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INTRODUCTION

Seismic wave attenuation in rocks is a very important parameter not only because 1t affects
the seismic wave propagation through the earth, but also because it is a sensitive indicator
of rock propertics under various conditions. The main purpose of measuring attenuation in
the laboratory is to use the data to infer rock properties at in-sifu scales and seismic {requen-
cies. Unfortunately, accurate measurements of intrinsic attenuation are difficult to obtain
it both the laboratory and field, because other cffects. like geometrical spreading. Levndary
retlections, also aflect waveform amplitudes. In the laboratory, attenuation is usually mea-
<ured using ultrasonic pulse propagation and resonant bar techniques. For the propagation
of stress pulses through rock samples, attenuation can be estimated from the rise-time of the
pulse on-set (Blair, 1982) or from using the spectral ratio technique (Tokso6z et al.. 1979).
However. as pointed out by Liu (1988), the rise time is strongly affected by the source time
function. The conversion from rise time to attenuation also assumes a specific attenuation
model (e.g., constant-Q model, Kjartansson, 1979), which may become invalid in the pres-
ence of fluid saturation (Jones, 1986). The spectral ratio method derives attenuation from
the slope of a line fitted to the logarithmic ratio of the spectra of two waveforms. Because
waveforms may be affected by reflections from sample boundaries, high frequency pulses (~
1 MHz) and samples with large lateral dimensions arc used in the measurements (Toksdz et.
al., 1979). Even so, signals may still have to be truncated to remove extra arrivals which
may significantly affect the wave spectra. Moreover, the diffraction effects of the transducer
sonrce may need to be corrected for in such measurements (Tang et al., 1990). The rescnant
bar technique utilizes the resonance of a vibrating cylindrical rod. The resonant frequency
of the fundamental mode usually occurs between 3~10 kHz. depending on the length of the
rod. Because of the very different frequency ranges of the ultrasonic and resonant techniques,
attenuations obtained from the two techniques can be significantly different (Blair. 1990).

In addition, the resonant bar measurement is difficult to perform under pressure. whereas




the palee propagation method is most snited for vse i pressare vessels T s desivahle v
Lave a technigue that measures attenuation in the low to medinm frequency range iarde
to understand attenuation mechanisms in rocks as a function of wavelengths and of in-~:tu
conditions. The purpose of this study is to develop a technique that combines the advantages
of the two methods and operates in the low to medium frequency ranges.

A direct way of reducing the measurement frequency in the pulse propagation method s
by nsing low frequency sources and increasing the propagation length between source and
recciver transducers. However. because of the beam spreading of the transducer radiation.
1he lateral dimension of the sainple must be increased proportionally to aveid the contani-
ivation of the direct signal by the reflections from lateral boundaries. This results in a
large sample volume that is impractical for laboratory measurements. This problem can be
avoided by using the eylinder-shaped sample as used in the resonant bar method. ‘Fhe
of the bar geometry in the pulse propagation mcthod has two major advantages. First, the
sample length can be chosen according the wavelength without having to increase lateral
dimensions. Thus it is suited for use in pressure vessels and with saturated samples. Second.
the fundamental mode in a cylindrical bar is a low frequency wave phenomenon whose prop-
agation and dispersion characteristics are well understood and can be accurately modeled.
Because the dispersion effects of the waveguide can distort the source signal into a long wave
train (particularly at high frequencies), the spectral ratio technique is not suitable for this
application. This method is most accurate with short duration signals. To overcome this.
we have developed a waveform inversion technique that needs only the first few cyeles of the
waveforins to obtain rehable estimates of attenuation.

In the following studies. the propagation characteristics of the fundamental wave mode in
a cyviindrical bar will be discussed. Then the procedure for the waveform inversion technigue
will be formulated. Finally, the procedure is applied to measure attenuation in a P\'C
waterial and in Sierra White granite. The results for the granite arc compared with those

obtained using other techniques.




