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STABILITY OF OSCILLATORY TWO PHASE COUETTE FLOW

Adrian V. Coward'
Department of Mathematics
University of Manchester
Manchester M13 9PL, U.K.

and

Demetrios T. Papageorgiou!
Department of Mathematics
Center for Applied Mathematics and Statistics
New Jersey Institute of Technology
Newark, New Jersey 07102

ABSTRACT

We investigate the stability of two phase Couette flow of different liquids bounded between
plane parallel plates. One of the plates has a time dependent velocity in its own plane, which
is composed of a constant steady part and a time harmonic component. In the absence of time
harmonic modulations the flow can be unstable to an interfacial instability if the viscosities
are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet
theory, we show analytically in the limit of long waves, that time periodic modulations in
the basic flow can have a significant influence on flow stability. In particular, flows which
are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely
by the inclusion of background modulations, a finding that can have useful consequences in

many practical applications.

!This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (I[CCASE), NASA Langley Research Center, Hampte:, VA 23681.
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1 Introduction

It is well known that plane Couette flow of two superposed fluids of diferent viscusities
can be unstable. This instability is absent when the viscosities are equal and is a result of
an interfacial deflection growing due to viscosity stratification. This mechanism was first
described by Yih (1967), who used perturbation theory to obtain an analvtic expression for
the growth rate in the long wavelength limit. The results can be summarized as follows (for
clarity, in the absence of gravity): Instability is possible only if the viscosities are different.
Arrangements where the more viscous fluid occupies a thinner layer than the less viscous one
are unstable, whereas converse arrangements are linearly stable to long waves. The instability
is present at all Reynolds numbers, although in the limit of zero Reynolds number the growth
rates become asymptotically small. Flow, therefore, is necessary to excite growing waves.
Moderate surface tension is negligible to leading order for long waves, but acts to stabilize
very short waves. Yih's work was extended more recently by other investigators. Hooper
and Boyd (1983) considered the linear stability of two co-flowing viscous liquids of different
viscosities separated by an interface and extending to infinity. This is Yih's problem in the
absence of walls and can be used as a useful model in the study of short waves (short waves
at the interface would not feel the effect of the walls, to leading order at least). Instahility
is found in all cases. Long waves are stable for all viscosity ratios. wiile short waves, in
the absence of surface tension are unstable with asymptotically small growth rates - when
included, surface tension damps out all waves which are short enough. Disturbances with
general wavelengths are unstable and a maximum growth rate is attained at some viscosity
ratio. This work was extended by Hooper (1985) who included a bounding moving wall for
the lower fluid. The flow is shown to be unstable to long waves as long as the bounded layer
is also the more viscous one, in agreement with Yih’s findings. An explicit expression for
the eigenvalues is also given in terms of Airy functions.

The stability of Yih's problem for general disturbances and including density differences
and surface tension, was first solved numerically by Renardy (1985). She presents specific
examples that show that the general long wavelength result described by Yih and Hooper
and Boyd, can be extended to interfacial waves of arbitrary wavelengths. Another interesting
feature is the finding of a second mode of instability at relatively high Reynolds numbers;
this second mode has long wavelength and growth rates comparable to the first interfacial
mode. Renardy (1987) carried out an analytical study of the same problem but for fluids
with slightly different mechanical properties. Analytical expressions for the eigenvalues are
constructed and instability is established in the thin layer limit if the thin layer is occupied

by the more viscous fluid.




