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PREFACE
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linear structural analysis of concrete arch dams. The analytical procedures
described are employed in the Graphics-based Dam Analysis Program (GDAP). An
overview of the trial load method of arch dam design and analysis is also presented.
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1. INTRODUCTION

1.1 Purpose

This manual is a companion to Engineer Manual (EM) 1110-2-2201, "Engineering

ard Design: Arch Dam Design" (Headquarters, Department of the Army 1993), and

is intended to provide a theoretical background for the linear structural analysis of

concrete arch dams. It is also designed to describe analytical procedures empioyed

in the computer program, Graphics-Based Dam Analysis Program (GDAP)(Ghanaat

1993), and to provide an overview of the trial load method of arch dam design and

analysis. 0

1.2 Scope

The manual contains an overview and discussion of the general aspects of the finite

element procedures, including system idealization, isoparametric element

formulation, and solution techniques for the static and dynamic analyses of arch

dams used in the computer program GDAP. It also presents general discussions on

the concepts, assumptions, and limitations of the trial load method.

1.3 Methods of Analyses and Assumptions

This manual primarily deals with the linear-elastic methods of analyses under

which a linear behavior is assumed for the concrete dam, impounded water, and

foundation rock. Nonlinear effects such as concrete cracking, water cavitation,

construction joints opening during earthquake shaking, or geometric nonlinearity

are not considered.

0 0
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2. TRIAL LOAD METHOD OF ANALYSIS

2.1 Introduction

The basic steps in designing an arch dam include preparation of a preliminary

layout, computation of stresses due to static loads, evaluation of the stress results,

and modifications of the layout by adjusting the dam shape. This overall process of

design of arch dams is fully discussed by the U.S. Bureau of Reclamation (USBR)

(1977) and in EM 1110-2-2201, "Arch Dam Design." The primary objective in the

design of arch dams is to establish a layout by determining the arches which will fit

the site topography most favorably and distribute the load with the minimum use of

materials within allowable stress limitations. To produce a satisfactory design, the

four design steps are repeated until stress distributions developed throughout the

dam structure are acceptable. The estimation of stresses in arch dams, however, is

a (iifficult and complex problem. It should be based on an analysis procedure which

provides reasonably accurate results and yet is simple enough for the design

purposes. One such analysis procedure is the trial load method which was

developed prior to 1940 and later was expunded and programmed for the digital

computers by the USBR.
p

A complete description of the theory of the trial load method and its computerized

version known as Arch Dam Stress Analysis System (ADSAS) is given by the USBR

(1977). This chapter provides an overview of the method for introductory purposes.

The presentation in this chapter closely follows the USBR presentation to facilitate

further study of the method.

2.2 Overview of Trial Load Method

The trial load method assumes that an arch dam is made of two systems of

structural members -- horizontal arch units and vertical beams or cantilever units

(Figure 2-1). Each system occupies the entire body of the dam and the loading is

assumed to be divided between the two systems in such a way that the resulting

arch and cantilever deflections for any point in the dam are equal. In general, the

agreement between the arch and cantilever deflections must be made in radial and

tangential directions as well as in rotational directions. This agreement is

accomplished by subjecting representative arch and cantilever units to a succession

of self-balancing trial loads and solving the simultaneous equations involved. The

solution is normally obtained by computers using a trial load program such as

2-1
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ADSAS. The resulting load distribution required to achieve deflection agreement is

then used to compute stresses in the dam.

The stresses in arch dams are computed more accurately using the finite element

method. This method, which will be discussed in later chapters, divides the dam

structure into small but finite elements interconnected at a discrete number of

points. The displacements of these nodal points are the basic unknowns. They are

obtained from the solution of equilibrium equations for the entire system, assembled

by combining the stiffness matrices and the load vectors of the individual elements.

The stresses are then obtained from the computed displacements using the stress-

displacement relationship for each finite element. Although the finite element

method provides more accurate stress results, subdivision of the dam and its

foundation to small finite elements is a laborious task. As a result, the finite

element procedure is usually not a preferred method for the iterative design process

of arch dams. However, a specialized finite element program such as GDAP

(Ghanaat 1993), which includes automatic mesh generation capabilities, offers

simplified input data and can easily be used to perform design calculations.

