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Chapter 1

Introduction

Flood flows in excess of a reservoir's capacity must be passed down-

stream in a manner which does not endanger the dam or surrounding hydraulic

structures. This is not a trivial task as the flow must fall a great distance to

reach the river bed. These high current velocities coupled with a free-surface

can easily lead to regions of low pressure in which cavitation may occur or to

the formation of standing waves and an uneven flow distribution. Poor flow

distribution will yield circulation and high velocities at the base of the spill-

way (or outlet channel) known as the "stilling basin," resulting in downstream

scour, potentially undermining the structure and causing both bank erosion

and stilling basin damage.

Presently, the design of these structures is accomplished primarily

through large scale hydraulic models. An example is the Grapevine Emer-

gency Spillway Model at the Waterways Experiment Station (WES) shown in

Figure 1.1. A large scale is necessary to eliminate scale-effects due to the vis-

cosity of the model fluid; i.e., the same fluid (water) is used as in the field

problem. The model shown is a 1:60 undistorted scale reproduction of the

spillway section and the apron; it includes a portion of the upstream reservoir

and the channel downstream. In the figure we see the jump at the toe of the

spillway apron, in which the flow rapidly decelerates and becomes subcriti-
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Figure L.I: Hydraulic Spillway Model.
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cal. Along the apron the flow is supercritical (flow velocity is greater than the

wave speed) and in this case is relatively smooth. If the upstream approach

conditions are poor, oblique jumps will develop producing ,"irculation in the

downstream subcritical channel. This will cause excessive scour and damage.

The model is used to eliminate the cause of poor circulation. The model is

rebuilt or modified for each design trial: e.g., by sidewall boundary reshaping

and changing the bed's lateral curvature. Each modification is expensive to

construct and time consuming. A detailed numerical model could significantly

reduce the design costs and enhance understanding of the flow phenomena.

1.1 Background

A principal aspect of high velocity flow associated with spillways and

outlet channels is the formation of standing waves. A disturbance caused by an

obstacle in the flow or by lateral transition will propagate out away from the

source. If the flow velocity is faster than the wave celerity. c, the disturbance

cannot travel upstream. Instead it will be swept downstream forming a wake

or standing wave.

The wave celerity is dependent upon its wavelength [401 and is given

by

r = [(gA/2ir)tanh (27rh/A)]l (1.1)

where, r ;s the wave celerity, g is the acceleration of gravity A is the

wavelength, and h is depth. The dispersion of these wavelengths is a result of

the reduction of the pressure gradient due to the vertical accelerations (with

the shorter wavelengths more greatly affected).
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From (1.1), the maximum celerity is associated with the longest wave-
I

length/depth ratio and has a value c,,, = (gh)!. Thus, if the Froude Number.

Fr =_ --lvT (where, v is the flow velocity), is greater than unity all wavelengths

will propagate downstream. This is known as supercritical flow. Conversely, if

F, < 1 the flow is subcritical. A common simplification in numerical modeling

of these flows is the long-wave or shallow water approximation. This results

in a hydrostatic pressure distribution with all wavelengths having the same
celerity, c,,,,,,

1.2 Previous Research

One approach to flow over curved beds in hydraulic modeling is through

the use of potential flow theory. The water surface is determined via the

Bernoulli equation. An inverse approach in which the coordinates are the

dependent variables and the stream function and velocity potential are inde-

pendent variables has been used by several researchers, e.g. see Watters and

Street [621 for an early application and Cassidy [10] and Moayeri [441 for meth-

ods which handled more general geometry.

Examples of the direct approach are given in Bettes and Bettes [7]

and Ikegawa and Washizu [30]. Here the stream function and velocity potential

are the dependent variables. The grids adapt to follow the water surface. These

examples are two-dimensional (longitudinal and vertical resolution) and thus

cannot determine the standing wave patterns and nonuniform flow distributions

laterally.

Another approach is to use the shallow water equations. These equa-



tions may be derived following the procedure originated by Friedrichs [24] and

extended by Keller [35] (see also Stoker [56]) by utilizing an asymptotic expan-

sion in a shallowness parameter

()(1.2)

where, 1 is the radius of curvature of the free-surface and d is a characteristic

depth. To lowest order, the standard shallow water equations are hydrostatic

and assume a small channel slope, these equations are referred to as the St.

Venant equations [50]. There have been applications to conditions of high ve-

locity (see e.g. [39, 16, 32]), but the assumption of mild slope and hydrostatic

pressure limits its use in some practical applications such as spillway simula-

tions.

A nonhydrostatic pressure distribution may be incorporated by in-

cluding higher-order terms (see Abbott and Rodenhuis [2]) known as the Boussi-

nesq terms. Applications of these equations to supercritical flow have been

made by Gharangik and Chaudry [26], though the bed is again assumed to

have a mild slope and the equation set involves higher derivatives.

Dressler [20] produced a more general set of one-dimensional shallow

water equations, in which channel bed curvature is included without resort-

ing to incorporation of higher-order terms in the shallowness expansion. This

formulation leads to the equations

fit,+j- -+ gcoso+ h-- ngsin0 h+gsinO=O (1.3)J(h)2  I. J(h)3 j~)

h ih,, log {J(h)}) +h log {J(h)} (1.4)
+j(h)2 J(h)K N J(h)+ J(h) =
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Figure 1.2: One-dimensional equation coordinate system.

Slog{J(s3 ) 1 _ J {(3 )2 + Jog3J(s 3 )1 + J(30 (1.5)

P(sI, s3, t) = pgcos 0 {h - s3} + - {J(hy2 - J (S3 F2 1 (1.6)

where alphabetic subscripts indicate differentiation and the pertinent variables

are (see Figure 1.2):

t is time

.s5 is the coordinate parallel to flow bed

s3 is the coordinate orthogonal to S,

K is the bed curvature; x(sl)

0 is the angle from horizontal to the tangent of the channel bed;

O(si)

h is the depth; h(sl,t)

J is the jacobian, J = (1 - K(sI)s 3 ); J(sI,S 3 )

P is the pressure
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u is the current velocity in the s, direction u = f1/J(s3 ); U(sI,s 3 , t)

tf is the current velocity in the s, direction at the channel bottom,

i. e., fi = u(sI,O,t)

w is the current velocity in the S3 direction; w(s, s3 , t)

p is the density, assumed to be a constant

g is the acceleration of gravity.

Dressler's expansion is applied to the two-dimensional Euler equations

in the orthogonal curvilinear system defined by s1 , S3. In the same manner as

Friedrichs, irrotationality is assumed. The other basic assumptions are constant

density, no lateral variation and that the ambient surface pressure is zero. The

usual kinematic surface conditions, of no penetration at the channel bed and

that a particle on the free-surface remains on the surface, are enforced. The

irrotationality assumption is reasonable for converging flow [38], as is the case

in the vicinity of the spillway crest. Even after the development of the turbulent

boundary laver this assumption for the flow profile is quite reasonable. The

resistive action of the channel and eddy viscosities resulting from turbulence

can be included in an empirical term like the Chezy formula. Furthermore.

Dressier [21] developed corrections to the Chezy and Manning coefficients to

accommodate bed curvature.

Dressler's formulation yields u, h, and P to order 0° and w to order

c . (The value of w to order e0 is simply w = 0 which is identical to the re-

sult in standard shallow water theory.) Given the zero-order perturbation for

the solution u and h, the next higher approximation of w may be calculated.

This treatment utilizes evaluation of the equations at the channel bed to re-
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move some complicating terms. Sivakumaran [51, 521 generalizes the derivation

further to a two-dimensional surface. Again, irrotationality is assumed. The

one-dimensional equations when evaluated at the bed then become:

J(h)ht + -[ l -og[J(h)] =0 (1.7)

it + gE., =0 (1.8)

where,

E(sI,t) C +hcos + + 1 2

pg J(h)2 2g

P9 = [h -s, 3 cosO-+ [J(h)-y-J(S 3 )-2J T (1.9)

w , - (1.10)
J(S3 ) Os, r

and ( is the elevation of the bed above some reference level with Po the ambient

pressure at the free-surface. Both of these sets shall be referred to as Dressler's

equations throughout the present study as these two formulations are equiva-

lent. This model appears applicable for -0.85 < Kih < 0.5 and Sivakumaran

[51, 531 has demonstrated a good agreement with experimental results over the

wider range -2 < irh < 0.54.

1.3 Objectives

The principal objective of this present research is to develop and eval-

uate a generalized set of shallow water equations containing bed curvature

effects to simulate important aspects of flow over curved beds, specifically as-

sociated with spillways or outlet works.

Subordinate objectives in support of the primary aim are:
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1. Via a perturbation analysis develop the generalized set of shallow equa-

tions without excluding vorticity about the direction normal to the bed.

2. Develop a one-dimensional finite element model for preliminary tests of

these equations with a particular emphasis on the effects of curvature.

Results will be compared to the steep-slope shallow water equations which

do not include bed curvature.

3. Develop a two-dimensional numerical model of this equation set.

(a) Make self-consistency test of the model to demonstrate that the

model matches the derived equations.

(b) Test the numerical method employed by comparison to flume water

surface data.

(c) Make comparisons to flume results for these equations. the standard

steep-slope shallow water equations and the St. Venant equations.

1.4 Important Results

The important results from this work are:

1. The development of a system of nonhydrostatic two-dimensional shallow

water equations that are not restricted to irrotationality.

2. A comparison with the standard steep-slope shallow water equations re-

veals unexpected errors upstream of a simulated dam crest,

3. A numerical scheme that shows promise for super- and subcritical flow

in hydrodynamic modeling.
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4. An in-depth comparison of the usefulness and limitations of these new

equations along with more traditional St. Venant and steep-slope stan-

dard shallow water equations.

5. A numerical model capable of numerically simulating hydraulic flow along

chute spillways and outlet works.

6. A data set of water surface elevations from an outlet works that is of

general use.

1.5 Outline of Treatment

A general set of shallow water equations which is nonhydrostatic and

which allows vorticity is derived in Chapter 2. The derivation involves an

asymptotic expansion in a shallowness parameter for the bed-fitted Euler equa-

tions. Preliminary testing of these equations in one dimension is conducted in

Chapter 3. A comparison with a standard steep-slope shallow water equation

set is made. In Chapter 4 we detail the development of the two-dimensional

model with special attention to a numerical scheme to better treat the highly

convective flow conditions. A more in-depth set of tests is then conducted for

the two-dimensional generalized shallow water equations (Chapter 5). We first

test the validity of the code for several test problems. The numerical scheme

and the treatment of boundary conditions are then compared with the mea-

sured water surface in a flume for a supercritical transition. The influence of

curvature and the mild-slope assumption (for the St. Venant equations) are

made apparent by comparison with previously collected flume data. The most

general test of the equations is a comparison to water surface of an outlet-



I II I

11

works flume. Here the bed contains curvature and there are lateral transitions.

Tests on this configuration are made for the St. Venant equations, the steep-

slope standard shallow water equations and the generalized set by comparison

of predicted water surface elevations with flume results. Chapter 6 contains

conclusions concerning the usefulness of these equations, their advantages and

disadvantages, and recommendations for additional research.



Chapter 2

Equation Development

The free-surface and the nonhydrostatic pressure aspects of the flow

were included in the previous equations, but vorticity about the bed-normal di-

rection was excluded. It is important that eddy patterns and vorticity resulting

from sidewalls and the drag due to bottom friction be reflected in the equations

to distinguish the design alternatives. Also, the variation in pressure due to

curvature, in fact, may rival that of the hydrostatic pressure. These problems

cannot be adequately modeled using the previous perturbation formulations.

The present approach yields a more general formulation that does not restrict

vorticity about bed-normal axes while including bed-curvature effects.

The derivation developed here employs concepts common to the stud-

ies of Friedrichs, Keller and Dressier and also involves easing of the irrotational-

ity restriction with extension to a two-dimensional surface. The basic approach

is to use an asymptotic expansion of the dependent variables of the three-

dimensional Euler equations (written for an orthogonal curvilinear coordinate

system) in a shallowness parameter e.

2.1 Basic Equations

The derivation begins with the Euler equations:

V v=0 (2.1)

12
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vt + 1V(v.v) - v x W + IVP-g=O (2.2)
P

where, w is tht vorticity vector, and g is the body force per unit mass. The free-

surface kinematic boundary condition requires that a particle on the surface

remain on the surface, so that

h(sl,s 2,t) - s3 = 0 (2.3)

This may be written

ht + v(sI,s 2, h,t).Vh = w(s1 ,s 2,h,t) (2.4)

where, u, v, and w are in the sI, s2, and 53 directions, respectively. There is

also a bottom kinematic boundary condition that the velocity normal to the

bed be zero. This implies

w(s, S2, 0, t) = 0 (2.5)

The pressure at the free-surface is a constant, here taken as the reference value

zero,

P(sl,.s2, h,t) = 0 (2.6)

The irrotationality condition implies that the vorticity vector components in

the s, and s2 directions are zero,

W1 = W2 = 0 (2.7)

The coordinate system shown in Figure 2.1 is a mutually orthogonal

system. The coordinate directions s1 and s2 are in fact curvilinear, and Y3

is normal to the surface so defined. Therefore, s3(X, y, z) = c (where x, y, z
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~X (S) S,2+652)

x ts,+I + as I IS
2 )

Figure 2.1: Bed-fitted coordinate system.

are cartesian coordinates) defines a coordinate surface above the bed. An

infinitesimal vector dg that lies within the bed has a length given by

IdgI2 (-ds, + &xds2)" (a -ds, + Ox ds2)

or,

Idg 2 -( ' (dSt)2 + ( (ti2)'

where,

^1=

and x is a position vector. For the surface-normal coordinate ( ax -

As one moves along the S3 direction, (I and (I are scaled in relation to s3
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as Jl =- (1 - KIS3) and similarly for the s2 direction. This formulation of

the metrics requires that s, and s2 not only be orthogonal but also principal

directions. The curvature in the s, direction, for example, is given by, (see

[411):
OxaN

K, as, a,, (2.8)(ax . x 2 (Ox . x)

Where N is the unit vector normal to the s, - s2 surface; if 'N is parallel to

the s, tangent vector then the curvature along s, is an extremum and s, is a

principal direction. The normal vector remains in the s, - s3 plane: s2 is normal

to s, and hence is also a principal direction. Introducing this coordinate system

(2.1)-(2.7) and simplifying, we find the following equation set.