The stability characteristics of oscillatory flows are much more complicated than those
of their steady counterparts. There are many examples where the inclusion of an oseillatory
component to the steady flow can enhance or reduce stability (for plane Poisenille flow. for
example, see Grosch and Salwen (1968), Hall (19753), von Kerezek (1982); for a review on the
stability of oscillatory flows see Davis (1975)). As far as we know the stability of oscillatory
two-phase viscous flow has not been studied. Yih (1968) considered the stability of a viscous
fluid layer on a flat plate performing a simple harmonic moticn in its own plane. There s no
viscosity stratification (the upper fluid is air) and the flow in the absence of the oscillation
contains no steady velocity component and is linearly stable. Yih showed, using a long wave
Floquet theory, that the oscillatory How can become unstable even though in the absence
of oscillations the flow is stable. This was extended by von Kerczek (1987) to flow down
a vertical plate which is performing a simple harmonic motion in its own plane. This flow
is unstable even in the absence of oscillations and von Kerczek uses Yih's long wavelength
expansion to establish windows of instability. Our interest is to apply such a study to an
oscillatory two-phase flow. In the problem we study here, depending on the fluid occupation
areas in the unperturbed state (see earlier comments), the flow can be stable or unstable. In
the former case, therefore, a quasi-static approach would yield background velocity profiles
for each instant in time (time is treated as a parameter in quasi-steady theories) which are
linearly stable while in the latter instance instability ensues for all parametrized profiles. A
more ylelding approach is that of Floquet theory where stability or instability is judged on
the overall growth or decay with time of a perturbation over a cumplete period of the forced
oscillation. Analytically this means that time-periodic solutions are constructed which can
amplify, remain neutral or decay depending on whether the Floquet exponent is positive.
zero or negative. We present representative results for several cases which in the absence
of background oscillations the flow is unstable while imposed oscillations can stabilize the
flow completely. On the other hand, flows which are stable can become unstable. We note
that all the results given here are in terms of explicit but long formulae which vield stability
results with little computational effort. Such explicit solutions are of considerable value in
the generalization of the stability problem to arbitrary wavenumbers by use of continuation
methods for instance.

The article is organized as follows. Section 2 derives the undisturbed flow as ar exact
shear flow solution of the Navier-Stokes equations. In Section 3 the lincar stability problem is
formulated and the interfacial conditions are written down. Explicit solutions are developed
by an expansion proce dure carried out to three orders, so that we may determine the first
stage where the expansion of the Floguet exnonent is a real termn In Section 4 we preser !

the results of the stubility analysis and finally in Section 5 we draw some conelusions.




2 The basic state

Two incompressible fluids of equal densities, p, and different viscosities, occupy a region
of depth L between parallel infinite flat plates. The lower plate is fixed and the upper
plate moves in its plane, with a steady velocity Uy, together with superposed sinusoidal
oscillations, so that its velocity at time ™ is given by Up+ A cos (wi™). The finids are assunmed
to be immiscible and form separate layers, the upper fluid has viscosity pu;, the lower fluid
has viscosity u; and a depth D. We denote these as regions (1) and (/[) respectively.
We look for exact solutions of the Navier-Stokes equations for a constant interface position
and velocity component in the streamwise direction alone which depends on time and the
vertical coordinate only. Using cartesian coordinates (z*,y"}, the exact flow is deseribed by

the following equations

T, T, .

— I e e > >

at* p ay"} Y L —_— y — D ([))
2 - R 2 >yt > I1y.

at* p ay*Z 1 D - y -— 0 ( )

The boundary conditions are, no slip at the walls,

Ui(y*=L) = U+ Acos(wt),
Up(y*=0) = 0.

and continuity of velocities and stresses at the interface,

Uily'=D) = U(y’=D),

a-[_]: * — al_]: *
g (y"=D) = P (y"= D).

The solution is easily found by separation into a steady part and an oscillatory part of the
same frequency as the plate motion. The basic flow is,
M pa2Uoy™ — Up D (/‘2 — f)
' Lpz — D (p2 — m1)

— pwlUoy™ { . (/3'3/') (iwt* }
U = + AR ¢ 2K sinh | ety
? Ly — D (p2 — ) m?

+ AR{[L,e“"y'> + Lze.(—l"y')} tc‘(fwl’)}‘_

i
where R denotes the real part, * = (ipw/u1)? and we define the ratio of the lower flud
viscosity to that of the upper layer by the parameter m = py/uy. The constants A, Ly and
L, are given by

K = ! (1

2sinh { 22 cosh(B* (D- L + 2m# cosh { £2 ) sinh (3= (D— L))(
nk ' wy
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Ly = Kexp(-p5"D) [m% cosh (/3 [3) + sinh (ﬁ'{))] , (2)
mz mz:
Ly, = Kexp(p™D) {sinh ('B 11)) — 7 cosh (ﬁ‘,D)] . (3)
m2 m?

