
A D -A 2 69 53 1 L ove..•_v
ofiSouthernIu

California w

Learning Database Abstractions
For Query Reformulation

Chun-Nan Hsu and Craig A. Knoblock

USC/Information Sciences Institute

I

March 1993

ISI-RR-93-309

DTIC
S ELECTE

SEP2 11993 L
E

INFORMATION
SCIENCES 3101822-1511

INSTITUTE _j J4676 Admval.v WaylMarna del ReylCalkforma 90292-6695

"

(A.
0 0 00 0 00A0,

*q

* Learning Database Abstractions
For Query Reformulation

Chun-Nan Hsu and Craig A. Knoblock
USC/Information Sciences Institute

March 1993

ISI-RR-93-309

*

1 Accesion For

NTIS CRA&I
DTIC TAB
Unannounced Li
Justification T
By . -..-- .-

Distribution I .-

Availability Codes

Avail and I or
Dist Special

To appear in the Proceedings of the AAAI Workshop on Knowledge Discovery in Data-
bases, Washington, DC., 1993

D E F EN S E T EC H NI C AL I NF OR f T IO N C E N T E R

ptovod fud -WUc 932

0 0 0 0 0 0 0 0 0

FORM APPROVED OREPORT DOCUMENTATION PAGE ONO• NO. -OM"

Public raportit burden Ior this c€lhection of ittormatlon is estimated to average I hour per reepoiwe Inclding the tire for reiewing Inetnictione, aeerhiig eailing d a
eource., gethln ind nklnjn the dat needed, and completing and reviewing the collection ol inlonnatlon. Send comments retrding thi ude elManaed or en
othereepecotth ociecion In ormetlon.including aeugtinge for' reducing this burden to Wlahngton Nsadqsmrtersl Services. Okuctlolrde for' itiorunetll onmlkn

DCR: ,153 4
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 30, 1993 Research Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Learning Database Abstractions For Query Reformulation

F30602-91-C-0081

6. AUTHOR(S) 0

Chun-nan Hsu and Craig Knoblock

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON

USC INFORMATION SCIENCES INSTITUTE REPORT NUMBER

4676 ADMIRALTY WAY RR-309
MARINA DEL REY, CA 90292-6695

9. SPONSORINGjMONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
Rome Laboratory ARPA AGENCY REPORT NUMBER

Griffith AFB 3701 Fairfax Street 0
Rome, NY 13441 Alexandria, VA 22203

11. SUPPLEMENTARY NOTES

T- appear in the Proceedings of the AAAI Workshop on Knowledge Discovery in Database Washington,
D.C., 1993

12A. DISTRIBUTIONIAVAILABILITY STATEMENT 128. DISTRIBUTION CODE

UNCLASSIFIED/JNLIMITED
13. ABSTRACT (Maximum 200 worda)

The query reformulation approach takes advantage of the semantic knowledge about the contents of data-
bases for optimization. The basic idea is to use the knowledge to reformulate a query into a less expensive 0
yet equivalent query. Previous work on semantic quer" optimization has shown the cost reduction that can
be achieved by reformulation, we further point out that when applied to distributed multibase queries, the
reformulation approach can reduce the cost of moving intermediate data from one site to another. however,
a robust and efficient method to discover the required knowledge has not yet been developed. This paper
presents an example-guided, data-driven learning approach to acquire the knowledge needed in reformula- p
tion We use example queries to guide the learning to capture the database usage pattern. In contrast to the
heuristic-driven approach is more likely to learn the required knowledge for the various reformulation
needs of the example queries. Since this learning approach minimizes the dependency on the database
structure and implementation, it is applicable to heterogeneous multidatabase systems.
14. SUBJECT TERMS IS. NUMBER OF PAGES

Query Reformulation, Semantic Query, Optimization, Inductive Learning, Data- 15
base Abstractions, SIMS

16. PRICE CODE

17. SECURITY CLASSIFICTION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-01-280-5500 andadn Form 2m98 (Rev. 2-49)
Prescrlbed by ANSI SUd. Z3t9-1

* 29-102

0 0 0 0 0

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important i
that this Information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is Important to stay within the lines to meet a
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement. 4

Block 2. Report Date. Full publication date Denotes public availability or limitations. Cite any
including day, month,a nd year, if available (e.g. 1 availability to the public. Enter additional
Jan 88). Must cite at least the year. limitations or special markings in all capitals (e.g.

NOFORN, REL, ITAR).
Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities.
the part of the report that provides the most NASA - See Handbook NHB 22002.
meaningful and complete information. When a "•IS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number, and 12b. Distribution Code.
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Leave blank.
in parentheses. DOE - Enter DOE distribution categories

Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unc'assified Scientific and Technical
element numbers(s), project number(s), task Reports.
number(s), and work unit number(s). Use the NASA - Leave blank.
following labels: NTIS - Leave blank. 0

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most

Element Accession No. significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms. Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.-19. Security Classifications. Self-
performing the repor. explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring/Monitoring Agency Names(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory UNCLASSIFIED). If form contins classified

Block 10. Sponsoring/Monitoring Agency information, stamp classification on the top and

Report Number. (If known) bottom of the page.

