODUCTION

1Hopo6Avý o 6uOpomro' - Man is a bubble - is an ancient Greek proverb that enjoyed a
singular favor in the western culture as an expression of the caducity and impermanence
of human life. It is used by a number of Latin and Greek authors such as Varro who,
apologizing in the Preface to his De Re Rustica (36 b.c.) that the work is not as polished
as he would like, says that nevertheless, being 80 years old, he should go ahead with its
publication since, "ut dicitur, si est homo bulla, eo magis senex" ("if, as they say, man
is a bubble, all the more so is an old man"). Petronius (1st century a.d.), in a mocking
passage of the Satyricon in which he compares man to inflated walking bags and flies, also
says "nos non pluris sumus quam bullis" ("we are no more than bubbles," 42, 4). Lucian
(117-180) elaborates: "I've thought of a simile to describe human life as a whole ... You
know the bubbles that rise to the surface below a waterfall - those little pockets of air
that combine to produce foam? ... Well, that's what human beings are like. They're
more or less inflated pockets of air ... but sooner or later they're all bound to go pop"
(Charon 19).

The advent of Christianity, with its message of hope and salvation, rendered the idea
less relevant and probably the only pre-Renaissance textual reference to it is in the Lexicon
by the 10th-I lth century Byzantine scholar Suida ("as a bubble immediately disappears
when it is broken, so does the memory of the splendid and powerful upon their death").

However, in the northern post-reformation cultural climate of the 16th and 17th cen-
tury, the metaphor regained its appeal. Most succint - and first - is Erasmus: "Hlomo
bulla" [man (is a) bubble, Adagia, 1508, 11. 1990]. Taverner, in his Proverbs or ada-
gies ... gathered out of the Chiliades of Erasmus (1539) echoes the concept, and so does
sir Thomas Elyot (1545), Golding ("When man seemeth to bee at his best, he is a]-
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Figure 1: Engraving after a 1575 painting by Cornelis Ketel illustrating the Greek proverb
"Man is a buLble." (Reproduced from Ref. 2)

togither nothing else but a bubble blowen togither of vanitie" Psalms xxxix 6, II 155,
1571), Samuell Rowlands ("Poore mortals in my hands are brittle ware, Like Vapor, Bub-
ble, Flower, wither'd Hay," A Terrible Battell betweene the two consumers of the whole
World: Time, and Death, p. 23, 1606) Sir William Browne ("What's he ... whose life's

a bubble, and in length a span; ... ? 'Tis a man," Britannia's Pastorals, Bk. i, song 2, 1.
192, 1613), Simon Wastell (circa 1628), Jeremy Taylor (1651), and several others.

Sir Francis Bacon, in his The World (1629) expresses a more radical point of view:
"The world's a bubble," which Francis Quarles quickly echoes "My soul, what's lighter
than a feather? ... This bubble world. What then this bubble? Nought" (Emblems, Bk.
i, No. 4, published in 1635), and also "The pleasure, honour, wealth of sea and land /
Bring but trouble; / The world itself, and all the world's command / Is but a bubble"
(ibid., Bk. i, No. 6).

Of the 9 times the word "bubble" recurs in Shakespeare's theatre (it is never used
in his poetry), 3 times it similarly suggests volatility and insubstantiality such as "the
bubble of reputation" (As You Like It II, vii, 139), or "A dream of what thou wast ... a
breath, a bubble" (Richard III IV, iv, 83).

The same notion accompanies the word throughout the subsequent English language
literature. William Cowper (The Task, published in 1785, Bk. 111, 1. 175) admonishes:
"Eternity for bubbles proves, at last, / A senseless bargain." Samuel Johnson, in an ironic
passage thus commiserates the fashion-conscious: "Hard is his lot, that here by fortune
plac'd / must ... chase the new-blown bubbles of the day." Alexander Pope is most
impartial: "Who sees with equal eye, as God of all, / a hero perish, or a sparrow fall,
/ atoms or systems into ruin hurled, / and now a bubble burst, and now a world" (An
Essay on Man, 1734, Epis. i, 1. 87) and also: "Like bubbles on the sea of matter borne,/
They rise, they break, and to the sea return" (ibid. Epis. iii, 1. 19). Coleridge thus uses
the metaphor to express a lover's disappointment "I listen for thy voice / Beloved! 't is
not thyne; thou are not here! Then melts the bubble into idle air,/ and wishing without
hope I restlessly despair" (Blossoming of thc Solitary Datc-Tree, st. 4). Ilis contemporary
Sir Walter Scott joins in the lover's desperation: "Like the dew on the mountain,/ Like
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the foam on the river,/ Like the bubble oln the fountain, / Thou art gone, and for ever!"

(The Lady of the Lake, Canto iii, st. 16, 1810). The idea can be followed in Lord Byron:
"The eternal surge of time and tide rolls on, and bears afar our bubbles" (Don Juan,
1824, canto xv, st. 99), and all the way down practically to modern times.

It does not seem that English language poets ever found any word other than trouble
to rhyme with bubble. An early example by Quarles was cited before. Shakespeare's is
probably the most well known one: "Double, double toil and trouble, / fire burn and
cauldron bubble" (Macbeth IV, i, 10). One can also add Dryden: "War, he sung, is toil
and trouble;/ honor but an empty bubble" (Alexander's Feast, or the Power of Music
1. 97), the Australian poet Adam L. Gordon: "Life is mostly froth and bubble; / Two
things stand like stone: / Kindness in another's trouble, / Courage in your own" ( Ye
Weary Wayfarer, f"ytte viii), and even the peripheral Nathaniel Ward, who combines it
with a blatant expression of anti-feminism: "The world is full of care, and much like unto
a bubble;/ Women and care and care and women, and women and care and trouble" ( The
Simple Cobbler of Aggawam, p. 25).

While the metaphor of bubble as volatility is present in other more or less unrelated
traditions, such as in the 12th-13th century Japanese writer Kamo no Chomei ("The flow
of the river is ceaseless and its water never the samne. The bubbles that float in the pools,
now vanishing, now forming, are not of long duration: so in the world are man and his
dwellings" tfojoki -- An Account of my Hui, 1212), or the I 1th century Persian poet Omar
Khayyam ("A deathless Saki draws Khayyams in thousands/ like wine bubbles out of
Creator's bowl," 77te JRubaiyyat st. 49, transl. Graves), it is curiously absent from other
major literatures. The closest the Bible gets to the idea is in Provcrbs, 21: 6 with the
words hevel niddaf - literally "driven vapor." The New American Bible translates: "lie
who makes a fortune by a lying tongue is chasing a bubble over deadly snares," but most
other English versions use different constructs. For example, the King J.ames Bible says:
"The getting of treasures by a lying tongue is a vanity tossed to and fro of them that seek
death." The Septuagint translation is far from literal, with the words 0OTrYvpiaLupaTo
p6-atar, "vain possessions."

Dante's Divina Commcdia abounds with literal bubbles. The violent rulers are pun-
ished by boiling in blood: "lungo la proda del bollor vermiglio, / (love i bolliti facieno alte
strida" [along the brink of the vermilion boiling, / wherein the, boiled were uttering loud
laments (trad. Longfellow), Inferito xii, 1. 101] andi the barrators (i.e., corrupt officials) by
boiling in pitch: "bollia li. giuso una pegola spessa, / (ie 'nviscava la ripa (l'ogni parte./
P' vedea lei, ma non vedea in essa / mai ite le bolle che 'I bollor levava, / e gonfiarsi tutta
e risieder comnpressa." (was boiling down below there a dense pitch / which upon every
side the bank belirned. / I saw it, but I did riot see within it / aught but the bubbles that
the boiling raised, / aid all swll up aul resubside compressed, Inferno xxi, 1. 17), but
the Ilorne bulla id ea is absent. Similarly, I have been unable to fillid any rcference to this
notion in other Italian poets or in the Prench or Spanish literature.

Art interesting and direct offshoot of Erasmus's exhumation of the (Greek proverb can
however be found inr the Netherlands. The Remonstrant minister lUytenbogaert admon-
ished the Stadholder's court in the by now fa riliar terms: "Man is nothing other than a
bubble that children blow in a mussel shell, that glistens in the round ... but which in
an instant (disappears and is gone." Renibrandt painted a portrait of l Jytentogaert (sold
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in July 1992 at Sotheby's for 3.8x106 pounds), and one of Rembrandt's better pupils,
Gerrit Dou, contributed to the tremendously successful iconography of a child blowing a
soap bubble, "an image that reflected both levity and gravity, that floated like childish
reveries and popped as childhood itself had to end" [1]. Many other Dutch painters, such
as Cornelis Ketel (perhaps the earliest one, on the back of a 1575 portrait, see Fig. 1 [2]),
Hendrik Goltzius, Jacques de Gheyn, Jan Miense Molenaer, and Frans Hals have left us
a number of images of children blowing bubbles. It is interesting that, while the ancient
authors had in mind the bubbles briefly floating on water surfaces, from Ketel onward
the reference is always to soap bubbles. This fact is probably also due to the dramatic
improvements in the soap technology intervened since antiquity.

In the mid 1730's, the French painter Jean-Baptiste Simeon Chardin used his five-year
old son as a model for several pictures of a child blowing bubbles and later again an
older boy. By this time, however, the original Calvinist moral embodied in the Vanitas
genre had faded into the background leaving its place to the painter's delight with his
subject and his own ability as we find in several others artists all the way down to the
pre-Raffaellite Sir John Everett Millais, whose painting "Bubbles" was used in some of
the Lever Brothers' commercial advertising for Pear's Soap [1].

Other than its career as a lofty metaphor, the word bubble has also enjoyed another -
and disreputable - one. With reference to the bulla, a spherical gold ornament worn by
the noble Roman children after an Etruscan custom, Juvenal uses the word to fashion an
insult: "senior, bulla dignissime" ("Old man, worthy of a bubble," Satirae 13, 1. 33), and
in old Italian bolla acquaiola ("water bubble") was a disparaging designation. In Latin,
animam ebullire ("to gurgle one's life out," similar to the bubbles that gurgle in the neck
of a flask when the liquid is poured out) was a vulgar expres.'on for "to die" used, among
others, by Seneca and Persius.

In Shakespeare's All's Well That Ends Well the Second Lord Durnaine qualifies Paroles
as "On my life, my lord, a bubble" (III, vi, 6) and goes on to explain: "He's a most notable
coward, an infinite and endless liar, an hourly promise-breaker, the owner of no one good
quality worthy of your lordship's entertainment" (ibid., 10-12). Later, in 17th and 18th
century English, a bubble denoted a "dupe" or gullible person. In the underworld's slang,
"to betray" was indicated as to bubble, with bubble also standing for a piece of information.
Bubble duster was used for "handkerchief" (presumably after the Scottish usage of bubble
for "mucus," whence also bubbly for "snotty, dirty"), and we have the plethora of American
slang expressions bubble brain, bubble head, bubble gummer (for "teen-ager"), bubble dancer
(for "dish washer," in addition to the original reference to a night-club performer), and
others. As a symbol for financial bust. one does not have to wait until the recent crash of
the TIokyo stock exchange to encounter the word. The South Seas Bubble was a scheme
devised in England in 1711 to eliminate the national debt - at the expense of the usual
"bubbles" - and the French were quick to catch on with their similar 1717 Mississippi
Bubble.

In French faire des bulles signifies something like "to make a fuss" and coincer la bultt
or buller is a popular expression for "doing nothing." In Dutch, blaasjcs verkopon and
the corresponding Engli.d, to blow bubbl(;s similarly stand for "to devise baseless theories,
to amuse oneself in a childish manner," and bolla di vento ("wind bubble") recurs in
18th-century Italian ini a siniflar swnse.
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It will be my task in the rest of this paper to try to convince the reader that, in spite
of all of the above, bubbles are "investigatione dignissimae" - most worthy of serious
scientific study.

It should be stressed at the outset that the type of bubbles that will form the object of
this paper differ in a major way from those featured in the previous quotations. Although
the bursting of floating bubbles and the related problem of the stability of foams is a
major scientific and technical problem, here I shall confine myself to gas bubbles more
deeply submerged in a liquid.

The breadth of the subject prevents me from any attempt at exhaustiveness. I will
limit myself to a few recent developments that, hopefully, will give an idea of the vast
range and far-reaching implications of bubble phenomena.

2. SONOLUMINESCENCE

From the mathematical point of view, the richness exhibited by bubble phenomena
may be considered as a direct consequence of the 1/r singularity of the fundamental
solution of Laplace's equation in three-dimensional space. Since bubble dimensions are
often "small" (with respect to other, problem-dependent lengths), this singular behavior
has the opportunity to manifest itself very strongly. With bubbles, one's life is enriched
by the proximity to this singularity.

A very striking phenomenon due precisely to this fact is sonoluminescence, the light
emitted by a sound-irradiated liquid. In an acoustic wave the energy density is of the
order of E = p'2 /pc2 , where p' is the pressure amplitude, p the fluid density, and c the
speed of sound. Since tC- mole density per unit volume is p/M, where M is the molecular
mass, the corresponding energy per molecule is (M/p)E/NA, where NA is Avogadro's
number. For a fairly intense pressure wave in water water, with p' , 1 bar, this amounts
to approximately 10' eV per molecule, which is of the order of 10'- times smaller than
the energy of low-cV radiation. The appearance of such radiation therefore implies that
a mechanism exists to amplify the energy density by a factor of 109.

First discovered in the late 20's, the effect prompted a number of more or less fanciful
speculations as to its origin which subsequent research has put to rest - to some extent
[3]. The current understanding is that sonoluminexcence is due to the dissociation and
recombination of gaseous molecules contained in bubbles that pulsate in a strongly non-
linear fashion under the action of the sound field. It is the 1/r singularity of the potential
for the associated radial motion of the liquid that is responsible for the effect.

A theory of radial bubble pulsations and sonoluminescence is given elsewhere [4]. For
purposes of illustration I reproduce here in Fig. 2 a graph of the internal pressure (solid
line) and center temperature (dashed line) for an argon bubble in water subject to a 0.93
bar sound field. The bubble radius is 26 prm and the sound frequency 21 kllz. Since the
radius of a resonant bubble at this frequency would be 150 um, the bubble is driven at
about one fifth of its resonance frequency. A parallel chemical kinetics calculation [4],
the results of which are shown in Fig. 3, indicates that a substantial number of hydroxyl
radicals are produced in these conditions by collisional dissociation of the vapor molecules.
This prediction is in agreeme'nlt with the experimental fact that liquids saturated with
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Figure 2: Pressure (dashed line) and center temperature (solid line) during steady oscil-
lations of a 26 tum-radius argo, bubble driven at 21 kHz and 0.93 bar acoustic pressure
amplitude

Figure 3: Number of hydroxyl radicals as a function of time during the steady oscillations
of the argon bubble of the previous figure (s(-* I line), and an equal one containing neon
(dashed line).

noble gases emit a strong 310 nm-line corresponding to a transition of the excited OH
radical to its ground state [5]. Heat transport inside the bubble has a strong effect on this
process. Neon ! as a thermal conductivity 3-4 times that of argon, and the corresponding
OH number, shown in Fig. 3 by the dashed line, is much smaller than for the argon
case. It should be realized that, during the period of peak temperature, the temperature
gradient inside the bubble is of the order of 10' K/mm. Clearly, this is only possible due
to the very short duration of the peak temperature, for this example of the order of 300
nsec.

However short, this time interval is many orders of magnitude longer than the duration
of the sonoluminescence light flashes, which is currently estimated below 50 psec [6]. This
extremely brief duration is perhaps the most baffling aspect of sonoluminescence. A
possible explanation could be the following. It is well known since Wood's experiments
in 1904 that gases are very opaque to radiation corresponding to their emission bands. It
is for this reason, for example, that we can only observe the outermost layer of the sun
as the light emitted by the inner regions is absorbed by the surrounding layers. As the
bubble compresses, the temperature is highest at the center and, when a certain threshold
is exceeded, H120 molecules begin to dissociate there. A fraction of their is excited and
radiates upon decaying to the ground level. Very soon afterward, the temperature in
the next layer of gas exceeds the Oil-production threshold, and these radicals are now
available to absorb the radiation still coming from the center of the bubble. For the
case considered previously our computations indicate that it takes about 100 psec for the
temperature "wave" to travel to a distance of 0.01 radii from the origin center.

