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3 CHAPTER I

INTRODUCTION

1.1 Outline

The purpose of this research is to develop an approximate asymptotic high-

I frequency solution for the electromagnetic scattering from a convex conducting

surface with dielectric/ferrite coating, For the bare perfectly conducting case, an

efficient uniform GTD solution has been de-eloped and used in many engineer-

ing applications. However, no such 'olution exists for the conductor coated with

dielectric/ferrite material.

This research is motivated by the need for understanding the effects of loading

on the electromagnetic scattering. In some engineering problems there is a need

to control the scattered fields from conducting objects such as the reduction of the

radar cross section (RCS) in the design of air-borne vehicles. An efficient method to

control the EM scattering can be achieved by coating of a dielectric/ferrite material

on the conducting scatterers without having to deform the physical structure of

the scatterer. The research in this report is focused on the development of an

effficient analytical tool to calulate the scattered field from a coated surface and

the effects of various coating materials on the scattered field.

It is desired to ultimately develop the uniform geometrical theory of diffrac-

tion (UTD) for an general convex surface with material coating. As a first step, we

examine the field scattered by an infinite conducting circular cylinder with dielec-

tric/ferrite coating when it is illuminated by a parallel infinite electric or magnetic



I

line source. Since both the line source and the cylinder are parallel and have

infinite lengths, the scattering from the cylinder is essentially a two-dimensional

problem. Once the solution for this canonical problem is obtained, it can be easily 3
extended to calculate the field scattered by a general convex coated surface. The

scattering from the cylinder with surface impedance is also treated in this research.

This problem is of interest in that it provide the solution of scattering field from

a cylinder with finite conductivity. i
The organization of this report is as follows. Chapter II gives the angular I

eigenfunction series solutions for the impedance and the coated cylinder. It is noted

that the eigenfunction solution is slowly convergent when the radius of cylinder is 3
large in terms of the wave length. Even though the eigenfunction solution is not

the goal of this research, it is important because it provides a means of checking 3
the accuracy of the ray solution which is developed in later Chapters.

In Chapter III, high frequency asymptotic solutions are obtained from the 3
asymptotic evaluation of the field expression in the integral form. The solutions

obtained are cast in the format of the geometrical theory of differation (GTD)i

as suggested by Keller [1,21. In the lit region, geometrical optics fields (i.e. the

incident and the reflected field' are obtained via the stationary phase method.

In the shadow region, the diffracted field is obtained frorp the evaluation of the

integral via Cauchy's residue theorem. It is noted that the ray picture for the

impedance and the coated cylinder remains the same as that for the perfectly 3
conducting cylinder. Thus the Keller's GTD ray format given for the conducting

cylinder can be used with necessary modifications due to the boundary conditions 3
on the cylinder surface. Even though the solution obtained is accurate in the deep

lit region and in the deep shadow region, it fails in the shadow boundary transition i

region. The reasons for this failure are also analyzed in this Chapter.

Chapter IV examines some characteristics of the creeping waves which prop-

2
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agate azimuthally on the cylinder surface. The propagation constants and the

3 attenuation constants of the creeping wave modes are determined from the zeros

of the transcendantal equation which characterizes the impedance or the coated

3 cylinder. For the conducting cylinder, the contribution from the first creeping

wave mode to the diffraction is always dominant over other higher modes. How-

I ever this is not always true for the impedance and the coated cylinder. Change

of the dominance of the creeping wave mode according to the change of the rele-

vant parameters is illustrated by the some examples. The behavior of the creeping

3 waves for a very large cylinder is compared with the surface waves of the grounded

planar slab with the surface impedance or the dielectric/ferrite coating.

In chaper V, the failure of the GTD solution in the shadow boundary tran-

sition region is corrected by the heuristic extension of the UTD solution for the

conducting cylinder to the impedance and the coated cylinder. For the impedance

and the coated cylinder, the transition function P(:, q), which is well tabulated

I for the conducting case, is not available. Instead of direct numerical evaluation of

the integral, a heuristic method is used to obtain the numerical data for the tran-

sition function P(z, q). The universal feature of this transition function is tested

3 for some examples. Using the transition function obtained, the field patterns are

calculated and the results are compared with exact eigenfunction solutions.

3 Chapter VI contains the conclusion for this research.

* 1.2 Literature survey

3 For the perfectly condu -ing case, the asymptotic evaluation of the field scat-

tered by a cylinder or a general convex surface has received much attention and

been studied extensively. Such solutions are usually cast in the format of the ge-

3 ometrical theory of differation (GTD) as suggested by Keller [1,2]. One of more

*3
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r, nt works on this problem is that of Pathak [3). He made a significant contri-

bution to this area by developing an approximate uniform geometrical theory of

diffraction (UTD) for a perfectly conducting cylinder and arbitrary convex surface I
with great success.

The problem of scattering by the impedance or the coated cylinder has also

received attention for decades. Scattered field by the impedance cylinder has been

studied by Wait [17], Streifer [18] and Logan [14). The main concern of their work

was in ground wave propagation excited a dipole on the earth which has been 3
modeled by a cylinder with surface impedance. In their work, the propagation

constants for the creeping wave of the impedance cylinder has been obtained with 3
the assumption that the Hankel functions in the formal solution may be approxi-

mated by their Fock type Airy functions. It is noted that this assumption is not U
valid for arbitray orders and arguments of the Hankel functions. Recently, Wang [4]

obtained more accurate numerical data for the propagation constant of the creep-

ing wave, the Regge poles, and the natural frequencies of an impedance cylinder 3
by using both the Debye and the Watson's approximation of Hankel functions.

The creeping wave interpretation for the resonance and the correlations between 3
the resonance, the Regge poles, and the natural frequencies are also discussed.

Most recent work on the scattering from the impedance cylinder has been done I
by Wang and Kim [5] who has developed uniform GTD solution for this problem.

The accuracy of his results has been confirmed by excellent agreement with exact I
eigenfunction solutions. m

For the coated cylinder, Tang (1957) has found an angular eigenfunction series

solution for the back scattered field and has presented numerical and experimental 3
results when the incident wave length A, is comparable with radius of the cylin-

der. The propagation constant for the first creeping wave mode on the surface of 3
cylinder with lossless dielctric coating was first obtained by Elliott [19) by using

4
4 I
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some asymptotic representations of the various necessary Bessel and Hankel func-

tion. Based upon Poisson's sum formula, Kodis [21] has obtained an asymptotic

solution for the scattered field in terms of the difference between the scattered field

of the coated cylinder and of a perfectly conducting cylinder. In his solution, the

scattered field is expressed in term of several different rays by tracing the compli-

I cated internal process of the field propagation in the dielectric coating. Because

of difficulty in tracing the optical rays inside the coating material, his solution is

too complicated for numerical calculations. Particularly interesting is the work by

5 HeIstrom [22], who has obtained a ray optical solution by asymptotic evaluation

of the formal solution. A trajectory of the propagation constants of the creeping

3 wave has been sketched. However, he failed to give exact numerical data.

By employing the same optical rays as given by Kodis, Rao and Hamid [23]

invesigated GTD solution for this problem. No numerical results were presented

in their paper. The backscattering width of a dielectric coated cylinder has been

I obtained via a high frequency ray solution by the recent work of Wang [6]. Most

recently, Paknys and Wang [7,8] have developed an approximate solution for the

surface fields induced on a coated cylinder by a magnetic or electric line source on

3 the same surface. Even though the final goal of this work is different from theirs,

some of their results associated the propagation constants of the creeping waves

3 are utilized in this work.

I
I
I



I
I
I

CHAPTER II

EIGENFUNCTION SERIES SOLUTION I
In this Chapter, the eigenfunction series solutions for the field scattered by

the infinite circular conducting cylinder with an impedance boundary surface or a

dielectric/ferrite coating will be presented. In the eigenfunction solution, the field 3
expression is given as the sum of each angular eigenfuntion mode which satisfies

the boundary conditions of a given canonical problem. The angular expansion of 5
eigenfunction modes is an appropriate solution when the radius of the cylinder is

small in terms of the wavelength where the asymptotic solution cannot be applied.

However, for the cylinder with large radius it is impractical to compute the field

from the eigenfuntion expansion because it is very slowly convergent. I
Even though the eigenfunction solution is not the final goal of this research, it is

important because the formulation of a high frequency ray solution begins with the

field expression in the eigenfunction series form. Since the eigenfunction solution 3
is based on exact boundary conditions, it is considered to be the exact solution of

the given problem. Hence, it can be also used as a means to check the validity

of the high frequency ray solution which will be developed in later Chapters. In

addition, the eigenfunction solution provides the basis to obtain the numerical data 3
for the transition function P((,q) associated with the uniform GTD solution in

the vicinity of the shadow boundary. I

I
0 I

I
I



U 2.1 The canonical problem

The geometry of the problem for an impedance and a coated cylinder is il-

lustrated in Figure 2.1 (a) and (b) respectively. The impedance cylinder or theU coated cylinder is illuminated by a parallel line source located at O(p', 0'). The

impedance cylinder is an impenetrable cylinder with an impedance boundary sur-

face and the coated cylinder has a material coating on the conducting core cylinder.

The coating has a thickness d = b-a and is homogeneous with permittivity E1 and

permeability Pll , both of which may be complex. The source is either an electric

3 current filament I (TMz case) or a magnetic current filament K (TEe case). The

solution to be investigated is the total field at P(p, 0) from the line source which

radiates in the presence of a parallel cylinder with an impedance boundary surface

or with a material coating. Both the source and the field point are assumed to be

I located outside cylinder. Since both the line source and the cylinder are assumed

to have infinite lengths and to be parallel to the z-axis, the scattering from the

cylinder is essentially a two-dimensional problem. The two-dimensional line-source

Green's function G(F, p') satisfies the equation

+ k ' (2.1)

3 in the domain b < (p,p') < oc ; 0 < (4,qS) • 27r where V2 is two-dimensional

Laplacian operator. Thus Equation (2.1) can be rewritten as

U~~ ~ 02 21____ __

SLpPTpOp2a2 'k Ij p (2.2)

Without loss of generality, we can set 41 = 0 and 0 < ' :_ i" for convenience. Once

the solution G(j3,p) for Equation (2.2) subject to the boundary conditions on

the cylinder surfaces and the Sommerfeld radiation condition as p -- oo is found,

7
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the field components at P(p,4a) can be readily obtained. For excitation by a line I
source of electric current I (TMz case), the field components of E and .9 outside

Ithe cylinder are given as (for e3WL time variation)

Ez = ,wPOIC, Hz 0

EO = o, H,, =- •(2.3) I
EHO,=-I~ tI

For the magnetic line source case (TE2 case), the field components are given as I
H- = -jwcoKG, Ex = 0 I
Hp = 0, E0 = -(2.4)

0,E =KG

8m

i
i
i
I
l
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3"'..SURFACE IMPEDANCE

z5

(a)

P y

I0
IbI ,

I

(b)

3 Figure 2.1: The geometry of the problem

I
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2.2 Impedance Cylinder

In this section, the eigenfunction solution for Equation (2.2) subject to the 3
boundary condition of the impedance cylinder will be obtained. On the sur-

face of the impenetrable impedance cylinder, the field G(;, P) should satisfy the 1
impedance boundary condition given as

60__ jkoGC = 0 (2.5)

where C represents either normalized surface impedance (TEZ case) or normalized

admittance (TMz case). 0 is assumed to be constant around the surface of the I
cylinder.

f f or TM. =Ch= for TEs (2.6)

where Zo is the intrinsic impedance of free space (i.e. Zo = v ) and Zs is the 3
constant impedance on the cylinder surface. The subscript a and h in C denote

TM.I (soft) and TE. (hard) respectively. 3
2.2.1 TAI: case

At the field point P(p, 4,), the total field consists of the two terms; the incident

field Go(p, 4,) and the scattered field G,(p, 4). 3
G(- p') = G(p,4,) = Go(p, 0) + Gsa(p,4, (2.7)3

When the line source is an electric current filament I, the incident electric field 3
is parallel to the cylinder axis which is taken as the z-axis. From the free space

Green's function for two-dimensional line source, the z-polarized incident electric I
field G'o(p, 4,) is given as

10

I
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U
Go(p,4)) - - Ho(2 )(koI,5-.p') (2.8)U 4

Using the additional theretn for HW()(koI,- p1), Go(p,O) can be expanded in a

3 series form given by

-j 00 (2)
n=ooGo(p,4) =-4 H•)(k°p>)J"(k°p<) e-" (2.9)

where p>=pl, p< =p for p<p',and p>=p, p< =p' for p>p'. It

is pointed out that the scattered field Gs(p, 4') from an infinite parallel cylinder

I by z-polarized incident field Go(p, 4)) is also z-polarized. Considering the Equation

(2.2) and the radiation condition at infinity, we assume that the scattered field

from the cylinder can be expressed as

II Gs(p, 0) = •-F As(n) Hn2)(kop<)H 2)(kop>) e-ino= (2.10)

U The total field at P(p, 4)) is the summation of the incident field and the scattered

3 field. Thus, G(p, 4) is given as

G(p,4)) n= -oo Hn(2)(k 4 p>)[Jn(kop<) + As(n)Hn2 )(k'P<)]e-J. (2.11)

3 The unknown scattering coefficient A,(n) in Equation (2.11) can be easily deter-

mined from the boundary condition given in Equation (2.5). Thus, A,(n) is given

3 as
A,(n) Jn(kob) - jCsJn(kob) (2.12)

I H,) -•~ 2•(kob) - jC.sHn(kob)

3 The primes in Equation (2.12) represent derivatives with respect to the arguments.

For the unification of notation, all Bessel functions'included are replaced by Han-

kel functions Hn(l)(x) and H2) (x). From the well-known relationships of Bessel

I 11

I



functions and Hankel functions, Equation (2.11) can be rewritten as I

-00 S[ ] IG(p,) =E2 H~n")(kop>) [H(l)(kop<) + F.(n)H.(2)(kop<)) e-ino (2.13)

where

HM'(kob) - jC.H (kb) ) I
B,. 2 (kob) - jCIJ•"(kob)

A plane wave incident is a limiting case when the source is located at inlinity (i.e. 1

PI --+ oo). The total field for plane wave incidence can be readily obtained by 3
replacing H(n2 ) (kop') by its large argument form. Thus, G(p, 0) for the plane wave
incidence can be expressed as !