The flow is non-dimensionalized next with D as lengthscale and 1y as velocity scale, while
time t* and pressure P~ are non-dimensionalized by D /Uy and pU¢ respectively. This intro-

duces the following non-dimensional groups (used later also):

L A
= = A= — = 3D,
a D) (/0$ ﬁ /
UsDp oR? wD
R = , = Q===
m 7= DU Uo

The parameter a measures the relative depths of the two fluids, A measures the magnitude
of the externally imposed oscillations, B is a measure of the Stokes layer thickness due to
the oscillatory flow, R. is the Reynolds number, and Q is the non-dimensional frequency of

the plate oscillations. Under these scalings the non-dimensional no-slip condition becomes

Ui(y=a) = 1+ Acos(t),
UZ(y:'O) = 07

and the basic flow is:

7, my —m+ 1

i

p—— + A’R{[way) + Lze(-—ﬂy)] e(iﬂf)} ,

— 3 .

U, = —2—— 4+AR {21( sinh (f—y—) e("")} .
am—m + 1 m2

The constants K, L; and L, appearing above are in their non-dimensional forms which are

readily available from (1)-(3) by replacing *D by 5. When A = 0 we recover the basic

Couette flow of different fluids in a channel (see Yih (1967)).

3 Stability equations.

The equation governing the linear stability of parallel shear flows is the Orr-Sommerfeld
equation and arises from linearization of the Navier-Stokes equations and a normal mode
expansion. In the present problem the backgronnd flow is time-dependent and so the eigen-
functions depend both oun t and y. In particular, the perturbation streamfunction is taken to
have the forin 9;51,2 (r,y.t) = by (y.t) " where o is the wavenumber of the disturbance and

subscripts 1,2 denote quantities in regions (1) and (11) respectively, The stability equations




in regions (I) and (I1) are, then,

(gt + za(/,)(g—% -a )¢1~ iagy d;;"‘ }% [6;;1‘ 2a° a;; + a"'p’;}., (4a)
( gt + zaU;,) (gz—z —a )m za¢2d5022 = -’% [a.;;’ ~2a2 ‘:;”f + a“m] (4b)
The linearized boundary conditions are
b1(a)=0= %f—;—(a), (5)
5(0)=0= ). (6)

We now let the interface position be y = 1 + 8h (t) e'** where § << 1 is the infinitesimally
small amplitude of the perturbations. The linearized interfacial conditions are found by
expansion of the exact conditions about y = 1 in powers of § and retention of the leading

order contributions:

¢ = & (M)
6¢1 _ 6¢2 (1 et m) 6U1
9y 0Oy +h m 3y’ (®)
ik a
8;5; +a’¢ = [7’2} + 02052} ) (9)
P, 2061, 2,000 34, 9¢ . . aU,
57 Sy 2y = Re g tieligy ~iehig)
_ Bo2  , .00, 1P ¢, . -84 . OU,
_m(6y3_3a By —2ahay - R, 68t+ aUzay zaq&gay
3h
+ ZQR "/. (10)
The linearized kinematic condition at y = 1 reads
%’t—z+zahU1+za¢1—0 (11)

Equations (4-11) constitute the partial differential system together with boundary condi-
tions that governs the stability of the flow. The problem contains time and one space variable
and in general requires integration in time as an initial boundary value problem. Stability or
instability is determined by the large time evolution of initial perturbations corresponding
to different wavenumbers.

In this work we proceed analytically by studying the stability characteristics of long

waves (@ << 1). Such analysis provides a significant amount of information since it enables
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development of closed form expressions which can be used to check whether unsteadiness in
the background flow can affect the evuiution of linear perturbations. In the Couette problem
studied by Yih (1967), instability was established for all Reynolds numbers by an analogons
long wave expansion. The analysis of long waves is also useful in guiding numerical sclutions

of the initial value problem at general wavenumbers.

3.1 Solution for long waves

We now proceed analytically by considering the asymptotic limit a — 0 which corresponds
to disturbances with long streamwise wavelengths. We use a method similar to the Floquet
theory applied by Yih (1968) to obtain analytically the growth-rate of the disturbance at
the interface. We look for solutions for the streamfunction and interfacial amplitude as a

power series in o < 1 of the form, for y = 1,2,

é; (y,t) = (djoly,t) +adji(y,t)+...)exp((6o + aby + ...)t)exp (ikat),
h(t) = (hol{t)+ahi(t)+...)exp{(fo + abfy +...)t)exp (tkat),
k = ko + CYk] + .