To explain why no light is emitted from the outer layer, one may note that, by symn-
metry, the temperature gradient must vanish at the bubble center (another consequence
of the presence of a singularity !). Hlence, the temperature in the central region of the
bubble is riuch more homogeneotus than in the surrounding layers. In particular, in the
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Figure 4: Successive shapes of a 20 ILm gas bubble driven at 20 kIlz by a 1 bar-amplitude
sound field switched on at t = 0. The time unit is 10.5 usec. Initially the bubble is located
1/4 wavelength above the antinode of the sound field.

outermost layer where the temperature barely exceeds the threshold, virtually all the
OH's are produced in the ground state and therefore can absorb, but not emit, radiation.
Clearly, radiationless transitions to the ground state must also occur, and these are ren-
dered probable by the high number density of the molecules (of the order of 10' 8 /cm 3 for

the example of Figs. 2 and 3).
With numbers of this order of magnitude involved, one might wonder whether one

could get "cold fusion" to occur in a liquid subjected to a sufficiently intense sound field
and, indeed, the idea for such a reactor has been patented [7]. Unfortunately, there is a
snag: the spherical shape of an oscillating bubble has a strong tendency to instability,
so that any attempt to drive the bubble too strongly will lead to its shattering rather
than to increased temperatures and pressures. This instability is similar to the well-
known Rayleigh-Taylor one as, when the pressure in the bubble rises, the liquid is being
accelerated upon by a lighter fluid, the gas.

We present the results of a calculation that illustrates this instability in Fig. 4. The
bubble here has a radius of 20 pm and is forced by a 1-bar, 20-kllz plane standing acoustic
wave. In spite of the fact that the wavelength is nearly 4,000 times larger than the bub-
ble radius, the non-zero pressure gradient at the bubble location (1/4 wavelength above
the antinode) induces a perturbation that, as can be seen, is strongly amplified during
the compression phase of the oscillations. This calculation ignores various dissipative
processes and therefore it probably overestimates somewhat the magnitude of the effect.
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Figure 5: Bubble entrapment (last. frame) by a 2.86 mam-diameter water drop impacting
a water surface at 2 m/sec (first frame). The free surface of the liquid is shaded. Times
are in msec.

3. SOUND GENERATION

A completely different range of phenomena in which bubbles are of major importance
is sound production in liquids. The flushing of a toilet or simply the filling of a gla-ss
usually make a far louder noise than water flowing in the pipes of a house. The reason
is that a homogeneous liquid emits sound due to turbulence, which is a quadidpole-
type source, while bubbles behave as monopole sources. To illustrate these processes,
I will briefly discuss two bubblV-related mechanisms responsible for the production of
oceanic underwater noise. Since sound propagates over great distances in the ocean,
these mechanisms are of importance, among other reasons, as diagnostic tools for oceania
conditions and processes.

An interesting example is rain noise that, at low wind speeds, is experimentally found
to possess a spectrum - strongly peaked at about 14 kllz - very nearly independent of rain
drop size distribution and rain intensity. This seeming "universality" of the rain noise
spectral shape has puzzled early investigators until the key was identified in the fluid
dynamics of bubble production by drops striking a free surface. This work is discussed at
length elsewhere [8]. Briefly, it is found that drops striking a liquid surface make very little
noise unless a bubble is entrained in the liquid. The results of a calculation illustrating
this process are presented in Fig. 5. Bubble entrapment occurs only in a narrow range
of drop sizes and impact velocities which, for impacts at terminal velocity, corresponds
to diameters between about 0.8 and 1.1 mim. Since drops in this size range are always
present, and since other drops are acoustically irrelevant, all rains sound very much alike.

Anyone who has listened to a wave breaking on the shore is quite aware that a sub-
stantial amount of noise exists in the ocean also at frequencies much lower than the 14-20
kllz characteristic of rain noise. As a matter of fact, measurements indicate a substantial
amount of wind-dependent (and therefore not man-made) oceanic noise at frequencies of
a few hundred lIz and lower [9]. The linear natural frequency of oscillation of a bubble



having an equilibrium radius a is, approximately [101,

I= ý3xpo(1

where po is the equilibrium internal pressure in the bubble and I < K < "r, with "t the ratio
of the specific heats, is a polytropic index dependent in a complex way on the frequency.
According to this formula, for a bubble to pulsate at 100 llz, the diameter should be
6-7 cm. It is very unlikely that such large bubbles are produced in substantial numbers
by waves that, in the open ocean, break in a spilling rather than the plunging mode
characteristic of near-shore breaking. Instead, there are substantial reasons to believe
that this low-frequency noise is originated by the collcclivw oscillations of the bubblh
clouds produced by breaking waves [11,12]. A simple argument can be p)resented in the
following terms. At low frequencies, the speed of sound c, in a liquid containing gas
bubbles is given approximately by

2 •:P0
- Kpo (2)

where 3i = V/G/V is the fraction of the mixture volume V occupied by the gas. The
simplest way to derive this expression is to note tL10t, if the liquid cornmpressibility is
neglected, a change in the mixture density p., can only be due to a change in the volume
VG occupied by the gas sc that PSm/,P,= -6•VG/V. On the other hand, if the bubbles
compress polytropically, • 1 G/IV = -Kbp/po and (2) readily follows upon identifying c',2
with ,p/ 6 p,. I

The striking fact is that already at very small volume fractions C,, is much lower than
c. For instance, for /3 = 1%, and atmospheric pressure, one finds cm • 100 m/sec to be
compared with c = 1500 ni/scc in pure water. Thus, in view of the great disparity between
c and c,m a bubble cloud can, to a first approximation, be regarded as a compressible
medium in a rigid enclosure. The lowest normal mode of oscillation of the cloud has
therefore a frequency wmzn of the order of c,/L, where L is the linear scale of the cloud,
so that, from (1) and (2), one finds

•amin 1 (3)
WO, f/6N/3 '

where N is the number of bubbles in the cloud. This result shows that 1,000 1-ram
bubbles - which individually have a natural frequency of about 3 kliz- would give rise to
a cloud oscillating at, about 300 Ilz. Since the liquid surrounding the cloud is not actually
incompressible, the cloud eigenmodes' energy leaks out and is radiated to great distances.

An indirect quantitative confirmation of this process has been obtained by using an
"artificial" cloud in the laboratory [l13]. If air is bled out of a disk-shaped bank of needles
at the bottom of a tank, a hydrophone picks up a signal similar to that shown in Fig. 6.
The peaks correspond to eigenfrequencies of the system and can be calculated as a check
of the theory. Some results of this comparison are shown in Fig. 7.

'The result (2) fails to converge to the correct limit as,3 -- 0 since the liquid compressibility
has been neglected. It canlbe shown that this is justified at. gas volume fractions above about
10-%.



364

-30 V V

I -<:

0 40) q1 (I

Frequenct I-Hz)

Figure 6: Frequency spectrum recorded in a laboratory tank in which a steady cylindrical
column of bubbles is maintained by air injection at the bottom. Note the many resonances
of the system. (From Nicholas et at., Ref. 13.)

Figure 7: Comparison between theory and experiment for the frequencies of the normal
modes shown in the previous figure. The horizontal scale is the gas volume fraction. The
differences at the higher frequencies are due to the proximity of the resonance frequency
of the individual bubbles. (From Nicholas et al., Ref. 13.)

The agreement deteriorates at the lower volume fractions due to the proximity of the
resonance frequency of the individual bubbles, approximately 1.9 kIiz in this case [14].

It is remarkable that the only source of excitation for this system is the "pinch-off"
noise emitted by the bubbles as they leave the needles. A computed example of this
process is shown in Fig. 8, where the compression of the bubble as it detaches from
the needle is quite clear. In a breaking wave, the processes giving rise to the formation
of the bubbles are far more violent and a much higher noise emission level can be expected.

4. SHOCK WAVES IN BUBBLY LIQUIDS

The last example of the previous section provides an instance in which it is not possible
nor desirable to account in detail for the behavior of the individual bubbles, but it is more
efficient to treat the liquid-gas mixture as a continuum endowed with a complex internal
structure. The area of gas-liquid multi-phase flows is one of great industrial relevance
which is currently the object of intense research efforts.

After the case of linear pressure waves touched upon in the previous section, perhaps
the simplest case to consider is that of shock waves propagating in a dilute mixture of
bubbles and liquid. Such waves may originate e.g. in pipelines during operational tran-
sients. Experiment [15] shows that the steady profile of weak waves is either completely
smooth (Fig. 9, left) or smooth at the wave front and "rippled" in the middle (Fig. 9,
right). Our recent study [16] shows that this fact is due to the peculiar nature of the
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Figure 8: Successive shapes of a bubble blown out of a I mm-diameter needle.
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Figure 9: Examples of pressure profiles in steady shock waves in a bubbly liquid. At
left is a completely smooth waveform, at right an oscillating one. The dashed line is the
effective polytropic index along the wave. (From Ref. 16).
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dispersion relation for pressure waves in a bubbly liquid. (,lonsider first linear waves at
very low frequency. As the bubbles are compressed, the gas temperature has time to
equilibrate with that of the surrounding liquid, the process is isothermal and, in Eq. (2).

S= 1. As the frequency increases, complete temperature equilibration is not possible and
* becomes greater than I so that the speed of sound increases. At still higher frequencies
the natural frequency of the bubbles is approached, it is easier and easier to compress
them, and physical processes not accounted for in Eq. (2) greatly decrease the speed of
sound. The phase velocity of the waves possesses therefore a mild maximum nbelow the
resonance frequency of the bubbles. This feature is clear in Fig. 10 where the solid lines
show the dispersion relations corresponding to the region near the front and the back of
the waves of Figs. 9. The d(lshed lines are the group velocity. The speed U of the shock
itself, shown by the horizontal dash-and-dot lines, is given by

U2 i± - (4)
U P2 P P.l

where the subscripts a and b refer to conditions ahead and behind the wave respectively.
The two panels of Fig. 10 exhibit a major quUlitative differenre. In the case of the s,,,' t,
shock, there is a substantial range of frequencies where monochromatic waves near the
front and the back propagate faster than the shock itself: any perturbation falling in these
frequency ranges will therefore propagate away from the shock. The shock is only faster
than very low-frequency, long-wavelength perturbations -- which exceed the scale of the
-hock and therefore are not generated -- or than high-frequency, highly damped ones. In
this situation the integrity of the shock can only be maintained by nonlinear effects and
the profile is smooth. In the case of the oscillating shock, however, the shock speed is
faster than that of any, wave near its front, which is therefore steep and smooth. In the
intermediate shock region, however, waves having a speed comparable with that of the
shock are possible, and it is these waves that remain "trapped" in the shock and confer
to it the oscillatory nature seen in the Fig. 10.

5. CONCLUSIONS

Reasons of space have only allowed me to give the briefest indication of some cur-
rent problems in the mechanics of bubbles and bubbly liquids. It has not been possible
to even mention many important topics such as cavitation - both flow and acoustic -
bubble nucleation, break-up, and coalescence, air entrainment in flowing liquids, biomed-
ical applications, micro-gravity manufacturing, boiling heat transfer, and many others.
Gas-liquid multiphase flows are of great relevance e.g. in the power generation and oil
industries and very poorly understood. One can expect theoretical as well as experimental
challanges in these areas for many years to come.

In conclusion I would like to return for a moment to the single pulsating bubble with
an idea that is perhaps far-fetched but nevertheless intriguing, It is possible that here we
shall find a "power plant" for the niicro-robots of the future. It is not inconceivable that
such machines could be used e.g. inside the human body where power from any source
other than acoustic would be impractical.
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Figure 10: Dispersion relations for the two shock waves of Fig. 9.The horizontal line is the
wave velocity, the solid lines the phase velocity and the dashed line, the group velocity.
The upper pair of curves is for conditions at the back of the wave, and the lower pair for
conditions near the front of the wave. (From Ref. 16.)
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APPENDIX - AN ETYMOLOGICAL NOTE

According to Ref. [17], the Greek word for bubble, iroy¢6Avý, is related through an
intermediate variant 7ro/y06 to 2rgipLot which has the basic meaning of "something that
is created by inflating or blowing." Interestingly one of the etymologies offered for the
Latin bulla is from the root 00A- (whence e.g. phallus), indicating "any object swelling
up" t181. However, there does not seem to be any consensus on this point as other authors
indicate a derivation from the sanskrit belih, which denotes the external female genitals
[19]. Here the connection might be through the idea of "rotundity." Another Greek word
sometimes juxtaposed might be floA/36, "bulb" [17].

Be that as it may, it seems very likely that onomatopoeic elements have also shaped
the word, as we find the basic sound in unrelated languages such as Sumerian (bubul),
Accadian (bubutu), Hlindi (bud-bud, bull-bula), Bengali (bud-bud), Cebuano-Visayan (buld),
ard others.

As for the English bubble and its ancestors boble, bobel, bubbul, the onomatopeic ele-
ment is probably dominant as also indicated by the closeness with burble [20]. Parallel
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substantives it other Teuitoini( laiganuages a(re e'g. the Sw(edish b tbla, the Daliish bob/bt,

and the dialectal (Geriman words bobbel, bubbtl. The current German word for "bubble" is

blase, similar to the D)utch blaas, "bladder,"
All the modern Roomance languages have a word deriving from the Latin bulla, al-

though sometimes the meaning of "bubble" has beeni lost, An example is Spanish where
the word bula now primarily denotes the seal apposed to Papal documents, but was in
the past used for burbuja, that is the modern word for "bubble."
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Abstract
In structural wave propagation the characteristic wavelengths of the propagating pulse

are chosen to be sufficiently large with respect to the thickness of the structure. Narrow-
band transient structural waves are particularly well-suited for example to study and
quantitatively evaluate global ("homogenized") dynamical properties of sandwich or fiber-
reinforced composite structures such as laminates, tubes etc. The waves are generated in
various membrane or flexural modes by piezo-electric transducers excited at narrow fre-
quency bands well below their resonant frequencies to avoid coupling and thus allow per-
fect control of the pulse shape. The theoretical models used to interpret and evaluate the
experimental results obtained in sandwich and composite structures must be carefully de-
veloped in order to predict accurately the features following from the interaction of the
various geometric, dynamic and material scales. A few experimental results obtained in
recent years in our laboratory are discussed in conjunction with the corresponding theoret-
ical models. Part of these results are also used to interpret dynamical phenomena ob-
served during the propagation of fast-running cracks in cross-ply laminates.

1. TERMINOLOGY AND MOTIVATION

Consider a transient wave in the amplitude range of linear elasticity in a thin structure
such as a beam, plate or shell . The time function is supposed to be of narrow-band type
and can be generated by applying a suitable window (for example a translated cosine-
window of relatively large duration) on a sine- or cosine-function of a given frequency. In
the amplitude-frequency spectrum of this function the non-vanishing amplitudes will lie for
all practical purposes between two frequency limits. The higher limit fnax will correspond
in the structure to a wavelength X. which we call the characteristic wavelength of the
travelling pu!se. In a structural wave the ratio of the largest thickness H of the structure to
the characteristic wavelength of the propagating pulse (called "dynamic parameter") is
supposed to be sufficiently small, i.e.

H/L <<I
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The stress- and strain-distributions generated by such a wave across the thickness of the
structure are stationary and usually quite simple mathematical functions of the thickness
coordinate. The wave travels then in membrane, torsional orflexural modes, with possible
coupliz7 between them. Furthermore, in fiber-reinforced composite structures, due to the
much !,,wer scale of the fiber diameter or of the ply thickness, most of the important fea-
tur.,, of structural wave propagation can be interpreted by assuming homogeneous mate-
Alal behaviour,

Per definition in anisotropic materials with orthotropic symmetry three mutually per-
pendicular principal axes of material symmetry can be associated with each material point.
With respect to structural waves structures may behave orthotropically either because
the material itself is orthotropic or because a combination of geometric features and mate-
rial distribution through the corss-section of the structure generate "globally" non-isotro-
pic structural behaviour in spite of the fact that the material itself is isotropic. An interest-
ing case of such "structural non-isotropy" has been studied in f 11, where a flexural wave
in an aluminum beam with nearly perfect circular cross-section (measured deviations from
a circular boundary less then 0.05 %) "rotated" most probably because of an extremely
slight inhomogeneity in the distribution of the axial modulus of elasticity E through the
cross-section (largest difference in the weighted average of the modulus in two perpendi-
cular directions of the order of 1 %). The material itself was shown to behave istoropically
within the accuracy of the measurements.

In isotropic materials the ratio of the shear modulus G to the tensile modulus F

EM :=G/E

which will be called "material parameter" in the following has to be larger than 0.33.for
reasons of material stability. Of course in anisotropic structures such as fiber-reinforced
laminates or filament-wound tubes this material parameter may reach much lower values
(for example 0.01). Also in sandwich structures with a soft isotropic core and stiff
isotropic facings this parameter (determined from equivalent stiffness values) is usually
quite low. In our laboratory sandwich beams and plates with cM as low as 0.0004 have
been tested [2]. Thus from the point of view of effects associated with low values of the
material parameter EM (for example transverse shear coupling) sandwich structures may
behave non-isotropically even though the material of the components is isotropic.

