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CHAPTER I

INTRODUCTION

1.1 Outline

The purpose of this research is to develop an approximate asymptotic high-
frequency solution for the electromagnetic scattering from a convex conducting
surface with dielectric/ferrite coating. For the bare perfectly conducting case, an
efficient uniform GTD solution has been developed and used in many engineer-
ing applications. However, no such solution exists for the conductor coated with
dielectric/ferrite material.

This research is motivated by the need for understanding the effects of loading
on the electromagnetic scattering. In some engineering problems there is a need
to control the scattered fields from conducting objects such as the reduction of the
radar cross section (RCS) in the design of air-borne vehicles. An efficient method to
control the EM scattering can be achieved by coating of a dielectric/{ferrite material
on the conducting scatterers without having to deform the physical structure of
the scatterer. The research in this report is focused on the development of an
effficient analytical tool to calulate the scattered field from a coated surface and
the effects of various coating materials on the scattered field.

It is desired to ultimately develop the uniform geometrical theory of diffrac-
tion (UTD) for an general convex surface with material coating. As a first step, we
examine the field scattered by an infinite conducting circular cylinder with dielec-

tric/ferrite coating when it is illuminated by a parallel infinite electric or magnetic




line source. Since both the line source and the cylinder are parallel and have
infinite lengths, the scattering from the cylinder is essentially a two-dimensional
problem. Once the solution for this canonical problem is obtained, it can be easily
extended to calculate the field scattered by a general convex coated surface. The
scattering from the cylinder with surface impedance is also treated in this research.
This problem is of interest in that it provide the solution of scattering field from
a cylinder with finite conductivity.

The organization of this report is as follows. Chapter Il gives the angular
eigenfunction series solutions for the impedance and the coated cylinder. It is noted
that the eigenfunction solution is slowly convergent when the radius of cylinder is
large in terms of the wave length. Even though the eigenfunction solution is not
the goal of this research, it is importani because it provides a means of checking
the accuracy of the ray solution which is developed in later Chapters.

In Chapter III, high frequency asymptotic solutions are obtained from the
asymptotic evaluation of the field expression in the integral form. The solutions
obtained are cast in the format of the geometrical theory of differation (GTD)
as suggested by Keller {1,2]. In the lit region, geom;trica.l optics fields (i.e. the
incident and the reflected field) are obtained via the stationary phase method.
In the shadow region, the diffracted field is obtained from the evaluation of the
integral via Cauchy’s residue theorem. It is noted that the ray picture for the
impedance and the coated cylinder remains the same as that for the perfectly
conducting cylinder. Thus the Keller’s GTD ray format given for the conducting
cylinder can be used with necessary modifications due to the boundary conditions
on the cylinder surface. Even though the solution obtained is accurate in the deep
lit region and in the deep shadow region, it fails in the shadow boundary transition
region. The reasons for this failure are also analyzed in this Chapter.

Chapter IV examines some characteristics of the creeping waves which prop-




agate azimuthally on the cylinder surface. The propagation constants and the
attenuation constants of the creeping wave modes are determined from the zeros
of the transcendantal equation which characterizes the impedance or the coated
cylinder. For the conducting cylinder, the contribution from the first creeping
wave mode to the diffraction is always dominant over other higher modes. How-
ever this is not always true for the impedance and the coated cylinder. Change
of the dominance of the creeping wave mode according to the change of the rele-
vant parameters is illustrated by the some examples. The behavior of the creeping
waves for a very large cylinder is compared with the surface waves of the grounded
planar slab with the surface impedance or the dielectric/ferrite coating.

In chaper V, the failure of the GTD solution in the shadow boundary tran-
sition region is corrected by the heuristic extension of the UTD solution for the
conducting cylinder to the impedance and the coated cylinder. For the impedance
and the coated cylinder, the transition function P(z,q), which is well tabulated
for the conducting case, is not available. Instead of direct numerical evaluation of
the integral, a heuristic method is used to obtain the numerical data for the tran-
sition function P(z,q). The universal feature of this transition function is tested
for some examples. Using the transition function obtained, the field patterns are
calculated and the results are compared with exact eigenfunction solutions.

Chapter VI contains the conclusion for this research.

1.2 Literature survey

For the perfectly condu- ing case, the asymptotic evaluation of the field scat-
tered by a cylinder or a general convex surface has received much attention and
been studied extensively. Such solutions are usually cast in the format of the ge-

ometrical theory of differation (GTD) as suggested by Keller {1,2]. One of more




1. .ent works on this problem is that of Pathak [3]. He made a significant contri-
bution to this area by developing an approximate uniform geometrical theory of
diffraction (UTD) for a perfectly conducting cylinder and arbitrary convex surface
with great success.

The problem of scattering by the impedance or the coated cylinder has also
received attention for decades. Scattered field by the impedance cylinder has been
studied by Wait {17}, Streifer (18] and Logan [14]. The main concern of their work
was in ground wave propagation excited a dipole on the earth which has been
modeled by a cylinder with surface impedance. In their work, the propagation
constants for the creeping wave of the impedance cylinder has been obtained with
the assumption that the Hankel functions in the formal solution may be approxi-
mated by their Fock type Airy functions. It is noted that this assumption is not
valid for arbitray orders and arguments of the Hankel functions. Recently, Wang (4]
obtained more accurate numerical data for the propagation constant of the creep-
ing wave, the Regge poles, and the natural frequencies of an impedance cylinder
by using both the Debye and the Watson’s approximation of Hankel functions.
The creeping wave interpretation for the resonance and the correlations between
the resonance, the Regge poles, and the natural frequencies are also discussed.
Most recent work on the scattering from the impedance cylinder has been done
by Wang and Kim [5] who has developed uniform GTD solution for this problem.
The accuracy of his results has been confirmed by excellent agreement with exact
eigenfunction solutions.

For the coated cylinder, Tang (1957) bas found an angular eigenfunt;tion series
solution for the back scattered field and has presented numerical and experimental
results when the incident wave length A, is comparable with radius of the cylin-
der. The propagation constant for the first creeping wave mode on the surface of

cylinder with lossless dielctric coating was first obtained by Elliott [19] by using




some asymptotic representations of the various necessary Bessel and Hankel func-
tion. Based upon Poisson’s sum formula, Kodis [21] has obtained an asymptotic
solution for the scattered field in terms of the difference between the scattered field
of the coated cylinder and of a perfectly conducting cylinder. In his solution, the
scattered field is expressed in term of several different rays by tracing the compli-
cated internal process of the field propagation in the dielectric coating. Because
of difficulty in tracing the optical rays inside the coating material, his solution is
too complicated for numerical calculations. Particularly interesting is the work by
Helstrom [22], who has obtained a ray optical solution by asymptotic evaluation
of the formal solution. A trajectory of the propagation constants of the creeping
wave has been sketched. However, he failed to give exact numerical data.

By employing the same optical rays as given by Kodis, Rao and Hamid {23]
invesigated GTD solution for this problem. No numerical results were presented
in their paper. The backscattering width of a dielectric coated cylinder has been
obtained via a high frequency ray solution by the recent work of Wang [6]. Most
recently, Paknys and Wang [7,8] have developed an approximate solution for the
surface fields induced on a coated cylinder by a magnetic or electric line source on
the same surface. Even though the final goal of this work is different from theirs,
some of their results associated the propagation constants of the creeping waves

are utilized in this work.




CHAPTER 11

EIGENFUNCTION SERIES SOLUTION

In this Chapter, the eigenfunction series solutions for the field scattered by
the infinite circular conducting cylinder with an impedance boundary surface or a
dielectric/ferrite coating will be presented. In the eigenfunction solution, the field
expression is given as the sum of each angular eigenfuntion mode which satisfies
the boundary conditions of a given canonical problem. The angular expansion of
eigenfunction modes is an appropriate solution when the radius of the cylinder is
small in terms of the wavelength where the asymptotic solution cannot be applied.
However, for the cylinder with large radius it is impractical to compute the field
from the eigenfuntion expansion because it is very slowly convergent.
Even though the eigenfunction solution is not the final goal of this research, it is
important because the formulation of a high frequency ray solution begins with the
field expression in the eigenfunction series form. Since the eigenfunction solution
is based on exact boundary conditions, it is considered to be the exact solution of
the given problem. Hence, it can be also used as a means to check the validity
of the high frequency ray solution which will be developed in later Chapters. In
addition, the eigenfunction solution provides the basis to obtain the numerical data
for the transition function ﬁ(f,q) associated with the uniform GTD solution in

the vicinity of the shadow boundary.




2.1 The canonical problem

The geometry of the problem for an impedance and a coated cylinder is il-
lustrated in Figure 2.1 (a) and (b) respectively. The impedance cylinder or the
coated cylinder is illuminated by a parallel line source located at O(p', ¢'). The
impedance cylinder is an impenetrable cylinder with an impedance boundary sur-
face and the coated cylinder has a material coating on the conducting core cylinder.
The coating has a thickness d = b— a and is homogeneous with permittivity ¢; and
permeability ) , both of which may be complex. The source is either an electric
current filament I (T M case) or a magnetic current filament K (TE, case). The
solution to be investigated is the total field at P(p, ¢) from the line source which
radiates in the presence of a parallel cylinder with an impedance boundary surface
or with a material coating. Both the source and the field point are assumed to be
located outside cylinder. Since both the line source and the cylinder are assumed
to have infinite lengths and to be parallel to the z-axis, the scattering from the
cylinder is essentially a two-dimensional problem. The two-dimensional line-source

Green’s function G(z, ;;; ) satisfies the equation
24k2) Ggp) = -6(F- ¢ 2.1
Vitks) Gpp')=-8(5-¢") (2.1)

in the domain b < (p,p') < 00 ; 0 < (¢,4') < 27 where V? is two-dimensional

Laplacian operator. Thus Equation (2.1) can be rewritten as

e p ot 2t
pOp " 8p  p? 8¢? p
Without loss of generality, we can set ¢' = 0 and 0 < ¢ < 7 for convenience. Once

the solution G(ﬁ,;;;) for Equation (2.2) subject to the boundary conditions on

the cylinder surfaces and the Sommerfeld radiation condition as p — oo is found,




the field components at P(p, ) can be readily obtained. For excitation by a line

source of electric current I (T'M; case), the field components of E and H outside

the cylinder are given as (for e/! time variation)

E; = —juwp,IG, H: =0
E,=0, H, =§ %% (2.3)
Ey=0, Hy=-1%8

For the magnetic line source case (T'E; case), the field components are given as

H: = —jwe. KG, E, =0
H, =0, . E,==k 4 (2.4)
Hy =0, Es=K &

8
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Figure 2.1: The geometry of the problem




2.2 Impedance Cylinder

In this section, the eigenfunction solution for Equation (2.2) subject to the
boundary condition of the impedance cylinder will be obtained. On the sur-
face of the imnpeneirable impedance cylinder, the field G(p, ; } should satisfy the

impedance boundary condition given as

G .,
3, ~ k06 =0 (2.5)

where C represents either normalized surface impedance (T E, case) or normalized
admittance (T'M; case). C is assumed to be constant around the surface of the

cylinder.

-

C=Cg=

NN

for TM, : C-'=Ch=-§1 for TE; (2.6)
(]

where Z, is the intrinsic impedance of free space (i.e. Z, = 1/";‘-"f ) and Z, is the
constant impedance on the cylinder surface. The subscript s and k in C denote

TM, (soft) and TE; (hard) respectively.

2.2.1 TM, case

At the field point P(p, ¢), the total field consists of the two terms; the incident '

field G,(p, #) and the scatiered field G4(p, ¢).

G(5,¢) = G(p,8) = Go(p,8) + Gi(p, $) (2.7)

When the line source is an electric current filament I, the incident electric field
is parallel to the cylinder axis which is taken as the z-axis. From the free space
Green’s function for two-dimensional line source, the z-polarized incident electric

field Go(p, ¢) is given as

10




r
‘-----_--—--

Golor8) = 2 B (kolf - 511 (2.8)

Using the additional therem for H((,2) (kolp — p.; 1), Golp,¢) can be expanded in a
series form given by

Golp,#) = - 30 Hy" (kops)Tn(kopc) e (2.9)

n=—00 ) '

where p5 = p', pc =p for p<p,and ps=p, pc=p for p>p'. It
is pointed out that the scattered field G,(p,¢) from an infinite parallel cylinder
by z-polarized incident field Go(p, @) is also z-polarized. Considering the Equation
{2.2) and the radiation condition at infinity, we assume that the scattered field

from the cylinder can be expressed as

—-. w .
Golprd) =2 T Astn) B (kop<) BT (kops) e (2.10)

n=—oo

The total field at P(p, @) is the summation of the incident field and the scattered
field. Thus, G{p, ¢) is given as
-i +« g (2) ~
G(P’¢) = “Z‘ Z Hy (koP>){Jn(koP<) + As(n)Hn (koP<)]e*Jn¢ (2-11)
n=—oo
The unknown scattering coefficient A,(n) in Equation (2.11) can be easily deter-

mined from: the boundary condition given in Equation (2.5). Thus, 4,(n) is given

as

Inlkob) — jCsJn(kob)

Aa(") == T
H (kob) ~ 5C HE (kob)

(2.12)

The primes in Equation (2.12) represent derivatives with respect to the arguments.
For the unification of notation, all Bessel functions included are replaced by Han-

kel functions H,(ll)(z) and H,(,z) (z). From the well-known relationships of Bessel
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functions and Hankel functions, Equation (2.11) can be rewritten as

Go9) =2 T B (hops) [B(kopc) + Fu(m P (hopc)] €777 (23)

n=-—o00

where

0 (kob) — 5, HED (kob)
H (kob) - 5C, HE (kob)

Fy(n)= - (2.14)

A plane wave incident is a limiting case when the source is located at infinity (i.e.
p' — o0). The total field for plane wave incidence can be readily obtained by

replacing H ,(,2) (kop') by its large argument form. Thus, G(p, ¢) for the plane wave

incidence can be expressed as

Clos#)=22 % [Bhop) + FmED (hep)] @B (215)

n=-0c0

where U, is the incident field at reference point which is chosen at center of cylinder.

