
AD-A270 033

* ~~Contract N00014-89-C-0137 ~ ~~~~I
Task Final Technical Report
Contract T-IN 0009, 0010

I

U| Active Control of a Multivariable System
Via Polynomial Neural Networks:

1 Computer Simulation Evaluations and
Laboratory Experimental Results

* DTIC
B. Eugene Parker, Jr., Ph.D. ELECTE

Natalie A. Nigro OCT 0211993
*David G. Ward U A 0D

June 1993

jThisdcMent has been cippsoved
rfor public i :se, and -aie' its

Prepared for:

DEPARTMENT OF THE NAVY
Office of the Chief of Naval Research

Advanced Vehicles Technology Division 0)
800 North Quincy Street

Arlington, Virginia 22217-5000

3I N

Prepared by: 0r)

BARRON ASSOCIATES, INC.
Route 1, Box 159

Stanardsville, Virginia 22973

3 (804) 985-4400

i!

REPORT DOCUMENTATION PAGE Fo.- Approved
I OM8 No. 0704-0188

P,JIo rortvl n batdn,, fQl thl rOcll.ctOf ,t IQomason 1 i m te(d to average ' Noul ocf i•n onse, nclvuotq me t me Io,fl,.r'fl q ,t EracIeOnS .ertcv ellltns glal Ourme,.
oattsfLng and o t anta(n.he data nuInc d tcoo*f•l0 q d fal d -w-A to •l',tIe3•On ol-f ,n•frfAt Send swdl e endle o s o, ron oAstu.nt . li ome, a130-1 of

' o.a t t" n lnvto, at i "'! A1lJn9 qgtZ o .e• e'oe 'em rduvng• k burdsO n tO Wfsc Afla on HPn davarler, S R-cei •(. •aq 0rate or I fr matcO n '8 Qn"S"on .Od t'. 21 O 'ettevon"1. AGENCY USE O 22N" e e ,2- 2. andEto lh ' OffIkof Manatent and '"dqet. PRoer Tork ducnPE o1ND OA I' .s 44%ER dn DC......

1. AGENCY USE ONLY (Leave blank) 1 2. REPORT DATE 3. REPORIr TYPE AND DATES COVERED

Tune 1993 Final Technical, 15 Apr to 31 Mar 93
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Active Control of a Multivariable System Via Polynomial C: N00014-89-C-
Neural Networks: Computer Simulation Evaluations and 0137
Laboratory Experimental Results

6. AUTHOR(5)
B. Eugene Parker, Jr., Ph.D., Natalie A. Nigro, and
David G. Ward

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

Barron Associates, Inc. REPORT NUMBER

Route 1, Box 159 141-05 FTR
Stanardsville, Virginia 22973

9. SPONSORING/MONIJORING AGENCY NAME(S) AND ADDRESS(ESJ 10. SPONSORING"/MONITORING

Department ot the Navy AGENCY REPORT NUMBER

Office of the Chief of Naval Research
Advanced Vehicles Technology Division
800 North Quincy Street
Arlington, Virginia 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution Unlimited

13. ABSTRA.CT(Maximum"2O'owo'rI).
The objective oftthe work described herein was to develop, implement, and

demonstrate inductively-synthesized active control algorithms that minimize a
performance metric that is a function of a signal measured by a sensor external to a
multivariable control system. The controller is required to control a (potentially
nonlinear).plant when subjected to a broadband (impulsive) disturbance signal.
Polynomial neural networks (PNNs) are used to implement the control algorithms. To
provide controller/secondary feedback compensation filter parameters for the
Farlaboratory experiments, and to provide a benchmark with which to compare the
empirical results, computer simulation evaluations were also conducted. The report
S documents controller designs that achieve up to 24.4 dB error improvement relative to
the uncontrolled case.

Key differences between the present work and that ongoing elsewhere in active
control are: (1) The use of broadband impulsive disturbances, which induce a more

(continued on back)

14. SUBJECT TERMS 15. NUMBER OF PAGES
Active control; Polynomial neural networks; Feedforward control;
Broadband control; Predictive-feedback control; Nonlinear control; 16. PRICE CODE

Multivariable control; Compluter Simulations
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION ig. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED NONE
NSp 7540-01-280-5SO. Standard Form 298 (Rev 2"19)

I
complex stochastic control scenario than that of narrowband excitation; (2) The
otential controller structures are adaptive, nonlinear, infinite impulse response

•NNs, not traditional linear, finite impulse response filters; the lormer offer I
promising new active control approaches for non-Gaussian, as well as Gaussian,
sipnts, and maybe used for multiple-input, multiple-output control of unknownpats.I

I
I
I
I
I
I
I
I
I,I
U
I
I
I
I
I

Active Control of a Multivariable System
Via Polynomial Neural Networks

Foreword

This final technical report, covering research and development work
performed during the period 15 April - 31 March, 1993, documents the completion
of Line Items Nos. 0009 and 0010 under Contract N00014-89-C-0137, Modification
P00009. The work was accomplished by Barron Associates, Inc., Stanardsville,
Virginia 22973, for the Department of the Navy, Office of the Chief of Naval
Research, Advanced Vehicles Technology Division, 800 North Quincy Street,
Arlington, Virginia 22217-5000. Commander Daniel A. Forkel, USN, OCNR Code
1224, was the Scientific Officer.

Barron Associates and the authors express their gratitude to Commander
Forkel; to Dr. Albert J. Tucker, Director, Advanced Vehicles Technology Division; to
Brian Houston of the Naval Research Laboratory; and to Brian Johns, Philip Frank,
Larry Kraus, Kenneth Pumphris, and Michael Sanaga, all of SFA, Inc., for their
support, guidance, and encouragement in this work.

This is the fourth task final technical report submitted by Barron Associates
under the subject contract. The prior reports were May 30, 1992, for LIN 0003, 0004,
0005, 0006 (complete) and LIN 0001, 0002 (partial); August 15, 1992, for LIN 0007,
0008) (complete); and April 1993 for LIN 0001, 0002 (completion of 0001, 0002).

This report is published in the interest of scientific and technical exchange.
Publication does not constitute approval or disapproval of the ideas or findings
herein by the United States Government.

.. , i, D

ii

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

Table of Contents

ABSTRACT

F O R E W O R D .. ii

TA BL E O F C O N T EN T S .. iii

LIST O F FIG U R ES ... v

L IST O F T A B L E S .. ,

I1. IN TRO D U C TIO N ... 1

2. EMULATOR SYNTHESIS .. 3
2.1 O verview ... 3
2.2 System Identification of Actuator Model .. 4

2.3 System Identification of Coupling Models... 8

3. FEEDFORWARD CONTROLLER SYNTHESIS AND PERFORMANCE
R E S U L T S ... 11
3.1 No Secondary Feedback Evaluations (Actuator-to-Sensor Coupling

Perfectly C om pensated) .. 12
3.2 Secondary Feedback Evaluations (Actuator-to-Sensor Coupling

Im perfectly Com pensated) .. 21

3.3 Secondary Feedback Evaluations (Actuator-to-Sensor Coupling

Present but U ncom pensated) ... 31

4. PERFORMANCE RESULTS FOR OTHER CONTROL CONFIGURATIONS 39

4.1 Feedforward Control Using Predicted-Error Training 39

4.1.1 System Identification of Local-to-External Sensor Transfer Function39

4.1.2 Sim ulation Results .. 40

4.2 Predictive-Feedback Control Using Measured-Error Training 43

4.3 Predictive-Feedback Control Using Predicted-Error Training 45

4.4 Combined Feedforward and Predictive-Feedback Control Using

M easured-Error Training .. 46

4.5 Combined Feedforward and Predictive-Feedback Control Using

Predicted-Error Training .. 47

iii

Active Control of i Multivariable System i

Via Polynomial Neural Networks

5. CONCLUDING REMARKS ... 50

6. R E F E R E N C E S .. 52

APPENDIX A: PRINCIPLES OF FUNCTION ESTIMATION USING
ARTIFICIAL NEURAL NETWORKS ... A-1

A.1 Introduction ... A-1
A .2 N etw ork Structure ... A -1

A.2.1 Network Inputs and Outputs ... A-1

A .2.2 Elem ent D efinitions .. A -3
A .2.3 Layer D efinition ... A -13

A .2.4 N etw ork Interconnections ... A -14

A .3 N etw ork Training ... A -15

A .3.1 The Loss Function .. A -I5
A.3.2 Model Selection Criterion A-19

A .3.3 O ptim ization Strategy ... A -23
A.3.4 Optimization Method .. A-25 5

A.4 Relationship to Other Neural Network and Statistical Modeling
P arad igm s .. A -44

A.4.1 Group Method of Data Handling (GMDH) .. A-44

A.4.2 Multi-Layer Perceptron (MLP) .. A-47

A.4.3 Radial Basis Function (RBF) Networks .. A-49 3
A.4.4 Pi-Sigma and Other Higher-Order Networks A-55

A .5 Su m m ary ... A -56 3
APPENDIX B: A BATCH "FILTERED-X" ALGORITHM USING ITERATIVE

LEA ST SQ U A RES .. B-1

APPENDIX C: EQUIVALENCE OF TWO METHODS FOR ELIMINATING
SECONDARY FEEDBACK EFFECTS ... C-1

APPENDIX D: INTERDEPENDENCE OF CONTROLLER AND SECONDARY
FEEDBACK COMPENSATION FILTER SCALINGS D-1

APPENDIX E: SOLUTION OF AN ILL-CONDITIONED SYSTEM OF
NETWORK EQUATIONS .. E-1

iv I

I
Active Cowtrol of a Multivariable System

Via Polynomial Neural Networks

List of Figures

Figure 2.1: D ata Collection Setup .. 3

Figure 2.2: Cor•iguration Used to Identify Actuator Model 4

Figure 2.3: Im pulse Response of Actuator AA1 ... 5

3 Figure 2.4: Impulse Response of Actuator AA9 ... 5

Figure 2.5: Impulse Response of Actuator AH3 ... 6

3 Figure 2.6: Pulse Response of Model of Actuator AA1 ... 7

Figure 2.7: Pulse Response of Model of Actuator AA9 ... 7

Figure 2.8: Configuration Used to Identify Actuator-to-Sensor Coupling
M o d els ... 8

3 Figure 2.9: Coupling Response and Model of Local Sensor PZT1 to
A ctuator A A 9 Pulse ... 9

Figure 2.10: Coupling Response and Model of Local Sensor PZT2 to
A ctuator A A 1 Pulse .. 9

Figure 2.11: Coupling Response and Model of Local Sensor PZT2 to
A ctuator A A 9 Pulse ... 10

Figure 2.12: Coupling Response of Local Sensor PZT2 to Actuator AH33 P u lse ... 10

Figure 3.1: No Secondary Feedback Configuration Used to Adapt FIR3 C on troller ... 13

Figure 3.2a: Externally-Measured Error Signal with and without Controller
Operative, Trained, and Evaluated Using Unmodified
M easurem ent D ata ... 13

Figure 3.2b: Net Externally-Measured Error Signal with Controller3 Operative, Trained, and Evaluated Using Unmodified
M easurem ent D ata 14

3 Figure 3.2c: No Secondary Feedback (i.e., No Coupling) with Controller
Coefficients Trained Using Unmodified Measurement Data 15

Figure 3.2d: Externally-Measured Error Signal with Controller Operative,
Trained Using Unmodified Measurement Data, and Evaluated
Using Zero-Padded Measurement Data .. 16

3 Figure 3.3a: Externally Measured Error Signal with and without Controller
Operative Using Zero-Padded Measurement Data 18

I
*li V i|

Active Control of a Multivariable System I
Via Polynomial Neural Networks

Figure 3.3b: Net Externally Measured Error Signal with Controller
Operative Using Zero-Padded Measurement Data 18

Figure 3.4: Cordiguration of No Secondary Feedback Laboratory
Exp erim ent ... 19

Figure 3.5: Comparison of External Sensor Responses due to Actuation for
Simulation Evaluation and Laboratory Experiment 19

Figure 3.6a: Externally Measured Error Signal with and without the
Controller Operative Using Zero-Padded Measurement Dataand Relaxation Penalty 20

Figure 3.6b: Net Externally Measured Error Signal with the Controller
Operative Using Zero-Padded Measurement Data and
Relaxation Penalty ... 20 3

Figure 3.7: Configuration Used to Train IIR PNN Controller 21

Figure 3.8: Alternative Configuration Used to Adapt FIR PNN Controller 22 3
Figure 3.9: Optimal vs. Sub-optimal Coupling Model Plants 23

Figure 3.10a: Externally Measured Error Signal with and without Controller
Operative and Imperfectly Subtracting the Coupling Model
Sign al ... 24

Figure 3.10b: Net Externally Measured Error Signal with Controller
Operative and Imperfectly Subtracting the Coupling Model
Sign al .. 24

Figure 3.11: "Open-Loop" Dual-FIR Filter Experiment Configuration 25

Figure 3.12a: Controller Output in "Open-Loop" Dual-FIR Filter Experiment 26

Figure 3.12b: Coupling Output in "Open-Loop" Dual-FIR Filter Experiment 26

Figure 3.12c: External Sensor Output in "Open-Loop" Dual-FIR Filter n
Experim ent ... 27

Figure 3.13: Two FIR Filters Method for Canceling Coupling 28 3
Figure 3.14 Simulation Implementation with Delays Explicitly Shown 28

Figure 3.15: Laboratory Implementation with Delays Explicitly Shown 29 3
Figure 3.16: System Identification Coupling Model vs. One-Step Ahead

Predictor Coupling M odel ... 30 i

Figure 3.17: Simulation Results with One-Step Ahead Predictor Coupling
M od el .. 30 m

viI

I
Active C'one-'tl of a Midtivariable System

Via Polynomial Neural Networks

Figure 3.18: Simulation of Laboratory Results where Controller was
Trained Using Incorrect Amount of Delay and One-Step Ahead
Predictor Coupling M odel ... 31

Figure 3.19: Simulation Results where Controller was Trained Using
Correct Amount of Delay and One-Step Ahead Predictor
C oupling M odel .. 32

Figure 3.20a: Externally Measured Error Signal with and without Controller
Operative and without Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained and Evaluated over
M easured Data Region) .. 32

Figure 3.20b: Net Externally Measured Error Signal with Controller
Operative and without Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained and Evaluated over
M easured Data Region) .. 33

3 Figure 3.21: Net Externally Measured Error Signal with Controller
Operative and without Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained over Measured Data
Region and Evaluated Using Zero-Padded Measurement Data) 34

Figure 3.22a: Externally Measured Error Signal with and without Controller
Operative and without Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained and Evaluated Using
Zero-Padded M easurement Data) .. 35

n Figure 3.22b: Net Externally Measured Error Signal with Controller
Operative and vwithout Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained and Evaluated Using
Zero-Padded M easurement Data) .. 35

Figure 3.22c: Laboratory vs. Simulation: Net Externally Measured Error
Signal with Controller Operative and without Attempting to
Compensate for Actuator-to-Sensor Coupling (Trained Using

* Zero-Padded Measurement Data) .. 36

Figure 3.23a: Externally Measured Error Signal with and without Controller
Operative and without Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained and Evaluated Using
Zero-Padded M easurement Data) .. 36

Figure 3.23b: Net Externally Measured Error Signal with Controller
Operative and without Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained and Evaluated Using

* Zero-Padded Measurement Data) 37

Figure 3.24a: Externally Measured Error Signal with and without Controller3 Operative and without Attempting to Compensate for

I vii

Active Control of a Multivariable System
Via Polynomial Neural Networks

Actuator-to-Sensor Coupling (Trained and Evaluated Using i
Zero-Padded Measurement Data) .. 37

Figure 3.24b: Net Externally Measured Error Signal with Controller
Operative and without Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained and Evaluated Using
Zero-Padded Measurement Data) .. 38

Figure 4.1: Configuration for Feedforward Control Using Predicted-Error
T rain in g ... 40

Figure 4.2: Configuration Used to Model Local-to-External Sensor Transfer
Fu n ctio n ... 41

Figure 4.3: Response of Local Sensor PZT1 to NF13 Disturbance Pulse 41

Figure 4.4: Response of Local Sensor PZT2 to NF13 Disturbance Pulse 42

Figure 4.5a: Actual and Modeled Response of External Sensor F68 to NF13
Disturbance Pulse when Local Sensor is PZT1 42

Figure 4.5b: Actual and Modeled Responses of External Sensor F68 to NF13
Disturbance Pulse when Local Sensor is PZT2 43 3

Figure 4.6: Predictive-Feedback Configuration Using Measured-Error
T rain in g ... 44

Figure 4.7: Predictive-Feedback Configuration Using Predicted-ErrorT rain in g ... 45

Figure 4.8: Combined Feedforward and Predictive-Feedback Control [
Configuration Using Measured-Error Training 46

Figure 4.9: Combined Feedforward and Predictive-Feedback Control 3
Configuration Using Predicted-Error Training 48

Figure A.1: Artificial Neural Network Structural Hierarchy A-2

Figure A.2: M IM O N etwork Controller ... A-3

Figure A.3: Neural Network Used for Data Classification A-4 i

Figure A.4: Generalized Network Nodal Element .. A-5

Figure A.5: Example of a "Full Double" Network Element A-8

Figure A.6: An M LP Netw ork Elem ent .. A-13

Figure A.7: N etw ork Interconnections ... A-14 i
Figure A.8: Projection-Pursuit Optimization Strategy .. A-24

Figure A.9: A Network Response that Requires an Additional Penalty I
T e rm ... A -3 1

viii i

I
Active (Contro•i of a Mulivariable Svstern

Via Polynomial Neural Networks

Figure A.10: A "Hidden" Nodal Element A-36

Figure A.11: Interconnections on Final Network Layers A-37

Figure A.12: A Gaussian Kernel Implemented using Multiple Generalized
I N odal Elem ents .. A -50

Figure A.13: Measuring Cluster Distances .. A-53

Figure B.1: Block Diagram of Typical Adaptive Control Problem B-1

Figure C.1: HR Controller that Compensates for Secondary Feedback C-1

Figure C.2: Two FIR Filter Method of Compensating for Secondary
Feedback ... C -2

3 Figure D.1: Controller and Secondary Feedback Compensation Filter
P rocessing .. D -1

l
i
I
I
I

I
i

I
i
i
I

I ix

Active Control of a Multivariable System
Via Polynomial Neural Networks

List of Tables

Table 4.1: Compilation of Simulation Evaluation and Laboratory
Experimental Resuits 52

Table A.1: Some Basis Functions Commonly Used for Function Estimation A-6

Table A .2: Sum m ary of ILS Variables .. A -30

Table B.I: Adaptation Algorithms that can be Simulated by ILS B-5

I
I
U
I
I
I
I
I
I
I
I
I

x U

Active Control of a Multivariable System-I
Via Polynomial Neural Networks

"1. Introduction

The objective of the work described herein was to develop, implement, and
demonstrate inductively-synthesized active control algorithms that minimize a
performance metric that is a function of a signal measured by a sensor external to a
multivariable control system. The controller is required to control a (potentially
nonlinear) plant when subjected to a broadband (impulsive) disturbance signal.
Polynomial neural networks (PNNs) are used to implement the underlying control
algorithms (see Appendix A for an extensive overview of neural networks in the
context of this project). The performance metric minimized is generally the square
of the signal measured by the external sensor; various modifications to this metric
were made to improve the performance of the synthesized controllers in special
situations. To provide controller/secondary feedback compensation filter
parameters for the laboratory experiments, and to provide a benchmark with which
to compare the empirical results, computer simulation evaluations were also
conducted.

In the simulation evaluations documented herein, both feedforward and
"predictive-feedback" control approaches are considered. Laboratory experimental
work, however, addresses feedforward control approaches only. Feedforward
control exploits the cross-correlation between the reference signal and the external
error signal, whereas direct feedback control exploits the auto-correlation of the
external error signal. Predictive-feedback control exploits the cross-correlation
between the modeled and actual external error signals.

With feedforward control, a reference signal is used to provide an input
signal to the controller, whose internal coefficients are adjusted (using feedback of
the state being controlled) so as to optimize some performance metric that is a
function of the control effort made. Feedforward control is based on measurement
of the local transient disturbance signal, which provides the controller sufficient
time to permit cancellation, via actuation, of a large portion of what would
eventually be sensed at the external sensor were actuation not applied.

With feedback control, the state being controlled is generally measured and is
then fed back, possibly along with other signals, as direct inputs to the controller.
For the purposes of this work, the signal to be canceled is that which is measured by
the external sensor. Measurement of this signal is greatly delayed relative to that
which is measured by the local reference sensor. Direct feedback control is therefore
not practicable here since, by the time the externally-measured error signal first
begins to be sensed, there is no opportunity to affect it in a timely manner via local
actuation; this is because the effects of the disturbance signal will already have been
completed given the large actuation-to-external sensing time delay. An alternative
configuration, based on a "predictive-feedback" control scheme, whereby local
sensing is used to predict the external error signal, can, however, be made effective
and is demonstrated herein.

S i I I I II

Active Control of a Multivuiiable System

Via Polynomial Neural Networks

2. Emulator Synthesis

2.1 Overview

iI The main objective of the simulation work was to investigate the
performance that could be expected with the use of specific sensor/actuator
configurations that could be demonstrated readily in the laboratory. The fi-t - task
here involved the determination of emulator models for the actuators and
actuator/sensor coupling characteristics of the system. For various scenarios these
emulator models were used during controller synthesis, as will be discussed in more
detail below. The emulator models were synthesized using system-identification
techniques based on data supplied by the Naval Research Laboratory (NRL); these
data were obtained using the experimental setup shown in Fig. 2.1 and are
documented more fully in an earlier report.1 The measurement geometry used in
the present investigation was the same as that in the earlier work.

I
disturbance input sensor outputs

actuators S sensors
(co-located w ith sensors) s(c -loc ated{ with actuators)

inputs "PL ANT

PZTI add itional
3Z sensors

F68 ex ternal error sensor

Figure 2.1: Data Collection Setup

For the simulation evaluations , id the laboratory experiments, an effective
sampling rate of 25 kHz was used. This sampling rate is well above that required by
the Nyquist criterion to avoid temporal aliasing (see Ref. 1) and permitted sufficient
complexity in the controller with regard to what could be implemented practically
using NRL's existing digital signal processor (DSP) hardware. (An approximation to
the maximum number of finite impulse response (FIR) filter coefficients, N, that
can be processed in real time on a single NRL TMS320C25 DSP is N = (107 /f') - 24,
where f, is the sampling rate in Hertz. Note that as the sampling rate increases, the
number of coefficients that can be processed during the sampling interval decreases.)

I3

Active Control of a Muldvariable Systemr
Via Polynomial Neural Networks

Additionalix, unless stated otherwise, no data were deleted from the measured or I
processed signals in all of the work presented herein; therefore, timing issues were
taken fully into consideration.