PROPAGATION OF THE FUNDAMENTAL WAVE MODE IN
A CYLINDRICAL BAR

I« thin evlindrical vod consisting of an clastic material, propagation of extensiornai waves

i+ aoverned by the Pochhammer equation (Kolsky. 1953)
ifa)om® 4 kY Jy(la)y(ma) = (m? — kD2 Jo(la)Jy(ma) — 4k*hndi{la)do(ma) =0 . 1)

where a is bar radius, J, (n = 0,1) is the nth order Bessel function, & is the extensicral

wavemnnmber, and
I =Ju?/VE—-k* and m = \[w?[V}? —k?

are radial compressional and shear wavenumbers, V, and V; are compressional and shear
velocities respectively, and w is angular frequency. Although Eq. (1) gives rise to a number
of extensional wave modes in the bar (Kolsky, 1953), the fundamental mode is of the most
interest to us. At very low frequencies (w — 0), the velocity of this mode apprcaches
1, = \/E_/p, where F is the Young’s modulus and p is the density of the bar. With increasing
frequency, the phase velocity of the mode decreases. Because of the change of velocity with
frequency (i.e., velocity dispersion), the waveform of the mode will be distorted as the wave
propagates along the bar. To demonstrate this effect, we consider the spectrum of the

propagating wave at the distance z away from the source
W(w, z) = S(w) exp(ikz) . 12)

where S(w) is the spectrum of the transducer source. After solving Eq. (1). Eq. (2) can
be transformed into time domain to obtain waveforms at various distances r. [igure ia
shows the phase velocity (dashed curve marked ‘phase’. obtained as w/k) and group velocity
(dashed curve marked ‘group’. obtained as dw/dk), as well as the amplitude of the scurce

spectrum S(w) (solid curve) as functions of frequency for this example. The results are calcu-

Lited for a bar of 1 em radius with Vi 4272 m/s and V) =2 2506 m/<. The source is a Ricker
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source (Ricker, 1953) centered around 70 kllz Figure 11 shows the synthetic waveforins at
the distances 2=0. 10, 20, and 30 cm from the source. Because the wave spectrum covers
the frequency range where significaut velocity dispersion occurs. the waveform is gradualiy
distorted into a long wave train as it propagates along the bar. In addition, as indicated
i Figure 1h, an Airy phase with very slow group velocity is developed. which is associated
with the minimum on the group velocity curve (Figure la). For signals with such a loug
duration. the spectral method for attenuation estimation is not applicable. The comyplate
wave spectrum may not be recovered by cither truncating the signal or taking the complete
wave train. The foriner approach removes a portion of the wave energy, while the latter,
when mcasuring a sample of finite size, may include reflections that bounce back and forth
between the source and receiver. One may also try to estimate attenuation by measuring the
amplitude decay of the first arrival with distance. However, because of the dispersion effect.
tlic wave amplitude decreases with distance even in the absence of intrinsic attenuation as in
this example (Figure 1b). By studying this theoretical example, it is clear that any attempt
to micasure intrinsic attenuation using cylindrical bars will have to consider the change of
waveform due to the dispersive nature of the waveguide. Fortunately, since this effect is well
governed by Eq. (1), it can be accurately corrected for provided the parameters V,,, 1;, and

a of the bar are given.

ESTIMATING ATTENUATION THROUGH WAVEFORM
INVERSION

[11 the presence of intrinsic attenuation in the bar, the attenuation cffect is taken into accou:t
by making the wavenumber & complex. as
;

J Q— /\'(l + 50

). )




. . . . 3 . T N e
where Q, is the extensional quality factor of the bar material. As will be decoribaed g

i the experimental procedure. the attennation measurements are usually perfornct s

niarow frequeney range. Therefore, even if Qe can vary with requency, itimay be teganded
ax constant over the nartow {requency range. Inaddition, the anclastic wave disperaicy i<
net included becanse the effect is negligible in this nariow fiequency range.

The wavefor inversion technique involves compating the waveforms received isine teo
Lers of the same material but different lengths vy and v (> ry). In the two Sars che
measurement conditions (e, the signal generation and receiver response) are assumed o
Le the same. From Fas. (2) aud (3), it is readily seen that the spectra of the two v cnn s

are related via

””(w,IQ) — H/(w,l'l) pr[z'k(l + i/‘zQ,)(IQ _ -7‘1)] . 1

o transform into time domain
W(t,r5) = W(t, 1) * D(t) « A(t) . 5
where
D(t) = F~'{explik(z; — 71)]} and A(t) = F~'{exp[~k(z; — 2,)/2Q.]}

are respectively designated as the dispersion operator and attenuation operator, the symbhol
* denotes convolution, and F~'{---} denotes taking the inverse Fourier transform. From
Eqs. (1) and (3), it is clearly seen that the difference between the waveforms 1V (¢, r,) and
W (t.xr;) is due to two effects. The first is the waveform distortion due to the velocity
dispersion [D(t)] along the 7 — r; section of the cylindrical bar. The second is the amplitude
decay due to the intrinsic damping [A(t)] along the same section. The first effect can Le
corrected using the theory presented in the previous section. The second effect will be need
to derive @, of the bar material. Although the waves in a cylindrical bar usually have long

durations, the attenuation affects the first few cycles of the waveforms in much the same