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
Information not included elsewhere such as: be completed to assign a limitation to the
Prepared In cooperation with...; Trans. of ...; To be abstract Enter either UL (unlimited) or SAR (same
published In... When a report Is revised, include as report). An entry in this block is necessary If
a statement whether the new report supersedes the abstract Is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

0 0 S S S 0 0 * A

To appear in the Proceedings of the
AAAI Workshop on Knowoledge Discovery in
Databases, Washinton, D.C., 1993

I
Learning Database Abstractions

For Query Reformulation*

6

Chun-Nan Hsu Craig A. Knoblock 0
Department of Computer Science Information Sciences Institute
University of Southern California University of Southern California

*Los Angeles, CA 90089-0782 4676 Admiralty Way
(213) 740-9328 Marina del Rey, CA 90292 0

chunnan~cs.usc.edu (310) 822-1511
knoblockaisi.edu

II

Abstract

The query reformulation approach (also called semantic query optimization) takes
advantage of the semantic knowledge about the contents of databases for optimization. 6
The basic idea is to use the knowledge to reformulate a query into a less expensive
yet equivalent query. Previous work on semantic query optimization has shown the
cost reduction that can be achieved by reformulation, we furthier point out that when
applied to distributed multidatabase queries, the reformulation approach can reduce
the cost of moving intermediate data from one site to another. However, a robust and
efficient method to discover the required knowledge has not yet been developed. This
paper presents an example-guided, data-driven learning approach to acquire the knowl-
edge needed in reformulation. We use example queries to guide the learning to capture
the database usage pattern. In contrast to the heuristic-driven approach proposed by
Siegel, the data-driven approach is more likely to learn the required know~edge for
the various reformulation needs of the example queries. Since this learning approach
minimizes the dependency on the database structure and implementation, it is appli-
cable to heterogeneous multidatabase systems. With the learning capability, the query
reformulation will be more effective and feasible in real-world database applications.

*The research reported here was supported by Rome Laboratory of the Air Force Systems Command
and the Defense Advanced Research Projects Agency under contract no. F30602-91-C-0081. Views and
conclusions contained in this report are the authors' and should not be interpreted as representing the
official opinion or policy of DARPA, RL, the U.S. Government, or any person or agency connected with
them.

0 o

1 Introduction I
X,

Query optimization methods have been studied since the introduction of declarative data
models and languages [Ullman 88]. This is because it is often difficult to efficiently imple-
ment declarative queries. The query reformulation approach, also known as semantic query
optimization approach in previous work [Chakravarthy et al. 90, Hammer and Zdonik 80,
King 81, Siegel 88], addresses the problem differently from the conventional syntactical ap-
proaches [Apers et al. 83,Jarke and Koch 84] in that it brings to bear a richer set of knowl-
edge about the contents of databases to optimize queries. The use of semantic knowledge
offers more potential for cost reduction than that can be derived from syntactic and physical
aspects of queries alone.

Figure 1 illustrates a simple example of how query reformulation works in a query process-
ing system. Suppose we have a database containing 3 instances, and each has 3 attributes,
Al, A2 and A3, where Al is indexed. We also have a set of database abstractions, which are
rules that describe the contents of a database. Suppose a query that contains two constraints
is addressed to the database system. The query reformulation uses the database abstractions
to reformulate the given query into a less expensive yet equivalent one to reduce the cost of
query execution. In this example, the query reformulation unit reformulates the given query
into a query that contains only one constraint. This remaining constraint is on an indexed
attribute so it is less expensive, while the retrieved data is still the same as that retrieved by
the original query. In addition to adding a constraint on indexed attribute, there are many
other ways to reduce the cost of the query by reformulation [King 81]. For example, we can 6
predict that the query will return NIL (empty set). The reformulation system can use the
database schema to estimate the access cost of the queries and guide the search for the least
expensive equivalent query.

@I

- - - - -1.C'), -(A2- O)

FA A2 A3om

AlA -C'A

C 0 2 AW

Figure 1: Learning for Query Reformulation

To make this approach feasible, we need a very efficient algorithm for the reformulation,
so that the overhead will not exceed the saving. We have developed an efficient prototype
reformulation algorithm to address this issue [Hsu and Knoblock 93]. The next issue is that
we need a robust and efficient methodology to acquire sufficient knowledge for reformulation.
Most of the previous work relies on the semantic integrity constraints that are encoded by

• • • •• • •

II

domain experts. However, it is not always the case that the domains of datibases area
well understood so that sufficient semantic integrity constraints can be easily encoded. As

indicated in dash lines in Figure 1, we would like a system that can automatically learn
the database abstractions. This paper describes an example-guided, data-driven learning
approach to address this problem.

The idea to automatically derive rules for reformulation is proposed originally by [Siegel 88).
In his approach, although example queries are used, the learning is mainly driven by a fixed
set of heuristics, which are designed based on the database structure and implementation.
Our approach differs from theirs in that we do not rely on explicit heuristics. Instead, our
approach focuses more on the example queries and the data they retrieve to identify the
rules needed for reformulation. The advantage of our approach is that it minimizes the de-
pendency on the database structure and implementation, and it is more likely to capture the
semantic aspects of the queries, and the various reformulation needs of the example queries.

