| Y V7% AD-A26S 958
USAISEC W

US Army Information Systems Engineering Command / \

Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,
COMMUNICATIONS, AND COMPUTER SCIENCES

ARV GES

Integrated Office Information System (IOIS)
Summary Report:
Automated Session Manager Analysis, Design, and Implementation

D T l C | ASQB-GM-90-023

;; F;ECTE a

MAY 1990

o PJ’*J fzl22s: and sale; its

T'm; dow unEnt LoS Deen approved
dx rL,J donr 1: uniimited

AIRMICS @ \
115 O’Keefe Building .- i

Georgia Institute of Technology 34
Atlanta, GA 30332-0800 3-225

\W\\\ i \\\\\\ i

CLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
OMEB No. 0704-0188
REPORT DOCUMENTATION PAGE Exp_ Date: Jun 30, 1986
e e e e ————— et 5oy e = ey A
a. REPORT SECURITY CLASSIFICATION 1b. RESTRIGTIVE MARKINGS
M e ——— M’
28, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
* I2b. DECL!A' SSIFICATION/DOWNGRADING SCHEDULE N/A
M ———
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
’ ASQB-CM-90-023 N/A

6a. NAME OF PERFORMING ORGANIZATION | 6b. OFFICE SYMBOL |7a. NAME OF MONITORING ORGANIZATION
AIRMICS (it applicable)

6c. ADDRESS (City, State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)
115 0'Keefe Bldg.

Ceorgia Institute of Technology

Atlanta, Ga 30332-0800 N/A
8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |8. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It applicable)
ASQB-GM
AIRMICS —
8c. ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
115 O-Keefe Bldg. PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO.§ NO. NO. ACCESSION NO.
Atlanta, GA 30332-0800 82783A DY10 05

11. TITLE (Include Security Classlfication)
Integrated Office Information System (IOIS) Summary Report:

| __Automated Session Manager Analysis, Design, and Implementation
12. PERSONAL AUTHOR(S}

Dr. Jay F. Nunamaker, Jr., Dr. Qlivia R. Liu Sheng, Milam W. Aiken

13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Dayd 15. PAGE COUNT
FROM T0 May 1990 115

16. SUPPLEMENTARY NOTATION

17, COSATI CODES 18, SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUBGROUP

19. ABSTRACT (Continue on reverse it necessary and identify by block number)
The object of this research has been to study and build a prototype of an Integrated Office In-
formation System (IOIS). The need for this system was derived from problems in existing auto-
mated office systems including: the lack of standard software tool user interfaces, excessive
use of paper to transmit information, redundant, and inconsistent information in common data-
bases, and haphazard coordination and control of information exchange. The IOIS which was de-
veloped addressed these problems by providing the means to accomplish a variety of tasks while
maintaining data integrity, reducing the flow of paper, improving communication, and standard-
izing user interfaces and software protocols.
The Automated Sessions Manager (ASM), a component of I0IS and the focus of this report. was de-
veloped to facilitate meetings of organization group members working in distributed offices.
ASM facilitates the use of a suite of group support tools known as the Asynchronous Group Deci-
. sion Support System (AGDSS) also discussed here. The architecture of ASM consists of expert
systems for pre-session planning, session facilitation, and post-session analysis as well as
group status. calendar scheduling, and data integration facilities. This report presents a de-
tailed summary of research efforts involved in the design and implementation of these features.

" [20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 71, ABSTRACT SECURITY CLASSIFICATION
[X] UNCLASSIFIED/UNLIMITED[] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
Y Y Tyt AR e~ =~ i T
Z2a. NAME OF RESPONSIBLE INDIVIDUAL 326, TELEPHONE (Inciude Area Code)| 22¢. OFFICE SYMBOL
Michael Evans 404/894-3107 ASQB-GM
DD FNRM 1473, 84 MAR 83 APR edition may be used untll exhaustad.

All other editions are obsolete. —SECURITY CLASSIFICATION OF THIS PAGE.

This research was performed for the Army Institute for Research in Manage-
. ment Information, Communications and Computer Science (AIRMICS), the
RDTE organization of the U.S. Army Information Systems Engineering
Command (USAISEC). This research is not to be construed as an official
Army position, unless so designated by other authorized documents. Material
included herein is approved for public release, distribution unlimited. Not

protected by copyright laws.

Accesion For

AR --..--_,,d,—_
NTIS Ciast
[
[

Ciie AR
Usoon 0 oo .
i
[P .
(=] s
b o - — w——».—...‘ y 1
By
-
Ot f
L) — e
v
] - - --..«..—.—-4
. H e)
ol')‘ |

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

o oo G pans

Jsuﬁes Gantt
Chief, MISD

Jo¥n R. Mitchell
Director
AIRMICS

Integrated Office Information System (IOIS) Summary Report:
Automated Session Manager Analysis, Design, and

Implementation

Dr. Jay F. Nunamaker, Jr.
Dr. Olivia R. Liu Sheng
Milam W. Aiken
Department of Management Information Systems
College of Business and Public Administration
University of Arizona
Tucson, Arizona 85721
602-621-2748

May 2, 1990

%+Submitted 10 the Army Institute of Research in Management Information, Communications and Computer
Science (AIRMICS), Atlanta, GA. Grant #: DAKF-11-88-C-0021.

Abstract

The objective of this research project has been to study and build a prototype of an Integrated
Office Information System (IOIS). The need for this system was derived from problems in existing
automated office systems including: the lack of standard software tool user interfaces, excessive use
of paper to transmit information, redundant and inconsistent information in common databases, and
haphazard coordination and control of information exchange. The IOIS which was developed addressed
these problems by providing the means to accomplish a variety of office tasks while maintaining data
integrity, reducing the flow of paper, improving communication, and standardizing user interfaces and
software protocols.

The Automated Session Manager (ASM), a component of IOIS and the focus of this report, was
developed to facilitate meetings of organization group members working in distributed offices. ASM
facilitates the use of a suite of group support tools known as the Asynchronous Group Decision
Support System (AGDSS) also discussed here. The architecture of ASM consists of expernt systems
for pre-session planning, session facilitation, and post-session analysis as well group status, calendar
scheduling, and data integration facilitics. This report presents a detailed summary of research efforts

involved in the design and implementation of these features.

Table of Contents

Contents
1 Introduction 2
2 1OIS Project Synopsis 2
3 Automated Session Manager Analysis 3
4 Automated Session Manager Design 5
41 ExpertSessionPlanner 0 e b
4.2 Expen Session Facilitator and Expert Session Analyzer 7
5 Automated Session Manager Implementation 7
5.1 Expert Session Planner Implementation 7
5.2 Hardware/Software Selectiono 9
6 Conclusion 10

Appendix I: ESP: A Consultation System for Electronic Meeting Systems Pre-Session Planning
Appendix II: Integrating Expert Systems with Group Decision Support Systems

Appendix III: Application of Knowledge-Based System Design to a Distributed Group Decision
Support System

Appendix 1V: Software Review: NEXPERT OBJECT

Appendix V: Software Review: EXSYS Professional

1 Introduction

The Integrated Office Information System (I01S) is an advanced office architecture developed for and
funded by the Ammy Institute of Research in Management Information Communications and Computer
Science (AIRMICS). The development of this architecture was motivated primarily by the absence of
adequate integrated office frameworks for the office. Existing frameworks consist of procedural and
form automation systems for non-managerial office workers and generic tools (such as spreadsheets) for
managerial and professional personnel. Concepts to support different levels of workers, such as tailoring
generic tools for office environments, using common interfaces, and providing Al techniques have not
been addressed within a single framework prior to the development of I0IS. Reasons for developing an
integrated architecture rather than using isolated systems for clerical and managerial workers include:
(1) an integrated architecture will reduce maintenance and allow betier control of office and system
operations, (2) sharing of common data and knowledge bases will contribute to reduced redundancy
and improve application development time, and (3) common interfaces will reduce training costs.

The components for the IOIS architecture were selected based on literature stating the requirements
of managenial, professional and clerical personnel [2, 3]). For managers, providing support for decision
making, meetings, and resource management was considered important, while professional and clerical
workers primarily required access to databases, form management systems, and conventional office
tools. The initial IOIS framework included a resource management expern, an asynchronous group
decision support system (AGDSS) facility, some decision support systems, a calendar scheduler, and
some conventional office tools with a common knowledge base/database and interface providing the
integration.

The focus of this report is to detail the development of the Automated Session Manager (ASM)
subsystem which supporns the AGDSS facility. While the calendar scheduler module is used by several
other subsytems, it is also discussed in this report since it is an integral component of the process for

planning AGDSS meetings.

2 10IS Project Synopsis

The analysis, design, and implementation of the automated session manager must be viewed in the

larger context of the overall project. A short synopsis of the 10IS project history is presented which

Mar 1988 Pilot system for 10IS.
Aug 1988 IOIS architecture completed.
il Sep 1988 First version of AIRMICS case study, hardware requircments.
Sep 1988 ASM analysis phase.
Oct 1988 Received Nexpert Object 1.0.
Dec 1988 ASM design phase.
Jan 1989 Received Nexpert Object 1.1.
Feb 1989 ESP wol selection implemented.
Feb 1989 ESP group selection implemented.
Mar 1989 M. Morrison attended Bechtel Nexpert seminar.
Apr 1989 M. Morrison attended Nexpert user group meeting.
Apr 1989 Text-based interface designed. i
Apr 1989 Distributed EBS and IA implemented.
Jun 1989 Final 10IS prototype completed.
Sep 1989 I0IS prototype delivered to AIRMICS.

Table 1: IOIS Project Schedule in Retrospect

indicates how research on ASM fits into this overall context.

A study of the AIRMICS office was conducted to provide a target implementation environment
for the overall system. A prototype of IOIS was subsequenty delivered to AIRMICS in September
1989 and included expert systems for GDSS tool and group selection, a meeting scheduler, resource
management software, and user-friendly computer interface features. A synopsis of the project history

appears in (Table I).

3 Automated Session Manager Analysis

Since AIRMICS conducts and sponsors research, it develops short-and long- term research plans.

The function of identifying research areas and conducting research is referred to as RDTE (Research,

Development and Technical Evaluation). In the process of producing a procurement package (identified
| in an carlier report [4]), AIRMICS may use group support tools when personnel wish to identify areas

of interest for possible funding and when a decision is made on the projects to fund. Also, whern

research projects terminate, a final IPR meeting is conducted, again requiring meeting support tools.

The Asynchronous Group Decision Support System (AGDSS) tools (discussed in Appendix I and
Appendix II) provide an ideal environment in which to conduct these meetings since participants may
be distributed geographically (in different offices) and temporally (all participants need not be ‘logged-
on’ at the same time). The AGDSS tools could effectively augment the process of identifying the
areas of interest, selecting the projects to be funded, and developing a research plan. By providing
automated record keeping of meeting notes, allowing anonymous input of ideas, and supporting the
office worker at his convenience (in his office when he has spare time), AGDSS should greatly increase
the productivity of these meetings. Appendix IIl provides additional information regarding distributed
group meetings and special design requirements.

Since selecting and using the AGDSS tools, selecting group participants, scheduling the times to
meet, and facilitating the iesulting meeting often requires considerable expertise, however, AIRMICS
could benefit from an Automated Session Manager which alleviates much of the burden nommally
placed upon a human group facilitator. Consequently, group members with only limited experienice in
facilitation could, with the assistance of ASM, assume the role of group facilitator.

During the ASM analysis phase, a pancl of local GDSS experts met over a period of three months in
the fall of 1988 to determine the factors involved in the tool and group selection process. This panel of
experts included group facilitators with several years of GDSS session experience and tool developers
and researchers. In the final stages of analysis, a GDSS session involving issue analysis and organization
was conducted at the University of Arizona to categorize the selection factors involved. The team
members also met with Major Ted Hengst from AIRMICS to determine the tools and participants

necded for meetings based on job responsibilities, work interests, and departmental affiliations. This

knowledge was incorporated into the system and is discussed in more detail in the design section

below.

4 Automated Session Manager Design

The analysis phase of ASM indicated the need for several different modules which would be called
in sequence: a pre-session planning facility (ESP), an expent session facilitator (ESF) to help the
facilitator manage the meeting, and an expert session analyzer (ESA) to help the facilitator make sense

of meeting results.

4.1 Expert Session Planner

Expert Session Planner (ESP) is designed specifically to assist electronic meeting coordinators in
pre-session planning of group meetings. ESP can assist the meeting coordinator in the selection
of appropriate tools through the ESP(tool) expert system and the selection of participants for the
session through the ESP(group) expert system. In addition, ESP can scan the calendars of the session
participants to determine convenient times for having face-to-face meetings through the use of the
ESP(sched) subsystem. ESP thus allows planning and coordinating of electronic meetings with minimal
knowledge of the GDSS tools and the processes involved in pre-session facilitation.

Once the underlying knowledge of the expert task has been acquired in the analysis phase, a
theoretical representation of the knowledge must be developed. Some represeniations include: IF-
THEN rules (perhaps the simplest and most prevalent technique), Frames and Objects (popular for
their powerful inheritance and hierarchical properties), and Semantic Networks (noted for their flexible,
yet powerful structures). The choice of knowledge representation is perhaps the guiding force of the
ultimate implementation.

An expent system for pre-session planning will benefit from a Frame and Object representation
since group and tool characteristics ofien have hierarchical tructures. For example, group participants
can be classified by organizational affiliation, interests, or responsibilities. An expert system which
selects appropriate group participants can rely on certain inherited features instead of features which
are expressed for each group member. Likewise, GDSS tools can be classified by their applicabilibilty
for a particular group or problem. Inheritance of these characteristics will allow the expert system 10
proceed more efficiently in determining which GDSS tools to select.

The initial prototype of ESP was designed with the procedures of selecting the tool and participants
represented in IF-THEN rules with the facts about the tools and participants stored in a databasc. When

the rules are fired, the facts associated with the objects in the rules arc instantiated from the database.

This reduces the number of rules required in both selecting the tools and participants. The knowledge
 base can be further refined with the use of powerful representation techniques such as semantic nets,
frames, and object-oriented approaches, to be investigated in future.

The expert task must also be analyzed as to the fundamental nature of the problem: one of design,
diagnosis, or both. Design problems typically feature a relatively limited set of underlying conditions
and a much greater number of goals; diagnosis problems include relatively few goals with many
conditions which must be verified. For example, the problem of group selection is one of design since
the number of potential participants is likely to be much greater than the number of criteria involved
in the group configuration. Conversely, tool selection is primarily a matter of diagnosis; there are
a relatively limited number of tools while there are many more factors involved in their selection.
A forward-chaining inferencing strategy is most efficient with design problems, while a backward-
chaining strategy is most economical with ¢ .agnosis tasks. Some problems may involve diagnosis and
design, indicating a need for a hybrid inferencing strategy.

ESP(tool) uses an exhaustive, backward-chaining inferencing strategv with provisions for rule
uncertainty to resolve conflicting rules. ESP(group) uses an exhaustive, forward-chaining inferencing
strategy which configures a query which is then used by a dBase III + database management system
to search a database of user profiles, looking for appropriate meeting participants.

The calendar scheduler was designed for use through the 10IS project. It can be used in a batch
mode or in a stand-alone mode. In the batch mode, it is used by the Session Planner to schedule GDSS
sessions. In the stand-alone mode it can be used to schedule meetings, resources, or appointments.
Although a number of calendar tools are commercially available, none provided the capability to
incorporate intelligence or supplied a programming interface that could be integrated with the IOIS.
Therefore, the calendar scheduler was designed and developed with the following capabilities:

1. Monitor project activities,

2. Schedule meetings,

3. Specify user profiles (e.g. times convenient for meetings),
4. Schedule resources, and

5. Schedule appointments.

4.2 Expert Session Facilitator and Expert Session Analyzer

Details of the design for each of these expert systems were not pursued due to time limitations.
However, an early form of ESF has been tested with the AGDSS tools which kept a count of user
comments with some rudimentary statistics on frequency, averages, etc. Another non-expert form of
ESF (discussed in part in Appendix lIl) shows how facilitation can be supported through a group status
indicator.

Very little has been done to automate the session analysis phase of group meetings, however.

S Automated Session Manager Implementation

5.1 Expert Session Planner Implementation

Only the ESP component of ASM was implemented due to time constraints. The use of ESP follows

the sequence below:

1. Group Selection Module

The meeting coordinator begins ESP with the group selection module to determine the type of
the meeting, the topic of the meeting, and other information. This information is first inferred
from the knowledge base which fires appropriate rules and determines more information from
the meeting coordinator as it ‘back-chains’ through the knowledge base. Once it has determined
the meeting t7pe and topic, the group selection module instantiates the user profile knowledge
from the data base and selects participants who should participate in the meetings based on the
facts from their profile. Personnel interests, responsibilities, and organizational affiliations are

all factors determining membership in a potential group meeting.

The meeting topic helps in determining the initial list of participants. For instance, if the topic
involves discussion on a project then all members responsible for the project are selected. Further,
the supervisor of the project will be selected as well as any member who has listed interest in
the area of the project. Tre meeting type, on the other hand, helps in determining who should
be added or deleted from the list. For instance, if it is a peliminary discussion meeting, then
the supervisor will be removed, or if the discussion involves financial matters, then the financial

officer involved with the project will be added. This process is iterated until the knowledge basc

is exhausted and a final list is presented to the mecting coordinator. Tix mecting coordinator
can use the list as is or make further changes depending on his preferences. The role of group

sclection is merely to provide a starting point for the meeting coordinator.

The group determination module is implemented using EXSYS Professional, an expert system
shell from EXSYS, Inc. The knowledge base consists of 14 rules which composes a query for
a dBasc III + database management system (DBMS). This DBMS then selects organizational
personnel for the meeting based upon user profiles in a dBase 11l + database and configures a

participant list. This list is then written to an ASCII file for later reference.

. Calendar Scheduling Module

The calendar scheduling module is strictly used for meeting sessions involving face-to-face
interaction. Once the participant list is determined, this module checks the calendar information
of each of the participants selected as well as the calendar of the meeting room to arrive at a final
time for the session. Currently, the calendar program is simplistic in the sense that it sclects the
first available time for the participants. Conflict resolution techniques will be included ir future

implementations of this module.

This module is currently implemented in Turbo Pascal 4.0 and interacts with a calendar program
to access the personal schedules of the participants.

. Tool Selection Module

Once a group membership list has been constructed and meeting times have been arranged, the
meeting coordinator used the tool selection module to determine the GDSS tools required for
the session. The coordinator must have already used the group selection module at this point
because he is expected to answer questions regarding this group's characteristics. For example,
the coordinator must know the extent of the participants’ familiarity with the topic as well as
the extent of common knowledge among the group members. Additonal questions are asked
concemning problem characteristics such as whether or not the problem can be segmented and
whether or not stakeholder identification is important. Once all of the questions are answered. a
list of recommended tools is written to a file with their accompanying certainty factors. As with
the group membership list, the coordinator at this point is free 1o modify the recommended list

of tools to reflect his own desires.

5.2

The module is also implemented in EXSYS Professional and has 30 rules. The list of selected
tools is written an ASCII file which is referenced later by the group facilitator.

Hardware/Software Selection

Expert System Tools

Early in the project, five well-known expert system shells were chosen for detail::! study after
an extensive survey of available commercial products including EXSYS, KEE, GOLDWORKS,
and TI PERSONAL CONSULTANT PLUS (Other packages were eliminated for a variety of
reasons). Neuron Data’s Nexpert Object was chosen because it was believed o have all of the
features advertised by the others and few of the faults. A short p.oduct review of Nexpert Object

appears in Appendix IV.

It was discovered that many of the features that appeared attractive were not yet implemented
in Nexpert Object. On January 11, 1989, an upgraded version of Nexpert (1.1) was delivered.
It appeared to be a substantial improvement over the earlier version, but time was been lost in

overcoming the deficiencies of the carlier version.

The first prototype of ESP used Nexpert Object’s NORT (Nexpert Object Run Time) module.
Many problems were encountered while using Nexpert and NORT. Tt was difficult to leam, dif-
ficult to use, peformed very slowly, required too much memory, contained too many ‘bugs’, was
not truly global, had a poor interface with other programs, and lacked adequate documentation
and support. More details of these problems appear in an carlier report [4].

Version 1.2 of Nexpert Object was scheduled for release in June 1989 but not received. Better
access to classes, objects, and properties was promised, and some of the bugs were to be corrected.
Version 2.0 was also underway, but Nexpert has a long way to go before it becomes a useful

prototyping environment.

ESP was finally implemented using EXSYS Professional to overcome the problems with Nexpert
Object. A product review of EXSY > Professional apperars in Appendix V. No major problems

have occurred with the use of this product.

¢ Other Software

Both “%..nont Views” and “Windows for C” were used to build the interface. C was chosen
for portability to a Unix environment. Turbo Pascal 4.0 was used to implement the calendar
scheduler, and dBase II + was chosen for the database and database management system due to

its availability, portability, and ease-of-use.

e Hardware

Appropriate hardware and software were selected and acquired and a subset of the revised design
has been implemented. The prototype was developed on an AT&T 6386 personal computer with
a 135 MB hard disk, and 4 MB RAM. '

AIRMICS currently uses a mix of IBM compatible PCs, Sun 3/50s, and Sun 386is networked
together with a Sun server. The Sun workstations use the UNIX operating system, while the

PCs use DOS. The I0IS prototype works in the DOS environment.

6 Conclusion

The only portion of the Automated Session Manager (ASM) currently implemented is the Expert Session
Planner (ESP) component. ESP is implemented on an AT&T 6386 WGS workstation. The prototype
has met with some initial success in knowledge base validation. The knowledge for the tool selection
moduile was acquired through extensive interviews with local expert facilitators. The knowledge has
initially been represented in the form of IF-THEN rules with the possibility of representation in the
form of frames in future versions. Since the selection of tools is primarily a design problem, a forward-
chaining inferencing strategy is used. Further, 20 user-profiles are stored in the database, implemented
in (Dbase IIl+) and loaded at run time by the prototype system.

The prototype system is implemented using EXSYS Professional in the DOS environment. This
environment satizfies many of the implementation criteria by providing graphic interfaces; portability
among DOS, Vax, and Unix products; excellent database and knowledge base support; and external
program calls.

ESP has been pilot-tested with case studies and field experiments. Initial test results have been
positive as the tool has proved to accurately maich the expert’s prescriptions for group and tool
selections. Further enhancements, including intelligent support for the facilitation stage (Expert Session

Manager) which uses the output from ESP to automate the facilitation process, are being designed.

10

In summary, Huber [1] notes that the success of a particular Group Decision Support System
: depends on the range of tasks supported and its frequency of use (both of which are mutually dependent).
Through the added functionality and flexibility of a chauffeured, asynchronous, distributed GDSS, ASM
and AGDSS provide a sufficient number of tools and adequate support to achieve the critical threshold

necessary for a high frequency of use.

References

[1] Huber, George P., “Issues in the Design of Group Decision Support Systems,” MIS Quarterly,
September 1984, pp. 195-204.

[2] Liu Sheng, O., Motiwalla, M., Nunamaker, J., & Vogel, D., “A Framework to Support Managenal
Activities Using Office Information Systems,” To appear in Journal of Management Information

Systems.

[3] Nunamaker, Jay F., Amaravadi, Chandra S., Motiwalla, Luvai F., “OSA: An Office Systems
Architecture for Supporting Managerial Activities”, U.S. Army Information Systems Engineering
Command’s Technolqu Strategies Conference, February 1988.

(4] Nunamaker, J., Liu Sheng, O., Aiken, M., Amaravadi, C., Higa, K., Morrison, C., and Motiwalla,

L. “Integrated Office Information System (I1OIS),” technical report, submitted to the Ammy Institute
of Research in Management Information, Communications and Computer Science (AIRMICS),

June 15, 1989,

11

AWM!/‘;C _Z

ESP: A Consultation System for Electronic Meeting Systems

Pre-Session Planning

Milam W. Aiken
Luvai F. Motiwalla
Olivia R. Liu Sheng

Jay F. Nunamaker, Jr.