G(p,O) = 0  H(')(kop)+ F.(n)H.(2)(kop) e-jn(O-j) (2.15)

where Uo is the incident field at referenlce point which is chosen at center of cylinder. I

2.2.2 TEz case 3
When the line source is a magnetic current filament K, the source radiates a

z-polarized incident magnetic field Co(p, 4)) which is also given as I

Go(p,•) = •i H( 2 '(k 0 I,3- p') (2.16) i
I

Using a similar procedure as for the TMA case, the total field at P(p, 4k) is obtained

as

G(p'qS H( ) 4(k~p>) [J.(k~p<) + Ah(n)Hni2(ko<Ie"'(.7
nt=--oo

12 I
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The scattering coefficient Ah(n) subject to the boundary condition in Equation
(2.5) is given as

Ah(n) - Jn,(kob) - jChJn)(kob) 
(2.18)3 HHn (kob) - jChH,¶12)(kob)

If we replace Jn(x) and Nn(r) with H(nl)(z) and H$n2)(m), Equation (2.17) can be

rewritten as

G(p,) 8 ~ Hn(2)(k,,p>) [Hft (Icop<)FhnH (kp) (2.19)
I Tt---00

where

F H.(')'(kob) - jChH(f)(kob)

Hn) (2)(kob) - jChH(,2 )(kob)

I
., For the case of plane wave incidence, the total field G(p, 0•) is given as

I I 2 n=-00

II
U
U
I
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I
2.3 Coated Cylinder f

Following the same procedure as for the impedance cylinder, the eigenfunc- 3
tion solution for the field scattered by the infinity conducting cylinder with dielec-

tric/ferrite coating for both TEz and TM, cases is obtained in this section. For the 3
coated cylinder, it should be noted that fields can penetrate into the air/coating

interface (p = b) on the given boundary condition that tangential components of 3
both the electric and magnetic fields should be continuous at the interface.

At the surface of the core conducting cylinder, fields should satisfy the soft or hard I
boundary conditions according to the polarization of the incident fields.

G(a, q)=0 ;for soft boundary (TM± case) (2.22) 3
I

OGIp,))- =0 ;for hard boundary (TE2, case) (2.23) 3
The above boundary conditions simply mean that on tlie surface of the conducting

core cylinder, the tangential component of the electric field vanishes for both the

TMz and the TEz cases.,3

2.3.1 TAM2 case

Since the incident field from the source is independent of the scatterer, the U
expression for the incident field Go(p, 40) remains unchanged. 3

Go(p,)-- ' r H(2.24)
n=oo

The scattered field G,(p, 0) outside the cylinder (i.e. p _> 6) can be expressed as I

114
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| Go(p,4) = -• • A.(n).Hn(kop>)H$?(kop<)e-•" (2.25)I
Thus the total field outside the cylinder is given as

The field inside the coating material is not of interest in this research. However, inI ~order to find the unknown coeffcient As(n), it is necessary to find the field inside

I the coating material also. Inside the coating material (i.e. a < p < b), C(p,4)

should satisfy

p • j p + -p2 -ý, + G(p,4) = 0 (2.27)

It is assumed that the source is located outside the cylinder (i.e. p' > b). Thus, the

I astotal field G(p, O) inside the coating material (i.e. a < p < b) can be expressed

as

G(p, )-j 00 H (2) (kop')[B.,(n)Jft(klp) + DA(n)H (2) (kip)] e-n (2.28)
I 4 -"0

The unknown coefficients As(n), B,(n) and Ds(n) can be determined from the

boundary conditions given as follows;

I Ez(p, O) = 0 at p = a (2.29)

I
Ez (p,#) is continuous at p = b (2.30)

I
15I
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I

H.0(p,) is continuous at p= b (2.31) 1
Thus, the scattering coefficient As(n) is given asI

A, , J'(kob) - jC.(n)Jn(kob) (232)
H 1""')(kob) - j C.(n)HlAt')(kob)

where C,(n) for the coated cylinder is defined as

C(n .Zo Jn(kja)Nn(kjb)-Nn(kla)J,'(klb) IC(n l- - Jn(kja)N(kb)-N(1a)(kb) (2.33)

Z1 and k1 denote'the characteristic impedance and the wave number of the coating

material respectively (i.e. Z, k, =WV4111j )

It is interesting to note that

lirnC,(n) =oo (2.34)1

Equation (2.34) can be easily proved using the Wronskian of the Bessel functions.

Thus, when the thickness of the coating is very small in terms of the wavelength, the I
behavior of the field is essentially the same as for the TM, case of the conducting

cylinder. I
By replacing Jn(x) and Nn(z) with Hn(l)(z) and H(2)(z), the Equation (2.26) 3
can be rewritten as

G(p,4 ~ = . : Hn (kop>) [Hn(1)(kop<) + Fj(n)H,ý2)(kap<j] e-j"" (2.35)

where
whlH (l)'(kob) - iC.(. )Hn( 1)(kob)

F.(n) = - H(nkb) _C(n)H()kb) (2.36)
H4? (kob) - A ()H~ 1 kob)

16 I
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I

i C.(n) in Equation (2.33) can also be rewritten as

C,(n) - ( 2) (2) 237)
0)o n''(,n•)(k, b H( ) -H ()',)n(•ko

Hn n k - Hn (klb)Hn)(kja)

The total field at P(p > b, 0) for an incident plane wave can also be obtained from

I iEquation (2.35).

I G(p, U0  [Hfl(k.o)+F,(n)Hn (kp)] C (2'38)

n=00

2.3.2 TEz case

The boundary conditions of the coated cylinder for the TE, case are given as

3 follows;

iEO(p, O) = 0 at p = a (2.39)

I Hz (p, 4) is continuous at p = b (2.40)

I
EO(p,4) is continuous at p = b (2.41)

By using the same procedure as for the TM, case with the above boundary con-

ditions, total field G(p, 4') is given as

G(p,,O) = H"(2)(kop>) Jn(kop<) + Ah(n)Hn (kop<)] C_ -

(2.42)

5 where

17
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.Ah(n) =- J)(kob) - jCh(n)Jn(kob) (2.43)

where Ch(n) for the coated cylinder is defined as

.= 1 J,'(kja)N"(kjb) - Nn(kla)Jn(klb) (2.44)
Ch(n) = - Jn(kia)Nl(kib) - NV'(kia)Jn(klb)

It can be easily proved that

lim Ch(n) = 0. (2.45)
a-4b

Thus, for very thin coatings, the behavior of the field is essentially the same as for

the TE. case of the conducting cylinder.

In terms of the Hankel functions only, the Equation (2.42), (2.43), and (2.44) are

rewritten as

-j 00(2
G(p,•')- H8( 2 (kop>) [H.2)(kop<)+ Fh(+)H( (kop<)] e-ino (2.46)

where

Fh(f) - H 2' (kb) - jCh(n)Hn)(kob) (2.47)Hn(2)'(kob) - jCh(n)Hn 2(kob) (.7

and

Ch(n) H()')1(klb)Hn)(kRa)- H(- )(kib)H($l)'(k1 a) (2.48) 3
= o Hn1)(klb)H~n2)(ka) - H~n2)(kib)H(i ) (kya)

The total field at P(p > b, 0) for an incident plane wave is given as

U0  [H.(')(kp) +Fh(n)H 2 (kop)l e (2.49)1
-~ 2 L' 3 0 + no

I18
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2.4 Examples and the discussion

Some examples of the eigenfunction solution' for plane wave incidence are

given in Figure 2.1 -, 2.21. The geometry of the problem is shown in Figure 2.1.

Figure 2.2 -- 2.9 illustrates how the normalized field pattern of the impedance

cylinder changes as the surface impedance increases from zero (i.e. TE, case) to

infinity (i.e. TM, case). In these examples, surface impedances are taken to be

purely imaginary (i.e. pure capacitive for TM, and pure inductive for TE2 ). The

cases of complex impedance will be given in later Chapters in the comparision with

the ray solution. Figure 2.10 ,- 2.15 and Figure 2.16 -, 2.21 ilustrate the change

of the scattering pattern as the thickness of coating increases for TMZ and TE,

respectively. In these examples, 4rE=4 and jlr=l. The cases of complex c,. and pr

are givei, in later Chapters.

It can be observed that manifest effects due to the changing values of the impedance

or the thickness are shown for the field pattern in the shadow region. From these

examples, we can observe that the scattered field in the shadow region does not

simply increases or decreases as the surface impedance or the thickness of the

coating increases. However, it is not possible to give any physical intepretation

for the change of the scattering pattern from the eigenfunction solutions before we

introduce the ray concept which will be given in later Chapters. Thus, detailed

discussion of the scattering mechanism is deferred to later Chapters.

'The FORTRAN subroutine for the Bessel functions provided by Prof. J.H. Richmond have been

essential for obtaining these results.
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9  '.41= +J I
¢,. =0 + 70

k4,6 - 20

kop'- 3c 0

s2o ,20-10 dB

Figure 2.2: Normalized bistatic scattering pattern of impedance cylinder I
CO., = 0 + jO.255

kob =20

I
S- 30- -20 10 0O AD8

Figure 2.3: Normzlized bistatic scatlering pattern of impedance cylinder
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I

C¢,, 0 + jO.5

b = -20
k~p = 30

I Figure 2.4: Normalized bistatic scattering pattern of impedance cylinder

I C,,t, = 0 + j0.75
kob = 20

k~p =30

I 0 l.bP

I

_ -- _ • _dB

I.

Figure 2.5: Normalized bistatic scattering pattern of impedance cylinder
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- 0+ji I

hb 20

SVp = 30 I

* I
III

I

Figure 2.6: Normalized bistatic scattering pattern of impedance cylinder

Ca,,A 0 +j2

4b 20I
kp= 30

-30- ~-20 10-0dB

Figure 2.7: Normalized bi static scattering pattern of impedance cylinder I
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I ~Co" = 0 + .•5

koP = 30

,kop

I

3 Figure 2.8: Normalized bistatic scattering pattern of impedance cylinder

C,,h = 0 + joc

k0b = 20

Ikp = 30

' 0 0

I0- -320 - 0

Figure 2.9: Normalized bistatic scattering pattern of impedance cylinder
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khb =20 4 =0)CA*

kep = 30
kop-

et=4+j0 u',=I+jO

-30- -20•-O1Od

I

Figure 2.10: Normalized bistatic scattering pattern of coated cylinder: TMz case

&~b=20 d=O.1A.
k~p = 30

'cop = =~

I

1- 2 - 20- -10 0 M

Figure 2.11: Normalized bistatic scattering pattern of coated cylinder: TMz case

24 I
I



I

I /.4o/ = 20 d = 0.2,=

~kop = 30

I

Figure 2.12: Normalized bistatic scattering pattern of coaled cylinder : TM: case

kob - 20 d = 0.3.

4.=4+jO I =1+jOI
i 30 - 10 0

Figure 2.13: Normalized bistatic scattering pattern of coated cylinder: TMr case
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1 P 1 #1k.6 =20 d=O0.5A.

ps kop = 30

kop = 00

b ir=4+;0 Is,=1+jO
mom

- -30- -20 •- d0 I

S~I

Figure 2.14: Normalized bistatic scattering pattern of coated cylinder T.M€.. case

I
kob = 20 d = 0.7,4

kop - 30 3
.,kop = w•

'i.=4+jO s.=l+jO

Figure 2.15: Normalized bistatic scattering pattern of coated cylinder: TMx case
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k~p =30

ko = 0

i - 30- 20-- - 10-- 0 dB

Figure 2.16: Normalized bistatic scattering pattern of coated cylinder TEz case

m kb=20 d=0.1)o

i,=4+jO 0v-I+JO

S• -30-- -20- -10 0 dD
I
II

Figure 2.17: Normalized bistatic scattering pattern of coated cylinder : TE2 case
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(p,~b &=2o d .O.2)ho5
k.p= 30

I
-30 N -20- -10 (do

Figure 2.18: Normalized bistatic scattering pattern of coated cylinder TE= case

- ~kob=20 d=04A0

kop' = 30

=!

t,4+jO ur=1+10

- 30--0--0 0 Odo

IFigure 2.19: Normalized bistatic scattering pattern of coated cylinder TE caseI
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I = ,20 = 0o ,.5

3. /P kop =30
kop = 00

4 +( , O;, I+j

30 2 0 10 itd

II

I Figure 2.20: Normalized bistatic scattering pattern of coated cylinder: TE, case

3 kb= 20 d= 0,7.;k

4~p = 30

3 hoP =

I -2_.0- -10- o,4I

Figure 2.21: Normalized bistatic scattering pattern of coated cylinder : TE, case
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CHAPTER III 3
GTD SOLUTION I

Ray-optical solutions for the field scattered by the impedance and the coated 3
cylinder are obtained in this Chapter. For the perfectly conducting cylinder, Keller

[1] developed an asymptotic solution to this problem and interpreted it in the ray- U
optical terms within the framework of his geometrical theory of diffraction (GTD).

Even though the boundary conditions to be considered are different, the same pro-

cedure as that for the derivation of GTD solution for the conducting cylinders can 3
be taken to deduce the GTD solutions for the impedance and the costed cylin-

der. First, the field representation in the angular eigenfunction series as given in 3
Chapter II is transformed into the integral form. Then, the integral is evaluated

asymptotically via the stationary phase method or the residue theorem. 3
It is noted that the behavior of high-frequency field is characterized by various

geometric optical domains as illustrated in Figure 3.1. Separate analysis is given U
for each geometric optical domain as the field representation has different format

according to the region where the field point is located. Lit region(I) and shadow

region(Ill) are separated by the shadow boundaries (SB) according to the illumi-

nation from the source. Small angular ranges adjacent to the shadow boundaries

which are indicated as shaded region(II) are the prenumbral or transition region. 3
The solution obtained in this Chapter is not valid in this region. The analysis for

the field in transition region will be given in Chapter V. In this analysis, we also 3
exclude the surface or caustic boundary layer region(IV) which is in the immediate

30
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vicinity of the cylinder surface.

As mentioned, Keller's pure ray-optical solution fails within the transition region

adjacent to the shadow boundaries. The failure of Keller's GTD solution has been

overcome by the development of a uniform version of GTD by Pathak [3]. Hence,

it may seem to be obsolete to develop the pure ray-optical solution for our problem

which will inevitably fail in the transition region. Nevertheless, it appears that the

ordinary GTD solution is a necessary step to be taken for the development of the

uniform GTD which will be discussed in Chapter V. This is because the ray format

to be used in the uniform GTD solution comes from the ordinary GTD solution.
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TRANSIT ION38. B•,,!REGION (31)

-. L LIT REGION (1)I

/'// I

SHADOWSOURCEREGION (MD)

bI
- SOUNDARY LAYERSSW REGION (]Z)

I
S. |.• TRANSITION

" ~REGION (31)i

I

Figure 3.1: The geometric optical domains I
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I
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3.1 Integral Representation of the Field

I As discussed in Appendix A, the field representation in the eigenfunction

series form given in Chapter II can be transformed into an integral form. The

eigenfuntion series solution of interest has the form given by

G(p,) - •= • B.,h(n)exp(-jn4) (3.1)
I 1=-0

where B.,h(n) depends on the polarization of the incident field and the subscripts

I a and h corrrespond to the TM, and TEz cases respectively.