2.2.2 TE, case

When the line source is a magnetic current filament K, the source radiates a

z-polarized incident magnetic field Go(p,¢) which is also given as
— y 2 — -
Golp,9) = = B (koli = 7)) (216)

Using a similar procedure as for the TM; case, the total field at P(p, ¢) is obtained

as

6p9) =L 5 B (hops) [Jalkop<) + AnmED kop )] ¢ (217)

n=—00

12
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The scattering cocrfficient Aj(n) subject to the boundary condition in Equation
(2.5) is given as
_ Jr,t(kob) = JChJIn(kod)
(2) : (2)
Hp™" (kob) — O Hp™ (kob)

Ap(n) = (2.18)

If we replace Jy(z) and Np(z) with H,(,])(::) and Hs,z)(z), Equation (2.17) can be

rewritten as

Glpd) = X B kors) [H (kop<) + Fa(m)H (kop )| 774 (2.29)

n=—o0

where

1
HEY (kob) — jCRH (kob)

Fy(n) = - 22 (2.20)
H® (kob) = CHD (ko)
For the case of plane wave incidence, the total field G(p, ¢) is given as
U, & —in(d~X
G =3 3 [Ekop) + Fum)ED hop)] 6B (21
n=-—00
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2.3 Coated Cylinder

Following the saine procedure as for the impedance cylinder, the eigenfunc-
tion solution for the field scattered by the infinity conducting cylinder with dielec-
tric/ferrite coating for both T E; and T M, cases is obtained in this section. For the
coated cylinder, it should be noted that fields can penetrate into the air/coating
interface (p = b) on the given boundary condition that tangential components of
both the electric and magnetic fields should be continuous at the interface.

At the surface of the core conducting cylinder, fields should satisfy the soft or hard

boundary conditions according to the polarization of the incident fields.

G(a,$) =0 jfor soft boundary (TM. case) (2.22)
QG—S;;’—"-) =0 :for hard boundary (TE; case) (2.23)

=a

The above boundary conditions simply mean that on the surface of the conducting
core cylinder, the tangential component of the electric field vanishes for both the

TM, and the TE; cases.

2.3.1 TM. case

Since the incident field from the source is independent of the scatterer, the

expression for the incident field Go(p, ¢) remains unchanged.
Golp,#) == 3. Hu'(kop>)Jnlkopc)e™? (2.24)

n=-00

The scattered field G,(p, ¢) outside the cylinder (i.e. p > b) can be expressed as

14




_4 o0 .
Golp,9) = 5L X AmHS (kops ) B (kop)e™ ™ (2.25)

n=—oo

Thus the total field outside the cylinder is given as

. o

— 2 2 - .

Glord) =L 3 B (kops) |Inlkop<) + As(m)BL (kopc)] 7" (226)
N=—00

The field inside the coating material is not of interest in this research. However, in

order to find the unknown coefficient 4,(n), it is necessary to find the field inside

the coating material also. Inside the coating material (i.e. ¢ < p < b), G(p,¢)

should satisfy

19 8 1 82

e e b — 2 ' - 9m
papp6p+p2 a¢2 +k1 G(p’¢) 0 (2.27)

It is assumed that the source is located outside the cylinder (i.e. p' > b). Thus, the

total field G(p, §) inside the coating material (i.e. @ < p < b) can be expressed

as

6(p9)=F 3 HP(het') [Butm)nthre) + Dym ED yp)] 7 (2.28)

n=—0oo

The unknown coefficients A4(n), B,(n) and D,(n) can be determined from the

boundary conditions given as follows;

E:(p,¢) =10 at p

f
a

(2.29)

E:(p,¢) 18 continuous af p=2b (2.30)

15




Hy(p, ¢) ts continuous at p=2b (2.31)
Thus, the scattering coefficient 4,(n) is given as

J:;(kob) ~ JCo(n)JIn(kob)

A‘(n) - 7 (2.32)
HE (kob) = 5Co(n)HD (kob)
where C,(n) for the coated cylinder is defined as
_ 2o Jn(kia)N(k1d) = Nu(kya)Jh(kyb)
Coln) = =3 g T (kya) N (k1b) = Na(ksa)n(k1d) (2.33)

Zy and ky denote’the characteristic impedance and the wave number of the coating

material respectively (i.e. Z; = ‘/l;, ky = w/eTu7 ).

It is interesting to note that
lim C,(n) = 0o ' (2.34)
a—b

Equation (2.34) can be easily proved using the Wronskian of the Bessel functions.
Thus, when the thickness of the coating is very small in terms of the wavelength, the
behavior of the field is essentially the same as {or the TM, case of the conducting
cylinder.

By replacing Jn(z) and Np(z) with ,(,l)(x) and H,(,z)(z), the Equation (2.26)

can be rewritten as

. _4 ©0 . :
Co.d)=F T H(kops) (B kop<) + Fum) B (kopc)] €1 (2.35)

n=--00

where

O (kob) - 5Cm) D (kob)

F, == 7
() HE (kob) = 5Cu(n)HE (kob)

(2.36)

16




Cs(n) in Equation (2.33) can also be rewritten as

Crn) = -3 22 ) (a0 H hra) = B (ki) 3 (k1)
"2 ED g0 ED (k1) - B kb HD (a)

(2.37)

The total field at P(p > b, ¢) for an incident plane wave can also be obtained from
Equation (2.35).

Glort) =22 3 (B kop) + Fu(m) P kop)] B (2.38)

n=-—oc

2.3.2 TE, case

The boundary conditions of the coated cylinder for the TE, case are given as

follows;

E¢(p,¢) =0 at p=a (2.39)
H.(p,9) is continuous af p=0b (2.40)
Ey(p,9) 18  continuous al p=1b (2.41)

By using the same procedure as for the TM; case with the above boundary con-

ditions, total field G(p, §) is given as

Gl =L 3 HP(kps) [Jn(kopc) + A (mHE hop)] I 5)

n=-—00

(2.42)

where

17




In(kob) — jCp(n)Jn(kod)

.Ah(n) == (2)0 - (2) (2'43)
Hn (kob) b ]C'h(ﬂ)Hn (kob)
where Cj(n) for the coated cylinder is defined as
.2y Jy(kya}N, (k1b) — N} (kya)J.(k,;b)
Cp(n)=—j== . =2 L L L 2.44
W) = =3 3 kra) Nn(lgD) = Wekra)Ta(keh) (2.44)
It can be easily proved that
lim Cp(n) = 0. (2.45)
a—b

Thus, for very thin coatings, the behavior of the field is essentially the same as for
the TE; case of the conducting cylinder.

In terms of the Hankel functions only, the Equation (2.42), (2.43), and (2.44) are

rewritten as
_ s o .
Glo.t) =3 5 B kors) [H kop<) + Fum)B (kop)] 7™ (2.06)
n=—0o
where

HY (kob) = jCu(m)HED (kob)

Fp(n) = -
’ H (kob) — 5Ch(n) HD (ko)

(2.47)
and

(] 1 ]
2, HY (k) B (ko) - B (ki) BEY (kya)
] ]
Zo  HM(ky8)HY (kya) ~ B (ki) HEY (kya)

Ca(n) = —j (2.48)

The total field at P(p > b, ¢) for an incident plane wave is given as

6lo.$)=2 T [B ket + FumED kop)] 68 (249)

n=—00
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2.4 Examples and the discussion

Some examples of the eigenfunction solution! for plane wave incidence are
given in Figure 2.1 ~ 2.21. The geometry of the problem is shown in Figure 2.1.
Figure 2.2 ~ 2.9 illustrates how the normalized field pattern of the impedance
cylinder changes as the surface impedance increases from zero (i.e. TE; case) to
infinity (i.e. TM; case). In these examples, surface impedances are taken to be
purely imaginary (i.e. pure capacitive for TM; and pure inductive for TE,). The
cases of complex impedance will be given in later Chapters in the comparision with
the ray solution. Figure 2.10 ~ 2.15 and Figure 2.16 ~ 2.21 ilustrate the change
of the scattering pattern as tlie thickness of coating increases for TM; and TE,
respectively. In these examples, ¢,=4 and p,=1. The cases of complex ¢, and pu,
are given in later Chapters.

It can be observed that manifest effects due to the changing values of the impedance
or the thickness are shown for the field pattern in the shadow region. From these
examples, we can observe that the scattered field in the shadow region does not
simply increases or decreases as the surface impedance or the thickness of the
coating increases. However, it is not possible to give any physical intepretation
for the change of the scattering pattern from the eigenfunction solutions before we
introduce the ray concept which will be given in later Chapters. Thus, detailed

discussion of the scattering mechanisin is deferred to later Chapters.

!The FORTRAN subroutine for the Bessel functions provided by Prof. J.H. Richmond have been

essential for obtaining these results.
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Figure 2.4: Normalized bistatic scattering pattern of impedance cylinder
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Figure 2.5: Normalized bistatic scattering pattern of impedance cylinder
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Figure 2.6: Normalized bistatic scattering pattern of impedance cylinder
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Figure 2.7: Normalized bistatic scattering pattern of impedance cylinder
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Figure 2.8: Normalized bistatic scattering pattern of impedance cylinder
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Figure 2.9: Normalized bistatic scattering pattern of impedance cylinder
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Figure 2.12: Normalized bistatic scattering pattern of coated cylinder : TM: case
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Figure 2.13: Normalized bistatic scattering pattern of coated cylinder : TM, case
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Figure 2.15: Normalized bistatic scattering pattern of coated cylinder : TM; case

" 26




Mszo d=°)‘o

koP=30
kop =
¢ (o =4+j0 pr=140
- 30~ 20— - 10 odB

Figure 2.16: Normalized bistatic scattering pattern of coated cylinder : TE: case
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Figure 2.17: Normalized bistatic scattering pattern of coated cylinder : TE; case
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Figure 2.20: Normalized bistatic scattering pattern of coaied cylinder : TE, case
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CHAPTER III

GTD SOLUTION

Ray-optical solutions for the field scattered by the impedance and the coated
cylinder are obtained in this Chapter. For the perfectly conducting cylinder, Keller
[1] developed an asymptotic solution to this problem and interpreted it in the ray-
optical terms within the framework of his geometrical theory of diffraction (GTD).
Even though the boundary conditions to be considered are different, the same pro-
cedure as that for the derivation of GTD solution for the conducting cylinders can
be taken to deduce the GTD solutions for the‘impedance and the cuated cylin-
der. First, the field representation in the angular eigenfunction series as given in
Chapter II is transformed into the integral form. Then, the integral is evaluated
asymptotically via the stationary phase method or the residue theorem.

It is noted that the behavior of high-frequency field is characterized by various
geometric optical domains as illustrated in Figure 3.1. Separate analysis is given
for each geometric optical domain as the field representation has diflerent format
according to the region where the field point is located. Lit region(l) and shadow
region(111) are separated by the shadow boundaries (SB) according to the illumi-
nation from the source. Small angular ranges adjacent to the shadow boundaries
which are indicated as shaded region(Il) are the prenumbral or transition region.
The solution obtained in this Chapter is not valid in this region. The analysis for
the field in transition region will be given in Chapter V. In this analysis, we also

exciude the surface or caustic boundary layer region{IV) which is in the immediate
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vicinity of the cylinder surface.

As mentioned, Keller’s pure ray-optical solution fails within the transition region
adjacent to the shadow boundaries. The failure of Keller’s GTD solution has been
overcome by the development of a uniform version of GTD by Pathak [3]. Hence,
it may seem to be obsolete to develop the pure ray-optical solution for our problem
which will inevitably fail in the transition region. Nevertheless, it appears tkat the
ordinary GTD solution is a necessary step to be taken for the development of the
uniform GTD which will be discussed in Chapter V. This is because the ray format

to be used in the uniform GTD solution comes from the ordinary GTD solution.
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Figure 3.1: The geometric optical domains
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3.1 Integral Representation of the Field

As discussed in Appendix A, the field representation in the eigenfunction
series form given in Chapter Il can be transformed into an integral form. The

eigenfuntion series solution of interest has the form given by

G(p,¢)=u= 3  B,n(n)exp(~jné) (3.1)

n=—0o0

where B, p(n) depends on the polarization of the incident field and the subscripts
s and h corrrespond to the T'M,; and TE; cases respectively.

From Equations (2.13), (2.19), (2.35) and (2.46), B, p(n) is given as
Bup(n) = 3 H(kop>) [B (kop<) + Fup(n) B (kopc)]  (32)

From Equation (A.3) in Appendix A, the eigenfunction series can be transformed

into the integral representation.

S Bua(n) expl(=snd) = L f Byuw) TRy, g

n=—00 sinynw

where C; is the contour which encloses the lower half of complex v-plane with a

large semicircle. From Equation (3.2), B, p(v) is given by
=J 42 1 2
B ) = B kops) [H (kop<) + Fop () B (kopc)]  (3.)

and

1]
) (kob) ~ 5C, n(v)HM (kob)

[]
H (kob) = §C, p(v)HE (kob)

Fop(v) = - (3.5)
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For the impedance cylinder,

Z
C.(V) ?:'
and
V4
Ch(v)=Ch = Z-:

fOT TE;

For the coated cylinder, Cy(v) and Cy(v) are given as

.2
Cp(ll) = =7 Z:
and
.Z
Cr(v) = =it - 2

1t is noted that HY(z) = " HM(z) and H¥(z) =

O (1 0) B (kya) ~ HE (k10) B (ky0)

s"(k;b)ﬂﬁ’(kla) -

Y (o) B (k10) — B (k10) B (k1)

H (k) B (kya)

H“’(k,b)ﬂ‘” (kya) -

HD (k1 0) B (kya)

(3.6)

(3.7)

for TM;

(3.8)

for TE,

(3.9)

e~ 'H.(,z)(z) s there-

fore, it can be easily seen that B, is an even function of v (i.e. B,p(-v) =

Ba,h(”) )-

From the Equation (A.5) in Appendix A,

i.e.,

—~1 poo—je

u:——

.-w—,

w==i [T Burv) orvlbon)

(2)(kop>) [H.(; )(koP<) + F,, h(")H'(' )(k pP< )]

34

sinvm

(3.10)

cos (¢ — 1r)
sinvw




(3.11)
It is noted that

(2 iv(2ee
cosv(p — ) = jeivb 4 ;C j(2n+g) | —iv(In~¢)

sinvm

1 — e—J2vx (3.12)

Thus, the integral representation of the field can be decomposed into two terms as

u = u% 4y (3.13)

where

_ -3 '
W=7 / T B (kop>) [Hx(/l)(kop<) + F,'h(v)H,(,z)(kopd] gy (3.14)

—~00—J€

and

w = 2L [ 1P kops) [ (kopc) + Fu () B (ko)

00— J€

e—ju(21r+¢) + e-ju(21r-—¢) .
X 1 o-7%r dv (3.15)

It has been pointed out [13] that u® in Equation (3.14) contains all the geometric-
optical, transition and the dominant diffraction effects. In the following sections,
the integral in Equation (3.14) will be evaluated asymptotically via the stationary
phase method to yield the geometric-optical fields in the lit region. A residue
series solution for the integral gives the creeping-wave representation in the shadow
region. The lit and the shadow region separated by the shadow boundary (S.B.)
are indicated in Figure 3.1. The term u” represents multiply encircling creeping

waves, which will be discussed later in this Chapter.
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3.2 Field in the deep lit region - G.O. field

Lit region is in the angular range of 0 < |¢| < ¢, , where the field point
is in the line of sight from the source. In this region, the asymptotic evaluation
of u° given in Equation (3.14) leads to geomeric-optical fields: incident field u’
and reflected field u". It should be noted ihat this solution is valid in the deep lit
region excluding the transion region in the vicinity of the shadow boundary. For
simplicity of calculation, we assume that p < p'. For the case of p > p', the same
procedure can be taken to obtain the same result.

