
AD-A269 549 (7

The Pennsylvania State University
APPLIED RESEARCH LABORATORY

P.O. Box 30
State College, PA 16804

CALCULATION OF TURBULENT BOUNDARY

LAYER WALL PRESSURE SPECTRA

by

D. E. Capone
Naval Surface Warfare Center
Acoustic Research Detachment

Code 752
P.O. Box 129

Bayview, ID 83803-0129

G. C. Lauchle
The Pennsylvania State UniversityD T J Applied Research Laboratory

E .A -'"O

Technical Report No. TR 93-10
August 1993

Supported by: L.R. Hettche, Director
Naval Surface Warfare Center Applied Research Laboratory

Approved for public release; distribution unlimited

93-21714



REPORT DOCUMENTATION PAGE Fe P prn

ww" gprfq af Ont tWS ca4(boit f tnsf$W.uW, .esamewad to ~W9uq I how nut resoan. WWMM thn" fo Uwmnm f orsg.inuqan iwitaw~ t~eda neded, Wnd co reeugand tewn9tl 0 i"bfl0 sameo o" mlend -- * r" bnnAd-Wf~t~~ c~s -tb~, @4 fldt~A t~ ?edonl buitiIan. to Weu0%nqJon maadsmw.Ar ServiaL - bn m ZOns .w 1204M. wnd~WUX~~m"32 an ot& fieO aaemt ~ ~ ~ If~aa u~ ,.w 1215 jf

1. AGENCY USE ONLY (Leavv biank) 2. REPORT DATE J 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTTTLE I uut 93S FUNDING N .UPMERS
CALCULATION OF TURBULENT BOUNDARY LAYER WALL
PRESSURE SPECTRA

C. AUTHOR(S)

Dean E. Capone and G. C. Lauchie

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

Naval Surface Warfare Center REPORT NUMBER
Acoustic Research Detachment
Code 752 TR-93- 10.
P.O. Box 129
Bayview, ID 83803-0129 ___ __________

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MOkNITORING
Naval Surface Warfare Center AGENCY REPORT NUMBER
Acoustic Research Detachment
Code 752
P.O. Box 129
Bayview, ID 83803-0129

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited

13. ABSTRACT (maximum 200 words)

This study is an investigation into the suitability of various wavevector-frequency models of turbulent boundary layer wall
pressure fluctuations for the prediction of experimental measurements of turbulent boundary layer wall pressure spectra.
Three separate models of the wavevector-firequency spectrum proposed by D- M. Chase in 1980 and 1987 are evaluated.
The wavevector-frequency spectral models are integrated numerically using a formulation for the point wall pressure spectrum
(based on the work of Uberoi and Kovasznay). The representation of the wall pressure spectrum used accounts for the effect
of a finite sized transducer on the measured wall pressure spectrum. By accounting for the area averaging effect of finite
sized transducers on the measured turbulent boundary layer wall pressure spectra, it was Possible to use Chase's rigorous
formulations for the wavevector-frequency spectrum instead of the point pressure spectrum representations which assume
an infinitely small measurement sensor.

Results from the numerical integrations are compared to recent experimental data to determine which model of the
wavevector-firequency spectrum most accurately predicts measured turbulent boundary layer wall pressure spectra. Data from
experiments using fluids with a wide range of physical properties (air, water, and glycerine) are used for comparison purposes.
Using the selected model, new empirical constants are established for use in the model for each fluid under consideratio3n.
Justification for use of the new empirical constants is given, and current limitations of the wavevector-frequency models are
discussed.

14. SUBJECT TERMS 15. NUMBER OF PAGES

turbulent boundary layer, wall, pressure spectra, wavevector, 69

chase 1LFJEco

17. SECURMT CLASSIFICATION 1g. SECURIT CLASSIFICATION 1. SECUOTY CLASSWICATIOU 20. LIMITA-iON OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

unclassified Un~lassified I Unclagsifige ____________

NSN 740-0.2805500Standard Form 298 (Rev 2-89)



ABSTRACT

This study is an investigation into the suitability of various wavevector-frequency

models of turbulent boundary layer wall pressure fluctuations for the prediction of

experimental measurements of turbulent boundary layer wall pressure spectra. Three

separate models of the wavevector-frequency spectrum proposed by D. M. Chase in 1980

and 1987 are evaluated. The wavevector-frequency spectral models are integrated

numerically using a formulation for the point wall pressure spectrum (based on the work of

Uberoi and Kovasznay). The representation of the wall pressure spectrum used accounts

for the effect of a finite sized transducer on the measured wall pressure spectrum. By

accounting for the area averaging effect of finite sized transducers on the measured

turbulent boundary layer wall pressure spectra, it was possible to use Chase's rigorous

formulations for the wavevector-frequency spectrum instead of the point pressure spectrum

representations which assume an infinitely small measurement sensor.

Results from the numerical integrations are compared to recent experimental data to

determine which model of the wavevector-frequency spectrum most accurately predicts

measured turbulent boundary layer wall pressure spectra. Data from experiments using

fluids with a wide range of physical properties (air, water, and glycerine) are used for

comparison purposes. Using the selected model, new empirical constants are established

for use in the model for each fluid under consideration. Justification for use of the new

empirical constants is given, and current limitations of the wavevector-frequency models

are discussed. -..... _
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Chapter 1

INTRODUCTION

Wall pressure fluctuations beneath turbulent boundary layers have been of interest to

scientists and engineers for many years. Willmarth 1 gives one of the best summaries of our

understanding of the physics involved with pressure fluctuations under turbulent boundary

layers, prior to 1975. In the past, the work performed on wall pressure fluctuations has

been focused in two areas - experimental investigation and theoretical prediction. A

thorough understanding of pressure fluctuations beneath turbulent boundary layers has

importance in many fields, such as underwater sonar applications and aircraft cabin noise.

Due to the efficient coupling between underwater structures and energy in the low

wavenumber region of the turbulent boundary layer, this region of the boundary layer wall

pressure spectrum is of particular interest.

Until recent advances in the areas of sensor technology and signal processing, the

accurate measurement of boundary layer pressure fluctuations had proved difficuit. Low

frequency components of the turbulent boundary layer were often masked by the noise of

the measurement facility. Often times, due to the large size of the pressure transducers

employed, the high frequency components were not measured correctly. The large

pressure transducers resulted in area averaging over the face of the transducer. The area

averaging lowers the measured level of the high frequency components. Since the

established theoretical models relied upon experimental data for implementation, the

accuracy of these models was affected. The recent advances in sensor technology and

signal processing have provided better estimates of the pressure spectrum of the turbulent

boundary layer than were previously available. Examination of the recent experimental

results has led to changes in precious theoretical models. Armed with new theoretical
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models, it should now be possible to more accurately predict the turbulent boundary layer

wall pressure spectrum.

A review of boundary layer theory is provided in Chapter 2. The source of the

turbulent boundary layer pressure fluctuations is seen to be the fluctuating velocities that

occur in the boundary layer, and Poisson's equation, which relates the fluctuating velocities

to fluctuating pressure, is derived. Finally, the two contributions to the measured wall

pressure spectra are identified as the mean shear-turbulence interaction term, and the

turbulence-turbulence interaction term.

Once the equation relating fluctuating velocities to the fluctuating pressures has been

derived, a review of contemporary models of the wavevector-frequency spectrum is

provided. Chapter 3 begins with the equation which will be used to calculate the wall

pressure spectra once a -nodel of the wavevector frequency spectrum is established. This

equation includes a factor which accounts for the in-plane wavenumber response of the

circular transducers used to make the experimental measurements. A discussion of the

early efforts to model the turbulent boundary layer wavevector-frequency spectrum is

provided. Based on recent experimental measurements, changes to the older models of

wavevector-frequency spectrum are discussed.

The greatest aid to revising the older models of the wavevector-frequency spectrum

are more accurate measurements of the turbulent boundary layer wall pressure fluctuations.

Results from three recent experiments are presented in Chapter 4. Advances in signal

processing now enable an investigator to post-process acquired data and remove much of

the facility noise contamination. Results from two experiments, performed in glycerine and

water, where such techniqu-s have been used are presented. All three experiments
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discussed also employed extremely small pressure sensors which allow for more accurate

resolution of the high frequency components of the turbulent boundary layer wall pressure

fluctuations.

The techniques used to numerically integrate the double integral, presented in Chapter

3, whiclt yields the calculated wall pressure spectrum, are discussed in Chapter 5. The

integrals are evaluated by the use of a two-dimensional Simpson's rule. All parameters

used for the integrations are presented, including the empirical constants from the

wavevector-frequency models.