2.2 System Identification of Actuator Model

To collect data for synthesizing actuator models, physical actuators were
individually and separately pulsed once and time-series data useful for system
identification were measured. The basic configuration is illustrated in Fig. 2.2; input 5
data were collected at the point where the controller interfaces with the actuator and
output time-series data were collected from external sensor F68. Note that the
transfer function of the actuator model includes that of the external sensor as well.

I

adp Actuator
+

Model l

Figure 2.2: Configuration Used to Identify Actuator Model i
In these experiments, data were collected from several different actuators.

The impulse responses of three specific actuators, AA1, AA9, and AH3, were
computed using this input-output data and are illustrated in Figs. 2.3-2.5. The time
delays in the responses included electronic delays in generating the actuator input
signal and transport propagation delays; they are meaningful, therefore, only in a
relative sense. Note that actuator AA9 has the largest control authority. Actuator
AH3, because it has a long-lasting impulse response, would be expected to be more
difficult to control precisely for this application than either actuators AA1 or AA9.

In synthesizing robust actuator models, 150-coefficient FIR linear polynomial
filter models were used. As this was a proof-of-concept study and training of the U
controllers in these experiments was done off-line via batch processing (see
Appendix B), rather than recursively on-line, complexity of the actuator models was
not limited per se by processing-time considerations. Instead, actuator model
complexity was kept modest to avoid overfitting the relatively limited amount of
available training data. The pulse responses of the models for actuators AA1 and i

4I

Active Contrkl of a Muitivriaý!,- Systrn
Via Poiynomial Neural Networks

• 30-

20

-10

I=
• -20-

E30

0 1. 2 3 4 5 6
Time (milliseconds)

Figure 2.3: Impulse Response of Actuator AA1

~'80-IO
.~60-I __ _ _ _ _ _ __ __ _0

= 40-

0 20.. ...

0 KA AJ.. . A A A A It M,M. A

S-20-
0 1 2 3 4 5 6

Time (milliseconds)

Figure 2.4: Impulse Response of Actuator AA9

I
I5

Active Control of a Multivariable System

Via Polynomial Neural Networks

25. -

20

$ 5- ,-_ _ _ __ _ _

0 .10 _ U0 4

-105

03 4 5 6
Time (milliseconds) I

Figure 2.5: Impulse Response of Actuator AH3 i

AA9, along with the actual laboratory response data, generated using the (non-ideal I
impulse) actuator driver signals employed in the laboratory, are shown in Figs. 2.6
and 2.7, respectively.

In addition to its use in the computer simulation evaluations, the actuator
models are also needed for training the controller during laboratory experiments.
When gradient-type adaptation algorithms are used to train a controller, and a plant
(in this case the actuator) follows the controller, gradient information should be
"filtered" (i.e., propagated) through the linear or nonlinear plant model. In the case
of linear systems, this is mathematically equivalent to pre-filtering the controller
input signal using the actuator transfer function.2,3 When adapting the controller
coefficients via the least mean squares (LMS) algorithm, this pre-filtering of the
controller input signal has come to be known as the "filtered-X" LMS algorithm.
The iterated least squares (ILS) algorithm (documented in Appendix A) employed
herein uses pre-filtering of the input signal for the same reason. (Note that the ILS
algorithm can be used to implement the LMS algorithm by having ILS ignore
second derivative information.) In the case of nonlinear systems, however,
gradient information cannot be obtained simply by pre-filtering the input signal to i
the controller. Instead, the gradient information must be explicitly propagated back
through the plant model using the chain rule (see Appendix B, for example).

I
6 3

Active Control of a Multivariable System

Via Polynomial Neural Networks

2.5.

r 2- -4- ---- AAI Model Output -

1.5- -- - AA1 ActualOutput -

.1i 1 -- - --.. . - -

< 0.5- -

01
•. 0.5 -..

0 ý -0.5 -.
. . .

-1.5 1....................VT- -- T

0 T2 3 4 5 6 7 8 9 10
Time (milliseconds)

Figure 2.6: Pulse Response of Model of Actuator AA1

3-- _

- AA9 Model Output
o•< 2- --- AA9 Actual Output

0-4

•L4

4 0 1 2 3 4 5 6 7 8 9 10

Time (milliseconds)

Figure 2.7: Pulse Response of Model of Actuator AA9

07

IU

0.4 I i i I

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

2.3 System Identification of Coupling Models I

To determine secondary feedback (i.e., coupling) models relating the
interaction between the actuators and reference sensors, each actuator considered in
Section 2.2 was pulsed once and time-series data needed for system identification
were measured. For the input data, measurements were taken where the controller
interfaces with the actuator; output time-series data were collected from each of two
local sensors, PZT1 and PZT2. The basic configuration is illustrated in Fig. 2.8. Note
that the coupling models, as defined, include the transfer functions of both the
actuator and reference sensor.

I
LExcitation Ac eno

adapt,+I

I

Figure 2.8: Configuration Used to Identify Actuator-to-Sensor
Coupling Models

Practicable compensation for secondary feedback requires that the coupling
model be executed on-line in real time; coupling model complexity is therefore
limited ultimately by what can be implemented practically using the available DSP
hardware. In these experiments, however, DSP hardware was not the limiting
factor, but rather the length of the time-series data available with which to
synthesize coupling models. As is discussed in more detail later, the time-series
data recorded at the external sensor were artificially truncated to avoid introducing
effects due to reverberation. This limited the number of filter coefficients used in
modeling the coupling to approximately 150. Actual coupling responses to a pulse
on either actuator AA1 or AA9, and the synthesized model responses of the two
PZT sensors, are illustrated in Figs. 2.9-2.11. Note that actuator AA9, which has the
greatest control authority, is less coupled with sensor PZT2 than it is with sensor
PZT1. The response of sensor PZT2 to a pulse on actuator AH3 is illustrated in Fig.
2.12 to provide a comparison of hoop and axial actuators.

83

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

S25-. l,•..

I20 Modeled Response of PZT1 to AA9

15 Actual Response of PZT1 to AA9

1A - I& k- , _ _ --- -- -

I 8 10- 12~l 141

0 -20- " ' , '

U Time (milliseconds)

Figure 2.9: Coupling Response and Model of Local Sensor PZT1 to
Actuator AA9 Pulse

H41 i __-- Modeled Response of PZT2 to AA1

<___ 3- Actual Response of PZT2 to AAl

I •

o1 41A1

0 K'
0 1

0 0 2 4 6 8 10 12 14 16
Time (milliseconds)

Figure 2.10: Coupling Response and Model of Local Sensor PZT2 to
Actuator AA1 Pulse

I9

SI I

Active Conrol of a Multivariable System
Via Polynomial Neural Networks

8-__ __1

a, 6- .---- Modeled Response of PZT2 to AA9 _

-Actual Response of PZT2 to AA9

•, 3-

_ ITm (millieconds
Figur 2.1 Copln Repnean oe f oa eso 2t

-1 1
•-2. _ _

°N A

U) 0 2 4 6 8 10 12 14 16

Time (milliseconds)

Figure 2.12: Coupling Response of Local Sensor PZT2 to Actuator I
AH3 Pulse

I
10

Active Control of a Multivariable System
Via Polynomial Neural Networks

3. Feedforward Controller Synthesis and Performance Results

In the laboratory experimental work documented herein, only feedforward
control experiments have been considered. The simulation evaluations, however,
address both feedforward and predictive-feedback control approaches. Feedforward
control exploits the cross-correlation between the reference signal and the external
error signal, whereas direct feedback control exploits the auto-correlation of the
external error signal. Predictive-feedback control exploits the cross-correlation
between the modeled and actual external error signals. This section provides a
discussion of the results for the feedforward control evaluations; other control
configuration results, including those based on predictive feedback, are documented
in Section 4.

In feedforward control, a reference signal is used to provide an input signal to
the controller, whose internal coefficients are adjusted (using feedback of the state
being controlled) so as to optimize some performance metric that is a function of the
control effort; in this sense, the loop is closed. Feedforward control is based on the
measurement of the local transient disturbance signal, which provides the
controller sufficient time to permit cancellation, via actuation, of a large portion of
what would eventually be sensed at the external sensor were actuation not applied.
With direct feedback control, the state being controlled is generally measured and is
then fed back, possibly along with other signals, as direct inputs to the controller.

For the purposes of this work, the signal to be canceled is that which is
measured by the external sensor. This signal has a large time delay relative to that
which is measured by the local reference sensor. Direct feedback control cannot
practicably be used here since, by the time the externally-measured error signal first
begins to be sensed, there is no opportunity to affect it in a timely manner via local
actuation; this is because the effects of the disturbance signal will already have been
completed given the large actuation-to-external sensing time delay. Therefore,
direct feedback control will not be effective in this application. (An alternative
configuration, based on a predictive-feedback control scheme, whereby local sensing
is used to predict the external error signal, can be made effective; this is investigated
in Sections 4.2 and 4.3.)

For the control evaluations discussed below, time-series data representing the
response to a single disturbance pulse were collected from both the local and
external sensors, the first for use as the reference input to the controller, the second
for use as an error signal by which to adapt the controller (i.e., to close the loop).
The ILS algorithm was used to train the controller using a batch, rather than
recursive, adaptation algorithm (see Appendix B). With the ILS algorithm, an
effective controller for an observed (impulse) disturbance signal can be synthesized
using just a single pulse. The number of iterations needed internally by the ILS
algorithm for convergence depends mainly on the extent to which coupling

11

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

between the actuator and the local sensor exists or, equivalently, fails to have been
adequately compensated (more on this later).

3.1 No Secondary Feedback Evaluations (Actuator-to-Sensor Coupling Perfectly
Compensated)

In feedforward control, the controlled actuators have the potential to affect
(undesirably) the sensed reference signal along with their (desired) effects on the
externally-measured error signal. The simplest way to eliminate the undesirable I
effect is to select or instrument the reference sensors so they are insensitive to the
actuators. In the control system under consideration here this was not possible
directly, since there is unavoidable coupling between the actuators and the reference i
sensors. If the effect of this "actuator-to-sensor secondary feedback" is not adequately
compensated, and if the magnitude of the gain of this feedback loop at some
frequency becomes greater than unity, the control system will become unstable at
that frequency.4

Although making the reference sensors insensitive to the effects of secondary I
feedback is difficult to achieve directly, it can (in effect) be realized by using a pre-
recorded reference signal for the same disturbance, collected when actuation is not
in effect, as the input to the controller. This approach may not be practical for real-
world use, however, since one does not generally know a priori the characteristics of
the disturbance signal for which a controller reference input signal is needed. I

The configuration of the control system under these conditions is depicted in
Fig. 3.1. In the computer simulations, sensor PZT1 and actuator AA9 were used, the
controller was given 250 degrees of freedom (coefficients), and no secondary
feedback (i.e., coupling) was present, or equivalently, perfect cancellation of the
secondary feedback was assumed. Using the data from a single pulse only, the I
controller was trained (i.e., the controller coefficients were adapted) via the batch ILS
algorithm. When the target plant was then subjected to a similar disturbance pulse,
this time with the controller operative, a 24.4 dB reduction in the external error
signal was realized, as shown in Figs. 3.2a-3.2b. In Fig. 3.2a and subsequent figures,
the "cancellation signal" represents the signal generated by the controller/actuator;
this signal is subtracted from (i.e., combines 180 degrees out of phase with) the
"disturbance signal," as shown in Fig. 3.1, resulting in the net externally-measured
error signal, which for the present configuration is depicted in Fig. 3.2b.

The results shown in Figs. 3.2a-3.2b were achieved using the measured F68
external error signal to adapt (i.e., train) the controller (i.e., close the loop). As can be
seen in Fig. 3.2a, data collection from sensor F68 was terminated abruptly; this was
done by laboratory personnel to avoid introducing effects due to reverberation. The
rapid termination of the external error measurement forces the controller to
introduce large magnitude coefficient values at high lags to achieve an abruptly-
truncated response. Once a single large coefficient value is introduced to achieve a

I
12 3

I
Active Control of a Multivariable System

disturbance input
Via Polynomial Neural Networks

disturbacelanpu

I+

Sensor ""

PN External

Contr~oller Sensor

Ii

I

3 Figure 3.1: No Secondary Feedback Configuration Used to Adapt FIR
Controller

i 1-.. . .. ,_

3 ~0.8 ~--Cancellation Signal _
4A 0.6 Disturbance Signal

* 0.2
f

I -• :

I 4 8-- __ _

-1 - - --- -: - -- - -- ------- - -- ----

0 2 4 6 8 10 12 14 16 18
Time (milliseconds)

Figure 3.2a: Externally-Measured Error Signal with and without
Controller Operative, Trained, and Evaluated Using
Unmodified Measurement Data

* 13

II
Active Control of a Multivariable System
Via Polynomial Neural Networks

- -.. .. _ I -.. l_

0 .6 - -... ...

0 0.2- -. []

-0.- -.-..2.

--0.2.

--0.8 -...

0 2 4 6 8 10 12 14 16 18
Time (milliseconds)

Figure 3.2b: Net Externally-Measured Error Signal with Controller I
Operative, Trained, and Evaluated Using Unmodified
Measurement Data i

rapid reduction in the external error signal at the first sample point outside of this
"measured data region,"t additional large coefficients are then needed to
compensate for the effects introduced by prior large coefficients; the net result is
large oscillations in the controller coefficient values at higher-order lags, as shown
in Fig. 3.2c.

Although the controller performed well (24.4 dB error attenuation) over the m
measured data region, outside of this region the controller introduced noise into the
external sensor measurement (see Fig. 3.2d); this occurred because of the use made
of the memory contained in the controller. That is, even when the input to the
controller (the local reference signal) was zero, the controller still had an output
until the number of zero-valued inputs received by the controller was equal to the
length of the controller memory. Fig. 3.2d is similar to Fig. 3.2a, except that data
outside of the measured data region have been included in Fig. 3.2d (by zero-
padding the measurement data) and a new scaling has been introduced. Since the
controller was trained only over the measured data region, it was not penalized for
deviant behavior outside of this region. Because the locally-measured reference
signal last for only a fraction of the duration of the external error measurement,
adequate performance inside of the measured data region could not be realized

SThe "measured data region" refers to those data measured by the external error sensor before m

sampling was terminated to avoid introducing effects due to reverberation.

14 3

I
Active Control o a Multivariable Syswwm

Via Polynomial Neural Networks

i 0 .4 -0

0.3

0.2-

0 0.1-

> 0-
r-o1.: 0

m -0.3-.4.
S-0.5-lU -0,•

0 50 100 150 200 250
Coefficient Number

IFigure 3.2c: No Secondary Feedback (i.e., No Coupling) with Controller
Coefficients Trained Using Unmodified Measurement Data

100-

80 - Cancellation Signal -

60 Disturbance Signal]0 40
E 20-:

t -20.1) -40-

S-60

S-80-
-100 .: . . . , ., , , I

0 5 10 15 20 25 30 35
Time (milliseconds)

Figure 3.2d: Externally-Measured Error Signal with Controller Operative,
Trained Using Unmodified Measurement Data, and Evaluated
Using Zero-Padded Measurement Data; Illustrates Performance3 both Inside and Outside of Measured Data Region

* 15

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

merely by terminating actuation once the local reference signal disappeared; that is,
the controller must have memory.

To address this problem, the existing sensor (PZT1 and F68) measurement
data were extended by padding enough zeros (400 zeros were used) to the end of the
measurements to flush out the controller shift registers. The controller was then I
retrained to include this extended data region, equally penalizing squared-error
performance over all of the zero-padded data. As shown in Figs. 3.3, this resulted in
a 4.9 dB overall reduction in the externally-measured error (as calculated over only I
the measured (non-extended) data region). Performance was degraded over the
earlier simulation result (24.4 dB) because achievement of acceptable results outside
the measured data region compromised performance inside the measured data
region. It is important to note, however, that the desired result was achieved: an
effective controller was synthesized such that the magnitude of the error signal
remained relatively small outside of the measured data region.

For comparison with these simulation results, a laboratory experiment was
conducted at NRL. A block diagram of the experiment is shown in Fig. 3.4. The
same (to within a scaling constant) controller coefficients utilized in the simulation
experiments were downloaded into NRL's DSP. To replicate the simulation I
experiments, a previously-recorded measurement signal response of PZT1 to the

1_ ,. 1_ -

0. Cancellation Signal -

S0.6 ____ Disturbance Signal

0.4

0.2_U 0 -~i l t l l l~ -----------.

S-0.2-

-0.8 ,
-11S-1 F] ~V -r

0 5 10 15 20 25 30 35
Time (milliseconds)

Figure 3.3a; Externally Measured Error Signal with and without
Controller Operative Using Zero-Padded Measurement
Data

16

Active Control of a Muitivariable System
Via Polynomial Neural Networks

0.8-

--. 0.6I 0.4.
.0

- 0.2-

0 IUI JV" I

I ...-
0.4.

-0.6-

-0.8-

0 5 10 15 20 25 30 35i Time (milliseconds)

Figure 3.3b: Net Externally Measured Error Signal with Controller
Operative Using Zero-Padded Measurement Data

3 disturbance input

|] [Target

IO
l - -• PNN Seso

The response of PZT1 to NFI3 without
any actuation.

Figure 3.4: Configuration of No Secondary Feedback Laboratory
Experiment

17

Active Control of a Multivariable System
Via Polynomial Neural Networks

disturbance input (when the controller coefficients were all zero) was used to
provide the input to the controller, rather than the actual PZT1 reference signal,
which is affected by actuation. As can be seen in Fig. 3.5, the laboratory experimental
results closely matched those of the computer simulation. An overall reduction of
3.5 dB in the measured error signal was achieved in the laboratory experiments (as
calculated over the measured data region).

~0.8 -Simulation_

• 0.6 Laboratory - - -

~0.4 A_ A_ A_ 11 1-

20.2--

I 0--!- -! . -l II~
-0.2- .

-l-

1-4

o2- 1 - I1•11 t I ii!1I!1il

W I! , I I l i ,
*, -0.4._-0.6- ___~l .

6 8 10 12 14 16 18
Time (millisecc,nds) !

Figure 3.5: Comparison of External Sensor Responses due to Actuation
for Simulation Evaluation and Laboratory Experiment

In a further attempt to improve the performance of the controller, the I
requirement that the controller fit exactly the signal outside of the measured data
region was relaxed. The ILS algorithm continued to make use of a squared-error
performance metric inside of the measured data region, but the penalty outside of
the measured data region was relaxed as long as the error signal remained within a
pre-specified error band, ±q. In the relaxed region, a strong squared-error penalty
was imposed when the signal exceeded the band limit. (Further details of the
approach can be found in Section A.3.4.2 of Appendix A; unless otherwise noted, the
"rigidity" constant was set equal to one.) With an error band ±q = ±1.0, the result of
this modified controller performance function is illustrated in Figs. 3.6a-3.6b, where
overall performance (again calculated over the measured data region) was 5.9 dB.
The magnitude of the signal outside of the measured data region is still seen to
decay with time to zero. Thus, better performance was achieved using the relaxed
error penalty.

I
18 1

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

1.2-

0Cancellation Signal

Disturbance Signal0 0 .4 -. I

So -0.4- -
-0.8

i0, 5 10 151 2 25 30 35

T'Ime (milliseconds)

i Figure 3.6a: Externally Measured Error Signal with and without the

Controller Operative Using Zero-Padded Measurement
S~Data and Relaxation Penalty

1.2 - _

I0.8

* -0.4 ------------

DataandRlxto Penalt

0

U ~ -0.4-

0 5 10 15 20 25 30 35
Time (milliseconds)

Figure 3.6b: Net Externally Measured Error Signal with the Controller
Operative Using Zero-Padded Measurement Data and3 Relaxation Penalty

I 19

Active Control of a Multivariable System
Via Polynomial Neural Networks

Note that it is inconsequential that the controller performance appears to be
poor outside of the measured data region (i.e., after 14.6 milliseconds). This is a
direct consequence of truncating the data collection, which was done to avoid 3
introducing effects due to reverberation. In a fielded system, reverberation effects
would generally not be of concern and response signals would decay gradually, and
not be truncated abruptly. There would, therefore, be no need to modify the i
performance metric as was done above.

3.2 Secondary Feedback Evaluations (Actuator-to-Sensor Coupling Imperfectly i

Compensated)

Another method for removing the effects of secondary feedback is to use an l
infinite impulse response (IIR) controller structure, which has been shown to be
able to directly model transfer function poles associated with the secondary feedback.
An IIR controller structure, through its pole-zero transfer function, can compensate I
for the secondary feedback poles while its zeros simultaneously control the
actuator(s) so as to reduce the measured error signal.s The configuration used to
adapt the fIR controller is illustrated in Fig. 3.7.

Unfortunately, an on-line, real-time implementation of an IIR controller was
not practicable here due to the computational throughput limitations of the existing
NRL DSP hardware; significantly fewer combined IIR controller transfer function
poles and zeros can be executed in real-time on the DSP than the number of zeros
alone that can be used practicably in an FIR controller configuration.

disturbance input i

Target
Plant

+I

I

Figure 3.7: Configuration Used to Train IIR PNN Controller

Se o I
20t i I Sensor

I
Active Control of a Multivariable System

i Via Polynomial Neural Networks

3 An alternative approach, functionally equivalent to using an IIR controller
(as is shown in Appendix C), that could be implemented practically, and the one
employed here, is to use a separate FIR filter (along with the FIR controller) whose
sole function is to compensate for secondary feedback, 6 as shown in Fig. 3.8. Here
the coupling model, representing the FIR compensation filter, is used to produce a
signal that is subtracted (electrically) from the measured reference signal to remove
the effect of secondary feedback. The control signal used to drive the actuator also
provides the input to the compensation filter, which models the actuator-to-sensor
coupling. The coupling model used here was determined off-line a priori as
described in Section 2.3; in practice, this model can be identified and/or adapted on-
line.

n disturbance input

• -- "-- U ... 4" Actuator (

Sor e nsor Fxer* Coupling

localsensor Controller
measurement

I • Actuator AdaptationL

Model p Algorithm

Figure 3.8: Alternative Configuration Used to Adapt FIR PNN
Controller

It is possible to implement this dual controller/compensation filter using two
separate parallel DSPs, although the controller and compensation filter coefficients

i 21

Active Control of a Multi variable System
Via Polynomial Neural Networks

cannot be chosen independently. The NRL hardware required that the coefficientsI
used in the DSPs be scaled to fit into the range ±1.0. As shown in Appendix D, this
was a non-trivial task, as controller and compensation filter DSP gains cannot be
scaled independently without changing the dynamic response of the combined
system. For instance, if the controller coefficients need to be divided by ten to fit
into the required range, the compensation filter coefficients must be multiplied by
ten, yet still not exceed the required coefficient size limits. Thus, a compromise is
generally necessary to establish coefficients that can be used simultaneously in both
DSPs.