Equation (3.14) is decomposed into two terms as

u® = uf +uf (3.16)
where
wf= 23 [ B ko) B op)e= S (3.17)
8 J-oo—je
and
-1 [OO—j€ .
wg==L [T Fp)HD (kop ) H (kop)e ™0 du (3.18)
—00—J¢

3.2.1 Evaluation of u§

Equation (3.17) can be asymptotically evaluated via the stationary phase
method after H.(,z’ (kop') and H;(,l) (kop) are replaced by their asymptotic ap-
proximations. The problem with this method is that the Hankel functions have
different asymptotic approximations in the different regions along the path of the
integral where v changes from —oo to +0o. Therefore, strictly speaking, it is neces-
sary to devide the integral path into several sections acccr&ing to the valid regions

of the approximation, which makes the evaluation cumbersome. To circumvent
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this difficulty, an alternative method will be employed to obtain the same result.

First, we represent H,(,2)(kop') and H.(,])(kop) by their integral form.

H (kop') = % A exp(~jkp'sina + jva) da (3.19)

and

) (kop) = J, xe(=kosing + jv8) d (3.20)

The contour C and Cj are depicted in Figure 3.2. After replacing H,(,Z) (kop') and
H ,(,l) (kop) in Equation (3.17) by their integral forms and rearranging the integral,

we obtain
Uy = —%5 / / expt — 7koP sin ﬂ - ikop' sin a
1 8‘7I'2 Cz Cl ( )

X {/w-je. exp [ju(a+ B — ¢)] du} df da (3.21)

Assuming that o and 3 are real variables, it can be seen from the well-known

relationship of the inverse Laplace transformation that

co—je i . fetjoo
L. explivia+ 8- dv=—j [ expls(a+ 5 - 4) ds

[« « T

=2wé(a+ 5 — ¢) - (3.22)
Incorporating Equation (3.22) into Equation (3.21), we obtain

w=22 /C xpl=jkop' sine ~ jhopsin(g - a)] da (3.23)

37




Im
Ce
S b
e - Re
COMPLEX
PLANE

Figure 3.2: The contours C; and C»

38




In obtaining Equation (3.23), we assumed that ¢ — a lies on the contour Cj.

Thus,
-7 < ¢~a <0 (3.24)

Asymptotic evaluation of the integral in Equation (3.23) can be easily obtained

via the stationary phase method. Equation (3.23) can be rewritten as

o_=J -
=g /02 explikop P(a)) da (3.25)
where
&(a) = —sina — ;"—, sin(¢ — a) (3.26)

At the stationary point, ®'(a,) = 0, therefore, the stationary point a, is deter-

mined by the relationship

'(a,) = 6‘25:) = —cosa, + % cos(¢ — a,) = 0. (3.27)

az=ag

The stationary point should lie on the contour Cy in order for u$ to have nonzero

value, Therefore
0 <ay, < (3.28)

From Equations (3.24) and (3.28)

¢ <a;, <n (3.29)

It was assumed p' > p and 0 < ¢ < = Thus, it can be shown that in order

for a4 to satisfy the given condition in Equation (3.29)
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Figure 3.3: Physical meaning of the stationary point
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é < cos”} (ﬁ) (3.30)

Thus, ©§ contributes only when the above condition is satisfied.

Final result of the asymptotic evaluation of the integral yields

0. =3 ‘/g expljko(psin B, — p'sina,) + i§l
x

ud ~ (3.31)
4 VEkop'sina, — kopsin B,

The physical meaning of the stationary point is illustrated in Figure 3.3. From the

Figure 3.3, we observe that the distance from the source to field point is given as

I=|g - p]=p'sina, — psin(a, - ¢) . (3.32)

Therefore, u§ can be expressed as

uf = W% for 0< ¢ < cos™} (-57) (3.33)

From the above result, we conclude that u§ is the direct incident field from the
source to the field point for 0 < ¢ < cos™}(p/p'). In obtaining above result,
the integral representations for the Hankel functions are used instead of the Debye
approximations. Even though the same result can be obtained by using the Debye
approximations, this method is mathematically more rigorous.

Note that u{ is independent of the boundary conditions of the cylinder. Thus the

result obtained here can be applied to both the impedance and the coated cylinder.
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3.2.2 Evaluation of u$

In this section, u§ in Equation (3.18) is evaluated asymptotically via the sta-
tionary phase method. The alternative method used for the evaluation of u{ can
not be easily applied here because F, 5(v) in the integrand is a function of v.
Therefore, we replace the Hankel functions in the integrand by their asymptotic
approximations. It is noted that the Hankel functions in the integrand have dif-
ferent asymptotic approximations acccraing to the changing values of v along the
contour path. In order to take a mathematically rigorous procedure it is necessary
to divide the iniegral path into many sections because the integrand of Equation
(3.18) has Hankel functions with 3 diflerent arguments ( kop, kop', kob ) for the
impedance cylinder and the 5 different arguments ( kop, kop', kob, kia, kib)

for the coated cylinder. To simplify the procedure we first divide the integral into

two terms as

uy=h+1 (3.34)
where
=L [ R o B (op)e a0 (335)
and
= [ R D b B el 0 (330)

Evalustion of I

First, we assume that the asymptotic evaluation of the integral depends only
on the stationary phase point and therefore the contribution from the end point

at v = kob can be ignored. This assumption is valid when the stationary phase
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point v, is not close to kob. When the field point is in the deep lit region, it can be
shown that the stationary phase point is located far enough from ko,b. However,
as the field point approaches the shadow boundary, this assumption is no longer
valid. The case when the v, approaches kob will be discussed in Chapter V in the
treatment of the field in transition region.

Assuming that v is not close to kob in the given integral path of Equation (3.35)

where kob < Rel|v] < oo, it can be observed that
A (kob) ~ —HP (kob) (3.37)

Thus, from Equation (3.5),
Fyp(v) =1 (3.38)

Therefore, I} can be simplied as
—17 fpOO—je .
nx=L [T B kot B (Kop)e™ 4 dy (3.39)
' kob—je

The integrand in above Equation (3.39) includes two Hankel functions, H,(,z)(kop')
and H ,(,2) (kop). As remarked before, they have different asymptotic approximations -
along the path of the integral. Here, we make another assumption that both p’

and p are large enough that the stationary phase point v, is always located such

that;

<< 1 and
kop

————

kop!

<< 1 (3.40)

This is a reasonable assumption because the field in the surface boundary layer
region(IV) of Figure 3.1 is not of interest in this analysis. From the Debye approx-

imations of the Hankel functions for this range of v
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HLL’)(’COP')H‘(/z)(kOp) ~ 2] exp|—jkop sina ~ jkepsinf + ju{a + B))

(3.41)
wko \ﬂ)'p sinasin 8
where a = cos™}v/kop') and 8 = cos™(v/kop).
Therefore, I} can be approximated as
.y
I~ 1 expljkop ®(v)] dv (3.42)
dmko JCy \/p’psinasinﬁ
where ®(v) is defined as
&(v) = —sina — ;p;sinﬂ+ §(a+ﬁ-¢) (3.43)

and Cy denotes the integral path of v subject to Equation (3.40) and the condition
that Ju/kob| >> 1. At the stationary phase point, ®'(1,) = 0. Therefore, it can
be easily shown that

Qg + ﬂ. = ¢ (344}

where a, = cos™1(v,/kop') and B, = cos~}(v,/kop). Physical meaning of the

o, and f, is depicted in Figure 3.4. It is important to note that both a, and 8, -

should satisfy the condition;

0 £ Reja,] < and 0 < Relf,] <« (3.45)

It can be verified that in order for a, and G, to lie on the integral path Cy subject

to the above condition, the following condition on ¢ should be satisfied

cos™! (f,) < ¢ < by ‘ (3.46)
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Figure 3.4: Physical meaning of the stationary point
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where

$up = cos™} (i,) + cos™! (-‘-’-) ' (3.47)
P p

For the region where ¢ satisfies the above condition, the asymptotic evaluation of

the integral in Equation (3.42) can be obtained via the stationary phase method.
The result is given by

1y 52 ot ploglhor sinos + koptin )

(3.48)
\/kop' sina, + kopsin B, .

From the Figure 3.4, it can be seen that

l= Iﬁ - pl=p'sina, + psinf, (3.49)
Therefore,

e"j : e"jko‘

~ -1( P
I = m-m for cos (P’) ¢ < ¢ (3.50)

Thus, it is shown that I; gives the same result as the evaluation of v for

0< ¢ < cos™(p/p').

3.2.3 Incident field

We conclude from the resulis we obtained so far that the incident field v’
consists of two terms. For 0 < ¢ < cos~(p/p'), u’ comes from the asymptotic
evaluation of v} given in Equation (3.33) and for cos™1(p/p') < ¢ < ¢, u'
comes from the evaluation of I} in Equation (3.48). Consequently, we obtain the
incident field u; for the lit region (0 < ¢ < ¢,) as

e-j% e—jkol

T for 0 < ¢ < éu (3.51)

u' =

N
9
N3
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This result is valid for both the impedance and the coated cylinder. In fact, the
direct incident from the source is independant of the boundary conditions of the
scatterer. It should be emphasized again that these results are not valid when
the field point is close to either the shadow boundary (5.B.) or the surface of

the cylinder where the Debye approximations of the Hankel functions cannot be

applied.

3.2.4 Evaluation of I,

A similar procedure as used for the evaluation of I} can be applied to obtain
the asymptotic solution for I». First the Hankel functions in the integrand are
replaced by their appropriate asymptotic approximations and then the stationary
phase method is used to obtain the final result.

—j rkob-j

€ .
=22 [ F w0 HD (ko B (op)e=3¢du (3.52)
—00—j€

F, p(v) in Equation (3.5) can be rearranged as

F,,(v).—.( x(;l)(kob)). _ HSY (kob) /B (kob) - Gy a(v) 55
a, (2) ) (2)' i (2) iy .
Hy"'(kob) Hy™ (kob)/Hy™ (kob) — jC, 4(v)

We define S, 4(v) as

O (oo HEV (kob) = 5C, 4(v)
[]
H (kob)/ HP (kob) - 5C, u(v)

San(v) = - (3.54)

From the Debye approximations of the Hankel functions, it can be shown that for

—00 < v < kob,

N e TV
Hy (kob) = Thhens exp {j | kobsiny — v 2 (3.55)
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and

@p v ]2 [_- S ,..’E)]
H (k°b)"1/1rkobsin—1 exp ](kobsm-y -3

M (kob)

— = —j exp|2j(kobsiny — )]
Hy  (kob)

HY (k,b)
BV (kob)

X jsiny

H (kob)
HD (kob)

X —jsiny

where 5 = cos™(v/kob).

Thus, F, y(v) and S, p(v) can be simplified as

where

Fyn(v) ~ —j exp(2j(kobsiny — yv)} - §, n(v)

siny — C, p(v)
siny + C, p(v)

s:,h("’) =

Substituting Equation (3.60) into Equation (3.52), we obtain

Izz:_

kob—je
* 7 81 n (V) B (kop Y HP (kop) expl2j(obsiny - v) — jug] dv

~00-J¢

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

By using the Debye approximations for H,(,z)(kop') and Hl(,z)(kop), I can be ex-

pressed as
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—_— kob"j( S v R
L= f 1) explikop' ®(v)] dv

4rko J—co—je ppsinasinf

where
Q(u)=-—sina-——esinﬁ+?—§si117+-—y—(a+ﬂ-2 - @)
- o ' kop 7

The derivatives of () with respect to v, are given as

¥0)= 5 = Lt -a-p49)

and

@,,(u)zd%(u)= 1 2 1 1
-dv? kop' \kobsiny kop'sina  kopsinf

In order to obtain the derivatives, we used the relationship

v= kop' cosa = kopcos 8 = kobcosy

therefore
da -1 g -1 &y -l
dv  kop'sina dv ~ kopsinf dv ~ kobsiny

The stationary phase point v, is determined by the relationship given by

oy +Ls 27 =¢

where a; = cos’l(u,/kop'), Bs = cos"l(u,/kop) and v, = cos"l(u,/kob).