Chapter 6 presents the results of the numerical integrations. Calculated results are

compared to the actual measurements. Next, the effect of the empirical constants in the

wavevector-frequency model are explored. Using the information gained, the constants are

adjusted to provide a better fit to the measured data. The results of the integrations are

discussed in Chapter 7. Explanations as to why new empirical constants were needed are

presented. Lastly, recommendations for future work are included.
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Chapter 2

BACKGROUND

2.1 Boundary Layer Theory

As a body moves through a fluid, the flow characteristics of a thin region of the fluid

located near the surface of the body are affected by the viscosity of the fluid. The region

where the viscosity of the fluid is an important flow parameter is termed the boundary

layer. As an example, Figure 1 illustrates the mean velocity distribution in a boundary

layer on a flat plate.

x 2

U-

Figure 1 - Boundary Layer Mean Velocity Profile

Due to the viscosity of the fluid, the velocity at the wall is zero: this is termed the no-slip

condition. As a result of the zero velocity at the wall, the velocity gradient, au/ax 2 , near

the wall is large. Variation of flow field in the x3 direction, taken to be out of the plane of

the page, is considered negligible. The boundary layer thickness, 5, is defined as the

distance from the wall where the velocity in the x, direction, u, reaches .99 U-, where U-
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is the free stream velocity.2

As a result of the velocity gradient, au/ax2 , being large within the boundary layer,

the normal wall shear stress

1. = Du ,(2.1)
DX2 .=0

where g. is the viscosity of the fluid, becomes an important parameter. Equation 2.1 is

known as Newton's Law of friction. Within the boundary layer, friction and inertia forces

are of comparable magnitude. 3

The Reynolds number,

Re- pU'.x, (2.2)Iit

where p is the density of the fluid and x1 is the streamwise wetted length, is the quantity

used for determination of the dynamic similarity of boundary layer flows. Ignoring the

effects of elastic and gravitational forces, the Reynolds number can be considered the ratio

of inertial forces to frictional forces. As stated above, within turbulent boundary layers, the

frictional and inertial forces are of comparable magnitude. Using the Reynolds number, the

wall shear stress for turbulent flow over a smooth flat plate can be approximated by

t., = 0.029pU2. Re-V5 . (2.3)

As the Reynolds number of a flow increases, transition will occur from a laminar
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boundary layer to a turbulent boundary layer. A laminar boundary layer flow is

characterized by smooth and steady flow in the direction along the surface. Only small

velocity fluctuations normal to the flow direction occur around a mean value of flow

velocity within a laminar boundary layer. As the flow transitions from laminar to turbulent,

velocity fluctuations within the boundary layer become pronounced. These velocity

fluctuations can range up to 50% of the mean flow velocity. 3 As a result of the dramatic

velocity fluctuations within a turbulent boundary layer, the p:essure at a given point also

fluctuates with time.

2.1.1 TURBULENT FLOW

Due to the random nature of the velocity fluctuations within a turbulent boundary

layer, statistical methods must be used to describe the flow. In three dimensional turbulent

flow, the velocities and pressure are functions of all three spatial variables and time, e.g.

u = u(x 1 ,x 2,x 3,t). (2.4)

The theoretical models examined in this paper consider only turbulent flow over a smooth,

rigid plane without a pressure gradient. The flow is assumed to be homogeneous in the

plane of the wall; therefore, two-dimensional flow will be considered. In order to model

the pressure and velocity within a turbulent boundary layer, the quantities are represented

by their mean and fluctuating components

u=U+u' v=V+v' p=P+p', (2.5)

where U is the time average of the velocity in the x, direction and u' is the fluctuating
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velocity about U. The time average of a fluctuating quantity is defined as having a zero

mean value.

The influence of the fluctuating components of velocity on the mean flow results in an

apparent increase in viscosity of the fluid. Such effects manifest themselves as a stress

field throughout the turbulent layer. These stresses are called Reynolds stresses; for two-

dimensional flow the stress tensor is3 :

-=(,?- o' =-P(u-" '74). (2.6)

In turbulent flow, these Reynolds stresses act on the fluid in addition to the wall shear

stress, Equation (2.3), which is the dominant factor in laminar flow.

The turbulent boundary layer on a rigid surface is considered to be composed of three

regions. As one progresses away from the wall in the x2 direction, the first region, the

viscous sub-layer, is an extremely thin region near the surface where all components of the

stress tensor are very small. In this region, the viscous stresses, Equation (2.3), dominate

the flow. The viscous sub-layer is sometimes referred to as the laminar sub-layer since the

flow is dominated by viscous stresses. The second region, the buffer or overlap layer, is

an area where the viscous and Reynolds stresses are of a comparable order of magnitude.

In the third region, the inertial sub-layer, the flow is dominated by the Reynolds stresses. 4

The viscous r-ib-layer is also commonly referred to as the inner layer, while the inertial

sub-layer is often referred to as the outer layer.
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The friction velocity:

l = ,(2.7)

is representative of the shear velocities present very close to the wall in turbulent flow.

Length and velocity scales in turbulent flows are typically non-dimensionalized by use of

u. and u, where U is the kinematic viscosity:

0= ". (2.8)P

Using the friction velocity and the kinematic viscosity, the inner variable, x", is defined

as:

÷ X2U-
x2= . (2.9)

White5 defines the overlap layer as between 35 < x+ _< 350 with the outer layer at
÷ > 350.

X2--

2.2 POISSON'S EQUATION

To determine the wall pressure spectrum due to the turbulent boundary layer, the

relationship between the fluctuating velocities and pressure must be defined. Following the

example of Kraichnan6 and Blake7 , one begins with the equation of continuity
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ap + a(pui) =0, (2.10)

at axi

and the momentum equation

aut aui app~~Lt u -q" +U~j ~ - - 'u.V2ui =•0, (2.11)

where i and j=1,2 for two dimensional incompressible flow. Differentiating Equation

(2.11) with respect to xi and Equation (2.10) with respect to time, and subtracting the

results, one obtains:

a2p a2 (uu)
* p (2.12)

axiax

8
Next, following the work of Farabee , the pressure and velocities are replaced by their

mean and fluctuating quantities, Equation (2.5), which yields:

a2p a~' a2
a---a (UiUj + Uiju + ui + U'u). (2.13)

Taking a time average of Equation (2.13) eliminates the linear fluctuating quantities leaving

a2p a2 __ U\
a i a--- (UiUj + ii j). (2.14)

Substituting Equation (2.14) back into Equation (2.13) yields:



10

a22(2.15

Noting that V o U = 0, then

a (2 UiU') = 2  G i au'

axix.I Jx axi

and rearrangement of the first term on the right hand side of Equation (2.15) yields:

-x2 -p2 a•i au- . (2.16)

___ au, aui a 2ix

For two-dimensional boundary layer flow, the mean velocity is assumed to be a function of

the x2 direction only; while the fluctuating velocities are considered a function of both the

x, and x2 directions. With these assumptions, Equation (2.16) reduces to the Poisson

equation for the unsteady pressure:

•)P' {•');2 , 7 }xU)~2 x

a2 -X p2 apu, au' a uiu-u . (2.17)
Sax 2 aX x, a i ' i

As first noted by Kraichnan the first term on the right-hand side of Equation (2.17)

represents the interaction of the mean shear (See Equation 2.1) in the flow, with the

turbulence. The second term on the right-hand side of the equation represents the

turbulence-turbulence interaction. Equation (2.17) shows that the fluctuating velocities

within the turbulent boundary layer are the source of the pressure fluctuations generated by

the boundary layer. As will be seen in later sections, if one can adequately model the



11

fluctuating velocities within the various turbulent boundary layer regions, a reasonable

estimate of the wall pressure spectrum can be obtained.
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Chapter 3

MODELING THE TURBULENT BOUNDARY
LAYER WALL PRESSURE SPECTRUM

3.1 Autospectrum of the Turbulent Boundary Layer Wall Pressure Fluctuations

Based on the work of Uberoi and Kovasznay9 and in the notation of Lauchle 10 , the

autospectrum of the turbulent boundary layer wall pressure fluctuations is given by:

GTT(o) = 2J fP(k 1,k 3 ,o)jH(k,,k3)j2dk~dk 3, (3.1)

where P(k1 ,k 3,w) is the wavenumber frequency spectral density of the turbulent boundary

layer wall pressure fluctuations, and IH(k1 k3)12 is the in-plane wavenumber response of

the measurement sensor. Equation (3.1) assumes the pressure fluctuations are acting

directly on the face of a single transducer. The wavenumber response function accounts

for area averaging of the pressure spectrum that results from a finite sized transducer. The

wavenumbers result from the snatial Fourier transforms of the fluctuating wall pressure

field. The wavevector in the plane of the wall is:

K= (k2 + k2)1 2 , (3.2)

where k, is the flow direction wavenumber and k3 is the cross-stream wavenumber.

The in-plane wavenumber response for a circular transducer is given by

IH(KR)12 = [2J , (KR) / KR]2, (3.3)
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where R is the active radius of the sensing element, J1 is a Bessel function of the first kind

of order one, and k = (kJ, k3) is a shorthand notation for the in-plane wavevector.

Using the above formulation for the autospectrum of the turbulent boundary layer, the

sound pressure levels under a turbulent boundary layer can be calculated given P(k,co).

The form of the wavevector-frequency spectrum of the turbulent boundary layer has been

the subject of extensive studies over the years and, as will be seen in the next section,

P(k,to) can be modeled in many different ways.