Continuity Equation:

00(j2U) -(jt) +(jzJ2u) =0 (2.9)

0s1 + s 2  Os 3

s, Momentum Equation:

U 1' V 2 192(K

u, + jTu, + -:- + -Uw,2  + W, 3  uw ±+ai+ -g = 0.t j-2 j .12 0SI j-j2 as2 j .ip

(2.10)

s2 Momentum Equation:

U ýU 2 9j~ uv UV P2 LK)v+ -P, 92 = 0vt + -V-' + -Vs' + WVS, 3  VW+ +
31 3,, .12 J 1 ),j2 s 1  2 .P

(2.11)

s3 Momentum Equation:

U t? 2 tt2K\
Wt+=-WS, + .-ý-w3 + WWI + + +-Ps,-93 0 (2.12)3• J2 K)2
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Irrotationality Condition:

W, - (J2 ,)o3 = 0 (2.13)

(j1 u)o, -W, = 0 (2.14)

Free-Surface Boundary Conditions (at s3 = h ):

ht + -ho + =hS2  (2.15)

P(s 1,s 2, h, ) = 0 (2.16)

Channel Bed Boundary Condition:

w(,S,s 2, 0,t) = 0 (2.17)

These equations are quite complex and our objective now is to extract the

important simplifications of these equations that result when the flow depth is

small.

In the manner of Friedrichs, the equations may be nondimensionalized

and the dependent variables expanded in powers of E. Typical length scales

are the depth "d" and the free-surface radius of curvature "I". As in shallow

water theory the relationship with velocity and thus time is assumed by the

approximate celerity of a free-surface wave, (gd)½ [561.

Nondimensionalizing, we let a. /, -' and r be the new independent

variables so that
2

s, = la u = (gd)l i K1 = Wi/d J1 = (10 ic3)

S2 = 1- v = (gd)l f 2=,2 K2 = 2/d J2 = (2 0 k13)

s 3 =d/3 w= d i, P =pgdir t = r "

h =dY
(2.-18)
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where the tildes () indicate nondimensional quantities. Recasting the gov-

erning equations in the dimensionless form and then dropping the tildes for

convenience, equations (2.9)-(2.17) become

Continuity Equation:

S{(12u). + (jUv),} + (jlj32W)B 0 (2.19)

a Momentum Equation:

r u t v2 83 2 UV ail7 ' (,K)EU, + 7--U +--u.V + +.- F + wu'9- uw = 0
J32 J302 0 JJ2 af J-) u 1

(2.20)

-y Momentum Equation:
V u v u2 9jI uv iJ2 7r., }(LK.

V, + .--va + .- v-, - + .-- + G + wv.3 - VW = 0
3t 32 JIj2 49^ 3132 O9 32 2

(2.21)

/3 Momentum Equation:

W, + - 4-w, + w, + (K) U2+(K) V 2 + ro - H + wwo= 0 (2.22)Ji J2 I1 2

Irrotationality Condition:

w.- (j2v)3 = 0 (2.23)

(jIu)3 - W. = 0 (2.24)

Free-Surface Boundary Conditions ( at /d = Y ):

6 lY, + .--Y" + --I = W (2.25)Ji 32

(Q,-, ,Y1r) = 0 (2.26)

Channel Bed Boundary Condition:

w(o,-O,r) = 0 (2.27)
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2.2 Perturbation Analysis

A perturbation analysis in - is now developed for the flow equations

in the curvilinear system. We expand each dependent variable in a power series

in e as follows:

u(a,7,3,7;e) - ,(°)(,1,, )+eo)(a,,7,,) +...

V(Q,7Y, Or; 6) v(°) (,,3, -r) + Ev()(c,, 73,r) +..

w(a, -Y,3,r;) 0 w-°(a, -,/3, r) + ev()(a, 7 , r) + . (2.28)

7r(a, ,3, r;e) = r(O)(Q, 0,r) +6r(')(Qy,3, r) +..

Y(ct,7,/T,r;e) - Y") (a,#,3,,r) + cY(1)(,t,-y, 1, r) +

These expansions are substituted into equations: (2.19)-(2.27) yielding:

C {L,2u(a, 7, 03,7; E)],, + jjIV(a, -f, i,

ij
+ 1l32 w(a,-, 3, r; e)]o f 0 (2.29)

I1

1+--v(a, y, 13, r; c) fu(a, y, 13, r; )
32

1 [v(x1,•,2,I;/),r;0''

+ .-- [v(,-y, 0, )] - + + wu(a,7,, 1 ,,3,r; ) (a,,3, r;c)
3132 19a 312

-[Ž] u(a,7,3, r;e)w(a. -, ,r;E) = 0 (2.30)

( 11

-- v(,7,/3,TIe)I II III I I I I vQy,/,r)
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1

12

+ =8) 17 (a,

[u( ( , V~, 71 f, T; )] cr± ru;~y E) r)v y 0 (2.31)-

1 2

12

S(a)2 v(t, O~;-y,),T;Ma, -,1 3 ,r; EA, = 0 (2.31)

e wc,-,1,r ~~+ V-u(a, YI, -r; 6) [w(a, -y, 3, r; c]

12 (,-,yT

+ W(a, -y, Y, -r; c) (235

7r (ar, Y,1-r; c)] = 0iva71,r~1 (2.33)

ir(a, 0,Yr; E) = 0 (2.37)
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Perturbation equations are developed by collecting terms of identical

order in e. Thus, these equations reflect the relative significance of the flow

shallowness. Beginning with the lowest order effect (e0 ), the continuity equation

in conjunction with the channel bed boundary condition imply that

w(°) = 0 (2.38)

The irrotationality conditions yield the relationship between the flow velocities

u(0) , 0v) and depth

= (v) 2) (2.39)

() = (2.40)

where,

4,-v(°)(C,-,%O~r) (2.41)

u u( 0)(O-,0,Tr) (2.42)

Now consider the first-order perturbation effect. We obtain the continuity

equation contribution

(j 2u(°)). + (jIv(0°)) + (iIjuw(1))3 = 0

Note that this can then be integrated with respect to 3 over the depth to yield:

01)~(y) = 1 [LI2 1( (K2 - 1 ) log (A (y)) + KC2 I(0)I
w() J(Y)J2 (Y) L �c r. K I

a [ý(: I( {Q - K210 Uo~2 (Y)) + K 11(O)}

+ J-MY)}'" + --I(Y) yO (2.43)
f (Y) MIIY)
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where,

f, (Y(O)) - 1 - , I Y°

f2 (Y((o)) I - KYO

Substituting in the free-surface equation resulting from the terms of order E we

obtain

jt (Y) 2 (Y) y(o)

+"8 2  K 2

-4- I(-/ og•))-+ 2) ,8,0 [B = • (, \J))1 ::

I ÷- ((H I log- (f2 ((O ) + K +.(O) :,- 0 (.44).

The terms within the first set of braces are the contribution to the pressure from

the curvature "centrifugal" effect and the second set is simply the hydrostatic

component. The momentum equation in the a direction can be simplified by

the realization that uO°- (I) u(°) = 0 due to (2.40). This implies then,

(40)+ + F = 0 + F (2.46)

Ji J2 J1J2 0a .h a2 07 jI

and similarly for the y momentum equation,

V (O) +~ O (UO )2 j ()()a2 7,O

+ +rO)-o "u°', +() G = 0 (2.47)aIt° 551 J2 Ja 32
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2.3 Generalized Shallow Water Equations

We now transform back to dimensional form and drop the pertur-

bation index for convenience and find the equations given below. The mass

conservation equation is derived from equation (2.44), the momentum equa-

tions from equations (2.46 and 2.47), the pressure from equation (2.45), and

the vertical velocity from equation (2.43).

I (h) j 2 (h)ht + - [s {(K2- KI) log(1 - Kih) +± 2h}]
I95 +KIs t K

+ ý-[~ {(K- "~) log (I - C~h) + KiIA = 0 (2.48)

U V V2 1j2  uv dh 1
ut + =---u +-P", - g = 0 (2.49)

J2 JLJ2 &s J022 a82 0 uP

u v u2 9ji uv Oj2
Vt + -V3 1 + j VS 2 -j=j2O + - s + "P2 -92=0 (2.50)

j 1 )2 J0 2 82  J0 2a i )2P

.= - ,.... [ I L{2 ((K ,-2 )log(100- s 3 )+ K2 s)}

+ a L, ) K 0 (3 + p( S,3) (2.51)

u(s 3 ) = - (2.53)

2 1 - Pcsh

1 - K 2s 3  (2.54)

J .=I = (1 - Ks3) (2.55)

3.2 = (2 (1 - Ps2 3 ) (2.56)
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J, (h) = (I (1 - h) (2.57)

j2 (h) = (2 (1 - K2h) (2.58)

This system of equations can be used to solve for h, u, v, and P and, from

this information, w.

These equations represent the zero-order approximation for h, u, and

v; and as such are only accurate when the flow is shallow relative to longitudinal

and lateral features. This means that the water surface reasonably parallels

the bed. This is true of all shallow water equations. The bed-normal velocity

(equation 2.52) is the first-order representation of w, (the zero-order is that

the bed normal velocity is identically zero). This is the condition reflected

in the solutions of h, u, and v. The first-order approximation for w results

from inferences drawn using the mass conservation equation. Its effects are not

"felt" in these shallow water equations. Higher-order expansion terms would be

necessary. It is important to keep in mind the limitations on these generalized

shallow water equations.



Chapter 3

One-Dimensional Problem and Exploratory Studies

3.1 Introduction

Shallow water theory has been extensively studied both analytically

and numerically for a wide class of free-surface flows. However, there have been

relatively fewer shallow water studies of free-surface flows over curved beds such

as those encountered in spillway designs. The curved bed case presents certain

difficulties both analytically and numerically when compared with the flows

usually encountered in shallow water calculations, since the pressure distribu-

tion is now decidedly not hydrostatic. As an example, in flow over a spillway,

the bed curvature produces an inertial acceleration and thereby an apparent

force which is comparable in size to the hydrostatic pressure. The spillway ca-

pacity therefore is strongly influenced by these curvature effects. In this chapter

we first study the properties of the one-dimensional problem and develop a cor-

responding finite element treatment. The associated numerical studies permit

a preliminary study of the overall approach. This in turn is used to guide the

development of the final two-dimensional model and analysis in the following

chapters.

The main thrust of the present study is directed towards analysis and

finite element approximation of this problem, including the influence of the

curved bed. The analysis extends the approach of Dressier 120I by means of

24
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a perturbation analysis leading to a new formulation of the problem (recall

Chapter 2) and a generalized set of shallow water equations which includes

bed curvature effects. In the limit of zero curvature the classical shallow water

equations are recovered. The problem is compficated by the fact that there are

possible transitions between subcritical and supercritical flows depending upon

the local Froude number [271. A further issue arises in the representation of

the hydraulic jump which forms near the base of the spillway. This hydraulic

jump enters as a discontinuity in the solution of the mathematical problem.

As with standard shallow water theory, certain simplifying assump-

tions also arise here implicitly from the perturbation analysis and the neglect

of higher-order terms. The primary one is that accelerations normal to the

bed are nonexistent and thus the dispersive character of shorter wavelengths

(in which wave speed depends upon wavelength) will not be represented. Thc_

resulting flow variables can only comprehend longer wavelengths in which wave

speed depends upon water depth and, in this particular set of equations, bed

curvature. The overall features of the hydraulic jump can be captured as weak

solutions containing a discontinuity. However, once again, vertical accelera-

tions and short period waves are not produced. A discussion of the equations

and details of the jump representation are included in Sections 3.2 and 3.3.

In the present treatment, an approximate formulation based on finite

elements (Section 3.4) is constructed for the dominant perturbation terms in

the solution to the curved bed problem. To accommodate the wave-like be-

havior and produce a stable method, a special artificial viscosity formulation is

employed. This form is motivated by the eigenvalue properties of the system

and the existence of subcritical and supercritical regions. The resulting scheme
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introduces numerical dissipation in the discrete model. Partly as a consequence

of this, the hydraulic jump is approximated over several e!ements but still does

yield good agreement. Numerical experiments are conducted for a represen-

tative problem corresponding to shallow water flow over a "bump" (Section

3.5).