where kg, kq, ..., 00,01, ... are real constants, and ho (), hy (t),... are periodic in time ¢.
By writing the streamfunction and interfacial deflection in this form, the linear long wave
stability of the unsteady flow can then be determined by calculating the first non-zero 8.
which corresponds to exponential growth or decayv of the disturbance to the basic flow.
We now consider the system of governing equations (4a-b) and the boundary and interface

conditions (5-11) to leading order, O (1). Firstly the kinematic condition, (11) yields

dh
?f = —Bpho. (12)

Now since 8y is real and hg is periodic we have two choices: we may take Ao = 0 so that 6,
is as yet unprescribed, or alternatively 8 = 0 and then, without loss of generality, hg = 1.
We shall in fact assume the latter, since hq = 0 leads to damped modes ouly as shown later
in Section 3.2.

After making the transformation Yo = ¢;0 + U, for each region, j = 1,2, the leading

order system becomes

P10 1 %10

= 5 Taa 13a
dy20t R. oyt (13a)
P _ 177;641/;‘20 (131)
dy2dt R, Oyt S
A
io{y =a,t) = 1+ B [e’m + c.c.] \ (14a)
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Yy =0,t) = 0, (14b)

0 A _
g;o (y =a,t) = :l?n-—_-m_nl-:—l- + [—B“i‘“ (L] efe — L2e—0a) e 4 C.C.} ) (14c¢)
a¢20 _ _ 1 .BA Qe .
By (y=0,t) = m+ ;;_ZL-KC +cci. (14d)
Here, c.c. denotes the complex conjugate.
At the interface y = 1 we have
Yo = s, (15a)
dg’:’ = dg’;", (15b)
%10 0%y
3:1/2 - m—-a—y-i—, (15(3)
: 92 33 2
03%0_12 P _ na ¢20_R %20 (15d)

dy? © Qyot ! ay®  Gyot’

These equations admit solutions of the form:

3 2, my—a
= - - 1
$10 Aro(y = a)" + Bio (v - a) +am—~m+l *

+ {[Crosinb (By) + Do cosh (By) + Eroy + Fio] €™ + c.c.},

Y20 = Asoy® + Baoy® + —F——
am—m+1

+ {[Czo sinh (ﬂym'%) + Dyg cosh (ﬂym_%) + Eyy + on] e 4 c.c.}.

The twelve constants are found analytically by substitution into the above boundary and
interface conditions, the resulting equations which determine Aiq, Agq, ..., Fio, Fao are given
in the appendix.

At the next order, O (a), the kinematic condition (11) becowies

dh . 4
—(E-l-+01+uj)m(l,t)+zk1 =0 (16)

Our solution strategy in obtaining the eigenvalues analytically, is based in part on the per-
turbation eigenfunctions and interfacial amplitude being time periodic. In equation (16)
above, 1,0 (1,¢} is the sum of a real constant and a time periodic function, while &,, and
f are real. In order to obtain periodic solutions hy(t) the following constraints need to be

satisfied,

m{a~— 1)

———— ],
am —m+ 1| i

by o= =g (1) = A (a=1)> = Bio(1 - a)? +

-3




hy = ——/u,/)("s) (1,t)dt,
= —Q7'[Ciosinh (B) + Diocosh (B) + Ero + Fio) ™ - c.c.,

(17)

where the superscripts (s) and (us) denote the steady and unsteady parts respectively.

Before solving the O (a) system, let us first consider the O (a?) kinematic condition,

which can be written as

dh,

T+02+2[L1h1+1k2+1h (,1+2¢11(I t) ==

Using T to denote the imaginary part, we see that for h,(t) to be periodic in t we require,

0 = 2{ [T + 6 (1] 7}

Clearly then it is sufficient to solve for the steady part of the eigenfunction ¢;; to O(a)

in order to determine @, and hence the linear stability of the interface. We note that at

this order, products of functions which have a time dependence given by exp (£:Qt), yield

additional steady terms in the governing equations and boundary/interface conditions. The

eigenvalue 8, is therefore determined by both the steady and time oscillatory motion of the

interface. The time independent perturbation equations are given by

1 8%l 9 70, , 1*
7 aﬁ? - [(h +T,) aj“’ 1¢10] :
m 845 g T, 1V
7{: 3y = (kl +U) By - "Td“yT%o