3.2 Wavevector-Frequency Spectrum

Some of the earliest work performed on modeling the wavevector-frequency

spectrum was by Kraichnan6 . Kraichnan identified two sources to the wall pressure

spectrum; the interaction of the turbulence with the mean shear, and the turbulence

interaction with itself--termed the turbulence-turbulence contribution. Based on his model

of the boundary layer, Kraichnan estimated that the contribution of the turbulence-mean

shear interaction term to the pressure spectrum was considerably more important than the

turbulence-turbulence term. Figure 2 illustrates the wavenumber frequency spectrum of

low Mach number turbulent wall pressure fluctuations as a function of streamwise

wavenumber, k1, for a fixed frequency co. The majority of the energy is concentrated in

what is termed the convective region. This region is centered on the convective

wavenumber, k, = co/U,, where U, is known as the convection velocity. The convection

velocity is the speed at which the large scale eddies within the turbulent boundary layer

travel. The convection velocity ranges typically between 0.5-0.7 U.. 11
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Convective

P (k, o)) Region

Acoustic
Domain /

Subconvective
Region

co k1

c U,

Figure 2 - Typical Form of the Wavenumber Frequency Spectrum of the
Turbulent Boundary Layer Wall Pressure Fluctuations

The acoustic region is defined where k, < wq/c, where c is the speed of sound in the fluid

under consideration. In the past, most theoretical work concentrated on the convective

region and very little information was available regarding the subconvective and acoustic

regions.

3.2.1 Chase's 1980 Model

Modeling the subconvective or low wavenumber region of the turbulent boundary

layer has proven to be a very complex and unresolved task. This is partially due to a lack

of experimental data for this region and partially due to the fact that most of the energy in

the boundary layer is concentrated in the convected region. Chase 12 published a paper in

1980 that included a model of the wavevector frequency spectrum for the incompressible,

inviscid domain which includes convective and subconvective wavenumbers. Chase

defines the region of subconvective wavenumbers, or the low wavenumber tail, as



15

co/c << K << (co - ukj) / 3u.. The flow under consideration in this paper is a

homogeneous turbulent boundary layer flow at low Mach number over a smooth,

stationary, rigid plane with zero pressure gradient.

Chase's development follows that of Kraichnan 6 and is Well summarized by

Howe. 1 1 Chase defined P(k,co) as the Fourier transform of the space-time correlation of

the wall pressure:

P(k,o)- (2t)3 = I R(y.y 3 T)

x exp[-i(ky - cot)]dyldy 3dc,

where

R(y1 ,Y3,t) = (p'(xI,x3,t)p'(x1 +y I, x 3 +Y3,t+t)), (3.5)

is the space time correlation function of the fluctuating pressure, and the brackets represent

ensemble averaging (see for examplel 3 ). Given Equation (3.4), R(y 1 ,y3,t) can also be

defined as the inverse Fourier transform of P(k,co). The point pressure spectrum, P(co),

is defined as the pressure spectrum that would be measured by a sensor small enough so

that no area averaging took place over the face of the sensor. The point pressure spectrum

can be represented at a given frequency by

P(co) = f j P(kco)dkldk3' (3.6)

since IH(KR)12 = 1.0 for an infinitely small transducer (see Equation (3.3)).
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Chase begins his effort to model the wavevector-frequency spectrum with two basic

assumptions: P(k,to) should tend to zero as K approaches zero, with functional form

P(k,co) - K 2. For K >> (o/c, the most general form for the wavevector-frequency

spectrum is

P(k,c)) = p2u.(•3f ! k-,k8,--/ (3.7)

where it is assumed that dependence on Reynolds number was weak enough to be ignored.

As suggested by Kraichnan 6 , the total wavenumber-frequency spectrum is considered to be

P(k,(o) = PT(k, o) + PM (k,co), (3.8)

where PT(k,wo) is the turbulence-turbulence interaction contribution, and PM (k, o) is the

turbulence-mean shear interaction contribution. The convective region is assumed to be

dominated by the turbulence-mean shear term, and the low wavenumber region by the

turbulence-turbulence term.

One important point to note is that the model does not include the viscous domain,

which is characterized by the viscous variable om/u. in Equation (3.7). Chase points out

that as long as ou/u2. < 2, the effect of the viscous domain on the convective ridge will be

small; and as long as =u/u2 <1/2, the effect on the low wavenumber region will be small.

In order to formulate his final model Chase relies on experimental data. He has noted

that the results from the experiments may only bound the levels within the low

wavenumber region and not be true measurements of the level. This is due to the difficulty
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in measuring the relatively low pressure levels in the low wavenumber region as compared

to the high levels found in the convective region. The final form that Chase 12 proposes for

the wavevector-frequency spectrum [Equations (68) and (69) in his paper] is

P(k,c) (Cp2 k K3 C 2-5 + CTK 2K 5 ), (3.9)

where

K (2 o Uck 1 )2 / hiuo + K2 +(bi8) 2; i = M,T. (3.10)

In Equation (3.10), M indicates the turbulence-mean shear component; T indicates the

turbulence-turbulence contribution; and 5, the boundary layer thickness, is defined as

shown in Figure 1. One can see by examining Equation (3.9) that the resulting model is

quadratic in wavenumber.

The model contains six dimensionless coefficients: CM, CT, bM, bT, hM, and hT;

which must be determined by fitting the model to experimental data. The constants

hM and hT, termed the velocity dispersion coefficients, arise from the longitudinal cross-

spectral densities. An approximate value for bM, the mean shear scale parameter, was

determined by matching the maximum value of PM(0), as predicted by the model to the

maximum value of P(wo) measured by experiment. An estimate for bT, the turbulence-

turbulence scale parameter, is obtained from the low frequency limit of P(wO); however the

values are questionable due to the reliability of available low frequency data. For

CM, CT, h M and hT, equations are given to calculate their %alues:
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hi= -U; i = M,T and
U.

(3.11)

CT= 3 rTa. CM= 3 rMa÷
2nhT 2th M

where a. and rT, the mixture coefficient, are determined from experimental data, and

rM = 1- rT.

Chase uses the data from Bull 14 to establish a set of values for the needed

dimensionless coefficients:

a. = 0.766, rT = 0.389, bM = 0.756

bT =0.378, 9M =9T =0.176, (3.12)

and compares the predicted results to the experimental results of Bull. The results of the

model, Equations (3.9) and (3.10), with the indicated parameter set of Equation (3.12)

agree well with Bull's data.

3.2.2 Chase's 1987 Model

In 1987, Chase 15 formulated a model for the wavevector-frequency spectrum which

attempted to characterize P(k,(o) from the convective domain down into the acoustic

domain. When considering the acoustic domain, some effects of compressibility of the

fluid are taken into consideration.

In the paper he wrote in 1980, Chase assumed that P(k,o) wo,; t. d to zero as K

went to zero as a function of K2 . In this paper, the restrictions on the form of P(k,w0) in
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the low wavenumber region are not as severe, and consideration is given to functional

forms which may vary between K° to K2. The result is a wall pressure spectrum that is

termed wavevector-white, i.e. the level of the wall pressure is assumed constant for

K _< (bS)-' in the subconvective domain, where b is once again a scale factor. In the region

(o/c < K5 (bB)- , the 1987 model is similar to the 1980 model in that P(k,co) varies as

K
2.

The development of the model proceeds upon lines very similar to those used in

Chase's 1980 paper. Source spectra for the turbulence-turbulence interaction and the

turbulence-meap shear interaction are obtained from the Fourier transform of the Poisson

equation for unsteady pressure, Equation (2.17). As an example, the source spectrum for

the turbulence-turbulence interaction term, PT, is S(x 2,x', k,co); which is a sum of cross-

spectral densities of fluctuating velocity products at positions x2 and x', and is assumed to

be of the form

S(x 2,x', k,,) = exp[-(x2 + x2) /b]S°(x 2 ,x, k,Xo), (3.13)

where

S°(x 2 ,x2, k,(O) = fdk2 exp[ik 2(x2 - x)]u. 4 40(k+). (3.14)

In Equation (3.14), ý represents the geometric mean distance from the wall, E = (x2x)•/" 2 ,

k~is defined as:

k =k2 + y2 K, (3.15)
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and

K 2 = (co - Uck 1 )2 / (hu.) 2 + K2, (3.16)

where y=constant and h is the velocity dispersion coefficient, which is considered a

constant. The function O(z) is approximately (1 + z)x, where 3 < X < 5, although Chase

discusses the behavior of the wall pressure spectrum for many limiting forms of X.

Examination of Equations (3.13)-(3.16) shows the dependence of the source spectrum on

k, k2 , k3 and co.

Integration of the source spectrum, S(x 2,x', k,w(), then yields the contribution of the

turbulence-turbulence interaction to the wall pressure spectrum:

PT(k,() = p2K2J x2 XJeK(2c +)S(X 2, k,k,w). (3.17)
0 0

In a similar manner, integration of the source spectrum for the turbulence-mean shear

interaction contribution yields the contribution of PM to the point wall pressure spectrum.

The incompressible model of the wall pressure spectrum, as stated by Equation (39)

in Chase's 1987 paper1 5 , with X = 3, is:

23 [ 2 + (bM) -2 1
)[K K2  J+b) +Ckj , (3.18)

where CM and CT are once again constants that must be determined by experimental data.