Department of Management Information Sslstems
College of Business and Public Administration
University of Arizona 85721
602-621-2748
Bitnet: AIKEN@ARIZVAX
Internet: AIKEN@MIS.ARIZ.EDU

December 6, 1989

Abstract

As group electronic meeting systems (EMS) continually evolve, more powerful methods of managing
these systems are needed. Specifically, an efficient and effective means of supporting the pre-session
planning processes of human facilitators is required to lead to a successful group meeting. This pa-
per presents a support tool which demonstrates the viability of a rule-based consultation sysiem as a
mechanism for effective EMS pre-session planning.

An additional motivation for the development of an on-line consultant for pre-session planning is the
examination of the human facilitator’s mental model of the planning process. Through the successivc
steps of intervizwing experts, prototype development, and prototype validation, much can be leamed
about the nature of facilitator interaction with the group and the EMS. "

This paper presents a background investigation of the problems of supporting EMS and then outlires
a detailed description of the architecture of Expert Session Planner (ESP), a prototype solution to many
of these problems. A case study involving a typical office organization illustrates the use of this tool, and
validation study results indicate several interesting characteristics of human/computer interaction. Finally,

research directions are described for the further integration of expert system technology with EMS.

Keywords: Expert systems, group decision support systems, electronic meeting systems, artificial

intelligence

1 Introduction

1.1 A Definition of the Problem Environment

Information technology has received widespread interest in recent years for the support of group produc-
tivity [Huber 1984, Keen and Scott Morton 1978, Richman 1987, Straub and Beauclair 1988]. Previous
research has shown the benefits of information technology in electronic meeting environments [Quinn et
al 1985, Steeb and Johnston 1981, Turoff and Hiltz 1982, Watson 1987, Zigurs 1987], and reports of timc
and cost savings of up to 56 percent are prevalent in the literature {Galiupe 1985, Lewis 1982, Nunamuaker
et al 1989]. In acdition, these group systems have been shown to foster collaboration, communication,
deliberation, and negotiation [Apple et al 1986, Beauclair 1987, Easton 1988, Gray 1981, Kull 1982}
Early computer-based systems for group support, described as Group Decision Support Systcnmis
(GDSS), included “... a set of software, hardware, language components, and procedures that support
a group of people in a decision related meeting” [Huber 1984]. However, there is some disagreement
about what exactly constitutes a GDSS [Baskin et al 1988, Kraemer and King 1986]. Although somc
definitions of GDSS include simple conferencing systems or special purpose systems {Hale and Haseman
1987, Kerr and Hiltz 1982, Turoff et al 1988], these categorizations are too limited. A broader description
of information technology to support group meetings can be stated as Electronic Meeting Systems (EMS):

{Dennis et al 1988]:

An information technology-based environment that supports group meetings, which may be
distributed geographically and temporally. The information technology environment includes,
but is not limited 10, distributed facilities, computer hardware and software, audio and video
technologies, facilitation, and applicable group data. Group tasks include, but are not limited
to, communication, planning, idea generation, problem solving, issue discussion, negotiation.
conflict resolution, systems analysis and design, and collaborative group activities such as

document preparation and sharing.

1.2 EMS Problem Areas

Most early systems to support group meetings met with only limited success [Kraemer and King 1986].
Although many causes may be cited for their failure, a partial explanation can be found in the lack of
support given to these systems.

For example, little is known about EMS facilitation. There arc many broad questions on the effect of

group and individual characteristics, the task, the context, and technological limitations on EMS processcs

and outcomes [Nunamaker et al 1989). These questions may be best framed in light of the stages followed
in a typical EMS:

1. Pre-Session Planning

During this stage, a session facilitator talks with a representative from the organization which needs
to meet to resolve a problem. This representative provides the facilitator with information regarding
the group characteristics and the task faced. Using this information, the facilitator can construct
an agenda of EMS tools and meeting times to bring about a successful outcome. In addition, the
facilitator can help the representative come up with a list of appropriate group participants from

the organization to effectively address all issues of the meeting.

Selecting the correct tools and session participants becomes increasingly important as EMS evolve
to distributed systems in which a facilitator is not physically present [Nagao et al 1989]. EMS

support is needed to resolve the uncertainty involved in making these group and tool selections.

2. Session Facilitation

In this stage, the facilitator follows the agenda prepared in the planniag stage and leads the group
through the session using appropriate techniques for the task at hand. Some EMS techniques in-
clude: generation of ideas or plans, organization of ideas, consolidation and focusing of idcas,
generation of proposals, and assessment of proposals [DeSanctis and Gallupe 1987]. These tcch-
niques can be applied to decision types described as Planning (generation of action-oriented plans),
Creativity (generation of novel ideas), Intellective (selection of the correct alternative), Prefercnce
(selecton of an altemative for which there is no correct answer), Cognitive Conflict (resolution of

conflicting viewpoints), and Mixed Motive (resolution of conflicting motives or interests).

Much EMS software has been written to facilitate group processes. As an example, the University
of Arizona’s Collaborative Management Room provides a suite of tools known as GroupSystcms
which includes: Electronic Brainstorming (EBS), Automated Delphi, Nominal Group Technique
(NGT), Issue Analyzer, Issue Organizer, Policy Formation, Vote Selection, Alternative Evaluator,
Topic Commenter, Stakeholder Identificaion and Assumption Surfacing (SIAS), and Enterprisc

Analyzer.

During the facilitation stage of an EMS session, the group facilitator must monitor the on-going
discussion to help lead it in appropriate paths of discourse and to terminate the session as comments

become redundant or superfluous. As groups grow large, facilitators may be overwhelmed by the

sheer volume of information. EMS support is needed to ease the burden of facilitation.

In addition to facilitators, group members may need assistance using an EMS. An organization
EMS may be only infrequently used, resulting in less familiarity with the system and even less usc
[Huber 1984]. EMS support in the form of on-line tutorials, intelligent help, and other functions

may be needed to keep users afresh.

3. Post-Session Analysis

At the end of the session, the facilitator meets with the group representative again to ensure that
the session effectively met the group’s needs. The post-session analysis includes summary reports
of decisions that were made during the meeting as well as a complete transcript of comments
generated by the group participants. This output can serve as input to other software such as CASE

tools, databases, etc. EMS support is needed here to impose structure on this output.

1.3 The Expert System Solution

Artificial intelligence may be the most important technical contributer to ihe future of EMS {Johansen
1988). Expert systems (ES) may transform EMS from passive agents that process and present information
to active agents that enhance interactions (Ellis et al 1988]. The goal is to design such integrated systems
in a way that enhances desirable procedural and social group processes. This transformation to "softer
software” [Johansen 1988] includes the integration of expertise to simplify use and operation of EMS.

The expert system (ES) paradigm has found many successful commercial applications in 2 variety of
areas [Michaelson and Michie 1983, Winston and Prendergast 1984], and the expert system development
methodology continues to be studiously researched as a promising frontier of antificial intelligence. Turban
and Watkins [Turban and Watkins 1986] have reported a framework for applying expert systems (o
decision support systems (DSS), a positiv;: step in the direction of evoking more powerful management
information systems. The next logical step is to apply ES technology to GDSS or EMS (Figure 1) {Aiken,
Liu Sheng, and Vogel 1989].

DeSanctis and Gallupe argue that research should begin with a study of Level 1 GDSS/EMS systcms
(systems which provide a communication medium only) before proceeding to higher level systems (scc
{DeSanctis and Gallupe 1987] for a thorough explanation of GDSS levels). Many current EMS tools
provide Level 1 communication media and Level 2 decision modelling techniques and have been reviewed
thoroughly by the literature; an integration of expert systems with EMS will provide Level 3 functionality

including the automated rule-based generation of procedures for EMS sessions.

Well~
Structured a
Problem
Structure ’
Hi- b

Structured

Few Many

Group Size
Supported

Figure 1: Evolving to ES/GDSS

Intelligent support can be applied to solve various problems in EMS including information retrieval,
information analysis, and session faciliation among others [Agarwal and Prasad 1989,Jarke 1986). This
-paper, however, focuses on applying ES to the pre-session planning stage of an EMS session. Expert
assistance at this stage can alleviate the burden placed upon a human facilitator, enhance the quality and
outcome of the ensuing session, and distribute the scarce expertise of EMS pre-session planning [Aiken
et al 1989, Aiken et al 1990]. Effective intelligent support for pre-session planning is becoming even
more crucial to computer-based meetings as the trend toward distributed EMS grows (due in part to the
cost and time advantages over its face-to-face counterpart).

Expert Session Planner (ESP) is a prototype ES designed to support EMS session facilitators during
critical pre-session planning. ESP allows scarce human facilitator knowledge to be distributed and
provides consistency across sessions. In addition, ESP provides training for novice session facilitators
in the selection of EMS software. Finally, this tool offers a foundation upon which to build furthcr

intelligent support software for group meeting processes.

1.4 Outline of the Paper

The remainder of the paper is organized as follows. Section two describes the architecture of the tool,

and section three presents results from validation studies. Section four summarizes the paper and lists

future research directions.

2 Description of the Prototype Design and Architecture

2.1 Prototype Design

Expert Session Planner (ESP) is designed specifically to assist EMS facilitators in the pre-session planning
stages of group meetings. ESP can assist the facilitator in the selection of appropriate tools and participants
for the session. In addition, ESP can scan the calendars of the session participants to determine convenicnt
times when face-to-face meetings are needed. ESP thus allows a meeting coordinator with minimal
knowledge of the EMS tools and the processes involved in pre-session facilitation to plan and coordinate
electronic meetings. The following subsections discuss knowledge acquisition, knowledge representation,

and the inferencing strategy employed in the design of ESP.

2.1.1 Knowledge Acquisition

Knowledge acquisition is perhaps the most difficult and tedious phase of any ES project. Effective
knowledge acquisition strategies must be employed for the ultimate success of the system. Designers (or
knowledge engineers) should ideally already be at least familiar with the basics of the problem at hand:
if not, they should review applicable textbooks and references before approaching the human expert.
Only by establishing 2 mental model framework will the designers be able to file the anecdotes and
rules-of-thumb acquired from interviewing the expert. Also, a minimum set of knowledge in any area is
a prerequisite for posing incisive questions.

For the prototype ESP explicated in this paper, the authors met over a period of three months with a
panel of local EMS experts to elicit the factors involved in the ool selection process. This panel of experis
included group facilitators with several years of EMS session experience as well as tool developers and
researchers. The authors had moderate experience with EMS terminology and methodology through prior
study. In the final stages of knowledge acquisition, an EMS Issue Analysis and Organization session was
conducted in the University of Arizona’s Collaborative Manangement Room to categorize the factors
involved. In addition, the authors met with Major Ted Hengst at the Army Institute of Research in
Management Information, Communications, and Computer Science (AIRMICS) office to determine the
tools and participants needed for meetings based on job responsibilities, work interests, and deparumental

affiliations. This knowledge was incorporated into the system and is discussed in more detail below.

2.1.2 Knowledge Representation

Once the underlying knowledge of the expert task has been acquired, a theoretical representation of the
knowledge must be developed. Some representations include: IF-THEN rules (perhaps the simplest and
most prevalent technique), Frames and Objects (popular for their powerful inheritance and hierarchical
propertics), and Semantic Networks (noted for their flexible, yet powerful structures). The choice of
knowledge representation is perhaps the guiding force of the ultimate implementation.

An ES for pre-session planning may benefit from a frame or object representation since group and
tool characteristics often have hierarchical structures. For example, group participants can be classified by
organizational affiliation, interests, or responsibilities. An ES which selects appropriate group participants
can rely on certain inherited features instead of features which are expressed for each group membecr.
Likewise, EMS tools can be classified by their applicabilty for a particular group or problem. Inheritance
of these characteristics may allow the ES to procede more efficiently in determining which EMS tools to
select.

The initial prototype of ESP for tool selection uses IF-THEN rules. The group selection module
was designed with the procedures of selecting the participants represented with IF-THEN rules and the
facts about the participants stored in a database. This reduces the number of rules required in selecting
the participants. However, the knowledge base can be further refined with the use of more powerful
representational techniques such as semantic nets, frames, and object-oriented approaches which will be

investigated in the future,

2.1.3 Inferencing Strategy

The expert task must also be analyzed as to the fundamental nature of the problem: onc of design,
diagnosis, or both. Design problems typically feature a relatively limited sct of underlying conditions
and a much greater number of goals; diagnosis problems include relatively few goals with many conditions
which must be verified. For example, the problem of group selection is one of design since the number
of potential participants is likely to be much greater than the number of criteria involved in the group
configuration. Tool selection, on the other hand, is primarily a matter of diagnosis; there is a relatively
limited number of tools while there is a much greater number of factors involved in their selection. A
forward-chaining inferencing strategy is most efficient with design problems while a backward-chaining
strategy is most economical with diagnosis tasks. Some problems may involve diagnosis and design,

indicating a need for a hybrid inferencing strategy.

‘ Session

nCoordinator

Session
Purpoul ESP
Group
Selection
Participant \ tntersnces
List
scnebutes Calendar \
Scheduling Database
Mesting GFOUD &
TimesDate » Tool Profile
Calendar Tool / tnferences
System i
Selection
Seasion
Agenda

Data File of
Session Agenda

Figure 2: Architecture of ESP

For tool selection, the ESP prototype uses an exhaustive, backward-chaining inferencing straicgy
with provisions for rule uncertainty (to resolve conflicting rules). For group selec.on, ESP uses forward-

chaining.

2.2 ESP: Architecture

Figure 2 shows the high-level architecture of the prototype system currently being developed at the Univer-
sity of Arizona’s Collaborative Management Room. The system consists of three principle componcnts:

the group selection, calendar scheduling, and tool selection modules.

1. Group Selection Module

The facilitator or meeting coordinator begins ESP with the group selection module called to deter-
mine the appropriate participants for the meeting [Figure 3]. The type of the meeting, the topic of
the meeting, and personnel interests, responsibilities, and organizational affiliations are all factors

used by the knowledge base to configure a query for a search through a user profile databasc.

—integrated Office Information System

ESP Group Selec.iion

Selections ...

Project

h f ing is ... i
The type of meeting is Qrganizational

Project
Organizational
Divisignal
Committee
Other
Unknown

l

Enter - SELECT or REMOVE F1- HELP
F10 - SUBMIT & CONTINUE Esc -~ QUIT

Figure 3: ESP Group Selection Sample Screen

A DBMS 1akes this query to generate a list of participants for the EMS session. The meeting
coordinator can use the list as is or make further changes depending on his preferences. The role
of group selection is merely 10 provide a starting point for the meeting coordinator. This group
selection module arose out of prior research on intelligen: mai! systems {Higa et al 1988, Motiwalla

1989, Motiwalla et al 1989).

The meeting topic helps in determining the first-cut list. For instance, if the topic involves discussion
of a project, then all members responsible for the project are selected. Further, the supervisor of
the project and any member who has listed an interest in the area of the project will be selected.
The meeting type, on the other hand, helps in determining who should be added or deleted {rom
the list. For instance, if it is a preliminary discussion meeting, then the supervisor will be removed,
or if the discussion involves financial matters, then the financial officer involved with the projcct

will be added.

The group determination module is implemented using EXSYS Professional (a product of EXSYS,
Inc.). The knowledge base consists of 39 rules which configure a query for a DBase 1lI+ DBMS.
This DBMS parses the query, searches through a DBase I1I+ database of 37 user-profiles, and yiclds

a session participant list. This list is then written to an ASCII file for reference by the facilitator.

2. Calendar Scheduling Module

The meeting could be at:

7:30 to 10:30, Thur, 5-18-1989%
Show another possible time (Y/N)? Y
The meeting could be at:

9:00 to 12:00, Thur, 5-18-~198%
Show another possible time (Y/N)? N

Schedule the meeting at this time (Y/N)? Y

Figure 4: ESP Group Scheduling Sample Screen

Once the participant list is determined, the calendar scheduling module is used to determine times
which are convenient for all session participants [Figure 4]. In addition, the module checks the
calendar information of ef'the EMS meeting room to see if it can be scheduled when the panicipants
can meet. If all calendars match, the scheduling module makes the appropnate appointments in the
calendars of all concemed. 1If no time can be found that is convenient for all participants or the
meeting room cannot be scheduled at this time, a distributed, asynchronous EMS tool will need 1o

be used (to be determined in the final stage of ESP).

The scheduling module is currently implemented in Turbo Pascal although the tool will be ported

to a Unix C environment along with most of the EMS tools in the near future.

. Tool Selection Module

Once a group membership list has been constructed and meeting times have been arranged, the
meeting coordinator uses the tool selection module to determine the EMS tools required for the
session. The coordinator must have already used the group selection module at this point becausc
he is expected to answer questions regarding the group’s characteristics. For example, the coordi-
nator must know the extent of the participants’ familiarity with the topic as well as the extent of
common knowledge among the group members [Figure 5]. Additional questions are asked con-
cerning problem characteristics such as whether or not the problem can be segmented and whether
or not stakeholder identification is important. Once all of the questions are answered, a list of
recommended tools is written 10 a file with their accompanying certainty factors. As with the
group membership list, the coordinator at this point is free to modify the recommended list of tools

to reflect his own desires.

—lintegrated Office information System

ESP Tool Selection

Selections ...

The knowledge comain over the Overlapping
problem area is ..

Overlapping
Not overiapping
Unknown

Scrollable Help Window ~ Press Esc to exit™ |
The degree ol knowiedge overiap is the extant that group
mambers know ihe same information about a topic. For
exampie, members of the same project team are expecied to

shate 8 great cdeal of knowledge about that project, but

Enter - SELECT or REMOVE F1 - HELP
F10 - SUBMIT & CONTINUE Esc - QUIT

Figure 5: ESP Tool Selection Sample Screen

This module is also implemented in EXSYS Professional and has 68 rules. The list of sclected

tools is written to an ASCII file which is referenced later by the group facilitator.

2.3 ESP Implementation Status

ESP is implemented on an AT&T 6386 WGS workstation with two megabytes of main memory and an
80-megabyte hard disk. As was noted above, the prototype was developed using EXSYS Professionai,
Turbo Pascal, and DBase IlI+ under an MS-DOS environment. EXSYS Professional was chosen for its
graphic interfaces; portability among DOS, Vax, and Unix products; excellent database and knowledge
base support, and extemal program calls.

In summary, Huber [Huber 1984] notes that the success of a particular EMS depends or the range
of tasks supported and its frequency of use (both of which are mutally dependent). Through the added
functionality and flexibility of a chauffeured, asynchronous, distributed EMS, ESP provides a sufficicnt
number of tools and adequate support to achieve the critical threshold necessary for a high frequency of
use.

Huber also states that effective facilitation depends upon the technical competence of the users of an
EMS and knowledge of the planning process. As far as technical competence is concemed, the facilitators

and group participants are assumed to already be familiar with each of the EMS tools in the agenda.

10

ESP adds to the technical competence by providing the most appropriate tool for a given task and group.
The most important contribution of ESP, however, is the addition and dissemination of knowledge about
the planning process. The prototype satisfies this requirement through accumulated knowledge of the
requirements, purposcs, and goals of the group to be facilitated. The type of organization, its methods
and goals, and its purposes for the session are all important for the facilitator (human or automated-
chauffeur) to know. Knowledge about the initiator and members participating is also imponant. The

prototype system meets all of these requirements.

3 A Scenario Demonstrating the use of ESP

A case study was conducted using information from the Army AIRMICS office to demonstrate the
feasibility of ESP. The scenario involved project funding, a task found in practically all organizational
offices which deal with budgeting. Some details and names in this scenario have been changed for
confidentiality.

The AIRMICS staff meets annually 1o decide upon projects which will be funded in the upcoming
fiscal year. The chief of AIRMICS, Mr. Smith, decides that a meeting needs to be called. As the dircctor
of AIRMICS, he assumes the task of group coordinator and initates the use of ESP to set up the EMS

session. Mr. Smith brings up ESP on his networked microcomputer system.

3.1 Group Selection

The first task to accomplish is the selection of the group participants. Mr. Smith answers a series of
questions regarding the meeting type and meeting topic using ESP’s group selection module. From the
organization’s personnel profile database, ESP determines that Mr. Jones, Mr. Johnson, and Mr. Adams
need to attend because of their responsibity for project funding. In addition, Mr. Jefferson and Mr.

Madison are included based upon their interest in project planning.

3.2 Group Scheduling

Mr. Smith then uses the Group Scheduling Module of ESP to determine a meeting time convenient [or
all participants. From the individual calendars of all group participants, ESP determines that May 18
at 9:00 am is open and automatically blocks three hours for a EMS session in all of the calendars. In
addition, the scheduling module determines that the EMS decision room is available at this time and

schedules it accordingly.

11

3.3 Tool Selection

ESP then asks the group coordinator a series of questions regarding the problem and group. Since all
participants selected by the group selection module have similar backgrounds and have met several times
before, he states that there is much overlap of knowledge over the problem area. Similarly. he stales
that there is high familiarity with the topic. Table 1 presents the remainder of his ke answers. Table 2

presents the recommended tool list. These tools arc then used during the following facilitation stage of

the EMS session.

4 ESP Validation

Preliminary results from four field studies and ten historical case studies have revealed numerous insights

Parameter

Value

Stakeholder ID
L_—=—"'——."‘7

Knox;ledge Overlap
Group Familiarity
Need for Consensus
Need to Educate
Probiem Segmentation

Group Experience
Management Style
Idea Divergence
Policy Needed
Idea Consolidation
Voting Criteria

Voting Nature

Much
High
Low
Low
Yes

High
Hierarchical
Wide

Yes

Yes

Many
Judgmental
Needed

Table 1: AIRMICS Scenario Knowledge

into the pre-session planning process.

12

Tool Category Tool Name CF
Idea Gencramtigl Toolk El::cmnic Brainstorming 76
Issue Organization Tool Issue Organizer .65
Voting Tool Vote Sclection 75
Stzkeholder Tool Stakeholder Identification and Assumption Surfacing 82

Table 2: Recommended Tools for AIRMICS Scenario

1. Very experienced facilitators expressed little interest in having an on-line tool (such as ESP) for

assistance during planning, although relatively inexperienced facilitators expressed interest. This
result was anticipated and provides an additional motivation for the design of a consultation and

tutoring tool for novices.

. Facilitators may not be using the tools that are best for a given group, task, and environment. Even
though there is a justification for using certain tools, some are rarely if ever used. For example,
Policy Formation and Nomina! Group Technique often are highly ranked, but facilitators never use

them.

The Nominal Group Technique probably should be used more than it has besn. The reason seems
to be “familiarity breeds comfort™ as much as anything. In addition, facilitators often find it a little
more troublesome to use the Nominal Group Technique as compared to starting a group cold on

Electronic Brainstorming.
As for, Policy Formation, the tool is rarely used, which probably makes facilitators leery of using

the tool (which works fine) through lack of experience.

. A comparison of ESP’s recommendations based on facilitator responses 1o its inquiries and the tools

actually used showed a match of about 90 percent. This is encouraging for an early prototype.

4. Perhaps a 100 percent match will never be achieved. This is due to:

¢ Facilitators may remain with tools more familiar to them. The match would be higher than 90
percent if the problem with # 2 above were resolved. For example, one rule asks: 1s a policy
statement needed? The facilitator responded YES and ESP recommended Policy Formation.

It wasn’t used, however,

13

e Facilitators sometimes make mistakes. For example, a facilitator said that one-factor voting
was not needed, and yet, rank-order voting using one factor was then used. Perhaps there

were some hidden rules or a hidden agenda involved in this decision.

Additional validation of ESP is being conducted through approximately 70 historical case studies and
on-going field studies. This research will iead to further insights of the facilitator’s mental model of the

pre-session planning process.

5 Conclusion

An ES can make an EMS a more flexible and powerful aid in group decision processes. Existing EMS
incorporating a wide variety of tools are limited by the scarce expertise of human facilitators; integrating
ES with EMS will enable the replication of this scarce EMS session management knowledge and will
allow remote, distributed session planning to be conducted.