At the stationary point v,
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(3.66)

(3.67)

(3.68)
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2b

®(vs) = -;,- sinvy, — sina, — f; sin 3, (3.70)
and
) 1 2 1 1
- - - 11
®(ve) kop' (kob siny, kop'sina, kopsin ﬂ.) (3.71)

The physical meaning of the stationary phase point is depicted in Figure 3.5. It
should be noted that

0 < Re{a.] <= 0 < Re[ﬂl] <m, 0 < RC["’,] < (3°72)

From the Figure 3.5, it can be seen that

/

p'sina, > bzin1,

psinf, > bsinq, (3.73)
Therefore

8"(1) = p'sina, ~ bsiny, psinf, — bsin~,
: kop'bsina,siny,  kopbsin 8, siny,

> 0 (3.74)

The asymptotic evaluation of the integral using the stationary phase method leads

to the result

I~ 5,40n) |2 T expli(@hobsina, = kopsinfy = kop sin )

bsin~y,
X \ﬁkopl psin a4 5in By — kopbsin B, siny, — kop'dsin a, sin 7, (3.75)

After the rearrangement of the above equation, we obtain
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Figure 3.5: Physical meaning of the stationary point
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- . _ [ - .
I ~ = S, n(vs) 2 It exp|—j(kop' sin ay — kobsin v, )] x
4 " kop' sin a, — kobsiny,

bsinv,(p' sina, — bsin,)
2(p' sina, — bsinv,)(psin B, — bsinv,) + bsin7,(p' sina, + psin B, — 2bsin,)

x exp|—j(kopsin B, — kobsin 7,)] (3.76)

From the Figure 3.5, we observe that

Iy = p'sina, ~ bsinv, - (3.77)

and
lp = psin B, ~ bsin~n, (3.78)

Thus, I can be expressed as

eI eikoly l3bsiny, ;
I = . —Jkolz Vi
LN =/ Sah(s) \/ 2003 + (11 + lg)bsins © (3.79)
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3.2.5 Reflected Field

The result of the asymptotic evaluation of I5 as given in Equation (3.79) rep-
resents the field reflected on the surface of the cylinder. From the result obtained

in the previous section, it is clear that

e"jz' e-jkoll

e e = (@) (3.80)

where u!(Q) represents the incident field at the specular reflection point Q as
shown in Figure 3.6. From the comparision of this result with the ray format
of the perfectly conducting cylinder it is apparent that S, p(vs) represents the
reflection coefficient R, j.

Thus Equation (3.79) can be rewritten as

—iT e-ikoly 1,6 cos 0; :
r = € € . 1 cos 1 ‘-Jkolz
V=T i )\ S 7 fp)beos B, © (3.81)
We define Sp as
_ libcos §;
Sp = \/21112"# (I + 13)bcos b; (3.82)

It can be easily identified that Sy is the usual spreading factor associated with the

reflection field from a curved surface, which is given as

o
Sp = .= 3.83
e\ s (3.83)

where the reflected ray caustic distance p™ can be calculated from the relationship,

_] -

(3.84)

X

bcos §;

53




The spreading factor Sp accounts for the spreading of electromagnetic energy after

the reflection occurs.

Thus, the ray format for the reflected field can be expressed as
v =1} Q) R, - Sp e~ T*ol2 (3.85)

It is interesting to observe that the ray format for the reflected field associated
with the impedance or the coated cylinder remains the same as that associated

with the perfectly conducting cylinder.

Reflection coefficient R, ;

Since the reflected ray should satisfy Snell’s law of reflection, the incident
angle 6; must be equal to the reflection angle @, at the point Q in the Figure 3.6.
From the physical meaning of the stationary point 7,, it is noted that 4, = § — 6;

(i.e. sinq; = cos ;). Thus, the reflection coeflicient for the impedance cylinder is

cosb; —~C,

Rop = Seplve) = cosb; + C,

(3.86)

Substituting the Equations (3.6) and (3.7) into Equation (3.86), the reflection

coefficients for the impedance cylinder are given as

~ Zo - Z, [0} 0"
Rym - Pt for TM, (3.87)

and

- Zo — Z4/ cos 8;
Ry, ~ 7o+ 2,/ cond, for TE, (3.88)

Note that the reflection coeflicients of the impedance cylinder are the same as the

well-known reflection coefficients for a plane wave incidence on a infinite ground
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(b) Coated Cylinder

Figure 3.6: Reflection field
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plane with surface impedance Z,.

As given in the Appendix B, the reflection coefficients for the coated cylinder
can be obtained by the asymptotic approximation for S, n(v,) using the Debye

approximations of the Hankel functions. The results are summerized as follows

R = — Zo—jZycosb;[/cosb; tan{¥(a,b,k;)}
T Zo+3jZ;cosb;/ cos by tan{¥(a,b,k;)}

and

Zo — jZ1cos6y/cosb; tan{¥(a,bd,k;)}

Ry = Zo+ jZycosby/ cosb; tan{¥(a,b, k1)}

for TE (3.90)
where Z; represents the characteristic impedance of the coating material (i.e.

Z1 = \/gli ) and 8; and 6; are the incident and the transmission angle of the

wave at the air/coating interface. ¥(a,b,k;) is defined as

W(a, b, ky) = ky(bsin B — asin o) — kob(By — Ba) sin 6 (3.91)

where

, - ,
sin By = cos by = \Jl - (-—2- sin 0,-) (3.92)

and

. (Y kb o\
sinfy = \J.l - (-a- sxnﬂg) = \Jl - (E;l; sin 0,-) (3.93)

Comparing the reflection coefficients for the coated cylinder with those for the
impedance cylinder it can be observed that the equivalent impedance of the coated

cylinder associated with the reflected field is
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tan{¥(a,b,k;)}

cos 6y

Z9(¢) = i 2, for TM, (3.94)

and
239(®) = jZ1 cos 6y tan{(¥(a,b,k1)} for TE, (3.95)

This result shows that the equivalent impedance is not only dependent on the
polar.ization of the incident field but also on the incident angle at the reflection
point. Therefore, it is apparent that the constant surface impedance cylinder can
not be appropriately used for the equivalent model of the coated cylinder. However,
it will be shown later in this Chapter that the equivalent impedance in association
with the diffracted field is constant along the cylinder surface. For the thin coating,

it can be seen that 8, ~ f; and therefore ¥(a,b,%;) can be approximated as
¥(a,b,k;) =~ ky(b— a)sinfB; = kydcos (3.96)

Thus, for a thin coating, R, and R can be approximated as

Zo — jZycosb;/ cos b, tan(kidcosb)

= - T 97
R Zo+3Z, cos8;/ cos by tan(k;dcos 6;) for M (3.97)

and

_ Zo— 32, cosby/ cos §; tan(kydcosby)

Ry = Zo + jZycos 8y / cos 0; tan(k)dcosby) for TE (3.98)

and

6
259(¢) = jz, . endkrdcos ) for TM, (3.99)
cos b,
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Z,%($) = jZ) cos 8 tan(k;d cos 6;) for TE, (3.100)

It can be noticed from Equation (3.97), (3.98), (3.99) and (3.100) that the re-
flection coefficients and the equivalent surface imped=nces of the coated cylinder
coincide with those of the grounded planar dielectric/ferrite slab with plane-wave
incidence [7]. This result is consistent with the postulate of the GTD solution that

the reflection is a local phenomenon at high frequency.

1t is well-known that the reflection coefficients for the conducting surface are
fixed to + 1 regardless of the incident angle 6; at the reflection point Q. However
for the impedance cylinder, the reflection coefficients are dependent on the incident
angle §; and the surface impedance Z,. For the coated cylinder, the refection
coeflicients are dependent on the incident angle 6; as well as on ¢,, ur and thickness
d of the material coating. Figure 3.7 and 3.8 illustrate the change of R, j, of the
coated cylinder as ¢y, ur and d changes for the normal incidence (i.e. 6; = 0).
For the lossless material coating where both ¢ and ur have real values, it can be
easily seen that the phase of R, j changes as d changes but |R, | = 1 regardless
of coating thickness. Physically, the phase of R, ;, accounts for the lagging of the
reflected field. If there exists a loss factor in €- or ur of the coating material, |R, |
can be smaller than 1. Consequently, the magnitude and the phase of the refiected
field can be controlled by proper choice of the relevant parameters (i.e. ¢, gy, and

coating thickness d).
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3.3 Field in the deep shadow region

In this section a ray format for the field in the shadow region is obtained for
both the impedance and the coated cylinder. As discussed in the previous section,
the behavior of the geometric-optical field (i.e. incident field and reflected field)
for the impedance and the coated cylinder are almost the same as for the perfectly
conducting cylinder except for the difference in the reflection coefficients. Manifest
effects of the surface impedance and the coating of the dielectric/ferrite materials
can be observed in the diffracted field in the shadow region.

The diffracted field is entirely associated with the creeping wave on the curved
surface of the cylinder. The creeping wave which propagates azimuthally on the
cylinder surface carries the electromagnetic energy into the shadow region. A
detailed discussion of the characteristics of creeping wave will be given in the next

Chapter.

3.3.1 Residue series solution

The diffracted field can be obtained by a residue series solution for the integral
representation of the field given in Equation (3.14). As discussed in Appendix A,
-the residue series representation of the field is the result of a Watson tranformation
of the field given in eigenfunction series form. As illustrated in Figure 3.9, the
integral path of the Equation (3.14) is deformed such that the contour C, encloses
the lower half of complex v-plane with a large semicircle. It can be shown that the
contribution from the arc of the large semicircle vanishes as its radius approaches

infinity. Thus, one obtains

u’ = %ch H P (kops) [Hn(xl)(ko/k) + Fa,h(V)Hl(zz)(koP<)] e *%dv  (3.101)
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Figure 3.9: The contour of the integral
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The integral in Equation (3.101) is now evaluated using the residue theorem. Be-
fore we use the residue theorem, the poles of the integrand must be found. The
poles of the integrand come only from the poles of F, y(v). From the Equation

(3.5), the poles of F, () are obtained by finding the roots of
!
HG) (kob) = 1Cu n(va) HE) (kob) = 0 (3.102)

Equation (3.102) is referred to as transcendantal equation. A detailed discussion
of the roots of the transcendantal equation is given in Chapter IV. The residue

series solution subject to Equation (3.102) is

(1) : (1)
& Hyy (kob) — §C, p(vn)Hyy, (kob i
L0 = %Z B (kop Y HE (kop) <2)( ) = 7Csn( n)(V) o) —juns
=i 3-[ (kob) — §Cy n(v)HS (kob)]
v=vn
(3.103)

This equation can be further simplified by using the Wronskian of the Hankel

functions. From the relationship of the Wronskian,

W (B8 ko), B ot)] = HED kW) HED (k) — LY ot IR o) = 25
(3.104)
From Equations (3.102) and (3.104), it can be easily verified that
| »
HY (kob) — 5C, p(vn) Y (kob) = (’2) (3.105)
wkob HSD (kob)

Hence Equation (3.103) can be rewritten as

u’ =L 3 HVn)(koP )HL,,)(kop)
kob 521 H(ko8) 2 [11,‘,2) (kod) — 1C, p(v) HE )(kob)]

w”

e~ In® (3.106)

Vv=vn
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Due to the attenuation of the creeping wave, the residue series solution is fast
convergent in the deep shadow region. The symbol “oo;’ is used to emphasize
that only a few dominant modes are enough to obtain the accurate result. It is
found that, for most applications, the dominant ny;, mode in Equation (3.106) is
adequate for the calculation of the field in the deep shadow region. It should be
noted that the dominant ny; mode is not necessarily the first mode as for the
conducting cylinder. A detailed discussion on the dominance of the residue series
mode for the impedance and the coated cylinder will be given in Chapter 1V,

As the field point approaches the shadow boundary transition region, the residue
series solution becomes slowly convergent. This is because the arc length of the
creeping wave propagation is short in the transition region and therefore even the
modes with high attenuation can no longer be ignored.

The multiply encircling wave u” can also be obtained from the residue series

solution for the integral representation given in Equation (3.15). Thus,

ucw

J {:;  HZ (kop' ) HZ) (ko) “
kob 121 B (ko) & [H,‘?’ (kob) — jc,,,,(u)H.‘,”(kob)]

v=vn

e—ivn(27+9) | o—jvn(27-¢)

x (3.107) .

1 — e~ 72vn¥

3.3.2 Diffracted field

Physically, the residue series representation of u® as given in Equation (3.106)
can be interpreted as the diffracted field which explains the transmission of the
wave into the shadow region. However, the ray-picture interpretation can not be
obtained from the rigorous residue series solutions given in Equation (3.106). The

Keller type GTD ray format which gives the residue series solution a creeping-wave
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(b) Coated Cylinder

Figure 3.10: Field in the shadow region
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diffraction interpretation as illustrated in Figure 3.10 can be obtained by following

procedures, From the Debye approximation of the Hankel functions are

2 2 . . x
Hz(,,,)(kop') & ‘/m exp [-] (kop' sin ap — antp — Z)] (3.108)

and
B kop) %\ 2 exp [~ (ot sinfn— B = §)]  (3200)
where
an = cos™! ( k‘:';,) (3.110)
and
Bn = cos™! (ki:;) (3.111)

Here. we make assumptions that a, and B, can be approximated by

ceos=t [ 22 ) & cos—t [ 2
an = COS (kop') cos (p') (3.112)
and d
-1{ ¥n -1 b
Pn = cos (—-—) = cos (-) (3.113)
kop P

Based on the assumptions given in Equations (3.112) and (3.113)

\

kop' sinan = \/(kop')? - v} = ko\/p? — b2 = kosy (3.114)

and
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kopsin fBn = \/(kop)? — Vi = koy/p? — b2 = kosy (3.115)

As shown in Figure 3.10, s; and sy are the distance from the source to the tan-
gential point Q) and the distance from the tangential point Q; to the field point
respectively. Therefore,

2 . 4 (b r
ngi)(kopl) =~ 1rk9.91 exp {"'J [kosl — Vp COS 1 (;7) - '4—]} (3.116)

and

’ 2 » — b L d
Hx(z?(kop) ~ \/”kosz exp{—J [kosz ~ vq cos™! (;,—,) - -"-;-]} (3.117)

Substituting Equations (3.116) and (3.117) into Equation (3.106), u% can be ex-

pressed as
W B W e B
™ kob 081 032
“oo” e—jV"o
P ; (3.118)
n=1 HS) (kob) [H.(,2) (kob) — jC,’h(u)H,(,z)(kob)] N
—¥n
As shown in Figure 3.10, 6 is defined as
b
0=¢—cos”? (-7) — cos™! (é) (3.119)
P P

Rearrangement of Equation (3.118) leads to Keller's surface diffracted ray format

for 2-dimensional case,

e—.’ko 82

Vv Eo32

w % ui(Qr)- T {DyR(Q)) - 0 . DIh(Q,)} (3.120)
n=1
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Thus

. “o0” ~ kot
wtmu'(Q)- 30 {DRM(@1) - expl—(on + A} D3*(Q2)} e\/E:a":

(3.121)

where aj, and 3] represent the attenuation constant and the propagation constant

of the creeping wave respectively. It can be easily shown that

o = —Im [‘%‘] (3.122)
By = Re [-uf] (3.123)

,’,’h(Q) is referred to as the surface diffraction coefficients. For the circular cylin-
der, ,'.'h(Ql) is equal to ‘D:,"‘(Qz). From a comparision of Equation (3.118) and
Equation (3.120), the diffraction coefficient ‘D:,'h(Q) can be expressed as

ph@ = 2. 2 ki

™ kb A kot) & [ (ko) ~ 5V B (kob)]

V=g
(3.124)

Now it is clear, from the Equation (3.120), that the residue series solution can
be interpreted as a creeping-wave diffraction as illustrated in the Figure 3.10.
It should be noted that the ray path associated with the perfectly conducting
cylinder remains unchanged for both the impedance and the coated cylinder. As
shown in Figure 3.10, the incident rays which strike the cylinder at the tangential
points(Q; and Q) with grazing angle launch creeping waves which travel along

the arc of geodesic path on the cylinder surface following Fermat’s principle. As
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these creeping waves propagate, they decrease exponentially and continuously shed
diffracted rays.
However, in using the ray solution given in Equation (3.120), one has to be aware of
the approximations given by the Equation (3.112) and (3.113). For the conducting
cylinder, the dominant pole is determined such that v, =~ kob. Therefore, the above
assumption is always reasonable if the source or the field point is not very close
to cylinder surface, where GTD ray solution fails. However, for the impedance or
the coated cylinder, the dominant poles are not always close to kob. Therefore,
the approximation given in Equation (3.112) and (3.113) are valid only when both
p' and p are large compared with the radius of the cylinder (i.e. o' >> b and
p >>b). Unless both p' and p are large, a non-ray format as given in Equations
(3.106) should be used. This imposes an addtional restriction on the validity of
the GTD ray solution of the impedance and the coated cylinder.
For the perfectly conducting cylinder, the expression for 'D;’h(Q) can be further
simplified by using the approximation of the Hankel function in terms of the Miller
type Airy function. However, for the impedance and the coated cylinder where
the dominant v, is not necessarily close to kb, Airy functions can not properly
approximate the Hankel functions involved in the expression of D:,’h( Q).