The reminder of this paper is organized as follows. The next section briefly describes
more about the query reformulation approach and what kind of knowledge is used. Section 3
describes our learning approach. Section 4 discusses the issues of maintaining the learned
database abstractions. Se,: •- on 5 compares this learning approach with other related work in
knowledge discovery and machine learning. Section 6 reviews the contributions of the paper,
and discusses the general issues that arise from this learning approach.

a 0

2 Query Reformulation

The goal of the query reformulation is to search for the least expensive query from the space
of semantically equivalent queries to the original one. Two queries are defined to be se-
mriantically equivalent [Siegel 88) if they return identical answer given the same contents of
the database1 . The reformulation from one query to another is by logical inference using
database abstractions, the abstracted knowledge of the contents of relevant databases. The
database abstractions describe the databases in terms of the set of closed formulas of first-
order logic. These formulas describe the database in the sense that they are satisfied by
all instances in the database. They are of the form of implication rules with an arbitrary
number of range propositions on the antecedent side and one range proposition on the con-
sequent side. Figure 2 shows the schema and a small set of database abstractions for the
database geoloc, which stores data of geographical locations. In all formulas the variables
are implicitly universally quantified.

" The first two rules in Figure 2 state that for all instances in the database, the value of
its attribute country name is "Germany" if and only if the value of its attribute country
code is "FRG". The range propositions can be an interval for attributes of numeric type(see
Rule 3) or a set of possible values for attributes of string type(see Rule 5). Figure 3 shows
three queries addressed to the database geoloc. The query Q1 retrieves the geocode of the

'There are other definitions of semantic equivalence [King 811 that require the queries to return identical
answer given any contents of the database. However, this more restrictive definition would require using
semantic integrity constraints, which are not usually available.

DI

0 0 0 0 0 0 0 0 0 0

Schema:
(Database geoloc a,
:Attributes (latitude real-nuber :indexed)

(longitude real-number :indexed)
(geocode string :length 4)
(country-name string :length 20)
(country-code string :length 3))

Rules:
1: (geoloc.country-name = "Germany") ==* (geoloc.country-code "FRG")
2: (geoloc.country-code - "FRG") 1 (geoloc.country.-name - "Germany")
3:(geoloc.country-code = "FRG") 1 (47.15 < geoloc.latitude < 54.74)
4: (geoloc.country-code a "FRG") 9 (6.42 < geoloc.longitude < 15.00)
5: (geoloc.country-name - "Taivan")

S(geoloc.geocode E ("gdpp" "wcsp" "bccc" "gtsa"))
6:(51.15 < geoloc.latitude < 53.74)A(7.55 < geoloc.longitude < 14.87)

S(geoloc. country.name - "Germany")

Figure 2: Example Database Schema and Database Abstractions

geographical locations in Germany, while query Q2 retrieves the geocode for the instances
with country-code "FRG". The first clause (geoloc ?geoloc) in both queries binds the
variable ?geoloc to the instances of database geoloc. The second and third clauses bind 0
the variable and constant to the values of attributes of ?geoloc respectively. With rules I
and 2, we can reformulate the query Q1 to Q2 by replacing the constraint on country-name
with the constraint on country-code. We can inversely reformulate Q2 to Q1 with the same
rules. Basically, there are three types of reformulation. Given a query Q, let Cl,..., Ck
be the set of constraints in Q, the following reformulation operators return a semantically 0
equivalent query:

"* Constraint Addition: Given a rule A --* B, if a subset of constraints in Q
implies A, then we can add constraint B to Q.

"* Constraint Deletion: Given a rule A --+ B, if a subset of constraints in Q
implies A, and B implies C,, then we can delete C, from Q.

"* Query Refutation: Given a rule A --+ B, if a subset of constraints in Q implies
A, and B implies -'C,, then we can assert that Q will return NIL.

Replacing constraints is treated as a combination of addition and deletion. Note that
these reformulation operators do not always lead to more efficient versions of the query.
Knowledge about the access cost of attributes is required to guide the search. Usually, we
can estimate the cost from the database schema. For example, because the string length of
country.name is long and expensive to evaluate, reformulating Q1 to Q2 from rules I and 2
will reduce this cost. From rule 3, we can reformulate Q2 to Q3 by adding a new constraint
on an indexed attribute latitude. The DBMSs will take advantage of the indexed attribute

• • • •• • •S

00, , 0 0, 0... .. 0 - i 0l

(retrieve (?geocode) X

(:and (geoloc ?geoloc)
(geoloc.geocode ?geoloc ?geocode)
(geoloc. countmry-ame ?geoloc "Germany")))

Q2:
(retrieve (?geocode)

(:and (geoloc ?geoloc)
(geoloc.geocode ?geoloc ?geocode)
(geoloc. country-code ?geoloc "FRG")))

Q3:
(retrieve (?geocode)

(:and (geoloc ?geoloc)
(geoloc.geocode ?geoloc ?geocode)
(geoloc. country-.code ?geoloc "FRG")
(geoloc.latitude ?geoloc ?latitude)
(geoloc.longitude ?geoloc ?longitude)
(?latitude > 47.15) (?latitude < 54.74)))

Figure 3: Equivalent Queries

to speed up the retrieval. The reformulation process does not need to be step-by-step,
from one equivalent query to another, as described here. We have developed an efficient '

reformulation algorithm [Arens et al. 93, Hsu and Knoblock 93], which fires all applicable
database abstractions simultaneously, and then formulates the least expensive equivalent
query from the partial result of the rule applications.