Scott Morton has noted that conventional DSS may be supplanted by EDSS (expert decision support
systems) [Scott Morton 1984]; the same may be said for GDSS and EMS. ES will some day menitor a
group's decision processes, analyze the content of the discussion, and direct the group on altematc paths
to reach a desired goal.

Humans will never completely disappear, however, as there may continue to be a need for “hand-
holding,” the reassuring presence of a human expert to extract group participants from difficult quagmires
and imbroglios. Also, for small groups with a limited need for a vast array of EMS tools, a human
facilitator may still be the most cost-effective means of controlling group collaborative work.

Potential developers of an integrated ES/EMS must keep in mind the many limitations of the respective
technologies to assure a successful outcome. Particularly, additionai research is required in the area of
deep knowledge, the underlying theory of group processes, to adequately represent the human behavior
emulated by an ES group facilitator. ESP presents a panoply of rich research areas including technicai,
behavioral, and design issues which are as yet relatively unexplored. Work is currently under way to
provide intelligent support for the facilitation and post-session analysis stages of EMS sessions through
natural language processing and additional ES features. In additon, more rules are being added to the

tool selection module to incorporate knowledge about the nascent field of asynchronous, distributed EMS.

14

Acknowledgments

This project is supported by a grant from the Army Institute of Research in Management Information,
Communications, and Computer Science (AIRMICS), Altanta, GA Grant #: DAKF-11-88-C-0021. We
would like to thank Dr. Kunihigo Higa, Richard Orwig, Pamela Howard, Hsiao-Yu Wu, and Chih-Ping
Wei for their work on the ESP prototype.

References

1. Agarwal, R. and Prasad, K., 1989, “Enhancing the Group Decision Making Process: An Intelligent
Systems Architecture,” Proceedings of the Twenty-Second Annual Hawaii International Conference

on System Sciences, Vol. III, pp. 273-279.

2. Aiken, M., Liu Sheng, O., and Vogel, D., 1989, “Integrating Expert Systems with Group Decision

Support Systems,” working paper, University of Arizona.

3. Aiken, M., Motiwalla, L., Liu Sheng, O., and Nunamaker, J., 1989, “An Expert System Approach
to Group Decision Support System Tool Selection,” Proceedings of the 1989 Annual National

Conference of the Association of Computer Educators, pp. 96-104.

4. Aiken, M., Motiwalla, L., Liu Sheng, O., and Nunamaker, J., 1990, “An Expen System for
Pre-Session Group Decision Support Systems Planning,” Proceedings of the Twenry-Third Annual

Hawaii International Conference on System Sciences.

5. Applegate, L. M. et al, 1986, “A Group Decision Support System for Idea Generation and ls-
sue Analysis in Organizational Planning,” Proceedings of the Conference on Computer-Supnorted

Cooperative Work, pp. 16-34.

6. Baskin, A. B. et al, 1988, “Integrated Design as a Cooperative Problem Solving Acitivity,” working

paper, Univerisity of [llinois.

7. Beauclair, R. A., 1987, ““An Experimental Swudy of the Effects of GDSS Process Support Applica-

tions on Small Group Decision Making,” Unpublished Ph.D. dissertation, Indiana University.

8. Dennis, A., George, J., Jessup, L., Nunamaker, J., and Vogel, D., 1988, “Information Technology
to Support Electronic Meetings,” MIS Quarterly, Vol. 12, No. 4, pp. 591-624.

15

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21

. DeSanctis, G. and Gallupe, R., 1987, “A Foundation for the Study of Group Decision Supporn

Systems,” Management Science, Yol. 33, No. 5.

Easton, A., 1988, “An Experimental Study of Automated Versus Manual Support for Stakeholder
Identification and Assumption Surfacing with Small Groups,” Unpublished Ph. D. dissenation,

University of Arizona.

Ellis, C., Gibbs, S., and Rein, G., 1988, “Groupware: The Research and Development Issues,”
Report STP-414-88, MCC Software Technology Program, Austin, TX.

Gallupe, R. B., 1985, “The Impact of Task Difficulty on the Use of a Group Decision Supporn

System,” Unpublished Ph. D. dissertation, University of Minnesota.

Gray, P. et al, 1981, “The SMU Decision Room Project,” Transactions of the First International

Conference on Decision Support Systems, pp. 122-129.

Hale and Haseman, 1987, “EECS: A Prototype Distributed Executive Communication and Suppon
System,” Proceedings of the Twentieth Hawaii International Conference on System Sciences, Vol.

1, pp. 557-565.

Higa, K. et al, 1988, “A Theoretical View and a Design Approach to a Knowledge-Based Mail

System,” Working Paper, University of Arizona.

Huber, G., 1984, “Issues in the Design of Group Decision Support Systems,” MIS Quarterly, Vol.
8, No. 3, pp. 195-204.

Jarke, M., 1986, “Knowledge Sharing and Negotiation Support in Multiperson Group Decision

Support Systems,” Decision Support Systems. No. 2. pp. 93-102.
Johansen, R., 1988, Groupware: Computer Support for Business Teams, Free Press, New York.

Keen, P. and Scott Morton, M., 1978, Dccision Support Systems: An Organization Perspective,
Addison-Wesley, Reading, MA.

Kerr, E. and Hiltz, S., 1982, Computer-Mediated Communication Systems, Academic Press, New

York.

Kraemer, K. and King, J., 1986, “Computer-Based Systems for Cooperative Work and Group De-
cision Making: Status of Use and Problems in Development,” Proceedings of the 1986 Conference

on Computer Supported and Collaborative Work, pp. 353-375.

16

22.

o
LY

24.

=27,

31.

Kull, D., 1982, “Group Decisions: Can a Computer Help?” Computer Decisions, Vol. 14, No. 5,
pp. 70-84.

. Lewis, F., 1982, “Facilitator: A Microcomputer Decision Support System for Small Groups.”

Unpublished Ph. D. dissertation, University of Louisville.

Michaelson, R. and Michie, D., 1983, “Expert Systems in Business,” Datamation, Vol. 29, No.
11, pp. 240-246.

. Motiwalla, L. 1989, “A Knowledge-Based Messaging System: Framework, Design, Prototype

Development, and Validation,” Unpublished Ph.D. Dissertation, University of Arizona.

. Motiwalla, L. et al, 1989, “A Framework to Support Managerial Activities Through Knowledge-

based Electronic Mail Systems,” Proceedings of the Twenty-Second Hawaii International Conference

on System Sciences.

Nagao, D., Parsons, C., Herold, D., 1989, “Group Dyamics in Distributed Computer Supported

Groups,” working paper, College of Management, Georgia Institute of Technology.

. Nunamaker, J., Vogel, D., Heminger, A., Martz, B., Grohowski, R., and McGoff, C., 1989, “Ex-

periences at IBM with Group Support Systems: A Field Study,” /nternational Journal of Decision

Support Systems, Vol. S, No. 2, pp. 183-196.

. Quinn, R. et al, 1985, “Automated Decision Conferencing. How it Works,” Personnel, Vol. 62,

No. 11, pp. 49-55.

. Richman, L., 1987, “Sofiware Catches the Team Spirit,”” Fortune, Vol. 115, No. 12.

Scott Morton, M., 1984, “Expent Decision Support Systems,” a paper presented at the special DSS
conference, Planning Executive Institute and Information Technology Institute, New York, New
York, p. 21.

Steeb, R. and Johnston, S., 1981, “A Computer-Based Interactive System for Group Dccision
Making,” IEEE Transactions on Systems, Man, and Cybernetics, Volume SMC-11, Number 8, pp.
544-552,

. Straub, D. and Beauclair, R., 1988, *Current and Future Uses of Group Decision Support Sysicm

Technology: Report on A Recent Empirical Study,” Journal of Management Information Systems,
Vol. 5, No. 1, pp. 101-116.

17

34. Turban, E. and Watkins, P., 1986, “Integrating Expert Systems with Decision Suppon Systems,”
MIS Quarzerly, Vol. 10, No. 2, pp. 121-134,

35. Turoff, M. et al, 1988, “The TEIES Design and Objectives: Computer Mediated Communications
and Tailorability,” Working paper, Computerized Conferencing and Communications Center, New

Jersey Institute of Technology, Newark, NJ.

36. Turoff, M. and Hiltz, S., 1982, “Computer Supporn for Group Versus Individual Decisions,” /EEE

Transactions on Communications, Vol. 30, No. 1, pp. 82-90.

37. Watson, R., 1987, “A Swdy of Group Decision Support System Use in Three and Four-person
Groups for a Preference Allocation Decision,” Unpublished Ph. D. dissertation, University of

Minnesota.

38. Winston, P. and Prendergast, K. (eds.), 1984, The Al Business: The Commercial Uses of Al, MIT
Press, Cambridge, MA.

39. Zigurs, 1., 1987, “The Effect of Computer-Based Support on Influence Attempts and Pattems in
Small Group Decision-Making,” Unpublished Ph. D. dissertation, University of Minnesota.

About the Authors

Milam W, Aiken received the B.S. degree in Engineering and the Master’s of Business Administration
degree from the University of Oklahoma and the B.A. degree in Computer Science and the B.S. degree
in Business from the State University of New York. He is currently a Ph.D. student in Business Ad-
ministration with a major in MIS at the University of Arizona, and his research interests include office
automation, expert systems, and group decision support systems.

Luvai F. Motiwalla received his B.COM. degree from University of Bombay, B.B.A. degrec in
Business Administration from the Penn State University and M.S. and Ph.D. in MIS from the University
of Anzona. He is currently an assistant professor of MIS at the University of Hartford, West Hartford,
Connecticut. His research interests include integration of expert systems technology into the office
automation area and studying its impact on managers and knowledge workers.

Olivia R. Liu Sheng received the B.S degree from the National Chiao Tung University in Taiwan,
R.O.C. and the Master’s and Ph.D. degrees in Business Adminsitration with a major in Computers and

Information Systems from the William E. Simon Graduate School of Business Adminsitration, University

18

of Rochester, Rochester, N.Y. She is an assistant professor of MIS at the University of Ariiom Her
principal research interests are analysis and design of distributed information systems.

Jay F. Nunamaker, Jr. received a B.S. degree from Camegie-Mellon University, B.S. and M.S.
degrees in Mechanical and Systemns Engineering from the University of Pintsburgh, and a Ph.D. in
Systems Engineering and Operations Research at Case Institute of Technology. He is a professor of MIS
and Computer Science at the University of Arizona. He is an author of more than 35 papers on the
automation of software construction, performance evaluation of computer systems, and decision support

systems for system analysis and design and has lectured throughout Europe, Russia, and South America.

19

ﬂﬁ’tm/ix _2_7,

Integrating Expert Systems with Group Decision Support Systems

Milam W. Aiken
Olivia R. Liu Sheng
Douglas R. Vogel

Department of Management Information Systems
College of Business and Public Administration
University of Arizona
Tucson, AZ 85721 602-621-2748
Bitnet: AIKEN @ARIZMIS
Internet: AIKEN @MIS.ARIZONA.EDU

March 15, 1990

Abstract

Expent systems are powerful tools serving as adjuncts to decision making and have found wide
applicability in a variety of areas. Synihesizing expert systems with group decision support systems has
the potential to enhance the quality and efficiency of group communication, ricgoiiation, and collaborative
work. This paper examines possible synergies between the two technologies and provides a survey of
current partially-integrated systems. Finally, a prototype design of a highly-integrated system is described

with directions for further research.

Keywords: Expert Systems, Knowledge-Based Systems, Group Decision Support Systems, Artificial

Intelligence

Integrating Expert Systems with Group Decision Support Systems

1 Introduction

Information technology has received widespread interest in recent years for the support of group produc-
tivity [33, 38, 60, 68). Early computer-based systems for group support, described as Group Decision
Support Systems {GDSSs), included “... a set of software, hardware, language components, and proce-
dures that support a group of people in a decision related meeting” [33] while DeSanctis and Gallupe [17]
defined GDSSs as integrated computer-based systems which facilitate solution o1 semi- or unstructured
problems by a group that has joint responsibility for making the decision. There continues to be some
disagreement about what exactly constitutes a GDSS [8, 26, 39, 73, 75, 77}, although Kraemer and King
[43] have noted that GDSSs have evolved beyond their original emphasis on decision making. The term
Electronic Meeting System {EMS) has been proposed as a broader definition of information technology to

support group meetings. An EMS is [15]:

An information technology-based environment that supports group meetings, which may be
distributed geographically and temporally. The information technology environment includes,
but is not limited to, distributed facilities, computer hardware and software, audio and video
technologies, facilitation, and applicable group data. Group tasks include, but are not limited
to, communication, planning, idea generation, problem solving, issue discussion, negotiation,
conflict resolution, systems analysis and design, and collaborative group activities such as

document preparation and sharing.

For the purposes of this paper, however, the term GDSS will be used to describe this more compre-
hensive view of group support systems.

Previous research has shown the benefits of information technology in electronic meeting environments
[58, 64, 73, 78, 81], and reports of time and cost savings of up to 56 percent have been cited in the literature
[23, 46, 56]. In addition, GDSSs have been shown to foster collaboration, communication, deliberation, and
negotiation {7, 9, 19, 25, 45]. However, several technological, sociological, and psychological problems still
remain with the use of current GDSSs. These problems are manifested in difficulties with user interfaces,
group communication, use of GDSS tools, and access to supporting information, among others, and are

discussed in more detail in section 2.

The objective of this paper is to describe a systems modelling and research framework for the inte-
gration of expert systems (ESs) with GDSSs to alleviate these problems in group support systems. First,
a background investigation of some problems with GDSSs is presented in section 2. Section 3 describes
seven variations of integrating ESs with GDSSs to address these problems, and section 4 provides a sam-
ple highly-integrated ES/GDSS prototype system. Conclusions and directions for further research appear

in section 5.

2 Problem Background and Potential Solution

2.1 GDSS Problem Areas

Most early systems 10 support group meetings met with only limited success [43]. Although many causes
may be cited for their failure, a partial explanation can be found in the lack of support given to these
systems [32, 76]. Later, more general-purpose systems were developed to more adequately supporn
group collaborative work and communication. An example of such a general-purpose GDSS is found in the
Coliaborative Management Workshop at the Department of Management Information Systems, University
of Arizona. The Workshop consists of twenty-four terminals connected to a file server in a decision room
environment with a suite of GDSS tools known as GroupSystems [1, 15].

GroupSystems was designed with an engineering perspective of creating tools that people in decision-
making situations might find usefut [43]. Further, the system was designed with the rational mode! of
user behavior in mind. In this model, decision makers try to optimize their decisions by gathering a
wide variety of information about the problem, developing alternative solutions to the problem, and finally
making a choice (what Simon refers to as Intelligence, Design, and Chaice {62]). As a consequence of
this rational, technology-driven approach to the design of GDSSs, many theoretical questions arise or: the
effect of group and individual characteristics, the task, the context, and technological limitations on GDSS
processes and outcomes (Figure 1) {41, 51, 56]. With this research framework in mind, a review of the
literature and experience with over 100 groups using GroupSystems at the University of Arizona suggest

many problems with current GDSSs and several possible solutions:

1. Group members need to be encouraged to participate in sessions.

in current face-to-face GDSS sessions, group facilitators are able to visually monitor session par-
ticipants and can encourage individuals to contribute more frequently if necessary. Although such

monitoring is not always desirable, a need to monitor session activity becomes even more important

Group

* Individusl Membaer
Charscieristica

: Grouo Size

M Hlllov?

* Formgl/informa)

* Ongoing/One Time

‘ Expartence

* Cohssiveness

* Cohestveness

Task

s (Yy oe '::t'a‘:!llt) :
: : amonubvouuon Process Outcome !
M * Complexity Degree of © Satietagtion with '
; $rivciuce £igoted.y Buseney
'] ‘"8:‘ Sereions Time Reauiied ———
. CuQIuM & of Atiernatives .
: Zu"ncinnlou : goal.&u':-:»nu :
Context KRS sensvior * Contigence
*incenilvan lnd L
Rewsrd System
Organizerion Culture /
* Environmeny
GDSS
N Pruogcaununcc
Work Group

R Environment
: - — -
. P nlz
: Dedg&n &a ing 1
: Environment
L R

Figure 1. A Research Framework for GDSS

as GDSS sessions evolve to geographically-dispersed and asynchronous environments and as the

number of session participants increases dramatically.

A possible solution to this problem is an automated monitoring facility which may be able to keep
track of the frequency of comment generation. It can then remind individuals to contribute more as
needed, or it can suggest ending the current discussion if the frequency of comment generation is

decreasing.

. Formalized meeting procedures need to be enforced.

As the number of participants increases in larger group sessions, more rigid control over these
sessions may be necessary to maintain order. Even with smaller groups, experience has shown
that discussions are often sidetracked onto tangential topics that must be redirected by the facilitator

back to the meeting's original problem statement.

The provision of automated parliamentary procedures and automated negotiation techniques may
alleviate some of the burden placed upon the group facilitator to direct the discussion. By structuring
discussions for more efficiently, automated techniques may improve the productivity and quality of

the session.

3. Facilitators are often uncertain about requirements and options for meeting procedures.

As new tools and meeting procedures are continually developed for the support of group sessions
(and old tools are modified), the requirements for the use of these tools also change. For example,
it is often not readily apparent when a particular tool such as Electronic Brainstorming should be
used. What size of group does the tool support? What other group, task, and environmental
characteristics are assumed to be present for correct use of the tool? In addition to not knowing
under what conditions to use a tool, novice facilitators may lack sufficient knowledge of how to use

new group support techniques effectively.

Providing an automated counselor to give advice on selecting appropriate group support tools can
greatly increase the use GDSSs. By distributing selection expertise, many more groups which do
not have expert facilitators will be able to use these systems successfully. Also, novice facilitators

and group members can benefit from automated, on-line tutorials on the use of each tool.

4. Facilitators often have trouble using complex group support systems.

Even if the facilitator knows when and how to use a particular group support tool, he may encounter
problems setting up the tool, linking input to and output from the tool, and correcting any unforeseen
"glitches" that may occur during a session. Many specific manual steps are needed to conduct a
group session, often with somewnhat cryptic, non-intuitive commands or menu items associated with
each step. One mistake in the sequence can have disastrous effects later in the group session

{such as having to re-start the discussion).

An automated facilitator or facilitator's assistant may be able to manage more of the burden that
is currently assumed by the group facilitator to conduct a session. Such an automated facilitator
could accept an agenda of group tools selected (see item 3 above) and duration times for each
tool as input and couid then take the necessary sequence of steps to conduct the group session.
In addition, expertise on the correction of unexpected problems could be included, available to the

facilitator at the touch of a key.

5. Group members need access to organizational and environmental information.

When a group is discussing a highly technical or detailed topic such as budget preparation or project
requirements generation, group members may be forced to rely on memory to recall exact financial
figures or planning specifications. However, few participants can be anticipated to reliably recall

such information.

Since the quality of a group discussion is greatly contingent upon the quality of informatidn brought
to the session by group members, the provision of ancillary on-line information retrieval services
may be able to augment members’ recall of pertinent knowledge. Additionally, intelligent or heuristic
search capabilities can be expected to increase the availablity of information internal or external to

the organization while decreasing the retrieval time.

Presentation of retrieved information in a format compatible with a group member’s mental model is
also important. For example, the system should be able to present information to the participant in

graphical, textual, or numerical form — whichever is more comfortable to the user.

Research on GDSSs has included the study of methods to make these systems more intuitive and
easier o use. However, more needs {0 be done. As indicated above, one approach to increasing the
effectiveness and efficiency of group support is the provision of automated support tools which incorporate

human expertise — otherwise known as expert systems.

2.2 The Expert System Solution

Artificial intelligence may be the most important technical contributor to the future of GDSS [14, 37].
Specifically, expert systems (ESs) may transform GDSSs from passive agents that process ang present
information to active agents that enhance interactions [21]. The goal, however, is to design such integrated
systems in a way that enhances desirable procedural and social group processes. This transformation to
*softer software” [37] includes the integration of expertise to simplify use and operation of GDSSs.

The expert system paradigm has found many successful commercial applications in a variety of ar-
eas [13, 44, 50, 52, 80}, and the expert system development methodology continues to be studiously
researched as a promising frontier of artificial intelligence. ESs are being generated for new applications
at a frantic pace. These systems are being created to fill a great need for decision support and to provide
more powerful information systems. Most work to date has been focused on applying ES technology to
fraditional data processing (DP) areas [27]. Turban and Watkins [71] expanded the scope of ES research
by developing a framework for applying ESs to decision support systems (DSSs). The next logical step is
to apply ES technology to GDSSs (Figure 2). By integrating these two technologies, GDSSs may become
more efficient and effective in a variety of group support environments. However, this integrated system
development shouid be guided less by the available technology and more by the need to understand the
fundamental nature of automated group support as well as the group's real behaviors and needs [18].

An additional motivation for integrating ESs with GDSSs is provided by DeSanctis and Gallupe [16]

Well-
Structured
Problem
Structure 0
-
Structured

Few Many

Group Size
Supported

Figure 2: Evolving to ES/GDSS

who have urged that GDSS research proceed along an orderly hierarchy of increasingly technologically-
advanced group support systems. DeSanctis and Galiupe have argued that GDSS research should begin
with a study of Level 1 systems (systems which provide a communication medium only) and Level 2
systems (systems which provide decision-making support) before proceeding to higher-evel systems.
They assert that research should advance to Level-3 systems only after the impacts of lower-level systems
are thoroughly studied. In this paper, we argue that the time for evolution to Level-3 systems has arrived.
Many current GDSS tools provide the communication support of Level 1 systems and the decision-making
support of Level 2 systems and have been reviewed thoroughly by the literature [42, 79). Although
more research into these lower-level systems can and should continue, additional gains in knowledge of
automated group work can be achieved through the development of higher-level systems. An integration
of ESs with GDSSs will provide the knowledge-based support of Level 3 systems which can control the
pattern, timing, or content of group information exchange, greatly alleviating the problems of current GDSSs
discussed in section 2 above.

Although some initial research has been conducted in the area of applying intelligent support to GDSSs,
much more needs to be done. One of the first attempts was made by Stodolsky [66] who developed a
prototype system for automated group confiict resolution. Later, Hiltz and Turoff described a system which
actively filters and structures information exchange [30]. Similar attempts to add intelligent support to
group information exchange were made by Chang and Leung [12], Hogg {31}, Malone et a! [49], Motiwalia

6

ATToes GOSS ___Jes |
Objective Group decision § communication support Human expertise repioation
Nature of support Groups Personal and groups
Who makes the recor dations or ? The group The system (advisory onty)
Characle/fstics of problem srea Cormplex, broad, unstructured Narrow domain, structured
Nature of problems Ad-hoc, unique Repetitive
0 /Knowiedge base Factual knowledge Factual procedural and knowleage
Reasoning capabiiity None Yos {0.9. deduction & induction)
Explanation capability None or very limited Yes (how and why capsbikiios)
Table 1: Differences Between GDSS and ES

[[symergistic Area ~ [coss Contrbution €S Contribution 1
D Manag Sy mypmmmaﬂ:—u: [truction, ion, and vos of DB 8 DBMS
Mode! Base Q t Syst Provides standard L e truction, op \, and of models
Intertace Group interface Pravides explanations, makes friendlier interface
Network interaction Geographically distributed group ® . pert
Overall Synergy Provides group suppoct ois Provides inteligent advice efficiently, expands system capabiities]

Table 2: GDSS and ES Synergies

[54], and Pollock [57]. Other efforts have provided only general architectures and research guidelines
[2, 32, 36). Our research builds upon these earlier attempts to provide a more comprehensive view of the

problem of automated group support.

2.3 Synergies of ES and GDSS

The great majority of expert systems are stand-alone, independent systems, advising users on specific
problem areas. However, one trend in expert systems is toward the development of large, complex
systems, far beyond the scope of stand-alone systems [27]. The GENESIS package, for exampte. includes
seven different expert systems which act together to assist in DNA structural analyses. Other examples
of complex, integrated systems have been provided by Japan's Fifth Generation project {11].