For the PZT1/AA9 sensor/actuator pair, the required coefficient restrictions
were not met for both the controller and compensation filter when each was trained
independently via simulation to achieve optimum performance. To establish a
workable compromise in the controller/ compensation coefficients, the controller
coefficients were first established based on the desired values, and a new, sub-
optimal, compensation filter coefficient set determined by recomputing the coupling
model, this time adding a penalty term (to the squared-error term) equal to the sum
of the squares of the coupling-model coefficients. The intent was to reduce the
effectiveness of the compensation filter (i.e., coupling model) only, not that of the
controller; with this approach, at least some of the effects of secondary coupling
would be removed, while controller performance would not be compromised.

The capability of the closed-loop controller to reduce the externally-sensed
error was evaluated via computer simulation. A 150-coefficient compensation filter
was used to implement an imperfect subtraction of secondary feedback from theI
local sensor, as shown in Fig. 3.9. In the simulation experiment, sensor PZT1 and
actuator AA9 were used, 400 zeros were padded to the end of the measured data
(PZT1 and F68 signals), the requirement that the controller fit exactly the signalU
outside of the measured data region was enforced, and a 250-coefficient controller
was trained using a single pulse. As shown in Figs. 3.l0a-3.10b, this controller

produced a 4.7 dB reduction in the externally-measured error signal, which again
was calculated over only the measured data region.

Laboratory experimental evaluations of the controller/ sub-optimal secondary
feedback compensation filter configuration were unstable. To investigate the reason
why the computer simulation evaluation achieved a result different from the
laboratory experiment, "open-loop" dual-FIR filter evaluations were performed, asI
shown in the block diagram of Fig. 3.11. The outputs of the controller, the secondary
feedback compensation filter, and the external sensor signals were recorded for both
the simulation and experimental evaluations. As can be seen in Figs. 3.12, theI
controller and coupling signals matched very closely; similarly, the external sensor
measurements matched reasonably closely within the measured data region. Thus,
for the case of the open-loop dual DSP controller/ secondary coupling compensationI
filter, the simulated and experimentally measured data are in good agreement. The
reason for the instability in the laboratory evaluation is apparently due to an error

in the off-line training of the controller; this is discussed thoroughly in the next
section.

22

Active Control of a Multivariable System
i0 Via Polynomial Neural Networks

400 Optimal Coupling Model

300- - Sub-optimal Coupling Model

-• 200I aoo _ __ __

tv

U100
I - _

I!
0 20 40 60 80 100 120 140 160

Coefficient Number

I Figure 3.9: Optimal vs. Sub-optimal Coupling Model Plants

1
0.8- - Cancellation Signal

-0.6 Disturbance Signal

0 0.4-.

-0.2'
0

-0.2-3U -0.4-
-0.6- _

* -0.8 _

0 5 10 15 20 25 30 35
Time (milliseconds)

Figure 3.10a: Externally Measured Error Signal with and without
Controller Operative and Imperfectly Subtracting the
Coupling Model Signal

I
* 23

Active Control of a Multivariable System 1
Via Polynomial Neural Networks

0.6

0.42

S20.2-:_ __ _" _ _--- I A H

.× "0.4-

-0.8 1

0 5 10 15 20 25 30 35
Time (milliseconds)

Figure 3.10b: Net Externally Measured Error Signal with Controller
Operative and Imperfectly Subtracting the Coupling
Model Signal

I

(Coupling Model)I

PZT[(Controller) (AA9))I

The response of PZT1 t NF13
without any actuation.

Figure 3.11: "Open-Loop" Dual-FIR Filter Experiment Configuration I
I
I
I

24I

Active Control of a Multivariable System
i Via Polynomial Neural Networks

30 .8- -I - Simulation Control Signal

04 -- __Laboratory Control Signal0 0.6

I U __.....l

- 0 1 2! f I

Time (milliseconds)

IFigure 3.12a: Controller Output in "Open-Loop" Dual-FIR Filter
Experiment

I _ _ _ _II I

0.6-

It

0 0.26I .W 0. __

0
i -0.2.

ICIS

0 5 10 15 20 25

Time (milliseconds)

I Figure 3.12b: Coupling Output in "Open-Loop" Dual-FIR Filter
Experiment

* 25

Active Control of a Multivariable System I
Via Polynomial Neural Networks

0.8 - Simulation F68 Signal

0.6.- Laboratory F68 Signal - _____....

S0.4. _• ___ __

-0.2-0. 1__ _ _ _ _ _ _ _ _- 1
S-0.64

" 1 -061- - __ __ _ __ _-0.8-__ _ _ _ _

0 5 10 15 20 25
Time (milliseconds)

Figure 3.12c: External Sensor Output in "Open-Loop" Dual-FIR Filter
Experiment

As discussed above and in Appendix C, the method used to cancel the effects
of unwanted secondary feedback coupling involves modeling the coupling transfer
function using an FIR filter, and then using this model to subtract the coupling
from the input signal to the controller. Fig. 3.13 displays the general configuration. 3

In the computer simulation, the configuration in Fig. 3.13 was implemented
using the delays shown explicitly in Fig. 3.14; the laboratory experimental
implementation instead actually involved an additional delay, as shown in Fig. 3.15.
It is important to note that these two implementations are not equivalent. As will
be demonstrated below, it was the failure to incorporate the additional delay in the
simulation used to train the controller, which was then used in the laboratory
experiment, that caused the dual controller/compensation filter laboratory
experiment to go unstable, while the simulation evaluation produced stable results. 3
It is also important to note that had the controller been trained in-the-loop using the
laboratory data, rather than off-line using the simulation, the controller would have
been trained correctly to include the additional delay and would therefore have
achieved good performance; this is demonstrated below.

I
I
I

26 3

'I
Active Control of a Multivariable System

Via Polynomial Neural Networks

disturbance
signal

+Coupling 4to actuator
Plant

I
S.... •[Controller

Figure 3.13. Two FIR Filters Method for Canceling Coupling

3 disturbance
signalI d

SCoupling u(t-1) to actuator

I -).• b(t-1) Coupling _ _ _ _u(t-1)

I

I

3 27

Active Control of a Multivariable System
Via Polynomial Neural Networks

disturbance
signal

+ b(t-1) u(t-1) to actuator
Coupling

-b(t-1): Coupling u0t2) 1 Sample u(t-1)I, Model -- Delay -l

I u(t+ 1 Sample I

1 Lontroller t) 1Sml

II
DSP

Figure 3.15: Laboratory Implementation with Delays Explicitly Shown I
As can be seen in Fig. 3.15, the coupling model should be a one-step ahead

predictor. Using the local sensor and actuator input data to model this relationship,
a one-step ahead predictor model was synthesized using an FIR filter; the results are
illustrated in Fig. 3.16. Fig. 3.16 shows the impulse response (or equivalently the I
model coefficients) of the one-step ahead predictor vs. the system identification
coupling model that was discussed earlier in Section 2.3, illustrating the capability to
perform adequately one-step ahead prediction.

Using the one-step ahead predictor for the coupling model in the block
diagram shown in Fig. 3.14, the system was simulatEd and a controller was trained.
Fig. 3.17 shows the resulting stable simulation, which achieved a 4.67 dB error
reduction (as calculated over the measured data region).

However, when the simulation -,,as modified to include a one-sample delay
before the coupling model so as to match the laboratory implementation shown in
Fig. 3.15 arid the controller was not retrained, the system became unstable, as
illustrated in Fig. 3.18. Thus, because of the failure to (re-)train the controller with
the additional delay present, the controller coefficients provided by the simulation
represented the control solution to a different control problem; this caused the
system to go unstable when it was implemented in the laboratory.

I
28

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

'~500

> 400- - System Identification Model

u 300.| Predictor Coupling Model

U I ..100_ ____ _ _

I234 5 6

I Time (milliseconds)

I ~Figure 3.16: System Identificati.on Coupling Model vs. One-Step
Ahead Predictor Coupling Model; Note that Waveforms
are Shifted Relative to One Another by One Sample Time3 Step

* 1- __I_

I 0.6- - Disturbance Signal

o= 0.4- ___ "_ __ _ _ _ _ _

20

I 0

F -0.4- 3: S

"II
-0.8- Cacellation Sigl

0 5 43

I Time (milliseconds)

Figure 3.17: Simulation Results with One-Step Ahead Predictor3 Coupling Model

* 29

Active Control of a Multivariable System i

Via Polynomial Neural Networks

-10000

-80000 - Cancellation Signal

-60000 Disturbance Signal

-40000-

5 -20000-
0

S20000-

'~40000 -____

S 60000- _ _ __ _ __ _ __ _ __ _ _ _ _I

80000 -____ ____ ____

100000111,-i--. 15151-, -r-r- -Tr-r- 1~---

0 2 4 6 8 10 12 14
Time (milliseconds)

Figure 3.18: Simulation of Laboratory Results where Controller was
Trained Using Incorrect Amount of Delay and One-Step
Ahead Predictor Coupling Model

The controller should have been re-trained after the simulation was modified
to match the laboratory implementation. Fig. 3.19 shows that the system would
then have been stable, both in the simulation and laboratory evaluations; the
former achieved a 4.7 dB reduction in the error signal as computed over the
measured data region. Had the controller been trained using the empirical I
laboratory data and the one-step ahead predictor coupling model, the additional
delay in the DSP that implemented the coupling model would have been taken into
consideration and the resulting controller would have been stable. Note that such
training could have been performed either off-line by simulation or on-line using I
"live" data.

3.3 Secondary Feedback Evaluations (Actuator-to-Sensor Coupling Present but
Uncompensated)

Due to the difficulties in implementing effective measures to remove I
secondary feedback coupling between the actuator and reference sensor, an
experiment was performed in which secondary coupling was ignored (a single 250-
coefficient FIR controller was used). By training the controller using data taken I
from the measured data region only, the error signal measured at the external
sensor was reduced by 12.3 dB (as calculated over the measured data region), as
shown in Figs. 3.20. However, when this trained controller is evaluated using I
extended data (400 zeros padded to the end of the measurement data), the system
becomes unstable as seen in Fig. 3.21.

30

Active Control of a Multivariable System

Via Polynomial Neural Networks

0.8- - Cancellation Signal

-0" - Disturbance Signal

E 0.42
S0.2

_0

0 5 10 15 20 25 30 35
Time (milliseconds)

Figure 3.19: Simulation Results where Controller was Trained Using
Correct Amount of Delay and One-Step Ahead Predictor
Coupling Model

SI

0.8 - Cancellation Signal n A

o0.6 - Disturbance Signal0

E 0.2-

S-0.2-
_0

• 0-.6- - -

I 2 4 6 8 10 12 14 16

Time (milliseconds)

Figure 3.20a: Externally Measured Error Signal with and without
Controller Operative and without Attempting to
Compensate for Actuator-to-Sensor Coupling (Trained3 and Evaluated over Measured Data Region)

3 31

Active Control of a Multivariable System i
Via Polynomial Neural Networks

0.8 ----

0.6- I

S0.2-r
U)V

(n IS-0.2-_ _ __ __ _

.~-0.4

W-0.6-

-0.8- 1__ ___ ___

0 2 4 6 8 10 12 14 16
Time (milliseconds)

Figure 3.20b: Net Externally Measured Error Signal with Controller
Operative and without Attempting to Compensate for
Actuator-to-Sensor Coupling (Trained and Evaluated i
over Measured Data Region)50 ,! _ _ _ _ _ _ _ _ I3

40-

-3 30 3
o 10- II
"j -10-

-S-20...
~-3o0I I
-40- __ _ _ _ _ _

-50 1,o - i I
0 2 4 6 8 10 12 14 16

Time (milliseconds) I
Figure 3.21: Net Externally Measured Error Signal with Controller Operative

and without Attempting to Compensate for Actuator-to-Sensor
Coupling (Trained over Measured Data Region and Evaluated
Using Zero-Padded Measurement Data)

I
32 1

Active Control of a Multivariable System
* Via Polynomial Neural Networks

To prevent the secondary feedback from causing the system to go unstable,
the controller output must be forced to zero sometime after the disturbance pulse isI no longer present. Zeros were padded to the end of the measurement data (again,
400 zeros were used) to allow the disturbance signal measured by the local sensor to
completely pass through the system (i.e., flush out the controller shift registers soIthat the controller output is zero). For this simulation evaluation, the ILS
algorithm attempted to find controller coefficient values to exactly cancel the
externally-measured signal (i.e., the squared error criterion was not "trelaxed"I outside of the measured data region). As is shown in Figs. 3.22a-3.22b, the resulting
controller was stable and succeeded in reducing the externally-measured signal by
2.9 dB (calculated only over the measured data region). Fig. 3.22c provides a
comparison of the simulation vs. laboratory experimental results; in the latter, the
error signal was attenuated by 2.4 dB.

U Since the system is stable when secondary feedback coupling is present but
uncompensated, it should also be stable when the effect of coupling is reduced
through subtraction of an estimate of the coupling signal from the local sensor. TheI fact that the system is unstable in the laboratory experiment when secondary
feedback coupling is imperfectly subtracted from the local sensor measurement
suggests that the laboratory implementation of the two-FIR filter control system was

somehow not correct.

0.8 - Cancellation Signal

-C 0.61 -Disturbance SignalI _ _ _ _ _ _ _ _ _

0

5 -0.42

3 L~ -0.6
-0.8-

0 0 5 1 5253 35
Time (milliseconds)

NFigure 3.22a: Externally Measured Error Signal with and without
Controller Operative and without Attempting to3 Compensate for Actuator-to-Sensor Coupling (Trained
and Evaluated Using Zero-Padded Measurement Data);
Sensor PZT1, Actuator AA9

I 33

Active Control of a Multivariable System I
Via Polynomial Neural Networks

0.8- ,,,

"0.2- 3
0 0.2-

.4... -v '_ _'_ _ I-0.6

-0.8-_

0 5 10 15 20 25 30 35
Time (milliseconds)

Figure 3.22b: Net Externally Measured Error Signal with Controller Operative
and without Attempting to Compensate for Actuator-to-Sensor
Coupling (Trained and Evaluated Using Zero-Padded
Measurement Data); Sensor PZT1, Actuator AA9

1 - I I - 1

0.8 Simulation

S0.6 - Laboratory

z 0.4 -

S0.2 11 1
0O 0 -

-0.2 .__ 3
~-0

S-0. __ _ _ _•__S-0.6

-0.8 _ _ _

0 2 4 6 8 10 12 14 16
Time (milliseconds) I

Figure 3.22c: Laboratory vs. Simulation: Net Externally Measured Error
Signal with Controller Operative and without Attempting to l
Compensate for Actuator-to-Sensor Coupling (Trained Using
Zero-Padded Measurement Data); Sensor PZT1, Actuator AA9

I
34 I

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

Figs. 3.23 and 3.24 illustrate results similar to those given in Figs. 3.22a-3.22b,
except that in Fig. 3.23 the sensor/actuator pair employed was PZT2/AA9 and in Fig.
3.24 the sensor/actuator pair used was PZT2/AA1. In Fig. 3.23, with an error band of
+ q = ± 1.0 and a rigidity factor of ten, the external sensor signal was attenuated by 5.1
dB; in Fig. 3.24, with an error band of i q = ± 0.5 and a rigidity factor of ten, the
external sensor signal was reduced by 4.7 dB.

To simplify comparisons of the performance results achieved in this section
using different configurations and assumptions with those obtained in subsequent
sections, all performance results are tabulated in Table 4.1 in Section 4.5.I

I ~~ ~~1.5- ---.- ----3 1.5-- Cancellation Signal

I • 1- •Disturbance Signal

U ~ ~00.5.- __

oI 0

3 i -0.5 -
¢-oI -1 • _ _ _ _ _ _ _ _ _ _

0 5 10 15 20 25 30
Time (milliseconds)

3 Figure 3.23a: Externally Measured Error Signal with and without Controller
Operative and without Attempting to Compensate for Actuator-
to-Sensor Coupling (Trained and Evaluated Using Zero-Padded
Measurement Data); Sensor PZT2, Actuator AA9

I
I
I
I

I 35 I

Active Control of a Multivariable System I
Via Polynomial Neural Networks

S0.5..

0. U
4,-0 .5. . --- - . - •-- - -

.- 1

-1.5 o-. --.- . I
0 5 10 15 20 2530

Time (milliseconds) 1
Figure 3.23b: Net Externally Measured Error Signal with Controller Operative

and without Attempting to Compensate for Actuator-to-Sensor
Coupling (Trained and Evaluated Using Zero-Padded I
Measurement Data); Sensor PZT2, Actuator AA9

0.8Cancelation Signal

S0.6 Disturbance Signal

04
0 ' II I

0.2

% -0.2.

__-___________ •______ U
-0.8-

0 10 15 20 25 30
Time (milliseconds)

Figure 3.24a: Externally Measured Error Signal with and without Controller
Operative and without Attempting to Compensate for Actuator-
to-Sensor Coupling (Trained and Evaluated Using Zero-PaddedMeasurement Data); Sensor PZT2, Actuator AA1

36

U
Active Control of a Multivariable System

Via Polynomial Neural Networks

1.2-

0.8"

Cl) 0.4IAA-

0- ___l h A H A A N

S-0.4-

I -0.8- _ _ _ _ _-"--"-_ _ _ _ _ -_ _

-1.2 -
0 5 10 15 20 25 30

Time (milliseconds)

Figure 3.24b: Net Externally Measured Error Signal with Controller Operative
and without Attempting to Compensate for Actuator-to-Sensor
Coupling (Trained and Evaluated Using Zero-Padded
Measurement Data); Sensor PZT2, Actuator AA1

I
I
I
I
I
I
I
I
I
* 37

I I n

Active Control of a Multivariable Systemn
Via Polynomial Neural Networks

4. Performance Results for Other Control Configurations

To investigate further the performance that can be expected using control
configurations different from feedforward control with measured-error training,
additional simulations were conducted. The different control configurations I
investigated in the work reported in this section include feedforward control using
predicted-error training, predictive-feedback control using both measured- or
predicted-error training, and combined feedforward and predictive-feedback control I
using both measured- or predicted-error training. In all cases, except for the
combined feedforward and predictive-feedback control, the controllers utilized were
linear and employed 250-coefficient models; the combined controller used 250-
coefficients for both the feedforward and predictive-feedback inputs. Descriptions of
these configurations and the results obtained with their implementation are
discussed below. As mentioned earlier, for comparison purposes, all results are I
tabulated at the end of this section in Table 4.1.

4.1 Feedforward Control Using Predicted-Error Training i
4.1.1 System Identification of Local-to-External Sensor Transfer Function 3

Feedforward control using predicted-error training can be implemented as
shown in Fig. 4.1. Here, the local sensor measurement is used to predict the target
plant response. This configuration requires that the local-to-external sensor transfer
function be modeled first.

To accomplish this modeling task, data were collected as shown in Fig. 4.2. In I
response to a single input NF13 disturbance pulse, input time-series data were
collected from the local sensor, which is co-located with an actuator, and output
time-series were collected from the external sensor (F68). Note that no actuation
was used during this experiment. These data were used to identify the local-to-
external sensor transfer function (using a 225-coefficient FIR filter). 3

The above-outlined experiment was conducted twice, using two different
local sensors, PZT1 and PZT2. The second of these sensors is less coupled with the
various actuators. These data are illustrated graphically in Figs. 4.3-4.5. As
mentioned earlier, the time delays in the responses include electronic delays in
generating the disturbance input signal and transport propagation delays; they are i
meaningful, therefore, only in a relative sense. In Fig. 4.5 it can again be seen that
data collection from external sensor F68 was terminated abruptly to avoid
introducing effects due to reverberation.

38 3

I
Active Control of a Multivariable System3 Via Polynomial Neural Networks

disturbance input Target'
'+

4) ExxternalI ~~
Sensor odll

Fgr Coupling P68
Modfl measurement

qI

i Figu thre 4.1: nosconfiuatio feebcor FequfivardeCntrly Usn perfedctculigmd-

E cttrror Traando tat

. Suatih esuth

I 3

"weetre s n sconi ari feedc (or equivalentrly aing model),

was an error reduction of 4.7 dB (calculated over the measured data region). When
secondary feedback was present but its compensation was sub-optimal, a3 performance evaluation yielded an error reduction of 3.8 dB. When secondary
feedback was present but no compensation was attempted, the error reduction was
1.5 dB. Thus, it is seen that a small performance penalty is paid in using the

predicted, rather than measured, error in training the controller.

* 39

Active Control of a Multivariable System l
Via Polynomial Neural Networks input

disturbance P

adapt1

Figure 4.2: Configuration Used to Model Local-to-External Sensor
Transfer Function1

I

S~~20 ..

0 V
-10-

.•o I
° I I

-20-

Time (milliseconds)
Figure 4.3: Response of Local Sensor PZT1 to NF13 Disturbance PulseI

40I
00

Fiue43tepneo Loa Seso PT to N3D istrac us

Active Control of a Multivariable System
Via Polynomial Neural Networks

30

0 20.

03..- - _ _ _ __ _ _ _

10

°~A:
i101 1 1 ,.. v v V • v - v '

I •-20.

OR -30,

I40-- 2 4 6 8 10 12 14 16

Time (milliseconds)

Figure 4.4: Response of Local Sensor PZT2 to NF13 Disturbance
Pulse

50 0.8 - Modeled (with PZT1)

S0.6 - Actual - - -

n 0. A02 -

1-4 0-- A 'it I
n "x -0.2- " v •, I I lu

0 2 4 6 8 10 12 14 16
Time (milliseconds)

1 Figure 4.5a: Actual and Modeled Response of External Sensor F68 to

NF13 Disturbance Pulse when Local Sensor is PZTI

41 |_

Active Control of a Multivariable System I
Via Polynomial Neural Networks

o0.8 -- Modeled (with PZT2) - _

• 0.6 Actual '0 A
U1 0.4

0.2
3•-0,- - 1 -¢ i

-0.6.

0 2 4 6 8 10 12 14 16
Time (milliseconds)

Figure 4.5b: Actual and Modeled Responses of External Sensor F68 to
NF13 Disturbance Pulse when Local Sensor is PZT2 3

4.2 Predictive-Feedback Control Using Measured-Error Training

The control configuration for the case of predictive-feedback with measured-
error training is illustrated in Fig. 4.6. Note that, as discussed earlier, because it
would not be effective to feed back the measured external error signal to the
controller (due to the large transport delay), instead the predicted target plant I
response signal is "fed back" to the controller (hence the name "predictive
feedback"). It is important to note also that for the case of feedforward control with
predicted-error training, the prediction involves estimating what the external U
sensor error signal will be at time t, given the local sensor error at time t. This
represents a static mapping; prediction is not necessary because both the actuator
model and the local-to-external sensor model include the transport propagation
delay. Here, however, the signal to be estimated, based on the local sensor signal
measurement, is the target plant response at t+D, where D represents the transport
delay. D-step ahead prediction is necessary in the case of predictive-feedback control
with measured-error training because the external sensor signal response occurs so
much later than the local sensor response that to be useful (for control purposes) it
must be forecasted. The controller here is not truly a feedbi,.K controller in the
sense that the predicted effect of actuation at time t is not being measured; the
controller drives the actuator with an input signal derived from the anti-ipated i
actuator response, but this responses is no'. actually measured in the on-line
implementation. Additionally, whereas with perfect coupling corr. sation the
local reference signal is not affected by actuation, with imperfect co. pensation I
the local reference signal is perturbed by actuation, and the prediction model should

4
42 1

I
Active Control of a Multivariable System3 Via Polynomial Neural NetAorks

disturbance inp"

! ~Plant

I+ --3_Coupling - Actuat" .