3.2 One-Dimensional Equations

The perturbation analysis implies for mass conservation (by depth

integration of (2.49) )

Aht lg(h)l 0h (3.1)

and for conservation of momentum (depth-integrated (2.50))

{ h + a + gh2 cosO}

- xuwds 3 + j(h/2)ghsinO + h2h -0 (3.2)
Jo Cj(h/2)h 7/3

where the Manning equation is utilized to account for friction and turbulence

losses. Here, for notational convenience, we have set j for JI and S for s1

with p = fth where fi is the velocity at the bed surface, s3 = 0. Further, 0 is

the angle between the bed and the horizontal direction (see Figure 1.2). n is

Manning's bed friction coefficient, and C is a conversion factor needed since n

is not dimensionless, (1.0 for metric units and 2.21 for English units).

Solution variables u and w now denote the zero-order and first-order

perturbation contributions for the tangential and normal velocity components,

respectively (the term w arises in the depth integration and can be written
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in terms of zero-order h and u, this is simply a convenience). The integral in

equation (3.2) can be evaluated directly by substituting the known relation-

ship for u over depth and including the relationship (2.52) for the first-order

contribution to w. We have

fh J{ logj(h)+Kch}{pap 1P I 91 p Nh1 (3.3)
0o Kuds = j(h) V5-hs T2 T2s f 2 Ljh]O

Since

lim logj(h)} = -h (3.4)

lim logj(h)+-Kh 0 (3.5)

imo 1 _log j(h)=+ rh I (3.6)

it follows that the terms involving curvature K in the denominator of (3.3) must

remain bounded in the limit as r approaches zero.

3.3 Discussion

Observe that the pressure force is represented in equation (3.2) by

2 L(h)1 + gh2 cos 0

where the first term can be associated with the centrifugal effects and the

second is due to the hydrostatic pressuic. Th,,• tie pzcssuz; distribution is

indeed not hydrostatic.

Also note that if r, = 0, these flow perturbation equations (3.1) and

(3.2) reduce to

ah 'p9+ -0 (3.7)
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p + gh 2 coso +ghsinpIP 0 (3.8)
-5i + s sh 2 Ch/

which correspond to the shallow water equations in conservation form for the

case where the channel slope is significant. If channel slope is not significant

we recover the classical shallow water equations.

The characteristic differential equations for the hyperbolic system

(3.1)-(3.2) are
d = i D1/2 (3.9)

T jh)]2

with
D log j(h) (jh)o +

- (h) cos + U(h))3-

This implies that in this model wavespeed is independent of wavelength. That

is, all wavelengths travel at the same speed, which depends on the depth, grav-

itational and centripetal acceleration. A region of flow is considered subcritical

if D 11 2 < ýb , and if D'1/ 2 > f it is supercritical. The set of equations

describes flow in these regimes. However, the transition from supercritical to

subcritical must occur through a hydraulic jump. This may be mathemati-

cally characterized by a weak solution of (3.1)-(3.2) containing a discontinuity.

The flow variables will not allow the production of vertical acceleration and

short period waves associated with a jump, but the overall flow features can be

preserved.

The equations developed here model the total momentum flux through

a cross-section whereas Dressier considers momentum flux per unit depth. In

one dimension his approach corresponds to conserving mechanical energy. How-

ever, in reality steep gradients in water surface elevation arise in the form of
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hydraulic jumps where (physically) mechanical energy is transformed to other

forms of energy through flow turbulence, generation of short-waves, etc. j1];

this is apparent in Figure I.I. Hence energy will not be conserved but momen-

tum is conserved. In the mathematical treatment of the hydraulic jump the

downstream (tailwater) elevation is prescribed and the preceeding observations

then imply that the differences in the present formulation to that of Dressier

would be manifest through the location of the hydraulic jump. The new model

should predict a hydraulic jump location that is closer to the physical situa-

tion. Since the hydraulic jump is an important feature of the flow from the

standpoint of the engineering design problem, this distinction is important.

Introducing the weighted residual projection in (3.1) and (3.2) against

test function 0 and integrating by parts with respect to s, we obtain

j(h) A ý +q 9 ds - qo (3.10)

in T s/

and

-r + f (s, t, h, p)O-€ di ,uwds3 ds +eoJan =0 (3.11)

where Q2 is the domain, -OP is the boundary of (1, and

p log j(h)
q =

P2 r 2
j= +(h) + [2 + gh2 csO

(h) gn 2lplp (3.12)I= i2 sin + Cj(A)h7/3

The weak form of the transient problem (3.10) - (3.11) admits discontinuous

solutions that model the actual hydraulic jump when the shallow water flow
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encounters the deeper water in the "stilling basin- downstream. Mathemati-

cally this discontinuity arises from the -hard" d3wnstream condition where the

tailwater elevation is specified. Thus the solution to the weak problem may

have a jump discontinuity in p and in h.

Since we are primarily interested in the steady flow situation, let us

consider the steady form of (3.10) - (3.11) for an arbitrarily small region R

containing discontinuity point 9 with test function o zero on the boundary of

R and outside R. Then, for conservation of mass (3.10) implies, in the limit

as R --+ 0, [q] = 0 (where [q] denotes the jump in mass flux q at ý). That

is, mass is conserved through the hydraulic jump. For the transient problem a

similar treatment applying the divergence theorem in (s, t) yields the relation

-j(h)jhj' = [q] for the speed of propagation of the discontinuity.

In the case of zero curvature, r. =_ 0, the governing perturbation

equations reduce to the familar shallow water equations. A similar analysis

to that given above can then be applied to the momentum equation to yield

Irl = 0 for the steady-state problem and [p]L = lr) for the transient problem.

When , 6 0, the presence of the term fh Kuwds3 in (3.11) now provides a

non-zero contribution for Irn at 9. In typical spillway applications, the bed is

curved but the hydraulic jump occurs downstream in a region of zero curvature.

3.4 Finite Element Approximation

3.4.1 Choice of Basis

Next, we consider approximate analysis of the weak statements 1r7

(3.10) and (3.11) on a discretization of finite elements. The underlying contin-
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uous problem is comprised of a first-order hyperbolic system in elevation and

velocity variables. Discretization may give rise to spurious oscillatory modes

in the shallow water problem. The presence and nature of spurious modes of

wavelength 2As, where As is the mesh spacing, has been investigated previ-

ously [46, 59]. It has been shown for the linearized shallow water equations

that piecewise-linear approximation of u with piecewise constant h does not

generate an oscillatory mode. However, in the present analysis, the curvature

terms preclude a piecewise-constant basis. A piecewise-quadratic basis for ve-

locity with piecewise-linears for depth would be a logical choice but contain

an oscillatory mode for velocity (not for depth). The nonlinear terms in many

applications of the shallow water equations for rivers and estuaries are quite

small. In our problem, however, the velocities are large and the gradients steep.

Thus the nonlinearities are very important and selecting the basis to exclude

spurious modes for the linear equations does not ensure oscillations will not be

generated by the nonlinear convective terms.

The discontinuities in h and p at the hydraulic jump could be rep-

resented exactly by means of a discontinuous finite element basis. In a non-

dissipative formulation with standard elements "Gibbs type" oscillations will

be generated at the jump. However, dissipation is present in the physical prob-

lem and, as noted previously, this effect is significant in the neighborhood of

the hydraulic jump. Accordingly, it is common practice to include an artifi-

cial dissipation in the governing equations or a numerical dissipation arising

from the discretization method. This added dissipation is active at the hy-

draulic jump and effectively "smears" the jump over a few mesh intervals. The

higher order dissipative term then implies that the upstream and downstream
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boundary conditions can now be consistently treated and the solution h, p to

the dissipative equations is continuous. In turn, this implies that we can use

standard CO Lagrange basis functions in the finite element analysis.

3.4.2 Artificial Dissipation

The form for artificial dissipation was constructed based on one-

dimensional convection diffusion models and such that, throughout the su-

percritical reach, the coefficient closely matches the analytic wavespeed. Ac-

cordingly, we add to (3.1) - (3.2) the dissipative operator

a li (3.13)as U((h)12 a

where a = Oj(h)As in (3.1) and a = OAs in (3.2), and 0 is a weighting

parameter. Adding the dissipative term (3.13) to the pertubation equations

(3.1), (3.2) and integrating by parts in the weighted residual condition the

additional integrals in the weak statement (3.10) - (3.11) are, respectively,
OAS•. ,fi, ah~w 19W ,s-O fill ah

n(] )~) sT (h)Ts' a

and
#AS 49P]9apaws - j3s I -• w op (3.14)

n [.(h)] 2 TST asUIS,(h)JI2 T w 'a"

This choice of dissipation is motivated by an analysis of the corre-

sponding hyperbolic system for the one-dimensional spillway problem. The

characteristic differential equations for the hyperbolic system (3.1) - (3.2) de-

scribing the one-dimensional spillway problem are given by (3.9). The char-

acteristic coordinates are obtained as the two families of solutions 4(s, t) -
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constant and rq(s,t) = constant of these characteristic equations. In the spe-

cial case of Pc = 0 the linearized shallow water equations are obtained and the

characteristic differential equations (3.9) reduce to

dsdt = u0 - (3.15)

The governing wave equation simplifies in the characteristic frame and, in

the linear case (3.15), disturbances propagate unchanged along the respec-

tive straight-line characteristics. For the nonlinear problem of interest here

the characteristics are curved. When characteristics of the same family inter-

sect to form a caustic, discontinuities may be generated in the solution. This

is precisely the situation in the present case: for supercritical flow "positive"

characteristics intersect and the difference between the upstream disturbance

(which is being convected downstream) and the downstream boundary condi-

tion is resolved through the hydraulic jump. That is, the specified tailwater

in the stilling basin forces subcritical conditions downstream while supercriti-

cal flow exists upstream, and the hydraulic jump is formed as a result of this

interaction.

If dissipation is introduced in the mathematical model, then the equa-

tions are second-order and change type. The upstream and downstream condi-

tions then can be accommodated by a smooth solution to the governing (mod-

ified) equation. The result of adding moderate local dissipation is that nu-

merical oscillations are suppressed in the subsequent approximate solution but

the sharp jump is less well resolved. If the local dissipation is small there will

be only slight "smearing". This dissipative behavior is. at least qualitatively,

consistent with the real physical process. This issue notwithstanding, there are
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several other difficulties that arise when the discrete model is considered. Of

course, the discrete representation should reflect the qualitative behavior of the

continuous mathematical problem. Moreover, the approximate solution should

converge in the appropriate norms as mesh size and time step are reduced.

Our concern here is to have realistic model results, even near the hydraulic

jump where the effect of the "hard" downstream boundary condition tends to

promote oscillations and spurious "modes".

To demonstrate the nature of the problem, let us turn to the fre-

quently studied steady convection-diffusion problem. We intend to clarify the

questions related to modes and oscillations associated with conflicting end con-

ditions, such as those for the hydraulic jump in the spillway problem. The

model equation is

dcs-fd =0 0<S< 1 (3.16)

with c(0) = 0 and c(1) = 1. Here c represents an artificial diffusivity with

0 < c << 1. The solution to (3.16) is essentially zero in the upstream region

and rises abruptly through a boundary layer to satisfy c = 1 at the downstream

end.

Introducing a standard Galerkin finite element method with linear

elements (or equivalently using central differencing), at interior node i we have

- -i ~ c,.. \ __U0 k 2•s (tA)2 (c,+1 - 2c, + c,- 1) = 0 (3.17)

For the degenerate limiting case E -- 0 the differential equation (3.16) reduces

to dc/dz" = 0 so c = constant is the solution. In the present case we have c = 0

if the left condition is to be satisfied and c = I if the right end condition is
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chosen. This degenerate form of (3.16) is of lower order and clearly is over-

specified. The corresponding degenerate form of the non-dissipative discrete

problem (3.17) with e = 0 presents an entirely different situation. We then

have simply cj+j - ci- 1 - 0. Setting ci = p', the solution to this second order

difference equation satisfies pi+1 _ pi- 1 0, that is, p = ±1. Hence the general

solution to the discrete problem is c, = A + B(-1)' where constants A. B are

determined from the boundary conditions. If B = 0 then the discrete model

corresponds to the first order continuous problem and A is given by the end

conditions. Even if B is small, however, there will be a superposed inter-node

oscillation of amplitude B. This internode oscillation of wavelength 2As then

represents a spurious mode resulting from the second-order approximation of

the first order operator. The amplitude B of the oscillation will evidently

depend upon the "inconsistency" of the boundary conditions. In the present

case, if c(0) = c(1) then B is zero and the oscillation will not be forced; for

c(0) = 0, c(1) = 1 we see that there is an oscillation of unit amplitude forced

in the numerical solution.

Addition of artificial dissipation returns the forms in (3.16) and (3.17)

with c # 0 and a standard Fourier analysis reveals that oscillations can be

eliminated provided

2 !u0As ,u0 > 0 (3.18)

which yields the familiar cell Reynolds or Peclet condition.