We also extended the algorithm to reformulate queries to distributed databases [Hsu and
Knoblock 93, Arens et al. 93]. We found that the reformulation approach can reduce the
intermediate data that is transferred from remote database sites to the local retrieval system.
This is often the most costly aspect of the multidatabase queries. Consider the following
hypothetical example. Suppose that there are two databases in the multidatabase system,
one for the data of ports, and another for ships. A query is given to retrieve the data of ports
that can accommodate ships of the type tanker. This query may be very expensive because
all data of ports must be retrieved and compared with the data of tankers. Suppose that
the system learned from the ship database that if the ship type is tanker, then its draft is at
least 10m. With this knowledge, the original query can be reformulated such that the system
only retrieves data of ports whose depth are greater than 10m. This additional constraint
may reduce a significant amount of data needed to be retrieved from the ship database. The
cost is thus reduced substantially.

Table 1 provides statistical data concerning the preliminary experimental results of the
multidatabase query reformulation. In this experiment, the SIMS system is connected with
two remote Oracle databases. One of the databases consists of 16 tables, 56,078 instances,
the other database consists of 14 tables, 5,728 instances. The queries used were selected from
the set of SQL queries constructed by the original users of the databases. The first three

*

queries are single database queries, while the others are multidatabase queries. This initial 0
results indicate that our algorithm can reduce the total cost of the retrieval substantially. In
most multidatabase queries, the amount of intermediate data is reduced significantly. The S

overheads of reformulation is included in the total execution time and is relatively small
compared to the cost of executing most queries.

The system used 267 database abstraction rules in this experiment. These rules were
prepared by compiling the databases. The compiling process is a semi-automatic method
that requires the external guidance from a programmer to search for the useful rules for
reformulation.

query 1112131 4) 5 161 7 1 8 9 110
planning time (sec) 0.5 0.3 0.6 2.1 1.1 0.7 0.7 0.5 0.5 0.8
reformulation time 0.1 0.1 0.0 0.5 0.1 0.0 0.0 0.1 0.1 0.3
rules fired (times) 37 18 11 126 6-63 8 17 15 19 71

query exec. time w/oR' 0.3 8.2 0.6 12.3 11.3 2.0 251.0 401.8 255.8 258.8
query exec. time w V/R 0.3 1.5 0.0 11.3 11.1 0.0 0.3 207.5 102.9 195.2
total elapsed time w/oR 0.8 8.5 1.2 14.4 12.4 2.7 251.7 402.3 256.3 259.6
total elapsed time w/R 0.9 1.9 0.6 13.9 12.3 0.7 1.0 208.1 103.5 1196.3

intermediate data w/oR - - -145 41 1 810 956 80
intermediate data w/R 145 35 0 28 233 320 607

aw/oR = Without reformulation.
bw/R = With reformulation. •

Table 1: Experimental Results

3 Learning Database Abstractions

The effectiveness of the query reformulation is determined by the existence of a useful set of
database abstractions. Because the number of rules that can be derived from the database
is combinatorially large, only a subset of the possibly derivable rules can be used in reformu-
lation. Therefore, a methodology to selectively acquire a set of useful database abstractions
is crucial in the query reformulation. There are many algorithms available to derive infer-
ence rules from databases [Cai et al. 91, Piatetsky-Shapiro 91] selectively. These algorithms
usually require the data to be pre-classified. If the system applies these algorithms directly
in our domain, the users must possess knowledge about database structure, usage pattern,
and more, to properly trigger the system to learn.

In general, we want to learn the rules that: (1) will be applied frequently, (2) have low
match cost, and (3) achieve high cost reduction. We can estimate the match cost of a rule by
its syntactic length. It is difficult to predict the application frequency and the resilting cost
reduction. This requires the information about the semantics of the database, and its usage

pattern. A good learning approach should be able to capture this information to guide its

• • • •• • •

learning. In addition to the capability to select good rules to learn, a good learning approach
should be efficient, and hopefully, use the knowledge available from the database systems. a

W., propose a learning approach that uses the actual queries to the system as examples

to guide the learning. This is similar to work on self-organizing databases, where actual
queries are used to predict future usage pattern and tailor database structures to improve
performance [Hammer and Chan 76, Hammer and Niamir 79, Piatetsky-Shapiro 84]. The
rationale for using actual queries is that the queries provide first-hand information about
the database usage pattern. The problem now becomes how to identify required rules to
reformulate the queries. Suppose we can -ome up with an "alternative" query for the given
query, then it will be easy to inversel] 'nrm the rules needed to reformulate the given query
to the "alternative" query. We p,- ,ose the database abstraction learning approach based
on this analysis. The organization of this approach is shown in Figure 4.

dgl ~ ~ Indctiv q ,swr •qur

Al -1I

Preiirnwaty Databue Abstaction Ne Run*

Figure 4: Database Abstraction Learning Approach: An Overview Diagram

The database abstraction learning is a two-phase process. In the first phase, the inductive
concept formation algorithm [Cai et al. 91, Haussler 88, Michalski 83] will generate from the

database an alternative query q', which is equivalent to the given query, but with lower cost.
In the second phase, the system operationalizes the preliminary database abstraction, q 4
q', to formulate the rules that can be used to reformulate q into q'. The operationalization
process is to transform and refine the preliminary database abstraction so that the resulting
rules will satisfy our operational criteria. There are two operational criteria. The first
criterion is that the rule must be expressed in our required syntax, that is, inference rules
with one range proposition on the consequent side. The transformation stage of phase 2 is to
transform the preliminary database abstraction to meet this criterion. The second criterion
is that the antecedent conjunctions of the rule should be as short as possible. The refinement
stage of phase 2 takes the output rules of the transformation stage as input, and simplifies
them to meet the second criterion. This process will reduce the match cost and increase the
utility of the learned rules.