I
L o c a -- ----o, ° -- -- ------

I%

Coupin ng F6

Mdel Tmeas rex ent

secSensor Model Cnt r

Aciuati or sdactataion

Figure 4.6: Predictive-Feedback Configuration Using Measured-Error
Trainfing

3therefore consider this effect. This was not done here as it was expected to be a
second-order effect.

3 Cc.nputer simulation results for sensor/actuator pair PZT1/AA9, for the case
where no secondary feedback was present, the measurement data were zero padded,
and no relaxation penalty was used in the performance function, yielded a reduction
in the externally measured error of 2.8 dB. When secondary feedback was present
but imperfectly compensated, the error signal was reduced by 2.2 dB. When
secondary feedback was present but no attempt was made to compensate for it, the
external error signal was attenuated by 1.8 dB. Thus, it can be concluded that
feedforward control was, in general, more effective than predictive-feedback control.
The resulting implication is that there was a stronger correlation between the
measured local reference and measured external error signals than between the
predicted target plant output and measured external error signals.

I
* 43

Active Control of a Multivariable System

Via Polynomial Neural Networks

4.3 Predictive-Feedback Control Using Predicted-Error Training

The configuration for the case of predictive-feedback control with predicted-

error training is illustrated in Fig. 4.7. Here, as in the case of feedforward control
with predicted-error training, the externally-measured error signal is assumed not toA

be available and an estimate, F68, must instead be used to adapt the controller. For
the case where no secondary feedback was present, this controller achieved an error
reduction of 2.7 dB, again where zero padding of the measurement data was
performed and no relaxation penalty was used as part of the performance function.

disturbance input

r Coupling Atuasgr

Sensor Exter4al
Sensor

SModel measu rem~m t

External Conrole Model-Sen sor Mode el• Cotrole

\A
S• F68 esi mate

~o -I II T

Figure'% 4.: Prdctiv-eda ck Configu ati UiongPeitdEorTang

h44

7Moe
Alot rn +

Active Control of a Multi variable System
Via Polynomial Neural Networks

When secondary feedback was present but sub-optimally compensated, the error
reduction was 1.9 dB. When secondary feedback was present and uncompensated,
error attenuation was 0.7 dB. For each of these cases, it is seen that a small penalty is
paid for the use of the predicted, rather than measured, error signal by which to

* adapt the controller.

4.4 Combined Feedforward and Predictive-Feedback Control Using Measured-3 Error Training

Fig. 4.8 illustrates the configuration of a combined feedforward and
predictive-feedback controller, which was simulated next. Note that the controller
in this case has two inputs; one is the locally-measured reference signal at time t,
and the other is the predicted target plant output at time t+D, where D is the3• transport-medium time delay. The controller also uses two, 250-coefficient FIR
filters, rather than a single 250-coefficient FIR filter as in the control configurations

disturbance input

I _Target

Plant

I

Modo Ex asurerent

I SensoruaMoreo

Figure 4.8: Combined Feedforward and Predictive-Feedback ControlMConfiguration Using Measured-Errorm

I 45

Lo a -, PNi II

I
Active Control of a Multivariable System
Via Polynomial Neural Networks 1
considered heretofore. The performance that this controller achieved in simulation
evaluations similar to those described above include: 5.1 dB error attenuation for
the case where no secondary feedback was present; 4.7 dB for the case where
secondary feedback was present but imperfectly compensated; and 3.3 dB when
secondary feedback was present but ignored. Note that the combined controller
achieved results that were superior to each of the other control configurations I
considered. This is, in part, due to the greater number of degrees of freedom (300-
vs. 250-coefficients) permitted in the combined controller.

4.5 Combined Feedforward and Predictive-Feedback Control Using Predicted-
Error Training I
The final control configuration simulated is illustrated in Fig. 4.9. Here, the

controller uses both feedforward and predictive feedback, but is now trained using
predicted-, rather than measured-error training. Performance results were 4.8 dB I
error reduction for the case where no secondary feedback was present, 3.5 dB error
attenuation for the case where secondary feedback was present but sub-optimally
compensated, and 1.9 dB for the case where secondary feedback was present but I
ignored. Again, it is seen that a small price in performance is paid for using the
predicted-, rather than measured-error signal in training the controller. It is also
seen that the performance of the combined controller using a predicted-error signal
is approximately equal to that of the pure feedforward controller using predicted-
error training; in this case, little benefit is realized using the greater complexity of
the combined controller. These and other performance comparisons can readily be
made using the summary of results provided in Table 4.1.

46

I
Active Control of a Multivariable System

i Via Polynomial Neural Networks

disturbance input

_ Target

++

3 Coupling J A

I Model measu remen t

I
Exera Controllejr 7 ModelI

Configuration Using Predicted-Error Training,I

I
I
I
I 4

Iiue4.: Cmi ne IeeI oar anlPeicie-edbc Contro

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

InI
009 C- C

Lin a

XL >

.. 6

W It
CC

00

a 1--Il

PC
48--'--'--- -4? I

I
I

48 I i•I

Active Control of a Multivariable System
Via Polynomial Neural Networks

* 5. Concluding Remarks

The results presented in this report have demonstrated that active
cancellation of impulsive, broadband disturbance signals is possible. This was
demonstrated using several different controller configurations. First, using an
(open-loop) feedforward controller, where actuator-to-sensor secondary coupling
was effectively not present, the synthesized controller was shown in a simulation
evaluation to reduce the externally-measured disturbance signal by 4.9 dB.
Simulation performance was in reasonable agreement with laboratory experimental
results, where 3.5 dB error attenuation was achieved using the simulation controller
coefficients in the laboratory controller. Open-loop performance could be boosted
further by including a relaxation penalty in the performance metric; the simulation3 evaluation in this case demonstrated an error reduction of 5.9 dB.

Although the controllers often demonstrated "ringing" outside of the
measured data region, this is an artifact due largely to the abrupt truncation of theI measured external error signal that was used to train the controllers; truncation was
performed to avoid introducing reverberation effects into the measurement data.
Effective approaches for dealing with this problem, including both zero padding the
measurement data and use of a relaxation penalty, were demonstrated. In real-
world applications, there would generally not be a need to terminate the error signal
abruptly, and this problem would therefore not require attention. Significantly
better performance, closer to the 24.4 dB achieved in simulation when neither zero
padding nor a relaxation penalty was utilized, might be expected under such
circumstances.

Another approach for dealing with ringing would be to "turn-off" the
controller output in a timely manner. This can be achieved for an a priori
unknown disturbance signal by deriving the controller nullification signal based on
a thresholding of the locally-measured sensor input signal. That is, when the
amplitude of i pre-determined number of contiguous local sensor measurements
remains within some finite band around zero, the controller output is set to zero.
Unfortunately, it was not possible to demonstrate this approach in the laboratory
due to hardware considerations that prevented rapid termination of the controller
output signal.

In the closed-loop evaluations, where secondary feedback was present, the use
of a secondary feedback compensation filter was shown in the simulations to be
effective in reducing actuator-to-sensor coupling and resulted in a stable controller
that achieved up to 5.1 dB error reduction, depending on the sensor/actuator pairs
used; this was the case even when secondary feedback, although present, was totally
uncompensated. Several more dBs of error attenuation were obtained when
secondary feedback compensation, even if sub-optimal, was used. From these
results, it appears that the most effective sensor/actuator pair to utilize in future
single-input, single-output experiments is PZT2/AA9. Sensor PZT2 is less coupled

I 49

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

with the other actuators, and actuator AA9 has the greatest control authority.
Although 2.4 dB error reduction was demonstrated for sensor/actuator pair
PZT1/AA9 in a laboratory experiment where secondary feedback was not
compensated, further performance can be expected when secondary coupling is
compensated. This was not demonstrated herein due to differences in the
simulation used to train the controllers and the laboratory configuration, which I
caused the laboratory configuration to go unstable. It is important, however, that
the cause of this instability was determined and verified, and it can easily be avoided
in the future by correcting the simulation configuration used to train the controller 1
or by training the controller on "live data" on either a batch or recursive basis.

Due to resource constraints, this investigation was essentially restricted to the
study of linear finite impulse response (FIR) controllers (the exception being the
triangular polynomial neural networks investigated in Ref. 1. Although FIR
controllers are likely to be adequate when secondary coupling is negligible, infinite I
impulse response (IIR) controller structures, with their ability to model secondary
feedback poles, can be expected to improve performance further. IIR controllers can
compensate for feedback poles while simultaneously canceling the disturbance
signal. IIR controllers also have special utility when plant models located both
before and after the controller have complex transfer functions that must be
modeled to achieve cancellation.

Note that when the plants to be controlled are nonlinear, or when either the
plant outputs or corrupting noise sources is/are non-Gaussian, linear controllers I
can be shown to be sub-optimal. In such cases, higher-order techniques, based for
example on cumulants and polyspectra, will generally provide superior
performance. It is believed that polynomial neural networks provide a very useful I
method by which to implement such controllers.

I
I
I
I

I
I

50

Active Control of a Multivariable System
Via Polynomial Neural Networks

6. References

1. Ward, D.G., B.E. Parker, Jr., R.L. Barron, Active Control of Complex Systems
Via Dynamic (Recurrent) Neural Networks, Barron Associates, Inc., Task Final
Technical Report for Office of the Chief of Naval Research, Contract N00014-89-
C-0137, May 30, 1992.

2. Widrow, B., D. Shur, and S. Shaffer, "On Adaptive Inverse Control," Proc. of
15th Asilomar Conf. on Circuits, Systems, and Computers, Pacific Grove, CA,
Nov. 9-11, 1981, IEEE, New York, pp. 185-189.

3. Burgess, J.C., "Active adaptive sound control in a duct: A computer
simulation," I. Acoust. Soc. Am., Vol. 70, 715-726, 1981.

4. Sommerfeldt, S.D., "Multi-channel control of structural vibration," J. Noise
Control Engineering, Sep.- Oct. 1991, pp. 77-89.

5. Eriksson, L.J., "Development of the filtered-U algorithm for active noise
control," I. Acoust. Soc. of Am., Vol. 89, No. 1, Jan. 1991, pp. 257-265.

6. Warnaka, G.E., L.A. Poole, and J. Tichy, "Active Acoustic Attenuator," United
States Patent No. 4,473,906, Sep. 25, 1984.

51

Active Control of a Multivariable System
Via Polynomial Neural Networks

Appendix A: Principles of Function Estimation Using Artificial Neural
Networkst

A.1 Introduction

I To construct an effective neural network for any purpose, including
parameter estimation and fault detection/classification, one must make several
decisions regarding the fundamental structure of the network and the algorithms
that will be used for network synthesis. To make these decisions properly it is
helpful to understand network structure and network training in the broader
context of generalized function estimation. This section is intended to unify a
variety of neural network paradigms, including polynomial neural networks
(PNNs). The section begins with a discussion of a generic neural network structure,
proceeds to discuss methods for optimizing both the network coefficients and
structure, and concludes with a discussion of the relationship between the method
presented and a variety of other commonly used neural-network and statistical
function-estimation techniques.

Some notes concerning terminology are in order. The authors emphasize the
difference between estimation and classification neural networks, the former being
suited best for function estimation, filtering, control, smoothing, and prediction
tasks, and the latter being most appropriate for data discrimination tasks. In this
appendix, however, classification networks are viewed as networks trained to
provide the best estimates of discrimination functions between classes of data.
Therefore, in this context, classification is viewed as a particular form of function

i estimation.

A.2 Network Structure

An artificial neural network is typically composed of nodal elements that
perform a learned transformation between input and output data vectors. Sets of
nodal elements are connected in a specific way to comprise layers; the layers in turn
are connected to create the entire network. Fig. A.1 shows the structural hierarchy
that exists, at least in principle, within a neural network.

U A.2.1 Network Inputs and Outputs

On the highest level, an artificial neural network is a transformation which,
when interrogated, produces an output vector, 5, in response to a given input
vector, x.. In the case of static networks, the output vector is a single-point
transformation of the input data:

t This appendix is excerpted from Ward, D.G., R.L. Barron, and B.E. Parker, Jr., Application of
Polynomial Neural Networks to Classification of Acoustic Warfare Signals, Barron Associates, Inc.,
Final Technical Report for Office of the Chief of Naval Research, Contract N(X)014-89-C-0137, April

I 1992, Chap. 2.

* A-1

Active Control of a Multivariable System I
Via Polynomial Neural Networks

Network I

Interconnections Layers

Intercornections Elements I
Tapped Delay Bank SISO Transformation 3

MISO Series Expansion

Figure A.1: Artificial Neural Network Structural Hierarchy

= f (xf) A: 1

where 0 is the set of network parameters. Dynamic networks contain internal
feedbacks and time delays, and produce a transformation of the form U

.S = g [x,..,x msi,..si ,_0]A--

Neural networks are typically imbedded in systems and are trained to produce
a desired output or effect on the system response. Training involves batch or
recursive fitting of a numerical database; we define the training database as:

(_, Yd) ; i = 1, 2, ... , N _A:3

where N is the number of data vectors in the training database and x, and Y- are the
measured inputs and desired outputs or system responses for the ith observation. If
the training is unsupervised, then there is no knowledge of the desired outputs, Xi, .
and only x. is used for training. In one sense, the distinction between supervised
and unsupervised learning is not necessary, since even in unsupervised learning,
networks are trained to perform some desired transformation on the input data, and
the means for determining success or failure are always provided by the analyst a
priori. In this sense, all learning is supervised.

Often the network output is written as ý instead of 5 however, this invokes
the interpretation that the network output is an estimate of the system response
recorded in the training database. For system identification, inverse modeling, and
classification such is certainly the case, but there are other instances in which the
network output is not intended to be the best estimate of the database response
vector.

In certain control applications, for example, it is not the network output, but a
transformation of the network output, that is fitted to the response values recorded
in the training database. Fig. A.2 illustrates a multiple-input, multiple-output

A-2

Active Control of a Multivariable System
i Via Polynomial Neural Networks

(MIMO) network controller. In this figure, the network is adapted on-line because
the network itself is part of the overall input-output transfer function. The desired
network response is the one which, when passed as input into the plant, produces
over time the minimum absolute error between plant output and the reference

* signal.

Reference
signal, ý. I i

+ Neural Network Plant

Figure A.2: MIMO Network Controller

In some network applications, the desired network output is neither the best
estimate of the database response values nor a best control signal, but is operated on
by an additional transformation. In many classification tasks, for instance, the
training database response vector, Yi, is assigned an integer scalar representing the
class of the 2., vector. The desired network output, however, is a vector of estimated
class probabilities (or log-odds) given that the input state is xi. This output vector
may then be fed into appropriate decision logic to determine the signal classificatihn
(Fig. A.3). These decision rules may be as simple as assigning the signal to the class
corresponding to the network output with the highest probability.

A.2.2 Element Definitions

Most artificial neural networks are comprised of fundamental building blocks
called nodes, elements, or nodal elements; a generalized nodal element is shown in
Fig. A.4. This generalized nodal element may be built upon an algebraic or other
series expansion, sometimes called the core transformation. The expansion is often
composed with a fixed post-transformation function, h(.), that may be linear or
nonlinear. In addition, the inputs to a nodal element may be passed through shift
registers or delay banks to allow the series expansion to have access to prior input
values.

I
I
I
I

I A -3

Active Control of a Multivariable System I

Via Polynomial Neural Networks I
Multiclass Network

Synthesized to Maximize Log
Likelihood (Logistic-Loss Criterion)

Se fp (ktl _x).

• Probability

Input - CalculationsI
Features SeDecision Signal ,.

Note 2 Rules Classification
No te 2 p (kc-t1 x),-I

No te 1: Multi-Inp tit, Si ngle Outpu t (M ISO Network)I

Note 2: The output probabilities are calculated using the formula:

p(kj)= ef j where i= 1, .. ,CI

Sefi =1...C

Figure A.3: Neural Network Used for Data ClassificationI

A.2.2.1 Basis Functions and Series Expansions!

The series expansion of Fig. A.4 is of the formDI

=Z I0j (D (4j, x_) AA4
j=0I

where 9- is the vector of element coefficients, D is the total number of non-constant I

terms in the expansion, and k i is a vector of integers. A bias term is ensured by

requiring that •(0(, x) = 1. The series expansion within a neural network elementhas the same form as traditional series expansion techniques; however, with

network function esmation, it is desirable that the total number of terms in any

given element be kept as small as possible. This point will be elaborated on shortly.The inclusion of po i sometimes called the set of indices or multi-indices, in Eq.

AA allows the series expansion to handle both univariate and multivariate cases.
For the multivariate case, each i (kj.xA) is a product of functions of scalarsf k, is

A-

A-4 I.l~.,) :

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

--- I
Generalized Network Nodal Element

S~x, (t)

.I x(t -At) .

I_ _linear or

' x1 (t-mLmt) Series Expansion nonlinear
At o- : z(t)i ~D "• transformation

IIo IE%

! ~X M .t • h(.)
x, (t) X ,,x (t- At)

i~ ~ X I"[x(t- mAt)l

Ia
L--- - ----------------------------• tapped delay line (shift register)

Figure A.4: Generalized Network Nodal Element

usually taken to be a vector of integers with each element of kJ corresponding to one
of the variables in the x vector. Using this notation, the jth term in the series
expansion may be written as:

lb (k-, A) = ((kj , x1) I(k 1 2, x 2) (kjD XD) A:5

where D is the total number of inputs to the series expansion.

The notation introduced above (and thus the nodal element) is sufficiently
general to implement a variety of basis functions. Table A.1 gives examples of how
the function 4D(kjdX) may be chosen to implement some basis functions commonly
used in function estimation (note that in Table A.1 the subscripts have been
dropped from k where the basis function does not depend on them).

For the polynomial basis function (Eq. A:6), the k, vector is used to determine
the powers to which the input variables are raised in the jth term of the expansion.
The same is true for the spline basis function (Eq. A:7); however, the degree of the

I
I A-.5

Active Control of a Multivariabk. Systemi
Via Polynomial Neural Networks

function is never allowed to exceed r; thus r = 3 results in the commonly used cubic I
spline.

polynomial cD(k, x) = xk A:6

spline x) x , ifkzr <r
sn(k(d, x) = {(x-aj)r if : r7

orthonormal wavelet (kjd x) 2 (X if k 0 A:8

trigonometric s k1 x) if is odd I
(D(k, x) = sn2rýLx fki d A:9

cos 27r k- x if k is even

Table A.l: Some Basis Functions Commonly Used forI
Function Estimation I

Note that in both the spline and the wavelet cases an additional set of multi-

indices, cjd/ must be specified. The parameter cxd in Eq. A:7 is sometimes called the
"knot" and is the value about which the approximation takes place. In some cases,
such as uniformly spaced knots, the knot set can be obtained automatically,
eliminating the need to pre-specify the additional set of multi-indices.

In the orthonormal wavelet basis function, 'P(.) is termed the "mother
wavelet" and must satisfy a number of specific conditions, including that it be
continuous, integrate to zero, and be non-zero in a very specific limited range. 1 One
such function is the Littlewood-Paley basis function:

I
1 Daubechies, I., ;"n Lectures on Wivelets, CBMS-NSF Regionai Conference Series ý- Applied
Mathematics, Capital City Press, Montpelier, Vermont, 1992.

A-6

I
Active Control ofa Multivariable Sy•stm

Via Polynomial Neural Netvworks

sin 2ntx - sin trx
T (x) = A:1O

In the trigonometric basis function (Eq. A:9), L reprc ents the fundamental period of
the expansion and depends on the sampling rate.

From Eqs. A:4 - A:9 it can be seen that the core expansion may be fully
specified via a univariate basis function (of the form in Table A.1) and a J x D matrix
K, where each row of K is the vector of integers k. as defined above. We will
illustrate this using two examples:

Example 1: Consider the "full double" element of Fig. A.5. Because this
element has no input delays and no post-transformation h(.), it is completely
specified by the series expansion of Eq. A:11

Z = 00 +60 1 x 1 + 62X2 + 0 3x 1 2 + 0 4 X22 + G5 XI X2

+ 06x13 + 07X2 3 + 08X1 2 X2 + 09XIX2 2 A:11

U If one chooses a polynomial basis function (Eq. A:6), the J x D matrix K
corresponding to the expansion in Eq. A:11 isI

0 0
10U 0 1
2 0
02

K = 1 1 A:12

3 0
03
2 1
1 2I

Note that because the basis functions of Table A.1 were defined so that the value of

any basis function at k = 0 is unity, the 00 coefficient is represented by an additional
row of zeroes in the K matrix.

Example 2: Consider the trigonometric series expansion
s~(3x1 \ 17 42Ix2 A:I3

+ 0sin(27t-[--x) + 0 2sin r2nL-x) cos (x A2.

* A-7

Active Control of a Multivariable System
Via Polynomial Neural Networks

1 08

• Exponentiation to the pwrn

E] Cross Product

Two-Input Full Double E] Multiplication by a constant

Figure A.5: Example of a "Full Double" Network Element

If we choose a trigonometric basis function (Eq. A:9), then the J x D matrix, •, that
will yield the series in Eq. A:13 is given by

000

_ A:14

The above K matrix found as follows: The first term in the expansion of A:13 is the
bias term corresponding to a row of zeroes in the K matrix (since 'b (Ox) - 1). The
second term in the series expansion contains a single sin(.) term. Comparing this
first term with the sin(-) expansion of A:13, one finds that (k+1)/2 = 3, or k=5; since
I 2 does not appear in the second term, the second column of the K matrix

A-8

wlyilthseie in Eq A:1 isgvnb

I
Active Control ot a Multivariable Svstem

Via Polynomial Neural Networks•

(corresponding to x2) contains a zero. The third term contains both an xi and an x2
term. Solving (k+1)/2 = 4 and k/2 = 2 for the sin(-) and cos(-) terms respectively, one
obtains the final row of the K matrix.

A.2.2.2 Limiting Series Expansion Complexity

Although the generalized nodal element is capable of implementing many
commonly used series-expansion basis functions, neural network function
estimation is fundamentally different from traditional series and nonparametric
estimation techniques in the following ways:

I Each network element implements only a limited subset of the terms that
would make up a complete series expansion; thus element complexity is
kept low.

* Network interconnections allow a set of relatively simple network
elements to be combined so that they canr implement complex
transformations; thus the network connections do a great deal of the
"work" involved in the estimation problem.