One advantage of the trial load method is that the necessary data for analyzing the

dam structure using ADSAS are directly taken from the layout drawings. Thus,

modifications of the dam layout during the iterative design process can easily be

incorporated in the trial load analysis by changing only a few parameters. Another

important advantage includes the overall design philosophy of arch dams which has

evolved on the basis of the trial load method of analysis, an insight shared by many

arch dam designers. For these reasons, the trial load method continues to be the

preferred method of analysis by many designers and is discussed in the remainder of

this chapter.

2.2.1 Horizontal Arch Units

In the trial load method, the entire body of the dam is divided into a series of slices •

called arch units. Each arch unit is bounded by two horizontal planes one unit

apart. In most cases, only several representative arch units are selected for the

analysis (Figure 2-1).
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2.2.2 Vertical Cantilever Units

The dam is also divided into a continuous series of vertical slices called cantilever

units. Each cantilever unit is bounded between two vertical planes radial to the

upstream face and spaced one unit apart at the dam axis. It should be noted that

the cantilever units for arch dams other than constant-center type are bounded by

warped surfaces. This is because vertical radial planes are not possible for the 0

variable-radius arch dams, where the direction of the radius on a given vertical

varies with elevation. Similar to the arch units, only a few representative cantilever

units are required for the trial load analysis.
0

(a) PLAN
__.

(b) ELEVATION PROFILE

Figure 2-1 Arch and Cantilever Units Used in a Trial Load
Analysis

2.2.3 Interaction of Arch and Cantilever Units S

The representative arch and cantilever units are assumed to be connected at their

intersection volumes. Figure 2-2 represents one of the arch and one of the cantilever

units in Figure 2-1 which intersect in a common volume A. The load applied on the

face of this volume will be resisted partly by the arch, with the remainder going to

the cantilever. Similar load distributions also take place at other points on the faces

2-3
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of both the arch and the cantilever, with the result being a deflection of the arch

and cantilever units to a new position. The intersecting volume A moves from its
initial position to A2 in such manner that the new position A2 in the deformed

cantilever coincides with its position in the deformed arch. This movement

generally consists of three translational and three rotational components. But as
illustrated in Figure 2-2, two translations in the radial and tangential directions and

two rotations in horizontal (Ov) and vertical (OH) planes are the most important

components. Vertical movements and rotations in vertical tangential planes are

considered to be negligible.

A0

(a) Deflected Arch

A,

-A

A2

(b) Deflected Cantilever

Figure 2-2 Linear and Rotational Deflections of Arch and Cantilever Units 0

2-4
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Simple radial loads on the cantilever will not produce the required tangential and

rotational displacements. These movements are produced by internal forces in the

dam, but in the trial load method they are treated as external loads applied on

individual arch and cantilever units and are determined by trial.

2.3 Types of Trial Load Analyses 0

Trial load analyses may be performed with varying degrees of accuracy and

refinement consistent with different phases of the design. Progressing from the

simplest to the most comprehensive, they include crown-cantilever adjustment,

radial deflection adjustment, and complete adjustment analyses.

2.3.1 Crown-cantilever Analysis

The most important factors in division of external loads between arch and cantilever

units are the radial loads and radial deflections. In the simplest form, this division is

accomplished by a crown-cantilever analysis which involves adjustment of radial

deflections at the crown cantilever with the corresponding deflections at the crown of

the arches. This analysis assumes a uniform distribution of radial loads on the

arches and neglects the effects of tangential shear and twist. The analysis produces 0

only a crude estimate of the actual stresses, but it is usually adequate for

preliminary studies, particularly in a constant radius dam.

2.3.2 Radial Deflection Analysis

In this analysis, the radial deflections at the arch quarter points are brought into

agreement with several corresponding cantilevers by an adjustment of the radial

loads between these units. The radial loads in this case no longer need to be

distributed uniformly from the crowns to abutments of arches. This permits to

apply a more realistic load distribution, which will result in an improved estimate of

the stresses compared with those obtained from a crown-cantilever analysis. The

results, however, are still incomplete because the effects of tangential displacement

and twist are not considered. A radial deflection analysis may be used for the

feasibility studies.

2.3.3 Complete Adjustment Analysis

None of the preceding analyses provides a complete representation of the

displacements and internal forces in an arch dam. The actual situation can be

2-5



analyzed by a complete trial load analysis, in which agreement of three

translational and three rotational displacements is achieved by appropriate division

of the radial, tangential, and twist loads between arch and cantilever units. This

analysis provides reasonable results for a specifications design. The accuracy of

results is limited only by the basic assumptions of the method, and the level of error

permitted in the calculations.