As was noted earlier, integrating ESs with DSSs has created some powerful and useful information
systems [28, 61, 69, 70, 71}. This evolution toward integrating relatively-disparate information technologies
has provided the opportunity to capitalize on synergies previous!y unavailable. Proceeding beyond single-
user DSSs to group DSSs will provide even more benefits.

By taking advantage of the heuristic expertise provided by ES technology and the communication
and decision making support for groups provided by GDSSs (Table 1), many benefits may be obtained.

Integrating ESs with GDSSs provides synergies with respect to database management, model base man-

DB/DBMS (=] O Model Base

Developer g [“ Developer
ES g2

ES #1 Mode! Design
DB Design Consuliant
Cansultant

-
Data Model
Base Base
ES #3 ES #4
Database — ' .._..._. lun‘:ml SJ"
\interaction nleraction

’lnum;ence ' Design ' -

GDSS Tools
‘ ES 3‘5

e=—me——e | Facilitator Network
A foteraction Interaction JEN—,
Network

Session
(ES #7)
User
Interaction

Facilitator

GDSS Session
Participants

Figure 3: Integration of ES and GDSS

agement, user interface, system deveiopment, and system monitoring (Table 2). By incorporating ESs
throughout the GDSS architecuture, the overall system is greatly enhanced. Some possible methods for
integrating ESs with GDSSs are detailed in the following section.

3 ES Integration Into GDSS Components

A general-purpose GDSS may be described as a system with five principal components: a database,
a model base, an uderlying computer network, an interface, a facilitator, and a group of users. Expert

systems can be integrated with each of these components as shown in Figure 3 and described below.

3.1 ES#1: Expert System as a Consultant to the Database Builder

Database linkages with GDSSs are gradually becoming more prevaient as the need for environmental

and organizational information scanning increases. During a group session, the ability for participants to

access on-line information can greatly contribute to the quality of the on-going discussion.

The development of a database and a database management system (DBMS) is a formidable task,
however, even for experts. Replication of this scarce expertise would be beneficial to the vast number of
relatively novice DB/DBMS developers who are faced with this task.

Some important work has already been accomplished with this goal of integration in mind. Jarke
and Vassiliou [35] have described how an ES can be used to improve the construction, operation, and
maintenance of a DBMS, and Higa [29] and Liu Sheng [47] have detailed automated methods for relationat
database development. Additional work on the automated creation of databases has been conducted by
Berman {10] and Storey [67].

3.2 [ES#2: Expert System as a Consultant to the Model Base Builder

Perhaps the most critical component of a GDSS is a model base of tools and procedures sufficiently
broad in scope to ensure continuing use of the system [33]. The development of this mode! base must be
approached with some care. As with a database, an ES can greatly assist the mode! builder in improving
the construction, operation, and maintenance of a model base. For a GDSS, a model base may be
considered as the set of procedures and software tools that support a group in communication and decision
making. However, the steps in the development of these procedures and tools is not weli-known. Huber
[33] has provided some initial design guidelines, but detailed techniques are lacking. Eventually, GDSS
generators (tools from which specific GDSSs for particular group and task environments are constructed)
may become availabie, analagous to the development of DSS generators [34, 63].

GDSSs must be designed for use by different groups and must be flexible to accomodate a variety
of group behaviors and tasks. For example, research has shown that two different groups performing the
same task use group technology in very different ways [59]. Appiegate [6] used manuai siandgard soitware
engineering techniques to design, implement, and evaluate the technical feasibility of automated support
for electronic brainstorming. An example of using intelligent techniques for the construction of a GDSS

has been provided by Aiken and Hayes [3].

3.3 ES#3: Expert System Interaction with the DBMS

Extracting information, as opposed to facts, from a database can in some cases be a formidable challenge.
As the amount of data stored in organizational archives increases exponentially, the ability to access
critical information from this resource becomes even more important. The deveiopment of sopisticated

query languages such as Structured Query Language (SQL) and natural language interfaces such as

9

HEARSAY, INTELLECT, and CLOUT has alleviated the problem of expressing a searcher’s irue intent
somewhat, but additional difficuities remain. For example, an ES may be able to direct a searcher's
path to information which may be relevant but not specifically requested. An £S can provide meeting
participants with on-line assistance in retrieving information pertinent to the discussion from the database.
The heuristic search capabilities of such a system can provide users with information more efficiently.

In addition to assistance with user queries, an ES may be able to assist the DBMS with the problem
of accessing information in a complex, distributed database. Research into the challenges imposed by
these networks of data may reveal further areas requiring heuristic expertise.

Johansen [37] posits the concept of artificially-intelligent agents which are capable of acting on behait
of humans. These agents may search through a database to find relevant information to a conversation.
Mailer Demons and News Agents are examples of such agents which redirect mail and search out relevant
news for a particular user.

Jarke and Vassiliou [35] have described a prototype project at NYU that has coupled an ES with a
DBMS of a life insurance firm. PROPHET [53] is another example of a coupled ES/DB which allows
users with little or no system knowledge to access information easily and quickly. Finally, the ESP system
(described in subsection 4.2 below) has an ES for selecting group members for a potential GDSS session

from a database and provides a further example of an ES #3 [4, 5].

3.4 ES#4: Expert System Interaction with the Model Base

Model Management Systems (MMSs) have been researched at length in a variety of contexts, particularly
with respect to DSSs [20]. MMSs have been proposed to facilitate management of organizational planning
models in a manner similar to the management of organizational data {40].

Choosing the appropriate communication or decision support modei for a given group, task, and
environment can be a daunting task. Over 70 different group probiem solving techniques are available
in academic or commercial settings [74], and the nature of the tasks supported vary considerably [43].
Huber notes, however, that the success of a particular GDSS depends on the number and nature of
GDSS capabilities, as well as the number and nature of tasks supported [33). Therefore, some means
of optimizing the choice of a particular GDSS technique for a given situation is necessary. Currently,
however, littie knowledge is available to make these decisions.

integrating an ES with a GDSS mode! base will allow even novice group faciliators to select the
appropriate tools and procedures for a group work session. This integration will allow the GDSS to

provide a sufficient number of tools and adequate support to achieve the critical threshold necessary for

10

a high frequency of use, which in turn, is necessary for a successful GDSS [33). ESP is perhaps the oniy
existing system tfo tackle this problem of selecting the appropriate GDSS technique directly {4, 5].

3.5 ES#5: Expert System Interaction with the Facilitator

In addition to the tasks of selecting the appropriate GDSS tools and group participants for a given session,
the tacilitator is faced with numerous other administrative and technical tasks. For a general-purpose
GDSS, these tasks may include logging-in participants, deleting and creating disk files, clearing the system,
elc. Athough these functions may be menu-driven, novice facilitators may need assistance with the
sequence of steps involved.

Monitoring of the group discussion is also important for control of the session, and several systems
have been proposed to help the facilitator with this task. Process advisors include organizational protocol
guides, commitment coordinators, conflict managers, group process coaches, and group processing aides
{37] and may have a limited understanding of the subject matter under discussion. Interaction trackers
help participants identify patterns in the discussion and may keep track of who has sent a message to
whom and how often. Participation ticklers, intelligent comment chainers (chronologically, by subject, or
by opinion), and goal achievement aids (task tickiers and motivational advisors) are additional examples
of intelligent support for the monitoring task.

Liza [24] is one example of an intelligent agent which monitors session activity and suggests changes
of topic or a break. The coordination system described by Ellis et al [21] is an additional example of
ways systems may inform users of the states of their actions and may generate automatic reminders and
alerts. ESF (described in subsection 4.3 below) is another example of intelligent, automated support for

facilitation [48].

3.6 [ES#6: Expert System Interaction with the Network

The backbone of a GDSS is a network interconnecting group participants, the facilitator, and supporting
hardware in a local or geographically-distributed environment. Many problems arise when trying tc commu-
nicate over long distances including determining the least-cost communication path as well as establishing
and maintaining connections.

Adaptive networks have been devised which are capable of shifting connections in response to chang-
ing use patterns [37]. Many systems are already in existence which rely heavily on expert system tech-
nology to support network communciation. However, these systems typically act as advisors to human

operators rather than operate autonomously.

11

3.7 ESi#7: Expert System Interaction with the User
Expert systems can assist with tool/user interaction in a variety of ways:

¢ Natural Language Interface

With the advent of natural language interfaces, group participants wili feel less inhibited about using
a GDSS (many group members may not even know how to type, much less how to use a computer).
Many current GDSSs rely on menu bars or special function keys. Facilitators or their assistants must
spend a considerable amount of time with new system users just familiarizing them with the tool
functions. Intelligent interface support could reduce the time necessary to begin meaningful group

wWOrk.

As was noted earlier, several systems have been developed to facilitate user communication with
the system via some form of natural language interface. HEARSAY |, for example, uses a limited
form of speech understanding for simple database queries and INTELLECT relies on typed entries.
On a more restricted level, HAL for Lotus Corporation’s Lotus 1-2-3 spreadsheet programs reduces
the need for the user to remember specific commands. Much more needs to be done, however,

before natural language will be widely available to software systems.

o Intelligent Mail

Electronic mail management systems are becoming increasingly important to GDSSs in which par-
ticipants are geographically dispersed. Even when participants ére in a face-to-face decision room
environment, a large group often precludes effective verbal exchange of information. The problem
is, however, group members may wish to remain anonymous. Alternatively, many participants may
be relatively unknown to the remainder of the group. An intelligent mail system may alleviate the
problem of communicating with anonymous group participants. For example, a participant may ad-
dress his mail to whom it may concern rather than by specific addressees. By analyzing keywords
in the subject line or body of the message the intelligent mail system may send the message to the
appropriate group members. Maione et al [49], Motiwalla [54], and others have developed intelli-
gent mail systems to facilitate message distribution and management, but littie has been done to

incorporate these systems into a GDSS.

¢ Intelligent Help

Context-sensitive help woulid greatly alleviate new group members’ difficulties in adjusting to a new

GDSS. Intelligent help may be able to infer the user's goal and may be able to direct the user to

12

ES Solution GDSS Stage

i E8M - Expert Session Manager

5 ESP _i._... Pre-Gession Planning
: (Expert SBession Planner)
: 5 l
! .
E H
5 ESF —f— 8ession Facilitation
! (Expert Seasion Facllitator)
! ’
ESA Y Post-Session Analysis

(Expert Session Analyzer)

.....................................

Figure 4: The Stages of a GDSS

related, but not specifically-requested information. A more comprehensive form of intelligent help

could take the form of an intelligent tutoring system.

4 A Prototype System for ES/GDSS Integration

Expert Session Manager (ESM) is a prototype system which incorporates three distinct expert systems
for supporting each stage of a general-purpose GDSS session (Figure 4). Each of these stages and its

expert system support is described in more detail below.

4.1 Pre-Session Planning

During this stage, a session facilitator talks with a representative from the organization which needs to
meet to resolve a problem. This representative provides the facilitator with information regarding the group
characteristics and the task faced. Using this information, the iacilitator can construct an agenda of GDSS
tools and meeting times to bring about a successfui outcome. In addition, the tfacilitator can help the
representative come up with a list of appropriate group participants from the organization to effectively
address all issues of the meeting.

Selecting the correct tools and session participants becomes increasingly important as GDSSs evoive

to distributed systems in which a facilitator is not physically present [55]. GDSS support is needed to

13

resolve the uncertainty involved in making these group and tool seiections.

Expert assistance at this stage can alleviate the burden placed upon a human facilitator, enhance
the quality and outcome of the ensuing session, and distribute the scarce expertise of GDSS pre-session
planning [4, 5]. Effective intelligent support for pre-session planning is becoming even more crucial to
computer-based meetings as the trend toward distributed GDSSs grows {(due in part to the cost and time
advantages over its face-to-face counterpart).

Expert Session Planner (ESP) is a prototype ES designed to support GDSS session facilitators during
critical pre-session planning. ESP allows scarce human facilitator knowledge to be distributed and provides
consistency across sessions. In addition, ESP provides training for novice session facilitators in the

selection of GDSS software.

4.2 Session Facilitation

In this stage, the facilitator follows the agenda prepared in the planning stage and leads the group through
the session using appropriate techniques for the task at hand. Some GDSS techniques include: generation
of ideas or plans, organization of ideas, consolidation and focusing of ideas, generation of proposals,
and assessment of proposals [16]. These techniques can be applied to decision types described as
Piarning (generation of action-oriented plans), Creativity (generation of novel ideas), Inteliective (selection
ot the correct alternative), Preference (selection of an alternative for which there is no correct answar),
Cognitive Conflict (resolution of conflicting viewpoints), and Mixed Motive (resolution of conflicting motives
orinterests). A variety of GDSS tools are available to support these techniques and decision types including
the University of Arizona's GroupSystems GDSS tools: Electronic Brainstorming (EBS), Automated Delphi,
Nominal Group Technique (NGT), Issue Analyzer, Issue Organizer, Policy Formation, Vote Selection,
Alternative Evaluator, Topic Commenter, Stakehoider Identification and Assumption Surfacing (SIAS), and
Enterprise Analyzer.

During the facilitation stage of a GDSS session, the group facilitator must manitor the > 7ing discus-
sion to help lead it in appropriate paths of discourse and to terminate the session as comments become
redundant or superfluous. As groups grow large, facilitators may be overwhelmed by the sheer volume of
information. ES support is needed 10 ease the burden of facilitation.

In addition to facilitators, group members may need assistance using a GDSS. An organization GDSS
may be only infrequently used, resulting in less familiarity with the system and even less use [33). ES
support in the form of on-line tutorials, intelligent help, and other functions may be needed to keep users

afresh.

14

Expert Session Facilitator (ESF) provides some support in this stage by relieving the human facilitator

of some of the burden of monitoring comments. This becomes increasingly important when groups and
group members are distributed temporally and geographically. ESF monitors the number of comments
from each user and may send reminders to contribute more. Additionally, ESF provides an indicaton
to the human facilitator that comments are dropping off in frequency and content, possibly indicating the

need to terminate the session.

4.3 Post-Session Analysis

At the end of the session, the facilitator meets with the group representative again to ensure that the session
effectively met the group’s needs. The post-session analysis i-ncludes summary reports of decisions that
were made during the meeting as well as a complete transcript of comments generated by the group
participants. This output can serve as input to other software such as CASE tools, databases, etc. ES
support is needed here to impose structure on this output. Expert Session Analyzer (ESA) assists the

human facilitator in structuring this information for more detailed analysis.

4.4 Discussion

In summary, Huber [33] notes that the success of a particular GDSS depends on the range of tasks
supported and its frequency of use (both of which are mutually dependent). Through the added functionality
and flexibility of a chauffeured, asynchronous, distributed GDSS, ESM provides a sufficient number of tools
and adequate support to achieve the critical threshold necessary for a high frequency of use.

Huber also states that effective facilitation depencfs upon the technical competence of the users of a
GDSS and knowledge of the planning process. ESP adds to users' technical competence by providing the
most appropriate tool for a given task and group, ESF provides facilitator as'sistance in monitoring session
comments, and ESA provides assistance in analyzing these comments, The most important contribution
of ESM, however, is the addition and dissemination of knowledge about the planning, facilitation, and post-
session analysis processes. The prototype satisfies this requirement through accumulated knowledge of
the requirements, purposes, and goals of the group to be facilitated. The iype of organization, its methods
and goals, and its purposes for the session are all important for the facilitator (human or automated-
chauffeur) to know. Knowledye about the initiator and members participating is also important. The

prototype system meets ali of these requirements,

15

5 Conclusion

A review of the literature as well as extensive experience conducting group support sessions has indi-
cated several problems with GDSS user interfaces, group communication, and access to environmental
information — all requiring human expertise to carrect. This paper has provided a general framework
in which to address these problems by integrating expert systems with group decision support systems,
combining the advantages of each and achieving a greater synergy overail. This framework can be used
for the study of current and development of future automated group support systems. A highly-integrated
ES/GDSS prototype system under development at the University of Arizona was detailed as an example
approach for such future systems. _

In summary, an £ES can make a GDSS a more flexible and powerful aid for group support. Existing
GDSSs incorporating a wide variety of tools are limited by their ease of use and by the scarce expertise
of human facilitators; integrating ESs with GDSSs will greatly simplify the use of such systems and will
enable the replication of GDSS session management knowledge for remote, distributed session planning.

Scott Morton has noted that conventional DSSs may be supplanted by EDSSs (expert decision support
systems) [61]; the same may be said for GDSSs. ESs may some day monitor a group's decision processes,
analyze the content of the discussion, and direct the group on alternate paths to reach a desired goal.

Humans will never completely disappear, however, as there will continue to be a need for “hand-
holding,” the reassuring presence of a human expert to extract group participants from difficult quagmires
and imbroglios. Also, for small groups with a limited need for a vast array of GDSS tools, a human
facilitator may still be the most cost-effective means of controlling group coliaborative work.

Potential developers of an integrated ES/GDSS must keep in mind the many limitations of the re-
spective technologies to assure a successful outcome. Particularly, additional research is required in the
area of deep knowledge, the underlying theory of group processes, 0 adequately represent the human
behavior emulated by an ES group facilitator. The ESM prototype as well as the framework present a
panoply of rich research areas including technical, behavioral, and design issues which are as yet relatively
unexplored. Work is currently under way to provide intelligent support for the facilitation and post-session
analysis stages of GDSS sessions through natural language processing and additional ES features. In
addition, more rules are being added to the too! selection module of ESP to incorporate knowiedge about

the nascent field of asynchronous, distributed GDSS.

16

REFERENCES

10.

11.

. Plex Guide, Department of Management information Systems, University of Arizona, 1988.

. AGARWAL, R. AND PRASAD, K. Enhancing the group decision making process: An intelligent

systems architecture. In Proceedings of the Twenty-Second Annual Hawaii Conference on System

Sciences (Kailua-Kona, Hawaii, January 3-6), 1989, 3, 273-279.

. AIKEN, M. AND HAYES, G., A DEVS-Scheme simulation of an electronic meeting system. Simula-

tion Digest 20, 2 (Summer 1989}, 31-39.

. AIKEN, M., MOTIWALLA, L., LIU SHENG, O., AND NUNAMAKER, J. An expert systems approach

to group decision support systems planning. In Proceedings of the 1989 Annual National Conference

of the Association of Computer Educators (Denver, Colorado, September), 1989, 86-104.

. AIKEN, M., MOTIWALLA, L., LIU SHENG, O., AND NUNAMAKER, J. ESP: An expert system for

pre-session group decision support systems planning. In Proceedings of t/.- Twenty-Third Hawaii

International Conference on System Sciences, (Kailua-Kona, Hawaii, January 2-5), 1890, 3, 279-286.

APPLEGATE, L. ldea management in organization planning. Unpublished PdD dissertation, Univer-
sity of Arizona, 1986.

APPLEGATE, L. M., KONSYNSKI, B. R., AND NUNAMAKER, J. F. A group decision support system
for idea generation and issue analysis in organizational planning. In Proceedings of the Conference

on Computer-Supported Cooperative Work (Austin, TX, December), 1986, 16-34.

. BASKIN, A. B, LU, S., STEPP, R. E., AND KLEIN, M. Integrated design as a cooperative probiem

solving activity. Working paper, University of lllinois, 1988.

BEAUCLAIR, R. A. An experimental study of the effects of GDSS process support applications on

small group decision making. Unpublished Ph.D. dissertation, Indiana University, 1987.

BERMAN, S. A semantic data modet as the basis for an automated database design tool. Informa-

tion Systems 11, 2 (1986), 142-165.

BONCZEK, R. H., HOLSAPPLE, C., AND WHINSTON, A. Developments in DSS, Research Report
1S7-8108519, MIS Research Center, Krannert Graduate School of Management, Purdue University,
1984.

17

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

CHANG, S. AND LEUNG, L. A knowledge-based message management system, ACM Trahsacn’ons,
on Office Information Systems 5, 3 (July 1987), 213-236.

CLANCEY, B. C. AND SHORTLIFFE, E. H., eds. Readings in Medical Artificial Intelligence: The
First Decade, Addison-Wesley, Reading, Massachussetts, 1884.

CROWSTON, K. AND MALONE, T. Intelligent software agents. Byre 13, 13 (December 1948),
267-272.

DENNIS, A., GEORGE, J., JESSUP, L., NUNAMAKER, J. AND VOGEL, D. Information technciogy
to support electronic meetings. MIS Quarterly 12, 4 (December 1988), 591-624.

DESANCTIS, G. AND GALLUPE, B. A foundation for the study of group decision support systems.
Management Science 33, 5 (May 1987), 589-609.

DESANCTIS, G. AND GALLUPE, B. Group decision support systems: A new fronteir. Data Base
(Winter 1985), 3-10.

DOYLE, J. Expert systems without computers or theory and trust in artificial intelligence. The A/
Magazine 5, 2 (Summer 1984), 59-63.

EASTON, A. An experimental study of automated versus manual support for stakeholder identifi-
cation and assumption surfacing with small groups. Unpublished Ph. D. dissertation, University of
Arizona, 1988.

ELAM, J. AND KONSYNSKI, B. Using artificial intelligence techniques to enhance the capabilities

of model management systems. Decision Sciences 18, 3, 487-502.

ELLIS, C., GIBBS, S., AND REIN, G. Groupware: The research and development issues. Report
STP-414-88, MCC Softtware Technology Program, Austin, Texas, December 1988.

FEIGENBAUM, E. A., BUCHANAN, B. G., AND LEDERBERG, J. On generality and problem solving:
A case study using the DENDRAL program. Machine Intelligence 6, (1971) B. Meltzer and D. Michie,

eds., American Elsevier, New York, 165-130.

GALLUPE, B. The impact of task difficulty on the use of a group decision support system. Unpub-
lished Ph. D. dissertation, University of Minnesota, 1985.

18

24.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

GIBBS, S. J. LIZA: An extensible groupware toolkit. Proceedings of the CHI ’89 Cary’érence on
Human Factors in Computing Systems, (Austin, TX, April 30 - May 4), ACM, New York, 1989.

. GRAY, P., BERRY, N. W., ARONOFSKY, J. S., HELMER, O., KANE, G. R., AND PERKINS, T. E.

The SMU decision room project, In Transactions of the First International Conference on Decision

Support Systems (Atlanta, Georgia, June), 1981, 122-129.

HALE AND HASEMAN. EECS: A prototype distributed executive communication and support sys-
tem. In Proceedings of the Twentieth Hawaii International Conference on System Sciences, (Kailua-

Kona, Hawaii, January), 1987, 3, 557-565.

HARMON, P. AND KING, D. Expert Systems: Artificial Intelligence in Business, John Wiley & Sons,
New York, New York, 1985,

HENDERSON, J. C. Finding synergy between decision support systems and expert systems re-

search. Decision Sciences 18, 3 (Summer 1987}, 33-349.

HIGA, K. AND LIU SHENG, O. R. intelligent database development: An AIMAIL example. Technical

Report, Department of Management Information Systems, University of Arizona, 1987.

HILTZ, S. R. AND TUROFF, M. Structuring computer-mediated communication systems to avoid
information overioad. Communications of the ACM, 28, 7, (1985), 680-689.

HOGG, J. Intelligent message systems. In Office Automation, D. TSICHRITZIS, Ed., Springer-
Verlag, New York, 1985, 113-133.

HUBER, G. P. Group decision support systems as aids in the use of structured group management
techniques. In DDS-82 Conference Proceedings, (1982), 96-108.

HUBER, G. P. Issues in the design of group decision support systems. MIS Quarterly (September
1984), 195-204.

HWANG, S. Automatic model building systems: A survey. In DSS ' 85 Transactions, Providence, Rl,

Institute of Management Sciences, 1985.

JARKE, M. AND VASSILIOU, Y. Coupling expert systems with database management systems. In
Artificial Intelligence Applications for Business, W. REITMAN, ed., APLEX Publishing Corporation,

Norwood, New Jersey, 1984.

19

36.

37.