From Equations (2.13), (2.19), (2.35) and (2.46), Bh(n) is given as

BHl(o< + Fs~(n)H(2 kp(3)

Bih(f) = 8 7ZkoiO>1 H 1)(kP) ah H 1 )P) 32

From Equation (A.3) in Appendix A, the eigenfunction series can be transformed

into the integral representation.

I ~00.f
_ B.,h(nf) exp(-jnO) B=h(V) exp[-jv(o - 701 dv (3.3)3 n=-oo 2 sin vir

where C, is the contour which encloses the lower half of complex v-plane with a

large semicircle. From Equation (3.2), BI,h(v) is given by

1B.,h(v) = 8- H( )2 (kop>) [H~'(o< .h(v) H( i)(k,,p<)] (3.4)

I
andivl'kb -_ jC. V

I4 2 )'(k~b) - JC,'h(v)H(2 )(kob)

* 33
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For the impedance cylinder,

--() 'O z f or TM2  (3.6)

anid 

Ii

ChM =)Ch ! for TEz (3.7)3
20

For the coated cylinder, C.(v) and CIL(v) are given as3

C.(z') Z0 H11')(k'ib)Hgt, 2)(kla) -H R,"'(k~b)H('."(fr T 2

H1 9/(kkb)HJ4,2 (kla) - H,¶. 2 (k~b)Hi( "(kja)

and

.Z1  Hv '(klb)Hv9 1 (kja) -Hv2)(kbH1)1(ja
Ch(M -*1-. H1-kbH~ ka for TE2

Hv.1'(kib)H.(,"(kjo) - H."kbH )(kla)

(3.9)

It is noted that H!.'(z) -e/H)(z) and H!()=e-vjHt 2 )(z), there-

fore, it can be easily seen that B,, is an even function of v' (i.e. Bl~h(-V) 3
B#,h(i) )

From the Equation (A.5) in Appendix A,3

U =-j1202. BO,h(v) Cosn &'(0 -W) dy (3.10)1

U= _ VO~ fl2( cp) [iiI,)(koP<) + F.,,(i')iii 2 )(k-P<) i]" ~ "dvI

34U



(3.11)

It is noted that

Cos-Jv( -+W) + e-i•v(2r-O)
cosn v(- + . ( e-j2,,*, (3.12)

Thus, the integral representation of the field can be decomposed into two terms as

I
u = UO + uCW (3.13)

where

S= 8;f '; HV (koo>) [HZ(,'(kop<) + F,,h(v)Hv2)(kop<)] e-j)Odv (3.14)

and

00 ('H~2 (kp) [Hz(ul)(kop<t) + F.,h(v)Hj(2)(kop<)]

x e -v(2 w+) e-j2 dv (3.15)

It has been out [13] that u' in Equation (3.14) contains all the geometric-

optical, transition and the dominant diffraction effects. In the following sections,

3the integral in Equation (3.14) will be evaluated asymptotically via the stationary

phase method to yield the geometric-optical fields in the lit region. A residue

series solution for the integral gives the creeping-wave representation in the shadow

3_ region. The lit and the shadow region separated by the shadow boundary (S.B.)

are indicated in Figure 3.1. The term ucw represents multiply encircling creeping

3- waves, which will be discussed later in this Chapter.
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3.2 Field in the deep lit region - G.O. field a
Lit region is in the angular range of 0 5 101 < O'ab, where the field point i

is in the line of sight from the source. In this region, the asymptotic evaluation

of u* given in Equation (3.14) leads to geomeric-optical fields: incident field ui i
and reflected field u'. It should be noted that this solution is valid in the deep lit

region excluding the transion region in the vicinity of the shadow boundary. For

simplicity of calculation, we assume that p < p'. For the case of p > p', the same 3
procedure can be taken to obtain the same result.

Equation (3.14) is decomposed into two terms as 3
0,=_=, +02 (3.16) 3

where 3
U f['1 H( 2)(kop')H(i)(kop)ejP",dv (3.17)

and i

2 J00.-je F*,I(v)H.)(k~p )H.' (kop)e)j&'dv,(.8

3.2.1 Evaluation of uI

Equation (3.17) can be asymptotically evaluated via the stationary phase

method after HP(2 (kop') and HV( )(kop) are replaced by their asymptotic ap- 3
proximations. The problem with this method is that the Hankel functions have

different asymptotic approximations in the different regions along the path of the I
integral where v changes from -oo to +oo. Therefore, strictly speaking, it is neces-

sary to devide the integral path into several sections according to the valid regions

of the approximation, which makes the evaluation cumbersome. To circumvent 3
36
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this difficulty, an alternative method will be employed to obtain the same result.

First, we represent H,2 )(kop') and H1~,(kop) by their integral form.

H(2)(kop') f= 2 exp(-jkp'since + jva) dcr (3.19)

3 and

= - /kop exp(-j kp sin 0 + j Pfl) dj3 (3.20)
7 ir

l The contour C 1 and C2 are depicted in Figure 3.2. After replacing Hp•2)(kop') and

HV(1)(kop) in Equation (3.17) by their integral forms and rearranging the integral,

3 we obtain

U1 = • IC2 Aexp(-jkop sin 3 - jkop' sin a)

,,x {f exp[,,(iv + - 0)]d., dfl da (3.21)

Assuming that a and 3 are real variables, it can be seen from the well-known

3 relationship of the inverse Laplace transformation that

- 0)) = +jexp[aj( +)3 - 0)] ds
[o-.exp[jv(ck + 3- q5)j d,, -yI(-30

i --2b(a+ +3-) P (3.22)

3 Incorporating Equation (3.22) into Equation (3.21), we obtain

3 = ?±- f- exp[-jkop'sin a - jkopsin(O - a)] da (3.23)

I3
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I In obtaining Equation (3.23), we assumed that a - a lies on the contour C1 .
* Thus,

- 7 < O- a < 0 
(3.24)

Asymptotic evaluation of the integral in Equation (3.23) can be easily obtained

I via the stationary phase method. Equation (3.23) can be rewritten as

U- , expjjkop'4(a)j da (3.25)

i where

I(a) sin a - sin(O4 - a) (3.26)

3 At the stationary point, V'(as) = 0, therefore, the stationary point a, is detor-

mined by the relationship

V(as) =t(-)c Os+ cPs(4) - aC) = O. (3.27)

The stationary point should lie on the contour C2 in order for uO to have nonzero

value. Therefore

1 0 < a, < 7r (3.28)

3 From Equations (3.24) and (3.28)

I 4 Sa, < V (3.29)

I It was assumed p' > p and 0 _< 7) r i. Thus, it can be shown that in order

for a, to satisfy the given condition in Equation (3.29)
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U

1 4, <Cos- P~ (3.30)U

Thus, u' contributes only when the above condition is satisfied.

Final result of the asymptotic evaluation of the integral yields

:: -/2exp[?ko(p sinfl. - p' sincas) + j-111 (3.31)
4/kop' sin as - kop sin fl

The physical meaning of the stationary point is illustrated in Figure 3.3. From the

3 Figure 3.3, we observe that the distance from the source to field point is given as

1 1= IP1 -ii" = pA sinap - psin(a, -4,) . (3.32)

Therefore, ut can be expressed as

Ie-rj• e-jkot
U e ek for 0 4,< cos- 1 (e) (3.33)

From the above result, we conclude that uO is the direct incident field from the

U source to the field point for 0 < q, < cos-1 (p/p'). In obtaining above result,

the integral representations for the Hankel functions are used instead of the Debye

approximations. Even though the same result can be obtained by using the Debye

3 approximations, this method is mathematically more rigorous.

Note that uO is independent of the boundary conditions of the cylinder. Thus the

3 result obtained here can be applied to both the impedance and the coated cylinder.

4
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3.2.2 Evaluation of u42

In this section, u' in Equation (3.18) is evaluated asymptotically via the sta-

tionary phase method. The alternative method used for the evaluation of u* can

not be easily applied here because F,,h(v) in the integrand is a function of V. 3
Therefore, we replace the Hankel functions in the integrand by their asymptotic

approximations. It is noted that the Hankel functions in the integrand have dif- I
ferent asymptotic approximations according to the changing values of V alone the

contour path. In order to take a mathematically rigorous procedure it is necessary

to divide the integral path into many sections because the integrand of Equation 3
(3.18) has Hankel functions with 3 different arguments ( kop, kopt, kob ) for the

impedance cylinder and the 5 different arguments ( kop, kopt, kob, k1a, k1 b) 3
for the coated cylinder. To simplify the procedure we first divide the integral into

two terms as I

0U2 1l1 + 12 (3.34) 3
where

-,h(v)H. (kop )H (kop)e-J" dv (3.35)

and U

12 f " - - (v)Hv" (kop )H(=)(k°P)e-j"Odx (3.36)

Evaluation of .1"I

First, we assume that the asymptotic evaluation of the integral depends only

on the stationary phase point and therefore the contribution from the end point 3
at v = kob can be ignored. This assumption is valid when the stationary phase

4
42
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_ point vs is not close to k0b. When the field point is in the deep lit region, it can be

shown that the stationary phase point is located far enough from k0 b. However,

as the field point approaches the shadow boundary, this assumption is no longer

valid. The case when the vs approaches kob will be discussed ;n Chapter V in the

treatment of the field in transition region.

Assuming that v is not close to kob in the given integral path of Equation (3.35)

where kob < Re[v] < oo, it can be observed that

II
HP)(kob) -, -H1¶?(k~b) (3.37)

Thus, from Equation (3.5),

Fsh(v) r 1 (3.38)U
Therefore, II can be simplied as

' -i0 H•2)( (kop')H(2)(kop)e_•t, dv (3.39)
8 Jkob- jE 

p V

The integrand in above Equation (3.39) includes two Hankel functions, H(2)(kop

U and H,2 )(kop). As remarked before, they have different asymptotic approximations

along the path of the integral. Here, we make another assumption that both p'

and p are large enough that the stationary phase point v, is always located such

that;

<< and << 1 (3.40)

This is a reasonable assumption because the field in the surface boundary layer

region(IV) of Figure 3.1 is not of interest in this analysis. From the Debye approx-

3 imations of the Hankel functions for this range of v
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.Mt?) (kop')H&42 )(kop) 2j expj-jkop' sin a- jkopsin i9+ jL/(O+ ,)] 31

whe e t o 
Vp 'psin a sin / 3

where a = co$-l(v/kop') and 3-cos-'(P/kop). 3
Therefore, "1 can be approximated as

f expfkp'in ) s dv (3.42) I
where $(v) is defined as

-(t) sina - P sinp + v(a (3.43)

and C1, denotes the integral path of v subject to Equation (3.40) and the condition 3
that lv,/kobl >> 1. At the stationary phase point, *'(v,) = 0. Therefore, it can

be easily shown that 3
as +08. =4) (3.44)

where a, = cos-l(v,/kop') and fl, = cos- 1 (v,/kop). Physical meaning of the

as and f3, is depicted in Figure 3.4. It is important to note that both a, and #3,

should satisfy the condition; I

0 < Re[a,] < 7r and 0 < Re[104 < 7r (3.45) 3

It can be verified that in order for ap and #3, to lie on the integral path Cy subject

to the above condition, the following condition on 0 should be satisfied

cos •_) < Ob (3.46)
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where I

d'b=Cos-1 (ý,) + Cos-' OP) (3.47)3

For the region where 4 satisfies the above condition, the asymptotic evaluation of 3
the integral in Equation (3.42) can be obtained via the stationary phase method.

The result is given by

J r 'j eI expl-j(kop' sin as + kopsinj.)J (348) 1
Jko,,'sin e, + kop sin jA

Front the Figure 3.4, it can be seen that I

I= 1P- P1 = P, sin % + psinf0. (3.49) I
Therefore, I

: v/z j41 - for cos-' < € < O,b (3.50)

Thus, it is shown that Ij gives the same result as the evaluation of u4 for

0< 4, 5 cos-1 (p/p'). 1

3.2.3 Incident field

We conclude from the results we obtained so far that the incident field ui

consists of two terms. For 0 :5 4, < cos-'(p/p'), u' comes from the asymptotic 3
evaluation of u.1 given in Equation (3.33) and for cos-'(p/p') S 0 < 4•,4, ui

comes from the evaluation of I1 in Equation (3.48). Consequently, we obtain the

incident field ui for the lit region (0 5 4 < #.b) as

e-jT e-jk!

Ui C- e-jk* for 0 < 0 < 0A 3.z
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I - This result is valid for both the impedance and the coated cylinder. In fact, the

direct incident fromi the source is independant of the boundary conditions of tile

scatterer. It should be emphasized again that these results are not valid when

the field point is close to either the shadow boundary (S.B.) or tile surface of

the cylinder where the Debye approximations of the Hankel functions cannot be

* applied.

3.2.4 Evaluation of 12

A similar procedure as used for the evaluation of I can be applied to obtain

the asymptotic solution for 12. First the Hankel functions in the integrand are

replaced by their appropriate asymptotic approximations and then the stationary

I phase method is used to obtain the final result.

12 Jkb-jrF,,h(v)H(2 )(kopI)H 1 9)(kop)e-Jvd, (3.52)

I Fsh(V) in Equation (3.5) can be rearranged as

Fh(v) (H¶.)(kob) - (kob)/H1 (¶,1 (kob) - JCh(v) (353)
(H,9(kob) RV Hi 2 (kob)/H,2 (kob) - XC1 ,&()),

We define S,,h(v) as

I Ss,h(v) = H),'(kob)/Hi' (kob) - iC,,h(v) (3.54)
Hv kobl~v (kb)- jCj~h(v)

From the Debye approximations of the Hankel functions, it can be shown that for

-oo < v < k 0b,I
2

I,'(k,,b)~ ; rký silln exp [(kob sin -y --yv -. 1 (3.55)
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I

2 -j exp[2y(kobsin -y - -v)] (3.57)

H9(k,'(0b ) 3

Hn.')(kob) •n (3.58) 1I
and

Hn(,)'(kob) •-j ep2inb i - y (3.57) I
n(2)( o)Hv~(kob)

where y -- cos-(s/kob). -

Thus, Fa,h(v) and S.,h(v) can be simplified as 3

FH,h(v) • -jexp[2i(kobsin7 - S.,k(v) (3.60)

where

Ssh(v) sin-y - C,,h(v) (3.61)

Bi,• l Y + C,&(z,)

Substituting Equation (3.60) into Equation (3.52), we obtain

12 k -- -- je Soh(v) H(2)(kop')Ht(.2 )(kop) exp[2j(kobsin y - -yv) jvoj dv I
(3.62)

By using the Debye approximations for HI, 2)(kop') and HvI2 )(kop), 12 can be ex- I
pressed as

48
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i - kbi S,1h(V)
12 k- . -J_ , n n expljkop'"$(v)} dv (3.63)

where

Np2b .