The particular choice of artificial dissipation employed in the present

work can be motivated or interpreted physically as follows. First note that the

coefficient of the artificial viscosity is specified in (3.13) as the net transport
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rate fi!j(h)J2 . This reduces to uo for the standard shallow water equations

which then become

Oh Op 02h"7+ • = •'O
at 73 q

49P + (gho - Q'09 + 2u0•a = (3.19)

Introducing a finite element approximation with a linear basis the roots of the

"indicial" equation for the discrete difference form are

+A GUO2 +[au ] (3.20)

All of these roots will remain positive if

> ,uo +. V'o• (3.21)

and numerical oscillations excited by the hydraulic jump will be damped. More-

over, if we choose a to be proportional to As, this condition will remain en-

forced as the mesh size As is reduced. The artificial dissipation will be reduced

proportionally with As and the resolution of the jump will improve. Since the

jump is a major source of oscillation, the local damping will improve the global

behavior of the approximate solution.

While this analysis has focused upon the linear case, the nonlinear

terms can also cause internode oscillations. Aliasing into lower wavelengths

from these internode oscillations will also occur. Since the artificial diffusion

terms will preferentially damp short wavelength oscillations the nonlinear in-

duced oscillations should be moderated by this mechanism.
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3.4.3 Finite Element Approximation

Introducing finite element expansions for h and p in the weak state-

ments then yields the discretized equations

,Ojf ____________- h 11 -
{I~m~()h+ _ + d log j (hn)Y'Ok +

At dS s)96h k

J(hm) ds ds

+f0ilogj(/zm) E OOk'- di#S
icsr jkj(h"') ads ~ -

for the continuity equation, and

+r(Ld X Oj Z 4kP'+ + 1g COS(0(3)) Oj Okn+
'LJ~"JJ a k 2k -J

+OS ~ = Jft+l .+Q1 +Q 2 +Q 3}ds

E__________ K(S) +1+O -(h+ 2E~hh)12I k
k

+.Lgcos(O(s))ZkhZkh''-3stIZsa.m] =0
2 ojjm)1 E~hmPa ASd

for the momentum equation, where

{logj( hin) + K(S)FOhm
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I dd'e dic(s) 1 -

m], d t,(S)

2j(h•) d,.

Q2= •, {i(h'"2)gsin(8(s)) :Oj,+'}

I, j I

I j~it") = 1 - 2()• Z6khk

C(j//2) 2)

3.5 Model Results

Model simulations were conducted using bed topography from the

numerical %nd flume studies of Sivakumaran 1511. This bed form is given by

Z = .20eH-½(*)2 1 where z is the horizontal distance in meters from the cen-

ter of the crest and Z is the elevation in meters. That is, this spillway bed

geometry has the form of a normal distribution symmetric about x = 0, with

a crest elevation of 0.20m. In the present numerical experiments, values of

discharge are specified upstream and the tailwater elevation downstream. The

flow capacity of the spillway, as indicated by the upstream water surface eleva-

tion is, therefore, calculated by the approximate model as a steady-state, from

which the predicted flow capacity can be compared with Sivakumaran's flume
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results. The same test is repeated with the curvature-related terms removed.

This yields the shallow water model (with channel steepness included), which

can be used for comparison purposes to determine the effect of curvature.

One should note that the flume data of Sivakumaran does not contain

a noticeable jump since the tailwater elevation is too low. However, in the

present test a higher tailwater is specified to evaluate the suitability of our

numerical scheme to simulate the jump and control the associated oscillations.

The location of the jump can vary widely for slight changes in velocity and

depth. This sensitivity is reduced in real physical flows by the presence of

friction which causes a steeper water surface slope. Friction in this model

is included by Manning's expression with friction factor 0.016 corrected for

curvature [21]. The results of test calculations are shown in Figures 3.1 - 3.3

for flows with an upstream discharge of 0.03599m'/s/m and a downstream

depth (tailwater) 0.1m, using a mesh with 46 linear elements. Higher grid

resolution is required upstream of the spillway crest where there are steep

variations in flow variables. Along the downstream side of the spillway the

depth changes gradually and fewer elements are required. The semi-discrete

system is integrated numerically to a steady-state with a fixed timestep At =

0.05 sec using an implicit scheme.

The depth-averaged velocity is given in Figure 3.1. Both the velocity

and its spatial variation are relatively small upstream of the crest which con-

firms that the effect of the nonlinear terms is not significant here. Downstream

of the crest, the velocity is large and a small perturbation in depth imposed

upon this region will develop large velocity variations to conserve mass. If

dissipation is not sufficiently large, the jump excites oscillations and a nonlin-
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AVERAGE VELOCITY PROFILE
EFFECT OF CURVATURE TERMS

2.5 AVERAGE VELOCITY, CURVATURE INCLUDED
----- AVERAGE VELOCITY. NO CURVATURE

1.5

•1.o

.0
-1.0 -.5 .0 .5 1.0 1.5
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Figure 3.1: Average velocity profile - effect of curvature terms.

ear instability develops. In the calculations shown here, the coefficient •3 for

dissipation was set at 0.5 downstream and 0.25 upstream.

The bed pressure ratio profile is shown in Figure 3.2. This is the ratio

of the pressure associated with centrifugal effects to hydrostatic pressile alone.

Throughout the region in which the bed is convex, -0.24 < x < 0.24, an uplift

is evident, reaching a maximum of 0.36 a distance 0.10m downstream of the

crest. In the concave portion of the downstream bed the pressure gradually

increases and reaches 0.55 near the "toe" of the spillway. It is apparent that

the pressure distribution is definitely not hydrostatic.

Included in Figures 3.1 and 3.3 are dashed lines indicating the model

results when the curvature is set to be identically zero. This corresponds to the
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PRESSURE RATIO PROFILE
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Figure 3.2: Pressure ratio profile - centrifugal/hydrostatic pressure.

standard shallow water result for a steep slope. Of particular importance is the

observation that the shallow water equations predict a higher upstream water

surface elevation to allow this discharge to pass over the spillway. That is, the

shallow water equations predict a lower spillway capacity than the equations

including curvature.

The capacity of the spillway is directly related to the energy required

to pass a particular flow rate. The specific energy, defined by E = f (•) +

Z7,, is the mechanical energy from the Bernoulli expression referenced to the

datum of the crest elevation. Here (T-) is the surface velocity and Z,,, is the

water surface elevation above the crest. The specific energy indicated by the

flume was 0.072m. The numerical model results were 0.083m for the steep-slope

standard shallow water equation and 0.072m for the model including curvature.
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WATER SURFACE PROFILE
EFFECT OF CURVATURE TERMS
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Figure 3.3: Water surface profile - effect of curvature terms.

Downstream of the crest, the calculated water surface for the shallow

water equations is slightly steeper than the results with curvature included

and the flow becomes progressively more shallow. This is more easily seen in

the velocity plot, where excluding curvature produces velocities that are too

large. In the concave region this effect is reversed and the velocity predicted

by the steep-slope shallow water equation drops below that of the model with

curvature effects included. More energy is needed to pass this discharge and the

effective loss of energy downstream of the crest causes the predicted location of

the jump to move upstream as compared to tne results with curvature included.

The discrepancy in upstream results from the two models is not at-

tributable to centrifugal effects as they are not significant. This behavior is due

to the bed-normal measurement of depth. In a concave region the bed-normal
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directions at the ends of differential segment converge as one moves away from

the bed, so that the differential volume per unit width is smaller than would

be calculated by simply multiplying the depth and length along the bed. The

volume (volume per unit width) calculations will be too large in the concave re-

gions and small in the convex regions. Thus in the concave regions the standard

equations require a larger pressure variation for the flow acceleration. Down-

stream of the crest this effect is smaller as the depth is shallow and the water

surface is nearly parallel to the bed. Here the centrifugal forces become mc:e

important. Results including curvature effects show a slightly less steep water

surface slope as a result of the adverse centrifugal pressure gradient. Down-

stream of location 0.4m the centrifugal pressure gradient is positive, and the

results with curvature included predict a flatter water surface slope. This in

turn moves the jump downstream. Note that both of these model equations

are written for bed-fitted coordinates. The St. Venant equaticns on the other

hand are written for momentum and mass conservation horizontally and as

such offer a much poorer comparison on the spillway section [21].

The capability of the model to treat the hydraulic jump is also re-

vealed in these results. The effect of mesh refinement is examined in Figure

3.4. A graded mesh with elements of size 0.05m near the jump was halved and

the computation repeated. Since the local artificial dissipation is proportional

to mesh spacing the dissipation is reduced accordingly. In both instances. the

jump occurs over three elements and, of course, the steepness of the approx-

imation to the jump improves as the mesh is refined. There is little spatial

oscillation.
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Figure 3.4: Water surface profile - effect of refinement.

3.6 Conclusions

The finite element model described here results from a shallow water

perturbation analysis including bed curvature. In the event that the curvature

is assumed to be identically zero, the model degenerates to the standard shallow

water equations (without the mild-slope assumption). By computing the flow

over a "bump" composed of a bed of continuous curvature for which flume

results were available we observe that:

1. The full equation model yields an accurate prediction of the reservoir ele-

vation (and thus spillway capacity) while the results excluding curvature

effects are much poorer.
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2. The results excluding curvature effects compare quite closely with the

more complete model along the supercritical spillway face. However,

subtle differences are sufficient to significantly shift the predicted location

of the hydraulic jump.

3. The resolution of the jump in this model is spread over 2 or 3 elements.

Thus the steepness of the jump can be improved by grid refinement

(within the limits imposed by nonlinear effects).

In the next chapter we utilize these results to extend the formulation to a

two-dimensional model.



Chapter 4

Model Extensions

4.1 Introduction

The complexity of the flow is more evident in two dimensions. The

lateral distribution of flow and oblique standing waves can be reproduced. In

the subcritical case a boundary disturbance propagates both downstream and

upstream and so the shallow water equations cannot produce a standing wave

here. In the supercritical region a boundary disturbance is swept downstream

forming a standing wave or wake. The fluid velocity is greater than the speed

of the free-surface wave celerity. Poor approach conditions result in standing

waves within the spillway apron section. The concentration of flow in nar-

row regions can cause circulation and subsequent damage downstream. These

problems can be relieved with improved flow training using well designed abut-

ments. The flow features must be modeled to assess the design, requiring a

model with both longitudinal and lateral resolution.

This chapter is concerned with the development of a finite element

model that can reasonably address these conditions and the nonhydrostatic in-

fluences. Section 4.2 details the development. of an improved convection scheme.

4.3 the depth-integrated equations, 4.4 is the application of the convection equa-

tion to these equations, and Sections 4.5 and 4.6 the viscous stresses and bed

drag, respectively.

46
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4.2 Finite Element Treatment - Convection Scheme

The focus of this investigation is on the curvilinear formulation, but

an adequate system to address oscillation control is necessary to make this

calculation. As discussed in the previous chapter on the finite element approx-

imation of the one-dimensional problem, we must be concerned with possible

oscillations resulting from both spurious modes and nonlinear effects. An arti-

ficial diffusion method was successfully introduced in Section 3.4.2. where the

added dissipation was developed based on physical arguments. This system.

while sufficient for of the one-dimensional equations in preliminary tests, is too

simplistic for the eventual two-dimensional model. We now present a more

complex form for two-dimensional analysis.

Some recent finite element approaches for the shallow water equations

include the Taylor weak form (Baker and Iannelli (41) and the Petrov Galerkin

scheme (Katopodes [33]) which, in actual application, are almost identical (see

also [5, 3, 34]). We will illustrate the basic ideas for the Taylor weak form and

demonstrate a further improvement for our problem class.

Baker's model is based upon the work of Donea [191, Raymond and

Garder [47] as well as Lohner, Morgan and Zienkiewicz [42]. The derivation can

be clearly demonstrated using the one-dimensional model transport equation

t9c O9f4 =o (4.1)

The nonconservative form is given by

(9c
S+ AS_ = 0 (4.2)

where, A - . Expanding c in a Taylor series in time we obtainac



48

c'M+1 = Cm + At--c- + At2 82C (4.3)
at + 2 dtj2+

where, the superscript indicates the time step, i.e., t mAt. Motivated by

the well known Lax-Wendroff approach in finite differences, we may utilize

relationships derived from ( 4.1)

a - -- (4.4)

a9s

and

(92- = -a i2 ( A ) ' - 21 ( A 2 ' (4 .5 )

with al,a 2 parameters. Following the Raymond and Garder scheme Baker

and Ianelli [4] choose a combination of (4.5) and (4.6) with a, = 02 = a. The

associated modified equation is

ac + af 2ta A ac + ac/ 0 (4.6)
at as 2 Ts a t- T9S

Katopodes [331 arrives at essentially the same result via the Petrov

Galerkin approach. The test function is modified to include derivatives of the

Galerkin test function 0 as

t 6 + aAL-O (4.7)

as
where, V, is the new test function and a is a parameter with unit of 1/time.

Using ( 4.7) in the weighted residual statement for ( 4.1 ),

fac 8a0 (~ ac + OA c \\rj fd
(T T +Ay- +A))d+l (4,8)
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where, fl is the domain and Ol is the boundary. This is similar to the form

proposed by Dendy [181 and is based upon the Streamline Upwind Petrov

Galerkin (SUPG) scheme of Hughes and Brooks [291.