38.

39.

40.

41,

42.

43.

44,

45.

46.

47.

48.

4.

JARKE, M. Knowledge sharing and negotiation support in multiperson group decision supbort sys-

tems. Decision Support Systems 2 (1986), 93-102.
JOHANSEN, R. Groupware: Computer Support for Business Teams, Free Press, New York, 1988.

KEEN, P. AND SCOTT MORTON, M. Decision Support Systems: An Organizational Perspective,
Addison-Wesliey, Reading, MA, 1978.

KERR, E. AND HILTZ, S. Computer-Mediated Communication Systems, Academic Press, New York,
1982.

KONSYNSKI, B. AND DOLK, D. Knowledge abstractions in model management, DSS-82 Transac-
tions (1982).

KOTTEMAN, J. AND KONSYNSKI, B. Information systems planning and development: Strategic

postures and methodologies, Journal of Management Information Systerns 8, 3 (1983}, 195.

KRAEMER, K. L. AND KING, J. L. Computer-based systems for cooperative work and group decision
making. ACM Computing Surveys 20, 2 (June 1988), 115-146.

KRAEMER, K. L. AND KING, J. L. Computer-based systems for cooperative work and group decision
making: Status of use and problems in development. In Proceedings of the Conference on Computer

Supported and Collaborative Work (October 1986), 353-375.

KULIKOWSKI, C. A. Arificial intelligence methods and systems for medical consultation. IEEE

Transactions on Pattern Analysis and Machine Intelligence (September 1980).
KULL, D. Group decisions: Can a computer heip? Computer Decisions 14, 5 (May 1982), 70-84.

LEWIS, F. Facilitator: A microcomputer decision support system for small groups. Unpublished Ph.

D. dissertation, University of Louisville, 1882.

LIU SHENG, O. R. A structured approach for relational database development. Technical Repart,

Department of Management Information Systems, University of Arizona, 1987.

LIU SHENG, O., AMARAVADI, C., AIKEN, M., AND NUNAMAKER, J. I0IS: A knowledge-based

approach to an integrated office information system, Working paper, University of Arizona, 1989.

MALONE, T. W.,, GRANT, K. R., TURBAK, F. A., BROBST, S. A, COHEN, M. D. Intelligent infor-
mation systems. Communications of the ACM (May 1987), 390-402.

20

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

MCDERMOTT, J. Ri: A rule-based configurer of computer systems. Artificial Intelligence 19,
(September 1982), 39-88.

MCINTYRE, S., KONSYNSKI, B., AND NUNAMAKER, J. Automated planning environments: Know!-

edge integration and model scripting. Journal of Management Information Systems, Forthcoming.

MICHAELSON, R. AND MICHIE, D. Expert systems in business. Datamation 29, 11 (November
1983), 240-246.

MORRISON, J. AND MORRISON, M. PROPHET: A flexible, maintainable and expandable object-

oriented knowledge base/database system. Working paper, University of Arizona, 1980.

MOTIWALLA, L. A knowledge-based messaging system: Framework, design, prototype develop-

ment, and validation. Unpublished Ph. D. dissertation, University of Arizona, 1989.

NAGAO, D., PARSONS, C., HEROLD, D. Group dynamics in distributed computer supported groups.
Working paper, College of Management, Georgia Institute of Technology, 1989.

NUNAMAKER, J., VOGEL, D., HEMINGER, A., MARTZ, B., GROHOWSKI, R., AND MCGOFF, C.
Experiences at IBM with group support systems: A field study. Internation Journal of Decision
Support Systems 5, 2 (June 1989), 183-195.

POLLOCK, S. A rule-based message filtering system. ACM Transactions on Office Information
Systems 6. 3 (July 1988), 232-254.

QUINN, R. E., ROHRBAUGH, J., AND MCGRATH, M. R. Automated decision conferencing. How it
works. Personnel 62, 11 (November 1985), 49-55.

REIN, G. AND ELLIS, C. The Nick summer experiment. A field study on the usage of meeting
support technology by software design teams. Report STP-018-88, MCC Software Technology

Program, Austin, Texas, 1988.
RICHMAN, L. Software catches the team spirit. Fortune 115, 12 {June 8, 1987), 125-136.

SCOTT MORTON, M. Expert decision support systems. a paper presented at the special DSS
conference, Planning Executive Institute and Information Technology Institute, New York, New York,
May 21-22, 1984, 21.

SIMON, H. A. The New Science of Management Decision, New York: Haper and Row, 1960.

21

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74,

75.

SPRAGUE, R. H., Jr. A framework for research on decision support systems. MIS Qua'?terly 4,4
{December 1980), 1-26.

STEEB, R. AND JOHNSTON, S. C. A Computer-based interactive system for group decision making.
IEEE Transactions on Systems, Man, and Cybernetics SMC-11, 8 (August 1981), 544-552.

STEFIK. The knowledge medium. The Al Magazine 3, 1 (Spring 1986).

STODOLSKY, D. Automating mediation in group problem solving. Behavior Research Methods and
Instrumentation 13, 2 (1981), 235-242.

STOREY, V. C. An expert view creation system for database design. Unpublished PhD dissertation,
University of British Columbia, Vancouver, B.C., Canada, October 1986.

STRAUB, D. AND BEAUCLAIR, R. Current and future uses of group decision support system tech-
nology: Report on a recent empirical study. Journal of Management Information Systems S, 1,

(Summer 1988), 101-116.

SULLIVAN, G. AND FORDYCE, K. Decision simulation, one outcome of combining Al and DSS.
Working paper #42-395, IBM Corporation, Poughkeepsie, New York, 1984.

SULLIVAN, G. AND FORDYCE, K. The Role of artificial intelligence in decision support systems. A
paper delivered at the international meeting of TIMS in Copenhagen, Denmark, June 17-21, 1984.

TURBAN, E. AND WATKINS, P. Integrating expert systems with decision support systems. MIS
Quarterly 10, 2 (June 1986), 121-134.

TUROFF, M., FOSTER, J., HILTZ, S., NG, K., WALSH, K., AND JOHAR, G. The TEIES design and
objectives: Computer mediated communications and tailorability. Working paper, Computerized

Conferencing and Communications Center, New Jersey Institute of Technology, Newark, NJ, 1988.

TUROFF, M. AND HILTZ, S. R. Computer support for group versus individual decisions. JEEE

Transactions on Communications 30, 1 {(January 1982), 82-90.

VAN GUNDY, A. B. Techniques of Structured Problem-Solving, Van Nostrand Reinhold, New York,
1981,

VOGEL, D., NUNAMAKER, J., AND KONSYNSKI, B. Group, task, and technology in a group support

system environment. DSS Journal Forthcoming.

22

76.

77.

78.

79.

80.

B1.

VOGEL, D., NUNAMAKER, J. Group decision support system impact: Multi-methodological expio-

ration. Information and Management Forthcoming.

WAGNER, G. AND NAGASUNDARAM, M. Meeting process augmentation: The rea! substance of
GDSS. IFIPS Working Group 8.3 Conference on Organizational Decision Support Systems (June
1988).

WATSON, R. A study of group decision support system use in three and four-person groups for a

preference allocation decision. Unpublished Ph. D. dissertation, University of Minnesota, 1987.

WATSON, R. T., DESANCTIS, G., AND POOLE, M. S. Using a GDSS to facilitate group consensus:
Some intended and unintended consequences. In Proceedings of 8th ICIS (1987), 339-402.

WINSTON, P. H. AND PRENDERGAST, K. A, eds. The Al Business: The Commercial Uses of Al
MIT Press, Cambridge, MA, 1984.

ZIGURS, |. The effect of computer-based support on influence attempts and patterns in small group

decision-making. Unpublished Ph. D. dissertation, University of Minnesota, 1987.

23

Application of
Knowledge-Based System Design
to the Design of a
Distributed Group Decision Support System’

Joline Morrison
Department of Management Information Systems
University of Arizona
Tucson, Arizona 85721

I This paper was supported in part by a grant from the Army Institute of Research in Management Information,
Communications, and Computer Science (AIRMICS), Atlanta, Georgia, Grant #: DAKF-11-88-C-0021.

TABLE OF CONTENTS

1. Introduction: The Software Problem il 1
2. Overview of Software Process Models il 2
2.1 Exploratory Programmingoiuuiniiuniin i 2

22 The Waterfall Model i 3

2.3 Formal Transformationsot in it 4

2.4 TheSpiral Model it 4

3. Specifying System Requirementsu ottt iiietneniunnenenennn. 5
3.1 Contents of the Requirements Definition and Specification Documents 6

3.1.1 Rejuirements Definition 6

3.1.2 Requirements Specification 6

3.2 Modelling Sy:ter1 Requirements Within the Requirements Specification 7

3.3 Methods for Modelling System Requirements 8

4. Software Design [11
4.1 Functional Design i 11

4.2 Object-Oriented Design i i 12

43 Formal Design e 13

5. A Knowledge-Based Software Design Process 15
5.1 Overview of Knowledge-Based System Design 15

5.2 Adaptation to Software Design: Software Process Phases 16

5.2.1 Identify goals and objectives L L L. 17

5.2.2 Detfine requirements and constraintso.ein..... 18

5.2.3 Model system requirements specifications 18

5.2.4 Generate possible configurations, 19

5.2.5 Develop adesignmodel [P 20

5.2.6 Develop a design specification i, 20

527 Implement thesystem it 20

6. Design and Implementation of a Distributed Electronic Meeting System 20
6.1 System OVeIVIEWottt i e e e 20

6.2 Software Process Phasesottt 21

6.2.1 Goals and Objectives oottt ittt e e 21

6.2.2 Requirements and Constraints 22

6.2.3 System Requirements Specifications 23

6.2.4 Possible System Configurations 27

6.25 DesignModel 29

6.2.6 Design Specification il 31

6.2.7 System Implementation ittt 33

7. Conclusions and Future DIreCtonSottt ittt et e e e e et et e e e e e e e, 34

1. Introduction: The Software Problem

' As software systems become increasingly complex, the problems associated with
software project development increase also. Projects are haunted by schedule and budget
overruns, unmet specifications, and inadequate system performance. Many delivered systems
are unreliable and unmaintainable. These problems can be caused by developers having a
vested interest in tools and techniques that are outdated, ad hoc, ineffective, or inefficient.
Developers may also be victims poor project team management [DeMarco and Lister, 1987],
and may resist change due to the time pressure of increasing software demand over supply,
An additional source of difficulty, the focus of this paper, is the absence of a methodical and
disciplined approach to software engineering [Ratcliff, 1987].

Why, after over twenty years of building software, has no methodical and disciplined
approach emerged? Brooks [1987] attributes this to four‘ problems inherent to software:

Complexity. Software is highly complex because no two parts are alike (beyond the level of
individual statements or subroutines). It is therefore far more complex than computers or
automobiles, which contain repeated elements.

Conformity. Much of the complexity associated with software evolves from its requirement
to conform to its intended environment in terms of interfaces and existing hardware.

Changeability. In manufactured goods, design changes are usually incorporated into new
mode] releases. However, since software is "infinitely malleable", faster and more numerous
modifications are often demanded, and the product is constantly in a state of change.

Invisibility. Abstract models may be used to show system data flows, control flows, timing
sequences, and patterns of dependencies. However, any one of these may be difficult to
represent in a complex system. Attempting to show the complex inter-relationships of all
of them working together requires such a high level of abstraction that the overall system
becomes unvisualizable.

These ideas indicate that software systems are highly specialized. This may partially
explain why no satisfactory engineering methodology exists: there would need to be as many
methodologies as systems. Perhaps a different viewpoint is needed. Most software process
models are either document-driven or code-driven [Boehm, 1988]). Unfortunately,
requirements documents and code for all systems are different. However, the objectives are

the same: to build a software system to meet a specified set of requirements. Therefore,

it is proposed to apply an objectives-driven engineering approach to the software 'proccss
~ to investigate its contribution to a software project.

Descriptions of common software processes and requirements and design specification
methods are presented to derive conclusions about their strengths, weaknesses, and domains.
An attempt is made to overcome some of these problems by applying an engineering design
methodology called Knowledge-Based System Design to the software process. This
methodology is described, and an adaptation suitable for software design is developed. The
resulting process is then illustrated by applying it to a software project that involves building
a software system to support group decision-making in a distributed environment.
Advantages and disadvantages of using the methodology within this project are presented

along with possible future research directions.

2. Overview of Software Process Models

Software process models define tasks within software development projects. Four
common approaches (exploratory programming, the waterfall model, formal
transformations, and the spiral model [Boehm, 1988; Sommerville, 1989]) and their domains

will be described.

2.1 Exploratory Programming

A holdover from the early days of software development, this technique involves
writing and modifying code until it works correctly. It is useful for exploratory systems where
requirements are difficult to define. A disadvantage is that after a number of fixes, the code
iIs so poorly structured that the bulk of programmer man-hours is spent fixing flaws
introduced by earlier fixes [Brooks, 1982}, This approach may be acceptable for small
systems with stable requirements; however, systems built using this process are probably best

viewed as prototypes for establishing system requirements.

2.2 The Waterfall Model

This model was initially suggested by Royce in 1970 [from Sommerville, p. 7).
Numerous refinements and variations have been suggested, but the basic stages are as
follows:

(1) Requirements analysis and specificaion. The prospective system’s specifications,
constraints and goals are established through interviews with system users. Thev must then
be documented so as to be understandable to a wide range of people, including
programmers, system engineers, managers, and users [Trapnell, 1969].

(2) System and software design. System design involves partitioning requirements into
hardware and software components; software design involves partitioning the software
functions into modules that can be transformed into computer programs. Usually elaborate
documentation must be generated and approved before implementation may begin.

(3) Implementation and unit testing. The software design is implemented into a series of
computer programs that are individually verified.

(4) System testing. The components are assembled and tested together.

(5) Operation and maintenance. The system is put into operation, and improved and
enhanced as necessary.

The waterfall model recognizes feedback/alteration loops between stages, with looping
allowed only between successive stages in order to minimize re-working.

This approach is well known, widely used, and has well-established standards.
However, its requirement that design specifications be frozen beyond the implementation
phase can result in software that does not have the desired functionality. Also, preparation
of the elaborate requirements and design documentation can be time-consuming and costly.
The model is well-suited to large multi-component systems with stable requirements, but
does not work well for systems with ill-defined or evolving requirements. The high degree
of formality and volume of documentation is desirable for systems that are built and

maintained by large programming teams with high personnel turnover.

2.3 Formal Transformations

This model involves creating a formal specification (consisting of sets, mappings,
constraints, etc.) of the desired system and then transforming it into executable code
[Barstow, 1987]). The transformation preserves correctness, so the resulting program
accurately represents its specifications. Since modifications are made to specifications rather
than code, the poorly-structured and over-modified code often found in exploratory
programming methods is avoided. The design, implementation and testing phases of the
waterfall model are condensed into the single phase of transformation.

Presently this is primarily an experimental technique. It is well-suited for systems with
evolving requirements, provided that changes do not require extensive re-working of system
specifications. However, complex or interactive systems with many potential combinations

and/or variations of inputs, outputs, and states may be difficult to specify.

2.4 The Spiral Model [Boehm, 1988]

This model views the development process as a series of concentric spirals, with each
cycle representing a progression in the completion of the system. The project path is
determined by the amount of perceived risk in areas such as interface design, system
performance, project budget, and scheduling.

Each cycle begins with identification of the cycle’s objectives, alternatives, and
constraints. The alternatives are evaluated in relation to the objectives and constraints in
order to identify areas of uncertainty that are potential sources of project risk. The first two
cycles, conceptual development and software design, employ resolution strategies such as
prototyping, simulating, or administering user questionnaires to resolve risk.

Remaining sources of risk set the path for future progress. For example, if a
prototype design has acceptable performance and user-interface risk considerations but
unacceptable budget and scheduling risks, the model may proceed along steps similar to the
waterfall model, repeating the budget and scheduling evaluation and risk-resolution in the
design and implementation phases. Conversely, if the prototype’s requirements-change risk
is very low, the exploratory method may be used while continuing to evaluate performance

ard user-interface risk.

The spiral model encourages development in the manner best suited to the particular
project. However, it lacks a defined methodology and specifications for milestones and
project reviews. It is not well-suited for contract software projects with rigid deliverable
deadlines, since development paths are difficult to predict. Until this method is defined

more clearly and completely, it is probably best suited to in-hor e systems.

This overview leads to the observation that the types of systems that can be built
using the exploratory, waterfall, or formal transformation processes tend to be limited; and,
no process is satisfactory for a wide range of systems'. Also, these approaches view
software systems from a narrow, requirements-driven perspective rather than from a global,

objectives-driven viewpoint with an eye on evolving constraints and future enhancements.

The underlying methods of requirements and design specification within these

software processes will now be investigated.

3. Specifying System Requirements

All software processes require determination of the services the system should
provide and the constraints under which it will operate. Parnas and Clements {1986] argue
ihat complete requirements documentation is essential before project design begins in order
to allow users to review system functionality and behavior, prevent requirements decisions
from being made accidentally during the design phase, avoid duplication and inconsistency,
make good manpower and time estimates, and ensure project continuity in case of personnel
turnover. The form of this documentation can range from a mental model to an elaborate
portfolio of text specifications and graphical models. The exploratory, formal
transformation, and spiral model processes specify no explicit form for requirements or
design documentation, while the waterfall model requires specific documents as process

milestones. The process of requirements definition/specification/modelling will be explored

! The Spiral Model is more versatile in its range of system types and uses an objectives-
driven approach, but it lacks a well-defined methodology.

5

from the waterfall model’s rigorous viewpoint, with the understanding that the other

processes require similar but perhaps less formal documents.

3.1 Contents of the Requirements Definition and Specification Documents
Requirements documentation can be produced at different levels of abstraction
depending on its purpose aind intended audience. Often, two separate documents are
created: the requirements definition is highly conceptual, written in a narrative style, and
aimed towards users. The requirements specification is more detailed and technical, often
presented as an abstract model, and aimed toward system developers [Sommerville, 1989].

The contents of these documents is described.

3.1.1 Requirements Definition

The degree of detail contained in the requirements definition will vary depending on
the organization, project, and process. Broadly speaking, it should state why a system is
needed, what functions the system will accomplish, and how the system will accomplish these
functions in terms of its functional architecture and design constraints [Ross and Schoman,
1977). Herninger [1980] maintains that the requirements definition should contain external
system behavior specifications, implementation constraint descriptions, and acceptable
responses to undesired events such as hardware failures and user errors. She further states
that the document should be easy to change, be designed to serve as a reference tool, and

record forethought about the system life-cycle (i.e. anticipate future changes).

3.1.2 Requirements Specification

Two types of requirements are defined within the requirements specification
document: functional requirements, concerning the functionality the system must possess and
the nature of its interaction with its environment; and non-functional requirements, regarding
restrictions on possible solutions [Roman, 1985). Functional requirements involve specifying
the relevant internal states of both the system and its environment. From the user’s

viewpoint, they can be described as system input and output [Ratcliff, 1988]. Functional

specifications should emphasize the "what" rather than the "how" of the software system
[Borgida et al, 1985).

Non-functional requirements are difficult to specify, since they are often not entirely
known at the time of initial requirements specification. However, Roman [1985] suggests
the following categories:

Interface - how information is presented to and received from the environment;

Performance - performance issues such as response time, throughput, reliability, and
security;

Operating - physical attributes and components distribution;

Life-cycle - design quality and development/maintenance/enhancement issues;
Economic - short and long-term cost considcratioﬁs;

Political - policy and legal issues

Parnas and Clements (1986) suggest undesired event handling (management of erroneous or
unpredicted events) as an additional non-functional constraint.

The requirements specification document may be produced by adding detail to the
requirements definition. However, large and complex systems may require creation of a
model to emphasize relevant information and hide insignificant details. System requirements

modelling techniques are now examined.

3.2 Modelling System Requirements Within the Requirements Specification

Software systems are composed of two basic components: data and processes.
Architectural abstractions used in software modelling include networks, hierarchies, and
objects. Networks depict processes as nodes and data as directed arcs between nodes.
Processes are assumed to be asynchronously concurrent, so it is difficult to represent real-
time systems with this method alone. Hierarchies are useful for analyzing system
composition. A possible software-system high-level decomposition could be as follows
[Ratcliff, 1987]:

eys ent
Decomposition Componen
Level Data Process
r-—————-—-q-—_-——————-—
System - Database System
Subschemas Subsystems
Tables Programs
Program File Program
Records Module
Fields Instructions

Hierarchical modelling is the basis for top-down design (where the problem is first considered
at its highest level of abstraction and then successively decomposed into modules) and
bottom-up design (where low-level modules are synthesized).

Objects represent system components as self-contained environments with local
processes and well-defined interfaces that accept and deliver data to one another. Object-
oriented modelling is usually used in conjunction with other techniques as a low-level design
abstraction since objects are readily translated into program modules that communicate by
passing parameters.

Many methods have been developed for modelling and documenting system
requirements. Descriptions of a sampling of such methods, identifications of their modelling
techniques, analysis of their strengths and weaknesses, and conclusions about their common

problems will be presented.

33 Methods for Modelling System Requirements

Structured Systems Analysis (SSA). The SSA approach {DeMarco, 1978; Gane & Sarson,
1979] requires the current physical system to be modelled using dara-flow diagrams (DFDs)?.
This physical DFD is then converted to a logically-equivalent DFD and modified as

2 A DFD is a network model that represents processes as nodes, data flows as labelled
arcs, and data sources and sinks at the boundaries of the system or subsystem.

8

necessary to capture the requirements of the new system. Alternative implementations can
. be generated and evaluated. Modelling technique: network. Strengths: is a well-accepted
methodology, with easily constructed and interpreted diagrams. Weaknesses: is difficult to
use for programming tasks without well-defined requirements; DFDs provide no information
about data types (pure versus control data [Couger et al, 1982]); supplementary tools such
as decision trees and decision tables are required to express decision logic; requirements for
real-time systems cannot be adequately expressed.

Jackson System Development (JSD). The JSD method [Cameron, 1986] consists of three
phases: modelling, networking, and implementation. Modelling requires identification of the
system’s real-world entities and their functional requirements. Actions that affect each entity
are entered sequentially below the entity in a hierarchical structure. Actions can lead to new
entities, thus expanding the hierarchy. Leaf actions are decomposed into disconnected
sequential processes. Networking involves expanding the existing processes and creating new
processes until the level of detail is to that of a single instruction. A network is then created
to show processes and their interconnections. Implementation involves specifying process
schedules and timing constraints and transforming the specification into an implementation.
Modelling techniques: hierarchy, network. Strengths: emphasizes system environment
considerations; is well-suited to real-time systems; provides highly-detailed requirements
specification that is easily transformed into design specification. Weaknesses: identification
of initial entities may be difficult; diagrams are complex and may be difficult to understand;
the methodology is complicated and not widely used.

SADT™D (Structured Analysis and Design Technique). SADT is a proprietary system that

provides a detailed system requirements specification as well as project management features
for team coordination, documentation, and project control. Requirements are expressed
through hierarchies of networks called "models" that are constructed from a special symbol
library, and may include supplementary text. Models can be data oriented or process
oriented; they may express either an individual or collective view of the system [Ross, 1977,
Ross and Schoman, 1977]. Modelling technique: hierarchy of networks. Strengths:
provides detailed and precise specifications that may be carried to any desired level of
decomposition; may be used for most types of systems. Weaknesses: is a proprietary and
complex methodology that is difficult to learn and understand; the extensive graphics symbol
library may not be understood by non-specialists.

SREM (Software Requirements Engineering Methodology). SREM is part of the SYSREM

system used to develop time-critical, distributed real-time systems for the Department of
Defense. Based on = finite state machine model’, requirements are represented by a
specialized graphical notation that maps processes from the arrival of a given input through

3 A finite state machine is a network model that represents functions as nodes, data as
inputs and outputs of nodes, and control as the mechanism that activates functions in the
desired sequence {from Sommerville, p. 75].