The compressible model for the wavevector frequency spectrum is given by Chase
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Equation (40) as:

[ k~c ) ~2U.3 _5/ 2 {[c 1)2(-Ck(-J)

11 (3.19)
K2 K...2 + (b8i)-2 + ) 2

+--c 2 -c 3 ] CT K 2 + (bS)_2 (3.19

where c,, c2 and c3 are additional empirical constants. The compressibility enters into

Equation (3.19) in the (K /KI) terms, where K, is:

IK.12  {K 2 -) 2/c 2, K>/c (3.20)IK ) 1-o2/c 2-iK 2 K <,(o/c I

Values for the empirical constants are once again established by comparisons to actual

data. In this paper, Chase uses the data of Martin and Leehey1 6 to determine the values of

the empirical constants h, CM, CT, and b. In summary,

h = 3.0, CT=.004 7 , CM=0.155, b=0.75. (3.21)

In the compressible model, Chase assumes

c2 = c 3 = 1 /6, (3.22)

although he admits there is no substantial experimental evidence to validate the values of

c2 and c3. The value for these constants is arrived at by assuming an arbitrary ratio

between the velocity source spectra.
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As summarized by Chase, the differences between the 1980 model and the 1987

incompressible model are slight. When comparing the models with the empirical

coefficients given in the respective papers, the contribution of PT to the point pressure

spectrum is lower in the 1987 model than in the 1980 model. In the high frequency limit of

the point pressure spectrum, P(w0) = 1.06p 2u:)-&1 , PM is higher in the 1987 model than in

the 1980 model. This increased contribution of PM in the high frequency limit results in

the mean shear term being predominant in the high frequency limit, where the turbulence-

turbulence contribution was predominant in the 1980 model. Lastly, PT is now considered

to be the main contributor to the wall pressure spectrum in the subconvective range.
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Chapter 4

EXPERIMENTAL MEASUREMENTS OF THE TURBULENT
BOUNDARY LAYER WALL PRESSURE SPECTRUM

4.1 Methodology

Recent advances in the areas of signal processing and sensor technology have

allowed for more accurate measurements of the wall pressure spectrum under a turbulent

boundary layer. Many previous measurements have been contaminated by extraneous

noise generated within the measurement facility. As will be discussed below, by utilizing

additional signal processing techniques on the acquired data, it is possible to remove this

contamination from the final result. The other major problem encountered in the

measurement of the wall pressure spectrum is resolution of the high frequency

components. The important length scale for the high frequency components is 1)/u.,

which is on the order of the viscous sublayer thickness. Therefore, to accurately measure

these components of the wall pressure spectrum, sensor sizes must be extremely small--of

order u/u..

In the following sections, measurements from three different experiments utilizing

one or both of the above mentioned technologies will be presented. Three different fluids,

glycerine, water, and air are represented in order to cover a broad range of experimental

results.

4.2 Glycerine Experiment

An experiment in a glycerine tunnel was performed by Lauchle and Daniels 17
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utilizing both small transducers and advanced signal processing. The pressure transducers

used allowed for d÷ in the range of 0.7 < d÷ < 1.5, where d*is the transducer diameter in

viscous wall units, du./v. The small pressure transducers combined with the thick

boundary layers generated in glycerine flow allowed better resolution of the high frequency

components of the wall pressure fluctuations than had previously been achieved.

In this work, Lauchle and Daniels used an array of three circumferentially coplanar

wall pressure transducers and radial accelerometers were mounted within the tunnel wall.

The signals measured by the pressure transducers in the wall of the tunnel were considered

to consist of four components: a turbulent boundary layer wall pressure component, a

contribution from the acoustic background noise of the facility, a vibration induced

pressure from the facility, and an electronic noise generated by the instrumentation. The

electronic noise was measured to be more than 60 dB below the measured spectra so it was

ignored. Given that the plane-wave cutoff frequency of the tunnel was calculated to be

4100 Hz, all acoustic noise components below 4100 Hz were considered to be

circumferentially in phase. The contribution of the acoustic noise components to the

measured spectrum below 4100 Hz could be negated by subtracting one pressure signal

from another since the sensors were coplanar. It was postulated that if the vibration

induced contamination was circumferentially coherent, these components could also be

canceled by subtraction of one measured spectrum from another. By utilizing the coherent

output power (COP) between an accelerometer difference signal and a pressure transducer

difference signal, Lauchle and Daniels proved that the contribution of the vibration induced

noise to the measured difference spectra was much lower than the turbulent wall pressure

spectra contribution. This result was verified by another technique termed the cross-
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difference technique. The cross-difference technique produces the result that the pressure-

spectrum of the turbulent wall pressure is approximately equal to the cross-spectrum

between two pressure transducer difference signals.

Figure 3 reproduces the results of Figure 11 in Lauchle and Daniels 17 for a

Reynolds number based on pipe diameter of Re=10890. The spectra has been smoothed in

the high frequency region to remove fluctuations in the measured level, which are a result

of random errors in the measurement technique.

4.3 Water Experiment

Home and Handler 1 8 performed an experiment in a water filled rectangular channel

flow facility. The same type of pressure transducers as those used by Lauchle and

Daniels17 were utilized in this experiment. With water as the working fluid, these pressure

transducers yielded a d' in the range 20 5 d' < 40. Pressure spectra were gathered and

stored in a digital format for post-processing. The post-processing techniques utilized were

able to remove the low frequency contamination from the measured pressure spectra, while

the small transducers employed allowed for good resolution of the high frequency

components.

Figure 4 shows Home and Handler's fully corrected turbulent boundary layer

spectrum for a tunnel Reynolds number of Rh=25000. The success of the signal

processing techniques used by Home and Handler were based on the validity of two

assumptions: the correlation length of the noise contaminating the measurements was much

larger than the correlation length of the turbulent boundary layer pressure fluctuations, and

the turbulence was homogeneous in the spanwise direction. Using the first assumption,
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the pressure spectrum is corrected using a least mean square algorithm. The pressure

spectrum was further corrected using a factor based upon the coherence between the two

sensors.

4.4 Air Experiment

An experiment utilizing very small pressure transducers was performed by Schewe 19

in a wind tunnel. Schewe developed an electrostatic transducer of the Sell type to achieve

d÷ values in the range of 19 < d÷ < 333. The smallest pressure sensor utilized by Schewe

haa an active diameter of 1 millimeter which corresponds to d'=19. Figure 5 shows the

turbulent boundary layer pressure spectrum measured by Schewe using his smallest

pressure transducer at a free-stream velocity of U. = 6.3 m / s. This velocity corresponds

to a Reynolds number of Re. = 1400 based on a momentum thickness of 0 = 3.3 mm.
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Chapter 5

NUMERICAL INTEGRATION OF THE
WAVEVECTOR-FREQUENCY SPECTRUM

5.1 Two-Dimensional Simpson's 1/3 Method

Prediction of the turbulent boundary layer pressure fluctuations were obtained by

numerically integrating Equation (3.1). The integration of Equation (3.1) is performed
20

using a two dimensional Simpson's 1/3 rule. The integration is carried out by shifting

Simpson's 1/3 rule for one dimension into two dimensions. The general form of the

Simps&i's 1/3 rule, which is used to integrate a function f(x,y), is:

X,1  Y,.] i
I = f f (x, y)dxdy=k[-( i= ++1  + + fi +i.j1

Xi-1 Yi-1  (5.1)

+4 h(fi+,.j + 4 fi~j+ f i-1 j)+ h(fi+lj-1 + 4fij-1 + fi-,j-)
3 3

To evaluate Equation (3.1), the integration was carried out in the k, and k3 directions. At

each point in wavenumber space where the integration is performed, a rectangle consisting

of nine locations is defined. This rectangle has dimensions of twice the step size in the k1 -

direction by twice the step size in the k3-direction. The function f(x,y) is the wavenumber-

frequency spectra proposed by Chase in both his 1980 and 1987 papers. For the 1980

model equation, Equations (3.9) and (3.10) are used in Equation (5.1) for f(x,y). For the

incompressible model in Chase's 1987 paper, Equation (3.18) is integrated; and for

Chase's compressible model, Equation (3.19) is integrated.
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5.2 General Parameters

Determination of the general parameters to be used for the integration in all three

cases; air, water and glycerine, is the next step in carrying out the integration. Based upon

an examination of the wavenumber dependence of the turbulent wall pressure spectrum,
21

and from previous experience in evaluating Equatioin (3.1) , values for the upper and

lower limits of integration were established. For all cases, in both the k, and the k3

directions, the double integral is evaluated at 80 locations in the range-10k, to 10k,. For

each case, the spectral level for 30 frequency points between the lowest and highest

frequencies of interest are calculated. Due to the finite limits necessary to carry out the

numerical integration the results represent a lower bound on the magnitude of the wall

pressure spectra. The frequency range of interest depends upon the data available for each

fluid. Depending on the author, various frequency dependent values of the convective

velocity have been established. Most of these models show only a weak dependence on

frequency, so a constant value of convective velocity was used for the calculations. For

this paper, as was used by Chase in his 1987 paper, the value of the convective velocity is

taken to be. 65U-. Based on calculations for the wall pressure spectrum with convective

velocities ranging from .6U- to .8U., it is noted that the effect of choice for the convective

velocity was minimal on the results of the calculations.