1 As the number of inputs to the function increases, the error bounds for
network estimation can be shown to be more favorable than that of
traditional function estimation techniques. 2

There are five factors, discussed below, that determine the number of
coefficients (i.e., complexity) that will be needed in a given series expansion; by
limiting one or more of these factors, the complexity of the nodal element may be
kept relatively low.

I Maximum Degree (R) and Number of Inputs (D): The degree, R, of any given
basis function is the maximum value of the sum of the elements in a row of the K
matrix. Thus, for polynomial basis functions, the degree of a given term
corresponds to the sum of the powers of the variables in the term. Thus, the K
matrix corresponding to a series expansion with three inputs (D=3) and maximum
degree two (R=2) is:

I
I

2 Barron, A.R., "Approximation and estimation bounds for artificial neural networks," Computational
Learning Theory: Proc of 4th Ann. Workshop, Morgan Kaufman, 1991,

* A-9

Active Control of a Multivariable System
Via Polynomial Neurad Networks

000
001
002
010
0110 20 A:15

100
101
110
200

And, the K matrix corresponding to a series expansion with two inputs (D=2) and
maximum degree three (R=3) is:

0 0
0 1
0 2
0 3
1 0
1 1 A:16

1 2
2 0
2 1
3 0

These expansions are referred to as complete expansions of degree R, and it can be
shown that the number of terms J in a complete series expansion is a function of the
number of inputs to the expansion and the maximum degree of the expansion.

(R + D)17
R"D=ARID!

Thus, th0. first step in limiting the number of terms (or coefficients) in a series
expansion is to limit either the maximum degree, R, of the expansion or the
number of inputs, D, to the expansion. The maximum degree of the expansion is
completely controllable by the analyst. Although the number of inputs to the
n,;twork is largely determined by the application, it is possible to limit the number
of inputs to individual elements internal to the network (the GMDH algorithm
described later in this section is an example where the number of inputs to any
given nodal element is limited to two.)

Maximum Coordinate Degree (P): By placing restrictions on the maximum
coordinate degree, P, the number of terms in the series expansion may be further

A-10

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

reduced. The coordinate degree of any given series expansion is the maximum
value of any integer in the K matrix. For a polynomial basis function, this
corresponds to limiting the power to which any given input may be raised. Thus, a
three-input (D=3), second-degree (R=2), series expansion with maximum coordinate
degree of one (P = 1) would have the following K matrix:

I0 0 0
0 0 1
0 1 0

K = 0 1 1 A:18-- 1 0 0
1 0 1

11 0

Maximum Interaction Order (Q): In multivariate function estimation, the
interaction order, Q, corresponds to the maximum number of different input
variables that may appear at the same time in a given term. Thus, in Eq. A:13 above
the interaction order is two because both x1 and x2 appear in the last term of the
series. High numbers of interactions result in a combinatorial explosion in the
number of terms needed for the complete series expansion, so a limit on the total
number of interactions is one of the most important restrictions that can be placed
on the nodal element series expansion. A cap on the maximum interaction order
can be thought of as limiting the total number of non-zero elements in eachIvector. Thus, the Kmatrix for a three-input (D=3) second-degree (R=2) expansion
with a maximum coordinate degree of one (P=2) and maximum interaction order of
one (Q=1) is

00000

0 001
002

K= 010 A:19

1 o 0
i 0200

Note that for any series expansion having D inputs, degree R, coordinate
degree F, and interaction order Q, the JxD K matrix may be obtained by "counting"
from zero in a base-P system; each row in the matrix represents one number in the
series. Once the sequence of numbers is generated, all rows containing more than Q
non-zero terms are removed, and all rows with sums greater than R are removed.

I
I A-11

Active Control of a Multivawiable System
Via Polynomial Neural Networks

Expansion Density: Even after the number of inputs, degree, coordinate
degree, and interaction order for a given series expansion are limited, one may
choose to remove some terms to obtain a sparse or low-density expansion. Eq. A:13
and the corresponding K matrix in Eq. A:14 exemplify a sparse expansion. -
Although this series has an interaction order of two, a maximum degree of 11, and
two inputs, there exist other terms that meet the interaction order and degree
constraints and yet are not included in the series expansion. Often a sparse series
expansion is obtained by "carving" away any terms in the expansion that have little
or no effect on the desired network response. Details of this carving technique are ==
described in Section A.3.3.

Because it is desirable to keep the total number of network coefficients small,
more emphasis is placed on determining an appropriate, efficient network structure,
and less on problems associated with extremely high-dimensional nonlinear
optimization. In general, this approach proves to be more parsimonious in its use I
of computing resources and also leads to more robust models that do not have an
excessive number of internal degrees of freedom.

A.2.2.3 Linear and Nonlinear Post-Transformations

The linear or nonlinear fixed post-transformation of Fig. A.3, h(fQ) - - I
Y,efi

where i=1, ..., C, j=1, ... , C, and C represents the number of distinct classes, in
conjunction with the basis function selected, demonstrates that the element
specification may be sufficiently general to encompass most neural network nodal
elements currently in use. The transformation may be used to introduce helpful I
nonlinearities into the network, especially when there are few or no nonlinearities
in the core transformation. Additionally, the transformation may be used to "clip"
the output of the core transformation, which often improves the stability of the
network (in the bounded-input, bounded-output sense). This may be especially
important when a polynomial core transformation is evaluated near or outside the
boundaries of its training region. Fig. A.6 shows the role of the post-transformation
for the popular sigmoidal element used in multi-layer perceptron (MLP) neural
networks. I

The core transformation of the element shown in Fig. A.6 also has no time
delays and implements a series expansion of the form I

D

00 + E 0ixi A:20
j=1

Following the same method outlined above, this series expansion can be
represented by choosing the polynomial basis function of Eq. A:6 and letting K be a

I
A-I12I

Active Control of a Multivariable System
Via Polynomial Neural Networks

D x D identity n-Latrix. Because K contains only first-order interactions and has a
maximum powez, of one, the number of terms in the series expansion is kept low.

The poKt-tiansformation, h(.), of Fig. A.6 is a sigmoidal transformation and
has the form'nia given in the figure. Due to the nonlinear post-transformation, the
MLP nodal element is nonlinear in its parameters.

------------------------- erceptron Nodal Elemn

I
_n___;

Onh(z 1
i l~+e.•

I Figure A.6: An MLP Network Element

Another use for the post-transformation, h(.), is to allow the generalized
nodal element to implement other types of function approximations that are not
simple series expansions. Suppose, for instance, one wants a trigontometric function
of the form

z Z = sin(Oex 1 + 6 2 X2 +... + 6 nx) A:21

In this case, the series expansion is a first-order polynomial expansion, while the
post-transformation is the sin(.) function.

A.2.3 Layer Definition

A layer is a set of elements whose inputs are selected from the same set of
candidates. It is important to define a layer as a distinct unit within the network for
the following reasons:

First, when determining network structure, it is often convenient to build a
unit of network structure and then freeze it while building other units of the
structure. The network layer is this unit of structure. This is analogous to
constructing a building one floor at a time; each subsequent floor is built upon the
floors below it, and construction on a new floor cannot begin until a sufficient
portion of the lower floors have been completed.

Second, elements on a given layer are often trained to "work together" as a
group to produce the desired network response (see Section A.3.3).

A-13

,Active Control of a Multivariable System I
Via Polynomial Neural Networks

In addition to the internal layers, a network will often contain two special- i
purpose layers. The first receives inputs, normalizes them, and passes the
normalized values to subsequent layers. Often if the inputs are normalized, the I
network is trained on normalized outputs as well. When this is the case, a second
special-purpose layer is required to unitize (or un-normalize) the network outputs.
By normalizing and unitizing, each network input is allowed to contribute equally
to the solution of the problem, and the magnitudes of the network coefficients
become a more accurate reflection of the relative importance of a given term.

A.2.4 Network Interconnections

Fig. A.7 shows the two types of network interconnections: feedforward and i
feedback.

vector of network
inputs

all Layer 1

interconnections Element 1,1 internal network
internal to the feedforward

........ L interconnections
passed forward

S 'ato subsequent

internal network Element 1,n

feedback
interconnection 9.

Figure A.7: Network Interconnections U
Intra-layer connections consist of making the inputs to each layer available to

every element in the layer. The individual elements are then free to choose which
subsets of the available inputs to use. Element outputs are then passed along as ,
layer outputs; the layer outputs may be described by a vector containing scalar values
corresponding to the element outputs. Network inputs are available as element
inputs at successive layers.

It is important to note that in the function estimation technique presented
here, we do not dllow feedback connections internal to the layer or within elements.
This restriction allows the same layer definition to serve for both feedforward and I
feedback networks. Connections between layers, however, may be passed forward as
inputs to subsequent layers (feedforward networks) or may be passed back as inputs
into the given layer and/or previous layers (feedback networks). Thus, for the I
generalized network structure outlined in Section A.2, the only difference between
dynamic and static networks is the type of inter-layer interconnections allowed.

A-14

Active Control of a Multivariable System
A.3 NVia Polynomial Neural Networks

A.3 Network Training

Often networks are trained using a gradient-based search technique to find the
coefficients of a pre-structured network; the popular backpropagation algorithm3 is
an example of this type of training, where the specific optimization algorithm is a
form of least mean squares (LMS). The recommended approach, however, is to
allow for structural variations by including in the training algorithm(s) methods for
determining a network structure suitable for the task at hand. Thus, building the
network structure and optimizing coefficients are inter-twined processes used to
create more robust networks with less training effort and time.

A.3.1 The Loss Function

For a given network structure the optimal coefficients are those which
minimize the sum of a loss function evaluated at every observation in a training
database:

N
mrin d(y1 , j) A:22

where:

N is the number of observations in the training database

Y, is the ith output vector in the training database

s is the itl output vector of the network; si = f(xi, a) for feedforward networks
(see Eq. A:I)

d(.) is the loss or distortion function.

Because the goal of the network training algorithm is to minimize the output
error as quantified by the loss function, it is helpful if the loss function is a convex,
twice-differentiable function with respect to the coordinates of si. By imposing these
constraints on the loss function, one guarantees that, if the function being fitted is
linear in its parameters, the fitting algorithm will be able to find the set of
coefficients that globally minimizes the network error. Even if the network
function is nonlinear in the parameters, a convex, twice-differentiable loss function
will still result in the best performance possible for the optimization algorithm.

3 Rumelhart, D.E., G.E. Hinton, and R.J. Williams, "Learning Internal Representations by Error
Propagation," in D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Vol. 1: Foundations, M.I.T. Press, Cambridge, Massachusetts, 1986, pp.
354-361.

3 A-15

Active Control of a Multivariable System H
Via Polynomial Neural Networks

Depending on the nature of the application, a variety of loss functions may be used
effectively.

A.3.1.1 Squared-Error Loss Function i
The squared-error loss function is by far the most commonly used and can be U

expressed as

d(ii I -=i1 2 A:23

In this case, the vector norm 1. I2 is defined as the sum of the squares of the
differences between the coordinates of yj and ai" This loss function is most suitable i
for the creation of networks whose outputs are estimates of the dependent
variable(s) in the training database.

One problem with the squared-error loss function is that data outliers tend to
have a greater-than-desirable effect on the coefficient optimization. A number of
robust loss functions have been suggested to reduce or nullify the effect of outlying 3
data. One such function is Huber's loss function

d i~-S.i 2 if lyi-sil 2 -A Al24d(yij-si) = AIY-i - s-i I 2 ifIYi-s 2 >AA:24
2A 1'Y -I-A if 1 yj-s.I > A

where A is the distance at which outliers begin to have less effect. When i
I y- - ý, I > A, d(.) becomes a 1-norm. Thus, this loss function has the advantages of a
1-norm; however, by using a 2-norm near the origin, the function is everywhere
continuous in the first and second derivatives, which is not the case with a 1-norm
loss function. Note that in Eq. A:24 it may be desirable to shape each coordinate of
the output norms differently by using an N-dimensional vector of values for A.

A.3.1.2 Logistic-Loss Function

Optimization of Eq. A:22 using the squared-error distortion function of Eq. 1
A:23 corresponds to the maximum likelihood rule in the case of a Gaussian
probability model for the distribution of the errors.4 However, for multi-class
classification problems with categorical output variables, a multinomial probability
model in regular exponential form is more suitable than the Gaussian model. In
this case, the network functions should be used to model the log-odds associated
with the conditional probability of each class given the observed inputs. In this
setting, the maximum likelihood rule corresponds to the choice of the logistic loss
function,

I
4 Ljung, L., and T. Soderstrbm, Theory anld Practice of Recursive Identification, MIT Press, Cambridge,
MA, 1983, p. 84.

A-16

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

() - " + In "e s A:25

3 where C is the number of outputs (or classes); si,, is the jth element of the S. vector;
and y-i is a vector with the coordinate of the observed class equal to one, and all other
coordinates equal to zero (i.e., the observed conditional probabilities given 1i). In
this context, the likelihood associated with observation i is

Ye visijP(ix)= A:26

e ij

j=1

and Eq. A:25 expresses the minus log-likelihood d(-) = - log p(yi I X). In this way, it is
possible to compute estimates of the probability that an observation is a member of
class k, given that the input state is xi:

I p(ki) I x A:27

leSi~
U j=l

A.3.1.3 Likelihood-Based Loss Fu nction

Likelihood-based loss functions, such as the logistic loss function described
above, can also be helpful for density estimation and clustering of input data. For
instance, the loss function may take the form

d(si) = -I nsi A:28

where si = f(xi, R) and f(.) is the estimated probability density function. In that case,
the network output would need to satisfy

a f(x,)dx = 1 A:29U and

3 f(a) > 0 Vx A:30
i If the network function output, f(a., 0.), does not satisfy the integrability

requirement of Eq. A:29, this condition can be reflected in the choice of the loss
function by setting it equal to

I
3I A- 17

Active Control of a Multivariable System
Via Polynomial Neural Networks

-in si + In f f(x,)dx A:31

where the second term plays the role of normalizing the network output. I
If the network does not satisfy the positivity requirement of A:30, one can use

the network function to model the log-density, and take the density function to be

et(xi, -Q)

p(,) _ ef(X, Q) A:32Jet"(X, •)dx

and the minus log-likelihood to be

- log (p(x, _)) = -si + In (f f(, Icdx) A:33

where si = f(i, _).

A.3.1.4 Additional Penalty Terms

Additional penalty terms may be included to improve the ability of the I
network to interpolate between unseen data points. The most important of these is
the complexity penalty, discussed below. However, there are a number of functions
of the network coefficients that may be added to any of the above loss functions to
"smooth" the network output; these are often called roughness penalties.

In addition to improving the ability to interpolate, a roughness penalty can I
also improve network input-output stability, such that small variations in network
input produce small variations in network output over the entire range of
operating conditions. Any of the following, for example, may be used as a
roughness penalty:

"* Sum of squares of coefficient magnitudes I
"* Sum of squares of network gradients with respect to the inputs

"* Minus the log of the prior density function of the network parameters

Details concerning the implementation of some specific roughness penalties U
are discussed in Section A.3.4.2.

I
I
I

A-!8I

I
ALtVe Control ot a Multivariabhic System

Via Polynomnial Neural Networks

A.3.2 Model Selection Criterion

Earron5 has given general conditions such that the minimum mean
integrated squared error for an MLP neural network with one hidden layer will be

* bounded by

+ OadlogN) A:34

where O(.) represents "order of (-)," n is the numbe" of elements, d is the
dimensionality (number of coefficients per node), and N is the sample size (number
of training exemplars); nd, therefore, is the number of coefficients in the network.
The first term in Eq. A:34 bounds the approximation error, which decreases as
network size increases. The second term in Eq. A:34 bounds the estimation error,
which represents the error that will be encountered on unseen data due to
overfitting of the training database; it is caused by the error in estimating the
coefficients. Estimation error, unlike approximation error, increases with network
size.

Pre-structured networks, because they often have excessive internal degrees of
freedom, are prone to overfit trair-ing data, resulting in poor performance on
unseen data. Additionally, because of the excessive number of network coefficients,

Soptimization of pre-structured networks tends to be a slow and computationally
intensive process. Without algorithms that learn the structure, the anl'yst often
must resort to guesswork or trial and error if network complexity is to be reduced.

Improvements in network performance on unseen data can be made if one
incorporates into the optimization algorithm modeling criteria that allow the
network structure to grow to a just-sufficient level of complexity. Although this
technique requires additional effort to search for an optimal structure, the overall
network generation time is, in general, greatly reduced due to the reduction in theN number of coefficients.

Two decades of research have gone into this topic. In Ukraine, Ivakhnenko 6

i introduced the Group Method of Data Handling (GMDH). With GMDH, the loss
function is squared-error, and overfitting is kept under control by means of cross-
validation testing that employs independent subsets (groups) of the database for
fitting and selection. GMDH is a satisfactory approach when sufficient data are
available. Usually, however, the quantity and variety of the available data are
limited by operational considerations, and it is desirable to use all of the data in the

5 Barron, A.R., 1991, op. cit.

6lvakhnenko, A.G., "The group method of data handling - A rival of stochastic approximati,-,i,"
Soviet Automatic Control, Vol. 1, 1968, pp. 43 - 55.

A-19

I
Active Control of a Muitivariable Sysicn
Via Polynomial Neural Networks

fitting process. In Japan, Akaike 7 introduced an information theoretic criterion
(AIC) that uses all of the data and incorporates a penalty term for overfit control.
Akaike's criterion is one of several that take the form 3

I N K

d(y + C N A:35
i=1

where K in this context is the number of non-zero coefficients in the model, N is the I
number of data vectors in the database, and C is a constant. Since the second term
does not depend on the network coefficient values, model selection criteria of the
form shown in Eq. A:35 are often optimized one term at a time. 3

Akaike's information criterion and subsequent criteria introduced by
Schwarz8 and Rissanen 9 require the loss functions to take the form of a minus log- *
likelihood. When the loss function takes this form, the AIC is given by Eq. A:35 I

with C = 1, and the simplest forms of Schwarz's information criterion "B" (BIC) and
Rissanen's minimum description length (MDL) criteria are given by Eq. A:35 with

1
C =1 In N. Note that these criteria are applicable to both squared-error loss (for

function estimation with a Gaussian error model) and logistic loss (for class
probability estimation).

The AIC, BIC, and MDL criteria depend explicitly on an assumed probability 3
model to yield the likelihood expressions. However, other criteria of the form of Eq.

A:35 can be justified by the principle of predicted squared error (PSE), 10,11 defined
below, or the principle of complexity regularization.!2 2

I
7 Akaike, H., "Information theory and an extension of the maximum likelihood principle," Proc. Second i
Int'l. Symp. on Information Theory, B.N. Petrov and F. Csaki (Eds.), Akademiai Kiad6 Budapest, 1972,
pp. 267 -281.

8 Schwarz, G., "Estimating the dimcnsion of a model," Ann. Stat., Vol. 6, No. 2, 1977, pp. 461-464.

9 Rissanen, J., "A universal prior for integers and estimation by minimum description length," Ann. Stat.,

Vol. 11, No. 2, 1983, pp. 416-431.

10 Barron, A.R., "Predicted Squared Error: A Criterion for Automatic Model Selection," Self-Organizing
Methods in Modeling: GMDH Type Algorithms (S.J. Farlow, Ed.), Marcel Dekker, Inc., New York,
Chap. 4, 1984, pp. 87-103.

"IlMallows, C.L., "Some cotnmeiits on Cp," T'chnometrics, Vol. 15, 1973, pp. 661-675.

12 Barron, A.R., "Complexity regularization with applications to artificial neural networks," Proc.

I'ATO AS[on Nonparamletric Functional Estimation, Spetses, Greece, G. Roussas, Ed., Kluwer
Academic Publishers, Dordrecht, Netherlands, August 1-10, 1990.

A-20

I
Active COntuol oW a Multivanable Svs'en

V Via 'lyll no ia~l Ncural Networks

To use the AIC or MDL criteria in the squared-error case, the loss function is
recast in the form of a minus log-likelihood for a Gaussian model. This may' be
written for the single-input case as

d(yi, si) = - In 22K2 [

I yi-si1 2 1
2 + • n2ro'- A:36202

I where a2 is a constant that may be regarded as the variance of the error in the

Gaussian model.1 3 The constant a 2 could be replaced with its maximum likelihood
* estimate

1 N
a 2 1 yi-S,12 A:37

i=

3 which leads to a criterion of the form

1 1 1 K
2N + 2 In 6:2 + f In 2rz±+ C A.38

1
with C = 1 or C = in N for the AIC and MDL, respectively. Notice that the first and

third term are constants and do not depend on the network structure or coefficients;
these constant terms can be removed from the equation to yield a criterion of the

U form

1 K
In (T + C - A:39
2 N

A different 62 is obtained for each candidate network model. However, choices forI 2 which depend on the candidate model have two serious drawbacks: (1) these
criteria depend explicitly on the assumed family of the error distribution (Gaussian),

3 13 Eq. A:36 may be extended for multiple outputs as follows:

S2a
d(wher) =z 2v be l te 2 von

3 hr 2 ~iS a co•n:,'Y t tiut mty be rev, rd•,• i ', the varianc.e ot the error of output j-

3 A- 21

Active Control of a Multivariable System
Via Polynomial Neural Networks

and (2) "minimization" can occur when K is sufficiently large that the error
variance, C2, approaches zero, and the logarithm term approaches -oo; the first term
of Eq. A:39 then dominates, which is likely to result in overfitting of the data.

As an alternative, it is better to use a prior estimate, a 2, of the model error
P

variance that does not depend on the candidate models. Barron showed that even
when a prior estimate a2 is not extremely accurate, the criterion can still prove
useful. 14,"5 By inserting Eq. A:36 into the criterion of Eq. A:35, multiplying by 2a2
and ignoring a constant, it can be seen that minimizing Eq. A:35 is the same as
minimizing

I N K
yi _y-sil 2 + 2(yC - A:40

1=1

With the value of C = 1, this represents the PSE criterion; note that unlike Eq. A:39,
both terms in Eq. A:40 remain positive, and spurious minimization is thereby
avoided. The PSE criterion, unlike the general AIC, is appropriate even when the

1
error distributions are non-Gaussian. 16 For C = I In N, the terms in Eq. A:40 become

the leading terms of the complexity regularization criterion derived by Barron,7 .

For the classification (conditional-probability estimation) problem, one m~y
use the AIC or MDL criterion of Eq. A:35 with the logistic-loss function. Since it has
been shown already that the logistic-loss function takes the form of a minus log-
likelihood, no modification to Eq. A:35 is required, and the task becomes one of
minimizing

I N K
d(y,, 5) + C - A:41

i=1

14 Barron, A.R., Properties of the Predicted Squared Error: A Criterion for Selecting Variables, Ranking
Models, ind Deterininin\g Order, Adaptronics, Inc., MtcLean, Virginia, 1981.