2.4 Outline of Analysis Procedure

The arch dam to be analyzed is divided into a representative series of arch and

cantilever units similar to those shown in Figure 2-1. The actual dimensions of

these units are obtained from the layout drawing of the dam. The analysis then

proceeds with a division of loads between representative arch and cantilever units in

such a way that the deflections or movements of these units are equal. To

accomplish this, the trial load method assumes elastic material properties for the

dam and employs the theory of elasticity to fulfill the requirements for equilibrium,

continuity, and boundary conditions that must be met to obtain correct stress

results.

The deflections or movements in an arch dam generally include three translational

and three rotational components. These are radial, tangential, and vertical

translations, and rotations in horizontal, vertical radial, and vertical tangential

planes. However, deflections in the vertical direction and rotations in vertical

tangential planes are small and usually are ignored in the trial load analysis. The

remaining four deflections are computed for the arches and cantilevers using the

usual arch and beam formulas by subjecting these structural units to radial,

tangential, and twist loads. It should be recognized that the arch analysis must

include bending effects as well as rib-shortening and transverse shear. Similarly,

the beam formula used for the analysis of cantilevers must include shear

deformations in addition to the bending.

Following the procedures described in the following paragraph, a set of self-

balancing trial loads required to produce equal deflections in the arches and

captilevers is deteriiined. From these loads, the stresses in the arch are then

computed by assuming a linear stress distribution through the thickness.

2-6
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2.4.1 Adjustment for Radial Deflection

The first trial load division of external loads, such as the water load, begins with a 0

transfer of load which will produce equal arch and cantilever deflections in the
radial direction. The type of loads needed for this agreement are illustrated on the

intersecting volume A shown in Figure 2-3. Loads are applied to the cantilever by

introducing a pair of shear forces on the cantilever sections, such as Vc shown on the 0
top and bottom faces of the volume A. The differences in these forces are balanced

by the shear forces, Va, which are assumed to be present on the arch sections from
the application of external loads. These shear force pairs satisfy the equilibrium

condition in the radial direction, but they also exert moments on volume A. The 0

moments produced by the shear couples are balanced by differences between the

cantilever bending moments, Mc, and the arch bending moments, Ma, applied on the

faces of volume A to ensure equilibrium against rotation. These forces known as

self-balancing, provide a mechanism for transfer of loads from arch units to

cantilever units, without altering the total loads applied to the dam. The
magnitudes of the radial self-balancing loads are determined by trial.

Once a set of self-balancing radial loads has been selected, bending moments in the
arch and cantilever units and the corresponding deflections are computed. If the

agreement between the radial deflections of the arch and cantilever units is not

satisfactory, the self-balancing loads are modified and the process repeated.

Figure 2-3 Self-balancing Loads for Radial Adjustment

2-7
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2.4.2 Adjustment for Tangential Deflection

The tangential displacements shown in Figure 2-2a are adju.eted by a procedure

similar to that described for the radial displacements. The required set of self-

balancing loads for tangential adjustment are depicted in Figure 2-4. In this case,

the equilibrium is maintained by balancing the difference between the tangential

shear forces, VTA, at the top and bottom faces with the arch thrusts, H, applied to

the sides of volume A. Similarly, a difference between the vertical shear forces on

the side faces is compensated with a difference in the thrusts, W., applied to the top

ai-d bottom faces. Since shear forces for the tangential adjustments are assumed to

be equal, no equilibrium against rotation about a radial line need be considered.

However, the effects of small differences in shear forces, if necessary, can be

accounted for with the twist adjustment.

.W .

Figure 2-4 Self-balancing Loads for Tangential
Adjustment

2.4.3 Adjustment for Twist 0

In addition to radial and tangential deflections, the arch and cantilever units must

be twisted to conform to the angular deflection of one another as demonstrated in

Figure 2-2. This is accomplished by applying twist loads to the arches and

cantilevers to rotate them simultaneously into angular agreement. As shown in

2-8
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Figure 2-5, the self-balancing loads consist of twisting moments MTW and M'Tw,

applied to the top and bottom and to the sides of volume A, respectively. To satisfy •

equilibrium conditions, the difference in MTw is balanced by the difference between

bending moment Ma applied to the sides. Similarly, the difference between M'TW is

balanced by a corresponding difference introduced between the bending moment M.

at the top and bottom. It should be noted that the twisting moments applied per

unit of height and per unit of length must be equal for the shear stresses induced in

the vertical and horizontal planes of the volume to also be equal.