't~) sina- P sinI3+ Lb s1in y+V( +j - (3.64)

The derivatives of t(v) with respect to v, are given as

V d-V) = 1(2- - a - 0 + (3.65)

and

ti(m d2 t(v) 1 ( 2 13.66)Sdv2 -- kopl kob sin -y kopl sin a kop sin 1

SIn order to obtain the derivatives, we used the relationship

v = kop' cosa -" kopcos/3 = k0bcos 7  (3.67)

therefore

da - d,8 -1 d7 -1
dV kop ' sinfa dv 'kpsin/i dv kobsin -f

I The stationary phase point v, is determined by the relationship given by

Ia, +/#a - 2'7, = 0 (3.69)

I where a, = cos-1 (vs/kop'), f3l = cos-C(v,/kop) and -. = cos-'(vs/kob).

5 At the stationary point va
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p I

(VP) =2 sin -f - sin ao -f sinf3o (3.70)

and

2 1sicz (3.71)1
= -' (obs0in7. as kopuinl8

The physical meaning of the stationary phase point is depicted in Figure 3.5. It I
should be noted that

0 < Rejcr] <ir, 0 < Re#) 5] (r, 0 <Relysi S ir (3.72)

From the Figure 3.5, it can be seen that3

p'sinas > bein'y8

psinfl3. > bsin-fe (3.73)1

Therefore 3
Psinas - b sinfl. psn °- bsin f# > 0 (3.74)
kop'b sin as sin -ts lc0pb sin 13. siny.-y#

The asymptotic evaluation of the integral using the stationary phase method leads

to the result

12 ;ý Ss~~s ; A expd V*si-y - kopsinf - 5.#fl naj
I

'x b2~'sn~sn3 sin )e 3.5V 2kpp sin as sinfl# - kopb sin P, sin -y# - kOp'bsin as sin y (

After the rearrangement of the above equation, we obtain
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vr e2 expl-j(kOP sin a* - )Obuinj'f))I
~ ~ VI kop'sin as - kob sin y.

bsin-yO(p'uinas - bsin-t,)
~J2(p' sinas - bsinvf.)(psinfls - bsin-yj) + buiri'.(p'sinas + psin/3. - 2boin-yo)

x exPI-j(kop sin flo - kob sin -y,)] (3.76)

From the Figure 3.5, we observe that

11 p' sin a, - b sin yp (3.77)I

and

12 p sin #a - bsinyp (3.78)

Thus, 12 can be expressed as3

12 v 2- r cik ) l21112 + (11 + 12)b sin -Ye kl2(.)I

2V~~,~ri S.hQ'. /52b~fy
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II 3.2.5 Reflected Field

I The result of the asymptotic evaluation of 12 as given in Equation (3.79) rep-

resents the field reflected on the surface of the cylinder. From the result obtained

in the previous section, it is clear that

I 2A e•i = ui(Q) (3.80)

where u'(Q) represents the incident field at the specular reflection point Q as

shown in Figure 3.6. From the comparision of this result with the ray format

of the perfectly conducting cylinder it is apparent that Sah(vs) represents the

I reflection coefficient Ro,h.

i Thus Equation (3.79) can be rewritten as

r__ _-s• ejko12 (3.81)

2--2x/• vio V 21112 2+ (11 + 12)bcos 8i

We define Sp as

I SP V 211 2 + (11 + 12 )bcos Oi (3.82)

It can be easily identified that Sp is the usual spreading factor associated with the

I reflection field from a curved surface, which is given as

SP 2 (3.83)I P 7 +12

where the reflected ray caustic distance p; can be calculated from the relationship,I
1 1 2

p7  !+ bcos91  (3.84)
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The spreading factor Sp accounts for the spreading of electromagnetic energy after I
the reflection occurs.

Thus, the ray format for the reflected field can be expressed as

Ur = u (Q)• R,,h . SP C-k012 (3.85) I
It is interesting to observe that the ray format for the reflected field associated

with the impedance or the coated cylinder remains the same as that associated

with the perfectly conducting cylinder.

Reflection coefficient Rh I

Since the reflected ray should satisfy Snell's law of reflection, the incident 3
angle 8i must be equal to the reflection angle -O at the point Q in the Figure 3.6.

From the physical meaning of the stationary point -ye, it is noted that '2 - 0, 3
(i.e. sin-ts = cos 6i). Thus, the reflection coefficient for the impedance cylinder is

Rs,h = $.,h(v-) "- cos"i - C.,h (3.86)

cos5, + C.,h

Substituting the Equations (3.6) and (3.7) into Equation (3.86), the reflection

coefficients for the impedance cylinder are given as

Zo - Z0 cos 8i for TM. (3.87)R•-Z'o + Z'P Cos ei

and
zo - ZO/ cos Oi for TEz (3.88) 1

Rh • Zo + Zae/ Cos Oi

Note that the reflection coefficients of the impedance cylinder are the same as the

well-known reflection coefficients for a plane wave incidence on a infinite ground
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plane with surface impedance Z.. 3
As given in the Appendix B, the reflection coefficients for the coated cylinder I

can be obtained by the asymptotic approximation for S,,h(v.) using the Debye

approximations of the Hankel functions. The results are summerized as follows

R. = - Zo- jZj cosUi/ cosej tan{P(abkl)} for TM (3,89)
Zo+jZicos6i/cosfOt tan{f(a,b,kj f(

and

Rh = Zo-jZjcos~t/cosUi tan{f%(a,b,kj)} for TE (3.90)
Zo + jZj cos6t/cosgi tawi{l(a,b, kj)1 f

where Z 1 represents the characteristic impedance of the coating material (i.e.

ZI Vf 7 ) and 8i and O0 are the incident and the transmission angle of the I
wave at the air/coating interface. *(a, b, k1 ) is defined as

T'(a,b,kl) E kl(bsinpb - asinfla)- kob( S3b - a)sin9i (3.91) 3
where

siIb =- Cos Ot= I - (Lsgin9i 2 (3.92)

and

sinf 1 1--O2lb sinei2 (3.93)

Comparing the reflection coefficients for the coated cylinder with those for the

impedance cylinder it can be observed that the equivalent impedance of the coated

cylinder associated with the reflected field is
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S-)= jZ 1 tan{I'(42,b,Cko)} for TM. (3.94)

and

a Zeq(0) = jZcosOttan{('F(a,b,kl)} for TEz (3.95)

I This result shows that the equivalent impedance is not only dependent on the3 polarization of the incident field but also on the incident angle at the reflection

point. Therefore, it is apparent that the constant surface impedance cylinder can

I not be appropriately used for the equivalent model of the coated cylinder. However,
it will be shown later in this Chapter that the equivalent impedance in association

with the diffracted field is constant along the cylinder surface. For the thin coating,

it can be seen that 3a O ,b and therefore T(a, b, kj) can be approximated as

'I'(a,b, kI) ; k,(b- a) sinfla = kldcosOt (3.96)

Thus, for a thin coating, Ro and Rh can be approximated as

iR. = - Zo-jZlcosOi/cosOt tan(kldcosej) for TM (3.97)IZo +jZjcosOi/cos6j tan(kldcos O)

* and

Rh = Zo -jZ 1 cosOt/cos6i tan(kldcosOt) for TE (3.98)

Zo+jZjcosOt/cos81 tan(kjdcos6t)

and

tan(kj d cos Oj) for TMIý (3.99)
cos 8,

I
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S~I

Z' 9 ( )=jZjcosGttan(kidcos~t) for TEz (3.100)

It can be noticed from Equation (3.97), (3.98), (3.99) and (3.100) that the re-

flection coefficients and the equivalent surface imped'-nces of the coated cylinder

coincide with those of the grounded planar dielectric/ferrite slab with plane-wave I
incidence [7]. This result is consistent with the postulate of the GTD solution that

the reflection is a local phenomenon at high frequency. 3
It is well-known that the reflection coefficients for the conducting surface are

fixed to ± 1 regardless of the incident angle 6i at the reflection point Qr. However 3
for the impedance cylinder, the reflection coefficients are dependent on the incident

angle 6j and the surface impedance Z,. For the coated cylinder, the refection

coefficients are dependent on the incident angle Bi as well as on er, pr and thickness

d of the material coating. Figure 3.7 and 3.8 illustrate the change of R,,h of the 3
coated cylinder as E,, Pr and d changes for the normal incidence (i.e. 8i = 0).

For the lossless material coating where both er and lir have real values, it can be I
easily seen that the phase of R.,h changes as d changes but 1R,,hl = I regardless I
of coating thickness. Physically, the phase of Rsh accounts for the lagging of the

reflected field. If there exists a loss factor in er or ur of the coating material, IR,,h 3
can be smaller than 1. Consequently, the magnitude and the phase of the reflected

field can be controlled by proper choice of the relevant parameters (i.e. f Pr, Wild

coating thickness d).

I
I
I
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3.3 Field in the deep shadow region

In this section a ray format for the field in the shadow region is obtained for

both the impedance and the coated cylinder. As discussed in the previous section,

the behavior of the geometric-optical field (i.e. incident field and reflected field)

for the impedance and the coated cylinder are almost the same as for the perfectly

conducting cylinder except for the difference in the reflection coefficients. Manifest

3 effects of the surface impedance and the coating of the dielectric/ferrite materials

can be observed in the diffracted field in the shadow region.

3 The diffracted field is entirely associated with the creeping wave on the curved

surface of the cylinder. The creeping wave which propagates azimuthally on the

I cylinder surface carries the electromagnetic energy into the shadow region. A

detailed discussion of the characteristics of creeping wave will be given in the next

Chapter.

3.3.1 Residue series solution

The diffracted field can be obtained by a residue series solution for the integral

representation of the field given in Equation (3.14). As discussed in Appendix A,

3 the residue series representation of the field is the result of a Watson tranformation

of the field given in eigenfunction series form. As illustrated in Figure 3.9, the

integral path of the Equation (3.14) is deformed such that the contour CZ encloses

the lower half of complex v-plane with a large semicircle. It can be shown that the

3 contribution from the arc of the large semicircle vanishes as its radius approaches

infinity. Thus, one obtains

= #~ H~~kp)[ff()(k,,p<) + F5 h(v)HRY )(kop<~)]O ()kp2 ejv4 Odz, (3.101)

I
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I The integral in Equation (3.101) is now evaluated using the residue theorem. Be-

fore we use the residue theorem, the poles of the integrand must be found. The

poles of the integrand come only from the poles of Fjh(v). From the Equation

3 (3.5), the poles of Fs,h(v) are obtained by finding the roots of

H,,) (kob) - JC=,h(vn)HV,)(kob) = 0 (3.102)

3 Equation (3.102) is referred to as transcendantal equation. A detailed discussion

of the roots of the transcendantal equation is given in Chapter IV. The residue

I series solution subject to Equation (3.102) is

7r (2) ,(2) HI/h,, (kob) -iCs,h(,v.)H-()(kob)
4n=1 [-H2(kob) -jCs,h(v)l)H'?(kob)]

I • V=vn

(3.103)

3 This equation can be further simplified by using the Wronskian of the Hankel

functions. From the relationship of the Wronskian,

II [Hv2(kob),H")(kb)] = H,')(kob)Hv-'(kob) - H(' (kob)H,2(kob) =

(3.104)

From Equations (3.102) and (3.104), it can be easily verified that

S(1)' ()4

H,, (kob) - jC*,h(vn)H(,, (kob) = () (3.105)irkob Hn (.)kob)(.0)

I Hence Equation (3.103) can be rewritten as

-00" U(2) , (2)
I = . v, (koP, )Hn (kofp) e -j"' (3.106)= o--b (2) (2) (2

I HIn-(k"b)U [Hv ('Cb) -iC8h(v)HZ¶(kob)]V=
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Due to the attenuation of the creeping wave, the residue series solution is fast 3
convergent in the deep shadow region. The symbol "co" is used to emphasize

that only a few dominant modes are enough to obtain the accurate result. It is 3
found that, for most applications, the dominant nth mode in Equation (3.106) is

adequate for the calculation of the field in the deep shadow region. It should be I
noted that the dominiant nth mode is not necessarily the first mode as for the

conducting cylinder. A detailed discussion on the dominance of the residue series

mode for the impedance and the coated cylinder will be given in Chapter IV. 3
As the field point approaches the shadow boundary transition region, the residue

series solution becomes slowly convergent. This is because the arc length of the 3
creeping wave propagation is short in the transition region and therefore even the

modes with high attenuation can no longer be ignored. 3
The multiply encircling wave ucw can also be obtained from the residue series

solution for the integral representation given in Equation (3.15). Thus, I

""CU" R (2) (k.P')J~) 1 (kop)JC .• TO_ E 2 n ,i ()

e-jvn(2x+o) + e-ivn(2r-O) (317x+ -f•= (3.107) 3
U

3.3.2 Diffracted field

Physically, the residue series representation of u0 as given in Equation (3.106) 1
can be interpreted as the diffracted field which explains the transmission of the 3
wave into the shadow region. However, the ray-picture interpretation can not be

obtained from the rigorous residue series solutions given in Equation (3.106). The 3
Keller type GTD ray format which gives the residue series solution a creeping-wave
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diffraction interpretation as illustrated in Figure 3.10 can be obtained by following

procedures. From the Debye approximation of the Hankel functions are

H~(2o) ý2r-'sn~ex - (kop'sin an -Cn (3.108)

and

va, ~(kop)~ 2o ilO exp T _-Y (koplsinfln -/6nvn-j) (3.109)3

where

an cos- -- (3.110)

and

on cos-1 (•-- (3.111)

Here, we make assumptions that an and O3n can be approximated by

I

and I

on cos- ) cos- (k) (3.113)

Based on the assumptions given in Equations (3.11?) and (3.113)
_ _I

kp' sin an = -(kop• - v2 '2•-b2 = k0oS (3.114) I
and
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kop sin 0, = (kop) 2 - Vn - p2 _-b2 = ko,2 (3.115)

As shown in Figure 3.10, sl and s2 are the distance from the source to the tan-

gential point Q1 and the distance from the tangential point Q2 to the field point

respectively. Therefore,

1(2) ,2 { kos I - VCOS- (3.116)

H~n(ko') ~k ,81exp -

and

H~(k)Aop) 7k08 exp{, [ý_2kos2 - v1/ os (f,) b - (3.117)

Substituting Equations (3.116) and (3.117) into Equation (3.106), ud can be ex-

pressed as

S-2j 1 e-jkosl e-jkO82

"ud . .. e-j 2

SE (). ) (3.118)n=i H•, (kob [H() (k•,=

As shown in Figure 3.10, 0 is defined as

8 cos () - cos- (b) (3.119)

Rearrangement of Equation (3.118) leads to Keller's surface diffracted ray format

for 2-dimensional case.