In actual application of this method to the shallow water equations

some deficiencies are apparent. The primary problem, for the hydrodynamic

conditions we wish to simulate, is that the dissipative mechanism incorporated

in this method is nonexistent near critical flow conditions; i.e., where the flow

undergoes transition from subcritical to supercritical flow, or vice versa. This

allows oscillations to gather at the spillway crest or near a jump. The standard

one-dimensional shallow water equations illustrate this point.

These shallow water equations in nonconservative form may be writ-

ten
aq-+A -Q =0 (4.9)

where,

A c2 _U2 2u

p uh

c = (gh)2

Now, applying the Petrov Galerkin approach to (4.9) and discretizing we obtain

the corresponding finite element problem. It is instructive to examine the

linearized steady problem for A = constant, A. Then the discrete system on

a patch at node j becomes

SA6Q, - aAAk9Q, = 0 (4.10)

m= mm 2
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where,

where we assume the numerical solution

h) = (4.11)

Pj =(4.12)

j is a nodal index and () above a variable indicates the amplitude. (These

operators are similar to centered difference operators for first and second deriva-

tives.) We may simplify the system by defining P such that

PAP-' = A (4.13)

where,

0 A2
,A1 = ii+•

A2 = -C

Here A1 and A2 are the eigenvalues of f, t and ý are the constant values of

velocity and celerity that form A, and P and P` are made up of the right and

left eigenvectors of .k We find

I=~ A2 -l1P =7 -(4.14)
C A, - ]1

p_- = I_ -12- , A1 ](4.15)

~~~~~~~~~2 ...... A2,aiiII I I
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Equation (4.10) may be written as

-P-1AP6Q aP-'.APP-I APP2Q 0

or after simplification
IP6Q - aAPb9Q = 0 (4.16)
2

The equation set for each patch will then be

{i(A2 -16- [ A Al 62 (4.17)
2 1- AIA2 -A211 1 =

For nontrivial solutions of h and to exist, the determinant of the coefficient

matrix must equal zero

A lb _CXA~b -. 16 + aA162l2 2 =0 (4.18)

from which we have the roots

01\1 + " oA2 += 2, ý, +_ _ 2-• (4.19)aAI - I "aA2 -I

The value I is a multiple root and is the correct solution; i.e., the correct

solution for a single boundary condition is that the velocity and depth are

constants; the other values of p are spurious numerical roots. If these spurious

roots are negative, a node-to-node oscillation may develop. The value of a that

eliminates negative roots is

As As (4.20)F1> 2A I,2 I ' F120\2

If IA21 is very small, as one would expect near a spillway crest (assuming u > 0),

a would have to be quite large. This is indeed what happens when applying this

method. The term a has units of 1/velocity. Katopodes suggests a - As1
2jA 1
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where c is a nondimensional coefficient 133]. This again does not scale the

weighting of the Petrov Galerkin test function properly for each characteristic

and oscillations can occur in this linearized example.

Instead we propose that the test function be modified so that it is

scaled by each characteristic magnitude. We define the new test function as

0= 1 + oaA 09 (4.21)

where,

A = P-'AP

10 A'2-

The result for the discrete model on a patch then is approximately

1P-'AP6Q - QP-'APP-'AP62 Q = 0

and to pievent oscillations
A s> (4.22)

2

This method provides an upwinded Petrov Galerkin test function that is scaled

for each characteristic and can provide oscillation control at all Froude num-

bers. We will substitute a == As ,where F is a nondimensional parameter,

in the model so that we need not input values dependent on element lengths.

This method is a variation on the theme proposed by Courant, Isaacson, and

Rees [15] for one-sided finite differences. These ideas were expanded to more

general problems by Moretti (451, Chakravarthy [11], and Gabutti (251 as split-

coefficient matrix methods and by the generalized flux vector splitting proposed



53

by Steger and Warming [551. These one-sided differences based upon character-

istic directions provide dissipation and therefore stability. The incorporation

here is more subtle using a modification of the test function; also the degree to

which the dissipation is apparent is controlled via the parameter ( instead of a

totally one-side difference.

This approach is now extended to the two-dimensional case. We will

use the condition of zero curvature in deriving our test function. This is sig-

nificantly simpler than including curvature and can be justified on physical

grounds. The shallow water equations (with (I and (2 not identically equal to

1) are
-•- + A + B = H (4.23)

where,

q

p=uh , q =vh

202 101A (c-u2) 2u 0

1 [ 0 01
B _U V2 - vu

(2 (c2 - V2) 0 2v

c = (g3h)f

H represents the additional terms which are not associated with the material

derivative or pressure, and g3 is the gravitational component in the bed-normal

direction.
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The test function we propose is

1• + •(4.24)

where,

f PAs,-Ak +as, o9o ]
SA P-oAP

[0 0 A3

i u+cA, o
A2 U +-

A3 = -

001
0 2-h--0

P 1 0j

0 1 0

F 0 (1A2 -CIA3]
2C 2c v -v

As in the one-dimensional case, )I,A 2, and A3 are the eigenvalues of A., and P

and P` are made up of the right and left eigenvectors.

Similarly, in the s2 direction we have:

b= R-'PR
100]

r 0 %y 0
0 0 -13

' • i { i I IJ
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V
71

v.+c
"12 ="

v-3
(2

hi 0

0 0...0 0 '0U 1o0
R 2%73 0 1

-(272 0 1

[0 1 - ]
R12 u -u

2c [ (2"-'2U-(273

The terms r, R, and R` in the s2 direction are analogous to the relationship

of A, P, and P-` in the s, direction.

4.3 Model Equations

The depth-integrated version of the momentum equations (2.58) is of

some advantage in handling non-smooth conditions. The weak form solution

for the no-curvature condition that one would encounter downstream of the

spillway can be made to properly conserve momentum and mass through the

jump. Other forms of the equations will not. In the case in which there is bed

curvature, as we discussed in Section 3.3, these equations will contain additional

terms due to the bed curvature which while finite through the jump will make an

additional contribution that can cause an error in the jump location. Therefore

in the vicinity of the jump these equations, which properly conserve mass and

momentum for the no-curvature case, will only precisely conserve mass in the
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curved bed state. Generally, in practical cases the strong jump is restricted to

the region downstream of the spillway face where the bed contains no curvature.

These equations then are
Sloga(N.) O((lNb)] -1 -8

L(Q) = Mt + 1 t9 (•N + a J + - H• =0 (4.25)
(?1ý2 [ O9SI 82 (j (2~

where,

p = h

q vh

fA(s3) = - K1 s3

f2($3) - K2S 3

f, (h) f2 (h) h
M = f2 p

f• q

N, (= 2 f + L J'h a 2 j + 2 - a3j + 93 (haj

and the nonhomogeneous term

I ~ ~where, -H

qCH2

I IH
a I II i I I I I I I I2
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HI =0

H2 + {-. h7,( - a21 + (h•h, -+5]}

+ 2a-3 - ) -6-b 2 as ]

Ki~ -h a9 - A + (2 1 292)

+ l (---- f2 (h)7 8.2 3

113 a3 2 2-11h r (& a - (

a4 + sFf2 &82 a82

as =_(f ((s3))

Ph 3f . (Q2 )~~l Ca 8 - Q -8-1 a8 1b+ 8(Ja
h"~ A 49 I5 b1  + 9

+~- (2R-2 1 -L a 13 + 2 L a 14

2 h

+93 e~ fhal -~ + ý: } + (1(g2 b07

H30 b3 (7- 3

a2 = (f (h)

r~ 1
= 112 ((s3 )) bs3

+ foffii:3)as,

=q J -(f2s3 -aL2 d +2(s13 "

al = h f2f (s3) f(8)dS3



= h 83 ds 3

f9 fl (S 3) f2(-53)

= ( (f (S3))' J

S= h 1 f133 dds

a3 (fl (SA)2 ()

C1 = h 1 f3 (C) d~ds3 S(s3))2 Jo f 2 (W )
* 14 h 1 3 ýfi(ý) d~ds3

C1 I [( K' - P1C log f,(h) + K~hJ

C2 [ - K2) log f2 (h)+ sih]

For the coefficients bi simply swap the subscripts 1 and 2 in the Ko and K 2 and

f, and f2 terms of ai.

4.4 Application to Generalized Equations

The Petrov Galerkin formulation incorporates a combination of the

Galerkin test function and a non-Galerkin component to control oscillations

due to convection. The test function is that of equation (4.24) for the zero-

curvature case, and involves bed velocities Cc and i,.

The weighted residual statement becomes:

(J 1- 1 N + 0H HN + LpL dQ(n Gýsl ý70S2 (1(2
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+j (Nan, +Nbn 2)dl=O (4=26)

where, n1 and n2 are the components of the outward normal vector to the

boundary.

The perturbation partial differential system defines a hyperbolic ini-

tial boundary value problem. We determine the appropriate boundary condi-

tions relying upon the approach of Daubert and Graffe [17] and the discussions

of Drolet and Gray [23] and Verboom et. al. [58]. Daubert and Graffe use

the method of characteristics for this determination. The theory shows that

the number of boundary conditions is equal to the number of characteristic

half planes that originate exterior to the domain and which enter it. There

are two families of characteristic surfaces at a point (. 10 , S2o, to). The first is a

cone which slopes in the direction of flow and has a radius of the wave celerity

multiplied by time. This generates the ring formed on the free-surface by a

disturbance. The second is a plane which intersects the axis of the cone and

represents the flow velocity. If a characteristic plane outside our domain inter-

sects the boundary then the flow field inside the domain is influenced by the

outside information which we must provide as a boundary condition. On the

other hand, if the characteristic plane intersects the boundary from inside the

domain, this is information leaving the domain and no boundary condition is

needed. Physically, the first family is tracking a free-surface disturbance and

the second is tracking a fluid element. Table 4.1 relates the number of bound-

ary conditions to the direction of flow for sub- or supercritical flow conditions.

u,, is the velocity component normal to the boundary.

The boundary conditions we implement in this model are:
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Table 4.1: Number of bounda:5 conditions required.

Flow direction Subcritical Flow Supercritical Flow
u,, < 0 (inward flow) 2 3

u,, > 0 (outward flow) 1 0
u, = 0 (no flow) 1 1

"* A slip flow boundary at a solid wall is common in shallow water ap-

plications. This corresponds to the condition u, = 0 in Table 4.1. The

boundary condition in the model is imposed through the weak statement.

The implementation is as follows:

Mass Conservation Equation

fan 1 + qc 2n2)dl = 0 (4.27)

s, Momentum Equation

j$( -a2nl + Pa 3 n 2)di =0 (4.28)

s2 Momentum Equation

f O(Lbni + 2b2n2 )dl= 0 (4.29)

"* The upstream boundary condition is an essential boundary. If the flow

here is subcritical then the flow components are specified as either it and

, or p and q. If the flow is supercritical the depth is also specified.

"* The downstream boundary condition is unspecified if the flow is supercrit-

ical there. If the flow is subcritical the depth is specified by substituting

the specified depth in the boundary integral terms of the momentum

equations.
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4.5 Viscous Stress

The viscous stress is of less importance in the calculation of the free-

surface except as the flow passes through the hydraulic jump. The contribution

is small when the flow is smooth. We base our stress calculation upon the

velocity and metric gradients at the bed, in this way we do not produce a

lateral or longitudinal stress by our assumed vertical velocity profile. The

stresses (see Boresi and Chong [8] ) then are:

all= 2V () (4.30)

=VP N 1 )'0( ) (4.31)

or22 = 2 /1(432

The first subscript indicates the face upon which the stress acts and the second

is its direction. When applied to our numerical system we obtain the following

additional contributions:

s, Momentum Equation Contribution:

ST, + ! 0 ' I '--,dQ (4.33)

s 2 Momentum Equation Contribution:

ST f-b -S-02 T --0'2df 1 (4.34)

These contributions are made to the left hand side of equation (4.26). The

stress jump across interelement boundaries is set to zero and along the domain

edge a stress-free boundary is assumed.



62

As an estimate of these turbulent eddy viscosities generated by the

bottom friction, we use an empirical formula [49, 12]

V, = CBhf½ 2uI (4.35)

where, vt is the turbulent viscosity, CB is a coefficient that varies between 0.1

and 1.0, and f is the Darcy-Weisbach friction coefficient (see e.g. King and

Brater [361). The turbulent contribution to viscosity is generally much larger

than the molecular viscosity.

4.6 Bed Drag

We adopt the common practise in hydraulic engineering of using an

empirical relationship developed by Manning and extended to curved beds in

one dimension by Dressier and Yevjevich [21]. We shall extend this to two

dimensions. The original approach uses the Chezy coefficient, Ch, defined for

steady flow and for determination of the average flow over a cross section. In

the "fully rough" regime, the bed stress may be defined by oUbd = - Apu 2, where

A and Ch are functions of the size of the flow channel and the bed roughness

and independent of Reynolds number and so the Manning's relationship is

applicable. The term abed will be the bed drag force addition to equation

(4.26). Here we apply Manning's relationship of A = L, where R is the

hydraulic radius (ratio of cross-sectional area to wetted perimeter) and n is

Manning's coefficient.

We shall demonstrate the derivation of the force terms for the s1

momentum equation. Consider the infinitesimal volume in Figure 4.1. The



63

\1'1

Figure 4.1: Infinitesimal volume for calculation of bed drag force.

bed surface area is

A = (2AsI,82 (4.36)

so the total bed drag force is given by

g2

fal = (2 + O2) CIJ1iii (4.37)

The corresponding volume is

V = (S3)j2 (43)ds 3(i( 2AsiAs 2 = a7, 1C*-AsjAs 2  (4.38)

and the force per unit volume then is

f~ p.•gn 2 L 2
f-" (t.( + 2) (4.39)

The hydraulic radius may be approximated by

V
R cz V a7 (4.4n)

Therefore, the force per unit mass as it appears on the right hand side of the

s, momentum equation becomes:
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gn2p((p2 + q2 )(= • (4 .4 1 )

ha7

and similarly for the s2 momentum equation:

SFb2 =gn 2q ((p2 + q) (442)
hb;4

Once again, these terms will appear as additions in (4.26) for the bed drag

force.

4.7 Model Description

The finite element approximation for equation (4.26 ) becomes:

&1 ONa - + _._ + fH + WiLtdfl, (4.43)

+ (&an, + Nbn2) d] =0

where, the symbol indicates the discrete value of the quantity and the sub-

script indicates a particular test function. The geometry and flow variables are

represented using the finite element basis; e.g.,

Q = '.+ +

and the function ip, is defined as

S=

We use quadrilateral bilinear elements with nodes at the element cor-

ners, the local element coordinates are shown (see e.g. [61) in Figure 4.2. The
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-1

-1

Figure 4.2: Local bilinear element.

grid intervals As, and As 2 in the physical domain are chosen in the same

manner as Katopodes [331:

[.L.2 + ('S)I7
,As, = 2 , (4.44)

As2 = 2 \0S2 + Sr}j ] (4.45)

From Taylor series arguments, the temporal derivative may be repre-

sented as

-y+ At -At =Y + r, (4.46)

where, the subscript j indicates a particular node location, the superscript

indicates the time step, and -ri indicates the truncation error,

-r-, = ) ""AI (At) 2 + 0 (At)3  (4.47)