Ray format for the multiply encircling wave u“ can also be obtaind by taking

the same procedure as for the u°. It is interesting to note that

e~ Ivn(2x+¢) o o—jvn(27—¢)
1 — e—J2vn¥

= fj e Iun(27pte) 4 -f e¥n(27P+9)  (3.125)

p=1 p=-1
Thus,
. oo “oo” . ~jkosy
uY >~ ot . D‘-h Q,)- e—JUn(2Rp+9) . I)J,h Q e
@) :‘;nzl{ (@) v 2’}_¢k‘;?2
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; ~ “v°°” prh jvn(27p+6) b e~ ikor2
+ t . ' e IR .2)"
u'(Q1) ﬁ:z—lv;:l{ n (Q1)-e€ n (QZ)} Vhot2

Thus uY consists of two terms. The first term represents multiple encirclements

(3.126)

in the counterclockwise sense, and the other term represents those in the opposite
direction. As illusirated in Figure 3.11-(a), u® in Equation (3.106) represents the
diffraction field whicl, travels the shortest arc length on the cylinder surface in a

counterclockwise direction (i.e. p = 0). Recall that ¢ is assumed to be positive

and less than .
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8.3.3 Equivalent impedance associated with the creeping wave of the
coated cylinder

In this section the equivalent impedance associated with the creeping wave of

the coated cylinder will be obtained.

It is noted C, and C}, for the impedance cylinder are given as
C, =22 for TM 3 Cp=2= for TE (3.127)

Equivalently, C,(vn) and Cj(vn) for the coated cylinder may be expressed as

Zo qu(l’n)
— T ; C = ——
Zs%(vn) for h{(vn) Z,

Cs(vn) = for TE (3.128)
where Z59(vy,) represents the equivalent modal surface impedance asmciﬁtcd with
the diffraction field of the coated cylinder. From Equations (3.128) with (3.8) and

(3.9) we obtain

H (ky0) B (kg0 - ‘”(hb)H.,,,’(k,a)

2% (vn) =32, - 1y 2 for TM,
HY (ky0) B (kya) = HEY (k1) B (Kya)
(3.129)
and
2tm) = gz, B G0 () = B b )
AV (ko) B (kya) — B (ky0) B (ky0)
(3.130)

As mentioned in the previous section, the equivalent impedance associated with the
reflected field of the coated cylinder is dependent on ¢. However, these equivalent
modal impedance: associated with the diffracted field as given by Equation (3.129)

and (3.130) are constant along the cylinder surface.
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3.4 Numerical results and discussion

3.4.1 Numerical results

In this section, the GTD solution derived in this Chapter is employed to
calculate the electromagnetic field scattered from the impedance and the coated
cylinder. The geometry of the problem is illustrated in Figure 1.1. The two-
dimensional line source is located at O(p',¢' = 0), and the receiver is located at
P(p,¢). Plane wave incidence is the case when p’ = 00. For the electric line source
excitation (T'M, case), the pattern is plotted for the total electric field intensity
E;, and for the magnetic line source excitation (TE; case), the pattern is shown
for the total magnetic field intensity H,. When the field point is in the shadow
region as shown in Figure 3.12-(2), the asymptotic solutions employ two ray paths,
one is OQ1 Q2P and the other is O—Q-’;ag_ﬁ For the field point P located in the lit
region as shown in Figure 3.12-(b), the ray path OQ{@2P is replaced by the path

OQRrP, where Qp is the specular reflection point defined by 6; = 6;.

Typical results for the field patterns due to a line source radiating in the
presence of a impedance cylinder are shown in Figure 3.13 ~ 3.16. For the cylinders
with lossless dielectric coatings, the numerical results are shown in Figure 3.17 ~
3.26. The field patterns due to a plane-wave incidence on the cylinder with lossy
dielectric coatings and the lossy composite coating are shown in Figure 3.27 ~
3.36. The results in each case are compared with eigenfunction series solutions.
The surface impedances of the impedance cylinders were chosen such that ¢ = +1

where q is defined as

{
g=—-jmC,, where m= (-’-c—;-é-) (3.131)
i.e.
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{(b) Lit region

Figure 3.12: Ray paths employed for the GTD solutjon
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g= -—jmg-‘2 for TM, (3.132)

o

Thus the surface impedances chosen in the examples are pure imaginary (Positive
g represents capcitive impedance for TM; and inductive impedance for TE; and

negative ¢ represents inductive impedance for TM; and capacitive impedance for

TE,.)

3.4.2 Discussion

The numerical results of GTD solution as illustrated in Figure 3.13 ~ 3.36
show excellent agreement with the eigenfunction results in the deep lit region and
in the deep shadow region. However, as expected, the GTD solution fails within
the shadow boundary (SB) transition region. Neither Geometrical Optics solution
for the lit region nor the residue series solution for the. shadow region are accurate
in the vicinity of the shadow boundary. These two solutions have a discontinuity at
the shadow boundary. The failure of the ordinary GTD solution in the transition
region can be explained as follows. In the formulation of the G.O. field (i.e., the
incident field u’ and the reflected field u"), an assumption is made that the Bessel
functions in the integrand can be approximated by their Debye approximations.
It is well known that the Debye approximation of H,(,l’z) (z) is appropriate on the

condition that

v—z| > b} (3.134)




As the field point approaches the shadow boundary, the stationary phase point v,
on which the evaluation of the integral via the stationary phase method is based
is close enough to the argument z that the condition in Equation (3.134) is not
satisfied. In fact, in the transition region the Bessel functions are appropriately
approximated by their Watson’s approximation formula where the Bessel functions
are expressed in terms of the Airy functions. Another cause for the failure of the
ordinary GTD solution in the transition region comes from the fact that the con-
tribution from the end point at v = kyb is not included in the evaluation of the
integral via the stationary phase method. In the transition region the stationary
phase point is located near the end point and, therefore, the contribution from
the end point can no longer be ignored. The residue series solution which is fast
convergent in the deep shadow region becomes slowly convergent as the field point
approaches the shadow boundary. This can be explained by the attenuation of the
creeping wave mode. In the deep shadow region, the creeping waves attenuate as
they travel a large distance in terms of the wave length along the surface of the
cylinder. Therefore only a few creeping wave modes with low attenuation constants
contribute to the field in the deep shadow region. However in the transition region,
the arc distance of attenuation of the creeping wave on the cylinder suface is so
small that even the creeping wave modes with high attenuation constant cannot
be ignored. Slow convergence of the creeping wave in the transition region makes
it difficult, if not impossible, to obtain the result with acceptable accuracy.

The failure of the ordinary GTD solution for the field in the transition region ne-
cessitates the development of Uniform Geometrical Theory of Diffraction (UTD)
which will be discussed in the Chapter V.
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Figure 3.13: Normalized bistatic scattering pattern of impedance cylinder
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Figure 3.16: Normalized bistatic scattering pattern of impedance cylinder
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Figure 3.18: Normalized bistatic scattering pattern of coated cylinder : TE. case
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Figure 3.19: Normalized bistatic scattering pattern of coated cylinder : TAf. case
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Figure 3.27: Normalized bistatic scattering pattern of coated cylinder : TM. case
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Figure 3.28: Normalized bistatic scattering pattern of coated cylinder : TE; case

84




aseermres 3T D

= = == EIGENFUNCTION

b-—"sAo, d=0-lxo
p=5%, p'=o
&=5-34, pp=1-30

Figure 3.29: Normalized bistatic scattering pattern of coated cylinder : TM; case
-~ = — = EIGENFUNCTION

7
b=3/\o, d=01,\°
p=5l, o=
-30 -20 -10 OdB
ﬂ

4

Figure 3.30: Normalized bistatic scattering pattern of coated cylinder : TE. case
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Figure 3.32: Normalized bistatic scattering pattern of coated cylinder : TE: case
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Figure 3.34: Normalized bistatic scattering pattern of coated cylinder : TE. case
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CHAPTER IV

CHARACTERISTICS OF THE CREEPING WAVES

In the previous Chapter, the ray format for the diffracted field in the deep
shadow region was obtained. It is well known that the geodesic ray path of the
diffracted field includes part of the arc along the cylinder surface. The field which
propagates along the arc of cylinder surface is commonly called the creeping wave.
It is the purpose of this Chapter to further investigate the behavior of the creeping
wave on the cylinder surface. As mentioned, the effect of the surface impedance
or the coating of dielectric/ferrite material is more obviously illustrated in the
diffracted field than in the geometrical optics field (incident and reflected field).
This can be explained by the fact that the diffracted field is launched by the creep-
ing wave which propagates on the cylinder surface under direct influence of the
surface impedance or the coating material. Thus it is important to investigate
and understand the fundamental characteristics of the creeping wave before we
attempt to control the diffraction field from an object with the surface impedance
or the dielectric/ferrite coating.

For the perfectly conducting case, the behaviors of the creeping wave on the curved
surface has been extensively studied, and they are well understood now.

For the impedance cylinder, this problem has been also studied by Wait [17],
Streifer [18] and Logan[20]. They obtained propagation constants for the creeping
wave based on the Watson’s approximation where the Hankel functions are ex-

pressed in terms of the Fock-type Airy functions. In this Chapter, their results are
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reproduced for the comparision with our results. Recently, Wang [4] has obtained
more accurate numerical data for the propagation constant of the creeping wave,
the Regge poles, and the natural frequencies of an impedance cylinder by using
both the Debye and the Watson’s approximations of the Hankel functions. The
creeping wave interpretation for the resonance and the correlation between the
resonance, the Regge poles, and the natural frequencies of the impedance cylinder
has been also discussed. The propagation constants for the first creeping wave
mode on the cylinder with lossless coating has been obtained by Elliott[19].

The most recent work on this problem has been made by Paknys and Wang (7,8].
They made an important contribution by giving some accuarate numerical results
for this problem. In the following sections of this Chapter, some part of their work
is further expanded by using basicall}; the same numerical approximations for the
calculation of Hankel functions involved in the formal solution. Some aspects per-
taining io the creeping wave which were not treated in their work are also discussed

in this Chapter.

4.1 Propagation and Attenuation Constants

In Chapter 111, it was shown that the ray format for the diffracted field is

given as
u? % u(Q1) - DYMQ1) - 7770 . DR (Qq)

= u¥(Q) - DIMQ1) - e~ (en+iBu) . Dik(@y) (4.1)

From the above Equation (4.1), it can be easily seen that

Un

a',, =—-Im [—b—] ; ﬁ:, = Re [—-—] (4.2)




- Figure 4.1: Creeping wave
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ap, and B, denote the attenuation constant and the propagation constant of the
creeping wave mode respectively. The propagation constant determines the phase
velocity of the creeping wave and the attenuation constant represents the loss of
the electromagnetic energy due to shedding of the diffraction field and the loss due
to the surface impedance or the lossy coating material. The relative phase velocity

of the creeping wave vp/c is given by

22 ka kob
P

=5 = T (4.3)

where ¢ denotes the velocity of the light.

The propagation constant and the attenuation constant are determined from the
roots of the transcendantal equation which characterizes the impedance or the

coated cylinder as given by

[]
H (kob) - §Con()HP (kb)) =0 (4.4)

V=vn

The complex root of the transcendental equation denoted as vy, is sometimes called
as Regge pole. It is well known that there exists an infinite number of roots for

the Equation (4.4). The subscript n denotes the mode number of the root.

4.1.1 Impedance cylinder

For the impedance cylinder, C, j(vn) in the Equation (4.4) is given by

Cg(l/) = C. = ‘g',o' fm" TA!; : (4-5)
f
and
Z ' .
Ch(v)=Cy = TZi . for TE, (4.6)
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Recent work by Paknys and Wang [7,8] shows a trajectory of the Regge poles for
purely imaginary impedances. In their work, the Hankel functions are evaluated
exactly as well as asymptotically by using both the Debye approximations and
the Watson’s approximation according to the ranges of validity. The accuracy
of their results is fully confirmed by the excellent agreement between the field
pattern of the eigenfunction series solution and the field pattern obtained by using
their propagation constant. Following the same approximations for the Hankel
functions, the trajectories of the Regge poles for various complex impedances are
obtained as shown in Figure 4.2 for k,b=20. Newton-Raphson’s method has been
used for the numerical search for the roots of the transcendental equation.
It can be easily seen that for C, =0, the roots of transcendantal equation are
determined from the well known zeros of Hl(,z)'(kob) which are commonly called
hard poles of the conducting cylinder. These hard poles are given as

vn = Nn = kob + ('k—;é)]/a Bn e % (4.7)
where 3,=1.0188, 3.2482, 4.8201, .....
For the small value of |C, 4|, the hard pole of the conducting cylinder can be
used as initial guessing of the root in the numerical search via Newton-Raphson’s
method.
For C, 4 = o0, the roots of transcendantal equation are determined from the zeros
of H,(,z) (kob) which are the soft poles of the conducting cylinder. They are given
by

kob\ /3 .
vp = &n = kob + (-—2—) one 73 (4.8)

where a,=2.3381, 4.0879, 5.5205, .....