Figure 5 illustrates an example scenario of the database abstraction learning. We use
the same database table as the one in Figure 1. The instances in the relevant database
table are partitioned by the example query into positive instances (answer) and negative in-
stances (database-answer, where "-" is the set difference). This partition, or classification,

• • • •• • •

O

1812 i3 i II udctive Concept Fozmat ±o
C 0 2 Ase oiie1aew Alternative Quiery:

/albs Alrn A2 A3S I~ Al =

[j ; ---2-_/Databea - Answer - Negalive Inabnce•

I

OPeratioaalisatio, (A,)
(A2 <- 0) and (A3 2) c- (Al "'C))A1-CC-. fA3A2<- 0)J",,M> (Al . 'M'

Rues t, be Learnd
Preliminary Database Abstraction n

Figure 5: Database Abstraction Learning Approach: An Example Scenario

represents the class of queries that are equivalent to the example query. In this example,
the positive set consists of one instance and the negative set consists of the remaining two
instances. The inductive concept formation algorithm then generates an alternative query
under the guidance of the inductive bias. The generated alternative query should be satisfied
by all answer instances and none of the others. This is necessary and sufficient to guarantee
the equivalence of two queries. In the example scenario, the alternative query (Al = 'C')
is formed. The preliminary database abstraction is a statement that asserts the equivalence
of the alternative query and the example query explicitly. The operationalization process
then takes this statement as input, and derives the rules we need to reformulate the given
query to the alternative one.

The operationalization process consists of two stages. In the first stage, we use a logical P
inference procedure to transform the preliminary database abstraction into our required syn-
tax. The equivalence in the preliminary database abstraction is converted to two implication
rules:
(1)(A2 < 0) A (A3 = 2) ==* (Al = 'C')
(2)(Al = 'C') =#- (A2 < 0) (A = 2) 0
Rule (2) can be further expanded to satisfy our syntax criterion:
(3)(A1 = 'C') ==* (A2 < 0)

(4)(Al = 'C') == WA3 = 2)

After the transformation, we have proposed rules (1), (3), and (4) that satisfy our syntax
criterion. Among them, rules (3) and (4) are short enough to satisfy our second operational 0
criterion. No further refinement is necessary for them. These rules are then returned and
learned by the system.

If the proposed rule has more than one antecedent, such as rule (1), then we use the
greedy minimum set cover algorithm [Chivatal 79, Cormen et al. 89] to eliminate unneces-
sary constraints. In this example, we want to reduce the number of antecedents of rule (1).
This problem can be reduced to the problem that given a collection of sets of data instances

• • • •• • •

0 6 0 0

!S

that satisfy -,WA2 < 0) V -W(A3 = 2), find the minimum number of sets that cover the set
of data instances that satisfy -,(Al = 'C'). Since the resulting minimum sets that cover
-(Al = 'C') is -(A2 < 0), we can eliminate (A3 = 2) (as in shaded box in Figure 5) and
form the rule (A2 < 0) =- (Al = 'C'). These learned rules can be used to reformulate
the given query into a more efficient one.

LearningAlternativeQuery (P ,N, S)
P is positive data;
N is negative data;
S is the schema of database table;

BEGIN
1. q' - NIL;
2. For each attribute A, find the range of their values R in P,

and construct candidate constraint from R.
let A - {x I V A, x - candidate constraint on A};

3. For each x in A , compute gain(x) and cost(x);
4. If none of x has a gain > 0 then return FAIL;
5. Select x in A such that x has the highest gain(x)/cost(x);
6. q' -q' U x}; A a A - {x}

N - N - {nIVn, n E N A n is eliminated by x};

7. If N = NIL, return q'; else go to 3;
END.

gain(x) - the size of {nIVn, n E N A n is eliminated by x};

cost(x) - E-cost * C-cost -
evaluation-cost(x) * (P + N - gain(x)), if x is on an indexed attribute

evaluation-cost(x) * (P + N) , otherwise.

Figure 6: Inductive Learning Algorithm For Alternative Query

One of the polynomia; time inductive learning algorithms that generate internal disjunc-
tive concepts as the syntax of our queries is proposed by [Haussler 881. This algorithm
reduces the learning problem to the set coverage problem. The inductive bias is specified
as a gain/cost ratio to bias the search for the shortest concepts. We can include more in-
formation such as the access cost of the attributes, to bias the search for both shorter and
more efficient alternative queries. A well defined bias should lead the learner to tailor the
database abstractions to the type of queries that are frequently asked. The algorithm that
learns the alternative query is shown in Figure 6.

Suppose we want to derive an alternative query of Q1 in Figure 3, from the example
database table in Table 2. The additional column "P or N" in the table indicates whether
an instance is positive or negative for Q1. In Step 1, the alternative query is initialized to
empty. The system then extracts the candidate range constraints for each attribute from
the positive instances and computes the gain and the cost for each candidate constraint.