H d u• (Q•). 2, (vDs'h(Ql) . e-v1n ( . t(2)1} e (3.120)= ~n=1 V403120
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Thus I

•U ' i(Q 1). x {vn'h(Qi). exp[-(Cr, + jpi,)f_ V]" h(Q.)
n n Q2) (3-121)1n---1 V/0J2

where a,, and 6n' represent the attenuation constant and the propagation constant

of the creeping wave respectively. It can be easily shown that 3
an=-Im [!L] (3.122)3

II
,,,= Re [!L] (3.123)3

n, (Q) is referred to as the surface diffraction coefficients. For the circular cylin-

der, V.,'h(Ql) is equal to h,,j (Q2). From a comparision of Equation (3.118) and

Equation (3.120), the diffraction coefficient n'h(Q) can be expressed as 3

7vsh(Q) = r2 1 U-~
[V~ H(kb)n , [~)(k, ) -jC.*h(p)HP )(kPb j

(3.124)

Now it is clear, from the Equation (3.120), that the residue series solution can

be interpreted as a creeping-wave diffraction as illustrated in the Figure 3.10. 1
It should be noted that the ray path associated with the perfectly conducting

cylinder remains unchanged for both the impedance and the coated cylinder. As 3
shown in Figure 3.10, the incident rays which strike the cylinder at the tangential

points(Ql and Q2) with grazing angle launch creeping waves which travel along 3
the arc of geodesic path on the cylinder surface following Fcrmat ' principle. As
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I these creeping waves propagate, they decrease exponentially and continuously shed

* diffracted rays.

However, in using the ray solution given iii Equation (3.120), one has to be aware of

the approximations given by the Equation (3.112) and (3.113). For the conducting

cylinder, the dominant pole is determined such that vn k klcb. Therefore, the above

assumption is always reasonable if the source or the field point is not very close

to cylinder surface, where GTD ray solution fails. However, for the impedance or

3 the coated cylinder, the dominant poles are not always close to k0 b. Therefore,

the approximation given in Equation (3.112) and (3.113) are valid only when both

- pI and p are large compared with the radius of the cylinder (i.e. p' >> b and

3 p >> b). Unless both p' and p are large, a non-ray format as given in Equations

(3.106) should be used. This imposes an addtional restriction on the validity of

5 the GTD ray solution of the impedance and the coated cylinder.

For the perfectly conducting cylinder, the expression for VD' (Q) can be further

I simplified by using the approximation of the Hankel function in terms of the Miller

type Airy function. However, for the impedance and the coated cylinder where

3 the dominant zv', is not necessarily close to k0 b, Airy functions can not properly

approximate the Hankel functions involved in the expression of V n,(Q).

Ray format for the multiply encircling wave ucw can also be obtaind by taking

3 the same procedure as for the u'. It is interesting to note that

e-jvn( 2#r+) +e-jjn( 2 r-0) co -00

3 1- ej2vn= -e-jvn2p+,) + E ejs,,(2op+O) (3.125)
p=l p;=-1

3 Thus,

I ut"' u(Q). Z , I{vsh(Q1). e-jmn(21p+9) .vNq) i0
2:ý~ O UiQ 00" 2)

p=1 n=1
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+ lL1(QI). x ~ {Vh(Q1 ) . ejn2r~9 3 .126P= n1 (3.126) 3
Thus uCW consists of two terms. The first term represents multiple encirclements U
in the counterclockwise sense, and the other term represents those in the opposite

direction. As illustrated in Figure 3.11-(a), u° in Equation (3.106) represents the

diffraction field whicl, travels the shortest arc length on the cylinder surface in a 3
counterclockwise direction (i.e. p - 0). Recall that q is assumed to be positive

and less than 7r.

I
I
I
I

I
I
I
I

I
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Figure 3.11: Ray encirclements associated with the summation index p
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3.3.3 Equivalent impedance associated with the creeping wave of the 5
coated cylinder

In this section the equivalent impedance associated with the creeping wave of 3
the coated cylinder will be obtained.

It is noted C, and Ch for the impedance cylinder are given as

CS = Z- for TM ; h = I for TE (3.127)

Equivalently, C.(vu) and Ch(v,1 ) for the coated cylinder may be expressed as

C(V) Z for TM Ch(u) - .for TE (3.128)C.(vf) ZTM( ; ChZn =

where 78"(vn) represents the equivalent modal surface impedL.nce associated with

the diffraction field of the coated cylinder. From Equations (3.128) with (3.8) and I
(3.9) we obtain

z n = H ) (k r, H b)H "(ka' H'-(kjb)HQ)(kio) for TM3z~q(,,) = Z• .('),(kjb)H"d)(kj,).• - H&.'1) (k• b)H,',,(kia)

(3.129) 5
and

Z~q(vn)=j 1  Hv' (kjb)Hvl*,(kja) - H, (klb)HLP)(kia) Jo TEZ~~v,)= j~ "(1) (2)' a (2) ()
Hv, (kib)Htn (kja) - Hj~n-(kjb)Hva¶,Q (kja)3

(3.130)

As mentioned in the previous section, the equivalent impedance associated with the 3
reflected field of the coated cylinder is dependent on 0. However, these equivalent

modal impedance, associated with the diffracted field as given by Equation (3.129) 3
and (3.130) are constant along the cylinder surface.
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3.4 Numerical results and discussion

1 3.4.1 Numerical results

In this section, the GTD solution derived in this Chapter is employed to

calculate the electromagnetic field scattered from the impedance and the coated

3 cylinder. The geometry of the problem is illustrated in Figure 1.1. The two-

dimensional line source is located at O(p',O' = 0), and the receiver is located at

P(p, 4,). Plane wave incidence is the case when p' = oo. For the electric line source

excitation (TMZ case), the pattern is plotted for the total electric field intensity

3 E., and for the magnetic line source excitation (TEZ case), the pattern is shown

for the total magnetic field intensity H.. When the field point is in the shadow

I region as shown in Figure 3.12-(a), the asymptotic solutions employ two ray paths,

one is OQIQ 2P and the other is OQ'Q'P. For the field point P located in the lit

region as shown in Figure 3.12-(b), the ray path OQIQ 2P is replaced by the path

OQRP, where QR is the specular reflection point defined by Oi = 0,.

3 Typical results for the field patterns due to a line source radiating in the

presence of a impedance cylinder are shown in Figure 3.13 - 3.16. For the cylinders

3 with lossless dielectric coatings, the numerical results are shown in Figure 3.17 -

3.26. The field patterns due to a plane-wave incidence on the cylinder with lossy

I dielectric coatings and the lossy composite coating are shown in Figure 3.27

3.36. The results in each case are compared with eigenfunction series solutions.

The surface impedances of the impedance cylinders were chosen such that q = ±1

where q is defined as

3 q -jmCs,h where m 2 (3.131)

I i.e.
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(a) Shadow region

I

Pe I
(b) Lit region

Figure 3.12: Ray paths employed for the GTD solution 3
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q = -jrn- for TM, (3.132)ITo

3q = -jm o for TE2  (3.133)
Zm

I Thus the surface impedances chosen in the examples are pure imaginary (Positive

3 q represents capcitive impedance for TMz and inductive impedance for TEz and

negative q represents inductive impedance for TM, and capacitive impedance for

*TEz.)

U 3.4.2 Discussion

The numerical results of GTD solution as illustrated in Figure 3.13 - 3.36

show excellent agreement with the eigenfunction results in the deep lit region and

in the deep shadow region. However, as expected, the GTD solution fails within

the shadow boundary (SB) transition region. Neither Geometrical Optics solution

for the lit region nor the residue series solution for the shadow region are accurate

in the vicinity of the shadow boundary. These two solutions have a discontinuity at

the shadow boundary. The failure of the ordinary GTD sojution in the transition

region can be explained as follows. In the formulation of the G.O. field (i.e., the

incident field ui and the reflected field u"), an assumption is made that the Bessel

functions in the integrand can be approximated by their Debye approximations.

It is well known that the Debye approximation of H,1')(z) is appropriate on the

3 condition that

3 IV- zI > Iv•l (3.134)
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As the field point approaches the shadow boundary, the stationary phase point v8 3
on which the evaluation of the integral via the stationary phase method is based

is close enough to the argument z that the condition in Equation (3.134) is not 3
satisfied. In fact, in the transition region the Bessel functions are appropriately

approximated by their Watson's approximation formula where the Bessel functions I
are expressed in terms of the Airy functions. Another cause for the failure of the

ordinary GTD solution in the transition region comes from the fact that the con-

tribution from the end point at v = kob is not included in the evaluation of the

integral via the stationary phase method. In the transition region the stationary

phase point is located near the end point and, therefore, the contribution from 3
the end point can no longer be ignored. The residue series solution which is fast

convergent in the deep shadow region becomes slowly convergent as the field point 3
approaches the shadow boundary. This can be explained by the attenuation of the

creeping wave mode. In the deep shadow region, the creeping waves attenuate as I
they travel a large distance in terms of the wave length along the surface of the

cylinder. Therefore only a few creeping wave modes with low attenuation constants I
contribute to the field in the deep shadow region. However in the transition region,

the arc distance of attenuation of the creeping wave on the cylinder suface is so

small that even the creeping wave modes with high attenuation constant cannot 3
be ignored. Slow convergence of the creeping wave in the transition region makes

it difficult, if nol. impossible, to obtain the result with acceptable accuracy. 3
The failure of the ordinary GTD solution for the field in the transition region ne-

cessitates the development of Uniform Geometrical Theory of Diffraction (UTD) 3
which will be discussed in the Chapter V.

I
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Figure 3.13: Normalized bistatic scattering pattern of impedance cylinder
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Figure 3.15: Normalized bistatic scattering pattern of impedance cylinder
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Figure 3.16: Normalized bistatic scattering pattern of impedance cylinder
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Figure 3.17: Normalized bistatic scattering pattern of coated cylinder : TA: case
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Figure 3.19: Normalized bistatic scattering pattern of coated cylinder: TAi: case 3
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Figure 3.20: Normalized bistatic scattering pt•tern of coated cylinder :TE: case I
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I Figure 3.21: Normalized bistatic scattering pattern of coated cylinder: TMA case
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Figure 3.22: Normalized bistatic scattering pattern of coated cylinder TE, case
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Figure 3.23: Normalized bistatic scattering pattern of coated cylinder T.A: case 3
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Figure 3.24: Normalized bistatic scattering pattern of coated cylinder : TE: case
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Figure 3.25: Normalized bistatic scattering pattern of coated cylinder: TMI: case
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Figure 3.26: Normalized bistatic scattering pattern of coated cylinder: TE: case
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Figure 3.27: Normalized bistatic scattering pattern of coated cylinder: TAfz case 3
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Figure 3.28: Normalized bistatic scattering pattern of coated cylinder: TE. case
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I Figure 3.29: Normalized bistatic scattering pattern of coated cylinder : TAI case
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Figure 3.30: Normalized bistatic scattering pattern of coated cylinder: TE2 case
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Figure 3.31: Normalized bistatic scattering pattern of coated cylinder: T,•_: case
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Figure 3.32: Normalized bistatic scattering pattern of coated cylinder TE: case
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Figure 3.33: Normalized bistatic scattering pattern of coated cylinder: TM: case
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Figure 3.34: Normalized bistatic scattering pattern of coated cylinder: TE: case
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Figure 3.35: Normalized bistatic scattering pattern of coated cylinder: TM: case 3
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Figure 3.36: Normalized bistatic scattering pattern of coated cylinder: TE: case
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U CHAPTER IV

CHARACTERISTICS OF THE CREEPING WAVES

In the previous Chapter, the ray format for the diffracted field in the deep

shadow region was obtained. It is well known that the geodesic ray path of the

diffracted field includes part of the arc along the cylinder surface. The field which

propagates along the arc of cylinder surface is commonly called the creeping wave.

It is the purpose of this Chapter to further investigate the behavior of the creeping

wave on the cylinder surface. As mentioned, the effect of the surface impedance

or the coating of dielectric/ferrite material is more obviously illustrated in the

3 diffracted field than in the geometrical optics field (incident and reflected field).

This can be explained by the fact that the diffracted field is launched by the creep-

ing wave which propagates on the cylinder surface under direct influence of the

surface impedance or the coating material. Thus it is important to investigate

and understand the fundamental characteristics of the creeping wave before we

attempt to control the diffraction field from an object with the surface impedance

or the dielectric/ferrite coating.

3 For the perfectly conducting case, the behaviors of the creeping wave on the curved

surface has been extensively studied, and they are well understood now.

3 For the impedance cylinder, this problem has been also studied by Wait [17],

Streifer [18] and Logan[20J. They obtained propagation constants for the creeping

U wave based on the Watson's approximation where the Hankel functions are ex-

pressed in terms of the Fock-type Airy functions. In this Chapter, their results are
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reproduced for the comparision with our results. Recently, Wang 141 has obtained 3
more accurate numerical data for the propagation constant of the creeping wave,

the Regge poles, and the natural frequencies of an impedance cylinder by using I
both the Debye and the Watson's approximations of the Hankel functions. The

creeping wave interpretation for the resonance and the correlation between the

resonance, the Regge poles, and the natural frequencies of the impedance cylinder 3
has been also discussed. The propagation constants for the first creeping wave

mode on the cylinder with lossless coating has been obtained by Elliott[19]. 3
The most recent work on this problem has been made by Paknys and Wang 17,8.

They made an important contribution by giving some accuarate numerical results I

for thils problem. In the following sections of this Chapter, some part of their work

is further expanded by using basically the same numerical approximations for the I
calculation of Hankel functions involved in the formal solution. Some aspects per-

taining Lo the creeping wave which were not treated in their work are also discussed I

in this Chapter.

4.1 Propagation and Attenuation Constants

In Chapter 1II, it was shown that the ray format for the diffracted field is I

given as I
d i(Q1). vs,,h(Q 1 ). e-". 6s pah(Q2 )

=1(Qj). ,h(Q)n . - + .,(Q 2 ) (4.1)

From the above Equation (4.1), it can be easily seen that

a'. -Irm ;n] f'] Re (4.2) I
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3 Figure 4.1: Creeping wave
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I
a and /fl denote the attenuation constant and the propagation constant of the I
creeping wave mode respectively. The propagation constant determines the phase

velocity of the creeping wave and the attenuation constant represents the loss of

the electromagnetic energy due to shedding of the diffraction field and the loss due

to the surface impedance or the lossy coating material. The relative phase velocity

of the creeping wave vp/c is given by

YE ko kobI
-- = (4.3)

where c denotes the velocity of the light. I
The propagation constant and the attenuation constant are determined from the

roots of the transcendantal equation which characterizes the impedance or the I
coated cylinder as given by 3

g) (Jcb) - 3Cs,h(v)Hv (Akb)IJ = 0 (4.4)

The complex root of the transcendental equation denoted as vn is sometimes called 3
as Regge pole. It is well known that there exists an infinite number of roots for

the Equation (4.4). The subscript n denotes the mode number of the root. I
4.1.1 Impedance cylinder

For the impedance cylinder, Co,h(uv,) in the Equation (4.4) is given by I
zoCS(•,) =CS =O -•for TMf, (4.,5)I

Z'j

and

Ch(v) =Ch =- for TEz (4.6)
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Recent work by Paknys and Wang 17,8] shows a trajectory of the Regge poles for

purely imaginary impedances. In their work, the Hankel functions are evaluated

exactly as well as asymptotically by using both the Debye approximations and

the Watson's approximation according to the ranges of validity. The accuracy

of their results is fully confirmed by the excellent agreement between the field

pattern of the eigenfunction series solution and the field pattern obtained by using

their propagation constant. Following the same approximations for the Hankel

functions, the trajectories of the Regge poles for various complex impedances are

obtained as shown in Figure 4.2 for kob=20. Newton-Raphson's method has been

used for the numerical search for the roots of the transcendental equation.