15 If no value of Cp2 is known a priori, one can use, for instance, the conservative nearest-neighbor

estimate of ap2. The nearest-neighbor approximation consists of assuming that the output for each given

data vector is to be estimated using the output value of the data vector closest to it in the data space;
a 2 may then be et equal to the variance of these estimates. After modeling, the predicted error of the

model can be checked to verify that it is less than or equal to c I

16Barron, A.R., 1984, op. cit.

17 Barron, A.R., 1990, 0, cit.

A -22

I
Active Control of a Multivariable System

I Via Polynomkil Neural Networks

where the distortion function, d(.), in Eq. A:39, is the logistic-loss function of Eq.
I A:25.

By minimizing the constrained loss functions, Eqs. A:40 and A:41, instead of
their unconstrained predecessors, Eqs. A:23 and A:25, network complexity can be
appropriately penalized so that overfit is avoided. One may follow the same steps to
modify a variety of objective functions.

I K

The C K term in the model selection criterion is called the complexity penalty

and can be thought of as an additional term added to the loss function. The
complexity penalty allows the loss function to account for both estimation error and
approximation error. By adding the roughness penalty to the loss function, i.e.

Loss = distortion function + complexity penalty + roughness penalty A:42

one has all that is needed to create a robust objective function that not only takes
into account estimation and approximation error, but also function smoothness and
input-output stability. It is important to note, however, that it is not possible to
compute a gradient of the complexity penalty with respect to the network
coefficients. Thus, the optimization strategy must use a heuristic search method
while traversing the space of potential network structures.

I A.3.3 Optimization Strategy

Having defined the structural building blocks for a generic artificial neural
network and an appropriate objective function, we next turn to consideration of an
efficient search strategy that will find the network structure and optimize theu coefficients of that structure.

The optimization strategy proposed here is distinctive in two ways. First,
only small subsets of network coefficients are optimized at a given time; this reduces
the dimensionality of the search space and improves the performance of the search
algorithm. In most cases, it is sufficient to optimize only the coefficients of a single
element while holding all other elements fixed. Ivakhnenko 18 was the first to
propose this type of network construction. In his scheme, the coefficients of each
element are optimized in such a way that each element attempts to solve the entire

* input-output mapping problem.

While Ivakhnenko's method is powerful, it can be improved upon. A second
major distinction of the proposed optimization strategy consists of training the
elements on a given layer so that they work in linear combination with otker
elements in that layer to minimize the objective function. This is accomplished

18 lvakhnenko, AG., 1968, op cit.

A-23

Active Control of a Multivariablc System
Via Polynomial Neural Networks

using a technique inspired by the projection-pursuit algorithm of Friedman
et a]. 19,20,21 In this strategy, an additional set of "dummy" coefficients, f3, j3k,
multiply the outputs of the n elements on a given layer (Fig. A.8):

Layer L

(Eleinent L,1 f

~sII

IE~ement L,n J

Figure A.8: Projection-Pursuit Optimization Strategy

The coefficients of the node under consideration, along with the additional
dummy coefficients, may be optimized together so that the weighted sum of
element outputs minimizes the objective function. This has the effect of training
each new element to work well in combination with the existing elements of a
given layer. Additional nodes are added to a layer only when their additional
complexity is justified.

Additionally, coefficients within the new elements may be built up or
"carved" away using an objective function that contains a complexity penalty; the
complexity penalty allows only terms which contribute significantly to network
performance to be retained.

Entire layers may be optimized following a strategy originally used by
Adaptronics, Inc. in the 1970s, and most recently suggested by Breiman and
Friedman. 22 In this strategy, which is called "backfitting," each coefficient subset is
improved by iterating the search algorithm a few steps while holding the rest of the
coefficients fixed. This method is then repeated for another subset of network

19 Friedman, J.H. and J.W. TUkey, "A projection pursuit algorithm for exploratory data analysis," IEEE
Trans. on Computers, Vol. 23, 1974, pp. 881-889.

2 0 Friedman, J. H. and W. Stuetzle, "Projection pursuit regression," 1. Amer. Stat. Assoc., Vol. 76, 1981,
pp. 817-823.

21 Breiman, L. and J.H. Friedman, "Estimating optimal transformations for multiple regression and
correlation," [. Amer. Statist. Assoc., Vol. 80, 1985, pp. 580-619.

2 2 Breiman, L. and J H. Friedman, 1985, op cit

A-24

Active Control ol a Multivariable System
Via Polynomial Neurai Networks

coefficients, etc. For neural-network-based estimation, the nodal elements become
the logical choice for the coefficient subsets to be optimized, and a layer may be
optimized by successively recursing through each nodal element, iterating the
optimization algorithm a few times for each element. Breiman and Friedman
showed that under appropriate conditions this method will yield the same
coefficient values as are obtained via a successful global optimization of the same
structure. Practical implementation of the backfitting strategy has an advantage in
that only a small set of linear equations needs to be solved at any given time.

An example of the way in which backfitting may be applied can be illustrated
using a network as defined in Fig. A.8. Once the structure of the layer has been
determined, the coefficients of element L,1 and the dummy coefficients, D, are
adjusted using one iteration of the search routine (see Section A.3.4). Next the3 coefficients of element L,2 and a are adjusted using one iteration of the search
routine. This process continues n times until the coefficients of element L,n have
been adjusted. At this point, the process begins again with element L,. TheI optimization routine continues until the optimization no longer improves
performance significantly.

Another way that backfitting can be used is during the search for network
structure. Elements may be backfitted each time a new element is added, and the
new element can be scored based on its performance in conjunction with the
backfitted prior elements. In general, backfitting will increase training time, but it is
a technique which can be used as often or as seldom as desired. Even when used to
a small extent, backfitting can be a highly efficient way of optimizing larger sets of
coefficients so that they work well together.

Once the structure of a given layer is determined, subsequent layers have the

option of combining the layer outputs linearly using the a. coefficients chosen above,
or they may go on and recombine the outputs in more complex ways if the
improved performance justifies the additional complexity. Layers are added one at a
time in this fashion until overall network growth stops. The stopping rule is that
the constrained fitting criterion has reached a minimum.

i A.3.4 Optimization Method

An iterative least-squares (ILS) method for optimizing the types of nonlinear
networks described in this section will now be derived. The algorithm is iterative in
the sense that multiple passes through the data are usually required to achieve
convergence. It is a least-squares method in the sense that it minimizes a local
quadratic approximation of the objective function; it does not, however, require that
a squared-error distortion function be used or that the network equations be linear3 in the parameters.

I
3 A-25

Active Control of a Multivariable SysUtem

Via Polynomial Neural Networks

A.3.4.1 The ILS Algorithm

The ILS algorithm consists of finding the local least-squares solution to a

linearized version of the network function at each consecutive operating point, 9.
Since the optimization strategy described in Section A.3.3 consists of optimizing
subsets of the coefficients, in particular those contained in a single network element,
the entire network optimization task can be reduced to a series of single-element
optimization tasks.

Let Vf(xi, 0o) be the gradient of the network output with respect to the

element coefficients, _6, evaluated at 8) and abbreviated Vf

Xf1 @f2 _fc

oI De1 De1
D'f IDf2 Df

aj a2 afC
0 =2 9 - = 92

3f ___2_ 2 Df•__

This gradient can then be used to make a local linear approximation of the

network function about 9):

f(_i, a) S f(xi, 9)) + (V_f)f(_- A:43

Since the general form of the method is iterative, we wish to find a Ag_ such
that the iteration

finew = 9ld + 11 AO A:44

produces a minimum of the loss linearized about -1d- If g, the parameter that

controls the step size, is taken to be unity, then A = Oew - l" Taking 90 as 9-,,, Q

as 0new, Eq. A:43 may be rewritten

f(x., Q) = Af(xi, !) + (Vft'(A0) A:45

A-26

Active Control of a Multivariable System

Via Polynomial Neural Networks

Now, let Vd(y.i, fi,0) and V2d(yi, fi,o) be the C x 1 gradient and C x C Hessian,

respectively, of the distortion function with respect to the C x 1 vector of network
outputs, fi, at observation, i, and evaluated at f= fi.0" These are abbreviated Vd and

V2d£0, respectively:

I adIIf
* ad

D2
Vd =

ad

afC

I U2 d a 2d _2dI flafi af taf2 "" 3 ft~c
32d @2d a2d

V2d£0 = f2-fI af2(f2 ... af 2afC

a2d a2d a2d
ifaf I afCaf 2 af-afC

f f- .0

where, c, is the number of outputs.

Because restrictions are put on the objective function such that it is convex
and everywhere twice-differentiable, the gradient and Hessian are known
everywhere and can be used to make a local quadratic approximation of the lossfunction in the vicinity of the current network output, f-:

d(yi, f) = d(yi. ý)) + (Vd 1)1 (f1 - fJ) + 2(f,- f-)T(V 2d£0)(f-i- f0) A:46

I Since i = f(xi, _) by definition, Eq. A:45 may be substituted into Eq. A:46 to yield an
approximation to the i'" component of the objective function in terms of AG:

A-27

I
Active Control of a Multivariable Systern
Via Polynomial Neural Net works I

d(y-j, fi)=

d(y1 , f) + Vd)T(Vf8)(Q (Aa)T(((~)V~T(Aa) A:47

The total empirical loss, J, may then be calculated by summing the approximation of
the distortion function over all observations:

1 N 1 I
J(0) = - d(yi, fo) + - (Vd 0)T(V•,))T(A.)

i=1 i=t

N
~ ~)(Ve(V2dr)(Vf)T)(AQ. A:48

11

1(o) =) + bT(AE) + •(A)'r__A (A_) A:49

where

1N

A = " X (Vf•)(Vdr)(V%@)T A:50
i=1 1

and

iN I
= K (Vfa)(Vd,) A:51

It is now possible to calculate the gradient of the empirical loss f.nction with

respect to the coefficient vector 0: I
VJ! = l +'A (A) A:52

Because the loss function is required to be convex, the minimum is found at the

point where the gradient is zero. Thus, Eq. A:52 may be solved for Aa by the choice

(A9) = b A:53

Thus

anew = %ld - bA.I• A:54

A-28

1
Active Control of a Multivariable System

Via Polynomial Neural Networks

is the desired iteration.

SRecall that each element is the composition of a transformation h(z), with a
linearly parameterized expansion (Fig. 2.4):

where D (ko_ x) is unity by definition. Eq. A:55 may be rewritten for clarity as

f(_ = h(z) A:56

* where

I
z L OJ (D (k. X) A:57

j=0

SAnd the partial V•f may be computed via the chain rule as follows:

_f ah dh az dhIa- o- dz J - dz (L x) A:58

Thus, to use of the ILS optimization technique, the analyst must provide the
following:

SAn analytic form of the first and second partials of the objective function
with respect to the network outputs, Vd. and V2d_.

0 An analytic form for the first derivative of the post-transformation h(z).

Given these two pieces of information, Eq. A:58 may be used to compute Vk and
Eqs. A:50 - A:54 may be used to compute the ILS update.

Table A.2 gives gives a summary of the variables that are used in the solution
of the ILS equations.

I1
I

S~A-29

Active Control of a Multivariable Systen m
Via Polynomial Neural Networks

Table A.2: Summary of ILS Variables

VARIABLE DESCRIPTION DIMENSION

SCoefficient update vector. J x 1 1

f or. Network output vector. Cx1

di The distortion function calculated at Scalar H
observation i.

J The objective function; the sum of the Scalar
distortion function over all observations.

Vf Gradient of the network output vector, f, J x C i
with respect to the coefficient vector, 0.

Vdf Gradient of the distortion function with C X 1
respect to the network output vector, f.

V2df Hessian of the distortion function with C x Crespect to the network output vector, f.

Computed gradient of the objective J x 1
function with respect to the coefficients.

A Pseudo-Hessian of the objective function J x J
I with respect to the coefficients.

A.3.4.2 Incorporation of Additional Penalty Terms

It is often desirable to include additional penalty terms in the objective
function (see Sections A.3.1 and A.3.2). These additional penalty terms may be
divided into three categories: 3

(1) functions of the network structure and database size (complexity penalty),

(2) additional functions of the network output, and

(3) functions of the network coefficients.

As mentioned above, the first type of penalty term does not involve the
coefficients of the network; therefore, partial derivatives cannot be computed and
the penalty term must be minimized by a heuristic search of the space of potential
structures.

A-30 I

I
Active Control ot a Multivariable SystemU Via Polynomial Neural Networks

Penalty terms that are functions of the network output may be handled by
incorporating these functions in the computation of the A and b matrices. This is
possible since the partial derivatives, Vds and V2d,, exist for this type of function.
This method is demonstrated in the following example.

I Assume that the network is interrogated with time-series data, and that the
network output is required to match a desired response for only a portion, M, of the
samples. Assume also that for subsequent samples, there is no deterministic
network response that is desired, only that the network response does not become
"I'excessively large" during subsequent samples. This situation is shown in Figure
A.9:

Desired Response Not Specified

9 NwM N

Sample Number

i Figure A.9: A Network Response that Requires an Additional Penalty
Term

If the network is trained using only the first M samples, the response of the
network subsequent to sample M may grow without bound, because the response
has not been constrained over this interval. On the other hand, if the network is
trained to provide a response of zero between samples M and N, its performance
onver the region 0 to M will be degraded due to the severe requirement placed on
the fit in the region M to N.

I One method for handling this situation is to divide the objective function
into two parts. Over the region where a specific response is desired, the squared-
error distortion function may be used:

d(yi, 51)= Iyi-S 2 0y i < M A:39

U Over the region where a specific response is not required (M < i < N), however, the
squared-error distortion function is not appropriate. A modified squared-error
distortion function may instead be used to penalize the network only when its
response falls outside some range ± q:

A-31

Active Control of a Multivariable System i
Via Polynomial Neural Networks

d(.Yi'1i) = K 0 • i-q1 if I yi--i :5 M<i 5 N A:60{K 1-y-i-si-ql 2 ifi• A:60 >

K is a user-specified constant that controls the "rigidity" of the ±q boundary. Thus, a
large K will heavily penalize any excursion of the network response beyond the *
boundaries, whereas a small K allows the network response to exceed the fl
boundaries by small amounts without significant penalty.

Note that the distortion function of Eq. A:60 is convex and everywhere twice
differentiable. Therefore, the A and t matrices (Eqs. A:50 - A:51) may be computed
as before, keeping in mind that after sample number M in the summation, the
alternative forms of the objective function should be used. fl

The above example illustrates the incorporation of alternative or additional *
penalty terms that are functions of the network output. If, however, the penalty f
terms are direct functions of the network coefficients, a slightly different approach
must be used. Assume

d'(yi, si) = d(yi, si) + g(.) A:61

where g(.) is convex and twice differentiable everywhere. Since g(.) is not a function I
of the network output, Eqs. A:50 - A:51 cannot be used to compute A and b- directly as
before. Instead, the equations for A and b must be modified to account for the
additional term.

It has already been shown that the portion of the objective function
corresponding to the d(.) term may be represented by a second-order Taylor series
expansion

1 T
J1(0) = JI(E_•) + b(AQ) + 1(At)"A (AQ_) A:62

with A and b matrices defined in Eqs. A:50 - A:61. The portion of the objective I
function, J2(Q), corresponding to the additional term, g(_), may also be expanded in a
similar manner

2(.) = 2 + V (A_) + -(A_) T (V 2) (A9) A:63

where V,., and V2- are the gradient and Hessian matrices of the additional term,

g(.), with respect to the coefficient vector, 0_. Combining Eqs. A:62 and A:63 to obtain
the sum of the two objective functions, one may obtain new A and D matrices:

A = A + V2 A:64

I
A-32n

I
Active Control of a Multivariable System

Via Polynomial Neurad Nect works

b= + V, A:65

I The ILS update may now proceed as before with these new matrices. Note that this
type of additional penalty term requires that the analyst provicae an analytic form of
the first and second partial derivatives of the additional objective function term
with respect to the network coefficients, V and V2

The following example illustrates the use of a penalty term that is a function
of the coefficients. Suppose one wanted to put a constraint on the magnitudes of the
network coefficients; one way of accomplishing this would be to use the following
distortion function

d'(yi, si) = d(yi, si) + K _T A:66

where K is a user-defined constant associated with the amount of penalty to be
applied to the coefficient magnitude term. In this case, following Eqs. A:64 and A:65,
the ILS update should make use of A' and .b' matrices defined by

A' = A + 2KI A:67

b' b + 2K1 A:68

Note that, in this example, summation over the observations is not required for the

computation of the additional term in the distortion function, because K__Q0T is
independent of the observation number, i.

A.3.4.3 Relationship to Other Optimization Techniques

ILS is closely related to a number of other optimization techniques. First,
consider the special case of a linear nodal element, a quadratic objective function,

I and 9old set to zero. In this case, Eq. A:5,, becomes

Inew = J.'I 1 2 A:69

where R is the correlation matrix of the input vector, &, and p_ is the cross-correlation3 vector between the input vector, x and the desired response, y. If p. = 1, then Eq.
A:69 forms the Wiener-Hopf equations 23 and provides an optimal least-squares
solution in a single step.

If the nodal element is nonlinear in its coefficients, and the distortion

function is squared-error, and V = 1, these equations then correspond to the Gauss-

2 3 Haykin, S. Adaptive Filter Theory, Prentice Hall: Englewood Cliffs, NJ, 1986, Sec. 5.4.

A-33

Active Control of a Mlu iv-uiable System I
Via Polynomial Neural Networks

Newton optimization method; in fact, Gauss' fundamental contribution to I
Newton's method was to simplify the Hessian of the objective function by using a
linear approximation of the function being optimized (Eq. A:43). A full Newton
method, on the other hand, would require the calculation of a complete Hessian via
the incorporation of terms related to second partial derivative of the element output
with respect to the coefficients.

Gradient-descent algorithms, including least-mean-squares (LMS), are also
very similar to the ILS algorithm e'-cept that they ignore second derivative *
information altogether. If the quadratic term in Eq. A:46 is dropped, Eq. A:4t.
becomes,

1 N iN i
J(0l) = • d(y•,s) + i (Vd•)T(Vf)T(A-) A:70

or

J(O) = J(00) + b_..(AO) A:71

where b. is defined in Eq. A:51.

We -an now calculate the gradient of the cost function, J, with respect to the

coefficient vector, Q:

DJ I N

VJ- = b " (V 0,)(Vd N) A:72
i=1

From Eq. A:72, it can be seen that the network coefficients may be adjusted in the
direction of steepest descent by

anew = 9old -[1kb A:73

where ýt is the size of the step at each iteration. For a squared-error cost function,

Vd 2 -i A:74 -

and for a linear filter,

V 0 = x A:75 i
So the coefficient update in Eq. A:64 becomes: I

A
A-34 I

Active ('ontrol oi a Multivariable System
Via Polynominal Neural Networks

n+e, = +--l V 3 -N A:76I| 1=1

Comparing Eq. A:73 to Eq. A:54 one sees that by ignoring the distortion

function curvature information, the term A- 1 is dropped from the weight update.
Although this simplification greatly reduces the number of computations required
to compute each iteration, convergence rates for gradient-descent algorithms are
typically very slow.

A.3.4.4 Regularization

Experience has shown that, for non-quadratic objective functions, Newton
methods may be unreliable, especially if the coefficients are initialized far from the
minimum. This is because techniques for solving the system of equations in A:53
break down when the pseudo-Hessian matrix, A, becomes singular or nearly

singular. Regularization techniques are methods that can be used to ensure that A

is positive-definite. Many of these techniques can accomplish this and still provide
an iteration that is only slightly different than the optimal Newton direction. One

such technique is the Levenberg-Marquardt (LM) method. 24 ,25 LM can be
incorporated into the ILS algorithm in a straightforward fashion.

Because the matrix A, as defined by Eq. A:50, is square, it is also (by definition)

positive-semi-definite. One way of ensuring that A is positive-definite is simply to

add some small positive values to the diagonals. Thus, at each iteration, A may be

modified using one of the following methods:

A' = A + X 126,27 A:77

or,

2 4 Levenberg, K., "A method for the solution of certain nonlinear problems in least squares," Quart.
Appl. Math., vol. 2, 1944, pp. 164-168.

25 Marquardt, D.W., "An algorithm for least-squares estimation of non-linear parameters," Journal
SLAM, vol. 11, 1963, pp. 431-441.

26Ljung, L. and T. Soderstrom, 1983, op- cit., pp. 364-365.

2 7 Reklaitis, G.V., A. Ravindran, and K.M. Ragsdell, Engineerin, Optimization Methods and
Applications, John Wiley & Sons, 1983, pp. 105-106.

A-35

Active Control of a Multivariable System U
Via Polynomial Neural Networks

A' = A + X diag(A) 28 A:78 i
where X is positive constant, I is the identity matrix and diag(A.) denotes the matrix

A with all but its diagonal elements set to zero. When k is large, the second term in
the above equations dominates, and the iteration steps along the gradient (Eq. A:72).

When X is small or zero, the first term in the above equations dominates, and the i
iteration becomes a Gauss-Newton iteration. There are a number of heuristic

schemes for varying X during the course of the search so that A remains positive-
definite and the algorithm converges rapidly.

A.3.4.5 Global Optimization

Up to this point, we have only considered the optimization of single network
elements. Although, for many GMDH-based neural network paradigms this is all 3
that is required, at times it may be desirable, once the network is constructed, to
optimize globally all of the network coefficients. Global optimization can be
accomplished by using the chain rule to propagate the gradient information through 3
all the network elements.

Consider the generic "hidden" nodal as shown in Fig. A.10, where the time
delays have been dropped for notational convenience:

X Previous! U Subsequent f(s)Z=4aSeries)h Layer(s). .
•Yz/ }/•Expansion

Distortion

"Hidden" Nodal Element Function i
Figure A.10: A "Hidden" Nodal Element

To compute the gradient of the network output, f, with respect to the coefficients, I
of the hidden element, the chain rule must be used:

af af as

o_ as ae A:79

I
I

2 8 Press, W.H., B.P. Flannery, S.A Teukoisky, and W.T. Vetterling, Numerical Recipes: The Art of
Scientific Computing, Cambridge University Press, NY, 1986.

A-36

S. . ..• m |a mI

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

The partial derivative, L__, may be computed by summing the partials of all the

paths that the variable, s, may take through the subsequent layers. To illustrate this,
assume the structure of the subsequent layers is as shown in Fig. A.11:I : :

output(s) 5 11I
from other

hidden
elements 12 fs

in
I •

S|

Layer L-1 Layer L

Figure A.11: Intercornections on Final Network Layers

In Fig. A.11, s is the input vector to the penultimate network layer, and f(s) is the
final network output. Notice that there may be other inputs to layer L-l; however,
it is not necessary to know the nature of these inputs to compute the gradient of f(s)
with respect to the single intermediate variable s. Summing up the paths that s
takes through the subsequent layers, the gradient may be calculated as a sum of
chain-rule terms:

_f a A:80

Thus, three analytic expressions are now required to perform ILS with global
I optimization:

"" an analytic form of the first and second partials of the objective function

with respect to the network outputs, Vd50 and V2dh.