'Our experimental research activity on wave propagation in non-isotropic structures
which started about 15 years ago was first motivated by the need to reach a better under-
standing of coupling phenomena which are characteristic of non-isotropic behaviour. Thus
to study mode-coupling in non-principal directions we investigated flexural waves in unidi-
rectionally reinforced plates [31 or in-plane waves in cross-ply laminates 14, 171. To study
coupling phenomena related to low values of EM we generated flexural waves in unidirec-
tionally reinforced beams [5], in sandwich-plates with extremely soft cores [21 or axisym-
metric waves in filament-wound tubes 16, 4]. These experimental investigations were
interpreted by developing for each case approfriate theoretical models based on a careful
asymptotic analysis of the basic relations of three-dimensional linear elasticity. Approxi-
mations based on a priori assumptions were avoided since in all cases the presence of at
least two competing small parameters, namely EX, EM and of some other small geometric
ratios (as in sandwich plates or filament-wound tubes) rendered the choice of physically
justified simplifying assumptions without a straightforward ordering scheme rather diffi-
cult. With a more thorough knowledge of the above-mentioned coupling phenomena we
were also able to determine structural properties such as flexural stiffnesses and various



moduli of elasticity with quite high degrees of accuracy 171. Our experimental and theoreti-
cal methods of analysis can also be used to detect flaws or structural errors which affect
local stiffness values to some extent, even though the characteristic wavelengihs of the
generated pulses may be much larger than the size of the flaws. Especially flexural waves
which by nature are particularly sensitive to changes in thickness are well suited to detect
flaws such as delaminations or to check for possible errors in ply combinations, filament-
wounding etc. Details related to current research on applications to non destructive
detection will be reported elsewhere. In the following I will present a review of the main
features related to the experimental and theoretical work briefly mentioned above,
together with some unpublished recent results.

2. SHEAR COUPLING IN FLEXURAL WAVES

2.1 Unidirectionally reinforced beams
In 181 a theory for flexural waves with large wavelengths in unidirectionally reinforced

beams was elaborated. According to this theory which was derived by asymptotic
analysis of the three-dimensional equations of linear elasticity, the order of magnitude of
the parameter

II := 1 `A(2.1)

determines decisively the propagation characteristics of transverse structural waves in
beams. The following table summarizes the role of the parameter p:

Order of magnitude Degree of anisotropy Nature of the shear coupling

p << I Isotropy, Weak: Be-comes active at the
Weak or moderate anisotropy second step of approximation

p = (i) "Quasi-strong" anisotropy Strong: Becomes active at the
(transitional case) first step of approximation

p >> I Strong anisotropy Sandwich-behaviour

In the transitional case of "quasi-strong" anisotropy with p = 0 (M) the usual assunmp-
tion that cross-sections remain plane after deformation does not hold since the transverse
shear strains become so large that they reach the magnitude of the axial strains due to
bending. Because of this strong shear coupling, the variations of the axial displacements
along the axis of the beam are connected with their variations through the cross section.
The axial strains and stresses are then in general nonlinearly distributed through the
cross-section. For sinusoidal waves of a given amplitude of transverse displacement the
amplitudes of distributions of axial strain and stress are illustrated in Fig. I for a rcCtan-
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gular cross-section. In [81 distributions for a circular cross-section were also given. As p
takes larger values, the nonlinearity of the strain and stress distribution becomes also
more pronounced. As one reaches values of p much larger than 1, axial strains and
stresses concentrate on the parts of the cross-section which are near the lateral surfaces
of the beam. A core of finite thickness frees itself almost completely of axial stresses and
carries only a constantly distributed shear stress (fig. 2). Thus thu unidirectionally rein-
forced beam behaves like a "natural" ideal sandwich structure.

In [8] the dispersion relation

C := (11/2 G (2.21)

(c: phase velocity of flexural waves, p: specific mass per unit volume) was derived for the
transitional case of "quasi-strong" anisotropy in a beam with rectangular cross-section.
Since this case corresponds to a "distinguished limit" in the asymptotic sense, it can also
be used in the case of moderate anistropy by expanding for small p. One obtains
eventually

c:=-P (I+ 2 2p)1/2 =fs--J -E fs= l+k -E (2.3)

10 G

p= 1 3 5 p =20

-6 -4 -2 2-20 -10 2M

... 2M

.......-H /2 .-..

Fig. 1: Distribution of normal and shear Fig. 2: Sandwich behaviour for strong
stress through the cross-section for p = 0 (1) anisotropy with p >> 1

(k = 2 •r / ?• "wave number"). This relation has also been derived directly in 171 for a
plane bending wave travelling in one of the principal directions of structural symmetry in
an orthotropic plate. It includes with the factor fs the correction for shear deformation but
excludes the effect of rotary inertia which for large ratios E/G (for example larger than 10

- • . . m0 7 1I I



as in most applications to fiber-reinforced structures) becomes indeed negligible. In 171
we showed how this relation could be conveniently used to measure "global" values of F
and G in the principal directions of an onhotropic plate in bending mode (see also Section
4 of the present paper).

Experimental work to check the dispersion relations for phase velocities as a function
of frequency or wave number calculated in [81 was performed by Kolsky and Mosquera 191
who used beams with a rubber matrix reinforced by steel wires. They cover.::! the range of
strong anisotropy, changed the value of the parameter p by varying the fretqucncy and ob-
tained excellent agreement with the theoretical predictions. Experimental work was also
performed by Goodbread and myself in our laboratory using beams with an Araldite matrix
reinforced by Kevlar 49 fibers at 60 volume %. Results were briefly presented at ICTAM,
Toronto in 1980 and published much later in [51. To vary the parameter p we investigated
not only various frequencies but tried also to change the material parameter EM by heating
the beam in a constant temperature oven. Comparing the phase spectra of the measured
transient pulses at two different locations we obtained the flexural phase velocities both
as a function of temperature and frequency.and compared them with theoretical predictions
using values of tensile and shear moduli determined in independent resonance experi-
ments. The results given in some detail in [51 showed excellent agreement between the-
ory and experiment.

2.2 Sandwich plates
To study strong shear coupling further M. Koller built in our laboratory a sandwich

plate exhibiting ideal sandwich structural behaviour in flexure. In this case only the facings
should contribute to the bending moment and only the core should carry the shear force.
Such behaviour is assumed a priori in most of the theoretical work on sandwich structures
(see for example [ 10, 111). Our study [21 was aimed at determining the limits of applica-
bility of the idealized theoretical models. Aluminum or glass facings of thickness h = 0.5
mm were combined with a polyurethan or polyethylen core of thickness 2H = 3 mm to ob-
tain a sandwich plate with the desired characteristics. The ratio of the shear modulus of
the core Gc to the tensile modulus Ef of the facings was in the range 0.26 - 1.3 103. Koller
used the plates with glass facings to study impact by steel balls of various sizes (radius
varying from I to 10 mm) in the elastic range [121. The peculiarities of sandwich behaviour
as compared to an isotropic structure can also be demonstrated under static loading. Fig.
3 illustrates two examples of the differences in static response of sandwich beams as
compared to the isotropic counterparts. The original photographs of the actual experiments
are published in 121. Koller showed in his impact experiments that whereas in a thin iso-
tropic plate the cross-sections in the impact zone are translated rapidly and remain sta-
tionary until waves are reflected from the edges of the plate, in a sandwich plate, due to
the shear compliance of the core which acts like a spring, the cross-sections bounce back
after reaching a maximum displacement value and remain stationary at a lower amplitude
[121.

The theoretical part of olr study in 131 was developed by asymptotic analysis of the
three dimensional basic rela. is of linear elasticity for isotropic behaviour of both facings
and core. Four competing small dimensionless parameters

C._Pc G
CX ._ H + hb , Eh := -b-_ E O := Pc , FM = G

S~H ' -P- ':Ef
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sandwich:

Fig. 3: Differences in the static behaviour of a sandwich beam and of its isotropic
counterpart

and their relation to each other had to be considered (Pc, pf : specific mass of the core or
facings). Provided that £M is sufficiently small with respect to (Eh) 3 , three wavelengths of
decreasing orders of magnitude in the range of structural wavelengths (large compared to
the total thickness 2H + 2h of the plate) can be defined. The role of these wavelengths
with respect to the characteristic wavelength of the propagating pulse is characterized in
the table below.

Characteristic wavelength Main dynamic contribution Main dynamic contribution
X comparable with of the facings besides inertia of the core besides inertia

= 2 n H •Ef h in-planeforces throughX, =2rH - kIn-pan dfomaio Transverse shear force
AG H in-plane deformation

•.z : 2 r H VE,ý h- 2
X2 : H ofHq2 Only second order values Transverse shear force

G, H22

2H Ef h3  Bending moments through

X,3 := 2 nH ,,Transverse shear force
GC H 3  flexural deformation

For wavelengths comparable with X, the dispersion behaviour (phase velocity as a
function of frequency or reciprocal wavelength) is similar to the corresponding behaviour of
a fully isotropic homogeneous plate but is strongly influenced by shear deformation even
at relatively low frequencies. For wavelengths comparable with X2 the phase velocity
takes values in the vicinity of the shear wave velocity of the core corrected by the inertia
of the facings. If the wavelength is comparable with ?.3 (which for EM sufficiently large



with respect to (eh) 3 is still larger than the total thickness of the plate) the flexural be-
haviour of the sandwich plate is dictated by the flexural properties of the facings which be-
have like thin plates on an elastic foundation with appreciable shear stiffness and negligi-
ble compressive or tensile stiffness. As reported in [3] the theoretically predicted disper-
sion curve in the latter range of wavelengths comparable with X3 has been checked exper-
imentally for sandwich plates designed to fulfill the requirements on the four small param-
eters mentioned above. Radially propagating flexural waves were generated with the help
of a piezoelectric transducer glued on one of the facing surfaces.sufficiently far from the
edges to avoid interferences with reflections during the recording of the transient pulse.
The phase velocity was obtained as a function of frequency by comparing the phase spec-
tra of the displacements at two or more radial locations on the plate. The transient signals
were measured with laser-interferometry, fed into a transient recorder and Fourier-ana-
lyzed subsequently. The fit between theoretical and experimental results was remarkable.
since all parameters used in the theoretical predictions (Ef, Go, etc) were measured in in-
dependent experiments. The results are illustrated in Fig. 4. A less spectacular but still
satisfactory agreement between theory and experiment was obtained in the elastic impact
study carried out by Koller [121.

250 Phase velocity h
[mn/sf . h mm, glass

2H = 8 mm, 950 Adiprene
200 . . . .. h = m m, glass ..............

G= 9.0 107 N/m 2 at 4.5 kHz

100 .- .............. .............. ...............-....... .......... .......... T heory, 2nd approxim ation

o o : Experiments

50 --- _X3 ----------

00.05 0.10

(1.3) (3.4) (frequency [kHz])

Fig. 4: Theoretical and experimental dispersion curves for sandwich plates

Current research work still in progress concentrates on certain aspects of damage
caused on plates with both isotropic and fiber-reinforced facings. In another current
research project possibilities of non-destructive detection of damage in sandwich plates
are being investigated.
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3. FLEXURAL WAVES IN UNIDIRECTIONALLY REINFORCED PLATES

In the sandwich plates mentioned in the previous section, since both the facings and
the core were isotropic, the sinusoidal "components" of the flexural waves propagated in
the radial direction generating phase cylinders of circular shape (phase cylinder. cylindrical
surface of constant phase, its axis is perpendicular to the plate and its intersection with
the plate surface is a phase curve). Thus the phase velocities were independent of the ra-
dial direction along which they were measured. In a unidirectionally fiber-reinforced com-
posite plate loaded in the same manner with the help of a transducer mounted on one of its
two outer surfaces the phase of a sinusoidal component is also expected to be constant
along cylindrical surfaces but of course these have no circular symmetry (Fig. 5).

H t.7 mm

Fig. 5: Flexural waves generated by a transducer in a unidirectionally fiber-reinforced
plate

The main purpose of the study described in [3] and [131 was to investigate the shape
of the phase curves and to determine the dependence of the radial phase velocity on the
angle (p with respect to the fiber direction x1. A unidirectionally reinforced laminate made
out of 5 plies of 0.14 mm thickness of carbon-reinforced epoxy was subjected to transverse
loading with the help of a piezoelectric transducer. The transient signal was recorded at
various radial directions and distances from the transducer. From the difference of the
phase spectra of the measured signal at two radial locations with the same angle with re-
spect to the fiber direction the wavelength and hence the radial phase velocity was de-
termined as a function of frequency and angle of propagation. My former doctoral student
A. Kreis who performed the experiments concentrated on the frequency value f = 29.3 kHz
and measured for example in the fiber direction the wavelength X, = 20.3 mm and in the di-
rection perpendicular to the fibers )12 = 10.7 mm. Since X, was about 30 times and k2
about 15 times larger than the total thickness H = 0.71 mm of the plate, shear deformation
effects were judged to be too small to affect the behaviour at the mentioned frequency and
a simple first order theory was used to derive the governing differential equation for the
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transverse displacement w (t, x1, x2). The following equation was derived by asymploic
analysis of the three dimensional basic equations (derivatives are indicated as usual with
a comma, the symbols for the various moduli of elasticity are self-explanatory):

E1 w,111 + 2 Nv12 E2 + 2 G 12 ) W,112 2 + E2 W,2222 + 12 w,tt = 0
H 2

For sinusoidal time functions of circular frequency w and with the coordinate transforma-
tions

x := X 12E pH •11/4" ' Y := X2 [ j1/4

1El H2 IE 2 H 2

the differential equation above was simplified to obtain

W,xxxx + W,yyyy + 2 5 •7,xxyy = W (3.1)

for the amplitude function w (x,y) where

E: E2 v 12 + 2 G12

S-E1 E2

is supposed to be small and was evaluated a posteriori on the basis of the experimental
results as 0.29.

Kreis tried to solve (3.1) for the case of concentrated load by Fourier-transform and
contour-integration to perform the inverse transform. Some of the integrals resulting from
this approach had to be evaluated numerically. The solution of (3.1) contains not only the
cylindrical wave (without circular symmetry) generated by the transducer but also the sta-
tionary motion whose amplitude decays strongly with increasing distance from the trans-
ducer and whose role is to supply to the travelling wave the appropriate rhythm of ex-
change of potential and kinetic energy, thus allowing propagation of the energy introduced
by the concentrated load. Since all measurements were performed at a sufficient distance
from the transducer where for all practical purposes the stationary motion had fully de-
cayed, only the part of the solution which describes the propagating wave is really of inter-
est in the evaluation of the experimental data. To obtain this part A. Kreis used the me-
thod of stationary phase on the expressions for the inverse Fourier-transform t31. In a dif-
ferent approach I tried recently to obtain a physically meaningful approximate solution for
the differential equation (3.1) by direct asymptotic analysis, assuming that the coordi-
nates x, y correspond to "large" radial distances from the transducer (distances more than
three times larger than the diameter of the transducer). The following procedure proved to
be quite efficient:

Set

w (x,y)= exp fu (x,y)l

in the differential equation (3.1) and obtain a differential equation of the form

D, lul + D2 Mu] + D3 [u) + D4 1u] = 1 (3.2)
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where Dk [.] are nonlinear differential operators involving derivatives of order k = 1, 2, 3
or 4. It can be shown that for large distances from the origin (0,0), in a first step of appro-
ximation, the terms with the higher order differential operators can be neglected and the
differential equation is reduced to

D1 [ul := (U,x) 4 + (U,y) 4 + 2 8 (U,x) 2 (U,y) 2  1

For 8 = 0 its exact solution corresponding to our problem is

uO (x,y) = - i fo (x,y) =- i [x4/3 + y4 31314

For small 8 > 0 the approximate solution

U (x,y)=-if (x,y)=-i 1(1 +282) (x4r3 + y/3)- 2-8 x-2 /3 y2;3P3 14 + 0 (63) (3.3)
9 3

can easily be derived by regular asymptotic expansion in terms of 8. Thus the phase
curves of the propagating wave are given by f (x,y) = constant. The next steps of approx-
imation in the asymptotic approach to (3.2) involve increasing orders of the operators
Dk [.J. Eventually one obtains a solution of the form

• (xy)--g (y/x)w ( , z ,F 2 + y exp I[- if (X,y )] (3.4)

The factor (x2 + y 2 )- 112 is obtained by considering the operator D2 [u) in (3.2). The
function g (y/x) which determines the dependence of the amplitude from the angle of
propagation for large distances from the transducer follows by considering the operator
D3 [u]1 in (3.2).