n ~^ ý at I II I I
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If -Y = this defines a second-order backward difference in time; if I = 1 the

standard first-order backward difference is obtained (both schemes are uncon-

ditionally stable for the linear problem).

We address the nonlinearities in equation (4.44) by using the Newton

Raphson technique (see [9]). The residual R, for a particular test function O'

in each set of equations is forced toward zero by the iteration: for k = 1, 2,

solve the Jacobian system

SAQ = -R, (4.48)

Qk+i = k +,AQk (4.49)

where k indicates the iteration, i is the test function index and j is the nodal

index.

Equation (4.48) represents a system of linear algebraic equations that

must be solved for each iteration and time step. A "Profile" solver incorporates

efficient coefficient matrix storage and is implemented in the present study. In

this method the upper triangular portion of the coefficient matrix is stored by

columns and the lower by rows. The zeros outside the profile are not stored or

involved in computation. The necessary arrays are then a vector comprised of

the columns of the upper triangular portion of the coefficient matrix, another

for the rows of the lower portion, and a pointer vector to locate the diago-

nal entries. Triangular decomposition of the coefficient matrix is used in a

direct solution. The program to construct the triangular decomposition of the

coefficient matrix uses a compact Crout variation of Gauss elimination.



Chapter 5

Validation and Practical Simulation

Numerical tests are conducted in two stages. In Section 5.1 we make

validation tests against several standard benchmark cases. Then in Section

5.2 we demonstrate the model's capability to predict actual flow conditions.

Here we make comparisons to flume results I compare these results to those

predicted using other shallow water equation models of approximately the same

computational complexity.

5.1 Model Validation

Several simple cases with analytic solutions are first considered to

validate the scheme and program. The basis of these is the Bernoulli Equation

written along the water surface. For smooth solutions with no dissipation,

energy along a streamline should be constant. The Bernoulli equation along

the water surface may be written:

V, + z,=E 
(5.1)

2g

where,

E, = mechanical energy (in units of length, e.g. ft-lbs per lb of water)

z, = water surface elevation

V, = velocity magnitude at the water surface

67
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In testing the precision of the model we define the error in terms of deviation

from a constant mechanical energy as follows:

fa Ej I(h) 2 (h) ds1ds2  (5.2)
faJi (h)j 2 (h) dsids2

f.(E.EP) 2 1i(h)j,(h)dsid52  (5.3)

So that •E is the average mechanical energy and Ile,,, represents an error in

terms of mechanical energy.

5.1.1 Constant Curvature.

The first test is for a constant curvature. These tests are conducted

for constant curvature in the s, direction with no curvature in the s2 direction,

and then for constant curvature in the s2 direction with no curvature in the s,

direction. All tests are with straight walls for both supercritical and subcritical

conditions.

The radius of curvature chosen is 30m, and the channel length is 20m

divided into elements of length 1m. The width is 4m divided into 1m wide

elements. In addition to the error in mechanical erergy, we plot the depth and

bed velocity along the channel centerline compared to the analytic solution for

the calculated average energy. We show these plots for flow in the s, direction;

the s2 plots were indistinguishable from the s, results.

The subcritical test conditions are shown in Table 5.1. For subcritical

flow two upstream boundary conditions and one downstream boundary condi-

tion are specified. Typically p and q are given upstream and water surface
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Table 5.1: Circular channel, subcritical flow.

Input Parameters

g 9.80 m/sec2

n 0

Vt 0

At 2sec
Simulation Time I00sec

Iterations 2
f 0.01

Boundary Conditions
Upstream

p 1.048 m'/s/m
q 0

Downstream
Tailwater Elevation 1.0439m

Table 5.2: Circular channel subcriticai flow results.

. I. I1
s, 1.046120 4.024x10-
52 1.046122 14.084x10-

elevation downstream. The results of the model run at the end of the simula-

tion are shown in Table 5.2. The mechanical energy in the model is very close

to a constant. For subcritical flow the energy should be close to the variation

in elevation, so it is apparent that the error in elevation is less than 0.001m.

A plot of the centerline profiles of bed velocity and water surface is shown

in Figure 5.1. The water surface dips over the crest as one would expect for

subcritical flow and, of course, the velocity is a maximum there. A comparison
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Figure 5.1: Circular channel, subcritical flow: bed velocity and water surface
elevation.
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Figure 5.2: Circular channel, subcritical flow: comparison of depth from model
with analytic solution.

between the numerical model and analytic results is shown in the two subse-

quent figures. Figure 5.2 provides a comparison of depths and Figure 5.3 is for

bed velocity. The comparison is extremely close, and since the energy error is

small we know the comparison over width is also good.

The test for supercritical flow considers the treatment and effect of

the downstream boundary. Since the flow is supercritical at this boundary no

condition is specified. The upper portion is subcritical so that only p and q

must be specified upstream. The flow changes to supercritical near the crest.

The water surface rises or falls from initial data to the level at which the

steady-state discharge can be maintained.

The downstream depth is calculated by the model and as a result is
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Figure 5.3: Circular channel, subcritical flow: comparison of the bed velocitv
from the model with analytic solution.
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Table 5.3: Circular channel, supercritical flow.

Input Parameters
g 9.8.0m/sec21.
n 0
Vt 0

A_ t Isec
Simulation Time 100sec

Iterations 2

f 0.01

Boundary Conditions
Upstream .....

p 1.048m 3/s/m
q . - 0

Table 5.4: Circular channel supercritical flow results.

s, 0.6973918 1.911x10-
sj 0.6973964 1.912x-10-

somewhat less stable so the time step is reduced accordingly. Table 5.3 shows

the input parameters for the calculation.

The error compared with Bernoulli's equation is shown in Table 5.4.

As expected the error is greater than for the subcritical case but it is still

relatively small.

The actual flow centerline profiles are shown it, Figure 5.4. The water

depth decreases until it becomes supercritical near the crest. The bed velocity

is nearly 7m/s at the downstream boundary. The comparison to the analytic
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Figure 5.4: Circular channel, supercritical flow: bed velocity and water surface
elevation profiles.

result is shown in Figures 5.5-5.6. Once again, the model yields results very

close to the analytic solution.

5.1.2 Variable Curvature.

For a more general test we consider a variable curvature case. Specif-

ically, we return to the flume geometry of Sivakumaran [51, 52, 53} given by

Z = 0.20el-V(72)1, where x is the horizontal distance and Z is the elevation.

The test input parameters are shown in Table 5.5. The simulated flume con-

tains 245 nodes and 192 elements. The lateral resolution consists of 4 elements

of width 0.05m. Longitudinally, the resolution is concentrated just upstream of

the crest, where the greatest variation in depth occurs. The minimum element
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Figure 5.5: Circular channel, supercritical flow: comparison of depth from
model with analytic solution.

Table 5.5: Variable curvature flume.

Input Parameters
g 9.80m/sec=
n C
Lt 0

at 0.05sec
Simulation Time 20sec

Iterations 3
f 0.02

Boundary Conditions
Upstream

P 0.03599m 3/s/m
q 0
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Figure 5.6: Circular channel, supercritical flow: comparison of the bed velocity
from the model with analytic solution.
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Table 5.6: Variable curvature flow results.

s, 0.273170 2.959x10-

S2 0.273090 3.990x10-'

length is 0.02m and the maximum is 0.05m. With a 0.05 second timestep a

free-surface wave can traverse about 3 or 4 of the smallest elements in a single

timestep; i.e., the equivalent CFL number [14] is about 3 or 4. Our initial solu-

tion is a fairly poor description of the steady solution so the starting timestep

is 0.02 seconds. After 2 seconds of simulation it was increased to 0.05. The

results of the simulation are shown in Table 5.6.

The ratio Iljejl/& for the variable curvature case is between 0.00108

and 0.00146 compared to the supercritical constant curvature result of about

0.00274 and subcritical result of 0.000390. Thus, the variable curvature is no

worse than for supercritical flow over a constant curvature. The significant

difference is in comparison to subcritical flow. Supercritical flow by nature

is less regular and the results with the model reflect this. These validation

studies confirm that the model accurately approximates the stated differential

equations. We now apply the model to more realistic practical flow studies.

5.2 Comparison to Physical Measurements in Flumes

The first test contains no bed curvature, but is a supercritical transi-

tion in which the disturbances at the wall propagate across the flume. This is

a good test of the numerical scheme and boundary condition implementation.
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Figure 5.7: Flume geometry: supercritical transition.

We next compare results for our generalized set of shallow water equations, the

standard steep-slope shallow water equations, and the St. Venant equations of

a spillway form against data collected by Sivakumaran [511. These methods are

all of about the same computational effort. The data set includes bed pressures

and water surface elevations. The final test is of an outletworks flume that is

supercritical throughout containing bed curvature and lateral transitions. This

is the most general case that we will test. In all comparisons, model resolution

is refined until no significant change results from additional refinement.

5.2.1 Supercritical Transition.

The flume data, for this test, are reported in Ippen and Dawson [31].

The flume narrows from 2ft to Ift wide using two equal radius circular arcs

as shown in Figure 5.7. The numerical representation of this flume extends
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Figure 5.8: Computational grid, supercritical transition.

upstream 20ft from the start of the curve and downstream below the transition

by about 30ft. The extension upstream is to allow the model to reach uniform

flow before the transition and downstream to make sure the boundary condition

does not influence the calculations in the area of interest. These long extensions

are actually overly cautious. The numerical grid is composed of 4585 nodes

and 4314 elements with a maximum length of ift and a minimum of 0.06ft.

Laterally the channel is broken into 20 elements in the area of interest and near

the upstream and downstream boundaries only 6 elements. The numerical grid

in the transition area is shown in Figure 5.8. Other model input parameters

are shown in Table 5.7. The bed slope and roughness are chosen to provide

uniform flow approaching the transition. The flow conditions are more difficult

than in the previous test and the value of f was increased to 0.10 to maintain

stability. The value of vt is chosen to correspond to CB = 0.4, see equation
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Table 5.7: Supercritical transition.

Input Parameters
O - 32.208ft/sec2

n 0.005
,v, 0'.02ft2/sec"

At 0.03sec

Simulation Time 500sec
Iterations 2

f 0.10
bed slope 0.0125

Boundary Conditions
Upstream

' 0.7O161ft3 /s/ft

q , 0
h 0.0998ft

(4.35). The amplitude of the standing wave predicted by the numerical model

is fairly sensitive to CB as one might expect.

A perspective view of the computed water surface is shown in Figure

5.9. The transition causes a disturbance that reflects down the channel forming

a diamond-shaped wave pattern. A comparison of computed and experimental

water surface contours is shown in Figure 5.10. The numerical model certainly

captures the overall features of the flume. Not surprisingly it is symmetric

unlike the flume (since it is difficult to control the inflow into a physical flume).

The numerical model predicts the location of the initial peak upstream of the

flume's peak by about 0.5ft (about 15 % of the transition length) and each

subsequent peak is increasingly off. The distance between the first two peaks is

3.5ft but the model produces only 2.8ft separation. Further down the channel
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Figure 5.9: Supercritical transition: water surface, 3-d perspective view.
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Figure 5.10: Supercritical transition: comparison of water surface contours, all
units ft.
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the wavelength in the flume is 3.3ft and the numerical model gives 3.Oft. This

is a direct result of the shallow water assumption. The various wavelengths

actually should travel at different speeds with the shorter ones traveling more

slowly. In the shallow water model all waves travel at the speed of an infinitely

long wave. For example, from equation (1.1) we see that the long wave celerity

for a depth of 0.3ft is 3.10ft/sec. For the longest wavelength in the flume, 3.3ft,

the celerity is 2.95ft/sec; the shorter wavelengths are even more significantly

reduced. This higher wave celerity means that the waves which originate at

a sidewall boundary will form a standing wave that is swept less backwards

by the current. Overall though, within the limitations of the shallow water

assumptions, the comparison is reasonable with symmetry preserved and the

shapes of the oblique standing waves demonstrated.

5.2.2 Spillway Form

At this point we revisit questions concerning the generalized shallow

water equations as differentiated from the more frequently applied St. Venant

equations and the generalized shallow water equations with curvature set to

zero (the standard steep-slope shallow water equations). We do this by recon-

sidering Sivakumaran's flume results with the improved model, continuing the

preliminary study reported in Chapter 3. Here we first address longitudinal

issues since the flume is essentially one-dimensional, leaving lateral and more

general two-dimensional issues to the next section.

While the generalized shallow water equations are much more com-

plicated than the St. Venant equations, we are using bilinear elements with the
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identical number of gauss points for each approach. Hence the models are of

approximately the same computational effort. If one moved to a higher-order

perturbation expansion, much more computational effort would be necessary.

Previous studies by Dressier and Yevjevich [22] compare Dressler's model with