S0

I geocode I country.name country.ode latitude I longitude f P or N I
atbr France FRN 43.1046 000.3200 N
bnsg France FRN 45.4600 002.1300 N
chbr France FRN 48.5706 007.0449 N

emkv France FRN 44.3100 005.2900 N
gdpp Taiwan TWN 24.2952 121.0338 N
wcsp Taiwan TWN 24.5230 121.1220 N
bccc Taiwan TWN 24.5124 121.1424 N
gtea Taiwan TWN 24.5200 121.1214 N
lyre Japan JPN 35.5000 138.4000 N

qcmu Japan JPN 35.4620 139.3646 N
grty Italy ITL 41.4840 012.1509 N
jtln Italy ITL 41.5900 012.4400 N
tahe Italy ITL 41.3915 012.2640 N
agcc Germany FRG 50.4100 007.4000 P
&tnt Germany FRG 52.1900 008.2000 P
bvdn Germany FRG 54.7445 009.4830 P
bhgl Germany FRG 51.1000 006.4200 P

csdm Germany FRG 50.3200 008.3200 P
fjhd Germany FRG 53.3900 007.2600 P
guye Germany FRG 49.5419 010.5553 P
girl Germany FRG 50.0540 008.3806 P

krntb Germany FRG 49.1000 010.2200 P
mina Germany FRG 49.1554 007.2147 P
nhkb Germany FRG 50.0300 008.2000 p
pdpf Germany FRG 48.5100 015.0000 P
ucla Germany FRG 49.3055 009.0520 P
uscw Germany FRG 49.5957 007.4700 P
vayq Germany FRG 47.1500 011.0700 P
wpcn Germany FRG 52.5400 008.5200 P
zwab Germany FRG 49.1519 007.2008 P

Table 2: Example Database Table

Five candidate constraints and their gain/cost ratio are listed in Table 3. The gain of
a constraint is the number of the instances eliminated by (or that does not satisfy) the
constraint. The cost of a constraint is the evaluation cost E-cost times the number of
instances to be evaluated C-cost. The evaluation cost E-cost is the cost of evaluating
whether an instance satisfies the constraint. This cost is proportional to the number of
terms to compare in the given constraint times the cost of each comparison. For strings, the
comparison cost ot each term is their length defined in the schema, and for real numbers.
2. The other factor C-cost is dependent on whether the constrained attribute is indexed.
For constraints on indexed attributes, C-cost is the number of the instances that satisfy the
constraint. Otherwise, C-cost is the total number of instances, because to evaluate these
constraints, the system must scan every instance in the database table. Therefore, for the
first candidate constraint in Table 3, there are two terms to be compared and ea'. has the
comparison cost 2, so its E-cost is 4. Because the constrained attribute latitude is indexed,
its C-cost is 18. The total cost is thus 4*18=72.

The system selects the first constraint on the attribute latitude, because it has the
highest gain/cost ratio, and adds it to q' as a conjunction. The negative instances eliminated
by the selected proposition are removed from the set of the negative instances. The system
iterates this process until all of the negative instances are removed. Now there remains
only one instance with country name France in the set of negative instances. In the next
iteration, the gains and costs are updated for the remaining 4 constraints. The constraint

• • •• • @• •

cost (E*C)
Candidate Constraint gain F-cost C-cost gain/cost
(:and (?latitude > 47.15)(?latitude < 54.74)) 12 4 18 0.167
(= ?country.code "FRG") - 13 3 30 0.144
(:and (?longitude > 6.42)(?longitude < 15.00)) 9 4 21 0.107
C= ?country.name "Germany") 13 20 30 0.022
(member ?geocode ("agcc" "atet" "babv" ...)) 13 68 30 0.006

Table 3: Candidate Constraints and Gain/Cost Ratio

on country.code is selected and 2 negative instances are removed. The resulting alternative
query is Q3 in Figure 3. This query is equivalent to and more efficient than Q1, as explained
in Section 2.

The worst case complexity of this algorithm is O(MP + NMmin(N, M)), where N is the
number of negative instances, P is the number of positive instances, and M is the number
of attributes of the database table. This is a loose upper bound of the algorithm. In the
average case, the complexity should be much better. In this complexity analysis, we assume
that instances in the database need to be scanned linearly in the algorithm. In fact, there is
no need to represent the positive and negative instances explicitly to implement our learning
algorithm. We can retrieve the necessary information from the database through its DBMS
rather than make a copy of the entire database table in the system's memory. We use the
positive instances to extract the candidate atomic propositions, and the negative instances
to count the gain of each atomic propositions. Both can be computed by sending queries to
the DBMS. We can also take advantage of other facilities provided by the state-of-the-art
DBMSs to enhance the efficiency of learning, such as, the delayed-evaluation for "views"
(temporary databases) [Ullman 88]. The work by [Cai et al. 91] is a good example of a
system that utilizes relational DBMS facilities in inductive learning.

The efficiency of the inductive learning algorithm can be further improved by pruning
irrelevant attributes. We can use the semantic knowledge of the databases provided by the
SIMS system [Arens and Knoblock 92, Arens et al. 93], on which we built the reformulation
component, to identify which attribute is irrelevant.