The asymptotic expansion (3.3) in terms of 8 becomes singular near the axes. The
word "near" means in this case either y/x = 0 (63/2) ("near" the x-axis) or x/y = 0 (83/2)
("near" the y-axis). Performing the usual singular perturbation analysis with the appropri-
ate boundary layer variable one obtains for example near the x-axis a solution of the type
(3.4) with

f (X, y) = X1+ _ (Y)2 + O (Y)4]} (3.5)

Evaluating (3.5) to obtain the radial phase velocity at small angles with respect to the
fiber direction in a unidirectionally reinforced plate, one can show that its value is quite
sensitive to small changes in this angle. In the particular plate which was tested in our
laboratory, the radial phase velocity at an angle of 70 was 10 % lower with respect to its
value along the fiber direction. Thus to obtain accurate values of the tensile n,.,dulus near
the fiber direction by measuring the corresponding phase velocity, particular care must be
taken to remain in the proper radial direction while choosing the locations where the dis-
placement is measured.
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Fig. 6: Theoretical phase curve fitvd to experimental results by choosing El, E,

Fig. 6 shows phase velocities obtained from wavelengths measured in various radial
directions. The theoretical phase curve corresponding to the developments described
above has been fitted to the experimental results by proper choice of two pajamctern., i.e.
the two tensile moduli El and E2 corresponding to the fiber direction and the direction per-
pendicular to it respectively. The dimensionless parameter 8 which includes both
Poisson's ratio v12 and the shear modulus G12 was calculated using values of these two
material constants determined independently. Since 2x13 experimental values have been
fitted with only 2 parameters, the obtained results confirm quite successfully (within 5.5
m/s variance with respect to measured phase velocities) both the experimental investiga-
tion and the theoretical development.

4. EVALUATION OF FLEXURAL MODULI IN ORTHOTROPIC LAMINATES

The experimental methods developed to study th. propagation flexural waves with
(non circular) cylindrical phase surfaces in unidirectionally reinforced laminates have been
subsequently refined to allow the systematic experimental evaluation of global flexural
moduli in orthotropic laminates with arbitrary symmetric lay-up. In spite of the apparent
success illustrated in Fig. 6 where, by appropriately choosing values of E, and E2, an ex-
cellent fit with measured phase velocity values alorg different radial directions was ob-
tained, the method described in Section 3 has mainly three weaknesses:
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a) Although the wavelength of X1 = 20.3 mm measured in the fiber direction x1 was
about 30 times larger than the total plate thickness H = 0.71, the assumption that shear
deformation effects can be neglected is not quite justified. This is immediately shown by
evaluating the factor fs in (2.3) with the values k1H = 27tH/Xl = 0.220 and E1/G1 3 = 342.
One obtains fs = 0.926. This is quite different from the ideal value of I for which shear de-
formation would be vanishingly small. In fact a more accurate analysis including shear de-
formation effects according to (2.3) reveals that the experimental data leads to a value of
El along the fibers of about 200 109 N/m2 which is 17 % higher than the value obtained in
Section 3.

b) Curve fitting with the phase curve delivers for all practical purposes only E, and E2 .
The other moduli such as G12, G1 3, G23 and v 12 needed for an accurate fitting have to be
determined from additional independent experiments.

c) To obtain the phase curve experimentally a series of 2n, preferably 3n measure-
ments must be performed where n is the number of different radial directions along which
the phase velocity has to be determined. To measure along different radial directions re-
quires a certain preparation which costs time.

Olivetti PC Digital Storage Analog Filter
I/•---• DOscilloscope Krohn-Hite
II II tLe Croy 9400 }H [KH 3550

, [ I , Trigger constrol
Digital Function[ enerator 'i/

[Amplifier Krohn- i [- .......... !" Deno uao
SHite KH 75000 Piezoelctric'•1'

Trransducer Structure

Fig. 7: Experimental set-up for a systematic evaluation of laminate stiffneses

More satisfactory results were obtained by measuring phase velocities only along the
two principal axes of orthotropy (n = 2). To ensure that in spite of the various experimen-
tal inaccuracies to be usually expected in such a reduced programme, the accuracy of the
global moduli resulting from the analysis remained sufficiently high, the phase velocity
was measured as a function of frequency by comparing the phase spectra at two or more
points along each of the two principal directions. Thus for each pair of measured signals a
large number of phase velocity values for different frequencies were produced in the sub-
sequent computer analysis and compared with theoretical predictions based on linear-
elastic homogeneous behaviour including shear deformation effects. Theoretical results
and experimental values were fitted (least squares) by appropriate choice of the global
flexural tensile moduli El, E2 and global transverse shear moduli G13, G2 3 along the prin-
cipal directions. However, for orthotropic laminates with arbitrary symmetric lay-up, one
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has to bear in mind that the global moduli obtained from flexural modes are generally ex-
pected to be different from the ones which can be determined in membrane modes (see
Section 6).

The set-up il our Laboratory corresponding to the systematic experimental evaluation
mentioned above and main results for particular laminates which we produced at the
Laboratory of Composite Design in our University thanks to the courtesy of Prof. M.
Flemming have been described in some detail in [71. Fig. 7 shows the main features of our
experimental set-up. Narrow band flexural pulses with well-defined functions are intro-
duced through a computer and transferred with the help of a function generator to a piezo-
electric transducer properly glued at some central location of the surface of a laminate
whose stiffnesses are to be determined. The flexural displacement of the plate is mea-
sured at two or more locations in the radial direction at some distance from the transducer
by properly positioning (the position is computer-controlled) a heterodyne laser interfer-
ometer measuring displacements in the direction of the laser beam according to the
Doppler-effect. The details of the interferometer which was originally built and further de-
veloped at our Laboratory by J. Goodbread have been described in [14]. The demodulated
interferometer signal is fed into a digital storage transient recorder and subsequently
transferred to the computer to be Fourier-analyzed and further processed. The main rules
to be observed in such experiments have been listed in some detail in 141. Here three
essential features will be briefly mentioned:

Phase velocity
[mIs]

1000
Q [ :Experiments

El=8 1. 810 9 N/M2

G I 1 3 =3.410 9 N/m 2

60 i...... (least squares)
400......I�- ...... H 1.4 mm, p 1l48 10-3 kg/m3

2 0 0 .. . .. . ................ .. . . . .. .. .. ............... . .. . . . . ........... ............... ... --
200 I k =2nt /k

200 400 600 Il/mI

(17.2) (58.0) (96.5) (frequency, kHz)

Fig. 8: Obtaining El and G13 in a cross-ply laminate from data on phase velocities in
flexure

(1) The frequency band of the signal should be chosen to lie well below the lowest
resonance frequency of the transducer to avoid elastic coupling between the wave genera-
tor and the responding structure.
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(2) The time duration of the signal and the frequency band of the signal should be co-
ordinated with the location of the transducer to avoid reflections from the edges of the
plate which could interfere with the measurements.

(3) Since the time function of the signal is well-defined, the same wave is generated a
few hundred times at time intervals allowing waves generated by one signal to decay be-
fore the next signal is sent. By taking a simple additive average of the hundreds of re-
sponses measured at the same location (and generated with the same time function at the
source) the noise to signal ratio is decreased considerably, since thanks to averaging
stochastic noise due to various mechanic or electronic sources is either cancelled or re-
duced below levels of relevance.

M. Veidt measured at our Laboratory ph:':e velocities as a function of frequency in
carbon-fiber reinforced cross-ply laminates which were subsequently needed to study dy-
namic fracture phenomena (see Section 7). Since cylindrical flexural waves travel at some
distance from the transducer along the principal directions of an orthotropic plate essen-
tially like corresponding plane waves (see Section 3) and since in cross-ply laminates v 12
(corresponding to in-plane lateral contraction resilience) is very low (about 0.04) the re-
sult (2.2) for phase velocities can be directly used to analyze experimental data on phase
velocities along the principal directions of orthotropy (in [7] the expanded form (2.3) was
used). Fig 8 shows an example of fitting theoretical predictions to experimental data for
various frequencies to obtain both the global tensile modu-..s E1 and the transverse shear
modulus G13 in flexural mode of a cross-ply laminate with a symmetric lay-up [0, 90, 0, 90,
01s.

15 layers 

]

across 
tIle~ 

-thickn 3 Shear or axial
transducers

Row of 8 ' R x2 : axial coordinate
piezoelectriG ------- ---- i --
transducers H

Fig. 9: Filament-wound tube axisymmetrically loaded at one end by piezoelectric
transducers

5. AXISYMMETRIC WAVES IN FILAMENT-WOUND TUBES

Axisymmetric waves in isotropic tubes have been studied in great detail both experi-
mentally and theoretically by a number of scientists (see for example 115]). In contrast,
data on composite tubes are rather scarce. Thus, as part of his PhD work [61 J. Dual per-
formed a series of systematic experiments on carbon-reinforced tubes produced by fila-



ment winding on a total length of 2 m with 12 000 filaments per roving and a total number
of 15 layers (fig. 9). He considered 5 cases with winding angles 03, 22.5'ý, 45(, 67.5() and
820. The main purpose of the experiments was to measure the dispersion behaviour and to
obtain the relevant moduli of the tube. The study should also serve as a basis for further
investigations regarding non-destructive detection of possible flaws and structural errors.
Dual used in his di sertation a theoretical framework based on numerical evaluations of
power-series expansions of the full three-dimensional equations for homogeneous,
orthotropic behaviour. Particularly efficient and accurate analytical expressions based oil
an asymptotic analysis of the three-dimensional equations for the range of structural
wavelengths covered by the experiments have since been developed and will be published
in [16]. The asymptotic analysis has also the merit of providing an extremely useful phys-
ical insight into the various patterns of deformation in the various ranges of wavelengths
and into the corresponding propagation characteristics. A short report on main results of
this analysis and of its confrontation with experimental data produced by Dual has been
published in [4]. In the following a summary of the salient features will be presented.

The asymptotic analysis mentioned above is based on a careful exploitation of the
three small parameters

CR:=H- , E :=H , CM:-G 1 2

R E2

which are inherent to the problem of axisymmetric structural waves in a thin orthotropic
tube. In the tubes tested the value of the geometric parameter CR was about 0.1. For the
tubes with 00, 22.50 and 450 it was found a posteriori that CM = 0.04, 0.06 and 0.2 respec-
tively. For the remaining two angles of winding the axial modulus E2 in CM has to be re-
placed by the hoop modulus E3. Thus in all tubes CM = 0 (ER) could be assumed. This is
the case which has been called in [81 "moderately strong anisotropy". Depending on the
relation of E. to ER the following three different ranges of wavelengths can be defined:

1) Wavelengths comparable with the perimeter of the tube, EX = 0 (ER)
The waves propagate in a "membrane mode" with both radial (ul) and axial (u2) com-

ponents of the displacement uniformly distributed across the thickness of the tube wall.
The following explicit analytical expression for the phase velocity c as a function of fre-
quency f follows from the simplified differential equations of the asymptotic analysis (v
V23):

C2 1-_2 , c Q := 2AJR-f , e:= - (5,1)
I _- 2 (2 -ev 2) 'E2 P E_3 /p / (.E2

For values of Q << I corresponding to very large wavelengths (exceeding consider-

ably the perimeter of the tube) the waves propagate nondispersively (c = "€E2/p5. indepen-
dently of the frequency as long as Q << 1) under uniaxial stress conditions. The main
displacement component is u2, radial displacements ul can be neglected. For increasing
values of Q, as long as Q <1, the influence of the radial displacement component ul be-
comes stronger anid causes more and more energy to be canalized to radial motion rather
than axial wave propagation. Thus the value of phase velocity drops. For values or Q near
1 the radial motion becomes so strong that energy transport in the axial direction becomes
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almost impossible in the membrane mode ("radial resonance"). For increasing values
S> 1, the radial motion decreases and again axial displacements become more important.

Since in this case the wavelengths are smaller than the perimeter (but still large with re-
spect to the wall thickness H), the curvature of the tube ceases to be effective and the
waves tend to propagate in a longitudinal nondispersive "plate mode" with negligible hoop
strains and c = "fE2/p(l-ev2), Of course this discussion follows very closely arguments
well-known from isotropic theory (see for example [9]).

2) Wavelengths comparable with the geometric average of radius and thickness,
ER = 0 [(E?)2]

Anisotropic behaviour shows in this case a feature which is essentially different from
the isotropic case: Transverse shear deformation coupled with flexural stiffness in the ax-
ial direction becomes so important that simplifying a priori assumptions on the distribution
of strains and stress across the thickness (for example linear or cubic) can no longer be
justified even in a first step of approximation. The proper distribution must be determined
from partial differential equations containing derivatives both with respect to x2 and to the
thickness coordinate x, by considering the boundary conditions on the stress-free surfaces
of the tube wall. An exact analytic solution of the equations and of the boundary problem
corresponding to the first asymptotic step of approximation can eventually be found, fol-
lowing ideas similar to the ones developed in [81 for beams Details of the analysis will be
given in [161. The phase velocity as a function of frequency or wavelength follows from the
implicit dispersion relations

+' Th (a H / 2)] a7 ) 2: It
e aH/2 ' E -/(I-ev2)

c=X'f=--- -- V2R(5.2)

2 n R P

3) Transition regime near frequencies 0 = 1
Both solutions given above for moderately large and moderately short wavelengths

and the corresponding dispersion relations (5.1) and (5.2) fail for values of 0) approaching
1 from the left side (membrane solution fails) or from the right side (flexural solution
fails). This is a typical problem of singular perturbation schemes. It can be solved for
sinusoidal waves by careful analysis leading to a simple differential equation of 6. order.
The corresponding dispersion relation in terms of frequency and wavelength can be
explicitly expressed as

2= 1- e2 v2(--- )2 + 1 (2 7t R H)2  (5.3)"2xiR '12e(I-ev 2) X4

Fig. 10 shows for the case of winding angles of ± 22.50 experimentally determined
phase velocities and the corresponding theoretical values based on (5.1), (5.2) and (5.3).
To obtain the values of the moduli E2, E3 and v needed in (5.1), the theoretical phase ve-
locities were fitted (least squares) to 135 pairs of experimental values for various fre-
quencies in the range of long and moderately long wavelengths corresponding to the mem-



brane behaviour both for Q < I and 0 > 1. A relative variance as low as 0.8 could he
reached. With such a high degree of c.,ucracy one can safely assume that the fitting not
only delivers the proper values of the i-ioduli (in the case at hand E2 = 75.2 10"N/-. 1-.
11.55 109 N/mr2 and V = V23 = 1.275) but also a meaningful confirmation of the quality ot
the experiments and of the tdeqUacy of the asymptotic theory leading to the simple rela-
tion 05.1). Once the moduli E2, E3 and v were determined, the theoreticai prediction>
based on (5.2) and (5.3) were fitted to the experimental phase velocities in the range of
moderately short wavelengths (involving flexure of the tube wall and transverse shear) hK
proper choice of the transverse shear modulus G12. Using a set of 153 pairs of experimen
tal values for the tube with ±22.5) winding angle the value GI 2 = 4.3 10' N/1i 2 could be
determined with 0.9 % relative variance. If one excludes the first 3 of the 153 experimental
pairs of values where measurements are quite difficult since they occur in the transitional
range corresponding to the vicinity of the critical value K =1. the variance drops cven to
less than 0.2 %. Again this remarkable fit with just one parameter may be considered as a
brilliant confirmation of both the experimental work of Dual and of the efficiency of the
asymptotic approach used in the theoretical modelling leading to (5.2).

] Phasevelocity ul 3

2.00 : theoretical curve
1.75 experiments c -

'1.5
125 (5.1): Membrane-plate

1.00 (5. 1): Membrane-rod

0.75 Win11dinga angle + -

0.50 (5.3) : Transition

0.25 (5.2): Flexure-hoop force Frequencv- R

1 2 3 4 5 6 7

Fig. 10: Obtaining E2 , E3, v 23 and G12 in a filament-wound tube from data on phase
velocities

6. IN-PLANE WAVES IN A CROSS-PLY LAMINATE

Cross-ply laminates which were studied in flexural wave propagation modes according
to the program described in Section 4 were also subjected to transient loading by torsional
piezo-electric transducers generating in-plane waves (Fig. 1I). A short account of the cx
perimental and theoretical results has been given in 141. A more detailed treatmlle will he



388

presented in [17]. In the following the main ideas leading to the theoretical prediction of
the phase curves will be briefly reviewed. These theoretical phase curves have been com-
pared with experimental data produced by A.Eisenhut at our Laboratory on a particular
laminate produced out of 9 carbon-fiber-reinforced laminae arranged symmetrically as (0,
90, 0, 0, 90, 0, 0, 90, 0)-plies with respect to the xl-axis.