Figure 4.2 illustrates trajectories of vy as the magnitude of C,  increases where
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Figure 4.2: The roots of the trascendental equation for the impedance cylinder
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the phase of the C, ; is fixed. The trajectories of the vy can be obtained by start-
ing from the hard poles 7, and slowly increasing the magnitude of Cih-

When the phase of C, ; is between —270° ~ —90°, the impedance has a negative
real value and therefore, such a C,  is n.onphysica.l. Our interests are the cases
where the phase is between —90° ~ 90°.

From Figure 4.2, we can observe two different type of behavior of the equiphase
trajectories for the first mode roots. All trajectoris of roots of the first mode start
from the first hard pole which is denoted as 77;. For the case where the phase of
C, p, is between 70° ~ 90° in Figure 4.2, the real part of first mode root v; keeps
inéreaing as the magnitude of C, , increases. This means that the phase velocity
of the creeping wave becomes slower as the magnitude of C, j, increases. It can be
also noted that vy does not approach the first soft pole £;. We define such a root
as Elliott-type root.

For the case where the phase of C, ; lies between —90° ~ 65° in Figure 4.2, the
roots approaches the soft pole denoted as §; as the magnitude of the C, ; in-
creases. We define such a root as Watson-type root. The boundary of the two
different types is somewhere between 65° and 70°.

For the second creeping wave mode, all the roots start from the second hard pole
n2. As the magnitude of C, j increases, the equiphase trajectories exhibit three
different types of behavior. When the phase of C, ;, equals 90° ~ 70°, the root
approaches the first soft pole £;. When the phase equals 65°, the real part of 1
keep increasing as the maginitude of C, j increases. For the phase of C, j, between
60° ~ —90°, the roots approach the second soft pole £3. Thus, except at 65° where
the equiphase trajectory exhibits Elliott-type roots, all other equiphase trjectories

of the second mode roots belong to the Watson-type.

Wait [17], Streifer [18] and Logan [20] also examined the roots of the tran-
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scendantal equation for the impedance cylinder. Their results are based on the
assumption that the Hankel functions can be properly approximated in terms of

the Fock-type Airy functions.

.

B ko) = 7Lz o) (4.9)
where
o (.".;_”.)i (4.10)
and
wyg = —\}—; - et /3 gy (4.11)

The contour I'y runs from oo - e~ 72%/3 to on — je, and I'; is the complex conjugate
of I';. Based upon this approximation, the roots of transcendental equation are

determined from the roots of the equation given as

wa(r) - qwz(f)],___,ﬂ =0 (4.12)
where
g=—jmC,a (4.13)
The root vy, is given by
vn = kob + mmy (4.14)

Trajectories of the roots obtained by using this approximation is shown in Figure

4.3 for comparision with our results obtained by using both the Debye and the
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g=—jmC, | va from Figure 4.2 | vn from Figure 4.3

¢=1-j0 21.919 - j0.38098 | 22.121 - §0.32760
g=1.1-j0 |22.246-0.28736 | 22.496 - j0.23492
¢=12-j0 | 22.598 - j0.20862 | 22.905 - j0.15897

» g=13-j0 |22.975-j0.14478 | 23.355 - j0.10006

g=1.4-j0 |23.380-j0.09529 | 23.849 - j0.05769

¢=15-30 23.812 - j0.05899 | 24.390 - j0.02987

Table 4.1: Comparion of roots

Watson’s approximation. Sampled data of vy for g = 1~ 50 ~ ¢ = 1.5 - ;0
obtained by above metod are compared with our results in Table 4.1. It can be
observed from the Table 4.1 that there are significant discrepancies between these
two results. As shown in Figure 4.4, the accuracy of these propagation constants
are also tested by the comparision of the field pattern obtained by data in Table 1
with that of the eigenfunction solutionforg=1-70,¢9=1.2-j0and ¢ = 1.3~ ;0.
It can be observed from the comparision in Figure 4.4 ~ 4.9 that the approximation
of the Hankel functions as given in Equation (4.9) is not appropriate when g¢ is
larger than 1. This is due to the fact that for |vn — kob| > (vn)!/3, the Debye
approximation of the Hankel function should be used instead of the approximation

given by Equation (4.9).
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4.1.2 Coated cylinder

For the coated cylinder, C, x(v) in Equation (4.4) is given as

] 1
Zo HY (ki 0)H (kya) — B (kyb)H (Kra)

Ca(v) = —522 . for TM
2y B (ko) B (kya) - B (18) B (R1a) ’
(4.15)
and
2y B () B (k10) — B (ky0) HE (1a)
Clv) = =17, W 2y ) ay for TE.
°  Hy'(k1d)Hy" (kya) — H)" (kyb)Hy  (k1a)
(4.16)

The propagation constants of the creeping wave mode for the cylinder with lossless
dielectric coating was first obtained by Elliott [19). Recent work by Paknys and
Wang (7,8] also shows the trajectories of vy, for the changing values of the thickness
of the lossless dielectric coating and the accuraéy of their results is also proved by
comparision with the eigenfunction results. By using the same approximations for
the Hankel functions as eniployed by Paknys and Wang, the trajectories of vy for
the general complex ¢, and complex u, are obtained and shown in Figures 4.10 ~

4.13.

From the Wronskian of the Hankel function, it can be easily proved that

lin},C,(u) = 00 for TM, (4.17)
a—
and
lin},Ch(u) =0 for TE, (4.18)
Q-

This means that the propagation constant for the coating with zero thickness is

the same as for the perfectly conducting cylinder and therfore, the well known
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soft and hard poles of conducting cylinder can be used as the initial guess of
roots for the thin coating in the numerical search of v, via Newton-Raphson’s
method. From numerical results given in Figure 4.10 ~ 4.13, we can also observe
two different types of behavior in the trajectories as the thickness of the coating
increases. When the real part of vy, increases (i.e. the phase velocity decreases) as
the coating thickness increases, we refer to this trajectory as Elliott-type. It can be
noted that the Elliott-type trajectory is obtained only when the coating material
has a low loss tangent. For the material coating with a high loss tangent, the
trajectory of v, represents the Watson-type. It can be observed that the Watson-
type vn approaches a limiting point for each creeping wave mode as the thickness
of coating increases. If the coating material has a high loss tangent, the field inside
the coating material decreases exponentially as the field point approaches the inner
conducting cylinder. Thus the field inside the coating material is confined to near
the surface of the cylinder. For this case, further increase of the coating thickness
does not affect the propagation and the attenuation constant of the creeping wave
mode. Figure 4.14 shows the relative phase velocity and the attenuation of the
first creeping wave mode versus coating thickness. . Curves are shown for four
different sizes of the coated cylinder (k,6=20, 40,100, co) with coating material of
er = 5.1513 — j4.253 and pr = 1. The attenuation shown in Figure 4.14 represents
the attuation per meter at a frequency of 10 GH=. The creeping wave on the
cylinder with infinite radius (i.e. kob = o0) is, in fact, the surface wave on the

planar ground slab! with the same coating material.

1'The numerical data for the surface wave were obtained by Prof. Richmond of the Ohio State

University.
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4.2 Dominance of Creeping Wave Modes

It is known that the coated cylinder supports an infinite number of creeping
wave modes. In this section, the contribution of the different creeping wave modes
to the diffraction field is compared. The residue series solution for the diffraction
field, which is obtained from the Watson’s transformation of slowly convergent
angular eigenfunction series solution, is fast convergent in the deep shadow region.
Thus in the actual calculation of the diffracted field, one or two dominant modes
are enough to obtain a numerically accurate result. It is important therefore to
determine which mode is dominant over other modes. One should not conclude
that a certain mode is dominant over other modes simply because that it has a
smaller attenuation constant. This is because the magnitude of the diffracted field
is dependent not only on the attenuation constant but also on the diffraction co-
efficient given in Equation (3.124). For the perfectly conducting cylinder, the first
creeping wave mode is always dominant over all other modes and therefore only
the first mode is adequate in practice. This is partly because the first mode has a
lower attenuation constant than other higher modes. However, this is not always
true for the impedance or the coated cylinder. For the coated cylinder, the domi-
nance of the creeping wave mode changes as the thickness of the coating changes.
Thus, for some thickness of coating, the second or even higher mode has a smaller
attenuation constant and a larger diffraction coeflicient than the first mode and
therefore is dominant over the first mode. This fact is well demonstrated by fol-
lowing example.

Figure 4.15 shows the nomalized backscattering width of the coated cylinder. The
radius of the inner conducting cylinder is 35/27 A, (i.e., kob=35). A lossless dielec-
tric material with ¢,=2.56 and p,=1 is coated on the conducting cylinder. The

incident plane wave has a magnetic field parallel to the cylinder axis (i.e. TE;
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case). It is known that the distinctive ripples in the backscattered field is due to
the creeping wave resonance [4]. Furthermore, the resonances in Figure 4.15 can
be traced to the contribution of two creeping wave modes.

For a very thin coating, the diffraction field is small due to high attenuation and
therefore normalized backscattering width is mainly determined by the reflection
field. As the coating material is lossless, normalized backscattering width is zero
dB for very thin coating. The resonance comes from the first creeping wave mode
whose trajectory of propagation constant (i.e. v1) as a function of coating thick-
ness is shown in Figure 4.17. The resonance {from the first creeping wave mode
becomes negligible after the thickness of the coating exceeds 0.2 A,. For coating
thicknesses of 0.2 A9 ~ 0.45 A,, creeping wave is very weak compared with the
reflected field and thus has a negligible contribution to the total backscattering
field. As the coating thicknesss increases further, the resonance originated from
the second creeping wave begins to appear in the backscattering width between
d = 0.45), and d = 0.7),. The trajectory of the propagation constants for the
second creeping wave mode (i.e. v7) is also plotted in Figure 4.17. Thus, the sec-
ond creeping wave mode plays an important role in the total backscattering field
for coating thickness of 0.45 A9 ~ 0.7 )\, and disappears for further increase of
the coating thickness. It is also expected that if we further increase the coating
thickness, the third or even higher modes can be dominant. This phenomena can
be explaned as follows.

The magnitude of the diffracted field depends on two factors; the diffraction coef-
ficient and the attenuation constant of the creeping waves. It turns out that, for
the range from d = 0.2), to d = 0.45),, even the attenuation is small (see Figure
4.17), the diffraction coefficient for the first creeping wave mode as shown in Figure
4.16 is insignificant to contribute to the backscattered field. In the same range,

the contribution to the backscatered field due to the second creeping wave mode is
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also minimal due to the attenuation. However, when the thickness of the coating is
increased beyond 0.45),, the atisnuation rate for the second creeping wave mode
drops significantly such that its contribution dominates the backscattered field. It
is of interest to point out that the thickness of the dielectric coating for the coated
cylinder at which the resonances begin to occur corresponds approximately to the
cutoff frequencies of the surface waves supported by the planar grounded slab [7].
Similar creeping wave resonances occur in the backscattering width for the TM,
case as shown in the Figure 4.18. The corresponding trajectories of the propaga-
tion constants are shown in the Figure 4.20 and the diffraction coefficients for the
T M, modes are shown in Figure 4.19. The explanation for the TE, resonances
also applies to the TAL. case. However, it is found that the second resonance oc-
curing between d = 0.6\, and d = 0.75), as shown in Figure 4.18 comes from a
creeping wave with a different origin. Refering to Figure 4.20, it is seen that as the
thickness of the coating is decreased, the trajectory of this unusual mode does not
lead to the usual second creeping wave mode for the perfectly conducting cylinder
(i.e. &3). It appears that there exist an additional set of creeping-wave modes
for cylinders with dielectric coating. These ‘new’ creeping-wave modes yield the

dominant contribution to the diffracted field when the coating becomes thick.
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4.3 Creeping waves on a large cylinder

In this section, we investigate the behavior of creeping waves on the coated
surface with electrically large radius of curvature. The investigation in this section
is prompted by an apparent discrepancy between the attenuation constants for the
creeping waves on a coated curved surface and those for the surface wave on a pla-
nar grounded slab. Referring to Figure 4.14, as the circumference of the circular
cylinder is increased from 20 to 100, the attenuation constants for the creeping
waves do not approach the planar-slab limit. This contradicts past experience for
the perfectly conducting cylinder with a lossless coating. The radius of the circu-
lar cylinder is increased to a even larger value in order to check the limiting case.
The attenuation constants were calculated for several cylinders with large radius,
and interesting results were obtained. Figure 4.21 presents the the roots of the
transcendental equation of the circular cylinder (4 = 50),, i.e. kob = 1007) with
a high loss material coating (e, = 5.1513 — 54.253, yr = 1 — j0). In Figure 4.21,
the trajectories vy, for the first five of the infinite creeping wave modes are shown
as a function of the thickness of coating from zero to a final value of 0.1 X,. It
is observed from Figure 4.21, that the imaginary part of vn of the first creeping
wave mode becomes larger than those of mode 2, 3, and 4 as the thickness of the
coating is increased. The corresponding attenuation constants are shown in Fig-
ure 4.22. It can be seen that the attenuation constant for the first creeping wave
mode behaves like that of the surface wave associated with the planar grounded
slab as shown in Figure 4.14. The fields associated with the first mode are rapidly
attenuated to a negligible value. This phenomena does not occur for the smaller
cylinder (kob = 100 i.e. b = 100/2r ), in Figure 4.14). The diffraction coefficient
of each mode is also plotted in Figure 4.23. The dominance of the mode can be

determined by comparing both the attenuation and the diffraction coefficient of
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each mode.

To further demonstrate the limiting case, numerical results obtained for a cylinder
with b=100 A, are shown in Figure 4.24 and 4.25. It is seen that the attenua-
tion constants of the first creeping wave mode for both cylinders (b=50 A, and
b=100 A,) converge to each other and both approach the planar limit. Finallly,
the diffraction coefficients for the creeping wave modes of the coated curved sur-
face with a radius of 100 ), are shown in Figure 4.26. Thus, in this section we
demonstrated the fact that the first creeping wave mode behaves the same way as

the surface wave associated with the planar grounded slab.
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CHAPTER V

FIELD IN THE TRANSITION REGION

As seen from the numeriacl results of examples given in Chapter III, the GTD
solution fails within the shadow boundary (S.B.) transition region. The various
causes for this failure are also explained in Chapter III. In this Chapter, we at-
tempt to correct the failure of the ordinary GTD in the transition regions.