One important point to note is that the experiment in water was performed in a

rectangular channel facility and the glycerine experiment was performed in a pipe flow

facility. For both of these cases, the turbulent boundary layer was not a free boundary

layer as was modeled by Chase in his two papers. The boundary layer thickness for the

bounded cases were, therefore, considered to be the half-height of the corresponding

facility. 2
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The friction velocity, and when necessary, the wall shear stress are calculated based

on formulas given by White. 2 The wall shear stress is given by Equation (2.3) and the

friction velocity is given by Equation (2.7). As can be seen by examination of these

equations, the most important factor for calculating these parameters is the Reynolds

number, which was given in Chapter 4 for all three cases of interest.

5.2.1 Constants for Chase's 1980 Model

The empirical constants used in thewavevector-frequency spectra were established

based on the work of Chase 12 and Lauchle 10 . The values for bM and bT are those given

by Chase; and the values for hM, hT, CM, and CT are those given by Lauchle. The

constants used for the integration of Chase's 1980 model are:

bM=0. 7 5 6 bT=0.3 7 8 hM=20.0 (5.2)

hT= 2 0.0 CM=0.05 CT=.00 4 .

5.2.2 Constants for Chase's 1987 Models

To establish the empirical constants for his compressible and incompressible models,

Chase used ihe work of Martin and Leehey 16. The six constants used in the

incompressible and compressible model are:

h=3.0 b=0.75 CT= 0.004 7

CM =0.15 5 3  cl =0.1667 c2 =0.1667, (5.3)

where c2 and c3 are only used for the compressible model.
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5.3 Flow Parameters for Glycerine Experiment

The glycerine experiment of Lauchle and Daniels 17 was performed in a pipe flow

facility for a range of Reynolds numbers. The experimental facility is designed to change

the Reynolds number by varying the temperature of the working fluid as opposed to

varying the flow velocity. The flow velocity at the centerline of the tunnel is stated as

6.8 m / s:9 U,, -< 7.5 m / s. The mean value of this stated range was chosen for the free-

stream velocity. Fluid properties at 35" C were used for the calculations, boundary layer

thickness was assumed to be the radius of the tunnel, and the sensor diameter was given as

0.5 mm. Based on this information, the following values were used to calculate spectral

levels for the glycerine tunnel experiment:

Re=10890 p=1238kg/m 3 U.,=7.15m/s R=0.25mm

S=a=0.14m Uc=4.648m/s u.=0.44]m/s r,,=240.93Pa (5.4)

u = 1.72xl04 m2 /s c = 1980 m / s

where the values of convection velocity, wall shear stress, and friction velocity were

calculated by the program. Since this flow is in a pipe, the equation used for calculation of

wall shear stress is different from the one used for a flat plate5 :

•,,•t _T T 14_ 14 -/4

T,, = 0.0325pU,, a- (5.5)

where a is the pipe radius and U., is the average pipe flow velocity. The spectral

calculations were performed over the frequency range of 1-1000 Hz. Based on these

parameters, the solid line of Figure Al shows P(k ,,0,(0) computed from the 1987

compressible model, for a frequency of f=100 Hz.
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5.4 Flow Parameters for Water Experiment

The experiment with water was performed in a rectangular channel flow facility.

Given the channel Reynolds number, channel dimensions, and that the working fluid was

water at approximately 200 C; the following parameters were used for the calculations:

Rh=25000 p=998kg/m 3 U.vl.7m/s R=0.25mm

S=a=0.0125m U,=1.105m/s u.=0.089m/s (5.6)

C,= 7.953Pa u=l.005xl0 6 m 2 /s c=1481m/s.

Once again, the values for convection velocity, wall shear stress, and friction velocity were

calculated by the program. Wall shear stress was calculated using equation (5.5), and

spectral calculations were performed over the frequency range 0.2-2000 Hz. Based on

these parameters, the solid line of Figure A2 shows P(k1 ,0,o) computed from the 1987

compressible model, for a frequency of f=100 Hz.

5.5 Flow Parameters for Air Experiment

The experiment by Schewe 19 was performed in a wind tunnel. For this experiment,

all the necessary flow parameters were given. The only parameter calculated by the

program was the convective velocity. The parameters used for the calculation of the

spectral levels for the experiment in the wind tunnel were:

Re6 =1400p=l.20kg/m 3 U=6.3m/s R=0.5mm 8=30mm

UC=4.095m/s u.=.273m/s T,,=.09Pa c=343m/s.
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Spectral levels were calculated for the frequency range of 20-2000 Hz. Based on these

parameters, the solid line of Figure A3 shows P(k,,O,co) computed form the 1987

compressible model, for a frequency of f=100 Hz. Due to the slower speed of sound in air

relative to the other fluids, the acoustic wavenumber is present on Figure A3. The acoustic

wavenumber can be seen to effect P(k1 ,0,c0) at k, / (co / U.) =.012.
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Chapter 6

RESULTS

6.1 Constants Given By Chase

In this section, a comparison of the three models proposed by Chase in his 1980 and

1987 papers will be presented. Spectral levels were first calculated using all three of

Chase's models with the constants specified in Chapter 5. This first comparison will allow

one to assess the differences among the various models proposed by Chase. Figure 6

shows the spectral levels calculated for the glycerine experiment for all three models;

Chase's 1980 model, the 1987 incompressible model, and the 1987 compressible model.

Notice that the 1987 compressible model and the 1987 incompressible model result in the

same predicted spectral levels for the given constants. The 1980 and 1987 models predict

the same spectral shape but with different amplitudes.

Figure 7 shows the spectral predictions for the water flow experiment. The low

frequency region of Figure 7 illustrates one of the main differences between Chase's 1980

and 1987 models. As stated in S 'ction 3.2.2, the assumption that P(k,o) tends to zero as

K2 was relaxed in the 1987 models. This is evident by the change in slope between the

two models in the low frequency region.

Figure 8 shows the results predicted by the 1980 and 1987 models for the flow

parameters given by Schewe in his wind tunnel experiment. The results in Figure 8 show

similar trends as those in Figure 6 for the glycerine experiment. The low frequency

divergence between the two models can be seen to be starting at the lowest data point, 20

Hz. If the calculations were carried out to lower frequencies, the results would show the



36

160

•p 150

140

"- 130

1980II1 120 -
1___Incom1987

'4- 110
0--0- Com1987

o 100

9 0 . . . .. . . .. . . .. . . .

1 10 100 1000 10000

Frequency (Hz)

Figure 6 - Comparison of Chase Models for Glycerine Flow Parameters

140

130

S120=L

I 110

- 100
100 _____IncomI 987

0 90 -C'oo---- Com9987

80 ..

0.1 1 10 100 1000 10000

Frequency (Hz)

Figure 7 - Comparison of Chase Models for Water Flow Parameters



37

70

=L 50
50el

S40
- Incom1987

30 - Com1987

20
10 100 1000 10000

Frequency (Hz)

Figure 8 - Comparison of Chase Models for Air Flow Parameters



38

same trend as the low frequency data in Figure 7.

6.1.1 Comparison to Experimental Results

A comparison of the spectral levels calculated with the given constants versus the

experimental results are presented in this section. Since the calculated results obtained for

the incompressible and compressible 1987 models were the same, only the compressible

model results will be displayed. Figure 9 shows a comparison between calculated values

and experimental values for the glycerine experiment. A number of discrepancies between

predicted and measured levels can be noted. The spectral levels predicted by all three

models were considerably higher than those measured. The predicted peak level occurs at

around 10 Hz, while the measured peak level occurs at about 20 Hz. The measured levels

decrease rapidly after the peak value while the predicted values decrease at a much slower

rate. This marked difference in spectral level above 100 Hz may be a result of the fact that

Chase's models do not take into account the viscous domain of the turbulent boundary
22

layer. Based on the work of Farabee and Casarella , the source of the high frequency

portion of the wall pressure spectrum is proposed as the overlap region of the boundary

layer. The small scale velocity fluctuations in this region are affected by the viscosity of the

fluid. By neglecting the effect of viscosity, Chase may be over predicting the small scale,

high frequency, velocity fluctuations. Another issue to be considered for these

discrepancies is the use of an external flow prediction method for an internal flow.

A comparison between measured and predicted spectral levels for the water tunnel

experiment of Home and Handler 18 is shown in Figure 10. The agreement between

measured and predicted values is much better for this experiment. In the higher frequency

range, above about 100 Hz, Chase's models predict the rate of decrease of the spectral
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levels much more accurately for the water experiment than for the glycerine experiment.

By comparing Figures 9 and 10, one can see that above 100 Hz the negative slope of the

measured pressure spectrum is much greater for glycerine than water. In the low

frequency region, below about 5 Hz, all three models decrease more rapidly than the

measured levels. As noted above, the 1987 models decrease less rapidly than the 1980

model in the low frequency region, although the results are still too low.

Figure 11 shows the comparison between measured and calculated spectral levels for

the wind tunnel experiment of Schewe1 9 . The predictions of the 1987 models show

relatively good agreement with the actual measured levels. Once again, the high frequency

region is the area where the agreement between measured and predicted levels is the

poorest. In this case, the predicted levels agree well with the experimental results up to

about 900 Hz.

In general, the agreement between measured and predicted levels for the air and water

data is good. The predictions for the glycerine experiment show poor agreement with

experimental results. The predictions with the 1987 models, both incompressible and

compressible, show better agreement with experimental results than the predictions using

the 1980 model. In all cases, as one progresses to higher frequencies, Chase's models

tend to over predict the measured sound pressure levels. In the following section, an

attempt will be made to obtain a better fit to the experimental data by varying the six

empirical constants utilized by Chase in his 1987 compressible model.