ADistance 26

from 601
transducer mm 1 0

100 mmCross-ply
rr structure

-A 8,mrnTorsional transducer

6 V(t)
9.8

I F I I I I I I

40 120 200 280 360 1.. . .
Time in Rts

Fig. 11: In-plane waves in a cross-ply laminate generated by a torsional transducer

With xac as coordinates along the principal directions of orthotropy 0a = 1, 2 the basic
equations of linear elastodynamics lead in the case of in-plane waves in an orthotropic
plate to the differential equations

U1,ll + 82 U2,12 + -2 U1,22 = (Cl)- 2 Ui,tt
(6.1)

C2 U2 ,1 1 + 82 U1 ,2 1 + e 2 U2 ,22 = (C1 )- 2 U2,tt

vhere

e2 E2  e2 .G 1 2 [1-(evtP2 l2 , l2:=. •

S:=_ , C:+eV2 :, (c) 2  El
El El p [1 - (evl2)2 1

In a cross-ply laminate El, E2 and v 12 are global in-plane moduli of elasticity correspond-
ing to the moduli of the equivalent homogeneous orthotropic plate. Whereas e2 can be ex-
pected to take a value of about 0.5 in the laminate mentioned above with twice as many



0 0-plies than 900 -plies, E2 should be an order of magnitude smaller (for example 0.05)
since the cross-ply laminate is quite soft in shear. Also the global coefficient of lateral con-
traction v 12 should be small (about 0.04), so that the value of 62 is not expected to exceed
0.07. To derive the shape of the phase curve at distances from the transducer where tfr all
practical purposes a sinusoidal mode of propagation can be assumed (distances larger
than 1 wavelength) set

ua =Aa exp i ot-if(x, y)! , (cc= 1, 2) , (x, y):= -X (xI, x2) (6.2)
C I

in (6.1) to obtain a set of two linear homogeneous equations for AI and A2 which only
admit non-trivial solutions if the determinant of the coefficients of A1 and A2 vanishes.
This leads to a differential equation for f (x, y) of the form

di If] + i d2 [fj + d3 Iff = 0 (6.3)

where d2 1.1 is a nonlinear differential operator involving products of first and second
derivatives of f (x, y) and d3 1.1 is a nonlinear differential operator containing only second
derivatives of f (x, y). The explicit expression for the first differential operator is

d1 If] := I(f,x) 2 + £2 (fy)2 -1 [e 2 (fX) 2 +e 2 (fy)2 -1I - 84 (f,X fy) 2 
. (6.4)

Since at large distances (larger than at least one wavelength) from the transducer cen-
tered at the origin (0, 0) the terms d 2 [f] and d3 ff1 with the derivatives of second order
can be neglected (see 1171 for details, the arguments are similar to those used in connec-
tion with '(3.2)), the expression for the phase curve can be obtained by setting d, if] = 0
according to (6.3). Using further that 84 in the expression (6.4) is a small quantity (less
than 0.005) one obtains the following two possible expressions for f (x,y):

f(1)[=x2(I + -) +Y L11/2+O(8 8 ) , f(2) 2 +n(I + )1  +O(8 8 ) (6.5)
e2 E 2 e2

Whereas in isotropic structures two solutions corresponding to rotational (with dis-
placements in the hoop direction) and dilatational (with displacements in the radial direc-
tion) motion and circular phase curves are expected, in the cross-ply laminate at hand the
two possible phase curve shapes are obviously elliptic with large excentricities. One can
further show that in a first step of approximation fIl) is associated only with the displace-
ment component ul along the first principal direction of orthotropy and f(2) with the dis-
placement component u2 along the second principal direction of orthotropy. The low shear
stiffness (G12 << El, E2) is responsible for this decoupling phenomenon with respect to
the principal directions. Thus along the xl-axis f0) corresponds to pure dilatational motion
and along the x2-axis to pure shear motion. Conversely f(2) corresponds to pure shear mo-
tion along the xl-axis and to pure dilatational motion along the x2-axis. Furthermore, the
cylindrical waves with elliptic phase curves propagate obviously without dispersion, since
the radial phase velocities do not depend on the frequency, only on the angle with respect
to the first principal direction xi.

In experimental work leading to his diploma thesis A. Eisenhut studied at our
Laboratory in-plane waves produced by a torsional transducer and measured the arrival
times of both waves carrying displacements ul and u2 respectively at various radial loca-
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tions as a function of the angle p with respect to xj. Thus he obtained the radial velocities
Cr1 ((p) and Cr2 ((P) for both waves. For each value of (p two pairs of measured radial ve-
locities were available. I fitted (least squares) the experimental results to the theoretical
predictions by properly choosing the values of the moduli of elasticity Ej, E2 and Gl 2 (the
influence of V12 with expected values less than 0.05 is negligible) and obtained the results
depicted in Fig. 12 which exhibit some problems in the dilatational modes with large ve-
locities near the principal axes of orthotropy where the difference of the arrival times be-
tween two locations were too short (7-10 pts) to allow accurate measurements. Neverthe-
less, in the shear modes with low velocities near the principal axes and at larger angles
with respect to those axes the accuracy of the fit is quite satisfactory (less than 3 %
relative variance) and confirms both the quality of the experimental study and the validity
of the corresponding theoretical development.
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Fig. 12: Phase curves of cylindrical in-plane waves in a cross-ply laminate
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It is interesting to compare results for the moduli obtained from in-plane waves as
discussed in the present section with those generated by M. Veidt on the same laminate
in the context of his doctoral work by using flexural modes as described in Section 4 (see
[71 for more details).

Moduli: 109 N/m 2  E . E2 G12  G13 G23

From in-plane waves 93 47 4.8 - -

From flexural waves 92 42 - 4.2 3.0

The appreciable difference in the values of E2 for the two modes is most probably due
to the fact that in the flexural mode the central 900-ply with its fibers parallel to the x2-di-
rection contributes almost nothing to the global value of E2 whereas in the membrane (in-
plane) mode it is as effective as the other two 900 -plies of the laminate with its (0, 90, 0,
0, 90, 0, 0, 90, 0) lay-up. Thus E2 (membrane) > E2 (flexural). Besides, since there are
twice as many 00-plies as 90 0-plies, the value of E1 in the membrane mode is roughly
twice as large as E2.

7. APPLICATIONS TO FAST FRACTURE IN CROSS-PLY LAMINATES

In the context of experimental work leading to his doctoral thesis [181 E. Moor
showed in our Laboratory that in thin carbon-fiber reinforced laminates submitted to ten-
sile loading and conveniently notched as in classical tests of fracture mechanics, a crack
perpendicular to the direction of the load propagates from the tip of the notch towards the
other edge of the plate with an almost constant velocity reaching values in the range of
500 -1200 m/s for the various lay-ups tested. Moor used shadow-optical methods [19, 201
to provide experimental data on the stress field first near the tip of the crack both before
and after it started running. Preliminary calculations by M. Veidt [211 showed that the re-
sults could be interpreted by assuming that the laminate behaved as a homogeneous
orthotropic structure, provided that the global shear modulus near the crack tip was ad-
justed to account for the fact that damage near the crack tip substantially decreases lo-
cally the global shear stiffness characteristics of the structure.

To calculate the stress and strain field near the tip of a crack running with constant
velocity v along one of the principal directions of orthotropy x, of a thin orthotropic plate
we may use relations (6.1) and look for a stationary solution by assuming that the stress
and strain fields remain stationary with respect to a frame moving with the crack tip (this
is of course acceptable only as long as reflections from the edges of the structure can be
neglected). Thus we set

X :=X 1 - V t

and look for a solution of (6.1) of the form ua (x, x2). The transformed relations (6.1) are

(1 - y2) U1,xx + 82 U2,x2 + F2 u1 ,2 2 = 0

(7.1)
(W2

- y2 ) U2,xx + 82 ui,2x + e2 u2 ,22 = 0
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where y v / c1 . For the carbon-fiber cross-ply laminates tested in our laboratory the
value of y was in the range 0.10- 0.15, so that y< e.

We now look for a particular solution of (7.1) which is derivable from a potential ac-
cording to

UI=D,x , U2 =q4D,2 ,(7.2)

where q is a constant factor which can be adjusted to fulfill both equations (7. 1) with the
single function •D (x, x2). From (7.1) and (7.2) after integrating the first equation with re-
spect to x and the second with respect to x2 one obtains

(1y2) (D,xx +(q 82+ C2) 0,22= 0 ,

(7.3)
[q (F2-y2)+81]Oxx+qe2 ,22 =0,

iD (x, x2) is a solution of both equations if these are identical, i.e. if the coefficients of O',xx
and 0,22 in the first and second equation are proportional. This leads to the following two
values for the parameter q:

qI, q2 = +/[ "4 (F_2 _,y2) 84 E2.,•:=( y2) e2.-84 - (C 2 -_y2) F2 (7.4)

2 (p2 _y2) 52

Thus the general solution for (7.1) can be written as a sum of two particular solutions

Ul = cI,x + 02,x , U2 = q 1'D, 2 + q2 ( 2 ,2 , (7.5)

where according to (7.3) the functions 01 (x, x2) and 02 (x, x2) satisfy the uncoupled dif-
ferential equations

(1 - y2 ) (i 1 ,xx + (ql 82 + 02) (1,22 = 0

(7.6)
(1 - 72) 2,xx +(q2 82 + £2) 02,22 = 0

which can easily be expressed as Laplace differential equations by transforming x2 in each
equation and solved by classical methods of potential theory.

The shadow-optical data gathered by E. Moor near the tip of cracks in cross-ply lami-
nates fall mainly into the two patterns (a) and (b) illustrated in Fig. 13. The pattern (a
occurs at the tip of the notch before the crack starts running, actually at loads well belom
(less than 20 %) the fracture load. Pattern (b) has been observed at the tip of a runnini
crack. These patterns can be interpreted and simulated on the basis of the theoretical
background presented above which allows the prediction of the displacement, strain and
stress fields near the tip of a crack running at constant velocity, provided that reflecions
from the edges of the structure can be neglected. M. Veidt has shown that the main differ-
ences in the shapes (a) for a cross-ply laminate and (c) for an isotropic structure is due to
the much lower ratio FM (shear modulus / tensile modulus) in the former case. The shape
(b) can be theoretically simulated by assuming that the shear modulus is much lower (by
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a factor of about 3) than the one measured in the undamaged cross-ply laminate. These
findings could also be substantiated by E. Moor with the help of direct strain measure-
ments with strain gauges conveniently placed in the vicinity of the running crack. The de-
tails of these experimental studies and of the theoretical developments required for their
interpretation and evaluation will be published elsewhere.

xl F

F ~v~
dmXi

(a) Low load, stationary (b) Fracture load, running (c) Isotropic structure
crack, cross-ply structure crack, cross-ply structure

Fig. 13: Measured patterns of shadows at the crack tips of cross-ply and isotropic
structures

8. DEDICATION

Both this paper and the corresponding lecture presented at ICTAM 18 in Haifa are
dedicated to the memory of Professor Harry Kolsky who motivated most of us so strongly
in our research activities towards reaching a better understanding of the physical aspects
of wave propagation and dynamic fracture.

9. REFERENCES

I[ M. Staudenmann and M.B. Sayir, Apparent Rotation of a Flexural Wave in an
Isotropic Beam with Circular Cross Section (to be published)

[21 M.B.Sayir and M.G. Koller, Dynamic Behaviour of Sandwich Plates, ZAMP, 37
(1986) 78-103

[3] A. Kreis and M.B. Sayir, Propagation of Flexural Waves in a Thin Trnsversely Iso-
tropic Plate, ZAMP, 34 (1983) 816-831



394

[41 M.B. Sayir, Wave Propagation in Composite Structures: Experimental and Theoreti-
cal Studies, Acta Mechanica, 3 (1992) 7-21

[5) M.B. Sayir, Theoretical and Experimental Results on the Dynamic Behaviour of
Composite Beams, Plates and Shells, "Refined Dynamical Theories of Beams, Plates
and Shells and their Applications", 72-88, Springer 1987

[6] J. Dual, Experimental Methods in Wave Propagation in Solids and Dynamic Visco-
menry, Diss. ETH 8659, Zurich 1989

[71 M. Veidt and M.B. Sayir, Experimental Evaluation of Global Composite Laminate
Stiffnesses by Structural Wave Propagation, J. Composite. Materials 24 (1990) 688-
706

[8) M.B. Sayir, Flexural Vibrations of Strongly Anisotropic Beams, Ingenieur Archiv, 49
(1980) 309-323

[9] H. Kolsky andJ.M. Mosquera, Dynamic Loading of Fiber-reinforced Beams, Mecha-
nics of Mat. Behaviour, 201-218, Elsevier 1984

[10] E. Reissner, On Bending of Elastic Plates, Q. Appl. Math., 5 (1947) 55-68
[11] N.J. Hoff, Bending and Buckling of Rectangular Sandwich Plates, NACA TN 2225,

Nov. 1950
[12] M.G. Koller, Elastic Impact of Spheres on Sandwich Plates, ZAMP 37 (1986) 256-

269
[13] A. Kreis and M.B. Sayir, On Wave Propagation and Energy Flux in Thin Transver-

sely Isotropic Plates, ZAMP 36 (1985) 549-567
[14] J.H. Goodbread, Mechanical Properties of Spongy Bone at Low Ultrasonic Frequen-

cies, Diss. ETH 5856, Zurich 1976
[151 J. H. Heimann and H. Kolsky, The Propagation of Elastic Waves in Thin Cylindrical

Shells, J. Mech. Phys. Solids, 14 (1966) 121-130
1161 M.B. Sayir, J. Dual and B. Gasser, Structural Axisymmetric Waves in Anisotropic

Cylindrical Shells: Asymptotic Theory and Experiments (to be published)
[17] M.B. Sayir, M.Veidt and A.Eisenhut, Centrally Induced In-Plane Structural Waves

in Cross-Ply Laminates: Asymptoticd Theory and Experiments (to be published)
[18] E. Moor, Anwendung der Methode der Schattenoptik zur Untersuchung der Rissaus-

breitung in faserverstirkten Kunststoffen, Diss. ETH , Zurich 1992
[19] P. Mannogg, Anwendungen der Schattenoptik zur Untersuchung des Zerreissvorgangs

von Platten, Diss. Albert-Ludwigs-Universitit zu Freiburg i. Br. 1964
[20] J.F. Kalthoff, Shadow Optical Method of Caustic.ý iandbook on Experimental

Mechanics, 430-500 Prentice-Hall, 1987
[21] M. Veidt, Studien zum bruchmechanischen und strukturdynamischen Verhalten von

Faserverbundplatten, Diss. ETH 9424, Zurich 1991



Theoretical and Applied Mechanics 1992
S.R. Bodner, J. Singer, A. Solan & Z. Hashin (Editors)
Elsevier Science Publishers B.V. 3tp,
© 1993 JUTAM. All righLt reserved.

Self-similar multiplier distributions and multiplicative models for

energy dissipation in high-Reynolds-number turbulence

K.R. Sreenivasan and G. Stolovitzky

Mason Laboratory, Yale University
New Haven, CT 06520-2159, USA

Abstract
We begin with a brief description of the multiplier distribution for Er,

the average over a linear interval r of the energy dissipation rate, E.
Using measured multiplier distributions obtained for atmospheric
surface layer data on F, we show that quasi-deterministic multiplicative
models for bases 2 and 3 (that is, binary and tertiary breakdown
processes) can be developed on a rational basis. For r in the inertial
range, moments computed up to a fairly high order from these models
are found to be in good agreement with experimental values. For bases
larger than three, such quasi-deterministic approximations for
multiplier distributions are not possible. Some applications of multiplier
distributions are presented.

1. INTRODUCTION

A Gaussian process is completely described in a statistical sense by its
mean and standard deviation. It is conceivable that a nearly Gaussian
process can be described well by its first few moments - at least well
enough for many purposes. This is the situation with respect to velocity
or temperature traces obtained in high-Reynolds-number fully
turbulent flows not too close to the wall. On the other hand, the
situation is quite different for quantities such as the energy dissipation
rate, E, in high-Reynolds-number turbulence. Figure 1 is (effectively) a
one-dimensional section through the field of E in the atmospheric
surface layer a few meters over land. In contrast to Gaussian or nearly
Gaussian processes, information about the first few low-order moments
does not describe the signal in any detail. Peaks which are hundreds of
times the mean are not uncommon, and the signal is at other times of
very low amplitude; this strongly intermittent character is a generic
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Figure 1: A typical signal of a representative component of E, namely &'
= (du/dx) 2 -(du/dt) 2, normalized by its mean. Here, u is the velocity
fluctuation in the direction x of the mean velocity U. In writing the last
step of the above approximation, it has been assumed that Taylor's
frozen flow hypothesis, namely that the spatial derivative can be
approximated by the temporal derivative, holds. The velocity
fluctuation u was obtained by a hot-wire mounted on a pole 6 m above
the ground level over a wheat canopy. The microscale Reynolds number
is of the order 2500.



property of e in high-Reynolds-number turbulence. Its understanding
and modeling is important to any practical scheme for computing
turbulent flows. The intermittency has important implications also in
contexts such as the structure of turbulent flames.