They admit a particular solution

. a ra pa : — a¢10 dﬁ] {s)
iR, [ | / [(k,-HJ,) B o ﬁy] dydydy,
. 1ol — O, o, 1"
X21 = 1771"1Re[) [) /0 [(k; +U2) —;—;9 — 1Py ayz} dydydy,

so that the general solution of equations (18a-b) is

X1

W= An =T+ Boy =)'+ Cnly = D+ Do+

d)(s) = Ayn(y— 1)3 + By (y ~ 1)2 +Cul(y— 1)+ Dy + \ae

(18a)

(18b)

(19a)

(19Db)

The eight constants are found by applying the following boundary and interface conditions:

& (y=a) = 0,




¢(8)
5y ( ""a) = 0’
F) (8
2Ly=0) = o
o) = o5,
988 _ 9¢f) (m- 1) [, 0T,
By by m Yy '
ooy _ 0%
gy~ oy
o) 860 g [hdb g 060 0T
8y® By Oy Oy By

+ R {lkadcﬁzo 0d20 U, ](’)

By +2 Uza — P07 3y

o+

The above solutions and boundary conditions provide a system of eight inhomogeneous
algebraic equations for the eight constants Ayq, Aay,..., D1y, D2y and are solved explicitly
here, (see appendix).

3.2 Damped disturbances

Before presenting the results of the calculation of the eigenvalue §,, we show that the possi-
bility ko = 0 yields damped waves. To achieve this we write the leading order streamfunction

as

dj0 = Q; (y) exp (fot) , where j = 1,2.

This satisfies the equations

d2Q1 _ d'Q

d"Q d‘Q
R,eo—@—} = m@-;}, (21)
which are solved subject to
_ 4@ o _
@1 (9) = “d—y—(o) = 0,
_4Q . _
Q@)= G2 = o,




Dy = Ly,
dy dy
d*Q d*Q,
dy’l (1) = m dy,;(l).
diQ] dQ] . (13(23 ng
T (= RS2 () = m =) - &

Multiplying (20) and (21) by d—[%l and —{[%1 respectively, integrating between 0 and «, and

imposing the above boundary and interface conditions yields
o\ 2
[ () do+ 5 (5%)" ]
- 2
[fo ( dy ) dy + | (%) dy]

Hence all disturbances are damped for this case.

R.60 = —m

4 Results

The non-dimensional parameter A is the magnitude of the sinusoidal oscillations of the
upper plate relative to the magnitude of the steady velocity. When A = 0. this problem
reduces to that of steady plane Couette flow of two superposed fluids of differing viscosity,
(as characterized by the ratio m).

As an initial check on the validity of our analysis we first.y consider this steady case. which
corresponds to the problem solved by Yih (1967). In order to make a direct comparison of the
results we must first note that the length scale used by Yih (1967) is equivalent to (L — D)
whereas in this work we use the lower fluid depth D. Yih also defines a parameter n = d,/d,
the depth ratio of the lower to upper regions, a brief calculation shows that n = (a — 17 In
view of these notational differences the Reynolds number and streamwise wavenumber are not
the same as their counterparts defined in this work, we must first make the transformations
ayi, — na and Ry, — nR., we hence write J (m,a,A =0)= R (a - 1)7%9,.

Calculation of 83, and hence J, is in theory an analytical task, in practice however. the
twenty constants obtained in the integration of the O (1) and O () systems, are lengthy
expressions which are found most efficiently by use of a symbolic algebra package. For
completeness, the simultaneous equations which determine these constants are given in the
appendix.

For a given viscosity ratio m, depth ratio a, frequency  and magnitude A, the value of 8,
is calenlated. When the real Floquet exponent 6, > 0 the disturbance to the basie low will
grow exponentially in time and the flow will be unstable, similarly negative 8, corresponds

to a damped interfacial disturbance, and the flow is said to be linearly stable.

10




Figures 1(a) and 1(b) plot the values of J against m for a steady flow, (A = 0). when the
lower fluid is more viscous than the upper layer. We have chosen equivalent depth ratios to
those illustrated by Yih {1967), the results are identical.

Figure 1(a) corresponds to a flow in which the uppe: layer is deeper, for a more viscous
lower layer the growth rate is positive and the flow is always unstable. With a shallower
upper layer, Figure 1(b) indicates that there is a region of stability. depending on the size of
the viscosity ratio, although for sufficiently large m the flow will become unstable.