It can be easily seen that for Csh=0, the roots of transcendantal equation are
(2f

determined from the well known zeros of HP (kob) which are commonly called

hard poles of the conducting cylinder. These hard poles are given as

-,n = 77n - kob + 2 /3 (4.7)

where /3n=1.0188, 3.2482, 4.8201, .....

For the small value of IC's,hl, the hard pole of the conducting cylinder can be

used as initial guessing of the root in the numerical search via Newton-Raphson's

method.

For Cs,h = oo, the roots of transcendantal equation are determined from the zeros

of H,(2)(kob) which are the soft poles of the conducting cylinder. They are given

by

wee = ( • •=ko8 +( Qk e-+T (4.8)

where *n=2.3381, 4.0879, 5.5205. .....

Figure 4.2 illustrates trajectories of vn as the magnitude of C.,,h increases where
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the phase of the C1 ,h is fixed. The trajectories of the vn can be obtained by start-

ing from the hard poles 17, and slowly increasing the magnitude of C,,h.

When the phase of Cs,h is between -270' , .-90', the impedance has a negative

real value and therefore, such a C,,h is nonphysical. Our interests are the cases

where the phase is between -90' - 900.

From Figure 4.2, we can observe two different type of behavior of the equiphase

trajectories for the first mode roots. All trajectoris of roots of the first mode start

from the first hard pole which is denoted as Til. For the case where the phase of

C5,h is between 70' - 90' in Figure 4.2, the real part of first mode root v1 keeps

increaing as the magnitude of C,,h increases. This means that the phase velocity

of the creeping wave becomes slower as the magnitude of G,,h increases. It can be

also noted that v1 does not approach the first soft pole ý1. We define such a root

as Elliott.type root.

For the case where the phase of C,,h lies between -90' - 65' in Figure 4.2, the

roots approaches the soft pole denoted as t1 as the magnitude of the C,,h in-

creases. We define such a root as Watson-type root. The boundary of the two

different types is somewhere between 650 and 700.

For the second creeping wave mode, all the roots start from the second hard pole

'q2. As the magnitude of C,,h increases, the equiphase trajectories exhibit three

different types of behavior. When the phase of C5 ,h equals 900 - 700, the root

approaches the first soft pole ý1. When the phase equals 65', the real part of V2

keep increasing as the maginitude of C,,h increases. For the phase of Cl,h between

600 - -90', the roots approach the second soft pole 62. Thus, except at 65' where

the equiphase trajectory exhibits Elliott-type roots, all other equiphase trjectories

of the second mode roots belong to the Watson-type.

Wait [17], Streifer [181 and Logan [201 also examined the roots of the tran-
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scendantal equation for the impedance cylinder. Their results are based on the I
assumption that the Hankel functions can be properly approximated in terms of

the Fock-tyDe Airy functions.

HV)' 2 (kob) :z T wl,2(7) (4.9) I
where

M kob(4.10)2I
and

=I, e dti3/3dt (4.11) 3
T'2 fr 1 ,2

The contour rl runs from oo. e-j 2 w/3 to oe - je, and r 2 is the complex conjugate I
of r1 . Based upon this approximation, the roots of transcendental equation are 3
determined from the roots of the equation given as

w2(r) - qu2(r)J = 0 (4.12)

where I
q = -jmC 5 ,h (4.13)

The root v,, is given by

v, = kob + mrn (4.14) I

Trajectories of the roots obtained by using this approximation is shown in Figure I
4.3 for comparision with our results obtained by using both the Debye and the
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q = -jmC,,, v,, from Figure 4.2 v,, from Figure 4.3

q-= - jO 21.919 - jO.38098 22.121 - jO.32760

q=I.1 - jO 22.246 - jO.28736 22.496 - j0.23492

9=1.2 - jO 22.598 - j0.20862 22.905 - jO.15897

q=1.3 - jO 22.975 - j0.14478 23.355 - jO.10006

q=1.4 - jO 23.380 - jO.09529 23.849 - jO.05769

q=1.5 - jO 23.812 - j0.05899 24.390 - jO.02987

Table 4.1: Comparion of roots

Watson's approximation. Sampled data of v, for q = 1 - j0 - q = 1.5 -J

obtained by above metod are compared with our results in Table 4.1. It cani be

observed from the Table 4.1 that there are significant discrepancies between these

two results. As shown in Figure 4.4, the accuracy of these propagation constants

are also tested by the comparision of the field pattern obtained by data in Table 1

with that of the eigenfunction solution for q = I -jO, q = 1.2-jO and q = 1.3-jo.

It can be observed from the comparision in Figure 4.4 - 4.9 that the approximation

of the Hankel functions as given iii Equation (4.9) is not appropriate when q is

larger than 1. This is due to the fact that for k'n - kobj > (&,n)1/ 3 , the Debye

approximation of the Hankel function should be used instead of the approximation

given by Equation (4.9).
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= 22.121 - ;0.32760

q= 1.-jO.

b b =3 A*,0
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Figure 4.4: Field pattern obtained using the L/n in Figure 4.3
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Figure 4.5: Field pattern obtained using the v,, in Figure 4.2
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Figure 4.6: Field pattern obtained using the &,,, in Figure 4.3
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Figure 4.7: Field pattern obtained using the v.~ in Figure 4.2
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4.1.2 Coated cylinder I

For the coated cylinder, Cjh(v) in Equation (4.4) is given as

Zo H,(l'(k b)H( 2 (kia) - (klb)Hl)(kla)

= .3~YHL¶,'(k~b)Hz¶,2 (k~a) -H¶
2 (kjb)H&)(kja)TMI

(4.15)

and

Ch Z 1 Hv '(kib)Ha 2(k 1 a) - HVi 2 (kjb)HP~,1 (k 1a) fo TE,

zi~ H,n(')'(kIb)Hz()'(kia)- H( 2)(kb)H( 1 )'(k 1a)

(4.16)

The propagation constants of the creeping wave mode for the cylinder with lossless 5
dielectric coating was first obtained by Elliott [19]. Recent work by Paknys and

Wang [7,8] also shows the trajectories of vn for the changing values of the thickness 3
of the lossless dielectric coating and the accuracy of their results is also proved by

comparision with the eigenfunction results. By using the same approximations for I
the Hankel functions as employed by Paknys and Wang, the trajectories of vn for

the general complex f, and complex pr are obtained and shown in Figures 4.10 -

4.13. 5
From the Wronskian of the Hankel function, it can be easily proved that I

lim CS(v) = oo for TMz (4.17)
a~b I

and

lia Ch(V) = 0 for TEt (4.18) I
a--b

This means that the propagation constant for the coating with zero thickness is I
the same as for the perfectly conducting cylinder and therfore, the well known
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I soft and hard poles of conducting cylinder can be used as the initial guess of

roots for the thin coating in the numerical search of vn via Newton-Raphson's

method. From numerical results given in Figure 4.10 -, 4.13, we can also observe

i two different types of behavior in the trajectories as the thickness of the coating

increases. When the real part of Vn increases (i.e. the phase velocity decreases) as

3 the coating thickness increases, we refer to this trajectory as Elliott-type. It can be

noted that the Elliott-type trajectory is obtained only when the coating material

I has a low loss tangent. For the material coating with a high loss tangent, the

trajectory of Vn represents the Watson-type. It can be observed that the Watson-

type Vn approaches a limiting point for each creeping wave mode as the thickness3 of coating increases. If the coating material has a high loss tangent, the field inside

the coating material decreases exponentially as the field point approaches the inner

3 conducting cylinder. Thus the field inside the coating material is confined to near

the surface of the cylinder. For this case, further increase of the coating thickness

3 does not affect the propagation and the attenuation constant of the creeping wave

mode. Figure 4.14 shows the relative phase velocity and the attenuation of the

I first creeping wave mode versus coating thickness. .Curves are shown for four

different sizes of the coated cylinder (kob=20, 40 ,100, oo) with coating material of

Ir = 5.1513 - j4.253 and pr = 1. The attenuation shown in Figure 4.14 represents

the attuation per meter at a frequency of 10 GHz. The creeping wave on the

cylinder with infinite radius (i.e. kob = oo) is, in fact, the surface wave on the

3 planar ground slab1 with the same coating material.

I

U 'The numerical data for the surface wave were obtained by Prof. Richmond of the Ohio State3 University.
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4.2 Dominance of Creeping Wave Modes

It is known that the coated cylinder supports an infinite number of creeping

wave modes. In this section, the contribution of tile different creeping wave modes

to the diffraction field is compared. The residue series solution for tile diffraction

field, which is obtained from the Watson's transformation of slowly convergent

angular eigenfunction series solution, is fast convergent in the deep shadow region.

Thus in the actual calculation of the diffracted field, one or two dominant modes

are enough to obtain a numerically accurate result. It is important therefore to

determine which mode is dominant over other modes. One should not conclude

that a certain mode is dominant over other modes simply because that it has a

smaller attenuation constant. This is because the magnitude of the diffracted field

is dependent not only on the attenuation constant but also on the diffraction co-

efficient given in Equation (3.124). For the perfectly conducting cylinder, the first

creeping wave mode is always dominant over all other modes and therefore only

the first mode is adequate in practice. This is partly because the first mode has a

lower attenuation constant than other higher modes. However, this is not always

true for the impedance or the coated cylinder. For the coated cylinder, the donmi-

nance of the creeping wave mode changes as the thickness of the coating changes.

Thus, for some thickness of coating, the second or even higher mode has a smaller

attenuation constant and a larger diffraction coefficient than the first mode and

therefore is dominant over the first mode. This fact is well demonstrated by fol-

lowing example.

Figure 4.15 shows the nomalized backscattering width of the coated cylinder. Tile

radius of the inner conducting cylinder is 35/27r A,0 (i.e., kob=35). A lossless dielec-

tric material with cr= 2 .5 6 and p.,=l is coated on the conducting cylinder. The

incident plane wave has a magnetic field parallel to the cylinder axis (i.e. TE.
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case). It is known that the distinctive ripples in the backscattered field is due to

the creeping wave resonance [4]. Furthermore, the resonances in Figure 4.15 can

be traced to the contribution of two creeping wave modes. I
For a very thin coating, the diffraction field is small due to high attenuation and

therefore normalized backscattering width is mainly determined by the reflection

field. As the coating material is lossless, normalized backscattering width is zero 3
dB for very thin coating. The resonance comes from the first creeping wave mode

whose trajectory of propagation constant (i.e. v1) as a function of coating thick-

ness is shown in Figure 4.17. The resonance from the first creeping wave mode

becomes negligible after the thickness of the coating exceeds 0.2 A,. For coating 3
thicknesses of 0.2 A0 -• 0.45 Ao, creeping wave is very weak compared with the

reflected field and thus has a negligible contribution to the total backscattering I
field. As the coating thicknesss increases further, the resonance originated from

the second creeping wave begins to appear in the backscattering width between

d = 0.45Ao and d = 0.7Ao. The trajectory of the propagation constants for the 3
second creeping wave mode (i.e. v2) is also plotted in Figure 4.17. Thus, the sec-

ond creeping wave mode plays an important role in the total backscattering field

for coating thickness of 0.45 A0 -" 0.7 A0 and disappears for further increase of

the coating thickness. It is also expected that if we further increase the coating 3
thickness, the third or even higher modes can be dominant. This phenomena can

be explaned as follows. I
The magnitude of the diffracted field depends on two factors; the diffraction coef-

ficient and the attenuation constant of the creeping waves. It turns out that, for I
the range from d = 0.2\o to d = 0.45Ao, even the attenuation is small (see Figure 3
4.17), the diffraction coefficient for the first creeping wave mode as shown in Figure

4.16 is insignificant to contribute to the backscattered field. In the same range, 3
the contribution to the backscatered field due to the second creeping wave mode is
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also mninimal due to the attenuation. However, when the thickness of the coating is

increased beyond 0.45Ao, the ateiiuation rate for the second creeping wave mode

drops significantly such that its contribution dominates the backscattered field. It

is of interest to point out that the thickness of the dielectric coating for the coated

cylinder at which the resonances begin to occur corresponds approximately to the

cutoff frequencies of the surface waves supported by the planar grounded slab [7].

Similar creeping wave resonances occur in the backscattering width for the TMz

case as shown in the Figure 4.18. The corresponding trajectories of the propaga-

tion constants are shown in the Figure 4.20 and the diffraction coefficients for the

TM, modes are shown in Figure 4.19. The explanation for the TE" resonances

also applies to the TMA case. However, it is found that the second resonance oc-

curing between d = 0.6A, and d = 0.75A0 as shown in Figure 4.18 comes from a

creeping wave with a different origin. Refering to Figure 4.20, it is seen that as the

thickness of the coating is decreased, the trajectory of this unusual mode does not

lead to the usual second creeping wave mode for the perfectly conducting cylinder

(i.e. ý2). It appears that there exist an additional set of creeping-wave modes

for cylinders with dielectric coating. These 'new' creeping-wave modes yield the

dominant contribution to the diffracted field when the coating becomes thick.
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4.3 Creeping waves on a large cylinder 3
In this section, we investigate the behavior of creeping waves on the coated

surface with electrically large radius of curvature. The investigation in this section

is prompted by an apparent discrepancy between the attenuation constants for the

creeping waves on a coated curved surface and those for the surface wave on a pla-

nar grounded slab. Referring to Figure 4.14, as the circumference of the circular I
cylinder is increased from 20 to 100, the attenuation constants for the creeping

waves do not approach the planar-slab limit. This contradicts past experience for I
the perfectly conducting cylinder with a lossless coating. The radius of the circu-

lar cylinder is increased to a even larger value in order to check the limiting case.