Pk |




way as it affects the whole wave tain. Based on this fact, the waveform inversion techuique
derives attenuation or @, from the first fow eveles of the waveforme,

e waveform inversion procedure consists of two major steps. Iy the first, the n.ea
sure waveform W (f.ry) is theoretically propagated to distance o, in which the effect of

sltenuation is not included. Mathematically, this operation is expressed as

W(lr,) = W(t.m) s D(t) . (6)

woere (¢ zy) is the resulting waveform after the propagation. In tiis operation, if the
velocities 1 and 1 are exact, 1V(t.x,) will be aligned in phase with the measured waveforiy
Wt vy, In practice, a slight shift of W(t,xz) may be necessary to obtain such an alignment.
becanse the V, and V used in calculating Eq. (6) are measured values and may contain errors.
This first step may be called the dispersion correction. The second step is the inversion for
attenuation or (. by minimizing the difference between W(t,:vg) and W (¢, ry). To do so. we

censtruct the following error function

]

E(Q.) /TT°+AT[H/'(t,12) - W(t,z;) * A())dt

To+AT ~ 2
- /T [W(t,22) = F7{W (w, 22) expl—k(z: ~ 2.)/2Q.)] dt , ()

where Ty, may be chosen as the beginning time of W(t,z2) and AT is the duration of the
time section in which W(t, z,) and W(4, z,) are matched. In the inversion using synthetic
wavetorms, A7 can include any number of cycles of the waveforms without altering the
inverted value of Q.. because the waveform data are exact. For laboratory data, however,
the measured waveforms alwayvs contain experimental errors (e.g.. random electrical noise).
Therefore. AT should be cliosen as long as possible to reduce the effect due to the errors.
In practice. AT may be chosen as 2ry/Ve, which, for the shorter sample. is approximately
the arrival time difference between the direct arrival and the first reflection back from the
svirce. The minimization is performed using the non-linear Jeast squares procedure. We

first aszign a very rough estimate of Q.. Then we multiply the spectrum W(w, ry) with
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copl h(ay = 1p)/2Q.) and transform the product back to the time domain becanse tiie
cpcration maindy maodifies the amplitude of W (¢ rp) without (significantly) altering its phase.
Hhe clleets of mdtiple reflections will ot be Ghifted into the interval AT If the estinaced
), s not suflicient to make the resulting waveform match with Wit rg). ¢, 8 pertrheed
following the method of non-linear least «quares ninimization (Meré, 1978) and the same
Loceedure s repeated inan iterative manmner nntil the error F(Q,) 1eaches & mininam. 1he
voline of ), at this minimum is taken as the estimated Q..

I'o summmarize the procedure, we give an inversion example using synthetic wavelors.
1 he waveforms are generated using the same parameters used in Figure 1. But now a Q.
.5 30 i used in the calculation of the synthetic wavefornmis. The waveforms at 7, = 10
cm and r, = 30 cm are used for the inversion. Iigure 2a shows the waveforms. The
waveform at 10 ¢m is theoretically propagated to 30 cin without including the attenuation
(e Qe = o). Figure 2b shows that, after the propagation, waveform IT/(L r4) is aligned in
phase with (¢ 7). However, the amplitudes of the two waveforins do not match because
the attenuation effect was not included in the propagation. The next step is to minimize the
amplitude difference between the two waveforms using the inversion technique. As shown in
Figure 2b, only the first two cycles are used in the inversion. After the inversion, the two
waveforms coincide with each other, as shown in Figure 2c. The @. value obtained from the
inversion is 50.1, in close agreement with the true value of 50. It is noted that for synthetic
Jdata. the inverted (Q. is not sensitive to the number of cycles used in the inversion. because
the data do not contain errors or effects of extra arrivals, such as multiple reflections.

The procedure of matching the first part of W(t.z;) and W(t, z;) using the inversion
technique has several major advantages. The first is that only the first few cycles of the
wavelorms are needed for the (Q, estimation. This separates the eflcct of Intrinsic attenation
from the effect due to later arrivals (i.c.. mualtiple reflections). The second advantage i thit
the solution to the inverse problem is unique because only one parameter Q. is estimated.

Finally and most importantly. the inversion is performed using the waveforms of the low

-1




frequency fundamental mode, allowing the attenuation to be measured in a much lower

frequency range than that of the ultrasonic pulse propagation techunique.