"" an analytic form for the first derivative of the post-transformation h(z),
and

I an analytic form for the gradient of an element output with respect to its

input vector, Vf,.

I
I A-37

Active Control of a Multivariable System H
Via Polynomial Neural Networks

Once this information is known, the gradient of the network output with respect to I
all coefficients, V IQ, may be calculated using Eq. A:79, and the ILS update step of Eq.

A:54 may be computed as before. It should be noted that Vf. may also be used to U
compute some forms of the roughness penalty as described in Section A.3.2.

A.3.4.6 Elements with Feedback n

If the network contains feedback, calculating the derivatives becomes more
complicated, because the inputs to a given nodal element may, in fact, depend on r
prior values of the outputs of the same element. Hence, the inputs are functions of
the parameters of the element, and the core transformation is no longer linear in *
the parameters. In this case we must add an additional chain-rule term to the
derivative calculation of Eq. A:58. Thus, for a single input element, Eq. A:58
becomes

J D ,

= E dhdz ý)) + I OI.0(k., x)) A:81

where 0,(j(,d, -d) is the partial derivative of the j,d term of the series expansion with 3
respect to the input xd. The derivatives of the inputs are readily calculated because
the inputs to the current nodal element are outputs from another element, and we
have provided an algorithm for calculating the derivatives for the output of an i
element. Notice that the same information is required to compute Eq. A:81 as is
required to perform global optimization.

In some cases, analytic forms of the gradients of the network or the objective
function may not be available (Fig. A.2). In such cases the ILS method cannot be
used and a direct search method such as simulated annealing, Powell search, or l
GRIGARS must be used. Note that in applications where a plant model follows a
controller, for example, if an analytic model is available for the plant (or one can be
synthesized inductively using an estimation neural network), the information
needed can be obtained by propagating the gradient through the analytic model.

A.3.4.7 Recursive Forms i
It is possible to update the network coefficients recursively (at each sample

interval) using a recursive iterative least-squares (RILS) technique. Updating the
network at each sample interval has a number of advantages including: (1)
computationally efficient recursive coefficient updates may be more suitable for on-
line network training; and (2) in some contexts, the process being modeled by the

I
A-38i

I
Active Conurol of a Multivanable System3 IVia Polynomial Neural Networks

network may be non-stationary; therefore, it may be desirable for the network
parameters to be adapted over time.29, 30

The key to the development of a recursive ILS algorithm is to approximate A
and b in a way that does not require the summation over the observations (Eqs. A:50
and A:51). This can be accomplished as follows:

"AN =(1 -Y) A_ N-1 + y(Vf•N)(V 2 dfN)(VN)T A:82

and
an EN = (1-Y)SN-1 + '(VkN)(VdIN)

A:83

where N denotes the number of iterations.

Note that if the time-varying gain, 'y, is chosen to be 1/N at each sample, and
if the network coefficients are not updated during the process of recursively
computing Eqs. A:82 and A:83, then after N iterations the resulting A and D. are
identical to the A and t of Eqs. A:50 and A:51. If, however, the network coefficients
are updated at each observation, then Eqs. A:82 and A:83 are not equivalent to Eqs.
A:50 and A:51 because A and E contain gradients that were computed using previous
versions of the network coefficients.

One problem with Eqs. A:82 and A:83 is that older gradient and Hessian
information is allowed to contribute equally in the computation of A and D.. This isI =_
a problem because (1) the estimated system parameters are improving with each
iteration, and therefore the more recent gradient estimates are more accurate, and 2)

I if the system is varying with time, and the observations occur in chronological
order, prior gradient and Hessian information may be obsolete.

2 9 White, D. and D. Sofage, Handbook of Intelligent Control, Van Nostrand Reinhold, New York, 1992.

3 3 0 1t is important to note that apparent time-varying characteristics of a process often are caused by
unmodeled nonlinearities. If the neural networks are originally trained to model these nonlinearities
properly, then on-line adaptation may not be required. A learning system (a system that includes a
modeled process, a neural network, and a network synthesis algorithm) consists generally of a
functional form capable of representing a complex process response over a wide range of operating
conditions, whereas an adaptive system is typically less capable of a wide range of representation until
it modifies its parameters. The line between an adaptive system and a learning system is fuzzy, and
there are potential situations where a fixed network cannot be trained to model a process over the
entire operating range. (Note that "adaptation" has sometimes been associated with knowledge
gained while in operation; however, current usage also employs "on-line learning" to make this
distinction when a neural network is designed to be trained on-line.)

A-39

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

One way to place more emphasis on recent observations is to choose y to be
greater than 1/N. A more computationally convenient method involves

introducing a forgetting factor, X, directly into the computations of A and k.. In this
case, Eqs. A:50 and A:51 become

N I
A = X(N-i) (Vf%)(V 2 dji)(Vfi)T A:84

i=l I

and

NI
= (N-i) (V.i)(Vdci) A:85

i=1 U
Now A and b can be updated recursively as follows:

A- N = xA N-1 + (VfO)(V2dl)(VfN)T A:B6

and

BN = 11 N-1 + (VfQN)(Vd N)
A:87

With RILS, the new set of coefficients is found by solving the same set of
equations used to compute the ILS coefficients (Eq. A:53):

N N-1 -A N 12 N A:88

Computation of Eq. A:88 can be sped up significantly if Eq. A:86 is modified to U_-1 _-

yield a direct recursive relationship between AN and ANI. To obtain this

recursion, first make the following assignments:
U

"P N-1 = --A N-1 A:89a

X = (Vf4) A:89b

y = (V2dfN) A:89c

Z = (Vf•O)T A:89d

Inverting both sides of Eq. A:86, one obtains I

I
A-40

I
AcLive Control ora Muitivanable System

Via Polynomial Neural Networks

. 1 -1

PN = [X PN-1 + XYZ- 1 A:90

U The right-hand side of Eq. A:90 can be rearranged according to the matrix inversion
lemma which is reproduced below without proof:

[W-I + XYZ]-1 = W - WX(zWX + Y-1)-IZW A:91

By noting that W =P, p = pT, and X = ZT, the matrix inversion lemma may be

used to rewrite Eq. A:90 as follows

1 1 (xTPX)-

I PN = "PN-1 - •-PN-1X -- + Y-1 XTPT A:92

u or
1

wrPN = (pNi-1 - QS-IQT) A:93

where

I Q = PN1(V-fN) A:94

* and

S = (VfQN)T PN-1 (VkN) + X I (V 2 d IN)- A:95

K and I is the identity matrix. Substituting Eq. A:89a into Eq. A:88 one obtains the
update equations

aN = 0N-1 - PNN A:96

where PN is computed from Eq. A:93. Note that the whereas the update formerly

required the inversion of the J x J A matrix, it now requires the inversion of two C x3 C matrices, S and V2d N, where C is the number of system outputs. Typically, the
number of outputs will be significantly smaller than the number of parameters, J.

A
I
I

I A-4 1

!I

Active Control of a Multivariable System
Via Polynomial Neural Networks

Additionally, the inversion of V2dN is frequently trivial since it is often either a

diagonal or an inverted matrix.31

As might be expected, RILS reduces to the popular recursive least-squares
(RLS) algorithm if the distortion function is squared-error:

di = 2 (,V- _ fi)T(yi _ f-) A:97

and, the model being optimized is linear in the parameters:

4- = (V•')Toi-1 A:98

For this special case, Eq. A:85 may be rewritten as 3
N

hN = - X) (Vf)(yi _ fi)
i=1

N-- -- • •(N-i) (V_,)(•i_-(Vk~)TON...l)I

i= 1 (N-i)

N 1 N n
= - E •(-i(Vf.) •- + N" •I K(N-i) (Vf_.)(VfS)TN_

i=1 7 i

N-
N - N-i)(Vfei) y + ANONl A:99 f

i=1

Substituting Eq. A:99 into Eq. A:88 one obtains

N = N-1 + A MN-
i=1

I

3 1 A common squared-error criterion for multiple outputs is d ;21(X -)T A-'(y - L), where A is the

covariance matrix of the estimation errors. Note, that when this is the case, (V2 d)-1 = A and no

inversion is required. 3
A-42

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

NA N -X)(Vf)Yi

= A N 1 X(N-Ii) (Vf.)Y-i + (Vf-Q)Y.NI _ •- i=1

_ (A N-1 _N-_ + (MfN)g

=A~ ((N-N (VfeN(V2dfN)(V-ffN)T)&~-.1 + (V4N}XN)

= AN-1 + A N (V4N)(V2dfN)VN - (VfQN)TN._1) A:100

Note that for a linear system, V kN may be rewritten as a vector of system inputs,
~--1

%(N). Using Eqs. A:93 - A:95, A N (= PN) can be updated recursively.

"1N = PN-I!-(N).(N)T PN-1

PN=X N1-X+V N 1TpN--(N) A:101

Eqs. A:100 and A:101 are the RLS equations when a forgetting factor is used to
control the gain sequence. Thus, for a linear system and a quadratic distortion
function, the RILS equations (Eqs. A:92-A:96) are equivalent to the RLS equations.
In similar fashion, it can be shown that RILS is closely related to a number of other
recursive Gaus-Newton . Igorithms including the Kalman filter, sequential
regression, and stochastic-Newton optimization methods. 32,33 RILS has the
advantage, however, in that it is not restricted to a specific model structure and,
therefore, is suitable for neural network function estimation where the system
structure may not be known a priori.

I

I
S~32Ljung, L., and T. Sbderstr~m, Theory and Practice of Recursive Identification, MIT Press, Cambridge,

MA, 1983.

3 3 Widrow, B. and S.D. Steams, Adaptive Signal Processing, Prentice-Hall, Inc. Englewood Cliffs, NJ,
1985.

A-43

Active Control of a Multivariable System I

Via Polynomial Neural Networks

A.4 Relationship to Other Neural Network and Statistical Modeling Paradigms U
Many commonly used neural network and sittistical function estimation

techniques are subsumed by the methods presented here. A description of the most U
commonly employed neur.1-network paradigms using the terminology presented
in this section offers the following advantages: 3

(1) By understanding the relationships among popular neural network
paradigms, the appropriate paradigm may be selected for the modeling
task at hand.

(2) By understanding to what extent specific paradigms, including
polynomial neural networks (PNNs), implement the general function U
estimation techniques presented here, one may readily see where
improvements might be made to existing paradigms. 3

(3) By observing the close relationships among a variety of paradigms, one
can make more efficient use of software and hardware development
resources. For instance, it may be possible to implement a particular U
paradigm in special-purpose neural network hardware that has been
designed to implement a different, but related, paradigm.

This section uses the terminology of generalized neural-network-based
function estimation to describe some of the most common neural network and i
statistical modeling paradigms. Emphasis is given to paradigms that are designed to U
map data from a continuous-valued input space to a continuous-valued output
space, although some "unsupervised" paradigms (i.e., techniques that find natural
groupings in the input data space) will be mentioned. U

A.4.1 Group Method of Data Handling (GMDH)

As already discussed, the Group Method of Data Handling (GMDH) was
introduced in the late 1960s by A.G. Ivakhnenko, a Ukrainian cyberneticist.
Ivakhnenko found that in the modeling of complex systems it is often very difficult,
if not impossible, to develop a mathematical model and find all its parameters; even
where such models are achievable, as the models get sufficiently complex, they also
often begin to overfit the available data. GMDH solves this problem by "growing" a U
model from zero complexity to just-sufficiernt complexity.34

Most early GMDH work employed the following quadratic multinomial in
two inputs as the fundamental model building block: I

34 Farlow, Stanley J. "The GMDH Algorithm," Self-Organizing Methods in Modeling: GMDH Type

Algorithms, S.J. Farlow, Ed., Marcel Dekker, Inc., New York, Chap 1., 1984, pp. 1-24. 3
A -44

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

z = (0 + 01xi + 02xj + O3x2 + 04x• + O5xiXj A:102

I Eq. A:102 provides in (r-l'/2 potential structoral models (elements) for z, where m
is the number of input '.-.:iables. Although this function is nonlinear in the inputs,
it is linear in its par- .eters; its coefficients may therefore be obtained using linear
regression. After finding all the candidate two-input elements using the
input/output data, those that are best able to estimate the true output are retained,
the outputs of these elements become candidate inputs for subsequent layers of
procc,,ing, and the regression continues. Note that as each layer is added, the
degree of the resulting model increases by two. Any complete polynomial of any3 degree can be realized by suitable combinations of Eq. A:102.

GMDH model construction continues until an optimal level of complexity is
reached. To determine when to stop model construction, Ivakhnenko suggested
using cross-validation, i.e., dividing the data into separate training (fitting) and
evaluation data sets. Coefficients are determined by perforwning a linear regression
on the training data; however, at each step, the resulting -model is evaluated against
the independent set of observations. When the model performance on the
independent data ceases to improve, model evolution ceases. Many current
practitioners of neural-network-based modeling continue to employ this method of
determining when to terminate network training.

To implement GMDH using the principles described in this section, one
begins with nodal elements that implement Eq. A:102; such elements will have no
time delays and no nonlinear post-transformation, h(.). The outputs of these
elements will only feed forward (no feedback), and their basis function will be a
polynomial (Eq. A:6) with the following set of multi-indices

0 0
1 0

K2 0 A: 103

0 2

3 Because it uses unconstrained linear regression, GMDH employs the squared-
error distortion function of Eq. A:23 without additional penalty terms; thus, at each
stage in network construction, the coefficients may be found with a single ILS step
(Eq. A:54). GMDH builds the network structure one element at a time, but it does
not use the projection pursuit strategy. As mentioned above, GMDH stops model
construction when the network performance on independent data ceases to
improve.

3 A-45

Active Control of a Multivariable System I
Via Polynomial Neural Networks

GMDH has been criticized because of the "enormous number of large matrix I
calculations [that] must be carried out.,'35 Although it is true that a large number of
matrix calculations are required, it is also true that at any given step only six
parameters need to be determined. Thus, the "curse of dimensionality," which is
usually the prime cause of long training times, is essentially avoided by the GMDH
algorithm. The number of computations required to fit parameters optimally is
O(mn 2) + O(n 3), where m is the number of independent observations, and n is the
number of coefficients. 36 Clearly, for any sizeable number of inputs and models,
GMDH is more efficient computationally than other regression techniques.

Consider an example: Assume one wants to fit a fourth-order polynomial
(multinomial) with ten inputs. This high-order model will contain over 1,000
terms andwill require O(109) iterations to arrive at a unique solution. A two-layer
(fourth-order) GMDH network, on the other hand, requires only 0(105)
computations if ten elements from the first layer are retained for use in subsequent l
layers or, at the most, 0(106) computations if all 45 elements from the first layer are
retained. Even in the worst case, GMDH is over three orders of magnitude faster
than brute-force high-order modeling. This numerical example is confirmed by the
authors" experience, in which GMDH algorithms typically have been found to be
orders of magnitude faster than MLPs. 3

An additional advantage of GMDH is that the performance surface for a
single nodal element is always quadratic; thus, the ccefficients on any nodal element i
can be optimized globally, in the least-squares sense, in a single iteration. U

A disadvantage of GMDH is the fact that network construction is "heuristic"
in that a definitive statistical theory of GMDH does not yet exist; however, there is
general agreement that GMDH function estimation generally yields accurate and
reasonably robust results. 37 In many other neural network paradigms (e.g., MLP), 3
however, network structure is assigned arbitrarily by the analyst, or refined by the
analyst using a trial and error approach. Another disadvantage sometimes cited is
the fact that polynomials can lead to erratic fits outside the training region. One can
reduce these effects, however, by incorporating a post-transformation, h(.), that
limits the range of element outputs. A final disadvantage to the GMDH algorithm
is the "corruption" of the independent test set by using it as part of the training i
procedure; a preferable method for determining when a network has reached a i

level of just-sufficient complexity is to add an information-theoretic complexity
penalty term to the distortion function (Section A.3.2).

35Hecht-Nielsen, R., Neurocomputing, Addison-Wesley Publ. Co., Reading, MA, 1989.

36 Golub, G.H. and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore,
1983. i
3 7Hecht-Nielson, R., 1989, op. cit. 3

A-46

I
Active Control of a Multivanable Systemi ~Via Polynomial Neurald Networks

A.4.2 Multi-Layer Perceptron (MLP)

SThe multi-layer perceptron (MLP) trained via the backward-error propagation
(BP) algorithm is currently the most commonly used neural network paradigm. As
such, there are many variants on the algorithm (fully or partially conn,:cted,
Reduced Coloumb Energy (RCE) optimization, etc.); however, here, we shall deal
only with the standard form of the algorithm.

The fundamental nodal element for the MLP was originally proposed by
Rosenblatt in 1958.38 The perceptron element implements the following nonlinear
transformation:

Iz = h e0 + oixi A:104

where D is the total number of inputs to the nodal element, and h(.) is the
nonlinear post transformation. Rosenblatt's original work used the following step
nonlinearity for this post transformation:

h(z) 1 0 A:1050 z <0

With the emergence of gradient-based optimization techniques in the 1960s,39
however, the hard limiter, with a discontinuity at z=O, could not be used. Therefore,
researchers substituted a continuously-differentiable approximation to Eq. A:105.
The most popular choice was the sigmoidal function.

I 1~~
h(z) = 1 + ez A:106

n where y, the sigmoid gain, determines the steepness of the transition region; as the
magnitude of y increases, Eq. A:106 approaches the hard limiter of Eq. A:105. Often, y
is set to unity.

The sigmoidal element of Eq. A:104 can be implemented by a polynomial
basis function (Eq. A:6) composed with the sigmoidal nonlinearity, h(z), of Eq. A:106.
Since the polynomial basis function is linear, the K matrix (J x D) is:I
3 8Rosenblatt, F., "The perceptron: A probabilistic model for information storage and organization in the
brain," Psychological Review, 1958, 65:386-408.

3 9 Widrow, B. and M.E. Hoff, "Adaptive switching circuits," 2960 IRE WESCON Convention Record,
New York, 1960, pp. 96-104.

3 A-47

Active Control of a Multivariable System n
Via Polynomial Neural Networks

0 0 ... 0
1 0 ... 0 i

K 0 1 ... 0 A:107

0 0 ... 1 i

If the network is fully connected, the number of inputs to the node, D, is the
same as the number of outputs from the previous layer, and the polynomial
expansion has D+1 terms. Note that whereas GMDH reduces its complexity by -
limiting the number of inputs to any given element, MLP reduces its complexity by 3
limiting the order of the polynomial expansion to one (i.e., it is linear). Note that
the generalized network nodal element of Fig. A.4 can handle either of these *

scenarios.

By far the most common method for training MLis is the backward-error *
propagation (BP) algorithm, traceable to Robbins and Monroe. 40 The first complete 3
description of BP was provided by Werbos; 41 however BP was not popularized as a
useful procedure until 1986.42 BP is an iterative, gradient-based, least-mean squares
(LMS) technique that tunes all the network weights simultaneously in an attempt to 3
minimize the mean-squared error of the network output.

It can be shown that BP is the special case of the ILS optimization technique 3
when the squared-error distortion function is used, all second-derivative
information is ignored (see Section A.3.4.2), the network structure is fixed, and all

coefficients are globally optimized from some randomly initialized starting point. 1

The first derivative of the squared-error distortion function (Eq. A:23) with *
respect to the current network output, s, is given by

Dd
S- T -2(y - s) -2e A:108

where y is the desired output and e is the error between the desired output and the
network output, s. Substituting Eq. A:76 into Eqs. A:62 - A:64, one obtains 3

40Robbins, H. and Monro, S., "A stochastic approximation method," Annals of Math. Stat., 22, 1951,
400-407.

41Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences,
Ph.D. thesis, Harvard University Committee on Applied Mathematics, Nov. 1974.

42Rumelhart, D.E., G.E. Hinton, and R.J. Williams, 1986, op. cit. 3
A-48

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

J(where J) =J() + b(a) A: 109

| 2NI1b = -Nr e1 n0

I and Vf is the gradient of the network output with respect to the coefficient vector, Q.
i And

An new = bOold - ID
A:111

where Ig is the size of the step at each iteration.

As mentioned above, the MLP neural network 'assumes a fixed, pre-
determined network structure; however, once this structure is fixed, BP optimizes
the MLP by using techniques similar to those described for ILS global optimization
of a neural network (see Section A.3.4.5). In fact, the global optimization algorithm
described in Section A.3.4.4 "backpropagates" gradient information through the
network and could be described as a backward-error-propagation algorithm. Such
terminology was intentionally avoided in Section A.3.4.5, because BP usually refers
to the specific case of linear polynomial expansions, sigmoidal post-transformations,
and gradient-based LMS optimization of the squared-error distortion function,
whereas the ILS global optimization strategy is not restricted in any of these areas.

A.4.3 Radial Basis Function (RBF) Networks

i After MLPs, radial basis function networks (RBFs) are one of the most
popular and successful neural network paradigms. 43 The RBF network contains two
layers (not counting the input layer). The hidden-layer elements implement a
transformation that produces an output only when the input vector falls within a
specific region of the data space. The term "basis function" in the paradigm name
refers to this transformation. The output layer consists of a single element that
constructs a weighted sum of the hidden-layer outputs.

The most commonly used hidden-layer transformation is the Gaussian
kernel function of the form:

I

43 Hush D.R. and B.G. Home, "Progress in supervised neural networks: What's new since Lippmann?,"
IEEE Signal Processing Magazine, Jan. 1993.

A-49

Active Control of a Multivariable System H
Via Polynomial Neural Networks

z = exp(- k-c A:112

where w and a are the parameters of the node (we use the notation w and a for now

because alternative coefficients, .0, will be specified later). Note that the node
outputs are in the range from zero to one, and the closer the input vector is tc the
center of the Gaussian function (as defined by w) the larger the response of the node. *
The radial symmetry of Eq. A:112 is what gives RBFs their name.

The RBF output layer is simply a linear combination of the outputs of the -
RBF nodal elements on the hidden layer.

y = flTz A:113

Eq. A:113 may be implemented using a polynomial basis fvinction and the same K
matrix that is used for MLPs (Eq. A:107).

The most straightforward way to implement the hidden RBF elements (Eq.
A:112) using generalized nodal elements is to use a small network for each hidden- *
layer transformation. Such a network is shown in Fig. A.12.