9

to the eventual output. This may be repeated at various levels of abstraction. SREM is
~ supported by Requirements Statement Language (RSL), which takes inputs of syntactically-
correct requirements statements and stores them in a database that can be queried to check
completeness and consistency [Ratcliff, 1987, Couger et al, 1982]. Modelling technique:
network. Strengths: provides complete and correct specifications that are easily translated
into a design specification. Weaknesses: developed for a specialized system type; is a
complex, proprietary methodology that may require extensive training; database system
requires a large amount of computing power.

PSL/PSA (Problem_ Statement Language/Problem Statemeni Analyzer). PSL/PSA is a

programming language designed to express software requirements [Teichrow and Hershey,
1977). System requirements are represented in PSL, and then translated and stored in a
database that can be queried using one of several PSA report generators. PSL models
systems in database-type terms of "objects” that possess "attributes”; objects are related by
various "relationships”. Objects in PSL can be events and processes as well as data.
Modelling technique: objects. Strengths: generates well-defined machine-readable
requirements with high degree of consistency and correctness. Weaknesses: PSL is
proprietary, highly formal, and structured, with a fairly steep learning curve.

Programming Languages. A problem common to specialized notations such as SADT,
SREM, and PSL/PSA is high startup and training cost. As a result, the use of derivatives
of high-level programming languages such as Ada(™) has been suggested. Mander [from
Sommerville, p. 95) compared writing requirements definitions in Ada to writing definitions
in SADT and PSL/PSA, and concluded that Ada was as expressive as the other notations
provided extensive comment statements were included. Ada dialects have been developed
specifically for requirements specification [from Ratcliff, p. 42]. Modelling technique:
networks, objects. Strengths: provide structure and formality to specifications. Weaknesses:
may not be able to express high enough levels of abstraction or avoid implementation
details.

The following conclusions can be drawn from this review of requirements specifications
methods:
1. Less-complex methods such as SSA and programming languages such as Ada are
often not versatile enough to represent types of systems different than those for
which they were developed (e.g. transactions processing and real-time embedded
control).
2. Complex methods such as SADT or PSL/PSA are difficult to learn and implement,
and users may feel that the effort spent writing structured specifications in such

languages would be better spent writing executable code.

10

4. Software Design

| Software design is generally accomplished by converting the requirements
specification into a detailed design specification using either a funcrional (top-down) or
object-oriented (combination top-down/bottom-up) approach. These approaches will be
examined and compared, and the formal transformation design process will also be

considered.

4.1 Functional Design

This method starts with a high-level solution that is gradually refined into a detailed
design. Example methods include structured design and step-wise refinement.

Structured design [Constantine and Yourdon, 1979] is an extension to Structured
Systems Analysis that takes a system described by data flow diagrams and implements it as
a set of sequential processes. DFD processes are translated into hierarchical graphs called
structure charts that show the organization of the software in terms of software components
and subcomponents; components are represented as rectangles, with labelled inputs and
outputs; data stores are represented as rounded boxes, and user inputs are shown as circles.
A data dictionary contains definitions and descriptions of all system data and processes.

Stepwise refinement [Wirth, 1971} involves expressing system requirements as a series
of tasks in English-like syntax. Tasks are successively deconiposed and refined first into
pseudocode and then into the syntax of an underlying computer language. As tasks are
broken down, data is also refined, decomposed, and structured. Design decisions should be
decomposed as much as possible to recognize and reduce interdependencies between tasks.
Decisions dealing with details of representation should be postponed as long as possible.
Alternatives should be weighed carefully, and earlier decisions should be revoked as
necessary.

Functional design approaches the design process in a methodical and logical manner.
The problem is considered in its entirety but is broken down intoc manageable tasks.
Functional design requires critical decisions to be made early in the development process,

however, and errors can result in costly fixes or even re-working. Also, functionally-designed

11

systems are sometimes difficult to modify due to process interdependencies, and alternate

design decomposition are rarely considered.

4.2 Object-Oriented Design

The object-oriented approach uses top-down techniques for identifying self-contained
objects, and bottom-up techniques for synthesizing them into a finished system. Booch
[1986] describes the following object-oriented design steps:

1. Identify objects® and their attributes. For large projects, an analysis
technique such as SSA or SADT is useful for identifying objects; for smaller
systems, objects and attributes can be determined through nouns and
adjectives in the requirements definition.

2. Idenrify the operations suffered or performed by each object. Objects can be
actors, which perform operations; servers, which suffer operations; or agents,
which do both. Operation primitives are either constructors, which alter an
object’s state, selectors, which inspect/evaluate an object’s current state, or
iterators, which visit every part of an object.

3. Establish the visibility relationships of objects. A hierarchy of objects is
established by determining obiect inputs and their sources.

4. Establish the interface of each object. Object exports are specified.

5. Implement each object. The form of object exports is specified, and an
architectural framework for the overall system is developed.

Object-oriented designs eliminate global data since communication between objects
is done solely through message passing. Such systems are therefore easy to maintain, since
modifications to one object will not have unexpected side effects on another. Further,
objects may execute either in sequence or in parallel, so real-time processes can be precisely
specitied. However, the object-oriented design process lacks an overall system design
abstraction to keep the objects converging upon the original specification. Also, some types

of systems are not well-suited to object-oriented design because objects are difficult to define

4 An object may be defined as "an entity with a state and a defined set of operations
to access and modify that state" [from Sommerville, p. 204].

12

and state information is unimportant. Like functionally-designed systems, object-oriented

designs rarely consider alternate design decompositions.

4.3 Formal Design

Formal specifications required by the formal transformation process cannot be
generated until the requirements definition/specification and architectural design have been
completed. The formal design process, including a feedback loop for detecting and
correcting errors, omissions, and inconsistencies, is shown in Figure 1 [Sommerville, p. 124].
This illustration shows that an architectural design must be developed through the phases
of requirements and design specification before the precise specification can be produced.
It should be noted that the process of precise specification may lead to corrections of errors,
omissions, and inconsistencies that were made in previous steps, thus using the feedback

loop.

[|

Requirements Requirements Architecturaf] Precise
Definition Specification Design I Specification

!
L

Figure 1 - The Formal Specification Development Process

A formal specification represents the system as a set of functions. Each is specified by
name, parameters, and pre- and post-conditions using arithmetic operators and set notation.

The following steps may be used to develop these specifications [Sommerville, p. 130]:

1. Define the function in terms of name, parameters with variable types, and return
variable type.

13

2. Establish pre- and post-conditions by:

2a. Establishing and expressing the range of input parameters over which th«
function is intended to behave correctly, and express their constraints as «
predicate.

2b. Specifying the output condition that must hold for the function (if it
behaves correctly) as a predicate.

2c. Establishing and specifying the changes (if any) to the function’s input
parameters.
Formal specifications have the advantage of being automatically transformable into
prototype systems for testing and evaluation. However, as was noted earlier, this is a
relatively new and unfamiliar technique, and some classes of systems may be difficult to

specify formally.

None of these design methods provide a satisfactory solution to the software dilemma,
but they do appear to complement each other. Object-oriented design may possibly be used
as an enhancement to functional design: functional designs can be derived from system
requirements, and then translated into object-oriented designs as necessary to represent
concurrent parallel and serial processes and state information. Such designs can then be
implemented conventionally or translated into a formal specification and transformed into
executable code. Hopefully formal design transformation methods will continue to be
refined, since this methodology shows promise in remedying the problems of system

enhancement and modification.

The previous review of software processes and requirements and design specifications
leads to some observations about current software engineering practices.

1. Most software processes are requirements-driven rather than objectives-driven:
the primary emphasis is on the immediately-required functionality rather than
organizational objectives or goals.

2. Most software systems are not designed with the concept of system modification
in mind.

14

3. Most methods do not emphasize the consideration of design alternatives or
document why alternatives are chosen.
To address these issues, a design method not traditionally used for software engineering

called Knowledge-Based System Design will be applied to software system design.

5.0 A Knowledge-Based Software Design Process

Knowledge-Based Design is a simulation-based design method that approaches the
design process from an objectives-driven, multiple-alternative perspective. It follows a
conventional design approach with well-defined phases and transition milestones. Its
knowledge based approach to configuration selection provides alternate design configurations
that can be evaluated. Development of a software process based on this methodology will
consist of an overview of the original design methodology, definition of the phases of the
methodology as adapted to software design, and presentation of an example system design

using the modified process.

5.1 Overview of Knowledge-Based System Design [Rozenblit and Zeigler, 1988; Rozenblit
and Huang, 1990]

Key concepts of Knowledge-Based System Design include system entity structure
modelling and development of a generic experimental frame. The system entity structure
(SES) is a tree-like graph used to specify possible design configurations [Zeigler, 1984].
Entities represent system components, aspects represent entity decompositions, and
specializations show entity classifications. Entities and aspects/specializations are placed
alternately within the entity structure.

A generic experimental frame consists of variables that express performance
parameters that determine the system configuration [Rozenblit and Huang, 1987]. Such
frames are used to prune the SES by selecting among the various aspects and specializations
and generating one or more possible design configurations that correspond to the design
objectives. A knowledge base consisting of production rules is developed to select among
components within the SES: selection rules resolve entity choices within specializations,

based on system constraints, and synthesis rules select components within decompositions,

15

and ensure that aspect and specialization selections are configurable. Following the pruning
: process, a model composition tree is generated that represents a set of hierarchically-ordered
model components that may be coupled together and evaluated.

To summarize, Knowledge-Based System Design consists of the following phases:
1. Identify goals and objectives.
2. Specify requirements and constraints.

3. Model the system. This is accomplished by representing various system
classifications and decompositions in a system entity structure.

4. Generate possible solutions. A generic experimental frame based on system
constraints is developed to identify one or more possible system
configurations.

5. Develop a model or models based on the identified system configurations.

6. Evaluate the alternatives through simulation.

An adaptation of this methodology to software design will now be presented.

5.2 Adaptation to Software Design: Software Process Phases

The proposed software process involves the creation, pruning, and completion of the
general computer system SES shown in Figure 2. The system should be modelled to include
hardware as well as software, because some systems require hardware to be selected and
configured, and hardware and software design should be considered concurrently. For
systems with given hardware platforms, the hardware branch of the SES is pruned, and
hardware components appear as experimental frame variables that influence the functional
and non-functional requirements.

This model decomposes the software process into requirements specification, design
specification, and implementation. Requirements specification consists of functional and
non-functional requirements, and design specification consists of pruned functional
requirements and programs. Programs are decomposed into processes and data.

Implementation aspects include creation of programs and data files.

16

COMPUTER
SYSTEM

orwmputer

systam ¢ scomposition

.

HARDWARE

-

SOFTWARE

aoftware prevess
decemposition

requirementa sspeols

l
l |

FUNCTIONAL NON-
FUNCTIONAL

Figure 2 - High-Level System SES

DESIGN IMPLEMENTATION
SPECIFICATION
| implementation aspecte
denign anepsecis
[j PROGRAMS DATA
PRUNED PROGRAM FLZE
FUNCTIONAL
REQUIREMENTS
program decomposition
|
] !
PROCESSES DATA
PROCESS dala repressnistion
LOGICAL PHYSICAL

The elaboration of this diagram into a complete system model will be accomplished through

a series of phases. Definitions and justifications of the phases are as follows:

5.2.1 Identify goals and objectives

Goals consider long-term, high-level aspirations to be achieved by the system: e.g.

profits will be achieved.

"To increase office productivity and company profits." Objectives are specific ways of
achieving goals: e.g. "Build a computerized system to efficiently handle our accounting
processes." A goal can have several objectives attached to it; for example, building a
computer system may serve to increase office productivity, but other abjectives, such as

decreasing office personnel, may have to be realized before the goal of increasing company

17

This approach encourages an organizational view of the software system, and allows
system designers to consider the system from an objectives-driven, broadly-focused, multiple
solution viewpoint. Goals and objectives are specified as textual lists, with objectives as sub-

topics under goals.

5.2.2 Define requirements and constraints
System functional and non-functional requirements and constraints are developed for

objectives that require design and implementation of computer systems.

5.2.3 Model system requirements specifications

This phase requires developing the Requirements Specification branch of the System
SES. The non-functional requirements are decomposed into the categories suggested by
Roman [1985] (interface, performance, operating life-cycle, economic, and politice!), and
shown in Figure 3. These represent areas of potential system design decisions. Non-
tunctional decisions and alternatives should be modelled as SES specializations, with their
influencing constraints included as experimental frame variable types. The selected

alternatives, which will be called design constraints, will influence the functional design.

NON- FUNCTIONAL
FUNCTIONAL REQUIREMENTS
REQUIREMENTS
non-funational
raQuiremaents
sspecis
INTERFACE PERFORMANCE OPERATIONAL LIFE-CYCLE ECONOMIC POLITICAL

Figure 3 - System Non-F..: tional Requiiements Decomposition

18

Functional requirements are entered into the SES according to the functional
requirements list previously defined. Alternate ways of achieving these requirements are
then proposed, and system and design constraints that may influence these alternatives are
ircluded as variable types. This approach encourages consideration of creative, non-obvious
solutions from an objectives-driven approach. Alternatives are considered that may be
beyond the current specifications or constraints, but such alternatives may be used for later
enhancements, or may be incorporated within the current specification by altering constraints

in an acceptable manner.

5.2.4 Generate possible configurations

The requirements branch of the SES is now pruned to generate design constraints
and one or more possible design configurations. A knowledge base is developed to capture
the relationships between system constraints, design constraints identified through non-
tunctional requirements, and functional requirements. Selections of specializations in the
SES are determined through selecrion rules using a backward-chaining inferencing process:
selection sets within decompositions in the SES are determined using synthesis rules through
a forward-chaining process. A fina! synthesis step validates the viability of the overall
configuration. This is accomplished using a specially-created inferencing system developed
in PC-Scheme that prompts the user for constraint information, and then presents
recommended design configuration depending on selected constraints. More details on this
system will be presented in the next section when an example is presented.

This phase provides a functional requirements specification from which a system
model can be derived and evaluated. The knowledge base also documents the system
constraint values that determined design constraints and ultimately generated the selected
design configuration. Alternate configurations can be generated by manipulating systemn
constraints with unknown or unsure values, and if constraints should change or decisions

prove to be non-optimal, backtracking can be used to modify the system configuration.

19

5.2.5 Develop a design model

The pruned functional requirements are now condensed into a system model with
functional requirements specified according to the design decisions generated in the previous
phase. This model is examined and evaluated, and areas of uncertainty about the
workability of certain software implementation techniques with the given hardware

configuration may be resolved through simulation.

5.2.6 Develop a design specification
The tested design model is now transferred to the design branch on the SES and
translated into processes and data. This is accomplished through stepwise refinement: as

processes are identified and refined, logical and physical data requirements are defined also.

5.2.7 Implement the system

The design specification processes and physical data branches are transferred to the
Implementation branch of the SES, and transjated into executable code and data files. As
more design decisions are encountered or if past decisions are changed, the knowledge base

is updated.
These phases will be illustrated and developed through an example.

6. Design and Implementation of a Distributed Electronic Meeting System
6.1 System Overview

A significant research effort exists within the University of Arizona’s MIS department
to develop software and investigate group processes for electronically-supported meetings.
So far, this research has focused on "same-time/same-place" groupware: meeting
participants use networked workstations in a large conference room and communicate either
verbally or electronically through software tools that support functions such as brainstorming,

issue analysis, and voting [Saffo, 1990].

20

A current research project considers using the process in different participant
~ time/spaces frames. One phase of this project is to develop a group support system that
operates on local or wide area networks with participants distributed in different places and
possibly working at different times. The design of this software will be used tc demonstrate
the application of Knowledge-Based System Design to software design. The specification,
design, and implementation of this system will be outlined in terms of the phases of this

process.

6.2 Software Process Phases

6.2.1 Goals and Objectives

Goals and objectives are presented for the entire research project rather than just the
software development phase in order to give a global perspective to system requirements
and constraints.

GOAL 1. Determine the requirements of a software system that supports group tasks

where users are distributed in space and/or time.

OBJECTIVE 1.1. Design and implement a prototype group suppcrt system
based on the existing Arizona GroupSystems tools, but with added features to
make it suitable for distributed time/space environments.

OBJECTIVE 1.2. Observe and evaluate the system through beta-testing,
laboratory experiments, and field studies/experiments to refine the system’s
user requirements.

OBJECTIVE 1.3. Modify the system as necessary.

GOAL 2. Determine if the use of a distributed electronic meeting support system is
beneficial to work groups.

OBJECTIVE 2.1. Run a series of laboratory experiments with user
space/time/support configuration as the independent variable, and task
efficiency, effectiveness, and user satisfaction as the dependent variable.

OBJECTIVE 2.2. Evaluate the experimental results and attempt to draw

conclusions about the benefits of distributed electronic meeting support
software.

21

6.2.2 Requirements and Constraints

System requirements and constraints as related to the software system identified in
Objective 1.1 are defined.

Functional Requirements:

1. Idea generation, issue analysis, and voting tools for users working syn-
chronously or asynchronously over either a LAN or WAN.

2. Communication channels among group members and the group leader.
3. Methods of preserving group dynamics (visually and/or aurally).

4. Group status and activity monitoring facilities.

5. Session initiation capability for all group members.

6. Concurrent access to other software tools.

7. The ability to easily monitor the number of times a participant accesses the
group status, messaging, and concurrent access functions (to determine if these

are necessary or desirable features).

8. The ability to easily disable the group status, messaging, and concurrent
access functions for experimental manipulations.

Non-Functional Requirements:

1. Inmtuitive, consistent, professional-quality interfaces with meaningful error
messages.

2. Easily portable to different operating systems and networks.

3. [Expandable to allow addition of new group processes (e.g. policy
formation, stakeholder identification).

4. Well-documented and easy to modify.
5. Reliable.
Present System Constraints:

1. Prototype time frame = 6 months.

2. No hardware, software or other equipment purchases.

3. Hardware constraints: CPU: Intel 8088
Main Memory: 640K
Disk: 20 MB fixed
Network: Novell
Input: keyboard and/or
mouse
Monitor: Monochrome or
color

6.2.3 System Requirements Specifications

The non-functional and functional requirements branches of the SES are now
expanded to identify non-functional system design issues and functional modules. The
expansions of these two branches are considered separately.
Non-functional Requirements. This expansion identifies system design decisions of a non-
functional nature as related to non-functional requirements and design constraints. The
expansion is illustrated in Figure 4 and explained below.

Interface. The decision to include a text or graphical interface was determined to be based
on the user’s CPU type, the presence of a dedicated graphics co-processor, and the required
system response time. It was decided that if response time was crucial, then a graphical
interface would only be used if a Motorola 68000 or 68030 CPU or a graphics co-processor
was present. Otherwise, a text interface will be used.

Performance. Two decisions were identified here: the structure of the system data files, and
the network communication path. Data can be structured either as a normalized database
or as flat text files. A normalized database is desirable for systems with large amounts of
data, but is costly in terms of system response time, data throughput, and programmer-hours
and software cost. Flat files are satisfactory for systems with limited data volumes.

Network communication can be achieved either through file input/output on the
central server, the network BIOS, or both. File i/o is inherently more reliable and portable
than network BIOS communication, but provides decreased network throughput. A
combination of these paths could be used by communicating the most important data
through file i/o, and less critical but more time-sensitive data, such as user participation level
data, through the BIOS.

Operational. An operational consideration concerns whether data and executable program
files are stored on the central server or on the individual user machines. Related constraints
include user disk size, system security, data file size, and network traffic. If system security

23

non-~functionsl
rsquirements
aspocts

rm* l
‘req.resp.time l l I l

INTERFACE PERFORMANCE OPERATIONAL LIFE-CYCLE ECONOMIC POLITICAL
' l tile storage considerations
ingarigee et tratsre U8, o he es
‘eystem._sucurity
“esl-culs-tiie-gize “reg.poriadiiility
FILE ACCESS
TEXT GRAPHICS FiLE LOCATION
performence I I ' 1ite socess
design dacislons Ve Jocation methods
type type
|
HARD RELATIVE
5:;-33:.5;;":"' ' DATA PROGRAM CODED PAT H
ey ata o size
“software.budget “rea. ulublllfy NiAJ:S NAMES
req-1hry,
\ ! na-porubnllty
DATA FILE NETWORK
STRUCTURE COMMUNICATION I I I
I I USER SERVER USER
dats tite twor AND R
type communiostion SERVE
methods
NORMALIZED TEXT n[.s NETViVORK 1o
FILES FILES 170 BIOS AND
THRU BiOS
SERVER

Figure 4 - Prgject Non-Functional Requirements

is vital or if users have little disk storage space, then all files should remain on the server.
If data files are large or if network traffic is heavy, then some files should be on the use:
machines.

Economic, Political.
foreseen.

No economically- or politically-motivated design decisions were

Functional Requirements. The functional requirements branch is decomposed into the
system functional requirements previously defined. These requirements are then
decomposed into functional aspects. Selection among these aspects is primarily driven by
development time and budget. The functional requirements expansion is illustrated in
Figure 5 and explained below.

Group Processes. Group processes are decomposed into idea generation, issue analysis,
and voting. Idea generation can be divided into separate processes where group members

24

FYNCT!
4+ e

Svenssivn ol
m"‘“fd:-'-
i |
P il
’ﬁ‘.‘m DOMEIU M CAT 10
sevets |
“""l‘“"" sooen seetine
. soate N -
b
o 13 . ..,.‘.. e sewnysiamien Semormissisn
rasy
- oo TLee $00l0e mEpeses l ettt
onbet I I
- sme
- Sasmrines. ty e
|
ouaLs EWUTINe Gaolor wre

a8e8; WSt L
[T oY)
FUNCTIONAL
ROUATHENTS
tenattonst
oy isene o
ree
onbus ‘J‘,,
vvu?mu ‘1“
80000 Synaqine sumeeis
poom
ropm i I l:n--m-.an-
fore oo | “orseams.mre -~
woonte N oimtaies sessent swrus LT,
Ovent, sae Sresnpesisies N0 oA aron '
l “lemeines.irye .un.'. ‘-t o Soad B I
— on PRORL vigEe - v or
" vol ou!uu u‘uo ---'-u L
ol
LA SErisnISs
W T
-
"o Ll TERTUAL GRAPNING
Lo e
anewr Lol 1Y
PYNCTIONAL
AEQUIRTMENTS
tesesmect
haa 4 Tt
K e DOM. God
)) e
SH8I0u STasTur aTERuEay
SOPTVARE
| -omaisane Gives
SPetion sMwine
savsasssines ' '
4 s
. aaEneA remunes a .
n'a::’m (T2 --.mu"\‘-n- womTeMNE Jnlﬂ-‘ﬂ"‘”

M wergne
19208k macs Mpsew SopgURtET nvn‘-v
mmasies L 1]

| it Rdtratutnd
2¢L0470 R WINY

Figure 5 - DE:AS System Functional Requirements

25

[
1%
awaanY
raeesee

may enter ideas on either a single topic or on multiple topics. Voting may be accomplished
in a number of ways: agree/disagree, 10-point scale, percentages, multiple choice, and rank
ordering. Voting results may be displayed in text, graphics, or textual graphics, depending
on the type of interface used. The selection of group processes to be implemented is solely
a factor of development time.

Group Communication. Group Communication can be decomposed into User Time Frame,
Communication Form, and Communication Channel. The User Time Frame may be
Interactive, Non-Interactive or both. The Communication Form may be decomposed into
Text, Voice, Visual Image (where you see the person with whom you are communicating), or
Graphic Image. The configuration selection is based on the interface type, equipment budget
and desired system portability. The Communication Channel may be either a LAN, Phone,
Video Link, or combination of these, depending on the communication form.

Group Dynamics. Group Dynamics design must consider the presentation form of
participant interaction. Information may be Text, Textual Graphics, Graphics, Audio, or
Visual, depending on the equipment budget, desired system portability, development time,
and interface type. Depending on the form chosen, the data may be transmitted over a
LAN, Phone, Video Link, or a combination of these. Visual images and phone/video links
are limited by the equipment budget; graphic images are constrained by the interface type.