APPLICATION TO LABORATORY MEASUREMENTS

It this <cction. we ihistrat. the appheation of the waveform inversion procedure to the

Lboratory measurement of attenuation using evhndrical bars. The samples used ave a PAVC

matenial and Sierra White granite. The first is a Jow velocity and highly attennative plastic

rnaterial. The second is a high-Q rock. The elastic properties of the two materials are given
1

in bable 1.

Experimental Procedure

I'igure 3 shows a diagram of the measuring system. A pulse generator with various source
funictions is used to apply an excitation signal to the source transducer. Unlike most pulse
transmission measurements where a sharp source pulse is usually used, the present measure-
mient uses a burst-sine wave source with adjustable frequencies. This is because the waveform
inversion technique can deal with signals of long duration, while other measurements (e.g.,
spectral ratio method) require signals of short duration. The signal generator in Figure 3
s adjusted to generate signals with appropriate frequencies within the frequency range of
the fundamental wave mode in the cylindrical sample. This requires that the source and re-
ceiver transducers have good responses in the (low) frequency range. The measurements are
performed on two samples of the same material but different length. The requirement of the
same material for the two measurements is based on the consideration that the transmitting
ar receiving of the cource and receiver transducers depend on the elastic properties of the
sarnple. which determine the load iimpedance of the transducers. Using samples of the same
material ensures that measurement conditions such as transducer-sample coupling, signal

genetation, and signal receiving are the same for both measurements, so that the difference

o




Letween the two measured waveforms are due to the dispersion and attenuation cffects arlx
In addition, heeause the waveform inversion technigue requires that the two wavetorns e
siened in phase before the inversion is applied. the samnpling interval of the digital oscillo-

cene shonbd be fine enough to achieve such an alignment. A sampiing rate of aboit 40-100

poonts per cvele s recommended.

Results

1

o present the results for the PVC bar. 'Lhe lengths of the short and long samples are
<~ and 21.82 em respectively. The radius of the samples is 0.645 cm. Figure 4a shows the
v vanrad waveforms for the 8.28 and 21.82 cm samples. The waveforms are measured for the
i) k112 and 60 kHz source signal frequencies. For the shorter sample, the received (10 kHz)
Gonal elearly shows the arrival of the first and second reflections. The time interval between
sunal onset and the arrival of the first reflection determines AT in Eq. (7). For the longe:
<ample, the received waveforms (particularly the 60 kHz signal) exhibit significant distortion
dvie to dispersion and amplitude attenuation due to intrinsic damping. For the given material
properties (Table 1) and bar radius, the waveforms at 8.28 cm are theoretically propagated
to 21.82 cm to correct for the dispersion effect. The waveform inversion is then applied to
derive Q, from the 40 kllz and 60 kHz waveform pairs. The results of waveform inversion
are given in Figure 4b. After the dispersion correction and inversion, the waveforms (both
40 and 60 kIlz) at 21.82 cm are satisfactorily recovered from the waveforms at §.2§8 cm.
(‘onsidering the significant distortion of waveforms at 21.82 ¢ compared with those at 8.23
cm. the results in Figure 4b show that the dispersion correction is effective and sufficieniy
accurate. Furthermore, the Q. values obtained from the two different frequencies are verv
close. They are (), = 14.2 for 40 kIlz and 13.9 for 60 kHz, indicating the consistency of the
iversion results,

Of the most interest are the results froin the measurements on granite. Resonant har

9




measwmements were petformed on the sample Lefore it was cut imto two samples of lengths
3.16 aud 11.91 cin. The radius of the samples 1s 0.672 cm. The resonant bar results will be
compared with those fromn the present technique. Migure 5 shows the waveform data from
measuring the shorter and longer samples for different source frequencics ranging from -i0
to 140 kHzo With increasing frequency. the dispersive features of thie waves become more
cvdents Figure 6 shows the matcln of the waveforms after the inversion. The matches are
gencrally very good. The inverted Q. values for these frequencies are given in Fipure o
for cich pair of matched waveforns. The (. values are on the order of 110, To compare
thiese data with those from the resonant bar measurement, we plot the attenuation data
expressed as 1000/Q. versus frequency in Figure 7, together with a value measured on
a granite sample using spectral ratio method around 800 kilz. '['hie ultrasonic extensional
attenuation value was derived from the measured compressional and shear attenuation values.
As seen in this figure, the waveform inversion results (open circles) are quite consistent with
the resonant bar results (triangles). The ultrasonic measurement (square) yields significantly
higher attenuation than the two low frequency measurements, suggesting that scattering
is the mechanism for attenuation at ultrasonic frequencies (Winkler, 1983; Blair, 1990).
Tlis may also explain why the waveform inversion results gencrally show slightly higher
attenuat:on than those of the resonant bar measurement, assuming that at the 100 klz

fiequency range there are still some scattering effects.