4 Maintaining Database Abstractions

Although our learning approach is selective, after learning from a large number of queries, the
number of the database abstractions could become so large that they degrade the reformu-
lation algorithm's efficiency. This problem is referred ito as the utility problem [Minton 88].
The utility problem might be alleviated by adopting fast rule match algorithms [Doorenbos
et al. 92], such as RETE (Forgy 82] and its more efficient variations. However, if we take
the space cost into account, it is still prohibitive to keep a set of the database abstractions.
that is about the same size or larger than the database just for efficient retrieval.

The utility of a rule is defined as follows by [Minton 88]:

Utility AverageSaving x ApplicationFrequency - AverageMatchCost

We can measure the utility of learned rules as follows. The AverageMatchCost is propor-
tional to the syntactic length of the rule. The application frequency and average saving can
both be computed from statistical information. When the number of the database abstrac-
tions exceeds some threshold, the system will measure the utility of database abstractions
and delete those with low utility.

Another task of maintenance is to update the rules in the presence of updates of the
database. This includes identifying the invalid rules and then modifying them. Given an
invalid rule A --+ B, we can compile the data instances that satisfy A to modify B. We
can also keep the update frequency of each rules, and use this statistical information as
a criterion in measuring utility of the rules. In this way, the set of surviving rules will
gradually evolve to capture the semantics of the database. A more interesting approach to
update rules is using an incremental learning algorithm. An inductive learning algorithm
is considered incremental if it forms new hypothetical rules from inserted or modified data
instances without reading the entire database again. This approach is particularly useful for
very large-scale databases.

5 Related Work

Siegel [Siegel 881 proposed the first automatic rule derivation approach for the semantic query
optimization. Their approach learns from the failure of the rule match in reformulating the
example query. The rule match is then guided by a pre-defined fixed set of heuristics. The
major difference between our approach and theirs is that our approach is data-driven, while
theirs is heuristic-driven. We view the example query as a representation of the set of the
data it retrieves, rather than a procedure or plan of retrieval. The semantics of the example
queries is easier to be captured with the data it retrieves. From this point of view, we seek
the missing rules in the databases. In Siegel's work, on the other hand, the example queries
merely provide the templates for the instantiation of the heuristics. The heuristics may not
reflect how an example query should be reformulated with regard to the database contents.
Consequently, their approach is conservative and the learning may converge only to what
the heuristics specified.

Compared to other work in knowledge discovery in databases [Piatetsky-Shapiro 91), our
work is to improve the performance of the database retrieval, while most of the discovery task
is for database applications, such as discovering classification trees. An interesting prospect
of our learning problem is to investigate the usage of the learned database abstraction other
than for reformulation. Our learning approach is unsupervised, but it does not simply rely
on the surface values to acquire or cluster knowledge from databases. The example queries
are required to guide the search. Because queries contain the information of users' interests,
they may help in providing semantic and functional properties of the data. Using example

0 0 0 0 0 S 0 0

queries as the background knowledge to guide the knowledge discovery in databases appears
r to be a promising research direction.

Our learning problem distinguishes itself with other learning paradigms for problem solv-
ing in an important aspect. That is, the problem solving is performed in a reformulate-then-
solve manner, and the learning is to supplement the knowledge required for reformulation.
The reformulation is then used to speed up the problem solving (query execution). This man-
ner of "speed-up" is quite different from the explanation-based approaches, such as, chunk-
ing in SOAR [Laird et al. 86] and Prodigy/EBL [Minton et al. 89]. In both approaches, the
problem is not reformulated or changed, what these systems change is the problem solving
strategy. The reformulation-then-solve approach changes the problem statement instead of
the problem solving strategy. In our approach, we even try to reformulate the problem
(query) to fit the problem solver (query execution unit). ALPINE [Knoblock 90], the ab-
straction learner of Prodigy, is another example of learning for reformulation to improve
performance of problem solving. ALPINE learns to construct the abstraction levels of the
problem search space. When given a problem, ALPINE reformulates the problem into sub-
problems of abstraction levels to reduce the cost. Although our approach also learns the
abstraction knowledge from databases, it does not decompose the query into abstraction
levels.

6 Conclusion

This paper presents an automatic learning approach to discover useful database abstractions
for query reformulation. This approach uses the queries that are actually used in applica-
tions to classify the instances in the database. The system then derives an alternative query

from the database inductively. This alternative query and the given query form the prelim-
inary database abstraction. The system deduces and learns the rules from this preliminary
database abstraction. The significance of this approach is that the query represents the
data it retrieves, and the data represents a class of equivalent queries. This point of view
leads to the learning approach that does not involve heuristics of specific database structure
and implementation. Because the knowledge required for learning is available for almost any
database (the data, and database schema), the dependence of the specific database structure
and the domain expert's knowledge is minimized. This feature is particularly useful for the
application in heterogeneous multidatabase systems. We believe this will make the query
reformulation a feasible and effective approach in real-world database applications.

We have briefly shown how query reformulation approach can reduce the cost of multi-
database queries in Section 2. An important issue for future work is to develop an algorithm
to include the multidatabase usage patterns to guide the learning. We plan to interleave the
query planning, execution and reformulation to support learning. Another issue for future
work is to develop algorithms for maintaining the validity of the database abstractions when
the database is modified. We plan to establish dependency links between the database and
the database abstractions so that the invalid rules will be identified quickly. We will also
consider using an incremental algorithm to update rules.