Group Status. Group Status considerations include what status information is to be
displayed, and how it will be presented. Depending on development time, possibilities
include 4genda Status, Member Status, and Group and/or Individual Stetistics. The Display
Form can be Text Only, Textual Graphics, or Graphics, and is constrained by development
time and the selected interface type.

Session Startup. Session Startup may be comprised of Group Selection, Agenda Entry, Tool
Initialization, Knowledge-Based Assistance, and System Function/Monitoring Setup,
depending again on development time. Group Selection and Agenda Specification could
potentially be integrated with a knowledge base/database so the session originator could
easily retrieve information about group and/or group members’ areas of expertise, interest,
etc., based on criteria such as user profiles and past session participation. Further,
scheduling of task times could be integrated with potential group members’ electronic
calendars to determine possible session times. System Function Setup allows the session
initiator t0 monitor participant accesses to system features and disable system features for
experimental purposes.

Alternate Software Access. Alternate Software Access can be achieved in three ways: by
spawning a concurrent process, suspending the current process and starting another, or by
exiting the current process and starting another. Spawning a concurrent process requires a
large amount of user main memory and an operating system that supports concurrent
processes, such as UNIX or OS/2. Suspending the current process and starting another is

26

simpler, only requiring enough main memory to store the state variables of the suspended
process. Exiting the current process is the simplest but slowest method, with state variables
stored on disk.

6.2.4 Possible System Configurations

The requirements specifications SES must now be pruned to derive a requirements
configuration that can be translated into a design specification. Since no avaiable systems
provided the required flexibility in inferencing patterns and the ability to easily create
complex but easily-understood rules, a combination backward/forward-chaining inference
engine and corresponding rule base was created in PC-Scheme. A backward-chaining rule
base was created to instantiate all required design constraints (e.g. specializations). After
this is completed, the forward-chaining inferencing system determines the component
configurations based on the design constraints and confirms the viability of the selected
configuration. This system also allows rule actions to include list manipulations, and defines
values that may be directly incorporated into DEVS-Scheme simulation models. Source
code for the inference engine and knowledge base and transcripts of sample consultation
sessions are included in the Appendix.

Three separate configurations were developed: one uses present system constraints;
another investigates the configuration in a medium-range development period; the third
explores an increased user base over a medium-range development period. The user-
provided system constraints, inferred design constraints, and functional requirements
configurations are summarized in Table 1. Areas where constraints or configurations vary
are bolded and highlighted, and summarized as follows:

1. Increased development time suggests implementation of more system functions
and features, such as Interactive Communication, Textual Graphics Displays, and numerous
extra functions within Group Status and Session Startup.

2. Increased development time in conjunction with a larger user base causes an
interesting dilemma in terms of system security. Since program and/or data files will
probably have to be stored on the user machines, encryption or other security measures will

have to be considered.

27

CONSTRAINT Case I: Case 2 Case 3: > User Base &
VARIABLES Current Configuration > Development Time > Development Time
Graph. Co-Processor | No No No

User-CPU-Type 8088 3088 8088

User Main Mem. =< 2MB =< 2MB =< 2ZMB

User Disk Size 20-40 MB 20-40MB 20-40MB

Operating System MS-DOS MS-DOS MS-DGOS
Req-Resp-Time High High High

Req-Thruput High High High

Regq-Reliability High High High

Req-Portability High High High

System Security High High

“Program:File Si “Small Small:::

Data File Size ‘Smatl Small- 1 Medium
Nelwork Trafﬁc Tow Low: o “Medium
Software Budge: None None None
Equipment Budget None None None
Development Time | Short Medivm . *Medium
INFERRED
VARIABLES
Interface Type TEXT TEXT TEXT
Data File Type: ::© - | TEXT FILES TEXT-FILES - - - 1/ NORMALIZED FILES
Net. Comm. Path COMB. IO/BIOS COMB. 10/BIOS COMB. 10/BIOS
S USER-AND-SERVER

Prog. File. Lot

SERVER

{w/encryption)

Data Fllc Loc:

SERVER

[USER-AND-SERVER
“J (w/encryption)

File Access Strategy

RELATIVE PATHS

RELATIVE PATHS

RELATIVE PATHS

ldea Gen. Tool .-

Single-Toy

Single lopu,

Single Topic,
‘Multiple Topic

Votin g’--{vl";oor T vp

Rank Otder, . -
Agree/Disagree

Rank Order,
Agree/Disagree

Voting Display

Text, Textual Graphics

"l;ext, Textual Graphics

Comm. Time Frame | Non-Interactive Interactive, - Interactive,

B LS R R Non-Interactive - Non-Interactive
Comm. Form TEXT TEXT TEXT
Comm. Channel LAN LAN LAN
Dynamics Form.. -TEXT Text, Textual Graphics Text, Textual Graphics
Dyvaamics Channel LAN LAN LAN

Status Info.

-Agenda, Member Status

Agenda, Memnber
Status, Group Statistics

‘Agenda, Member
Status, Group Statistics

Startup Tnfo. S ‘

~Group Sé]ectian,
{ ‘Agenda Entry, Tool "

'lnmnhmtion, Features

‘Monitoring .

Group Selection,
Agenda Entry, Tool .
Initialization, Fentures: -
Monitoring,. anmpant
Knowledge

Group Selection,

‘Agendn Entry, Tool

‘I Tnitialization, Features
Monitoring, Participant
Knowledge

Alt. Access

Exit Current Process

Exit Current Process

Exit Current Process

Table T - Alrernate 5csrgn Configurations

The system entity structures showing pruned functional and non-functional
requirements for the current system configuration are included in the Appendix. The
evaluation of these functional requirements and development of an initial design

specification is now performed.

PRUNED
FUNCTIONAL
REQUIREMENTS

intarface typs = TEXT

dats file type - TEXT

net. comm, path = 10/8108
prog/dats tlie ioc. = SERVER
file access = REL. PATHS

l 1 | l I l

GROUP GROUP GROUP GROUP SESSION ALTERNATE

PROCESSES COMMUNICATION DYNAMICS STATUS STARTUP SOFTWARE
time trame agpect ¢ torm - TEXY ststus Inlo. « ali. stcess method
NON-INTERACTIVE channel » LAN AGENOA/MEMBER STATUS EXIT CURRENT PROCESS

torm « TEXT form » TEXY ONLY
channel = LAN .

1SSUE ANALYS:!S

LD T ¥ 1
QGROUP ":NE,"‘H? root FEATURES
IDEA SELECTION INITIALIZATION MONITORING
GENERATION RANK-ORDER
VOTING
no. of topics ~ dispiay torm » TEXT
SINGLE voting ipo! type =

RANK ORDER

Figure 6 - Project Pruned Functional Requirements

6.2.5 Design Model

The initial Pruned Functional Requirements (Figure 6) shows the pruned processes,
with general design constraints applicable to all functions shown at the top, and process-
specific design constraints written below the corresponding process. At this point, it was
realized that the network communication path for specific processes would have to be
specified. We tentatively decided to achieve network communication within the Idea
Generation Tool through server ifo. However, the question arose as to whether
communication solely through file exchange on the network server would provide the
required high user response rate. This tool will require users to exchange files at a fairly
high rate; it is desirable to determine the effect of the number of users on the given
network/server configuration on system response. A design model was developed using the
distributed experimental frame concept to simulate this portion of the system. The desired

result of the simulation is average system response rate for each user and for the overall

29

system; the number of users in the system will be manipulated to see how the performance

of the system reacts.

[SESSTON-MODEL}-

Session-Transducer

AUSR-NETWORK MODEL ,
O
! 1
!
| {usri usazld— n
4 et 3 gyt !
User User User Laer | User User
Qent. lmyiTransd. Genr, Traned. l Qenr, Transd.

Natwork Model

!
!
i
!
i
|
l

Figure 7 - Proposed Simulation Model

The proposed simulation model is shown in Figure 7. System components and their
functions are as follows:

Session-Transducer. This component controls the simulation by sending a start signal
to the user generators at the beginning of the simulation and a stop signal to them
after the desired observation interval. It also receives all the local average job
response rates from the user transducers, and compiles them into a system average.

User-Genr. Upon receiving the start signal from the Session-Transducer, this
component generates random JOB-IDs at random intervals compatible with average
user task-generation rates, and submits them to the local User-Transd and to the
Network-Model (with the user-number appended). When a stop signal is received,
a stop signal is sent to the User-Transd, and no more jobs are generated.

User-Transd. When a JOB-ID is received from the local gensrator, the User-Transd
notes the local clock time. When a JOB-ID is received from the Network-Model, the
processing time of the job is calculated, as well as the average job response rate for
all jobs. When a stop signal is received from the local generator, the User-Transd
submits the local average job response rate to the Session-Transducer.

30

Network-Model. If the Network-Model is busy when a JOB-ID/USR# is received,
the JOB-ID/USR# is placed in a first-in, first-out queue. Otherwise, the job is
processed according to the given "average network file processing time", and then
output to the user. As soon as a job is output, the queue is checked to see if another
job has arrived; if it has, that job is processed.

The formal DEVS specifications for these components are included in the Appendix.
A simulation was not performed due to the short time frame and prototype nature of the
software project. However, this model illustrates how simulation can be applied to the
evaluation of software system design. It may be implemented in the future to determine
necessary hardware parameters such as required network communication rate and server i/o

rate for a given user base if dedicated hardware is purchased in the future.

6.2.6 Design Specification

The Group Status function will be used to illustrate the design phase, since it is fairly
simple, but illustrates both process and data design concepts. The process decomposition
SES is presented in Figures 8 and 9, and the data decomposition in Figure 10. Group Status
is comprised of two functional aspects: AGENDA and MEMBER STATUS. The desired
outputs of these processes are specified, and each process is then decomposed into sub-
processes until each sub-process can easily and unambiguously. be translated into code.

The logical and physical data design of the Aata files related to these modules was
an important component with the design these functions. The logical data structure was
considered first, and it was determined that the relevant entities to these processes were
SESSIONS and USERS. These are decomposed using the SES property of multiple
decomposition into a single SESSION and USER. Every data item related to SESSIONS
in this context was identified; these were NAME and TOOLS. Another multiple
decomposition was performed to obtain TOOL, data items related to the combined
SESSION/TOOL entity were determined to be NAME, START DATE/TIME, STOP
DATE/TIME, and TYPE. (A tool type is either synchronous or asynchronous).

Relevant USER data includes his/her NAME and SESSIONS. Following a multiple
decomposition to SESSION, data aspects of the combined USER/SESSION entity include
USER_STATUS (active or inactive), SESSION_NAME, CURRENT_TOOL, and
LAST_LOGIN_TIME.

1. input: Session Name,
2. Side Effacts: None

ia. Output: Sesssion Agends
i diaplayec an user screen

PRZGRAMS

program decompoaltion
PROCESSES DATA
|

QROUP STATUS

T
AGENDA /1,2,9/

I 1
Retlrieve 100] names, Olspiay infcrmation
start/stop times, anc on screen with
sazgion typs trom gurrent too!
SESSIONS {ile hohlighteo

r.__.I__l |
| / !] |

Open Read tool Create Enter Creaie P-ad firat Repaat 10
Sesslon data Into AGENDA Session column . ¢ node, end of list,
100l linked window, Name headers test tool entering
tile Hat ot widih 64, start/etop esch rode

structures length « windew tims to sse as % cew

with form: tist neader i1 current tiae

TOOL tength clock time

SYART_DATE ta within

START_ TIME cange;

STYOP.DATE it so. i

STOP_TIME current tool,

TYFPE; write to window

repeat to in rev. video;

EOF sisx, write to

window in
norm. video

Il’ool Start Date/Time Stop Date/Time Seanion Type E
37

L° 15 b4 ;

Figure 8 - System Process Decomposition (Agenda Module)

A possible physical structure for this data is shown in terms of both text files and
normalized files. For the text file approach, a separate file is needed for each session to
show its tools ("SESSION1_TOOLS"). Each tool is then listed by name, followed by its data.
Similarly, a separate file is needed for each session to show its users ("SESSION1_USERS"),
listing each user name followed by his/her dat.. This structure is clearly represented by the
SES logical design. This is a potentially powerfu: design tool, since text files are often used
to store data, but methods to aid in structuring such files are rare.

The normalized file design indicates two data files are required, one for each pair of
multiple decompositions, with composite keys consisting »f each multiple decomposition
entity. Each record in the SESSION_TOOLS file can be accessed through the session pame
and tool name; likewise, every record in the USER_SESSION file is available through the
user name and session name. To carry this concept further, it appears that a separate file
will be necessary for every entity beneath an entity that has any unique aspects; if the lower
entity is a mvltiple decomposition also, then a composite key consisting of a unique field

from both the parent and child entity is requirea. The resulting databose structure is in third

32

r ™~

i 4. Input: None; Session Neme |
210108 88 dynamic varisdie i

8. Side Eflecta; None

6

|
Oulpul: Membder Ststua !
dleprayed on vses sciesn ;

PROGRAMS

|
i
!
program decomposition i

PROCESSES DATA
i
~ 1
MEMBER STATUS /e.5.6)
I 1
Retrieva membersr atatus Dispisy mamber sistus
information from information on ectesn
USER-SBESSIONS tile
Open Read user Repeat to Creste Enter Create Write tist
USER- gata into EOL MEM_STAT Seasion cotumn to window
£8810 finked tist scroilabis Name - hesders with sach
?“fs NS of structures wingow, ‘MEMBER node as &
with torm: widtn 84, STATUS”® separets fine
NAME length » as
CURRENT.TOOL tint window
STATUS length, header
LAST.LOGIN_TIME
diapley
I length »
1t STATUS 18
* “active”,
set
LAST_LOGIN_TIME
Uaer Name Current Yoo! Status %4l LOgin Tima
0 28 4 sS4 !

Figure 9 - Sysiem Process Decomposition SES (Member Status Module)

normal form, with every record having a unique primary key. If an entity has two child
multiple-decomposition entities, and the same trio is present under both of the child entities
somewhere, a ternary relationship is indicated. This is potentially a powerful way of
representing a database schema and carrying it through to the physical design of the data
files. While the concept of using the SES to represent a database schema has been
previously proposed [Higa and Sheng, 1989], this method of combining data fields and
related entities as decompositions within the SES seems more intuitive, and easily translates

into data files.

6.2.7 System Implementation
The system is currently being implemented and is in a state of constant change, so

no finished system structure charts or architecture diagram« are available.

DATA
l

Gaty representation

i

LOGICAL PHYBICAL
' physical type
logicsl m
antitisa I
TEXY FILES NORMALIZED PiLES
SESSIONS USERS [—‘L’"—‘———"j
Y Y
I” m {auuom.rcouj SESSIONILUSERS |
SESSION USER : i !
* 100ty i usert M
user :::°:":""f";‘{ sweer_statua
eess100 srpecis ! ol A1ArL_tIMe | Loyrremr toet
sspecta #1001 81004818 || Ljaqt togin.iime |
L——L__I s100i.stop._time ueorz i
—l NAME SESBIONS staol.type e, i
NAME 10018 10el2 .
”1 stc. }
SESSION
TOOL |
sepsicn/tool aspacts usar/gssaion sspects []
i]
f T T 1 lseasions juBER_SEBBION |
SYART STOP sgadign._nams (*NARL.LAMS ?
NAME DATE/ oare, TYPE ctopl-namse | sasdmior-nams |
TIME TIME ler00l b1art. gate || ‘user_stetus i
ctool-atart. time || *CUfreRt_100l ¢
i -
SESSION. USEA. CURRENT. LAST. (SOl
NAME §TATUS ToOL LOGIN_TIME H

[V —

Figure 10 - Project Logical and Physical Data Design

7. Conclusions and Future Directions

This project provided the challenge of applying a general design methodoiogy to a
very specific and challenging domain. The methodology successfully addressed the issues of
approaching software design from an objectives-driven viewpoint, forcing consideration of
design alternatives and documentation of selection criteria, and designing systems with a
long-term perspective with modification in mind. The design documentation generated from
this project will serve as a high-leve] blueprint tor future system development.

However, the project also reinforced the fact that software engineering is a very
complex area, and there are no easy solutions. While this method works well for providing
a high-level design specification, other methods must be incorporated or developed to specify
lower-level programming specifications that can adequately model the complexity of the
software.

The most interesting research ideas occurred in areas outside the main focus of the
project. The development of an alternate SES pruning system in PC-Scheme may merit
further consideration; and, further development of database design techniques using the SES

should be investigated.

34

REFERENCES

Barstow, D. Artificial Intelligence and Software Engineering. Proceedings of the 9th Int. Conf. on
Software Engineering, March 30 - April 2, 1987, Monterey, California, pp. 200-11.

Boehm, B.W. A Spiral Model of Software Development and Enhancement. IEEE Computer 21,5
(May 1988) 61-72.

Borgida, A., Greenspan, S., and Mylopoulos, J. Knowledge Representation as the Basis for
Requirements Specifications. JEEE Computer 18,4 (April 1985) 82-91.

Booch, G. Object-oriented development. [EEE Trans. Software Eng. SE-12,2 (February, 1986) 211-
221

Brooks, F.P. Jr. The Mythical Man-Month. Addison-Wesley, Reading, Massachusetts, 1982.

Brooks, F.P. Jr. No Silver Bullet - Essence and Accidents of Software Engineering. [EEE Compuzer,
April 1987, 10-19.

Cameron, J.R. An Overview of ISD. [EEE Truns. Software Eng. SE-12.2 (February 1986) 222-40.

Constantine, L.L. ard Yourdon, E. Structured Design. Prentice-Hall, Englewood Clifts, New Jersey,
1979.

Couger, J.D., Colter, M. .A., and Knapp, R.W. Advanced System Development/Feasibility Technigues.
John Wiley & Sons, New York, 1982.

DeMarco, T. Structured Analysis and System Specification. Yourdon Inc., New York, 1978.
DeMarco, T. and Lister, T. Peopleware: productive projects and teams. Dorset House, 1987,

Gane, C. & Sarson, T. Structured Systems Analysis: Tools and Techniques. Prentice-Hall. Englewood
Cliffs, N.J., 1979.

Higa, K. and Sheng, O.R.L. An Object-Oriented Methodology for End-User Logical Database
Design: The Structured Entity Approach. In Proceedings of COMPSAC '89 (Orlando, Florida, Sept.
1989).

Herninger, K.L. Specifying Software Requirements for Complex Systems: New Techniques and
Their Application. IEEE Trans. Software Eng. SE-6,1 (January 1980) 2-13.

Parnas, D.D. and Clements, P.C. A Rational Design Process: How and Why to Fake It. [EEE
Trans. Software Eng. SE-12,2 (February 1986) 251-57.

Ratcliff, B. Software Engineering Principles and Methods. Blackwell Scientific Publications, Oxford,
UK, 1987.

Roman, G. A Taxonomy of Current Issues in Requirements Engineering. [EEE Computer 18,4
(April 1985) 15-22.

35

Ross, D.T. Structured Analysis (SA): A Language for Communicating Ideas. IEEE Trans. Software
Eng. SE-3,1 (January 1977) 16-34.

| Ross, D.T. and Schoman, K.E. Jr. Structured Analysis for Requirements Definition. [EEE Trans.
Software Eng. SE-3,1 (January 1977) 6-15.

Rozenblit, J.W. A Conceptual Basis for Integrated, Model-Based System Design. Technical Report,
National Science Foundation, January, 1936.

Rozenblit, J.W. and Huang, Y.M. Constraint-Driven Generation of Model Structures. In Proc. of
the 1987 Winter Simulation Conf., December, 1987, Atlanta, Georgia, pp. 604-11.

Rozenblit, J.W. and Zeigler, B.P. Design and Modeling Concepts. International Encyclopedia of
Robotics, Applications and Automation. John Wiley & Sons, New York, 1988, pp. 308-22.

Saffo, P. Same-Time, Same-Place Groupware. Personal Computing, March 20, 1990, p. 57-58.
Sommerville, I. Software Engineering. Addison-Wesley, Workingham, England, 1989.

Trapnell, FM. A systematic approach to the development of system programs. In Proc. AFIPS S/ICC
1969, pp. 411-18.

Wirth, N. Program Development by Stepwise Refinement. Communications of the ACM 14.4 (April
1971) 221-227.

Zeigler, B.P. Multifacetted Modelling and Discrete Event Simulation. Academic Press, London, 1984.

36

Session-Transducer

T, = (X, S, 4, 8inp Oexr A Y, Sp}
X = <AVTT>
S = (passive, start, stop, make-output)
i, = {t,(passive) = w}
{1,(start) = (0}
{1,(stop) =0}
{1,(make-output) = 0}
Sint = {if observation-int = T, state = stop}
{if state(start, stop, make-output), state = passive}
Bext = ((AVTT, N) e, x)
if (passive, e, AVTT) update ZAVTT/N, s = make-oulput
if ((stop.start,make-output), e, x) continue
A = {A(stop) = stop-signal}
{A(start) = start-signal}
{A(make-output) = AVTT, JAVTT/N}
Y = <stop-signal, start-signal, AVTT, SAVTT/N>
S, = <ZAVTT, N>
User-Genr
Gu = {Xr S; ta: 5jms smy l' Y’ SO}
X = <start-signal, stop-zignal>
S = (passive, active, stop)
L, = {Ia(paSSiVC) = o}
{t,(active) = 15}
{t,(stop) = 0}
8t = {state(active) = (r,,ry) = (I'(ry), [(r))}
{state(stop) = passive}
- = if (passive, ¢, start-signal) output(ry,r,), state = active
if (passive, €, stop-signal) continue
if (active, e, start-signal) continue
if (active, ¢, stop-signal) state = stop
if (stop, €, x) continue
A = {A(active) (rys (1, usr-#))}

on

{A(stop) stop-signal}

Y = <1y, (1;, usr-#), stop-signal>

User-Transd

T, = {X.'S, 4 Bjnps Bews 10 X, Sp}

X = <1y, JOB-ID, stop-signal>

S = (passive, stap)

1, = {t,(passive) = =}

{t,(stop) = 0}

Oipy = {state(stop) = passive}

Sext = if (passive, €, Iy) update T,
if (passive, e, JOB-1Dy;) update Ty, N, AVTT (= L(T,, - T, 0/N)
if (passive, e, stop-signal) s=5top
if (stop, &, x) continue

A = {A(stop) = AVTT}

Y = <AVTT>

S, = <T,pp Tarre Ny AVTT>

Newwork-Model

N

{X,S, 1,8 . 6expr . Y}

m a vine* Cext

X = <(r;, USR#)>

S = (passive, busy)

i, = {1,(passive) = =}
{t,(busy) = avg-proc-time}

Bint = {if queue(empty) state = passive}
{if queue (not empty) queue = rest of queve, state = busv}

Bext = if (busy, €, xX) continue
if (passive, ¢, x) s=husy

A = {A(busy) = JOB-ID;}

Y = <JOB-IDy,>

FUNCTIONAL
REQUIREMENTS

funaotionst
*
P PR (it

l

l__
GROUP
PROCTSSES

procsss
gscompoasition

|

i

|

GROUP
COMMUNICATION

l

cammunication
descomposiitan

! P

]
|

IDEA 19SUE VOTING USER COMMUNICATION COMMUNICATION
GENERATION ANALYSIS TIME FORM CHANKEL
I ! FRAME
voting design aapects i
numbs’ ’
of channst
10pics time torm decomposition
sapecis decemp.
RESULTS DISPLAY TOOL
SINOLE NON- LAN
INTER-
dispiay torm ACTIVE
TEXTY voting
el
type
TEX?T
RANK
ORDER
FUNCTIONAL
REQUIREMENTS
tunctionsi
tequiraments
type
GROUP GR&UP
DYNAIMICS STATUS
gioup dynsmice sspects group esatus
sspecie
i 1
FOlRM CHANNEL 1 I
form ‘ PLAY
sepects channel STATUS Dlpsop:_M
decomposliian INFORMATION l
! .““l. into, torm decomzosition
LAM aespecte
TEXTY
AQENDA/
MEMBER
ATATUS

TEXT
QHLY

FUNCTIONAL
REQUIREMENTS

I

tungitonal
reguiramaents
typs

|

SESSION STARTUP ALTERNATE
SOF TWARE
ACCESS
sedsion dtertup
dscompodrtition I
stisrnate
l I l i s0aees
methode
GROUP AGENDA To0L FEATURES
BELECTION ENTAY INITIALIZATION MONITORING exir
CURRENTY
PROCESS
- ——-.
Y
R .
7 Sl
J—— e)

Software Review: NEXPERT OBJECT

Milam W. Aiken
Olivia R. Liu Sheng

Department of Management Information Systems
College of Business and Public Administration
University of Arizona Tucson, AZ 85721
602-621-2748

Abstract

NEXPERT OBIJECT is an expert system shell developed by Neuron Data Inc.
NEXPERT costs $5,000 for the microcomputer version, and 2 VAX version 1s
available for $8,000. Neuron Data can be contacted in the USA at 444 High St.,
Palo Alto, CA 94301 (415-321-4488) or in the UK at 34 S. Molton, London,
W1Y 1BP (441-408-2333). The version reviewed in this article was release 1.02
with Microsoit Windows. Ii was run on an AT&T 6386 microcomputer with 3
megabytes of RAM, an 80-megabyte hard disk, and a color monitor.