6.2 Empirical Constants

In order to obtain a better agreement between the experimental and calculated results,
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the six parameter values given by Chase for his 1987 incompressible model were

systematically varied. The first step was to vary each parameter individually to quantify the

effect each parameter has on the calculated wall pressure spectrum. As an example, Figure

12 is a comparison of the spectral levels calculated for the air experiment with the values

given by Chase versus the spectral levels calculated when CT is reduced by a factor of 3.

All other constants remained the same for this calculation. One can see that reducing the

value of CT by a factor of 3 had very little effect on the calculated spectral levels. Figure

13 shows the result of lowering the value of CM by a factor of 3 while keeping the other

parameters constant. As shown by Figure 13, reducing the value of CM reduced the

overall levels by about 5 dB. Reducing CM by the same factor as CT had a much greater

impact on the predicted levels. This is to be expected since the contribution to the turbulent

boundary layer wall pressure by the mean shear-turbulence interaction term is significantly

larger than the contribution from the turbulence-turbulence interaction term. Another

important feature of both Figures 12 and 13 is that, although the magnitude of the predicted

levels was changed, the shapes of the spectra remained identical. Figure 14 compares the

results for the given constants to the values predicted by the model when b is reduced by a

factor of 3. The effect of b, the scale coefficient, on the low frequency predicted levels is

considerable. Below 300 Hz, the lower value of b causes divergence between the spectral

levels predicted with the original constants. Above about 300 Hz, the new set of data

matches the original predicted levels. Finally, Figure 15 shows calculations when h is

lowered by a factor of 3. The effect of the velocity dispersion coefficient, h, is similar to

that of CM. The level of the entire spectrum is reduced by about 5 dB, but the slope of the

predicted curve remains the same. Varying the parameters c, and c2 had an extremely

small effect on the calculated wall pressure spectrum.

Figure A l shows the results of varying the empirical constants CM, h, and b on
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P(k ,0,wo) for the glycerine experiment flow parameters at a frequency of 100 Hz. Note

the overall level of P(k• ,0,)o) for the original constants vs. the best fit constants. Figure

A2 shows the results c ýarying the empirical constants CM, h, and b on P(k,1 0,o,) for

the water experiment at a frequency of 100 Hz. For the water experiment, the best fit result

for P(k1 ,0, A) is much closer to the original result than is the case for the glycerine

experiment. Figure A3 shows the results of varying the empirical constants CM, h, and b

on P(kI,0,co) for the air experiment at a frequency of 100 Hz.

Inspection of Figures 12-15 shows that the only parameter that changes the general

shape of the spectrum is b. The effect of the scale coefficient, b, is most noticeable in the

low frequency region of the wall pressure spectrum. None of the parameters have any

impact on the slope of the high frequency end of the spectrum. This fact will limit the

effectiveness of fitting the experimental data by varying the empirical constants.

6.2.1 Empirical Fit to Experimental Data

Using the information gained by varying the constants individually, an empirical best

fit to the experimental data was obtained by varying combinations of the empirical

parameters. The combinations used are not necessarily unique. In general, the scale

coefficient, b, was used to fit the slope of the low frequency calculated data to the

experimental data. The overall level was adjusted using combinations of h and CM. Due

to th: relatively minor impact of CT on the calculated pressure spectrum, its value was

unchanged.

Figure 16 is a comparison of the experimental data for the air experiment with the best

fit obtained by varying Chase's empirical parameters. The final parameter values used in
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the 1987 compressible model are:

h=3.0 b=0.5 CT=0.00 4 7

CM = 0.2330 cl =-0.1667 c2 =0.1667. (6.1)

Comparison of these values with Equations (5.3), the original value of the constants,

illustrates the changes made. Although b was altered by a significant amount, the

remainder of the values were changed very little. Since the original values of constants

used by Chase were determined by comparison to wind tunnel data, this is not unexpected.

The low frequency portion of the experimental curve was fit by reducing the value of b.

The overall levels were adjusted using a slightly higher value of CM. The calculated

spectral levels agree well with the experimental data up to about 1000 Hz. The measured

peak level is at about 50 Hz and the calculated peak level, with the above values of

experimental parameters, now coincides with this peak. Above 1000 Hz, the model still

over predicts the sound pressure levels. As mentioned above, none of the experimental

parameters can affect solely the high frequency end of predicted pressure spectrum. With

the Chase's present model of the turbulent boundary layer, it is not possible to match the

low frequency and high frequency portions of Schewe's measured pressure spectrum.

Figure 17 is a comparison of the Home and Handler experimental data for the water

experiment with the best fit obtained by a new set of empirical parameters. The final

parameter values used in the 1987 compressible model are:

h=3.0 b=1.40 CT=0. 0 04 7

CM=0.0 7 7 7  c1 =0.1667 c2 =0.1667. (6.2)

Once again, the low frequency portion of the spectrum was fit using the scale coefficient b.



48

140

S130

•, 120

L 110

S100 Exp

90 Best Fit

80 .
0.1 1 10 100 1000 10000

Frequency (Hz)

Figure 17 - Experimental Data for Water Experiment vs. Best
Fit Data with 1987 Compressible Model



49

After the low frequency end of the spectrum was fit, the overall level was adjusted using

Cm. There is good agreement between the calculated and measured values for the water

experiment in the low and high frequency regions. The peak predicted spectral level of the

wall pressure spectrum was at about 20 Hz. The measured wall pressure spectrum shows

a peak in the same region, although lower in level by about 9 dB. Above 1000 Hz, the

measured and predicted levels begin to diverge, although not as noticeably as in the case of

the air data.

Figure 18 is a comparison of the experimental data for the glycerine experiment of

Lauchle and Daniels with the best fit obtained by varying Chase's empirical parameters.

The final parameter values used in the 1987 compressible model are:

h=1.0 b=0.4 CT =0.0047 (6.3)

CM=0.10 c1 =0.1667 c2 =0.1667.

Above 100 Hz, there are still large discrepancies between measured and predicted spectral

levels. Glycerine, having the highest viscosity of the three fluids under consideration,

exhibits the poorest high frequency agreement between measured and predicted spectral

levels. The measured peak spectral level is in the 20-30 Hz region. The predicted peak

spectral level now corresponds with the measured peak. At frequencies below about 5 Hz,

the predicted spectrum tends towards zero much more rapidly than the measured curve.
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Chapter 7

CONCLUSIONS

7.1 Justification for New Empirical Constants

In order to obtain a better fit to the measured wall pressure spectra presented in this

paper, the values of the empirical constants used by Chase in his 1987 compressible model

were varied. Having determined the values which are most suitable for the experiments

considered, the reasons why these changes were necessary must be explored. In essence,

two parameter values were varied. The first was the scale coefficient b, which changed the

low frequency portion of the calculated wall pressure spectra. The second was the value

of the product CMh, which changed the overall level of the spectrum.

For the experiment performed in air, significant change in b was required. Chase 15

states that the scale coefficient, b, is used to cut off contributions to the wall pressure

spectrum at wavenumbers less than the reciprocal of the outer scale, i.e. the boundary layer

thickness. As noted, the scale coefficient affects the low frequency portion of the predicted

wall pressure spectrum. Better agreement with Schewe's data was obtained by lowering

the value of b from the value first postulated by Chase. This is to be expected because

Chase 12 notes variability from experiment to experiment for the low frequency portion of

the wall pressure spectrum. Based on this fact, it is not unexpected that the value of b

needed to fit Schewe's data was different than the value of b needed to fit Martin and

Leehey's data. The work done by Schewe was performed in a quiet wind tunnel designed

for flow noise measurements. With this facility, it is possible that Schewe was able to

obtain a better measurement of the low frequency portion of the wall pressure spectrum.
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The value of the product CMh was increased by 1.5 times over the value used by Chase in

his 1987 paper. This change, in part, was necessitated by the effect that decreasing b had

on the mid frequency portion of the predicted spectrum. The result of this increase in CMh

on the prediction is not significant, about 2-3 dB.

For the experiment performed in the water tunnel, so that the low frequency portions

of the measured and predicted spectra would agree, the scale coefficient had to be increased

by almost 3 times the original value. There are a number of possible causes for the need

for this large increase. The experiment was performed in a rectangular flow facility so the

boundary layer was bounded, not free. As was discussed by Farabee and Casarella 2 2 , the

physical characteristics of channel and flat plate boundary layer flows are different,

especially in the outer regions, which generate the low frequency components of the wall

pressure spectrum. A second possible cause is the presence of low frequency noise

contamination in the measured signal. Although a significant decrease in measured levels

was obtained by post-processing the acquired data to remove background noise, it is still

possible some contamination remains. As was the case for the air experiment, the value of

CMh was adjusted, lowered in this case, to compensate for the increase in b. The decrease

in value of the product CMh did not totally compensate for the increase in h, which resulted

in the mid frequencies of the predicted spectrum being slightly higher than originally

predicted.