For a perfectly conducting cylinder, the uniform GTD solution which is often ab-
breviated as UTD has already been developed and successfully applied to many
engineering problems. UTD solution for the curved surface was first introduced by
Pathak [3] for the canonical problem of plane wave scattering by a smooth perfectly
conducting circular cylinder. As its name implies, uniform GTD is “uniform” in
the sense that it remains valid within the transition regions and it automatically
reduces to the ordinary GTD exterior to the transition regions where the ordinary
GTD becomes valid and accurate. Both GTD and UTD employ the same ray
pathes and thus both solutions have the same ray formats.

For the impedance cylinder, UTD solution has already been developed by a heuris-
tic extension of the UTD solution for the conducting cylinder [5]. For the cylinder
with dielectric/ferrite coating, the solution which gives a uniform result in the
transition region has not yet been developed. However, the fact that both the
impedance and the coated cylinder employ the same ray format outside the tran-
sition region as for the conducting cylinder suggests the possibility that the same

uniform GTD solution developed for the conducting cylinder might also be used
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for the coated cylinder within the transition region. Based on this conjecture, we
heuristically generalize the UTD solution for the perfectly conducting cylinder to
both the impedance and the coated cylinder with necessary modifications in the
transition function due to the differences in the boundary conditions. The diffici-
culty in finding the uniform solution for the impedance and the coated cylinder is
that the numerical data for the transition function Ps,h’ which, is well tabulated
for the conducting cylinder is not available. Instead of direct numerical evaluation
of the transition function, an exact eigenfunction solution together with the GTD
solution is used to obtain the necessary numerical data for f’,,h. The validity and

limitation of the heuristic method has also been tested by some examples.
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5.1 Uniform GTD solution for the impedance and the coated cylinder

In this section we generalize the uniformy GTD solution for the conducting
cylinder to the impedance and the coated cylinder based on the conjecture that
the ray format given for UTD solution of the conducting cylinder can be retained to
both the impedance and the coated cylinder. The lengthy asymptotic analysis and

_ the ray format of UTD solution for the conducting cylinder are given by Pathak
(3].

5.1.1 Lit region

From the result given for the conducting cylinder, the ray format for the
impedance and the coated cylinder in the lit region can be obtained by replacing
P(¢') with P(¢',q). Thus when the field point Py is in the lit region, u® is given

as

. . . r .
wO(Pp) ~ w'(PL) + v'(QR) Ryp ,;ri A o~ kolz (5.1)

where the reflected ray caustic distance p" can be calculated from the relationship

1 1 2
-;; N + bcos 6; (5.2)

The subscript s and h denotes T M (soft) and TE, (hard) case respectively. In
Equation (5.1), the surface reflection coefficient R, j, in the ordinary GTD solution

is now replaced by the generalized reflection coefficient R, ;, defined as

___ —6’3 c—jﬂ/4

Rop = =\ exp (— '1"5') {5-5-,—\/-_; [1- Fxhy) + ﬁ,',,(c',q)} (5.3)
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Figure 5.1: Field in the lit part of transition region

kob)]/3

&= —2mcos; ;m= ( 5

and

Iy
xl= 2k, i—;l;% cos? 6,

(5.4)

(5.5)

The relevant parameters 6;, [1, [5 and the specular reflection point Q g are shown

in Figure 5.1.

The transition function F(z) which involves a Fresnel integral is defined as
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F(z) = 2j /% &7 /; eI dr (5.6)

The transition function F(z) plays a key role in enforcing the continuity and
boundedness of the total field at the shadow boundary.
The transition function P,,h(f ,q), which is generally referred as the Pekeris caret
function is defined as

e=I*/4 roo—je V(1) — gV (1)

p = — ~3ér T
P, p(é,9) = 7 i W) “aWa(r) © R 4 (5.7)

where ¢ is defined as

9= "ijo,h(V) (5.8)
Thus for the impedance cylinder, ¢ is a constant given as

g=-—jm % for TM, . g=—jm Zs for TE, (5.9)
. ‘

(]

However for the coated cylinder, ¢ is a function of v. For the simplicity of the

calculation, we assuimne that ¢ can be approximated as
g~ —jmC, y(vn) (5.10)

where vy, is the dominant ny, root of the transcendantal equation given in Equation

(4.4). The Fock-type Airy functions V(7) and W(7) are defined as
2iV(r) = Wl(r) - Wy(r) (5.11)

and
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et—t/3 gy (5.12)

1
Wyo= —~/
12 VT IT,

The contour I'; runs from oo e=72%/3 {0 00 — je, and [2 is the complex conjugate
of I'y. The transition function I:’,,h(:c,q) can also expressed in terms of the the

Fock integrals p*(z, q) and ¢*(z,g).

- P‘(z’Q) 1 —
P, u(z,q) = | /4 5.13
h(z,9) [{ P } 2zﬁ] e (5.13)

5.1.2 Shadow region

A ray format for the shadow region can also be obtained from the result given
for the conducting cylinder by replacing P(¢) with P(¢,q). When the field point

Py is in the shadow region, the ray format for u? is given by

e-Jk032

Ve

From Equation (3.121), the transfer function T, ; for the ordinary GTD solution

u’(Pg) = u'(Q1) Typ (5.14)

is given as
1 .
Toh = = L DAM@1) expl—(an +8,)1D5"(Q2) (5.15)
o n
where the diffraction coefficient D:,’h(Q) is given by Equation (3.124). However, in

the unform GTD, the transfer function T} ), is replaced with a generalized transfer

function 7, 5, defined as

. /4 .
Top = —m e-J"°‘\/‘ {"’2; = [-F X")}+P,,;,<e,q>} (5.16)
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where
1/3
§=ma ;m= (%—é) (5.17)
d s1s2 &2
= ko ——— 2 .
and
t=ba (5.19)

The relevant parameters s;, s2, f, a and two tangent points Q;, @3 are shown
in Figure 5.2. The uniform GTD solution reduces to the ordinary GTD solution

in the deep shadow region.
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5.2 Transition function

The transition function P,,h(z,q) has also been studied by Wait and Conda
[17] for 2 cylinder with finite conductivity. The quantity eI 1 ?*(&,q) is, in fact,
equivalent to the G(£) defined in {17, eq(22)]. For a cylinder with finite conduc-
tivity, the function G(£) has been evaluated via direct numerical integration and
tabulated for the various values of g. However, for a positive real value which
occurs for a cylinder with a pure reactive surface impedance or with a lossless
coating no numerical data have been given. Under this condition,the direct nu-
merical integration is more involved because the integrand has a singularity close
to the integration path. Therefore a heuristic approach [5], rather than the direct
integration, is employed in this section to deduce numerical results for the transi-

tion integral. This engineering approach is described in following paragraph.

a) Lit part of the transition region

From Equation (5.1) and (5.3) we obtain
., i -4 .613
w(PL) - w(Pr) ~ ~v'@n)y 7 exp (3%

PPEha) | PN il P sk
IR G ) O | O DRI 20

" [{ ¢*(¢',9) } 26’\/’—'] ) T . (5:20)
Note that

w(Pp) = v!(P) - v™(Py) (5.21)

Therefore, the Fock integral can be expressed as

{ p‘(f:,q) } —in/4 u}(Pp) - u""(PI;J) - u‘({JL) +;;'J://; Fxk)
¢*(¢',q) —u‘(QR)\[?exp (._jﬁﬁ) \/;'P:E e—kola -
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(5.22)
For the numerical value of u!, we use the eigenfunction solution given in Chapter
) g g

I and for u®", we use the residue series solution given in Equation (3.126).
24

a) Suadow part of the transition region
For the shadow part of the transition region, the same procedure employed for the
lit part can be used to obtain the numerical data for the f’(f,q). From Equation

(5.14) and (5.16)

: s " *(&,q) F(x9)
WO(Pg) ~ —uH(Qy) me Jkot\[i { P } _Fx9
’ : ko q*(¢,q) %/T

X e_jkoaz

e T
N

(5.23)

u®(Pg) = u!(Py) — v (Py) (5.24)
Thus, we obtain
&) | _:z Y(Py) — uS¥(Py) e~ IT/4
{ . } eI ~ : w( d'_k"t zdeﬁ.km ATV F(X%) (5.25)
7" (¢, 9) —uX(Qq) me JO\EW

As before, we calculate u*(P;) from the exact eigenfunction series solution and

u“(Py) from the residue series solution.

For the impedace cylinder, the numercal data for the Fock integral e =7%/4p* (¢, q)
or e77%/4¢*(¢,q) obtained from the Equation (5.22) and (5.25) are given in Figure
5.3 and 5.4 for several different q. It can be observed from Figure 5.3 and 5.4 that
the numerical results of the Fock integral are weakly dependent on kob, kop' and

kop. Therefore, curves shown in Figure 5.3 and 5.4 can be used as “universal”
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curves. to calculate the scattered field of the impedance cylinder with arbitrary

radius.

For the coated cylinder, the numercal data for the Fock integral obtained
using the Equation (5.22) and (5.25) are plotted in Figures 5.5, 5.6, 5.8 and 5.9
for various combination of €¢; and kob. The Fock integrals obtained for the TM,
coated cylinders are shown in Figures 5.5 and 5.5 and those for the TE; coated
cylinders are shown in Figures 5.8 and 5.9. Note that the Fock integral depends
on the g-parameter. The g-parameter which is determined only by the constant
surface impedance Z, for the impedance cylinder is now a function of the radius
of coated cylinder, the thickness and the material of the dielectric coating for the
coated cylinder. However, it is found that, for the thin coating case, the transition
integrals obtained are almost identical providing the g-values are the same. This
can be seen from the results presented in Figures Figures 5.5, 5.6, 5.8 and 5.9.
It turns out that, providing both have the same g-value, the transition integrals
obtained for the coated circular cylinder compare surprisingly well with those ob-
tained for the impedance cylinder. This fact can be established by comparing the
results shown in Figures 5.7 and 5.10 with those shown in Figures 5.5, 5.6 and
5.8, 5.9 respectively. As a consequence, the transition integral obtained for the
impedance cylinder could be employed in the uniform GTD solution to calculate
the scattered fields in the transition region for the coated cylinder. The advan-
tage here is that the procedure involved to deduce the transition intégra.l for the
impedance cylinder is much less complicated than that employed for the coated
cylinder. Note that the above comments only apply to coated cylinder with a thin
coating. At this stage, it is not yet clear whether the concept of uniform GTD
solution with ‘universal’ transition integral is applicable for the case of a cylinder

covered with a thick dielectric coating. This needs to be further investigated.
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5.3 Numerical results and discussion

In this section, the UTD solution is employed to calculate the electromagnetic
field scattered from the impedance and the coated cylinder. The geometry of
the problem and the ray paths are the same as those of GTD solution. It is
noted that the results obtained with the GTD solution given in Chapter III show
excellent agreement with the eigenfunction results in the deep lit and the deep
shadow regions. However the GTD solution fails in the transition region adjacent
to the shadow boundaries. The angular range of the regions where the pure ray-
optical solution fails depends on the range where the approximations involved in
the formulation of ordinary GTD solution fails. From the numerical results given
in Chapter III, It can be observed that the lit part of the transition region has
wider angular range than the shadow part.

It is well known that the uniform GTD reduces to the ordinary GTD in the deep
lit and the deep shadow region. Thus, in obtaining the numerical results given in
Figure 5.11 ~ 5.34, the uniform GTD solutions given in Equation (5.1) and (5.14)
are employed only for the transition region. For the deep lit and the deep shadow
region the ordinary GTD solutions given in Chapter III are used. The examples
given in Figure 5.11 ~ 5.34 are chosen to have the same configurations as those
given in Figure 3.13 ~ 3.36 for the comparision of the GTD and the UTD. It can
be observed that the uniform GTD solution provides a continuous pattern across
the shadow boundaries and compares well with the eigenfunction-solution results
in the transition region. Due to the numerical difficulty in locating the high order
dominant root of the tracendental equation, the examples given in Figure 5.11
~ 5.34 are confined to thin material coatings where the dominant creeping wave
mode is either the first or the second mode. At this stage it is not clear whether

the solution is applicable to the thick coating case.
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Figure 5.12: Normalized bistatic scatiering pattern of impedance cylinder
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Figure 5.13: Normalized bistatic scattering pattern of impedance cylinder
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Figure 5.14: Normalized bistatic scattering pattern of impedance cylinder
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Figure 5.16: Normalized bistatic scattering pattern of coated cylinder : TE. case
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Figure 5.17: Normalized bistatic scattering pattern of coated cylinder : TM; case
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Figure 5.19: Normalized bistatic scattering pattern of coated cylinder : TM; case
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Figure 5.20: Normalized bistatic scattering pattern of coated cylinder : TE, case
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Figure 5.21: Normalized bistatic scattering pattern of coated cylinder : TM. case
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Figure 5.22: Normalized bistatic scattering pattern of coated cylinder : TE: case
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Figure 5.23: Normalized bistatic scattering pattern of coated cylinder : TM, case

A
X
N2

A

——UNIFORM GTD
= e==EIGENFUNCTION

b= 7Aoq d = o.’Xo
p =102, p=15X
& =4-30, p,=1-30

S5

Figure 5.24: Normalized bistatic scattering pattern of coated cylinder : TE: case
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Figure 5.25: Normalized bistatic scattering pattern of coated cylinder : TM, case
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Figure 5.26: Normalized bistatic scattering pattern of coated cylinder : TE; case
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Figure 5.27: Normalized bistatic scattering pattern of coated cylinder : TM; case
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Figure 5.28: Normalized bistatic scattering pattern of coated cylinder : TE; case
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Figure 5.29: Normalized bistatic scattering pattern of coated cylinder : TM, case
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Figure 5.30: Normalized bistatic scattering pattern of coated cylinder : TE. case
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Figure 5.32: Normalized bistatic scattering pattern of coated cylinder : TE, case
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Figure 5.33: Normalized bistatic scattering pattern of coated cylinder : TM. case

UNIFORM GTD
==« = EIGENFUNCTION

ATERQ) Bt
T
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CHAPTER VI

SUMMARY AND CONCLUSIONS

An approximate asymptotic high-frequency solution is obtained for the field
exterior to a two-dimensional circular conducting cylinder with a thin dielec-
tric/ferrite coating. The angular eigenfunction solution of the problem is obtained
from the two-dimensional line-source Green’s function subject to the boundary
conditions on the cylinder surface and the Sommerfeld radiation condition at the
infinity. The eigenfunction solution is slowly convergent when the radius of the
cylinder is large in term of the wave length. Furthermore, the physical interpreta-
tion of the scattering machanism is not possible from the eigenfunction solution.
In order to obtain the ray optical solution of the problem, the angular eigenfunc-
tion is transformed into the integral representation and the integral is evaluated
asymptotically via the stationary phase method for the field in lit region and via
the residue theorem for the field in shadow region. The obtained solution is cast
in the format of the geometrical theory of diffraction (GTD).