the St. Venant equations. Since the "Dressier" equations gave markedly bet-

ter results, they concluded that "curvature" is quite important. However, the

St. Venant equations enforce another simplification that may contribute to the

difference - the implementation of the mild-slope assumption. We shall inves-

tigate the nature of the discrepancies between the generalized shallow water

equations and the St. Venant equations. The standard steep-slope shallow

water equations will serve as a means of evaluating this additional assumption

in the St. Venant form.

Throughout we will refer to the generalized shallow water equations as

with "curvature"; when curvature is set to zero it is terned "no curvature", and

imposing the St. Venant equations as " St. Venant." The test input is shown

in Table 5.8. The model has the same geometry and node layout as reported

in Section 3.5. The flow rate is the highest tested by Sivakumaran. Figure

5.11 shows a comparison of water surface results for each equation set and the

flume data. The "curvature" case matches the flume water surface quite well.

As in Chapter 3, the "no curvature" case is close to the generalized shallow

water equations and the flume data in the supercritical region downstream of

the crest, but shows the bulge due to the kinematic inconsistency we have

previously discussed.

The water surface solution for the St. Venant equations starts high

and drops too quickly. This difference is not due to the hydrostatic assumption
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Table 5.8: Spillway form.

Input Parameters
g 9-81mr/sec2

n 0.0
Vt _ _' 0.0
At 0.05sec

Simulation Time 1Osec
Iterations 3

S_0.02

Boundary Conditions
Upstream

p 0.11197ma/s/m
q _0

WATER SURFACE PROFILE
EFFECT OF CURVATURE TERMS

.5
-- ,- SPILLWAY BED

FLUME DATA
.4 CURVATURE

NO CURVATURE
--- ST.VENANT

.3
z
0

.2

.0

"-1.0 -.5 .0 .5 1.0 1.5
DISTANCE, M

Figure 5.11: Spillway form: comparison of water surface results.
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since the "no curvature" case is also hydrostatic. Upstream, the St. Venant

equations predict a higher water surface to maintain this flow rate but without

the upstream bulge obtained by simply setting curvature to zero in the gen-

eralized shallow water equations. The "no curvature" case bulge in a concave

region is due to an overestimate of the differential volume. This in turn requires

a greater pressure gradient to accelerate the flow. In the St. Venant equations,

the depth is measured vertically and this problem is relieved. The St. Venant

mild-slope assumption means that depth is measured vertically and we are es-

sentially solving the horizontal equations with a modified gravitational force to

account for bed slope.

To examine this mild-slope assumption and its effects upon the so-

lution, we utilize a simple comparison of the St. Venant equations (with the

mild-slope assumption) and a steep-slope formulation. The steady-state, one-

dimensional, steep-slope shallow water equations may be written:

OQas - 0 (5.4)
ds

a[Q2/d + 10cos01
S+gdsinO = 0 (5.5)

and the corresponding St. Venant mild-slope formulation is:

OP

-- = 0 (5.6)

0V2/ + 9glh = 0 (5.7)

where, Q = vd and P = uh. All other geometric terms are defined in Figure

5.12. Assuming 0 to be a constant, the steep-slope formulation can be written

in terms of the variables of the mild-slope formulation and, after solving for



87

WATER SURFACE

"71d Ih'

S~b

DATUM C*HORIZONTAL)

Figure 5.12: Geometry for mild-slope evaluati,,n.

water surface slope 9",

a7 f , PCos' 1 49b
= _ gh-P2 cos2 0b (5.8)

We wish to compare the water surface slope for this steep-slope formulation to

that of the St. Venant equations near h = h,. The mild-slope result is obtained

by setting 0 = 0. There is a slight ambiguity here in that, °L = tan 0, but, a°

is actually measured and is not among the terms that are dropped when 0 is

assumed to be small.

First we consider subcritical flow. For this case the denominator is

positive and we rewrite (5.8)

_77 P2 cos 2 0 1 bI:x Igh- P2 cos 2 01 Tx (5.9)

A comparison between the two forms can be made by setting 0 = 0 in the

above equation for the mild-slope form. Both have water surface slopes that

are in the opposite direction of the bed slope. It is also apparent that the
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Figure 5.13: Subcritical flow: water surface slope comparison.
magnitude of t is !arger for the mild-slope form. Figure 5.13 shows examples

with adverse and favorable bed slopes, and illustrates the relationship between

the water surface slope predicted by the two formulations.

For supercritical flow the water surface slope is found to be

O {f I ObP2c s20 (5.10)Ox = 1h3 - co2 CoS9

Here the mild-slope assumption again exaggerates the water surface slope but

in the same direction as the bed slope. The same two examples under super-

critical conditions are shown in Figure 5.14. The mild-slope assumption used

in the St. Venant equations tends to exaggerate water surface slope if the bed

slope is steep. The amplification is roughly related to 1/ cos2 0 times the bed

slope. Hence the mild-slope assumption is responsible for the differences on

the downstream spillway face in this example, not curvature effects.

A comparison of bed pressures is shown in Figure 5.15. The gener-

alized shallow water equations (curvature case) do a very good job of mod-

eling these pressures as expected, although their result is slightly high near

x = -0.5m. This is where the shallowness parameter, (curvature multiplied by
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Figure 5.14: Supercritical flow: water surface slope comparison.
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Figure 5.15: Spillway form: comparison of bed pressure results.
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Figure 5.16: Spillway form: shallowness parameter.

depth), is the greatest. (It reaches a value of about 0.42, see Figure 5.16.)

The limit given by Sivakumaran on the applicability of these equations is

-2 _< Kh < 0.54. While 0.42 is certainly within these limits, we must note

that the perturbation analysis implies that the water surface "looks" like the

bed; i.e., the flow is essentially parallel to the bed. The bed-normal acceler-

ations become more important as this is relaxed. These effects can be acco-

modated better by going to higher-order terms in the perturbation analysis as

long as the shallowness parameter is not too large. This is a serious limitation

to applicability of the model to a large class of spillways which typically have

a steep upstream face. Downstream, the slight discrepancy near the toe of the

spillway has been attributed by Sivakumaran to the irrotational flow assump-

tion (over depth). This is based upon the research of Henderson and Tiernev
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[28]. Overall, the comparison is quite remarkable. On the other hand. the St.

Venant and the "no curvature" cases are poor. This is not suprising since both

are hydrostatic and the St. Venant model measures pressure based on depth

measured vertically.

These results indicate that the longitudinal profile of water surface

and bed pressure are modeled fairly well with the generalized shallow water

equations. The new model is limited in handling some common spillways in

which the upstream face is steep. Downstream of the crest, where the flow is

supercritical, the water surface more closely parallels the bed and thus the per-

turbation analysis is more accurate. The "no curvature" case of the generalized

shallow water equations also compares well with the flume water surface. This

implies that the hydrostatic pressure assumption is reasonable in the down-

stream supercritical reach. The overall poor comparison with the St. Venant

model can be attributed to the mild-slope assumption. The poor spillway ca-

pacity prediction is a result of the hydrostatic assumption in the steep-slope

and the St. Venant models.

5.2.3 Outletworks Flume.

The final test is the most general we shall undertake. We compare

the previous sets of model equations to an outletworks physical model at the

Waterways Experiment Station. WES. Here our primary concern is the lateral

behavior predicted by the mathematical models for more realistic structures.

A diagram of the flume, as tested, is shown in Figure 5.17. The plan view

geometry for the flume and the model are identical but the numerical approx-



92

FLUME PLANl VIEW

Z - O.WFT) Z 0.76697 OD92832X -00D64X 2Z -aM JFT

FLUME ELEVATION VIEW

Z3 F0T F

0.7822 PTý

4.266 FT

NUMERICAL MODEL ELEVATION VIEW

Figure 5.17: Outletworks flume: flume and numerical model geometry.
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imation to bed elevation has smooth transitions to provide a continous slope.

The dimensions of the flume were chosen such that typical operating condi-

tions place the flow regime within the fully turbulent region. For our test, the

Reynolds number is about R = !h :z 200000, which indicates that scale-effects

are small. For even relatively smooth bed and wall conditions the flume will

be in the fully turbulent regime (see [48, 131). Therefore, w- might reasonably

expect the flume results to exhibit behavior similar to large-scale structures of

this type.

The bed elevation of the flume is purposely laid out longitudinally

as a parabolic function to minimize flow separation. The actual dimensions in

Figure 5.17 are "as measured" and vary slightly from the construction spec-

ifications, primarily as a result of settling. The transition from the circular

conduit to the apron is fairly complicated. The walls have a slight flair with a&

radius of 2.75ft and the bed has fillets to move smoothly from the round con-

duit to the rectangular section of the apron. The apron wall has an outward

slope of approximately 1. A level stilling basin which contains baffles and an

end sill is located 4.015ft from the conduit exit. These stilling basin features

are not numerically modeled here; since these effects far downstream arc of

lesser importance to the spillway flow. The actual bed elevation numerically

modeled (as shown in Figure 5.17) contains no discontinuities in slope so that

the curvature exists throughout. The bed is flat in the lateral direction, i.e.,

all slope and curvature variations are in the longitudinal direction.

The flume water surface is recorded every 0.05ft laterally and every

0.10ft longitudinally. An additional reading is made near the sidewalls (typi-

cally within 0.02ft). The measurements are recorded with a point gage capable
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of measuring to a precision of 0.O0lft (it is graduated it, 0.01 ft units and with

a vernier one can detect 0.001 changes). In reality the water surface is quite

rough and time varying, so that readings are approximately accurate to about

O.O2ft. The flow rate is measured using a 12 by 6 inch venturi meter with a

differential manometer. The inflow pressure is maintained by a constant head

tank. The manometer calibration is checked using direct measurements of vol-

ume change in a specific time period. The discharge is estimated [57] to be

accurate within 3 '/.

Thc flume water surface results are shown in Figure 5.18 as a three-

dimensional perspective for a flow rate of 2.56 cfs (cubic feet per second). The

view shows the lateral hump in the water surface as the flow exits the outlet

conduit. This eventually spreads to a relatively uniform depth as intended in

the design. If, however, flow becomes focussed the result will be circulation in

the stilling basin with possible damage there. The nonuniform velocity field

would also cause more downstream erosion. The drag of the apron sidewalls

causes the sharp rise in water surface. The buildup in water depth along the

sides of the stilling basin is a result of the change in side slopes.

The numerical model is constructed of 408 nodes and 368 elements

(see Figure 5.19). It extends longitudinally from x = O.75ft to x =6.Oft.

The upstream boundary is therefore below the complex geometry of the fil-

lets near the conduit exit and the vertical velocity profile should be closer to

an open-channel flow distribution. The flow is supercritical throughout the

study reach. and at the upstream boundary the velocity and depths are speci-

fled. The depths are the flume results interpolated from the 0.7Oft and 0.8Oft

ranges. The x component velocity distribution is assumed to be uniform across
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Figure 5.18: Outletworks flume: water surface results, perspective view.
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Figure 5.19: Outletworks model: computational mesh.

the upstream boundary. The lateral velocity component at the inlet is speci-

fied so that the flow is tangent to the sidewalls and zero in the channel center

with linear variation between these stations. These are the simplest reasonable

boundary conditions and should be suitable for a comparison of model equa-

tions. Furthermore, this is as much information as a modeler typically has to

make a site-specific study. Other model conditions are shown in Table 5.9. The

Table 5.9: Outletworks model.

Input Parameters
9 32.208ft/sec
n 0.012
Vt 0.05ft 2/sec

At 0.05sec
Simulation Time 15sec

Iterations 3

S_0.03
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Figure 5.20: Outletworks flume: depth contours.

turbulent viscosity corresponds to a value of CB of about 0.1.

Figures 5.20 - 5.23 show the depth contours for the flurr: -% the general-

ized shallow water equations, the standard steep-slope shallow water equations,

and the St. Venant equations. The flume and St. Venant measurements are

made vertically as water surface elevations which we have converted to depths

normal to the bed. The flume data in the upper region reveal a cop';nuation of

the conduit shape, i.e., a hump in the water surfac, -ith the centerline being

a relative maximum. This form ends near x = 1.75ft. From there on the cen-

terline is a relative minimum or the surface is nearly flat. This is the desirei

pattern for a good hydraulic design. At the channel edges the wall drag causes

a substantial buildup of water depth.

A most important result of the generalized shallow water equations

is the more graduai lateral spread of the flow tube. As an illustration, within

the portion of the flume modeled here, the flume shows the centerline to be

a relative maximum for about 1.0ft. The model including curvature gave a
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Figure 5.23: Outletworks model: St. Venant equations, depth contours.

similar length. The steep-slope shallow water model (no curvature) and the

St. Venant equations are nearly identical throughout the domain. The length

for which the centerline is a maximum as predicted by these models is only

about 0.7ft. Hence, the nonhydrostatic component has a definite effect upon

the wave speed here. This is a region in which the flow is entirely supercritical

and for which our one-dimensional test showed little improvement by includ-

ing the nonhydrostatic pressure component in the generalized shallow water

equations. However, now the lateral variation is strongly dependent upon the

nonhydrostatic contribution. The predicted wave celerity for a similar case in