TBF NdalElemn

X_

12 I

Figure A.12: A Gaussian Kernel Implemented using Multiple 3
Generalized Nodal Elements

In Fig. A.12, the nodes on the first layer, 11 ... ln, implement a transformation 3
of the form:

z = 0O+ O8x A:114 I
which can be accomplished using a polynomial basis function (Eq. A:6) and the I
following K matrix:

I
A-50

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

1K [] A:115

I These first-layer of nodes have no nonlinear post-transformation, h(.). The second-
layer node, s, in Fig. A.12 then performs the following transformation on its input
vector, I-

i1 2
A:116

s = exp - 1 22
2a 2

Eq. A:116 may be implemented using a nodal element that contains a polynomial
power series expansion with a K matrix

I F 0 ... 0
0 2 ... 0

K j A:117
I0 0 .*. 2

I and a nonlinear post-transformation:

h(z) = exp 2a2 A:118

where z is the output of the series expansion implemented by Eq. A:117. Note that
for these nodes to implement Eq. A:112 exactly, the following restrictions should be
placed on the nodal elements:

Layer 1

I00 = -w

() = 1.0 A:119

I Layer 2

io. = 1.0 Vi

Also note that the post transformation Eq. A:118 contains a parameter, ca, and on-

line supervised updating will require the derivative of h(z) with respect to a. The

parameter, ;, may be removed from the post-transformation by redefining the
coefficients on the first layer:

I A-51

Active Control of a Multivariable System -

Via Polynomial Neural Networks

Layer 1 1
00 - A:120

a

0 1 _ 1 .

so that

h(z) = exp -2 A:121

Now all the coefficients have been moved to the first layer of Fig. A.12, and it I
is easier to interpret the tasks of the specific nodal elements. In short, the first layer
computes distance measures between an input exemplar, &_, and some pre- I
determined vector, where each nodal element measures the distance along a single
axis. The second layer of Fig. A.12 (Eq. A:121) converts the distances along each axis
into a single Euclidean distance measure (L2 norm) between the input vector and 3
the pre-determined vector, w-. The nonlinearity of Eq. A:121 then converts this
distance measure into a probability of membership in a Gaussian cluster (i.e., high
values when the vectors are close).

Dividing the RBF into two layers of generalized nodal elements provides
insight into the nature of the RBF. Often, regardless of the network paradigm, it is
useful to normalize all the input data; this can be done using an input layer
consisting of nodes having the same structure as the input nodes of Fig. A.12 using

00 = P A:122

and

U

1.0 Ie1 =- A: 123
(Ti

where i corresponds to a particular input variable, xi ; and p-i and ai are the mean 1
and standard deviation of that input variable. Thus, a normalizing node outputs a
measure of the distance between the input data point, xi, and its mean measured in
units of standard deviation. Note that these coefficients are determined prior to
network training and are based solely on the statistical nature of the training
database.

In an RBF network, the parameters on the input layer serve the same
purpose; only, instead of measuring the distance between an input data point, xi,
and the mean of the entire input data set, they measure the distance between the
input data point and the mean of some cluster in the data space. This distance is
measured in units of standard deviation of the cluster. Note that to perform

A-52

I
AcUve Contro! ot a Multivariable System

Via Polynomial Neural Networks

normalization, n input nodes are needed for the n input features, but to compute

cluster distances for m dusters, n x m input nodes are required because each duster
has a different set of statistics.

As with normalizing input nodes, the parameters of the RBF input nodes are
determined prior to network training. Typically, this is accomplished using an
unsupervised clustering algorithm, such as K-means, to determine the statistics of

the naturally occurring clusters in the data.

This interpretation of the RBF hidden layers suggests some potential
improvements. As noted above, RBF networks are radially symmetric; thus, for a
given Gaussian kernel, the value of a is fixed for all axes. However, if the Gaussian
kernel is intended to describe naturally occurring clusters in the data space, it is
conceivable, and indeed probable, that these clusters will have different standard
deviations along each feature axis. In this case, a more accurate distance measure
will be one that measures the distances along each axis in units of the standard
deviation of the cluster along that axis.

Fig. A.13 illustrates the distinction between radial and elliptical distance
measures. If the shaded region of the figure represents a naturally occurring cluster,3 then the circle in Fig. A.13 with radius a 0 represents the one-sigma boundary for a
radial cluster in the data space. It is obvious from the figure that the point, A, lies

within this boundary. If however, a1 and C2 are used to define the one-sigma
boundary for an elliptical cluster, then point A lies well outside the cluster; the latter
representation is thus more accurate.

X2
0/ 2

IX

I Figure A.13: Measuring Cluster Distances

Generalized nodal elements can easily implement elliptical data clusters if the
constraints in Eq. A:120 are relaxed, and each input node of Fig. A.12 is allowed to

use a different value of ca. The resulting network is an elliptical basis function (EBF)3 network and it implements the following transformation:

z = exp w)Tkpl(X ML) A:124

3 A-53

Active Control of a Multivariable System H
Via Polynomial Neural Networks

where I

S0o ... 0
0 02 ... 0_ 2 A: 125 •

0 0 .. o

The distance measures computed by the input nodes are known as
standardized Euclidean distances or "Karl Pearson distances." Where desirable, U
other distance measures may be used, such as the Mahalanobis distance, which
results in an EBF kernel of the form

z _ (A(_ W)T -1(_- w) A:126

where I-1 is the normalization matrix for the kernel, and X is the covariance matrix
for the input data. Note that the expression in Eq. A:126 contains the generalized *
Fisher linear discriminant function

(x- .)T_.-(x - w) A:127

which itself constitutes a classical measure used in linear classification.

We have already mentioned that the coefficients on the input layer *
correspond to the statistics of naturally occurring data clusters and are found off-line n

via data analysis. Once the RBF kernels have been set, the tuning of the output
layer consists of finding the best linear mapping between the kernel outputs and the
desired network output(s). Because the output layer is linear, a single ILS search
step will globally optimize the output layer coefficients. However, despite its *
inferiority, LMS is frequently used.

Once the coefficients on the output layer have been determined, the RBF
network may be further enhanced by globally optimizing all layers of the network
using ILS. Thus, when global optimization is used, the hidden-layer parameters are n

allowed to vary from their initialized values to form new "data clusters" that serve
even better as basis functions for the classification task at hand. This global *
optimization method is often referred to as adaptive kernel classification (AKC).44 I

4 4 Ghosh, J., L. Deuser, and S. Beck, "A neural network based hybrid system for detection, I
characterization and classification of short-duration oceanic signals," in IEEE J. of Oceanic Engineering.
Vol. 17, No. 4, Oct. 1992.

A-54

Active Control of a Multivariable System
n via Polynomial Neural Networks

A.4.4 Pi-Sigma and Other Higher-Order Networks

Higher-order networks are networks that utilize polynomial series
expansions of higher order than the linear expansions used by MLPs. In this regard,
GMDH is often considered a higher-order network, because each nodal element
implements the second-degree polynomial expansion of Eq. A:102. However, as
mentioned in Section A.4.1, GMDH compensates for the higher-order series
expansion by limiting the number of inputs to any given nodal element and by
limiting the total number of nodal elements.

Pi-Sigma networks (PSNs) are another higher-order network paradigm in
current use.4 5 PSNs get their name from the fact that the network output is a
product of sums of the input variables. Typically, a PSN contains two layers (not
counting the input layer). Each element in the single hidden layer implements theI following transformation:

D

z =6 0 +1oixi A:128

where D is the number of inputs to the network. Generalized nodal elements can
implement Eq. A:128 with a linear polynomial expansion (Eq. A:107) and no post-
transformation, h(.).

The output layer of a PSN computes

s = h(zi A:129

where 1 is the number of nodal elements on layer one, and h(-) is the sigmoidal
transformation given by Eq. A:106. Once again, this element may be implemented
by using a polynomial expansion; however, in this case, the polynomial consists of a
single cross term and can be implemented by the following 1 x IK matrix:

K = [1 1 1 11 A:130

A hybrid GMDH/LMS approach is usually used to train PSNs. The network
structure is fixed with a small number (usually one or two) hidden-layer elements
and tuned using the LMS global optimization strategy described in Section A.4.2
(backward-error propagation when there are no hidden layers). However, once the
coefficients have converged, an additional element is added to the hidden layer and
the coefficients of each element are re-tuned in an asynchronous fashion (i.e., onlyI
4 5 Shin, Y. and J. Ghosh, "The pi-sigma network: An efficient higher-order network for pattern
classification and function approximation," in Proc. Joint Conf. Neural Networks, July 1991, pp. 1: 13-18.

A-55

Active Control of a Multivariable System I
Via Polynomial Neural Networks

the parameters of a single element are optimized at a given time; this tends to yield U
more favorable results than a global optimization). At each step, performance is
tested on independent Jata (as with GMDH) and network growth is stopped when
overfitting begins to occurs. The order of the PSN is equal to the number of
elements on the hidden layer.

A.5 Summary I

This appendix has provided a way of viewing generalized function
estimation in a neural network context. The intent is to provide a paradigm that is
sufficiently general to cover many estimation techniques currently in use, including
GMDH, MLPs, RBFs, static and dynamic polynomial neural networks (PNNs), and *
many of the estimation techniques popular within the statistics community.

I
I
I
I
I
I
I
I
I
I
I
I

A-56I

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

Appendix B: A Batch "Filtered-X" Algorithm Using Iterative Least
Squares

This appendix illustrates how an iterative least squares (ILS), algorithm can be
used to find controller coefficients. It will be shown that for a linear plant and
controller, propagating gradient information through the plant is equivalent to pre-
filtering the input signal by the plant and training the controller to model the
disturbance.

Fig. B.1 illustrates a typical control problem, where the goal of adaptation is to
cancel the disturbance, d(t), by adjusting the coefficients in the controller.

Adapt

d(t)

I+
x(t) Ut (

Plan Conrole

Figure B.1: Block Diagram of Typical Adaptive Control Problem

I A suitable ILS optimization method for linear and nonlinear plants and/or
controllers is described in Appendix A, Eqs. A:50-A:54. In this method, the3 controller coefficients, I are adjusted by AO where:

iA0- A•1b B:1

and

I 1N i N
A N- A(t) = I (Vy(t)Q) (V2dy(,)) (Vy(t)•)T B:2

I t=1 t=1

and

*I 1 N
b = •" (Vd~y"t) Vy(t)• B:3

and where:

N is the number of samples in the data base;

3 B-1

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

Vy(t)- is the gradient of the plant output with respect to the controller

coefficients, I-

Vdy(t) is the gradient of the loss function with respect to the system output;

V2dy(t) is the Hessian of the loss function with respect to the system output;
and

For the general (i.e., linear or nonlinear) case, Vy(t), may be calculated using
the chain rule: a

Vy(t)Q = y0 -_ DO au BA

Eq. B:4 propagates the gradient of the controller output through the plant
model. If the controller is a linear FIR filter, then

p-• = au(t)3 Du(t-1) au(t-R)

w x(t) x(t-2) .] .x(t-R)x(t-1) x(t-2)I

-x(t-Q) x(t-Q-R)-

where Q and R are the number of terms in the controller and plant model,
respectively.

If the plant model is also a linear FIR filter

ay(t) F Dy(t) Dy(t) ay(t) 1au - Du(t)' au(t-R), "'"u(t-1)I

S[Pp P2, ... ,R]R B:6

where P is the set of plant model coefficients.

I

B3-2I

Active Control of a MulUvariable Svytem
Via Polynomial Neural Networks

Now, from Eq. B:4

P1 x(t) + P2 x(t-1) + .. + PR x(t-R) 1
&y(t) Pi x(t-1) + P2 x(t-2) + "'" + PR x(t-R-1)

B:7

P1 x(t-Q) + P, x(t-Q-1) + + P x(t-Q-R) J
The terms in the matrix ay(t)/D9. are easily recognized as the input x(t) filtered

by the plant model, P. Let

z(t) = x(t) * P B:8

Thus

rz (t)1
ayt z(t-1)

Vy(t)fl = 3y_ - [B:9

z(t-Q)

Notice that the same result could have been achieved by applying the principle of
superposition to the linear system in Fig. B.1; that is, switching the order of the plant
and the controller. It is important to remember that for nonlinear systems, plant
and control models do not commute and Eq. B:4 must be used to compute the
required gradients.

Now, assume the objective is to minimize the sum of the squared error, E(t):

Objective (t) = E2(t) = [d(t) + y(t) I2 B:10

Then

Vdy(t) =2 E(t) B:11

and

V2 dy(t) =2 B:12

Eqs. B:9, B:11, and B:12 may now be used to calculate A(t) and k(t) in Eqs. B:2 and B:3:

B-3

Active Control of a Multivariable Systemr

Via Polynomial Neural Networks

"z(t).z(t) z(t)-z(t-1) z(t) -z(t-Q)
z(t-1).z(t)

A(t) = 2 B:13

L z(t-Q), z(t) z(t-Q) z(t-Q)

and 3
rz(t-)

b(t) = 2 E(t) :: B: 14

z(t-Q)I

So, the proposed optimization technique is as follows:

Step 1: Filter the input signal, x(t), by the plant model, P, to get the "filtered-
X" signal, z(t).

Step 2: Calculate

2N N
b= i e(t)zý(t) B:15

where: 3
z(t) -- O [t)z(t-1) ... z(t-Q)] B:16

Step 3: If LMS is desired, set A_ - b and skip to Step 6.

Step 4: Calculate

1 N

A K IN A(t) + X.diagA(t) B:17 3
t=1

where A(t) is defined by Eq. B: 13.

Step 5: Solve the set of equations

AA_ = -t to find Aa B:18 3
Step6: eNew = 001d + aA9 B::19

where x is the learning rate. I

I
B-4

I
Active Cmonuol of a Multivanable Sý.stctr

Via Polynomial Neural Networks

Special Cases:

Appendix A illustrates the relationship between ILS and a number of
commonly used search algorithms. Table B.1 summarizes these results.

Table B.A: Adaptation Algorithms that can be Simulated by ILS

ILS Parameter Settines Adaptation Algorithm
A = I by definition and a = rn LMS (Least Means Squared)
T = 0 and a = I BLS (Batch Least Squares)
X > 0 and a = I LM (Levenberg-Marquart)

Note that for linear plants and controllers, the batch least squares method will find
the maximum-likelihood coefficients in a single iteration.

B-5

I
Active Control of a Multivariable System

Via Polynomial Neural Networks

Appendix C: Equivalence of Two Methods for Eliminating Secondary
Feedback Effects

Acoutic feedback, or actuator coupling, effects can cause instability in a control
system and can make a linear system appear to be nonlinear. Coupling effects can be
successfully compensated by using a linear or nonlinear infinite impulse response
IIR implementation for the controller in place of a finite impulse response (FIR)
implementation , as shown in Fig. C.I. The poles in the IIR filter can compensate
for those introduced by secondary feedback. Another, mathematically equivalent,
method can be used to cancel these poles when an IIR filter cannot be implemented
directly due, for example, to hardware limitations. This method involves modeling
the coupling transfer function with an FIR filter and then using the model to
subtract the secondary coupling from the controller input signal before the signal
reaches the controller. Fig. C.2 shows the configuration when two FIR filters are
used.

(+ Coupling

S..................,,,,-,...y (t)

S~~x(t) =..[Controller

(IIR Filter)

Figure C.1: 11R Controller that Compensates for Secondary Feedback

The IIR filter output can be computed using the following equation:

y(t) = a0 x(t) + a, x(t-1) + a2 x(t-2) + ... + b, y(t-1) + b2 y(t-2) + ... C:1

where the feedforward coefficients are represented by the ais and the feedback
coefficients by the bis.

With the two FIR filter method, the first FIR filter (controller) output is
computed as

y(t) = a0 z(t) + a, z(t-1) + a2 z(t-2) + ... C:2

C-1

Active Control of a Multivariable System
Via Polynomial Neural Networks

+ qt Coupling
•,/- Plant

x (t)

q]t Model y(t)I

(2nd FIR Fil~ter) ! I
Z~t) Controller-I/st FRFilter)l

---- -... ---.-----...........- - 7-j

Figure C.2: Two FIR Filter Method of Compensating for Secondary

Feedback

where

z(t) = x(t) - q(t). C:3

The second FIR filter (coupling model) output is computed as

q(t) = cI y(t-1) + c2 y(t-2) + ... C:4

C.1: Equivalency Proof

The two FIR filters method of compensating for coupling effects can be shown
to be equivalent mathematically to the single IIR controller method. Substituting

Eq. 0:3 into Eq. C:2 gives

y(t) = a0 [x(t) - q(t)] + aI [x(t-1) - q(t-1)] + ... C:5

and substituting Eq. C:4 into Eq. C:5 results in

y(t) = ao { x(t) - [c ,y(t-1) + c2 y(t-2) +...} + a1 Ix(t-1) - [c y(t-2)+ 3
c2 y(t-3) +...} + ... C:6

Collecting terms yields 3
y(t) = ao x(t) + a, x(t-1) + ... - ao c y(t-1) - [aoc 2 + a, cl] y(t-2) + ... C:7

Letting

b= ao cl, C:8a 3
C-2

m
Active Control of a Multivwiable System

Via Polynomial Neural Networks

b12 -(a c2 + ac, ... C:8b

it can be seen that

y(t) = ao x(t) + aI x(t-1) + ... + bI y(t-1) + b2 y(t-2) + ... C:9

which is the same as Eq. C:1 which describes the IIR filter. It is further seen that the
bi coefficients represent the convolution of the ai and ci coefficients.

C-3

I

Active Control of a Multivariable System
Via Polynomial Neural Networks

Appendix D: Interdependence of Controller and Secondary Feedback
Compensation Filter Scalings

The combined controller/secondary feedback compensation filter illustrated
in Fig. D.1, which was implemented using two fixed-point digital signal processors
(DSPs), processes digital sensor data that has been converted from analog form and
which, subsequent to processing, must be reconverted to analog form for the
purpose of driving the actuators. To avoid losing precision in the DSP
computations, it is critical that the numerical coefficients in the controller and
compensation filter not be too small or too large. Using the NRL DSP hareware that
was available for the experiments documented herein, it was necessary to scale all
DSP coefficients so that the largest coefficient value in both the controller and
secondary feedback compensation filter were in the range ±1. Achieving this scaling
generally required multiplying the controller and the secondary feedback
compensation filter coefficients by different scaling factors.

Sensor Input + Controller To D/A Converter
from i •and, subsequently,
A/D Converter c I Actuation

DSP Processing

Figure D.1: Controller and Secondary Feedback Compensation Filter
Processing

The overall gain of the DSP processing illustrated in Fig. D.1 can be written as

1
GAIN = Gc 1 + Gc Geeu D:1

where G, is the unscaled controller gain and Geeu the unscaled secondary feedback
compensation filter gain. From Eq. D:1 it can be seen that if the transfer function
dynamics are to remain unchanged, scaling changes in G, and Geeu cannot be made
independently; indeed, they must be made inversely. Because of the I + GC GCO
term in the denominator of Eq. D:1, if GC is multiplied by some gain, say K, G.e.
must then be divided by the same gain K. As a consequence, the desired controller
coefficients and the secondary feedback compensation filter coefficients are generally
not both achievable simultaneously. Therefore some compromise in the
coefficients scaling used in .he laboratory experiments was necessary, resulting in
some sacrifice in the performance realized.

D-1

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

Note that, as shown in Fig. D.1 and by Eq. D:1, subsequent to DSP processing, it

is necessary to correct for any gain changes made to Gc (e.g., K Ge), by introducing a

gain (e.g., 1/K) subsequent to DSP processing.

I
I
I
I
I
I

I

I
I
I
I

I
I

D-2

I
Active Control of a Multivarable System

Via Polynomial Neural Networks

Appendix E: Solution of an Ill-Conditioned System of Network
Equations

When training an artificial neural network to model a linear system, any
least-squares adaptation algorithm can be used to find optimal values for the
coefficients as the performance surface is unimodal.

The general least-squares approach to solving a system of linear equations
(i.e., finding network coeffients) is to solve A x = b- for x, where A is the input data
matrix, x is the set coefficients to be found, and t. is the output vector.

Singular value decomposition (SVD) of a data matrix can be used to identify
potential instabilities in the solution of this system of equations. This is done by
solving for matrices _,W_,W and V in the decomposition A = U W VT, where A is the
Im x n data matrix (m > n), U is an m x n column-orthogonal. matrix (i.e., U U

W is an n x n diagonal matrix with positive or zero elements, and V is an n x n
orthogonal matrix (i.e., V VT = VT V = I,). The diagonal elements of W wi, are
known as the singular values of matrix A.

As the name implies, the singular values of matrix A can be used to
determine if the matrix is singular or ill-conditioned. The ratio of the largest w, to
the smallest wiis called the condition number. If one or more wiare found to be
zero, the condition number is infinite and the A matrix is singular. If the condition
number is too large, the data has co-linearities and the A matrix is ill-conditioned.
This is a problem because it can be difficult to model robustly data having co-
linearities since small changes in the model inputs cause large changes in the model
outputs.

As an example, let

1 .00 0.001

SA= 11.00 0.10 ,
-L0.95 0.10

representing a system with three equations and two unknowns, one for each input.I Each input (and each element of the A matrix) is multiplied by a single coefficient,
x, or x2. Note that cross-terms and higher powers are not involved since the system

* is linear.

Analytically, it can be seen that the A matrix is composed of co-linear vectors
(i.e., observations). The sum of co-linear vectors is well determined, whereas the
difference of co-linear vectors is not. Each observation vector can be defined as

= (1.00, 0.00)

* E-1

I
Active Control of a Multivariable System
Via Polynomial Neural Networks

b = (1.00, 0.10)

= (0.95, 0.10).

Vector Q is almost identical to vector t., as both form an angle of approximately six
degrees with vector a. The angle between the vector sums (A + b) and (.i + r) is about 3
0.07 degrees, whereas the angle between the vector differences 02-a) and (.-c) is
greater than 26 degrees. Thus, A contains multiple observations that provide
essentially the same information.

Performing a SVD on A AT also shows that A is composed of co-linear
vectors. The computed singular values are

wI = 2.9153

w2 = 0.0069,

which result in the large condition number of 422.5.

However, an A matrix is not neccessarily composed of co-linear vectors
merely because two observations are very close to one another. For example,
redefine

A= 1 0.00 1.00
L 0.00 0.95

where

I

a = (1.00, 0.00)

= (0.00, 1.00)

= (0.00, 0.95). !

Even though vectors b and r appear to be very similar, A can be shown I
analytically to be composed of vectors that are not co-linear. The angle between the
vector sums (a + b) and (a + c) is about 1.5 degrees, which is approximately equal to
the angle between the vector differences (12 - a) and (c - a).

The SVD of A AT confirms that A is not made up of co-linear vectors:

WI = 1.0000

w 2 = 1.9025,

which yields a condition number of 1.9025.

E-2

Active Control of a Mulivariable Sy•tein
Via Polynomial Neural Networks

If the A matrix is found to be singular or ill-conditioned, a network can still
be trained by removing the terms containing the coefficients that correspond to the
small singular values. For example, if singular values w 3, w5, and w1 2 of a system of
equations are found to be small or zero, the terms containing the coefficients X3, x5 ,
and X12 would be removed from the network structure.

Note that if matrix A is symmetric and positive definite, the singular values
are the eigenvalues of A and the matrices U and V both contain complete sets of
eigenvectors.

E-3