For unequal depths of fluids the growth rate tends linearly to zero as m approaches unity.
since this is a hidden mode for flows of equal viscosities.

To obtain results for a less viscous lower region, we have verified the following transfor-

mation given by Yih
mJ (m,n,A =0) = n?J (%, -:;,A = O) , where n = (a — 1)7". (22)

The results for the steady flow when the more viscous fluid occupies the upper region can
then be inferred from Figures 1(a) and 1(b).

Before discussing the results for the full time-oscillatory problem, let us first investigate
this property in more detail. Yih observes that the phase speed of the disturbed flow,
(c; using his notation), is equal in magnitude and opposite in sign when the viscosities
and depths of the fluid layers are interchanged. This is because, the original flow may

be recovered identically by making a Galilean transformation from the coordinates (r.y.t)
g8 9 4 8 3 4
3z 3y’ At 361 3y7 5t T a&
now becomes stationary, (relative to the moving frame of reference), and the lower plate

to (£,y,t), where £ = x — t, hence ( ) The upper boundary
moves with constant velocity —1. Since gravity is neglected for this problem. inverting the
geometry leaves the eigenvalue, and hence the stability characteristics, unchanged. In order
to compare the growih-rates quantitatively however we must note that now the Reynolds
uumber, R, = UsDp/u,y. and lengthscale D must be rescaled ou the new upper fluid. hence
the multiplying factor n?/m, as given by equation (22) above.

We now consider the problem when A # 0, the flow is dependent upon the time t and
analogous conchusions freiy a change of reference fi.:.1e do not hold and so for completeness
we also need to considor arrangements when when the lower fluid is less viscous than the
upper layer. Since the unsteady contribution is periodic, we need only consider A > 0. [u
fact it is clearly seen that A is a multiplicative factor in the basic flow, @10, 920 and also h;y.
and these terms contribute to 8, as products, thus —A gives identical results.

When the lower fluid is more viscous, m > 1, the interface is destabilized by the intro-
duction of au unsteady basic flow. Figure 2(a) shows that for a = 3.5 the already unstable

steady mode, (broken line), is made more unstable upon increasing the magnitude of the

I




oscillations. Similarly, when the lower fluid is deeper, for example @ = 1.4, so that in the
absence of background time periodic modulations the flow is stable for moderate 1 at least,
the interface is again destabilized as indicated by Figure 2(b). The value of m below which
the low is stable, decreases as A increases, for example when A = 0.2, the neutral distur-
bance is obtained for a viscosity ratio m = 86.2319, whereas for A = 0.4, 11 = 66.2506. This
is shown more clearly by the neutral curve in Figure 3: if the magnitude of the oscillations
increases beyond the critical value A = 0.5695, the interface is unstable for all m > 1.

When the lower fluid is less viscous, m < 1, the results are more siguificant. For all
depth ratios we find that the time-dependent oscillations dramatically stabilize the interfacial
disturbance. For a deeper upper layer, for example a = 2.25 as in Figure 4(a). the range of
viscosity ratios m, for which the reai growth rate is negative is increased for the unsteady
background flow and as A is increased the flow is stabilized further. Figure 4(b). illustrates
how the unstable steady mode corresponding to a shallow upper layer, can be completely
stabilized provided A is made large enough. Such behavior is shown collectivelyv in Figure 5
which can be used to predict oscillation amplitudes which completely stabilize the flow for
given depth ratios . Figure 5 depicts the variation of nentral stability pairs m. 2\ for three
different depth ratios. In each case there is a global maximum oscillation amplitude above
which the flow is linearly stable for all viscosity ratios. For example when the depth ratio is
a = 1.4 we see that the flow is stable if A > 0.6412 (approximately).

Finally we quantify the effect of varying the frequency of the oscillations, through the
non-dimensional parameter €. Increasing the frequency reduces the effect of the unsteady
terms and the stability of this fluid regime becomes comparable with that of steady plane
Couette flow, (denoted by the broken line). These stability results can be understood by
consideration of the unperturbed flow at high oscillation frequencies. In such a regime the
flow separates into a Stokes layer in the vicinity of the oscillating wall, and away from
this layer the flow is steady and corresponds to two phase Couette flow due to a boundary
which moves with constant velocity. As long as the Stokes layer is thin compared ‘o the
thickness of the upper layer, therefore, the interfacial mode is expected to be insensitive
to the wall modulations as indicated by our numerical results. The Stokes layer thickness.
in nondimensional terms, is proportional to RZVQ~1/2 and for the highest values of Q
used in Figures 6(a)-(b) the ratio between the Stokes layer thickness and the distance of
the unperturbed interface from the wall is approximately 0.025 and 0.25 respectively for a
unit Reynolds number, confirming the arguments given above. On the other hand. as Q is
reduced the stabilizing or destabilizing tendencies characterized by A > 0. are emphasized.
as shown by Figures 6(a) and 6(h). It can be conclnded. therefore. that from a practical