which the curvature and dominant flow direction are along the x axis can be

shown (see 1201) to be

Cgswe log (• -- Kh) 93 + (1 - 2 (5.11)

On the other hand the celerity without curvature included is simply

C ,,,•e = ( g a b ) l ( 5 .1 2 )
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Figure 5.24: Outletworks flume: lateral depth profiles.

A convex curvature (r.1 negative) produces a lower celerity in the generalized

equations which is not captured in the standard shallow water equations. The

true solution, which includes nonhydrostatic pressure contributions as a result

of short wavelengths in addition to bed curvature effects, has a wave celerity

that is even smaller than the generalized equations predict. In a concave region

(positive curvature) the wave celerity predicted by the generalized shallow water

equations will be greater than from the standard shallow water equations.

Lateral profiles of depth are shown in Figures 5.24-5.26. The fig-

ures include flume, generalized shallow water, and standard steep-slope shallow

water results. The St. Venant results are nearly identical to the standard steep-

slope results. The lateral profiles are at distances downstream of the conduit

of 1.0, 1.6, 2.8, and 5.Oft. These results provide an additional view of the infor-
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Figure 5.25: Outletworks model: generalized shallow water equations, lateral
depth profiles.
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Figure 5.26: Outletworks model: standard steep-slope shallow water equations,
lateral depth profiles.
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mation contained in the contour plots. Between 1.Oft and 1.6ft the flume and

model including curvature effects show a gradual collapse of the wave. With

no curvature effects the wave has propagated out to the edges leaving a trough

in the center. Downstream, the distinction between the results from the two

model equation sets is very small. The model in both cases only captures the

behavior of the flume in a qualitative sense. One reason is that we use actual

flume measurements for the water surface upstream boundary condition, but

rely upon a uniform velocity profile. A second reason is that the wavelength of

the hump in the channel center is only about lft while the the depth is nearly

0.4ft. This collapse rate is really a short-wave phenomenon not capable of be-

ing accurately represented by a long-wave model. However, the effects of the

bed curvature are captured and do improve the comparison in the generalized

shallow water model.

The lateral velocity profile comparisons between the generalized shal-

low water equations and the standard steep-slope shallow water equations are

shown in Figures 5.27-5.30. The distinctive differences in these figures occur

at x = 1.Oft and x = 2.8ft. At x = 1.Oft the pressure is lower for the case

with curvature, and since velocity is dependent upon the pressure gradient, the

lateral velocity is lower. At x = 2.8ft, the model with curvature produces gen-

erally higher lateral velocities. The outward propagation of the lateral wave is

quicker in the "no curvature" case and the peak has propagated out to the wall,

whereas, for the case including curvature, the outer depth has not reached its

peak. The result is a reduced adverse gradient at this point in the generalized

equations, and thus slightly larger outward velocity.

The mild-slope assumption made little difference for this case; i.e., the
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Figure 5.27: Outletworks flume: lateral velocity profiles, x = 1.0ft.

St. Venant equations yielded results quite close to those of the standard steep-

slope equations. On the other hand the bed curvature effects are important and

the generalized shallow water equations did give better results for the water

surface distribution. However, the primary concerns around an outletworks are

related to the spread of the flow tube which is a short-wave phenomena and

none of the models performed well in this regard.

5.3 Discussion

The most striking contrast between results of the generalized shallow

water equations and the other formulations is in the predictions of spillway

capacity. This is indeed a result of the hydrostatic pressure distribution used



105

in the standard equations. In reality the negative curvature near the crest of the

spillway reduces the pressure and so allows more flow for a given water level.

We shall develop an understanding of this by considering a linearization of

the generalized shallow water equations that will allow us to estimate spillway

capacity for the standard methods and the change expected by implementation

of the generalized shallow water equations.

Consider the discharge per unit width (for a one-dimensional flume)

as defined in the generalized shallow water equations to be given by

q 1 = U (33) ds3  (5.13)

or,
qw= -Uhf (h) logf (h) (5.14)

K

where, Uh is the velocity at the surface and as before f (h) = I - Kh. The

specific energy is given by

E. = + h (5.15)
2g

This is the energy at the surface with the datum at the spillway crest. We wish

to compare the spillway capacity as determined by the specific energy with

curvature and for no curvature. The "no curvature" case corresponds to the

St. Venant model and the standard steep-slope shallow water equations. For a

given discharge the specific energy is a minimum at the spillway crest. We can

see this by considering an idealized flow in a subcritical channel. Across the

channel is a "bump" that is originally of very small height. Now as we gradually

raise the height of the bump a choke point is eventually reached where any

further increase in the "bump" height will cause the upstream water surface to
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rise. Additional energy is required to pass this flow for any additional increase

in height. Also, downstream of the bump the flow is no longer subcritical. So

at the crest of the bump the flow is termed critical and the specific energy is a

minimum.

Now using equations 5.14 and 5.15 for X = xch and I X I<< 1, where

h, is a nominal value of h, an approximation for specific energy is

E, -z: 2 (1 + x)+ h (5.16)
2gh2

Minimizing, we find h,, the critical depth

h, [ 1+x)j (5.17)

or in terms of specific energy

E, ; [L (I +(5.18)

This demonstrates that if ) < 0, as it would be near the crest the specific

energy is less than for the no curvature case, ( = 0. Therefore, we would

expect the St. Venant model and other models not including bed curvature to

underestimate spillway capacity.

If we solve for the discharge in terms of the required specific energy

we obtain the spillway capacity. The ratio q, of discharge without curvature

terms to that with curvature included is approximated by

q, ý (I + x)½ 2(5.19)

as demonstrated in Figure 5.31.
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Hence we see that near the crest the curvature terms are very impor-

tant. Models not including this nonhydrostatic effect will overestimate critical

depth and underestimate spillway capacity. As shown in Figure 5.31 this can

be significant. The two-dimensional model can treat this along with the side

constrictions to capture the spillway capacity more accurately.
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Figure 5.28: Outletworks flume: lateral velocity profiles, x 1.6ft.
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Figure 5.29: Outletworks flume: lateral velocity profiles, x 2.8ft.
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Figure 5.30: Outletworks flume: lateral velocity profiles. x = 5.Oft.
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Chapter 6

Conclusion

In this investigation we have developed a generalized shallow water

equation set to reproduce free-surface flow over curved beds and applied the

model to spillway flows. These generalized shallow water equations include

bed curvature effects. are nonhvdrostatic, and are two-dimensional. The equa-

tions are derived via a perturbation expansion in a shallowness parameter. A

significant assumption made in this derivation is that the flow is irrotational

about axes parallel to the plane of the bed. However, there is no limitation on

vorticity about axes normal to the bed.

A one-dimensional model was constructed to assess numerical prob-

lems and determine additional needs for the final two-dimensional investigation.

This finite element model was straightforward and employed time-lagging of

nonlinear terms. We considered available flume data for a simple curved bed

profile. In comparing the one-dimensional equations with and without curva-

ture the principal differences occured upstream of the spillway crest. This is

important since this is the spillway capacity.

The numerical handling of the convection terms used a method of

artificial viscosity weighted by the convection velocity. At first a Taylor Weak

Form approach was attempted but was shown to have some difficulty near

points of transition from supercritical to subcritical regimes and vice versa.

112
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The artificial viscosity avoided these problems but also has some detractions

and was replaced in the final two-dimensional model. (One obvious problem

with the viscosity approach is adding diffusion terms to the mass conservation

equation.)

The final development involved a two-dimensional model in which the

nonlinear terms were addressed via a Newton Raphson technique. iterating at

each time step. This allows larger time steps. We introduced a Petrov Galerkin

scheme based on the SUPG idea and A-schemes in which the test function is

weighted using the eigenvalues of the convection matrices.

A two stage testing program was conducted. The first stage vali-

dated the discrete model against analytic benchmark cases and the second

stage compared the model results to flume data. The first stage was accom-

plished by several one-dimensional tests performed along the s1 and then along

s 2 directions. These tests were for both constant and variable curvature. The

Bernoulli equation served as the standard for comparison. This validated the

discrete model for the derived equations.

Tests of the suitability of the equations were then undertaken by

comparison to actual flume data. The first study was a comparison to a su-

percritical transition in which there was no bed curvature. This was primarily

a test of the numerical scheme and boundary condition implementation. The

model performed well within the limitations of the shallow water equations.

The next set of tests was made for a curved bottom flume with straight

walls. Results from the generalized shallow water equations compared remark-

ably well to the flume water surface data. The spillway capacity was accurately
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captured and a comparison of bed pressure was quite good. The St. Venant

and the standard steep-slope shallow water equations missed the spillway ca-

pacity, both prediciting a greater water surface elevation to attain the steady

discharge. (The hydrostatic pressure assumption misses the reduction in pres-

sure caused by the uplift of the flow over the curved crest. This is responsible

for the error in spillway capacity.)

Along the downstream face the standard steep-slope formulation com-

pared fairly well with the generalized shallow water equations and flume data.

The St. Venant equations predicted too steep a water surface slope. This was

shown to be a result of the mild-slope assumption. and not curvature related.

The principal improvement of the new equations over the "no curvature case"

is in the neighborhood of the spillway crest.

We collected experimental data on a flume at the Waterways Exper-

iment Station designed to study outlet works. Here the emphasis was upon

lateral variations in water surface. The improvement offered by the new equa-

tions was subtle showing slower (and more realistic) spread of the flow conduit

over negative curvature regions. Overall, however, the representation of what is

essentially a short wave phenomena was weak. However, the results did provide

a qualitative picture of the flow that is beneficial for designers.

A list of the conclusions then is as follows:

1. These equations are a significant improvement over standard steep-slope

shallow water equations in the vicinity of the spillway crest. Within the

stated restrictions on the size of curvature and depth, these equations

can provide a good representation of spillway capacity.
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2. These equations do show an improvement in the lateral depth distribu-

tion though they are shallow water equations and suffer in predicting

phenomena associated with short wavelengths.

3. Along the downstream face of the spillway or outlet channel the flow is

supercritical and the difference in water surface attributable to curvature

is small, generally on the order of precision used in physical model flumes.

4. The St. Venant equations proved to be much worse than the generalized

or the standard steep-slope shallow water equations along the downstream

face. The difference, howeveL-, is attributable to the mild-slope assump-

tion and not to the hydrostatic pressure assumption or other curvature

manifestations.

Recommendations for Future Work

The equations are most important in the region around the spillway

crest and for evaluation of contraction effects near the ends of the spillway.

This is where the nonhydrostatic pressure distribution is most critical. Future

research should concentrate on this issue. Furthermore:

1. Many spillways have steep faces and abrupt curvature that violate the

limits imposed by the shallowness condition in this perturbation expan-

sion. This significantly reduces thc pressure at the crest and so increases

spillway capacity. To be a practical tool, the model needs to be extended

to this more general case, perhaps by the calculation of a flow line repre-

senting the bed.
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2. Higher-order terms in the expansion for the steep-slope shallow water

equations can also be constructed for this region. In particular, do these

equations represent this region as well as the generalized shallow water

equations? Of course, these Boussinesq equations include third-order

spatial derivatives and so will require additional computational effort and

some improved convection scheme.

3. The unsteady behavior of the equations could be quite interesting. In

fact, even for steady boundary conditions the highly nonlinear flow near

and along the spillway face is unsteady.



Appendix

Integration of Coefficients

The integration of the coefficients used in the generalized shallow

water equations was accomplished using the software Mathematica [43] and are

as follows:

oh
a, = f 2 (s3 )ds 3

= hf 2 (h/2)

a2 = fj (f 2 d

(r. 1 - .c2)h K2 log fl (h)
K;lf 1 (h) C1

2

a3 = f"(83d

log f 2 (h)
K 2

h
a4 0 s•2 (s3 ) ds3

I h2f 2 (2h/3)
2

h S3

a5= jh (f s)•s1 f ]lh
( log f, (h)

7 83

"22• [T2(h) + log f2(h)]
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The coefficients which must be evaluated in the limit when K, -- 0. K 2  0,

-I K2, and KI, K 2 - 0 are as follows:
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