CONCLUSIONS

1lis study presents a new approach to attenuation measurements through inversion of wave-
s I fact, the waveform inversion technigqne is not restricted to bar measurements. [t
cantaloe e adapred to other pulse transmission measurements. For example, for ultrasonic
Heasurerents using samples of large lateral dimensions, the waveform inversion is applicable

f the waveformis are corrected for diffraction (or beam spreading) effects of the transducer

10




1.

i

Laptod to mcasure attenuation under (‘unﬁning pressures appropriate to the -,

t can be

en for the bar geometry, the technique still has several applications. It

‘

i

orbe dispersion characteristics of the bar in the presence of a confining wiedium

bis conrectly accounted for. In addition. the waveforms of flexural and tortacnal

e

A ovtinedieal bar can also he ntilized to estimate the shear attenuvation of tive Har.
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Medium p(g/em®) U, (m/fsec) VL (m/eec)

Pyve 1.38 2171 1051

Sierra White Granite 2.67 3593 2456

Lalle 1: Density p, compressional velocity V,, and shear velocity V; of the solid u:ed in the

measuremnent,




VELOCITY (scaled)

DISTANCE (cm)

Figure 1. (a) Phase and group veloeities (dashed curves) of the evlindrical bar (o

P

a.

10

20

30

do o

L

1 i

= -

] S ~ -
o phase

1 . N A&7 C

J seurce specirum . — grcﬁu\pbi - ]_

] f

M I ! T M T T 7 1 ¥ T 7 1

0 30 60 90 120 150 180 210

FREQUENCY (kHz)

Ay Phase

R A B
200 250

—4'-" e 0o '“‘"‘T""—‘T’*'I" it S
0 50 100 150

TIME (MicroSec)

AMPLITUDE (scaled)

1

EE B R N

Vored272 /s and Vi 22506 m/s) in the frequency range covered by the source spectinm

(solid curve). The velocities are scaled by V, = 3943 m/s. (b) Propagation of the

fundamental mode in the bar. Note the distortion of waveforms and the development

of the Airy phase.

14




X‘:10 cm -t \/

x, 30 om

J 50

waveform at X,

wavelorm at x|

\ /\/\/\/\/\N\/V‘ ANNANAAN e

.
B SR B SR | "‘[—'r‘ 1 ’1"?""[ ) "'—T"_T‘T"'Y.T _1—7__1-1”" T ]

100 150 200 250
TIME (MicroSec)

..-.-wavetorm at x2

L:-—wavefoun propagated from x1

V)
[
2
=
-2
Q.
=
<

10 vuncated lrom here

16 ]

50 70 90 110 130 150
TIME (MicroSec)
C. - -
——inversion result

0 | waveform at x2

5 -
w
Q
3
|4 I S /\\________._- U
-
& AN
%

0 T Y T T al

50 70 50 110 120 150

TIME (MicroSec)

Finnre 20 Mustration of the waveform inversion procedure. (a)Propagate waveform at z, to

£2. (D)Result of the dispersion correction: the waveforms are aligned in phase; the

amplitude difference is due to attenuation and is to be minimized to find Q.. (c) After

inversion, the two waveforms are matched. The Q. required for the match gives the

estimated attenuation.

15



SAMPLE (cylindrical bar)

SOURCE TRANSDUCER RECEIVER TRANSDUCER

PULSE GENERATOR
(adjustable frequency)

DIGITAL OSCILLOSCOPE

Figure 3: Diagram of the system for measuring attenuation in bars.
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a. Measured waveforms from PVC bar (a=0.645cm)
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b. Results of waveform inversion
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Figure -1 (a) Waveforms measured from the short and long PVC bars at 40 and G0 kHz
frequencies. (b)Matched waveforins after the dispersion correction and inversion. The

inverted Q, values for the two frequencics are also indicated.
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Waveform Inversion Results for Sierra White Granite
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Figure 6: Matched waveforms after the dispersion correction and inversion for the different

frequencies. The inverted (), values for the frequencics are also indicated.
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COMPARISON OF ATTENUATION VALUES OF SIERRA
WHITE GRANITE OBTAINED USING DIFFERENT METHODS
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