In the last few years, '.uch work based on multifractals has occurred
on the description and modeling of the intermittent character of energy
dissipation rate (and other similar characteristics). For a summary, see
[1]. In Refs. [2-41, several simple quasi-deterministic multifractal
models were shown to describe the statistical properties of the energy
dissipation rate quite accurately. Here, we provide an organized basis
for developing such simplified intermittency models.

The energy dissipation rate is a positive definite quantity which is
additive (in the sense that e over two non-overlapping intervals equals
the sum of E values distributed over the sum of the two intervals). In
this sense, it is convenient to think of e as a measure distributed on an
interval.

2. MULTIPLIER DISTRIBUTIONS

Consider a long data string of e distributed over an interval which is N
integral scales in extent, N being some large integer. Divide the interval
into 'a' equal-sized sub-intervals, and obtain the ratios of the measures
in each of the sub-intervals to that in the entire interval. These ratios,
to be called multipliers, are clearly positive and lie between zero and
unity. Subdivide each sub-intervals into 'a' pieces as before, and repeat
the procedure. When we reach sub-intervals of the size of the integral
scale of turbulence, L, there will be sufficiently large population of the
ratios Mi(L), l_<i<N, and one can obtain a converged histogram of the
multipliers Mi(L). Proceed with further subdivisions. At the n-th
subsequent level, where each sub-interval is of size r/L = a-n, there are
N.an multipliers Mi(r). Construct the histogram of the multipliers at each
level. Repeat the procedure until the smallest sub-interval reached is of
the order of the Kolmogorov scale.

The thought behind this hierarchical construction is that the nonlinear
processes occurring in the inertial range of scales may be abstracted by
a breakdown process in which each eddy subdivides into 'a' pieces, with
the energy flux redistributed in some unequal fashion without loss
among the sub-eddies; since the energy flux, as it cascades down to
smaller scales, is ultimately converted into energy dissipation, the two
quantities are equal on the average. It is further thought that this
unequal distribution among sub-eddies is the heart of the observed
intermittency. The reality is, of course, more complex. For instance, it is
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not obvious what the appropriate value of 'a' (that is, the base for the
cascade process) must be, or whether it remains the same from one step
of the cascade to another. In spite of this ambiguity, it is clear that if
there is a scale-similar breakdown occurring in the cascade process, the
histogramis of the multipliers should be identical -it each step of the
subdivision or cascade.

The probability density P(M) of the multipliers M - here and
subsequently, we omit the indices on the Mi(r) and denote them simply
by M - have been obtained for different stages of subdivision of the
interval. Since the value of 'a' is not known a priori, Chhabra &
Sreenivasan [41 obtained P(M) for various bases. Figure 2 shows the
results for 'a' = 2, 3 and 5. The shape of each of the distributions is
invariant over a certain range of scales, suggesting that some type of
self-similarity occurs in this scale range, whatever the assumed base.
This range of scales over which P(M) is self-similar agrees quite well
with the inertial range of scales determined by the scaling range in
spectra and structure functions. The larger symbols show an average
over steps involving comparisons betveen boxes of size 'm' and those of
size 'm*a', where m ranged from 50 to 1000 in units of sampling
intervals. (For the very smallest scales, the distributions have a concave
shape. This concavity is related to the divergence of moments [5] and
will be discussed elsewhere. For very large box-sizes, multiplier
distributions approach a delta function centered around 0.5, as would
be the case for random measures.)

The scale-invariant multiplier distributions obtained in figure 2 are
fundamental to the understanding of the observed multifractal scaling
[2]. One can compute [4] from them not only the asymptotic scaling
properties such as the multifractal spectrum (or the f(a) curve [61) of a
measure, but also finite-size fluctuations of scaling properties [4]. In
addition, even in instances where high-order moments diverge, P(M)
remains well-defined. Finally, the f(ca) function may extend over (-.,oo)
whereas P(M) is a compact function defined on M r [0,11.

A disadvantage of P(M) is that it is base-dependent. However, if the
cascades giving rise to the observed intermittency are randomly
multiplicative, then the multiplier distributions correspondirg to
different bases are related by convolution, and one can scale out this
base-dependency [41. If the multiplicative process is random (i.e.,
successive multipliers are uncorrelated) several base-independent
functions can be constructed from these multiplier distributions. In
particular, for any two bases 'a' and 'b', we have

log<(Ma)q>/log(a) = log<(Mb)q>/log(b) = -[r(q) + Do] (1)
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Figure 2: Multiplier distributions P(M) for bases (from right to left) 'a' =
2, 3 and 5. The larger symbols show averaged multiplier distribution,
which are the mean of multiplier distributions obtained by comparing
measure in boxes of size 'i' to those of 'm*a' , where m ranged from 50
to 1000 in units corresponding roughly to the Kolmogorov scale. The
smaller symbols show the distributions obtained for m = 50, 80, 150,
200, 400 and 1000. The solid line is the triangular approximation to the
binary case. The figure is adapted from [4].
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where t(q) = (q-1)Dq, Dq being the so-called generalized dimensions 171
of q-th order, and Do = Dqo is the fractal dimension of the support of
the measure. The f(at) function can also be easily derived from the
multiplier distribution. In Ref. [41, it was show-• that the f(a) functions
computed from these different distributions were in good agreement
with each other as well as with those obtained from direct methods
such as box-counting. This agreement indicates the existence of a
probablistic cascade where no single base is preferred.

Incidentally, a good approximation for P(M) in the binary case is the
triangular distribution shown in figure 2. In Ref. [4] it was shown that
the f(ax) function for this model is in excellent agreement with that
obtained directly [3]. Further, the triangular model displays the correct
behavior with respect to sample-to-sample fluctuations in f(a). It also
reproduces the stretched exponential tails, P(E) - exp(-P(e) 1l/2 ), observed
in Refs. [3,8] for the probability distribution of F.

3. SIMPLE MODELS

The multiplier distributions shown in figure 2 are extracted directly
from the experiment and their analytical forms are yet to be found
from the theory. The question meanwhile is a simple representation of
these distributions in a way that permits one to evaluate most of the
measured properties quite accurately. The goal is to seek models that
are simple enough to be tractable mathematically and realistic enough
to represent the spirit of the underlying physics. We already mentioned
the triangular distribution as a good approximation. An even simpler
possibility is the p-model [2], which is a model for a binary cascade
('a'=2). We first discuss the p-model and show how it can be obtained as
a rational approximation to the measured multiplier distribution for the
binary case. We will then discuss how models in the same spirit can be
obtained for the tertiary case ('a'=3). The limitations of the procedure
for high order subdivisions ('a'>3) will be highlighted.

From a physical point of view, the cascading process with 'a'=2 can be
thought of as the break-up of a structure (the parent structure or eddy)
into two sub-structures. For the one-dimensional case corresponding to
figure 1, a pertinent question is the following: is there any difference
between the left and right offsprings in terms of the energy flux they
receive from the parent structure? One can determine experimentally
that left and right are statistically indistinguishable. (This is not true for
the velocity signal itself, as can be concluded from Kolmogorov's 4/5
law [91). Now, for the sake of simplicity and modeling, let us assume
that one of the two sub-eddies always receives a fixed fraction p of the
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Figure 3: A comparison between moments computed from the measured
multiplier distributions and those computed for the different models
considered in the text. Experimental data were obtained from a record
length of 810,000 data points. The convergence of moments was
reasonable; for example, in the last half decade of the record length, the
variations observed were smaller (in the log scale) than the symbol size.
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energy contained in the parent eddy; naturally, the other will receive 1-
p. In this sense, this model has some determinism. However, it is only
quasi-deterministic in the sense that either one of the two eddies could
receive the fraction p; because of the left-right symmetry mentioned
above, a given piece will receive p as often as l-p. Then, the multiplier
distribution for the p-model becomes

-(M-p) + ((M-(l-p))
P'a'= 2(M) 2 (2)

If p=l1/ 2 , there is no intermittency and the physical situation
corresponds to Kolmogorov's 1941 theory [101. To obtain intermittency,
we should have a value of p different from 1/2.

How can we choose p? A natural way is to match the moments of
p'a'=2(M) with those of the real p(M). For both distributions, the zero-
order moment (normalization) and the first-order moment (mean value)
coincide, and are I and 1/2, respectively. The first non-trivial condition
is to match the second order moment. When this is done, we obtain the
value p=0.697, or 1-p=0.303, which can be rounded off to excellent
accuracy by 0.7 and 0.3, respectively. This is the p-model of Ref. [2]. It
turns out, purely by luck, that high-order moments computed for the p-
model also agree with those computed for the real data (see figure 3). It
had been shown in [2] that the f(c) spectrum for the binary p-model
with p = 0.7 fit the experimental data quite accurately.

We now discuss a general scheme for developing for all 'a'*2 quasi-
deterministic models of the sort developed above for the p-model.
Again, we attempt to do this by matching moments. The general
multiplier distribution for any 'a' in the p-model scheme is

i i (M-pi)

P'a'(M) = a (3)

where

•-Pi = 1, (Opi_<l) (4)

We may now equate the moments of Pa.(M) to the moments of the real
multiplier distributions. Since multiplier distributions for any base yield
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Figure 4. Values of the multipliers for the binary (diamonds) and
tertiary (circles) p-models. The letter K indicates the location of the
multipliers if there were no intermittency, consistent with Kolmogorov's
1941 theory [10].
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the same results, we may take the distribution corresponding to the
binary cascade of figure 2. Computing the moments <Mq> from it, we are
led to the equations

a

p! = a <Mq>Iog(a)/Iog( 2 ) q=1, 2, ... , a. (5)
i=lI

This is a system of 'a' equations with 'a' number of pi's to be

determined. Using Girard's rule [11], it is easy to find a polynomial of
degree 'a' whose roots are the desired Pi'S. The problem thus reduces to

the determination of the roots of the polynomial. It turns out a
posteriori that this problem has physical solutions only for 'a'=2 and
'a'=3: for larger values of 'a', some of the roots turn out to be complex,
and have no physical meaning. The values of Pi for the tertiary cascade

('a'=3) are p1=0.1 5 5 , p 2=0.2 8 3 and p3=0.562. We designate this as the
tertiary p-model. In this scheme, the classical Kolmogorov theory would
yield p1= p2 = p3 = 1/3.

The values of pi for the binary and tertiary cascade are shown in
figure 4; also marked by K are the classical non-intermittent values
applicable to Kolmogorov's 1941 theory. Although the binary and
tertiary p-models, respectively, are generated to possess the first three
and four moments correctly, it is remarkable that the binary and
tertiary p-models and the measured distributions have approximately
the same high order moments up to, say, about 7 (see figure 3).

Other models have also been proposed. For example, Novikov [121
proposed a uniform distribution for P(M). At that time, however, the
multiplier distribution had not been obtained experimentally. It is now
clear, however, that a uniform distribution is not a good model for any
of the curves in figure 2. For example, a good approximation to the
binary cascade is the triangular distribution shown by a solid line in
figure 2.

4. CONCLUSIONS

The multiplier distributions are a basic tool for understanding many of
the scale-similar properties of energy dissipation in turbulence. In the
absence of an ab initio theory that yields these distributions in a
deductive way, analytical progress can be made only by modeling them
with reasonable schemes. Here, we have summarized the attempts
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made in the last few years. Below, we mention some applications of this
work.

The first application is in the calculation of Er, the energy dissipation
over an interval of size r; Er = rEr. According to the definition of the
multipliers,

Er= EL mi, (6)

where n(r)=Ioga(r/L), and L is the large-eddy (integral) scale. Within
the p-model scheme for a binary cascade, the probability density
function (PDF) for the ratio x = ErIEL is

A r F(log2(r/L)+1)
x L r(k(x)+l) F(log 2 (r/L) - k(x)+1) (7)

where A is a normalization constant, r is the gamma function and

log(x (r/L)log2(1-P))

k(x) = log(p/( -p)) (8)

A second application is in computing the exponents 4q, defined as

<Erq> - (r/L)kq. (9)

The result for the triangular distribution is

1 09 4(1 1 1•q =-log2{ i 4 (- q-•-+- (q+l)(q+2) (10)

Corresponding results for the p-model are given in [2]. The PDFs of the
velocity increments can also be computed. On using the second refined
similarity hypothesis [13], the velocity increments can be written as

Au(r) = V Er"/ 3 . (11)

In Ref. [14], we obtained the probability density of V. The PDF of Au can
be computed if some model is assumed for ET. In Ref. [81, those PDFs
were computed using the binary p-model.



406

The tertiary p-model has been used to generate a signal that shares
many features of a real turbulent velocity trace. This issue will be
addressed elsewhere.
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Abstract
Fluid flow in the larger arteries is essentially unsteady; under normal physiological

circumstances it may be regarded as laminar. To obtain more insight in the complex blood flow

patterns in the carotid artery bifurcation and around the aortic valve, finite element calculations

have been carried out, validated by flow visualization studies and laser-Doppler velocity

measurements. In the numerical models, the arterial wall motion and leaflet-fluid interaction are

taken into account, using a quasi 1-D linear wave propagation model and a fully coupled
iterative method, respectively.

Introduction
The analysis of blood flow around heart valves and in bifurcations is a major research topic in

biomechanics. Due to the highly complicated geometry of the arterial system, the unsteadiness

of the flow, the large displacements of the valve leaflets, the deformability of the vessel wall
and the non-Newtonian behaviour of blood, the subject is a challenge for the engineering
disciplines. The recent progress in this field [1 is mainly due to the fact that the experimental
tools and computational methods are so advanced now that unsteady three-dimensional flow

analyses in complex geometries have become common practice. Besides, the software and

hardware in detection apparatus (like ultrasound and MRI) are so improved that non-invasive

real-time blood flow analyses can be performed clinically in the near future and, hence, detailed

fluid mechanical information is needed to interpret the clinical data [2). The present state of
research [I] is that in various bifurcations a similar steady flow behaviour is found, comprising

flow separation, secondary flow and skewing of axial velocity profiles. Differences observed

are mainly due to different geometries and Reynolds numbers. However, the influences of flow

unsteadiness, wall distensibility, non-Newtonian effects and stenoses are not completely clear

yet.
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As examples of the interesting flow phenomena in the cardiovascular system and the tools

available, we will focus in this paper on the physical-mathematical methods used to analyse the

entrance flow in a rigid-walled curved tube, the fluid flow in a distensible model of the carotid

artery bifurcation and the interaction between fluid flow and leaflet motion during the opening

and closing of the aortic valve. The geometry of the carotid artery bifurcation is shown in figure

1. It consists of a main branch,the common carotid artery,which asymmetrically divides into

two branches,the internal and external arteries. A characteristic feature of the carotid artery

bifurcation is the widening in the proximal part of the internal carotid artery, the carotid sinus.

As a second example the aortic valve is shown in the same figure. It is one of the four valves

controling the blood flow through the heart and is situated between the aorta and the left

ventricle. It consists of three flexible leaflets and behind each leaflet a cavity in the aorta wall is

present; the so-called sinus of Valsalva.

Aorta

4.S,

I high
CWVtrW& I
84-Y wag

rilet sinus

raasas depth

Figure 1. Sketches of the carotid artery bifurcation and the aortic valve.

Under normal conditions the human heart contracts and relaxes about once a second. The

arterial volume flow curve consists of a period of relaxation (diastole) followed by a period of

contraction (systole), see figure 6. Due to the contraction of the heart, blood flow is essentially

unsteady. The Strouhal and Reynolds numbers are defined as:

Sr- a Re=-pD eq.1

Here ii is the mean velocity at the inlet of the artery, D is the diameter of the artery and co is

the angular frequency of flow variation. For the density p and viscosity pt of blood the constant

values of 1050 kg/m3 and 3-4 mNs/m2 are commonly used, although in regions with flow



separation non-Newtonian effects may play a role [31. In the present study the blood flow is

assumed to be laminar, although in some arteries the peak Reynolds number is quite high.

However, the unsteadiness of the flow strongly affects the critical Reynolds number [4].

Finally, the arterial walls are distensible. This results in the occurrence of wave phenomena;

i.e. pressure and flow disturbances travel with finite velocity, experience damping, and will

reflect at discontinuities (51. The physiological values of the various parameters for the aorta

and the carotin artery are summarized in Table 1, adapted aftc~r Caro ct a. i6.

Ascending Carotid
aorta artery

Diameter D [mm] 15 5.0

Peak blood velocity umax [n/s] 1.2 0.5

Mean blood velocity 5 [m/s] 0.2 0.2

Measured wave speed c [m/s] 5.0 8.0

Reynolds number 750 275

Reynolds number (peak) 4500 700

Strouhal number 0.95 0.28

Speed-ratio umax /c 0.24 0.06

Table 1. Normal values for canine cardiovascular parameters at a heart rate of 2 Hz [6].