I0

Acknowledgements

We would like to thank the SIMS project leader Yigal Arens and the anonymous reviewers
for their comments and suggestions on earlier drafts of this paper. Chin Y. Chee, another
member of the SIMS project, is responsible for much of the programming that has gone into
SIMS. Thanks also to the LIM project for providing us with the databases and the queries
used for our work, as well as in the examples.

References

[Aptrs Pt al. NJ] P.M.U; Aipers; Al. Ileviief antid 9A Ya; Oplmtiting •agtlthkin afu dhitributed
queries. IEEE Trans. on Software Engineering, 9:57-68, 1983.

[Arens et a]. 93] YigaJ Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retriev-
ing and integrating data from multiple information sources. International Journal on
Intelligent and Cooperative Information Systems, 1993. In press.

[Arens and Knoblock 92] Yigal Arens and Craig A. Knoblock. Planning and reformulating queries
for semantically-modeled multidatabase systems. In Proceedings of the First Interna-
tional Conference on Information and Knowledge Management, Baltimore, MD, 1992.

[Cai et al. 91] Yandong Cat, Nick Cercone, and Jiawei Han. Learning in relational databases: An
attribute-oriented approach. Computational Intelligence, 7(3):119-132, 1991.

[Chakravarthy et al. 90] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based ap-
proach to semantic query optimization. ACM Transactions on Database Systems,
15(2):162-207, 1990.

[Chivatal 79] V. Chivatal. A greedy heuristic for the set covering problem. Mathematics of Oper-
ations Research, 4, 1979.

[Cormen et al. 89] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
To Algorithms. The MIT Press/McGraw-Hill Book Co., Cambridge, MA, 1989.

[Doorenbos et al. 92] Bob Doorenbos, Milind Tambe, and Allen Newell. Learning 10,000 chunks:
What's it like out there? In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 830-836, San Jose, CA, 1992.

[Forgy 82] C.L. Forgy. RETE: A fast algorithm for the many pattern/many object pattern match-
ing problem. Artificial Intelligence, pages 17-37, 1982.

[Haussler 88] David Haussler. Quantifying inductive bias: Al learning algorithms and Valiant's
learning framework. Artificial Intelligence, 36:177-221, 1988.

[Hammer and Chan 76] M. Hammer and A. Chan. Index selection in a self-adaptive database
management system. In A CM-SIGMOD International Conference on Management of
Data: Proceedings, pages 1-8, Washington, DC, 1976.

[Hsu and Knoblock 93] Chun-Nan Hsu and Craig A. Knoblock. Reformulating query plans for mul-
tidatabase systems. Submitted to the Second International Conference of Information
and Knowledge Management, 1993.

0 0 0 • 0• 0 S a

£

[Hammer and Niamir 79] M. Hammer and B. Niamir. A heuristic approach to attribute partition-
ing. In A CM-SIGMOD International Conference on Management of Data: Proceedings,
pages 93-101, Boston, MA, 1979.

[Hammer and Zdonik 801 M. Hammer and S. B. Zdonik. Knowledge-based query processing. In
Proceedings of the Sixth VLDB Conference, pages 137-146, Washington, DC, 1980.

[Jarke and Koch 84] M. Jarke and J. Koch. Query optimization in database systems. ACM Com-
puter Surveys, 16:111-152, 1984.

[King 81] Jonathan Jay King. Query Optimization by Semantic Reasoning. PhD thesis, Stanford
University, Department of Computer Science, 1981.

[Knoblock 90] Craig A. Knoblock. Learning abstraction hierarchies for problem solving. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence, pages 923-928,
Boston, MA, 1990.

[Laird et al. 86] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in Soar: The
anatomy of a general learning mechanism. Machine Learning, pages 11-46, 1986.

[Minton et al. 89] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R. Kuokka, Oren
Etzioni, and Yolanda Gil. Explanation-based learning: A problem solving perspective.
Artificial Intelligence, 40(1-3):63-118, 1989.

[Michalski 83] Ryszard S. Michalski. A theory and methodology of inductive learning. In Ma-
chine Learning: An Artificial Intelligence Approach, volume I, pages 83-134. Morgan
Kaufmann Publishers, Inc., Los Altos, CA, 1983.

[Minton 88] Steven Minton. Learning Effective Search Control Knowledge: An Explanation-Based
Approach. PhD thesis, Computer Science Department, Carnegie Mellon University,
1988.

[P'iatetsky-Shapiro 84] Gregory Piatetsky-Shapiro. A Self-Organizing Database System - A Differ-
ent Approach To Query Optimization. PhD thesis, Department of Computer Science,
New York University, 1984.

[Piatetsky-Shapiro 91] G. Piatetsky-Shapiro. Knowledge Discovery in Databases. MIT Press, Cam-
bridge, MA, 1991.

[Siegel 88] Michael D. Siegel. Automatic rule derivation for semantic query optimization. In
Larry Kerschberg, editor, Proceedings of the Second International Conference on Expert
Database Systems, pages 371-385, George Mason Foundtion, Fairfax, VAI 1988.

SIW'llrnt, 001 JIffry 1). 1IllmAn, Pr!n'vfpl of I)nVuifvn 4nd AK'nOWIhde¢,n.• , vNOmt I,
Uoinputer Science Press, Paio Alto, CIA, 1988.