1 Introduction

A variety of sophisticated expert system shells have been introduced in the USA
(M1, Exsys, Guru, PC Plus) and in Britain (Crystal, Leonardo, Savoir, and Xi+),
but NEXPERT OBJECT presents many advantages aver these competing prod-
ucts. NEXPERT's emphasis on an object-oriented approach makes it ideal for

1

ﬂfp‘n/do 7

large. complex knowledge bases as well as theoretical work in artiticial intelli-
gence. In addition, it allows developers 1o embed portions of its inference engine
in their own code, combining the advantages of expert systems with algorithmic
languages.

Another major advantage is its wide-spread interoperability. NEXPERT can
run on a number of different machines including the IBM AT, PS/2, RT PC, 286,
386, Macintosh II and SE, Sun and Apollo workstations, VAX, and the IBM
mainframe. It is compatible with many different operating systems including
DOS, 0S/2, Mac OS, Unix, VMS, and VM. This interoperability (NEXPERT
is written in “C”) ensures that user-developed knowledge bases will run on a
variety of products as well as subsequent releases of NEXPERT.

NEXPET OBJECT is a full-featured expert system shell that is competi-
tive with many higher-priced mainframe-based packages including Intellicorp's
Knowledge Engineering Environment (KEE) and Inference Coporation’s Auto-
mated Reasoning Tool (ART). Only a few of NEXPERT's many powerful features
are detailed in this review.,

2 Knowledge Representation

NEXPERT is a hybrid system, combining rules and structured representations
known as objecits.

2.1 Rules

A rule is the elementary chunk of knowledge in NEXPERT. It links facts or
observations to assertions or actions. The basic structure of the rule is:

IF condition THEN hypothesis
AND condition AND actions

For example, to test for an alarm, NEXPERT might have the following rule in
a knowledge base:

Rule Alarm Test:

IF wwres_level low THEN Alarm_is_Set
EXECUTE "alarm.exe" @string="alarm"

In the abeve rule, NEXPERT checks for the condition water level low. If the
condition is true, it sets the hypothesis Alarm_is_Set to truc and also executes a
program to set an alarm, passing a program parameter in a string.

In addition, NEXPERT is integrated with several standard relational databases
and spreasheets. The first level of integration is through transparent, built-in
bridges to spreadsheet formats, such as NEXPERT's proprietary format NXP,
Sylk (Microsoft Excel), and WKS (Lotus). This first level of integration also
allows access to a number of databases including DBase III, DBase il Plus,
FOXBase, NXPDB (NEXPERT’s own proprietary database), SylkDB (Excel),
and WKSDB (Lotus).

The second level of integration uses separate bridges to connect NEXPERT to
the major relational databases on the market including Oracle, Sybase, INGRES,
and Informix via Structured Query Language (SQL) queries. These database
bridges allow NEXPERT to contro} the knowledge while a database management
system manages the facts. There is a one-to-one mapping between tables, records,
and fields in databases, and classes, objects, and properties in knowledge bases,
respectively.

In the following example, NEXPERT passes the value of an object called
Pressure 10 a file, executes a program which processes this data, and then retrieves
the result from the program’s output file.

IF Yes Process Data THEN Execute Program
WRITE “input.nxp"Q@TYPE=NXP;@FILL=NEW;@ATOMS=Pressure.value:
EXECUTE “calc.exe"@TYPE=EXE;@WAIT~TRUE;
RETRIEVE "output.nxp"RTYPE=NXP;RATOMS=Pressure.value:

Although NEXPERT has many powerful rule features, it lacks a facility for
certainty factors. To provide for uncertainty in rule selection or user responses,
the developer must create his own objects or variables to record and manipulate
these certainty factors. Neuron Data has promised to correct this shortcoming in
future versions of the product.

2.2 Objects

As the name implies, NEXPERT OBJECT is object-oriented in nature with fa-
cilities for classes, objects, methods, and inheritance. Groups of objects can be

nowledge Island

=3 \\
nowledge Isiand B-,
\

~ \
“TH
}

|

. |

/

L] /

/

Strong Links

d

ontext
Weak Link

Message from User or External Program
{Suggest)

Message to Databases

(Retrieve/Write)
Message to Programs

{Execute)

Message to User
{Question)

Figure 1: NEXPERT Knowledge Isiands

networked into knowledge islands, as illustrated in Figure 1. All objects with
strong links between hypotheses and conditions are grouped into the same knowl-
edge island. Weak links connect knowledge islands. Weak links among rules and
objects can be made manually at any time by the developer. In the example
below, the inference engine has no reason to expiore the Condition_Red hypoth-
esis while the Condition_Blue hypothesis is under consideration, since there are
no strong links among the conditions and hypotheses. Condition_Red would be
considered only if a weak link was established to it, connecting the two separate
knowisdge islands.

IF Yes Boiler_ damage THEN Condition_Red
IS Boilerl "Inoperative"

IF Yes Turbine_damage THEN Condition Blue
IS Turbine2 "Inoperative"

Groups of objects can also be categorized into classes. In the following ex-
ample, inferences are made on the property pressure of a class BOILERS. If the
condition is true, the water_level of all objects in the class is set to 5 and the
property setting of an object called Safety_valve is set to “on.”

IF IS |BOILERS|.pressure "critical" THEN Shutdown

4

—

PO IBOILERS| .water_ level 5
LET Safety valve.setting "on"

A pattern is closely related to a class. In the example below, any instance of
the class PUMP that is “Off Line” is a pattern. All objects belonging to that
class whose properties match this pattern can be gathered into a list.

IF IS <PUMP>.status "Off Line" THEN Notify Operator
> <TURBINE>.rpm 3700

Through a combination of rules and objects, knowledge islands, and database
links, NEXPERT provides a varicty of methods for representing expert knowl-
edge. In addition to its comprehensive knowledge representation stratcgies, how-
ever, NEXPERT supplies even more powerful reasoning and inferencies strate-
gies.

2.3 Reasoning

In NEXPERT, objects may inherit properties from other objects or classes in
a variety of ways. Inheritance can be changed at any time by using the built-
in functions /nhValue Down, InhValueUp, InhkMethod, or Nolnherit. Although
most expert system shells provide only twe methods of inferencing on rules,
NEXPERT offers four: backward chaining, forward chaining, semantic gates,
and context links. Backward and forward chaining are well-known among expert-
system developers, and context links were explained above; gates are somewhat
less well-known, however.

Semantic gates allow a rule net to pruned into a smaller search space. Through
the use of semantic gates, the inference engine can selectively generate goal
hypothzses during the evaluation of rules. For example, in Figure 2, condition
1 of the initial hypothesis is tested. Since this condition is true, a subsequent
hypothesis which is connected to this condition will also be investigated at a
later time. Condition 2, however, is false, so the hypothesis it falls under will
not be investigatea. By enabling or disabling these semantic gates, inferencing
can proceed along a number of possible paths.

The complexity made possible through flexible inferencing and knowledge
representation allows NEXPERT to predominate over competing products.

Also considsred Initigl Hypothesis Reject this hypothesis

™~
/
o O\O

Condition 1 Condition 2

Figure 2: A Rule Net Ilustrating Semantic Gates

3 Interface

NEXPERT's development and user interfaces present another competive advan-
tage over other expent system shells. The emphasis on a professional, graphic
interface allows the user to concentrate on the knowledge rather than the intri-
cacies of the tool itself, providing more efficient and effective developement,
maintenance, and use of the system.

3.1 Development Interface

NEXPERT's comprehensive graphic interface allows developers to edit rules
and objects as well as build control sttuctures, with an overview of the rule
and object structures available at all times through a dynamic, graphic browsing
mechanism. This interface offers a fast leaming curve for the user, and the
resulting kn~wledge bases are much easier 10 debug. These two qualities bring
the domain cxpert closer to the system and reduce the need for a knowledge
engineer.

In addition to its graphic knowledge editors, browsers, and windows, NEX-
PERT allows developers to playback a session through a joumalling feature.
Breakpoints can be set in the rule network, and various options and inferencing
strategies can be explored through repetitve trials.

3.2 User Interface

In the end-user environment, NEXPERT provides support for how it came 10 a
conclusion, why it is asking something during the consultation, and help for each
question presented to the user. NEXPERT also provides a variety of prompts
and menus for user input including a default menu and custom-designed screens
through a tool called NORT (NEXPERT OBJECT Runtime).

By specifying SHOW as an action under the hypothesis of a rule, NEXPERT
can display a variety of graphic formats including MacPaint, Dr Halo, Windows
Paint, TIFF on IBM PCs, and PICT on Maclntosh. The same SHOW command
can also display plain ASCII text.

4 Trial Run

The authors have developed several small expert systems using NEXPERT OB-
JECT and have encountered a few problems with its use.

Perhaps the greatest problem with NEXPERT is its lack of documentation.
Although the product is extremely powerful and built with the end-user in mind,
the necessary documentation to support its numerous features seems to have
occurred only as an after-thought Without adequate instructions on each of its
features, much wasted time was spent on trial-and-error experiments. NEXPERT
does provide some help over the phone, however. Lacking a detailed user manual
with copious, practical examples, the best method of learning to use the product
is probably through one of the training schools offerred by Bechtel, Inc. and a
few other organizations.

Another nagging problem is the occasional bugs discovered with the product
(although frequent updates of the software rapidly correct these). On several
occasions the hardware locked up for no apparent reason (most of these problems
dealt somehow with “garbage” piling up in memory).

Another less annoying problem is the poor access to classes and objects. By
improving its object-oriented features, Neuron Data can present an even more
competitively-differentiated product.

Neuron Data is committed to user support and ongoing development, however,
and these problems should be corrected in upcoming versions of the software.

5 Conclusion

NEXPERT has a few rough edges and lacks certain desirable features, but gen-
erally is a powerful, comprehensive expert system shell. The combination of

7

networked objects, knowledge islands, and various inferencing strategies allow
the tool to simulate the human mind to an extent largely unrivaled by competing
expert system products. NEXPERT's powerful features and dominance assure it
a leading position in the mid-range of knowledge-base tools.

NEXPERT s class and object structure, hardware support, and database links
make it an excellent choice for some select applications. NEXPERT offers a
rich choice of knowledge representation, inference strategies, and integration into
other programs, but it is probably more appropriate for expenienced expert system
developers and users. If a potential user has access to an 80386-based machine
with a megabyte-plus memory and is planning to develop large applications,
NEXPERT is a good choice.

Appendix - Hardware and Software Requirements

NEXPERT OBJECT release 1.02 for the IBM PC microcomputer requires 640
KB of RAM (2 MB is recommended), a 1 MB hard-disk drive, and a 1.2 MB
diskette drive. Other requirements include an EGA board and color monitor,
a serial mouse, and an expanded-memory board with at least 2 MB of RAM
recomm=anded).

NEXPERT comes with a hardware key which must be installed in a serial port
for proper operation of the program (the key is invisble to other peripherals using
the port). NEXPERT checks for the hardware key occasionally; if it is missing,
the program will exit to DOS.

The PC version requires Microsoft Windows to support its windowing features.
Acknowledgements

A review of NEXPERT OBJECT was made possible by a grant from the
Armmy Institute of Research in Management Information, Communications, and
Computer Science (AIRMICS), Altanta, GA. Grant #: DAKF-11-88-C-0021.

The Authors

Milam W. Aiken received the B.S. degrec in Engineering and the Master's
of Business Administration degree from the University of Oklahoma and the
B.A. degree in Computer Science and the B.S. degree in Business from the
State University of New York. He is currently a Ph.D. student in Business
Administration with a major in MIS at the University of Arizona, and his research
interests include expert systems, office automation, and group decision support
systems.

Olivia R. Liu Sheng rececived the B.S degree from the National Chiao Tung
University in Taiwan, R.O.C. and the Master’s and Ph.D. degrees in Business

8

Adminsitration with a major in Computers and Information Systems from the
William E. Simon Graduate School of Business Adminsitration, University of
Rochester, Rochester, N.Y. She is an assistant professor of MIS at the University
of Arizona. Her principal research interests are analysis and design of distributed
information systems.,

ﬂ”‘- /"w i

Software Review: EXSYS Professional

Milam W. Aiken

Department of Management Information Systems
College of Business and Public Administration
University of Arizona
Tucson, AZ 85721
602-621-2748

Abstract

EXSYS Professional is an expert system system shell developed by EXSYS, Inc., P. O. Box 11247,
Albuquerque, NM, USA 87192-0247 Phone: (505) 256-8356 FAX: (505) 256-8359. EXSYS
Professional version 3.2 running under MS-DOS (reviewed in this articie) costs $795, ($516.75 with
the 35% educational discount). EXSYS Professional is also available for VAX/VMS- and Unix-based
systems and is fully compatible across operating environments,

1 Introduction

Since 1985, when the original version of EXSYS was introduced, thousands of expert systems have
been developed in academic and commercial environments using this product. This expen system shell
has found wide-spread acceptance due 10 its power, portability, speed !, and ease-of-use [6]. EXSYS
Professional has all of the features of standard EXSYS while adding numerous additional capabilitics
which are detailed in this article.

2 Knowledge Representation and Inferencing

Like many expent system shells, EXSYS represents its knowledge in the form of IF-THEN production
rules 2. With a color monitor, the conditions of a rule which are true, false, or unknown can be shown
in different colors (Figure 1).

EXSYS allows forward chaining, backward chaining, or both. A particularly useful feature added in
the Professional version is the UNDO command which allows the user to go back and correct a mistake.
It is very frustrating for the user to answer dozens of questions during an expert system consultation,
make a mistake, and have to start over from scratch. By simply pressing CTRL-U, the user can back up
lo the previous question and enter the correct information. Backiracking with UNDQ is allowed up 1o
10 times.

'In a recent review of nine microcomputer expert system thells, EXSYS was consistently ranked among the fastect in erms
of execution, compiling, loading, and saving {3].

2Knowledge representation through frames is available from an add-on product cailed FRAME devceloped by California
Intelligence.

RULE NUMBER 6: (Employment Rule)

iF :

(1) Applicant has & bachelor’s degree or master’'s degree !
(2) Applicant has passed gntrance examingation

THEN:

Management Trainee - Confidence=6/10
and Sales Trainee - Confidence=5/10

ELSE: i
Do not hire - Confidence=9/10

and STOP

NOTE: Management - wage scale, Sales - commission

REFERENCE: Empioyment Manual Chap. 5, p. 451

IF line # for derivation,<K>-known data, «C>-choices

t or { -prev. or next rule,«b-jump,H>-help or <ENTER> to continue: |

Figure 1. A Sample Production Rule

In addition to the average, independent, and dependent methods for combining cenainty faciors
provided by the original version of EXSYS, Professional adds increment/decrement and user-defined
formulas. Cenainty factor values may range from 0 to 10, -1 to 1, or -100 1o 100. With this large variety
of inferencing and certainty factor straiegies, very robust knowledge bases can be buiit.

3 Interface

An expert system’s interface is perhaps the most critical aspect for user acceptance. If the system is not
user friendly, does not respond quickly, or does not provide information in a useful format, the likelihood
that the system will be used is slim. EXSYS Professional provides many important features for the user
interface (development and runtime), the file interface, and the program interface.

3.1 User Interface

EXSYS Professional is divided into two principal programs — EDITXSP for knowledge base development
and EXSYSP for running the finished expert system. The development interface in EDITXSP allows the
user to inference through the rules (like EXSYSP), but includes many questions and features which may
unnecessarily distract the user who wishes (o only run the system.

To begin a knowledge base with EDITXSP, the developer simply answers a serics of questions
regarding entry and exit screens, application of centainty factors, execution of external programs, cic.
(default options allow the inexperienced user to begin a knowledge base without having to understand all
of the parameters involved) before the main development screen is shown (Figure 2). The user then cdits
the knowledge base rules and conditions using Enlish text, menu selections, or algebraic expressions. As
each new rule is entered, EXSYS automatically compares the new rule against existing rules and displays
possible conflicts. Finally, the developer may provide an edit password which gives end users complete

RULE NUMBER: 15 (Test Score Evaluation) 1. Management

Trainee

IF: |
. i T
1) [TEST SCORE] > €0 i Sé»ggf?:eerr?;r;eg
(2) Applicant studied engineering Trenee
THEN:

Select choice number,New value<N> or Typo correction<T>,
Delete/reorder<D» Find<F>HelpH» Where«W» or <ENTER> to cancel:

Figure 2: Developing the Knowledge Bzce

access 1o the knowledge base or a run password which allows end users to run the system but not to
modify it. End users may also be restricted from viewing the rules, if necessary.

For knowledge base developers wishing 10 use a wordprocessor, a rule compiler is available to
translate the rules into EXSYS' intemal compiled format. This method also allows developers 1o trans{zr
knowledge bases from one expert system shell format into the EXSYS format.

Running the expen system using EXSYSP is extremely easy. The user may select onc or more choices
from a menu to fulfill a condition or may enter a value when the system is asking about a variable. The
default runtime screen is shown in Figure 3. This scrcen may be customized, however, with a screen
definition language to provide color, borders, multiple screens, etc. Even more complex screens for input
and output can be provided by calling an external program (see program interface below).

At the end of the session, a report summary is shown which indicates the expert system's recommen-
dations ranked by certainty factor (Figure 4).

3.2 File Interface

EXSYS’ report generator allows session results and conclusions to be passed to other programs via an
ASCII file. In addition, a sequential set of input data can be analyzed record-by-record.

Another type of file interface provided by EXSYS Professional allows the system to directly read and
write to Lotus 1-2-3 and Ashton-Tate's dBasc file structures. Using the command language (discussed
below), an expert system can step through each record of a dBase file, analyze the data, and write the
results to the dBase file or a separate file.

3.3 Program Interface

EXSYS Professional can be customized by calling extemal programs. Special graphics, numenical analy-
sis, simulation, and interface programs can be run to add additional power to the expert system shell. Any
external program can be called including .EXE, .COM, and .BAT files. In addition, interpreted programs

Job applicant’s education level is

1 High school

2 Bachelors degres
3 Masters degres
4 Doctorate degrae

Enter the number(s) of the value(s) WHY to display rule being used
QUIT to save data > for heip

Figure 3: Running the Expent System

Values based on 0 - 10 system Value

1 Management Trainee
2 Sales Trainee
3 Engineering Trainge

[\ @ BN

All choicescAronly if valuer»i«G>Print<P>Change and rerun<«C>
Rules usedddine #> Quit/save«Q> Help«H» Done<D»:

Figure 4: Report Summary

/* A Sample EXSYS Professional Command Language File

rules sectionl /* Apply named subset of rules

if (Y] = "END" /* conditional branch on a variable
goto end

endif

/* Look through dBase III file called group.dbf

set {(I] L

while ([I] < toprec("group.dbf))
db_gn{group.dbf, [I],project, [2],individual, [W]})

if [X] = [2] /* matched project
report group.out /* write result in file group.out
endif
set {I}] ([I}+1) /* increment record counter
wend
:end
report summary /* Output in file called summary
run final.exe summary "End Report" /C /* Call external program
exit /* Exit to DOS

Figure 5: Sample Command Language File

may be called by first calling the interpreter and then the program (e.g., BASIC CALC.BAS). Parameters
and data can be passed 1o and from the called program directly (through variables or the command line)
or indirectly (through an intermediate ASCII file).

4 Command Language

A major additional feature provided by the Professional version of EXSYS is the knowledge base com-
mand language (use is optional). The command language is similar to a batch language and provides
detailed control of knowledge base execution, input of data, looping, and display of results (Figure 5;.
This is particularly important when used in conjunction with invisible embedding of the expert system
with other applications for real-time process control. Named rule subsets in the command language also
provide modular control over the knowledge base.

S Learning to Use EXSYS Professional

EXSYS Professional is so easy to leam and use that even novices with no prior experience in knowledge
base development are usually able to get a significant expert system up and running in a couple of days.
Extensive use of menus and context-sensitive help directs the user through the development and use of
the tool. Additional help is provided through a comprehensive tutorial on five diskettes. The user manual
is extremely well-written with detailed cross-r=ferencing and indexing. Also, several books have been
written which illustrate the use of EXSYS {1, 2, 4, 5]. And finally, training seminars are offered by many
academic institutions and a few software development firms.

6 Conclusion

Few expert system shells available for microcomputers combine as much power for as little cost as does
EXSYS Professional. EXSYS Professional offers advantages in terms of efficiency (speed and memory
utilization), ease of learmning and use, and cost.

By providing powerful, relatively inexpensive, and easy-to-use expert system shells direcily to the
domain expert, the knowledge acquisition bottleneck can be broken. In the academic environment,
students can be expected to leamn to use the tool themsclves, allowing the instructor to concentrate on
teaching the theory of knowledge engineering.

Both novices and experienced knowledge engineers are encouraged to explore the capabilities of this
powerful product. For only $15, a demonstration version of the original EXSYS (limited to saving only
25 rules to disk) is available. The purchase price includes a series of tutorial lessons, several sample
expert systems illustrating various aspects of the tool, and a manual. A useful prototype expert system
can be built using this restricted version of the tool and can serve to convince the user or management
of the effectiveness of EXSYS and EXSYS Professional. At such a low price, there is litle risk in
investigating the product.

References

[1] Girard, J., Carico, M., and Jones, J., Building Knowledge Systems Using Rule-Based Shells, McGraw-
Hill.

(2] Murray, J., Expert Systems in Data Processing: A Professional Guide, McGraw-Hill, 1988.

[3] Press, L., “Eight-Product Wrap-Up: PC Shells,” Al Expert, September 1988, pp. 61-65.

[4] Ruth, S. and Sprague, K., Developing Expert Systems: Using EXSYS, Mitchell Publishing.

[5] Turban, E., Decision Support and Expert Systems: Managerial Perspectives, MacMillan Publishing.

{6] Vedder, R., “PC-Based Expert System Shells: Somc Desirable and Less Desirable Characteristics,”
Expert Systems, February 1989, Vol. 6, No. 1, pp. 28-42.

Appendix - Hardware and Software Requirements

EXSYS Professional for the IBM PC, XT, AT or compatible requires a minimum of 640K RAM, a
hard disk or high density floppy disk drive, and DOS 2.0 or higher. The program will work with either a
color or monochrome monitor, but color allows the user to see what conditions of a rule are true, faise,
or unknown when inferencing.

EXSYS Professional uses all main memory that is available. If the knowledge base does not fit, rules
are swapped to and from the hard disk as necessary. Approximately 64K is necessary for 500 rules with
an average of six or seven conditions in each rule.

Acknowledgements

A review of EXSYS Professional was made possible by a grant from the Army Institute of Research
in Management Information, Communications, and Computer Science (AIRMICS), Atlanta, GA. Grant
#. DAKF-11-88-C-0021.