Many researchers have contributed to a better insight into the flow phenomena around the

aortic valve and in the carotid artery bifurcation. Significant contributions to the understanding

of the fluid mechanical aspects in aortic valve functioning were delivered by Henderson and

Johnson (7], Bellhouse and Talbot [8], Peskin [91 and Wipperman [101. Extensive calculations

on blood flow in straight arteries were performed by Womersley [11]. Olson [12] concluded

from a steady flow study in a symmetrical three-dimensional bifurcation that the flow

phenomena occurring in the daughter branches are highly determined by curvature effects. Yao

and Berger [131 further investigated the steady entry flow in a curved pipe. Detailed

experimental and numerical information about the flow field in the carotid bifurcation has been

obtained by Bahradvaj et a]. [14] and for the unsteady case by Ku et al. [15] and Perktold [16].

In our group, model studies of the flow phenomena around the aortic valve were performed

[ 17,181 and measurement techniques were developed for oscillatory flow [ 19]. To gain insight
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into secondary flow patterns, entrance flow in a 90-degree bend was studied [20-221. Next,

steady and unsteady flow in models of the carotid artery bifurcation were analysed [23-26].

Here, we will briefly describe the methods used and pre:,nt some characteristic results.

Experimental validation of the methods used is reported elsewhere [27-301. Finally, some

future research directions will be pointed out.

Entrance flow in a 90-degree curved tube
The flow of an incompressible isothermal Newtonian fluid is described by the Navier-Stokes

and continuity equations. To solve these equations they are discretized using a standard

Galerkin finite element method which is implemented in the finite element package SEPRAN

[311. The spatial discretization results in the following set of non-linear first-order differential

equations [32]:

MNi +[S + N (II)] a + LT2 = f+ b eq.2a

Lu = 0 eq.2b

where Mui represents the local acceleration term, Su the viscous term, N(U1)j. the convective

acceleration term, LTR the pressure gradient term and LII the velocity divergence term. The

body and boundary forces are represented by f and b2 respectively, while U contains the velocity

and p- the pressure unknowns in the nodal points. The local time derivative in eq.2a is

approximated by :

,kn+e = un+l "un eq.3
At

in which u is an abbreviation for u(nAt) with At the time step. The non-linear convective term

is linearized using one step of a Newton-Raphson iteration scheme. In order to reduce the

number of unknowns, a penalty function method is applied [33]. For the solution of the matrix

equation a direct technique was used.

The elements used belong to the group of so-called modified Crouzeix-Raviart elements. For

2D situations, like the aortic valve model, a 7-noded element with 3 pressure and 14 velocity

unknowns is used. 3D situations, like the curved tube and the carotid artery bifurcation, require

the application of a 27-noded element with 4 pressure and 81 velocity unknowns. (See figure

2). The accuracy is 0(Ax 3) for the velocity and 0(Ax 2 ) for the pressure with Ax being a

characteristic dimension of the spatial discretization. The resolution in time, using 0 = 1/2, is

shown to be 0(At2).
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Figure 2. The 7-noded and 27-noded elements used in solving the 2D and 3D fluid motion

equations, respectively.

The flow at the inlet is supposed to be fully developed. The velocities at the wall are
presumed to be zero. At the outlet the normal and both tangential stresses are set to zero, while

in the plane of symmetry both tangential stresses and the normal velocity component are put to

zero.

As an example some results of unsteady entrance flow in a 90-degree curved tube will be
shown. The flow rate consisted of a sinusoidally varying unsteady flow component
superimposed on a steady flow component. With a curvature ratio of 8 = 1/6, the Dean number

(_ 1-8 Re) varied between 82 and 327 The Strouhal number was 0.46. In figure 3 the results of

axial and secondary flow at 0 = 22.5' from the straight inlet tube are shown. Axial flow is

presented by axial isovelocity lines and secondary flow is visualized by means of velocity
vectors. Contour level 0 corresponds to zero axial velocity. As a consequence of centrifugal
forces, the secondary velocities near the plane of symmetry are directed towards the outer bend

(0), whereas near the side wall of the curved tube these secondary velocities are directed
towards the inner bend (I), resulting in a Dean-type secondary flow field. For the total period

of time the center of this secondary vortex is situated near the center line of the cross-sectional
plane. The secondary velocities at t=1/4T and 1/2T are about equal, as well as the secondary
velocities at t=3/4T and t=0. At minimal flow rate a region with low secondary velocities is
found near the inner bend. As a consequence of secondary flow a shift of the maximum of axial
velocity towards the outer bend is observed for the whole period of time. This shift is maximal

at minimal flow rate (t=3/4T). At this time interval a region with negative axial velocities is
observed at the inner bend. Similar results were obtained at other axial positions [22]. There it

also appeared that axial flow is highly determined by secondary flow. The influence of the

frequency parameter and the flow wave form appeared to be of minor importance.
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Figure 3. Axial and secondary unsteady entrance flow in a 90-degree curved tube [281.
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Fluid flow in a distensible model of the carotid artery bifurcation
In the numerical analysis of the flow phenomena in distensible geometries not only the fluid

motion equations but also the equations governing wall motion should be taken into account.
Motivated by the small ratio of fluid velocity over wave velocity (- 0.06 for the carotid artery)

an uncoupled approach is followed. First, the time dependent pressure distribution due to wave
propagation is determined. Next, the wall motion due to this time dependent pressure

distribution is calculated. Finally, the wall motion is prescribed as a boundary condition for the
solution of th. fluid notinn. We will briefly describe the three steps in this procedure and
finally an illustrative result will be given.

The time dependent pressure distribution is calculated using a quasi-ID linear model

describing wave propagation. The linearized one-dimensional mass and momentum equations
for unsteady viscous flow through a visco-elastic tube are used, which read [341:

aA au au ap-+A -=0 ; p- -=-- fu• eq.4a,b
at ax & ax

In these equations A = nR2 is the cross-sectional area of the tube, AO is the cross-sectional area

in the reference state, u(x,t) and p(x,t) are the axial velocity and transmural pressure, both

averaged over the cross-sectional area, and f is the so-called friction function. The assumption
of one-dimensionality holds if the wave length is large compared to the diameter of the tube;
upto the fifteenth harmonic in the carotid artery tnis ratio is larger than 40. Due to the assumed

linearity the equations can easily be solved using harmonic functions. To that end, two

additional assumptions have to be made; one for the friction function and the other for the
constitutive relationship between A and p. For the friction term a frequency dependent
expression is used, derived from the two-dimensional theory of unsteady fully-developed flow
in uniform visco-elastic tubes [11]. Visco-elastic wall behaviour is taken into account by an

experimentally determined constitutive relationship between the complex amplitudes of pressure

and cross-sectional area variations. The influence of wave reflections is incorporated in the
model by treating the carotid artery bifurcation as a bifurcation of uniform tubes. Due to the
very large wave length/diameter-ratio the contribution of local inhomogeneities, like the carotid

sinus, to the reflection and transmission coefficients appeared to be negligible. Reflections from

the outflow ends of the internal and external arteries were incorporated in a standard manner

[291.
Next, the wall motion of the carotid bifurcation due to the propagating pressure pulse is

analysed. Because of the magnitude of the deformation (relative diameter changes up to 10 %
are found) the system to be analysed is geometrically non-linear. For practical reasons the

mechanical behaviour of the vessel wall is described with a Hookean constitutive relation, The
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materai parameters are selected in such a way that diameter changes similar to the cncs

observed in vivo are obtained. Visco-elastic and inertia effects are neglected, reducing the
problem to a quasi-static one. Although the wall of the artery has a thickness which is about 20

times smaller than its diameter, experiments show that its bending stiffness is considerable

[35]. These considerations lead to the use of shell elements; compared with the application of

three-dimensional brick elements this results in a considerably smaller system of equations. The

finite element package MARC is used with an 8-noded thick shell element with global

displacements and rotations as degrees of freedom and four integration points [361. Boundary

conditions for the wall motion are applied in a rather pragmatical way [29].

The final step in the numerical approach is the solution of the fluid motion equations using the
finite element method described before. However, in this case for each time step the mesh is

adapted to account for the wall motion. As inflow condition the fully developed axial and radial

velocity profiles as given by Womersley [111] were prescribed. The boundary conditions at the

wall were obtained by taking the time derivative of the wall displacement. At both outflow ends

boundary conditions of the stress-type On = -p and at = 0 were prescribed. The pressures

needed for this purpose were calculated using the quasi-ID model for wave propagation. To

investigate the effect of the wall motion, the flow fieid calculated for the distensible carotid

artery bifurcation model was compared with the flow field calculated for a corresponding rigid
model. The geometry of the rigid model was chosen to be equal to the end-diastolic geometry

of the distensible model. In both cases an identical flow rate at the entrance was prescribed.

In figure 4 the flow rates at the outflow of the rigid model are compared with those in the

distensible model. Due to the increase in its volume, part of the volume flow entering the

distensible model is accumulated during acceleration. During deceleration this part is released.

This effect accounts for the difference between the outflow rates in the rigid and the distensible

model. As an illustration of the results, the axial flow field in the internal carotid artery at

minimal flow rate (end-systole) is shown in the same figure. Here, contour level 1 corresponds

to zero axial velocity; a reversed flow area is observed at the non-divider wall (N). At the

entrance of the internal carotid artery (10) and halfway the sinus (11) the reversed flow area

occupies about 40 % of the local cross-sectional area. For the distensible case both the size of

the reversed flow area and the magnitude of the negative velocities are found to be smaller. In

both cases Dean-type secondary vortices are observed resulting in C-shaped curvatures of the

corresponding axial isovelocity profiles. In the rigid model the curvature is more pronounced.

Most likely, the release of "flow accumulated during acceleration" in the distensible model is

the dominant factor causing the differences with the flow field observed in the rigid model [29].
The above described flow field in the carotid artery changes cu: :erably as a function of

time. The recirculation area is found to develop during deceleration and to disappear during

acceleration. Also the secondary flow field and the curvature of the axial isovelocity lines are
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Figure 4. Comparison between axial velocity profiles in the symmetry plane and at three-

cross-sections in the internal carotid artery at end-systole (ES), calculated for the

distensible and rigid models [291.
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strongly time-dependent. In general, the distensibility of the wall is found to reduce some of
these effects, although the global structure of the flow field remains unchanged [291. However,

this conclusion should be handled with care as no comparison has been made between the 3D

pressure field with the pressure distribution calculated using the quasi-lD model for wave
propagation. Since the latter was applied to calculate the wall motion, it should not deviate too

much from the 3D pressure field if a consistent solution of the fluid motion is to be obtained.

This will be a future research topic.

Fluid-leaflet interaction in the aortic valve
Due to the strong interaction between structure motion and fluid flow, in the numerical model

for the dynamic behaviour of the aortic valve fluid and structure are iteratively coupled. The

equations of motion of the subsystems are evaluated separately and an iteration is performed
until convergence is achieved. Because of computational reasons, the fluid flow and the

structure are restricted to be two-dimensional. For the fluid the full unsteady two-dimensional
incompressible Navier-Stokes equations are solved by means of the standard Galerkin finite

element method described before. For stability reasons, the time integration is performed with a
complete Euler implicit scheme (0=1 in eq.3). As initial condition, the steady state solution for

a fully opened valve is taken. As a boundary condition at the entrance, a time-varying parabolic
axial velocity profile is prescribed and the radial dow is set to zero. The entrance channel is

chosen to be long enough to guarantee a full development of the unsteady velocity profile. Due

to the lack of experimental data this fully developed entrance condition is used, although it
certainly does not correspond to the physiological one. As contact condition on the valve, the

fluid velocity is set equal to the local valve velocity, determined from the actual valve position

and the valve position at the previous time level. At the outlet a stress-free flow condition is

prescribed. At the channel walls a no-slip condition is used.
To incorporate the moving structure a segmented valve is considered, consisting of several

rigid segments connected to each other. The physiological relevance of this model valve is that

with an increasing number (n) of links, the segmented valve will behave more and more like a

fully flexible valve. In the special case when n=l, the valve reduces to the so-called rigid valve
[371. In figure 5 some segment quantities are defined. Each segment has one degree of
freedom: its angle of rotation "i. The inertia of the valve is neglected. At each point of time a

segment must satisfy the equilibrium conditions:

Ph, I + fihx2 + fx = 0 ; fnyl + ihy2 + Ify = 0 eq.5a,b

Phx2 li sin(Pi + fhy2 lt COS(Pi + ml = 0 eq.5c

"LIIIII
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Figure 5. Definition of the geometry and the forces, acting on a segmented valve.

with ff the fluid force and fh the hinge force respectively. I is the length of the segment. Index i

refers to segment i, subscripts x and y refer to the horizontal and vertical directions, whereas 1

and 2 refer to the left and right edge, respectively mif denotes th, moment due to the fluid

flow about the center of the hinge with segment -1. The fluid forces and moments must be
calculated by the finite element method. On the segment edges the force continuity conditions:

Vhx2=-1h+ll ; Ohy2= P•II eq.6a,b

are imposed. The boundary conditions for segment n:

nhX2=0 ; fhy2=0 ; mf=0 eq.7a,b,c

complete the set of equations. For an arbitrary set pN (i=l,n) the system is not in equilibrium.

For those states a residual moment mires per segment is defined as:

mi~s = Phx2 ii sin(pj * hy2 li COSi + m eq.8

The unknown hinge forces can be calculated in a recursive way:

ph., = th I" ft. ; thyl I= fh+ylI fiy eq.9a,b

Starting from the valve tip, where boundary conditions (eq.7) can be applied, the hinge forces

fPh_ and fihy can be calculated for every segment with eq.9, which in turn can be substituted in
eq.8. This leads, together with eqs. 5 and 6 and expressions for the fluid moment and forces,
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to n equations with unknowns (pi (i=l,n). This set of equations is solved by reformulating the

problem as a non-linear least squares problem. To this end a residual moment is defined:

r( = mi eq. 10

where r is the total residual moment to be minimized and mi the moment acting on segment i,

which is a function of a position set p. Once a minimum of r is found which equals zero, (p

contains the equilibrium position of the valve segments and therefore of the valve itself. The

segment moments mi depend on all To ...... (Pn. In general no explicit relation for this

dependence can be given, especially not when the finite element fluid model is used. A

consequence is that derivatives cannot be calculated. Therefore, a method must be used which

does not require the evaluation of derivatives. A very suitable non-linear least squares method

for this study is Powelrs hybrid method [381. It combines a robust convergence far from the

equilibrium position, with a fast, superlinear convergence close to it. Notwithstanding the

robustness of Powell's method, it occasionally fails to find the equilibrium position. In these

cases, a new initial estimate is generated and the iteration process is restarted. Using this

method, both the numbers of segments (n=l and n=4) and the physical parameters, like the

Strouhal and Reynolds numbers, are varied.

In the numerical calculations a pulsatile flow rate is used. Since the flow rate decleration time

is an important parameter in the valve closure mechanism [171 ,this time is chosen as the

characteristic time z. Figure 6 shows the velocity field for n=l, Re=313 and Sr=3.60. At t=0.0

the velocities are small and a vortex is present in the sinus. At t= 1.0 the fluid is accelerated and

the valve starts to open. At t-l-.5 the valve has reached its maximum velocity and pushes out

the contents of the sinus. On t=2.0 the flow rate is maximal, the valve is slowing down but still

moving towards the fully opened position. Just at t=2.5, when the flow has its maximum

deceleration, the valve reaches its maximum position and its velocity becomes zero. At t=2.75

the valve is moving towards the closed position. A vortex in the sinus is being formed. At

t=3.0, when the flow rate is nearly zero, the valve has its maximal closing velocity. At t=4.0

the valve has nearly reached its pseudo-equilibrium position and its velocity becomes zero. It is

interesting to note that the valve moves already towards its closed position during flow

deceleration, just like the natural aortic valve does. This observation is consistent with quasi-ID

model predictions [171.

For lower Strouhal numbers the motion of the valve is found to be nearly in phase with the

flow rate and its amplitude is larger 1301. The influence of a variation of the Reynolds number

between 300 and 1100 appeared to be only marginal. Higher Reynolds number values could

not be reached as the fluid solver does not allow computations for Re >1100. Also, similar
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results were obtained for a segmented valve with n--4; the curvature changes of the leaflet are

only modest. Only at a much higher Strouhal number or when a harmonically varying flow rate

was used, large deformations of the valve leaflet were observed. Finally, it need to be

mentioned that if the simulation of a full physiological flow cycle is required, including back

flow and full valve closure, the model must be extended with a closure algorithm, which is not

included in the present model. This and the extension to the three-dimensional case will be a

future research topic.

Concluding discussion
From the present study it is concluded that the finite element method can be used for detailed

analyses of unsteady blood flow in complex three-dimensional geometries. The local geometry

of the bifurcation highly affects the axial and secondary flow fields, but the wall distensibility

has only a marginal influence. During flow acceleration and deceleration the valve leaflet shows

large displacements, which induce vortex like velocity patterns in the cavity behind the leaflet.