point of view, stabilization dute to time harmonic modulations is likely to ocenur as long as
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the modulation frequency is not too large.

5 Conclusions

We have considered the effect of the inclusion of time harmonic modulations in the unper-
turbed velocity field of two phase (louette How of different liquids. Our main ann is the
demonstration of the stabilizing effect that such modulations can have on otherwise interfa-
cially unstable flows, a finding that can have useful practical applications. To this end. we
considered the unsteady partial differential stability system in the limit of long wavelength
perturbations which can be solved exactly by use of Floquet and perturbation theory to
yield analytical expressions for the first non-zero Floquet exponent which governs stability
or instability. The main conclusion of this study is that inclusion of modulations with an
amplitude larger than a certain parameter-dependent threshold. can completely stabilize
flows which are unstable in the absence of modulations; for instance flows with the more
viscous fluid occupying a thin layer and bounded by the moving wall can be completely
stabilized for long waves, at least. At the same time, modulations can produce an adverse
effect on the inteifacial mode. Flow arrangements which are stable or unstable can become
unstable or more unstable respectively. Finally, we emphasize that the conclusions of this
work are valid for long wavelength perturbations which are useful in providing analvtical
solutions to a problem that needs to be addressed numerically in general. Further more, the
physical conclusions reached for the long wavelength limit are expected to be indicative of

the behavior of general wavelength time periodic perturbations.
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Appendix

For the solution of the O (1) system {13a-b), we impose boundary and interface conditions
given by equations (14a-d) and (15a-d). These yield the following twelve equations. whicls

determine the constants Ayg, Ayg, ..., Fro, F2o:

Ayp—mAyp = 0.

3A10(1 ~a) = 3mAy + Big—mBy = 0,

Ao (1 —a)’ = Ay + Bio(l —a)* =By = 0.

3A10(1 = a)® = 3A0 +2B10 (1 — a) — 2By + # -0
Eiww—Ex = 0,

Fio—Fun = 0,

Flo+ Dy = 0,

0,

; A
Crosinh (8a) + Dyo cosh (Ba) + Erga + Fip — 5 =
ﬂ—zé [Lle(ﬂ“) —_ Lze("ﬁ“)] = BCID cosh (ﬂa) + ﬂD]O sinh (;6(1) + Elo.,
,‘6771_%020 + Fy = ﬂm.—%A[{,
Crosinh (8) 4+ Dypcosh () = Cagsinh (ﬂm"%) + Dy cosh (;3m~§) ./
Crocosh (8) + Dyosinh (8) = m=1 [020 cosh (/3m"%) + Dy sinh (ﬁm’%” .

At O () the solution of (18a-b), requires a further eight equations, to determine the constants
Ax, Az, ooy Dty Do

Ap—mAy = 0
An(a =1+ Bu(a—1) +Ciy(a—=1)4+ Dy +xu(a) = 0,
3Au(a—1)"+23n(a—1)+cu+%‘-y‘—1(a) = 0,

—~Ap1 + By —~Ca+ D+ xa1(0) = 0
3A21—2le+021+6g;1 0) = 0

Dy1 = Dy + xnn (1) = xar (1) = 0,

3)(11 6X21 (m—l) 6U1 () _
Cy = Cn + By (1) - 9 M+ - hq = 0,

BZXH
dy?

Where x1; and X1 are the particular solutions defined by equations (19a-b).

2
9B, — 2m By + 1) -m2e gy = o
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Fig. 1(a) Steady Growth With Deeper Upper Layer
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Fig. 2(b) Unsteady Effects: a=1.4, Q=1.0, m>"
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Fig. 3 Neutral Curve: a=1.4, 0=1.0, m>"
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Fig. 6(b) Frequency Effects: 0=2.25, m<1
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