For the glycerine experiment, the greatest changes in the values of the constants were

required. The product CMh was lowered by almost a factor of 5 to bring the overall levels

into closer agreement with the measured levels. The velocity dispersion coefficient, h, is

an empirical constant which is used to scale the friction velocity u.. Comparison of the

friction velocity for the air and glycerine shows that u. is twice as large for the glycerine
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experiment. The large value of u., coupled with the level of the coefficient h established

for wind tunnel data resulted in spectral levels which were too high. The value of the

coefficient used to scale the mean shear-turbulence interaction term, CM, was also

established by Chase based on wind tunnel data. Even if h was lowered by a factor of 2 to

account for a higher friction velocity, CM would still be too high. The value of b was

lowered in an attempt to fit the low frequency portion of the spectrum. Below 5 Hz, the

predicted levels are still decreasing more rapidly than measured. The same possible

explanations apply to this data as for the water tunnel data

It is interesting to note the similarity between the results for the glycerine and water

experiments. In both cases, the measured low frequency spectral levels decrease at a much

slower rate than is predicted by Chase models. Both experiments utilized techniques to

remove low frequency contamination from the acquired data. This leads to the conclusion

that the similar results for the glycerine and water experiments may be the result of these

being bounded shear flows rather than free boundary layers.

7.2 General Conclusions

This paper has attcmpted to evaluate the suitability of applying Chase's

comprehensive wavevector frequency spectrum models 1 2 ,15 to the prediction of measured

turbulent boundary layer wall pressure spectra. In the course of this investigation, a

number of conclusions have been reached:

-The 1987 compressible and incompressible models predict spectral levels that are

closer to measured levels than does the 1980 model.

-In the 1987 models, the functional dependence of the low frequency region of the



54

wavevector frequency spectrum was relaxed from the K 2 dependence of the 1980 model.

Changing the low frequency dependence of the 1987 models resulted in better estimates of

the very low frequency regions of the wall pressure spectrum, as can be noted in

comparison with data from the water tunnel. Although better, the models still tend to over

predict the rate of decrease of the spectral levels in the low frequency region of the

spectrum for the water and glycerine experiments.

-In his 1980 paper, Chase states that the effect of viscosity on the convective

ridge of the wavevector-frequency spectrum will be small provided orn/u! • 2, and that the

effect of viscosity on the low wavenumber domain will be small if o=/u! 5 1/2. For the

glycerine experiment, this corresponds to viscous effects becoming important in the low

wavenumber domain for frequencies above 90 Hz, and for the convective domain at

frequencies above 360 Hz. The final results for the glycerine experiment, Figure 18,

shows the calculated values deviating from the measured values at frequencies above about

90 Hz. For the water experiment, the above criteria correspond to frequencies of f=627 Hz

and f=2508 Hz, for the low wavenumber and convective regions respectively. For the air

experiment, viscous effects become important at frequencies of f=393 Hz and f=1571 Hz,

for the low wavenumber and convective regions respectively.

-In all cases, the models over predict the measured spectral levels in the high

frequency region. The cause of this appears to be that the models do not take into account

the viscous domain of the turbulent boundary layer. Within the viscous sublayer, small

scale, high frequency velocity fluctuations are reduced in magnitude. The best example of

this is the comparison of the glycerine tunnel data to predicted levels.

-The models, in their present form, appear to be most suitable for predicting spectral

levels of free boundary layers in nearly inviscid fluids. This is expected since Chase

arrived at his models with such assumptions.

-A comparison of calculated wall pressure spectra, with the new empirical values
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arrived at here, to a recent measurement of wall pressure spectral levels for a free boundary

layer in water would be useful. This comparison should answer the questions concerning

the rate of decrease of the low frequency spectral levels of the measured wall pressure

spectra for the water and glycerine experiments.

- Comparisons of calculated wall pressure spectra, with the new empirical values, to

a variety of recent air tunnel measurements would allow one to evaluate the applicability of

the new constants to a range of flow conditions.

-Future work in modeling the wall pressure spectrum of the turbulent boundary with

Chase's models should include an attempt to account for the effects of the viscous region of

the turbulent boundary layer. Once a high frequency dependent term is included in Chase's

wavevector-frequency spectrum model, a better match to the entire measured frequency

spectrum may be obtained.
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Appendix A

PLOTS OF WAVEVECTOR-FREQUENCY SPECTRUM
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Appendix B

MATLAB COMPUTER PROGRAM TO CALCULATE TURBULENT
BOUNDARY LAYER WALL PRESSURE SPECTRUM USING

CHASES 1987 COMPRESSIBLE MODEL
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%This program calculates the turbulent boundary layer wall pressure spectrum by
%integrating the wavenumber frequency spectrum given by by D.M. Chase in his
% 1987 paper. The program is different from Chase's 1980 model in two ways:
%the values of the constants Cm and Ct, and Pt is multiplied by a term called mod.
%This program uses Eqn (40)from Chase's 1987 paper-the compressible form
%of the wall pressure spectrum model. This takes the incompressible form
%developed by Chase in the 1987 program and multiplies Cm and Ct by factors
%to account for compressiblity in the acoustic wavenumber domain.

%Note: For air calculations, vstar is given.
%For glycerine and water vstar comes from calculated wall shear stress.

clear
t=clock;
flops(0); %timer for calculations

%Re= 10890.0; %Re for Lauchle glcerine exp
%rho=1238.0; %density glycerine kg/mA3 at 35 degress C
%U=7.15; %free stream velocity in m/s glycerine
%r=-.00025; %radius of sensor in m for glycerine exp
%nu=.000172; %kinematic viscosity in mA2/s
%rad=. 14; %pipe radius in meters
%delta=0. 14; %delta glycerine exp in meter
%Tauw=.03325*rho*UA(7/4)*nuA(1/4)*radA(- 1/4); %Wall shear stress for pipe
%c=1980; %speed of sound in glycerine m/s

%Re=25000.0; %Re for NRL water exp
%rho=998.0; %density water kg/m^3 for water 20 degrees C
%U=1.7; %free stream velocity for NRL water
%r=.00025; %radius of sensor in m for NRL exp
%nu=.000001005; %kinematic viscosity in mA2/s
%rad=.0 125; %pipe radius in meters
%delta=.0125; %delta water exp in meter
%c=1481; %speed of sound in water m/s
%Tauw=.03325*rho*UA(7/4)*nuA(1/4)*radA(-1/4); %Wall shear stress for pipe

rho=1.20; %density air in kg/mA3-0 degrees C
U=6.3; %freee stream velocity air for Schewe
delta=.03; %boundary layer thickness Schewe
Tauw=.09; %wall shear stress given by Schewe (Pa)
r=.0005; %radius of sensor in m for Schewe exp
c=343; %speed of sound in air m/s
vstar=.273; %friction velocity m/s
%When calculating in air change conversion to 20 micro Pa at bottom of program

%Tauw=.029*rho*UA2.0*ReA(-0.2); %wall shear stress for flat plate
Uc=U.*0.65; %convective velovity is .65*free stream
%vstar=(Tauw./rho)AO.5; %friction velocity
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%B=0.75; % calculated constants
%mu--0.176;
%H=(mu.*Uc)./vstar;
%Ct=.014/H;
%Cm=.466/H;

H=3.0; %constants from Chase 1987
Ct=.0047;
Cm=. 1553;
B=.25;
c2--0.1667;
c3--0.1667;

size=30.0; %number of freq pts in log increments

kc=zeros(1,size); %initialize arrays
Gtt=zeros(1,size);
Gtt2=zeros(1,size);
Gtt3=zeros(1,size);
Gtt4=zeros(1,size);
Gtt=zeros(1,size);
data=zeros(1,size);
w=zeros(1,size);
freq=zeros(1,size);

for i=l:size; %frequency loop

w(i)=125.66*(12566.37/125.66)A((i-1)/29); %frequency span in air
%w(i)=1.2566*(12566.37/1.2566)A((i-1)/29); %frequency span in water
%w(i)=6.2832*(6283.19/6.2832)^((i- 1)/29); %frequency span in glycerine

kc(i)=w(i)./Uc; %convective wavenumber
al=-10.1 .*kc(i);
bl=10.0 .*kc(i);
a2=-10.1 .*kc(i); %lower limit of integration
b2= 10.0 .*kc(i); %upper limit of integration

%perform double integration with Simpson's Rule
%Double integration for simpson's rule consists of fcn evaluated at nine locations.

nummx-40; %number of cells in x & y direction
nummy=-40;

nx=2.0*nummx; %number of points in x & y per cell
ny=2.0*nummy;
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h=(bl-al)./nx; %step size
h2=(b2-a2)./ny

sum=-O.O;
k I I=al;
k12=kllI+h;
k13=kl2+h;

for j=1 :nummx
UkI =a2;
k32=k3l1+h2;
k33=k32+h2;

%calculate componetns of Gtt

%I 1st location

Ksq=k 11 A2+k3 1 A2;

Kcsq=abs((Ksq-W(i)A2./cA2)); %compressibility

corn 1=c2*(KcsqfKsq)+c3*(KsqfKcsq)+ 1-c2-c3; %comnpress. factor for Ct
corn2=Ksq/Kcsq; %comnpress. factor for Cm

kr=(Ksq.AO.5).*r; %calculate hydrophone response fcn

dl=bessel(1,kcr);
hyd=((2 .*dl )./kr).A2.O;
kplus=(w(i)-Uc. *k 11).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B *delta).A (-2))./ (Ksq+(B*delta).A (-2));
Kin=(((w(i)-Uc. *k 11).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
Kt=(((w(i)-Uc. *kl11).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
phi--rhoA2*vstarA3.*(com2*Cm *kl 1A2 *KrnA(-2.5)+coml *Ct*Ksq *modJ *Kt A(-2.5));
fi =phi*hyd;