The attenuation constants were calculated for several cylinders with large radius,

and interesting results were obtained. Figure 4.21 presents the the roots of the

transcendental equation of the circular cylinder (b = 50A,, i.e. k0 b = 1007r) with

a high loss material coating (c, = 5.1513 - j4.253, pr = 1 - jO). In Figure 4.21,

the trajectories v,, for the first five of the infinite creeping wave modes are shown 3
as a function of the thickness of coating from zero to a final value of 0.1 A,. It

is observed from Figure 4.21, that the imaginary part of vn of the first creeping I
wave mode becomes larger than those of mode 2, 3, and 4 as the thickness of the i
coating is increased. The corresponding attenuation constants are shown in Fig-

ure 4.22. It can be seen that the attenuation constant for the first creeping wave 3
mode behaves like that of the surface wave associated with the planar grounded

slab as shown in Figure 4.14. The fields associated with the first mode are rapidly 3
attenuated to a negligible value. This phenomena does not occur for the smaller

cylinder (kob = 100 i.e. b = 100/21r A0 in Figure 4.14). The diffraction coefficient I
of each mode is also plotted in Figure 4.23. The dominance of the mode can be

determined by comparing both the attenuation and the diffraction coefficient of

I
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I each mode.

To further demonstrate the limiting case, numerical results obtained for a cylinder

with b=100 Ao, are shown in Figure 4.24 and 4.25. It is seen that the attenua-

tion constants of the first creeping wave mode for both cylinders (b=50 AO and

b=100 Ao) converge to each other and both approach the planar limit. Finallly,

the diffraction coefficients for the creeping wave modes of the coated curved sur-

face with a radius of 100 Ao are shown in Figure 4.26. Thus, in this section we

demonstrated the fact that the first creeping wave mode behaves the same way as

the surface wave associated with the planar grounded slab.
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CHAPTER V

FIELD IN THE TRANSITION REGION I
As seen from the numeriacl results of examples given in Chapter III, the GTD

solution fails within the shadow boundary (S.B.) transition region. The various

causes for this failure are also explained in Chapter III. In this Chapter, we at- 3
tempt to correct the failure of the ordinary GTD in the transition regions.

For a perfectly conducting cylinder, the uniform GTD solution which is often ab- -
breviated as UTD has already been developed and successfully applied to many

engineering problems. UTD solution for the curved surface was first introduced by 3
Pathak [3] for the canonical problem of plane wave scattering by a smooth perfectly

conducting circular cylinder. As its name implies, uniform GTD is "uniform" in I
the sense that it remains valid within the transition regions and it automatically

reduces to the ordinary GTD exterior to the transition regions where the ordinary

GTD becomes valid and accurate. Both GTD and UTD employ the same ray 3
pathes and thus both solutions have the same ray formats.

For the impedance cylinder, UTD solution has already been developed by a heuris-

tic extension of the UTD solution for the conducting cylinder [5]. For the cylinder

with dielectric/ferrite coating, the solution which gives a uniform result in the

transition region has not yet been developed. However, the fact that both the

impedance and the coated cylinder employ the same ray format outside the tran- I
sition region as for the conducting cylinder suggests the possibility that the same

uniform GTD solution developed for the conducting cylinder might also be used
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for the coated cylinder within the transition region. Based on this conjecture, we

heuristically generalize the UTD solution for the perfectly conducting cylinder to

both the impedance and the coated cylinder with necessary modifications in the

transition function due to the differences in the boundary conditions. The diffici-

culty in finding the uniform solution for the impedance and the coated cylinder is

that the numerical data for the transition function Ps,h, which, is well tabulated

for the conducting cylinder is not available. Instead of direct numerical evaluation

of the transition function, an exact eigenfunction solution together with the GTD

solution is used to obtain the necessary numerical data for f3s,h. The validity and

limitation of the heuristic method has also been tested by some examples.
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I
5.1 Uniform GTD solution for the impedance and the coated cylinder

In this section we generalize the uniform GTD solution for the conducting

cylinder to the impedance and the coated cylinder based on the conjecture that

the ray format given for UTD solution of the conducting cylinder can be retained to

both the impedance and the coated cylinder. The lengthy asymptotic analysis and

the ray format of UTD solution for the conducting cylinder are given by Pathak I
(3].
5.1.1 Lit region

From the result given for the conducting cylinder, the ray format for the

impedance and the coated cylinder in the lit region can be obtained by replacing

JP(C') with P(•t,q). Thus when the field point PL is in the lit region, u* is given

asI
asU(PL) 

• uPL) + ui(QR) I -ko2 (5.1) I
where the reflected ray caustic distance p' can be calculated from the relationship

1 1 2
'P- =I + -Cos, 815.2)

The subscript a and h denotes TM. (soft) and TE, (hard) case respectively. In

Equation (5.1), the surface reflection coefficient R,,h in the ordinary GTD solution

is now replaced by the generalized reflection coefficient 7Ia,h defined as I

EZ, exp (IT 11[ - F(X) + W, q'~)} (5.3)I

where

126

-- • •m II • •' IIII I



I

Fiur 5.:Fedip h i ato rniinrgo

I
I

I Figure 5.1: Field inl the lii part of transition region

1 = -2n cosi ; m 2 (5.4)

I and

XL = 2k-o 1112 cos 2O, (5.5)
11 +12

The relevant parameters Oi, 11, 12 and the specular reflection point QR are shown

in Figure 5.1.

I The transition function F(r) which involves a Fresnel integral is defined as
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F(x) -=2jv/x- ej IJ e-T 2 dr (5.6)

The transition function F(r) plays a key role in enforcing the continuity and I
boundedness of the total field at the shadow boundary.

The transition function P8 ,h(V,q), which is generally referred as the Fekeris caret

function is defined as

_ ji/4___I V'('r) - V(r) - r (57
%VIWr ,oo--,c W2(-) qW2(7)

where q is defined as I
q -= -jmCo,h(V) (5.8)

Thus for the impedance cylinder, q is a constant given as

zo za Iq =-jmy -• for TMz : =- jm~ f• or TEz (5.9)

However for the coated cylinder, q is a function of v. For the simplicity of the I
calculation, we assume that q can be approximated as

q .- -jmC8 ,h(vn) (5.10) 3
where vn is the dominant nth root of the transcendantal equation given in Equation

(4.4). The Fock-type Airy functions V(r) and WV2 (i) are defined as I
2jV(,r) = W1(r) - W2(r) (5.11) I

and
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e 7 Jrt12  /~3 d, (5.12)

The contour r1 runs from 0o e-j2,/3 to co - je, and r 2 is the complex conjugate

of rl. The transition function Psh(z,q) can also expressed in terms of the the

Fock integrals p*(x, q) and q*(x, q).

q*(x,{) 2 x '] e-u14 (5.13)

I 5.1.2 Shadow region

3 A ray format for the shadow region can also be obtained from the result given

for the conducting cylinder by replacing P(ý) with P(ý,q). When the field point

Pd is in the shadow region, the ray format for u° is given by

U u-(Pd) Z Us(Q) Ts h e3&002 (5.14)

I
From Equation (3.121), the transfer function Th for the ordinary GTD solution

is given as

I~s'h --- 1 •_,n T~;h(Ql) exp[-(a'n + j/3n')t]~n-" t sh(Q2) (.5

Ts,h ex[( ~ ~(5.15)

I where the diffraction coefficient Vn h(Q) is given by Equation (3.124). However, in

the unform GTD, the transfer function T5,h is replaced with a generalized transfer

function Tr,h defined as

7 a,h = -m e jk- {[+/
I
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U where

I=ma ; = = (5.17)

I2
Xd = ko 8182 _2

a81 + 32 2m 2  (5.18)

* and

tbcx (5.1=)

The relevant parameters 81, 82, t, a and two tangent points Qi, Q2 are shown

in Figure 5.2. The uniform GTD solution reduces to the ordinary GTD solution

in the deep shadow region.

I
I
I
I
I

I
I

I



I

5.2 Transition function

The transition function P,,h(x, q) has also been studied by Wait and Conda

[171 for a cylinder with finite conductivity. The quantity e-'i p,(•,q) is, in fact,

equivalent to the G(ý) defined in [17, eq(22)]. For a cylinder with finite conduc-

tivity, the function G(ý) has been evaluated via direct numerical integration and

tabulated for the various values of q. However, for a positive real value which I

occurs for a cylinder with a pure reactive surface impedance or with a lossless

coating no numerical data have been given. Under this condition,the direct nu- I
merical integration is more involved because the integrand has a singularity close I
to the integration path. Therefore a heuristic approach [5], rather than the direct

integration, is employed in this section to deduce numerical results for the transi- 3
tion integral. This engineering approach is described in following paragraph. I

a) Lit part of the transition region

From Equation (5.1) and (5.3) we obtain I

U°(PL) - U(PL) z -ui(QR)V 7 exp 1I

_ F(XL 17-j -w e-jk0 12 (5.20)

Note that I{ q) e .1 F7+1 2

uO(PL) = ut(PL)- uCW(PL) (5.21) 3
Therefore, the Fock integral cal be expressed as

P * J1) e-j"/4 2 (PL) - uCW(PL) - ui(PL) ±- 2jir/ F(XL)
q* ý',q)-Ui(QR)J exp ( 3 e) P0+22 e'k 012

132 I
I



U

1 (5.22)

For the numerical value of ut, we use the eigenfunction solution given in Chapter

I and for u"', we use the residue series solution given in Equation (3.126).I
a) Sitadow part of the transition region

For the shadow part of the transition region, the same procedure employed for the

lit part can be used to obtain the numerical data for the P(ý, q). From Equation

I (5.14) and (5.16)

U0(Pd) ;-' -u'(Q;) mer-ko 0 P p*9) 2 eF(r,) (5.23)
kI [I q*(ý,q) I 2&fr j

H U°(Pd) = ut(Pd) - ucw(Pd) (5.24)

H Thus, we obtain

P*(c q MU(Pd) - "c'•(Pd) e-j'r/4
p*(-,q 4 t P) ~( + ew4F(Xd) (5.25)

q,(•,q) J -ui(Q1) me-jkotT'-Y e-J 2 2-.7s2

As before, we calculate ut (Pd) from the exact eigenfunction series solution and

u"(Pd) from the residue series solution.I
For the impedace cylinder, the numercal data for the Fock integral e-.'/4p*(q, q)

I or e-Jw/4q*(ý, q) obtained from the Equation (5.22) and (5.25) are given in Figure

5.3 and 5.4 for several different q. It can be observed from Figure 5.3 and 5.4 that

the numerical results of the Fock integral are weakly dependent on k0 b, kop' and

kop. Therefore, curves shown in Figure 5.3 and 5.4 can be used as "universal"
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curves, to calculate the scattered field of the impedance cylinder with arbitrary I
radius. 3

For the coated cylinder, the numercal data for the Fock integral obtained

using the Equation (5.22) and (5.25) are plotted in Figures 5.5, 5.6, 5.8 and 5.9

for various combination of el and k0b. The Fock integrals obtained for the TM, 3
coated cylinders are shown in Figures 5.5 and 5.5 and those for the TE5 coated

cylinders are shown in Figures 5.8 and 5.9. Note that the Fock integral depends I
on the q-parameter. The q-parameter which is determined only by the constant

surface impedance Z8 for the impedance cylinder is now a function of the radius

of coated cylinder, the thickness and the material of the dielectric coating for the

coated cylinder. However, it is found that, for the thin coating case, the transition

integrals obtained are almost identical providing the q-values are the same. This

can be seen from the results presented in Figures Figures 5.5, 5.6, 5.8 and 5.9.

It turns out that, providing both have the same q-value, the transition integrals 3
obtained for the coated circular cylinder compare surprisingly well with those ob-

tained for the impedance cylinder. This fact can be established by comparing the I
results shown in Figures 5.7 and 5.10 with those shown in Figures 5.5, 5.6 and

5.8, 5.9 respectively. As a consequence, the transition integral obtained for the

impedance cylinder could be employed in the uniform GTD solution to calculate

the scattered fields in the transition region for the coated cylinder. The advan-

tage here is that the procedure involved to deduce the transition integral for the 3
impedance cylinder is much less complicated than that employed for the coated

cylinder. Note that the above comments only apply to coated cylinder with a thin

coating. At this stage, it is not yet clear whether the concept of uniform GTD

solution 'with 'universal' transition integral is applicable for the case of a cylinder I
covered with a thick dielectric coating. This needs to be further investigated.
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1 5.3 Numerical results and discussion

I In this section, the UTD solution is employed to calculate the electromagnetic

field scattered from the impedance and the coated cylinder. The geometry of

3 the problem and the ray paths are the same as those of GTD solution. It is

noted that the results obtained with the GTD solution given in Chapter III show

excellent agreement with the eigenfunction results in the deep lit and the deep

5 shadow regions. However the GTD solution fails in the transition region adjacent

to the shadow boundaries. The angular range of the regions where the pure ray-

optical solution fails depends on the range where the approximations involved in

the formulation of ordinary GTD solution fails. From the numerical results given

in Chapter Ill, It can be observed that the lit part of the transition region has

wider angular range than the shadow part.

I It is well known that the uniform GTD reduces to the ordinary GTD in tile deep

lit and the deep shadow region. Thus, in obtaining the numerical results given in

Figure 5.11 '- 5.34, the uniform GTD solutions given in Equation (5.1) and (5.14)

are employed only for the transition region. For the deep lit and the deep shadow

region the ordinary GTD solutions given in Chapter III are used. The examples

given in Figure 5.11 - 5.34 are chosen to have the same configurations as those

given in Figure 3.13 - 3.36 for the comparision of the GTD and the UTD. It can

Sbe observed that the uniform GTD solution provides a continuous pattern across

the shadow boundaries and compares well with the eigenfunction-solution results

I in the transition region. Due to the numerical difficulty in locating the high order

dominant root of the tracendental equation, the examples given in Figure 5.11

-- 5.34 are confined to thin material coatings where the dominant creeping wave

3 mode is either the first or the second mode. At this stage it is not clear whether

the solution is applicable to the thick coating case.

1
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Figure 5.11: Normalized bistatic scattering pattern of impedance cylinder 3
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Figure 5.12: Normali zed bistatic scattering pattern of impedance cylinder
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Figure 5.15: Normalized bistatic scattering pattern of coated cylinder: TM. cage
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Figure 5.17: Normalized bistatic scattering pattern of coated cylinder : TM, case
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Figure 5.19: Normalized bistatic scattering pattern of coated cylinder TM,, case3
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1481



I
I

-UNIFORM STO
-.. EIGEN F UNCT ION

b=3Ao, d=0.1).