In the lit region, the geometrical optics (GO) solution consists of the direct inci-
dent ray and the reflected ray. The ray picture associated with the reflected ray for
the coated cylinder remains the same as that for the conducting cylinder without
coating. The only difference is that, for the coated surface, the specular reflection
point is located on the coating-air interface. It is shown that for a thin coating
case, the reflection coefficient for the field reflected at the specular reflection point

on the coated curved surface can be approximated by the reflection coefhicient for
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a grounded planar dielectric/ferrite slab with a plane wave incidence.

In the shadow region, the residue series solution can be interpreted as the usual
creeping wave diffraction of the GTD solution with the same ray path as the
diffracted field associated with the conducting cylinder without coating. The prop-
agation constants of the creeping wave mode are obtained from the roots of the
transcendental equation which characterizes the coated cylinder. The roots of the
transcendental equation are numerically searched via Newton-Raphson’s method
by using both the Debye and the Watson’s approximations of the associated Han-
kel functions. The trajectories of the roots are plotted for several cases. For the
perfectly conducting cylinder, the first creeping wave mode is always dominant
over all other higher order modes. However for the coated cylinder, the dominance
of the creeping wave mode changes according to the change of the thickness of
coating.

In the transition regions adjacent to the shadow boundaries where the pure ray-
optical GTD solution fails, a ‘universal’ transition integral of the uniform GTD
(UTD) is employed to obtain the uniform solution. Numerical data for the essential
transition integral is deduced, via a heuristic approach, from the exact eigenfunc-
tion solution together with the GTD solution for the coated cylinder. The solution
is convenient for the engineering applications due to its simple ray format. Nu-
merical results obtained from the UTD solution for the cylinder with thin coating

show excellent agreement with the exact eigenfunction results.

This is a first attempt to provide a uniform GTD solution for a conducting
surface with material coating. Due to the numerical difficulty in locating the higher
order roots of the trancendental equation, the examples given in this research are
confined to the thin coating cases where either the first or the second mode of the

creeping wave is dominant. At this stage, it is not yet clear whether the solution
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is applicable to the thick coating case.

For the furture study, the three-dimensional problem, namely, a plane wave
incident obliquely upon a coated cylinder should be investigated. It is well known
that, unlike the perfectly conducting cylinder, there exists both TE and TM modes
in the scattered fields, even though the incident field may have been either TE or
TM. The electromagnetic characteristics of the creeping waves and their three-
dimensional ray interpretations on the coated cylinder should be examined. Also,
the scattering from a coated elliptical cylinder should be investigated for the ap-
plication of the solution to a general convex surface with material coating, This
research is important and of interest in that it could eventually lead to an under-
standing of the creeping waves on the coated bodies with finite extent.

The problem of the radiation from the coated cylinder is the case when the source
is mounted on the surface of the cylinder ( i.e. p' = b ), and the field point is out
of the clyinder surface ( i.e. p > b ), A asymptotic high frequency solution for
the radiation problem can also be obtained by the similar procedure as that for

the scattering problem given in this research.
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APPENDIX A

WATSON’S TRANSFORMATION

A.1 Watson’s Transformation

For the cylinder with large radius, It is impractical to compute the field from
the angular eigenfunction expansion because it is slowly convergent. This difficulty
in convergence can be overcome by using the Watson’s transformation. For the
determination of the field in the shadow region by a vertical dipole in the presence
of a large metallic sphere, Watson (1918) used a transformation to convert the
slowly convergent eigenfunction series into a residue series and hence a contour
integral in the complex plane. He then showed that the contour could be deformed
so as to enclose a new set of poles and, by evaluating the residue series associated
with these new poles, was led to a series which was rapidly convergent. The
procedure for converting the original eigenfunction series (convenient for small
b/Xo) to the residue series appropriate for large /), is now known as Watson's
transformation. This method which was originally used for the sphere will be

adapted for the cylinder of our interest.

A.2 Integral representation

First, we consider an integral given as

=2 p oelivé-ml,,
2 Je, sinvmw

(A.1)
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Figure A.1: The contour of the integral

where we assume [¢| < m. The contour C'; encloses counterclockwise all the poles
due to the zeros of sinvr (i.e. v=m) as illustrated in Figure A.1. B, in Equation
(A.1) is assumed to have no poles on real axis. Next, the integral is evaluated via

the residue theorem. B

= [0 Pl gy o p 3 By SRIMATTT )
2 Jg

sinvm o %[Si“ VT )y=m
From (1.2), we obtain the relation

TN e Lk Gl

2 Jg sin vw dv= 3 B(m)exp(-jm¢) (A.3)

m=-oo

assuming that B(v) has no poles on the real axis. The integral in Equation (A.3)

can be simplified further if B(v) is an even function of v (i.e. B(—v) = B(v)).
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First, we decompose the integral into two terms.

I —j foo-ie B(v) exp[—jv(¢ — )] v + -j /—-oo+j€ B(v) exp{—jv(¢ — 7] dv

2 J-oo-je sin v 2 +je sinvw

(A4)
By changing the variable in the second term of Equation (A.4), we obtain the

identity

S Blmexp(—jmé) =3 [* ' Bw) 2L Mgy (4)

Mmoo oo—je sinvm

where € is a positive number, however small. Above Equation (A.5) represents the
tranasformation of the eigenfunction series into the integral form. In finding the
GO field in the Lit region, the integral representation of the field will be evaluated

via the stationary phase method as given in Chapter III.

A.3 Residue series representation

On the conditions that the poles of B(v) are located only in the lower halfplane
and the contribution from the semicircle arc can be ignored as its radius approaches
infinity, the integral can also be evaluated via the residue theorem by enclosing the

contour with a large semicircle in the lower halfplane, as shown in Figure A.2.

Z B(m)exp(—jm¢) = —1/ Bv) = e 1) g, (A.6)

me— o sinvm

Hence, the integral given in Equation (A.6) is equal to —2nj times the sum of the
residues at the poles of B(v) (i.e. vy) because the cuntour C; encloses the poles

clockwise .

-J/ B(v) cosV(QS )dv=21r § B(,,R)M_:"_) (A.7)
n=1

sin /7 sin vy
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Thus we obtain

> Blm)exp(~jmd) = 2 3 Blua) =220 —T) (4.8)
m=-—co n=1 n

The above Equation (A.8) represents the transformation of the eigenfunction series
into the residue series representation. The notation “co” in above Equation denotes
in actual calculation only a few terms are needed to obtain an accurate result. Thus
the slowly convergent eigenfunction series is transformed into the fast convergent

residue series. Residue series solution will be used for the field representation in

the shadow region.
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APPENDIX B

REFLECTION COEFICIENT

The asymptotic approximation of the reflection coefficient for the coated cylin-
der is developed in this Appendix. From the discussion in Chapter III, the formal

expression for the reflection coefficient R, j, is given as

jsina, ~ jC, p(v,)
jsina, +jC, p(vs)

Ry p = =S p(ve) = (B.1)

In order io obtain the approximation of R, j, approximation of C, p(v,) should be

found first.

B.1 TM, case

! !
Cylv) = —j22 Y k18) B (k1a) - BP (k1) HE (k1a)
2t B (i) D (ky0) - HP (ki 0)HL ) (kya)

From the Debye approximation of the Hankel function,

[ 2 , , |
H,(,l)(kla) = m exp [] (k]aSll’l ﬂa - ﬂak]a cOS§ ﬂa - ;)] (B.3)
/ 2 : .
H.(,z)(kla) ~ wkrasn e exp [—] (klasmﬂa — Bakjacos Bq — %)] (B.4)
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3 o

M (kb) ~ ‘/m exp [J (klbsmﬂb — Bykybcos By — g—)] (B.5)
2 Y

H;(/z)(klb) ~ m exp [—] (klelnﬂb - ﬂbklbcosﬂ - %)] (BG)

It should be noted that 3, and 8y in above Equations (B.3) ~ (B.6) are defined
by the following relations

v = kjacos B, = k1bcos 3y, (B.7)
Thus, we obtain
D ko) B (kya) ~ 2 I¥(@bk1) (B.8)
wkl\/gb sin B, sin G
HE (k1 0) B (kya) ~ 2 e~ (abky) (B.9)
mhy ‘/ab sin Aq sin Gy

where ¥(a,b, k1) is defined as

U = ky[bsin By — asin Bg] — k1{Bpbcos By — Baa cos fa] (B.10)

Therefore, we obtain

45 ,
HD (k18) H (kya) — HP (k18) B (h1a) = Y sin{%(a,b,k1)}
wkl\/absm Ba sin By
(B.11)
4
HO (k10)HP (kra) + HEP (k19) B (k10) ~ Y cos{¥(a,b,k1)}
Trkl\/ab sin O, sin By
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(B.12)
Thus, it can be readily shown that
! !
B (k) B (k1) - B (ki0)HY (k1)
~ jsin By (HY (ki) HS (k1a) + HED (ki) HS (1a)}
4j sin
= cos{¥(a,b, k B.13
nky \/ab sin fq sin §p ¥ 2 ( )
Therefore, we obtain
Zo .
C, = —i5 sin By cot {¥(a, b, k1)} (B.14)
1
Incorporating this result into Equation (B.2) yields
jsina, — % sin 8y cot{¥(a,b,k;)} (B.15)
= 1
jsina, + %‘]1 sin By cot{¥(a,b, k1)}
In the Chapter III, it has been proved that at the stationary point,
v = kobcos ay = kobsin b; (B.16)

Thus, 8, and 8y in Equation (B.7) can be expressed in terms of the incident angle
6;.

o
Ba = cos™? (1“%51“’:—‘) (B.17)
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K,sin; = Kk, sin8,
9' = 9,

Figure B.3: Snell’'s Law
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(B.18)

By = cos~ ! (M)

kb
From the Snell's law, it is known that ko sin 6, = kg sin8,. As shownin Figure B.3,
0, is the incident angle at the reflection point and 6; is the angle of transmission

into the dielectric/ferrite material. Therefore, we obtain

2
k
sin By = /1 - (cos Bp)? = Jl - (7‘? cose,) = cos (B.19)

2
sinf; = /1 ~ (cosB3,)? = Jl - ({iécoset) (B.20)

ja

Consequently, we obtain

Zo—3Z1cosb,/cos by tan{¥(a,b,k;)}

Ry = - Zocos+32ycos b,/ cosfy tan{¥(a,b,ky)}

(B.21)

When the thickness of the coating d is very small compared to the radius of the

cylinder (i.e. d « b ), ¥(a,b, k) can be simplified as

¥(a,b, k1) =~ kj(b—a)sinf8, = kydcos §; (B.22)

If we use this result,

Zo—jZycos8,/ cosby tan(kydcosb;)
R; = - , f (823)
Zocos+jZycos 8,/ cosb; tan(kydcos6;)

Above result coincide with the reflection coefficient of the grounded dielectric /ferrite

slab.
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B.2 TE, case

_ .7 HY (ko) Y (kya) - HE) (klb)H(l) (kya)
JZO H(l)(k b)H(2) (k . H(z)
10) v (klb) u (kla)

Ch(v) (B.24)

It can be shown that

EO (1,0) B (k1) - B (k5) B (k1a)

x —jsinfa {H (k1) HD (k1) + AHD (kib)HY (1a)}

N —47 sin B,
wky \/ab sin 34 sin G

cos{¥(a,b,k;)} (B.25)

It can also be shown that

HEY (k1) B (kya) + B (ke 0)HY (kya)

x —jsinfa {H (kid)HP (k1a) — HED (ki0) HY (k1))

N 4sin 3,
nky \/ab sin (g sin Gy

From Equation (B.25) and (B.26), it can be shown that

sin{¥(a,b,k;)} (B.26)

1 H
HY (ki) B (kya) — HSD (ki) B (k1)
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~ jsin By {H (k1b) B (ky0) + HD (k16) B (k1))

o 4j sin B, sin sin{¥(a, b, k;)} (B.27)
wky \/ab sin 8, sin B,

Substituting Equation (B.25) and (B.27) into Equation (B.24), we obtain
2y
Ci(v) = j—==sin Gy tan{¥(a, b, k1 )} (B.28)
o

Incorporating this result into Equation (B.1) yield

.. Zy .
sinay + 31 sin B tan{¥(a,b, k
Ry = J s zo ﬂb { (a, l)} (B.29)
jsina, — 7t sin Gy tan{¥(a, b, k;)}

o

As for the TM, case ay and 3 are replaced by 6; and 6 by using the relationship
in Equation (B.18) and (B.19). Consequently, we obtain

Z, — jZ1cos 0/ cos 8; tan{¥(a, b, k1 )}

Ry = B.30
h Zo+ jZycosby/ cosb; tan{¥(a,b, k;)} ( )

For the small thickness of the coating ¢,
Ry = Zo — jZy cos By/ cos §; tan(kyd cos 0;) (B.31)

" Zo+jZ1 cosby/ cos 8; tan(kyd cos §;)

Above result also coincides with the reflection coefficient of the grounded dielec-
tric/ferrite slab.

In summary,

Zo— jZycosb;/cos 8y tan{¥(a,b, k;)}

Ry = - Zo+ jZycosb;/cos tan{¥(a,b, k;)}

(B.32)
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_Zo— jZycosby/cosb;tan{¥(a,b,k1)}
" Zo+ jZycosby/ cosb;tan{¥(a,b, k)}

Ry,
where
¥ = ky(bsin By, — asinBa) ~ kob(Bp — Ja) sin b;
where

sin By = cos 6,

b 2
sinffy = 4|1 — (; sin Gt)

17

(B.33)

(B.34)

(B.35)

(B.36)
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