%2nd location

Ksq=kl12.A2+k3 1 A2;

Kcsq=abs((Ksq-W(i)A2./CA2)); %comnpressibility

corn 1 =c2* (KcsqfKsq)±c3 *(Ksq/Kcsq)+ 1 -c2-c3; %compress. factor for Ct
corn2=Ksq/Kcsq;
%compress. factor for Cm

kr=(Ksq.AO.5).*r,
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dl=bessel(1 ,kx);
hyd=((2 .*dl )./kr).A2.O;
kplus=(w(i)-Uc.*kl2).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B*delta).A(-2))./ (Ksq+(B*delta).A(-2));

~m=(((w(i)-Uc.*kl 2).A2/(HA2*vstarA2))+Ksq+(B *delta).A(-2));
Kt=(((w(i)-Uc. *kl12).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
phi--rhoIA2*vstarA3.*(con12*Cm *kl12A2 *KjMA(..2.5)+coml1*Ct*Ksq *mod *Kt./{.(2.5));
f2=phi*hyd;

%3rd location

Ksq=kl 3A2+k3 1 A2;

Kcsq=abs((Ksq-w(i)A2 ./CA2)); %compressibility

corn 1 =c2*(Kcsq/Ksq)+c3*(Ksq/Kcsq)+ 1 -c2-c3; %compress. factor for Ct
com2=KsqfKcsq;
%compress. factor for Cm

k=Ksq.AO.5).*r,.
dl=bessel(l,kr);
hyd=((2.*dl1)./kr).A2.O;
kplus=(w(i)-Uc. *kl13).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B*delta).A(-2))./ (Ksq+(B *delta).A(..2));
Kni=(((w(i)-Uc.*klI3).A2/(HA2*vstarA2))+Ksq+(B *dela).A(-2));
Kt=(((w(i)-Uc.*kl13).A2/(HA2*vstarA2))+Ksq+(B*delM).A(..2));
phi--rhoi%2*vstarA3.*(com2*Cm *kl 3.A2 *KMjA(-.25)+coml *Ct*Ksq *modc *Kt.A(-..25));
f3=phi*hyd;

for k=1 :nummy

%4th location

Ksq=kl 1 A2+k32.A2;
Kcsq=abs((Ksq-W(i)A2./cA2)); %compressibility

corn 1=c2*(KcsqfKsq)+c3*(Ksq/Kcsq)+1-c2-c3; %compress. factor for Ct
com2=KsqfKcsq;
%compress. factor for Cm

kr=(Ksq.AO.5).*r,
dl=bessel(1 ,lr);
hyd=((2 .*d 1 ./kr).A2.O;
kplus=(w(i)-Uc. *kl11).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B *delta). A(-.2))./ (Ksq+(B*delta).A(-2));
Km=(((w(i)-Uc. *k 11).A2/(HA2*vstarA2))+Ksq+(B *delta).A(..2));
Kt=(((w(i)-Uc. *kl11).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
phi=rhoA2*vstarA3.*(com2*Cm *kI 1A2 *KMA(..2.5)+com I*Ct*Ksq *mno *Kt.A(-.25));
f4=phi*hyd;
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Ksq=kl12.A2+k32.A2;
Kcsq=abs((Ksq-W(i)A2 ./CA2)); %compressibility

com1=c2*(KcsqfKsq)+ic3*(Ksq/Kcsq)+1-c2-c3; %compress. factor for Ct
com2=KsqfKcsq;
%compress. factor for Cm

kr=(Ksq.AO.5).*r,
dl=bessel(1,kr);
hyd=((2 .*d 1 )./kr).A2.O;
kplus=(w(i)-Uc.*k12).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B*delta).A(-2))./ (Ksq+(B*delta).A (-2));
Km=(((w(i)-Uc. *kl12).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
Kt=(((w(i)-Uc. *kl 2).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
phi--rhoA2*vstarA3.*(com2*Cm*k12.A 2 *KmA(-.25)+com1*Ct*Ksq *mod *KtA(-..25));
f5=phi*hyd;

%6th location

Ksq=k 3.A2+k32.A2;
Kcsq=abs((Ksq-w(iYA2./cA2)); %compressibility

corn 1=c2*(Kcsq/Ksq)+c3*(KsqfY~csq)+ 1-c2-c3; %compress. factor for Ct
com2=KsqfKcsq;
%compress. factor for Cm

kr--(KsqAO.5).*r;
dl =bessel(l1,kr);
hyd=((2.*d1 )./kr) A2.0;
kplus=(w(i)-Uc. *kl13).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B *delta).A(.2))./ (Ksq+(B *delta).A(..2));
Km=(((w(i)-Uc. *k 1 3).A2/(HA2*vstarA2))+Ksq+(B *delta). A(-2));
Kt=(((w(i)-Uc. *k 1 3).A2/(HA2*vstarA2))+Ksq+(B *delta) A(-2));
phi--rhOA2*vstari-*3.*(com2*Cm *kl1342 *KmA(..2.5)+coml1*Ct*Ksq*mod *KtA (-2.5));
f6=phi*hyd;

%7th location

Ksq=kl 1.A2+k33.A2;

Kcsq=abs((Ksq-W(i)A2./CA2)); %compressibility

coml=c2*(Kcsq/Ksq)+c3*(KsqfKcsq)+l-c2-c3; %compress. factor for Ct
com2=KsqlKcsq;
%compress. factor for Cm



68

kr--(Ksq.AO.5).*r,
dl=bessel(l1,kr);
hyd=((2.*dI)./kr).A2.;
kplus=(w(i)-Uc. *kl11).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B*delta).A(-2))./ (Ksq+(B*delta).A(-2));
Km=(((w(i)-Uc. *kll1).A2/(fjA2*vstarA2))+Ksq+(B *dela).A(..2));
Kt=(((w(i)-Uc. *kl11).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
phi--rhoA2*vstar*A3.*(com2*Cm *kl 1A2 *KmA(-2.5)+com1 *Ct*Ksq *mod *KtA(..2.5));
f-/=phi*hyd;

%8th location

Ksq=kl12.A2+k33.A2;
Kcsq=abs((Ksq-w(i)A2./cA2)); %compressibility

corn 1=c2*(Kcsq/Ksq)+c3*(KsqfKcsq)+ 1-c2-c3; %compress. factor for Ct
com2=Ksq/Kcsq;
%compress. factor for Cm

kr--(Ksq.AO.5).*r,
dl=be-ssel(l,kr);
hyd=((2 .*d 1)./k).A20;
kplus=(w(i)-Uc. *kl 2).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B*delta).A(-2))./ (Ksq+(B*delta).A(-2));
Km=(((w(i)-Uc.*k1 2).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
Kt=(((w(i)-Uc. *kl12).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
phi--rhoIA2*vstarA3.*(com2*Cm*k1 2A2 *KmA(-.25)+coml *Ct*Ksq*mod*Kt.A(-..25));
f8=phi*hyd;

%9th location

Ksq=kl 3.A2+k33.A2; %compressibility

corn 1=c2*(KcsqfKsq)+c3*(Ksq/Kcsq)+ 1-c2-c3; %compress. factor for Ct
com2=Ksq/Kcsq;
%compress. factor for Cm

jc-(Ksq.AO.5).*r:
dl=4,essel(l1,kr);
hyd=((2.*dI )./kr).A2.O;
kplus=(w(i)-Uc.*k1 3).A2/(HA2. *vstarA2)+Ksq;
mod=(kplus+(B*delta).A(-2))./ (Ksq+(B*delta).A(-2));
Km=(((w(i)-Uc. *kl13).A2f(HA2*vstarA2))+Ksq+(B *delta).A(-2));
Kt=(((w(i)-Uc. *kl13).A2/(HA2*vstarA2))+Ksq+(B*delta).A(-2));
phi--rhoA2*vstarA3.*(com2*Cm *kl3A2 *KMA(..2.5)+com1 *Ct*Ksq*mod*KtA(..2.5));
f9=phi*hyd;

%sum components of molecule
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sum=sum+(h*h2./9.0).*(f 1 +f3+f7+f9+4.O .*(f2+f4+f6+f8)+ 16.0 .*f5);

%move :o next molecule

fl=f7;
f2=f8;
f3=f9;
k32=k33+h2;
k33=k32+h2;
end

kll=k13;
k12=kl 1+h;
k13=k12+h;
end

Gtt(i)=2.0 * sum;

end

Gtt2--Gtt*2*pi ./(4* 1OA(410)); %convert Ott from Pa to dB re 20 microPa
%Gtt2--Gtt*2*pi Al(*10lA(-12)); %convert Ott from Pa to dB re 1 microPa
Gtt3= 10.0 .*log I0(Gtt2);
freq=w ./6.28;

semilogx(freq,Gtt3)
freqlI=freq';
Gtt4--Gtt3';
save freq freq 1 /ascii
save data Gtt4 /ascii
etime(clock,t)
flops