S =5Ao, p=7A,

at=4-jO, #&,=I-j0

Id

Figure 5.21: Normalized bistatic scattering pattern of coated cylinder: TM: case
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Figure 5.22: Normalized bistatic scattering pattern of coated cylinder : TE: case
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Figure 5.24: Normalized bistatic scattering pattern of coated cylinder: TE: case
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Figure 5.29: Normalized bistatic scattering pattern of coated cylinder : TM, case
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Figure 5.30: Normalized bistatic scattering pattern of coated cylinder : TE, case
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CHAPTER VI

SUMMARY AND CONCLUSIONS

An approximate asymptotic high-frequency solution is obtained for the field

exterior to a two-dimensional circular conducting cylinder with a thin dielec-

tric/ferrite coating. The angular eigenfunction solution of the problem is obtained

from the two-dimensional line-source Green's function subject to the boundary

conditions on the cylinder surface and the Sommerfeld radiation condition at the

infinity. The eigenfunction solution is slowly convergent when the radius of the

cylinder is large in term of the wave length. Furthermore, the physical interpreta-

tion of the scattering machanism is not possible from the eigenfunction solution.

In order to obtain the ray optical solution of the problem, the angular eigenfunc-

tion is transformed into the integral representation and the integral is evaluated

asymptotically via the stationary phase method for the field in lit region and via

the residue theorem for the field in shadow region. The obtained solution is cast

in the format of the geometrical theory of diffraction (GTD).

In the lit region, the geometrical optics (GO) solution consists of the direct inci-

dent ray and the reflected ray. The ray picture associated with the reflected ray for

the coated cylinder remains the same as that for the conducting cylinder without

coating. The only difference is that, for the coated surface, the specular reflection

point is located on the coating-air interface. It is shown that for a thin coating

case, the reflection coefficient for the field reflected at the specular reflection point

on the coated curved surface can be approximated by the reflection coefficient for
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a grounded planar dielectric/ferrite slab with a plane wave incidence.

In the shadow region, the residue series solution can be interpreted as the usual

creeping wave diffraction of the GTD solution with the same ray path as the

diffracted field associated with the conducting cylinder without coating. The prop-

agation constants of the creeping wave mode are obtained from the roots of the

3 transcendental equation which characterizes the coated cylinder. The roots of the

transcendental equation are numerically searched via Newton-Raphson's method

I by using both the Debye and the Watson's approximations of the associated Han-

kel functions. The trajectories of the roots are plotted for several cases. For the

perfectly conducting cylinder, the first creeping wave mode is always dominant

3 over all other higher order modes. However for the coated cylinder, the dominance

of the creeping wave mode changes according to the change of the thickness of

3 coating.

In the transition regions adjacent to the shadow boundaries where the pure ray-

3 optical GTD solution fails, a 'universal' transition integral of tht uniform GTD

(UTD) is employed to obtain the uniform solution. Numerical data for the essential

I transition integral is deduced, via a heuristic approach, from the exact eigenfunc-

tion solution together with the GTD solution for the coated cylinder. The solution

is convenient for the engineering applications due to its simple ray format. Nu-

3 merical results obtained from the UTD solution for the cylinder with thin coating

show excellent agreement with the exact eigenfunction results.3
This is a first attempt to provide a uniform GTD solution for a conducting

3 surface with material coating. Due to the numerical difficulty in locating the higher

order roots of the trancendental equation, the examples given in this research are

U confined to the thin coating cases where either the first or the second mode of the

creeping wave is dominant. At this stage, it is not yet clear whether the solution
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is applicable to the thick coating case.

For the furture study, the three-dimensional problem, namely, a plane wave

incident obliquely upon a coated cylinder should be investigated, It is well known

that, unlike the perfectly conducting cylinder, there exists both TE and TM modes

in the scattered fields, even though the incident field may have been either TE or

TM. The electromagnetic characteristics of the creeping waves and their three-

dimensional ray interpretations on the coated cylinder should be examined. Also,

the scattering from a coated elliptical cylinder should be investigated for the ap-

plication of the solution to a general convex surface with material coating, This

research is important and of interest in that it could eventually lead to an under-

standing of the creeping waves on the coated bodies with finite extent.

The problem of the radiation from the coated cylinder is the case when the source

is mounted on the surface of the cylinder ( i.e. p' = b ), and the field point is out

of the clyindeT surface ( i.e. p > b ), A asymptotic high frequency solution for

the radiation problem can also be obtained by the similar procedure as that for

the scattering problem given in this research.
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APPENDIX A

WATSON'S TRANSFORMATION

A.1 Watson's Transformation

For the cylinder with large radius, It is impractical to compute the field from

3 the angular eigenfunction expansion because it is slowly convergent. This difficulty

in convergence can be overcome by using the Watson's transformation. For the

I determination of the field in the shadow region by a vertical dipole in the presence

of a large metallic sphere, Watson (1918) used a transformation to convert the

slowly convergent eigenfunction series into a residue series and hence a contour

3 integral in the complex plane. He then showed that the contour could be deformed

so as to enclose a new set of poles and, by evaluating the residue series associated

3 with these new poles, was led to a series which was rapidly convergent. The

procedure for converting the original eigenfunction series (convenient for small

b/A,) to the residue series appropriate for large b/lAo is now known as Watson's

transformation. This method which was originally used for the sphere will be

I adapted for the cylinder of our interest.

3 A.2 Integral representation

First, we consider an integral given as

I= - rBv exp[-jv(4- wr v (A.1)

I
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Figure A.1: The contour of the integral 1

where we assume ¢ < 7r. The contour C, encloses counterclockwise all the poles 3
due to the zeros of sin vir (i.e. v=m) as illustrated in Figure A.1. B, in Equation

(A.1) is assumed to have no poles on real axis. Next, the integral is evaluated via 3
the residue theorem. B

-y3 ,B(v) expl-i v(0- 7r)]i dvr d= 7r 00-o B(7-)•[i e' r]L,=M'0e (A.2)
-j£ ' sin vir E an~rv

From (1.2), we obtain the relation U
B v ) e' 

A 3'~ 7 )]0
-e2pjB((tn , )} d' = B B(m)exp(-jmO) (A3)

2J 1 -sin -ir M-

assuming that B(v) has no poles on the real axis. The integral in Equation (A.3) 3
can be simplified further if B(v) is an even function of v (i.e. B(-v) = B(v)).

3
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1 First, we decompose the integral into two terms.

3-jw B( ,) expf-jv(o - 7)] dv + ',÷jf iE exp-jn4 - 701
T si Bvv) 2z' f7oo+j 1(v sin vir

3 (A.4)

By changing the variable in the second term of Equation (A.4), we obtain the

* identity

000- 3 cos v(4 - 7)Ej D(m)exp(-m=-i d (A)
M=-00 ,oo-j3 sin v dr

where f is a positive number, however small. Above Equation (A.5) represents the

tranasformation of the eigenfunction series into the integral form. In finding the

SGO field in the lit region, the integral representation of the field will be evaluated

via the stationary phase method as given in Chapter III.

3 IA.3 Residue series representation

3 On the conditions that the poles of B(v) are located only in the lower halfplane

and the contribution from the semicircle arc can be ignored as its radius approaches

3 infinity, the integral can also be evaluated via the residue theorem by enclosing the

contour with a large semicircle in the lower halfplane, as shown in Figure A.2.

00 cos v(O$ - 7r)E_- B(m)exp(-jm4) = -J fc1 B(v) sin ir dv (A.6)
i •~~~=-00 zsn a

Hence, the integral given in Equation (A.6) is equal to -21rj times the sum of the

3 residues at the poles of B(v) (i.e. vn) because the cuntour Cz encloses the poles

clockwise.

- c cosv(0 -ir) COS)Vn( 7r)

B(v) s dv = 21r B(Vn) osivn(r (A.7)
n=1
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U Thus we obtain

I c"0" Cos Vn(O - r)
E B(m)exp(-jm!)-= 21r r B(vn) (A.8)

m=-oo n1l Sin Vn=1

The above Equation (A.8) represents the transformation of the eigenfunction series

into the residue series representation. The notation "oo" in above Equation denotes

in actual calculation only a few terms are needed to obtain an accurate result. Thus

the slowly convergent eigenfunction series is transformed into the fast convergent

residue series. Residue series solution will be used for the field representation in

the shadow region.

II
I
I
I
I
I
I
I
I
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APPENDIX B 3
REFLECTION COEFICIENT I

The asymptotic approximation of the reflection coefficient for the coated cylin-.

der is developed in this Appendix. From the discussion in Chapter III, the formal

expression for the reflection coefficient R8,h is given as 3
R~h =-Sh(vs) = .J sin , - jC-s,h(vs) (B.1) 1R~~~~h~ - S'~s sin a, + jXa,h(va)

In order to obtain the approximation of R,,h, approximation of C.,h(v,) should be 3
found first.

B.1 TM. case

.Z 0 Hi' (kib)H~v2 )(kia) - H.2) (klb)HzvY(kia) (B.2) 3
IZ HW()(klb)H92)(kla) - H( .2)(kjb)HY)(kja)

From the Debye approximation of the Hankel function, I

Ht(,') (k Ia) ~ 2 ep[Jkiasinla -flakiacos #a- )4 (B13)1
Frkija s-in/3a I

H 2
)(kja) 2kia-in/a exp [-j (kia sin#a -Pakjac sac a-s )] 7(B.4) 3

I
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HP) ~(k Ib) 1kbiI exp [i (k1b sin,6b -/3bkl b cos f- 4(B1.5)

( !2~(~) 2rlsn~ exp [-j (k b sin #6 -Ulbkl b cos 1b - (B.k )I i O 6)

It should be noted that 3.a and Ilb in above Equations (B.3) '- (B.6) are defined

by the following relations

v =- klacospa, = klbcos/3b (B1.7)

Thus, we obtain

I Hi.'(kjb) 1~,2~kja) rk1 absin/3asinI~b B

H "(kl)H.,"(la)ýzirk, Vab sinfla sinlIb(B9

I where W1(a,b,kj) is defined as

* '= k I b sin #b - asin #a] - ki [flbb cos b-flb/a cosf~aI (B1.10)

Therefore, we obtain

I (1)(2i)H,)ka- H.,2)(k16)HaY')(kja) ;z4j si Fa ,k)
H~,(kibHv7kia -bsi 0 sin {'(~bk)

HU )(j)H((ka + H,92)(kjb)I.4,')(kla) ;,1z 4rjasn~sn cos{'%P(a, b, k1 )}
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(B.12)

Thus, it can be readily shown that

H( )1(klb)H(2)(kla)- H!(2)(klb)H(')(kla)

U
j sinflb {Hz(1')(kjb)H(!2)(k1 a) + H.(2)(klb)H.(1)(kia)}

4J sin3b cos{'P(a,b, kj)} (B.13) S7rkl ýab -sin l3a sin ,8b

Therefore, we obtain

. zo

CS = -j-- sinjb cot{%F!(a,b, kl)} (B.14)

Incorporating this result into Equation (B.2) yields 3
R jsin ag- •si n6bcot{IP(a, b, k)}(.5

= jsinas + • sin/b cot { (a,b,kj)} (B.15)

In the Chapter III, it has been proved that at the stationary point, I

Y = kobcos a, = k0 bsin ei (B.16) 1

Thus, /a and #b in Equation (B.7) can be expressed in terms of the incident angle

Gi. I

#a = cos I(kobsinei) (B.17)
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)3 =Cos-: (kb sin 6,)
13b = k1b /

From the Snell's law, it is known that k0 sin 8, = kj sin Of. As shown in Figure B.3,

Oi is the incident angle at the reflection point and O is the angle of transmission

into the dielectric//ferrite materia]. Therefore, we obtain

sinL'b - - (Cos = #2 - kcos0,2 = cos61  (B.19)

sin/3d = 1- (cos 3a) 2 = Co- ( s k (B.20)

Consequently, we obtain

R Z 0o-jZjcosO, /cosOt tan{4'(a,b,kj)}

Zo cos+j*ZicosG,/cosOt tanj*(a,b,k1 )}B

When the thickness of the coating d is very small compared to the radius of the

cylinder (i.e. d << b ), %P(a,b, kj) can be simplified as

qI(a.b, k1 ) z kl(b - a)sin36 = kjdcosOj (B.22)

If we use this result,

R, Z 0 -jZjcos0O,!cos61 tan(kjdcos O)

Zocos+jZjcosO,/cos0j t an(kldcos6t)

Above result coincide with the reflection coefficient of the grounded dielectric/ferrite

slab.
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I B.2 TE, case

I ~ ~~~Ch(v) = ZH, 1 (klb)Hv,2 (k~a) - HY (klb)H~,(1')(kla)(1.4
ZO H1v,')(klb)Hv (k1 a) - (b)vllka

K It can be shown that

Hvl),'(klb)HvP2)'(kla) - H,9 (klb)Hv (kia)

S-j sint /3a {! 1 (klb)H.v (kla) + AHV 2(kib)Hzv.'(kia)}

4r j asi n /3anf cos{'I'(a,b,kl)} (.5

HL' (klb)Hv 2 (ka) + Hz7 (kib)Hs, 1)(kia)

S-Sin~9a IH v (kjb)Hvi2)(kja) - Hv(kib)H (kl)}

4 si 13, - - snl*(~b~l)}(B.26)
irk1 Vabsin 047sin Ob sn''abk)

From Equation (B.25) and (B.26), it can be shown that

I HHv 1 (k~b)ff (ka) -H H (kib)Hv 1 (ka)
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Sj sinwb" {Hv)(kb)HAv)t(kia)+ Htv2J(kjb)H!.)'(k.a)}

4j sin fla 3 sin sin{P(a,b, kl)} (B.27)

wrk1 Fab sin Basin /b

Substituting Equation (B.25) and (B.27) into Equation (B.24), we obtain

.Z 1,Ch(l) = jT sinl3b tan{fI'(abkl)} (B.28)

Incorporating this result into Equation (B.1) yield

R jsinas + j sin 3b tan{g'(a,b, k)}(Rh -.. z0(B.29)
j sin as - j1 sin 1b tan{%'P(a, b, kl)}

As for the TMI case as and flb are replaced by 6i and Ot by using the relationship

in Equation (B.18) and (B.19). Consequently, we obtain

Rh -Z 1  cos/osO itan{%'(a,b,kj)}
Rh -- Zo +jZjcosOt/cos6itan{ j%(a,b,kj)} (B30)

For the small thickness of the coating t,

Zo - jZ 1 cos Ot/ cos 61 tan(kjdcos (.)
Rh = Zo +jZjcoseg/coseitan(kjdcosej) (B31)

Above result also coincides with the reflection coefficient of the grounded dielec-

tric/ferrite slab.

In summary,

SZ 0 - jZlcos6i/cos i tan{f'(a,b,kj)} (B.32)
Zo +jZicosGi/cosOt tan{'(a,b,kj)}
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I
I Rh - Z, - jZI cos Or/cos Oi tan{lP(a, b, kl )} (B33)

Z, + jZj cos Or/cos 9i tan{f1A(a, b, kl)}

I where

V kl (b sin i/b -a sinf3a) - kob(3 b -3a) sin 0i (B.34)

3 where

sin36 = cos Ot (B.35)

Iifl I 1 si-j(.6

I
I
I
I
I
I
I
I

I
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