As presented elsewhere, a good agreement is found between the numerical and experimental

results [27-.0].

Some future research topics in the analysis of fluid flow in large blood vessels are [11:
--- Improvements are needed of the models for fluid-structure interaction. In case of the

analysis of the influence of wall distensibility on fluid flow, the improvements need to

include a proper account for the effects of reflections originating from the peripheral

vascular bed, the application of physiologically relevant boundary conditions in the

calculation of wall motion, the use of a model describing the complex mechanical

behaviour of the wall and an experimental validation of the uncoupled approach to

calculate the flow field in such a distensible geometry. For a complete analysis of the

dynamic heart valve behaviour, a three-dimensional fluid model must be applied and in

some cases valve inertia or visco-elasticity of the leaflet material has to be incorporated.

Furthermore, attention should be given to incorporate the possibility of full valve closure.

Then the models can be used to improve the design of existing or newly developed one-

or bi-leaflet disc type or flexible leaflet type heart valve prostheses.

The influences of non-Newtonian effects and minor stenoses on the local flow field are

not completely clear yet. Especially, the visco- elastic properties of the blood may require

a considerable effort. For the analysis of the influence of minor stenoses on the flow field

spectral element methods and PIV-methods may be favourable, as detailed analyses have

to be performed of eddy generation. Besides, the influence of biological variabilities (like

bifurcation angle and divider geometry in case of a bifurcation) need research attention.

Atherosclerotic plaque formation is found at positions where low wall shear rates occur

[39]. Here focal regions of elevated permeability to macromolecules, temporary gaps and
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a thin endothelial glycocalyx are found. Modelling of the arterial wall is worthwhile,

focussing on maximal stress concentration in the intima and the mass transport of

atherogenic proteins between plasma and vessel wall 140]. Then probably an
improvement can be reached with regard to the understanding of the fluid mechanical
contribution to the process of atherogenesis.
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Abstract
Transonic flows are now as before fascinating and very important in respect to

theory, experiment and applications. In the early days analytical methods prevailed that
led to fundamental results. Now a days due to increasing power of computers numerical
methods dominate. Validation problems of Euler- and Navier-Stokes Codes are of
primary interest. This led to simple but fundamental experiments (DFVLR-F5 wing,
vortex flow, shock boundary layer interaction, condensation phenomena, ... ) and the
ccmparison with theory. The status quo of validation is today not sufficient in all respects.
There are complex dependences on the block structures, the meshes, the laminar-
turbulent transition and the turbulence models. Some future trends: Search for reliable
codes for 3D-boundary value problems to develop airfoils of low drag - especially laminar
transonic airfoils; study of diabatic flows of phase changing media with several applications
(lift and drag of airfoils, steam turbines, cryogenic tunnel, Organic Rankine Cycle,...);
transonic flows in retrograde media (e.g. BZT fluids).

1. INTRODUCTION: WHAT IS A TRANSONIC FLOW?

In transonic flows the magnitude of the fluid velocity is comparable with the sonic
speed (= signal velocity). The body moves nearly with the same velocity with which
disturbances propagate. The theoretical and experimental investigation of these flows is
now and as has been before, of great interest and has become of considerable technical
significance. Now a days there are many applications in aerodynamics of transonic flight
for instance in the field of civil aviation and thermal fluid machinery which underline even
the economical importance of these investigations. The declared aim is: reliability, high
capacity, less drag, less noise, less pollution.

The typical qualities of these flow fields, especially the mathematical and physical
problems involved, can already be understood by studying slender body flows (Fig. 1).
In transonic slightly subsonic flow M < 1 a local supersonic region develops in the
neighbourhood of maximum thickness which as a rule is limited downstream by a normal
shock (Fig. 2). The local Mach number distribution on the airfoil explains the flow. In front
of the body the flow decelerates, behind the stagnation point acceleration to supersonic
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velocity exists. In the shock the velocity jumps to subsonic velocity with following
postexpansion (Figs. 3,4). After this deceleration to backward stagnation point with
following approach to conditions at infinity. In transonic slightly supersonic flow M ? 1
the shock-wave detaches as a rule. Between shock and body a local subsonic region
builds up. The displacement effect of the body leads to an acceleration to supersonic

t02 0,94 C.64

/,1 Mt MMO

| M.

Figure 3. Black-white Mach-Zehnder
interferogram of transonic flowat acurved Figure 4. Shock boundary layer
surface. M = local Mach number. interaction at an airfoil.
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velocity till the trailing edge shock is reached. The limit Machline is the last characteristic
from the airfoil that reaches the subsonic region, while the last characteristic running
down from the subsonic domain limits the range of influence downstream. M-4 1 leads
to the limiting case of sonic velocity at infinity. The sonic line extends to infinity. At the body
the flow accelerates until the rear shock is reached. Comparing the Mach number
distributions on the airfoil we see, that only slight changements exist; the flow freezes.
A simple explanation is as follows: if M is only slightly above onethe shock wave stands
far upstream with Mach number behind the shock M5 1. That means the profile don't
realize whether is stands in a transonic supersonic or subsonic flow. With other words
the local dates at the profile change from M-< 1 to M_ > 1 only slightly.

The mathematical description leads even for slender bodies with small disturbance
theory to quasilinear partial differential equations. On the sonic line (sonic surface) the
type changes, across the shock curve (shock surface) the shock relations have to be
fulfilled. Both curves (surfaces) are not known a priori and have to be determined with the
solution.

2. TRENDS IN THE PAST

The great technical importance of transonic flows on the one hand and the
interesting mathematical-physical problems on the other hand had led to an extensive
theoretical and experimental treatment of relevant problems in the past 50 years. The
Proceedings of IUTAM Symposium Transsonicum 11962 (Aachen) [11, If 1975 (G6ttingen)
[2], 1II 1988 (G~ttingen) [3] give an interesting, unique survey of the worldwide efforts until
today. Concerning theory, 1962 the analytical methods prevailed. Among others we have
the hodograph method, the parabolic (local linearization) method, the characteristics
method and the integral equation method. A lot of general results came out like similarity
laws, equivalence rule, area rule, asymptotic expansions, ... Beside this some exact
solutions for special profiles had been discovered. The small power of computers at that
time didn't allow the numerical treatment of the direct problem. Already 1975 the interest
changed remarkable to Computational Fluid Dynamics (CFD). The increasing power of
computers allowed for the first time the direct numerical treatment of the nonlinear
differential equations in the fluidfield. Questions of stability, convergence and estimation
of errors were more or less open this time. This changes drastically in the following years.

3. TRENDS TODAY ILLUSTRATED BY DIFFERENT CODE VALIDATIONS

The Proceedings of the Symposium Transsonicum III [3] describe this development.
The concluding remarks by Hornung give a (subjective) pointed description worth
reading of the status quo with the progress achieved but with open questions too.
Concerning the CFD-methods the validation of Euler- and Navier-Stokes Codes are of
primary interest. This led to some simple but fundamental experiments, e.g. the DFVLR-
F5 wing experiment (Fig. 5) and the vortex flow experiment (Fig. 6) and the comparison
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Figure 6. Streamlines of the primary and

Figure 5. Test airfoil DFVLR-F5 in secondary vortex (M= 0.85,(x=100).

the transonic 1 m x 1m test section
in G6ttingen.

with numerical calculations for these cases. Some other experiments and validations will
be discussed later on.

In principle there are two concepts for the numerical calculation of the viscous flow
around wings. By using the zonal numerical approach in different domains of the flow
field different differential equations according to the physical effects will be used (Fig. 7).
Outside the boundary layer in front of the shock we use the potential equation, behind
the shock the Euler equations, near the body the boundary layer equations, near the
iai~ing Adge and in the wake region the Navier-Stokes equations. The shock-boundary
layer interference is given by a separate local solution which has to be integrated
iteratively in the global flow field. The second method solves the full Navier-Stokes
equations in the total flow field. The main point is to choose a suitable block-structured
grid which secures a high resolution in the viscous interaction region and at the shock and
the trailing edge. Within the inviscid flow field zones a reduced resolution is possible. This
concept needs an optimization in the choise of computational grids and blocks.

• "' ~EULER .t

NAVIR STOKES Figure 7. Phenomena and zonal

POTENTIAL model equations for transonic flow
BOUNDARY LAYER at an airfoil.
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3.1
A workshop was organized by Kordulla and Sobieczky [4] before the Symposium

Transsonicum Ill. A well-defined boundary value problem, the flow over a wing (DFVLR-
F5) in a wind tunnel was formulated (Figs. 8, 9). Boundary conditions were given at the
walls and in the entrance and exit area. All groups and institutions that had developed
suitable Navier-Stokes programs, were invited to participate in solving this flow problem
,iumerically. Active participants came from: NASA Ames, NASA Langley, NAL Japan,
FFA Sweden, MBB Munich, DFVLR G6ttingen. All theoretical results were collected,
compared with each other and with the experiments performed in G6ttingen. This seems
to be a milestone and should be continued in future.

A •1A DIMENSION Wm

-0.22

004 :2 o0 0.6

A- A Figure 8. 3D - test airfoil [4].

WING DFVLR-F5 I !

INLET PLANE -I EXIT PLANE

I PATE

Figure 9. Wing-plate
configuration in lm

SUCTIO FLAP

SUCTION ' ' ,'x lm transonic wind
tunnel [4].
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Figure 10. Chordwise c- distributions on the wing surface in different sections (1 ,4,7,9).
Experimental data given by symbols, solid lines theoretical results(Schwamborn). Flow
conditions: Free-stream Mach number M= 0.82, a= 20, Re/m = 107 [4].

jryr

Figure 11. Comparison of predicted
skin friction line patterns for the

wind tunnel test. (x= 20. Left: lower
wing surface. Right: upper wing
"surface. [4].
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Figure 12. Lift and drag coefficients of the DFVLR-F5 Navier-Stokes solutions [4].

The pressure distributions on the wing and in the field agree quite well among the
participants and with the experiment (approximately 10%). The results are not very
sensitive (Fig. 10). The skin friction lines, especially if separation exists, are much more
sensitive (Fig. 11). Disappointing is the scatter of the lift (cL) and the drag coefficients
(CD) (Fig. 12). There is a remarkable and complex dependence on the nature of the used
meshes and block structures in streamwise and chordwise direction (C-0, C-H, 0-0, H-
H-type) and the discretization (FVM, FDM). Beyond this the laminar-turbulent transition
(switch on) and the used turbulence model (Baldwin-Lomax) may be of considerable
influence. This is doubtless a disillusion and not recognized with pleasure but it is
important for all further investigations in that field. Without strict validation of the
numerical codes no reliability can be guaranted!

3.2
The next validation complex is experiment and computation of transonic viscous

channel flow with ventilation. Many efforts at different places had been done [5, 6, 7]. The
practical idea is the reduction of shock strength by passive control in the domain of
turbulent shock-boundary layer interaction. Figure 13 describes on the one hand the
scheme of the test section in a laboratory and on the other hand the different zonal
methodsforthe numerical approach. Outsidethe boundary layerwe have the nonviscous
flow part. We solve the potential equation after suitable grid generation by well known
difference methods. At the wall we start with laminar boundary layer, after transition we
continue with turbulent boundary layer. In the shock boundary interaction area we fit in
an analytical model [8]. In the cavity closed with a punched sheet we prescribe a constant
pressure and fulfil the conservation of mass. Downstream we have a turbulent boundary
layer with oi without separation. An inverse integral method has to be applied [9]. The
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Figure 13. Zonal Methods for computation of transonic viscous channel flow with
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closes the supersonic region.

calculation and the measurements for Mach number and skin friction atthe lower wall and
the displacement - and momentum thickness agree well (Fig. 14). The comparison with
the nonventilated case is convincing. The shock strength is considerably reduced (Fig.
15). For a single profile the wave resistance decreases - until 50% - and the shock
position is fixed. It is remarkable that the effect of passive control is already reached with
a perforation of about 8%. Further on the inclination of the perforation-channels is of
considerable influence (oblique perforation).

The method described here may be of interest for several applications. For
compressor cascades in supersonic flow for instance it is possible to reduce the loss by
passive control on the suction side of the blades (Fig. 16). Experiments in a cascade
tunnel [101 and in channel test section obviously show this effect. Calculation with zonal
methods are possible in a way we have described above.

In the last time another idea of passive control has been propagated [11 ]. The cavity
is closed by an elastic membrane. Depending upon the elasticity and the inner pressure
the membrane builds up some kind of adaptive wall that may have a favourable influence
on the shock-boundary layer interaction.
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3.3
A very interesting new experiment for validation of modern transonic numerical

methods is the condensation, or more general the study of flows with phase transition,
in Laval nozzles and around profiles. This is important for several reasons. On the one
hand this is adiabatic flow with interesting new physical effects on a microscopic and a
macroscopic scale (nucleation theory, droplet growth), on the other hand there are
several actual applications in steam turbines and in cryogenic tunnels, not to forget theII

ii
Figure 17ab. Schlierenpictures and calculated iso Mach lines. Left: t•o= 29%, subcritical
heat addition; Right: •o = 60%, supercritical heat addition.
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ftigh of an aircraft in humid air. Condensation gives rise to heat release that influences
the pressure distribution considerably. Strong changements of lift and wave drag
coefficients are possible in moist atmospheric air (12]. The numerical method solves the
unsteady 2D-Euler equations. Iteration is finished if the stationary final solution is
obtained. All equations are used in conservation form and the condensation is modelled
by two successive processes. For homogeneous condensation we start with the
nucleation theory by Volmer [13] and continue with the droplet growth theory according
to the Hertz-Knudsen model. The calculation uses a finite-volume method that generalizes
a corresponding procedure for adiabatic flows [14]. Depending upon the stagnation
humidity 4o we find different structures of condensation phenomena in the supersonic
part of a nozzle - subcritical and supercritical heat addition (Fig. 17a,b) [15]. The
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comparison between calculation and measurements is convincing. This is valid in
respect to the Schlierenpictures with iso-Machlines and in respect to the static pressure
measurements along the axis. Figure 18 gives as microscopic quantity the nucleation
rate J and as macroscopic values the condensed mass g/gma, and the static pressure
P/P0 l. Concerning profile flow figure 19 shows for circular arc (CA-0. 10) and NACA-001 2
profile the results. Depending upon the stagnation humidity 00 the pressure drag may
be considerably reduced (CA-0. 10) or increased(NACA-00 12) [121. A simple explanation
is as follows: For circular arc profile and adiabatic flow the shock position is in the
neighbourhood of the rear, for M,.= 0.87. Condensation will not move this shock. The
changement of the pressure due to heat addition leads to decreasing drag with
increasing humidity. For NACA profile on the contrary the shock position in adiabatic flow
is in the middle of the profile, for Mf-- 0.8. Here due to condensation the shock moves.
The changement of the pressure due to heat addition leads to an increasing drag with
increasing humidity. Remarkable is the typical double shock structure for high humidity!
The first is due to super-critical heat addition, the second is the usual gasdynamic shock.
If unsymmetric flows with incidence are considered things change once more [121. Now
for NACA profile the shock is foradiabatic flow in the neighbourhood of the rear and drag
and lift decrease with increasing humidity. Figure 20 shows the different effects between
non-equilibrium condensation and equilibrium condensation on the one hand and
adiabatic flow on the other hand. The case of equilibrium condensation corresponds to
atmospheric flight conditions with chordlength c = 1500 mm. A drastic increase of the
drag is the consequence.
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4. FUTURE TRENDS

The last examples lead already to efforts in future. In the field of CFD-methods now
as before reliable Euler- and Navier-Stokes codes for actual problems of modern
aerodynamics are wanted. Validation is necessary ir any case. Of special interest are
airfoils of low drag. This aim may be reached by design of shockless profiles (171 or by
active or passive control of the shock boundary layer interaction.

The transonic laminar airfoil is simply the optimum. If it is possible to suppress the
instabilities in the boundary layer and keep it laminar over the main part of the airfoil this
would be a great success.

Phase transition effects are of increasing importance as we have seen. The
situation in cryogenic tunnels belongs to these subjects and the study of condensation
of N2 is of great interest [18,19]. A possible application of phase changing fluid flow lies
in a new type of fluid flow machines, using a so called Organic Rankine Cycle (ORC).
Some new investigations show that remarkable features exist which lead to large
efficiencies of these systems 120].

Last not least the transonic flow in retrograde (dense) fluids is in many respects
surprising [2 i]. Sorm e well known classical gasdynamic effects invert [22,23,24]. For
instance, expansion shocks may be possible with a favourable influence on boundary
layer separation; isentropic compression of these media may lead to condensation and
so on.

At Symposium Transsonicum III Earl Murman gave a delightful comment: "What we
are doing is fun, it might even be important". After working in the fascinating field of
transonic flow for over 35 years I am convinced that it is important.
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