U/S

Figure 2-5 Self-balancing Loads for Twist Adjustment

2.4.4 Readjustment of Radial, Tangential, and Twist Deflections

Each adjustment described above is carried out for a set of self-balancing loads

associated only with that particular adjustment, while ignoring the effects of added

loads employed in the other adjustments. The past experience indicates that such
procedure usually succeeds when the adjustments for separate self-balancing loads 0

are made in the order de.scribed previously. Nevertheless, the loads applied in each

succeeding adjustment will always introduce some errors which will reduce the

accuracy of tha adjustments already made. Such deficiencies can be corrected by

making readjustments that follow the same order and procedure described for the 0

adjustments, except in the readjustments the effects of all loads on the deflections

are considered.

2-9
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2.4.5 Adjustment for Poisson's Ratio

Arch thrusts applied to the volume A shorten its length in the arch direction ard

extend its height according to Poisson's ratio. The circumferential shortening of the

arch, not being constant from face to face, influences both linear and angular

deflections of the arch. Similarly, the change of shape produced by bending

moments in the arch and cantilever affects the arch and cantilever deflections, but •

the rotations are more important in this case. Such deflections produced by the

influence of Poisson's ratio may be included in the computation, if desired. This can

be accomplished by computing the deflections caused by the lateral strains and

including them in the readjustment calculations,

2.4.6 Effects of Foundation Deformations

Elastic deformations of the foundation supporting the arches and cantilevers of an

arch dam have significant efi-cts on the deflections and stresses deveIoped in the •

dam. When included in a trial load analysis, they increase deflections of the arch

and cantilever units. However, the stresses are generally reduced near the

abutment and foundation regions, but may increase in the interior portion of the

dam. In the trial load analysis, the effects of foundation are approximated by a 0

series of independent springs supporting the dam. The elastic constants of these

springs are determined from the Vogt's flexibility coefficients of a semiinlinite

isotropic foundation as fully described by the USBR (1977).

2.5 Types of Loads

The static loads used in the trial load analysis are classified into external,, internal,

and unit loads.

2.5.1 External Loads

In a trial load analysis, all deflections are measured from a reference line

representing the concrete-weighted position. Deflections due to concrete weight are

not considered, but the resulting stresses are combined with the stresses due to

other loads to obtain the total stresses in the dam. The remaining external loads to

be considered include headwater, tailwater, silt, ice, and loads due to the

tempei ature changes. All external loads, except horizontal water load, are initially

applied to either arches or cantilever. in the subsequent application of trial loads, S
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however, external loads are appropriately redistributed between arches and

cantilever,.. .

Vertical compornev•ts of headwater, tailwater, silt, and the superstructare loads, as

well as any horizontal ice and horizontal tailwater, are usually assigned to

cantilevers as initial condition. Vertical deflections are usually ignored in the

analysis, but contribu',i. ;,. of these initial loads to radial deflections of cantilevers

are accounted for. The efI•'cts of temperature changes are normally confined to the

arches only. Temperature changs, are specified at elevations of the arches and may

vary linearly from face to face.

2.5.2 Internal Loads

The internal loads are the self-balancing loads used to bring the arch and cantilever

units into deflection agreement without chaiging the total external loads applied on

the dam. As described, they are always applied in pairs, one acting on the arch and

the other acting on the cantilevers. Furthermore, they must be equal in magnitude

and opposite in direction to satisfy the equilibriun, .ondition-

2.5.3 Unit Loads

The unit loads are standard load patterns used in thc trial load analysis to facilitate

the application of external and internal Joads as well as the computation of

deflections. Deflections computed for these unit loads provde a con-,prnent basis for

the estimation of total deflections for various trial loads.

2.5.3.1 Unit Cantilever Loads

9
The unit load patterns for cantilevers are shown in Figure 2-6. Unit radial loads :re

triangular loads applied on the face of the cantilever in the radial direction The.,

vary from a unit pressure value at one arch elevation to zero pressure at the two

adjacent arch elevations as shown in Figure 2-6a. it should be obvious that any

radial force with linear variation between successive arch elevations can easily be

represented by a combination of these unit loads. Tangential unit loads are also

triangular in shape, except that they represent shear forces applied along the

centerlines of the cantilevers for computing tangential deflections (Figure 2-6b).

Unit twist loads are twisting moments applied to cantilevers to compute the angular

movements. As shown in Figure 2-6c, unit twist loads are also triangular loads.
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2.5.3.2 Unit Arch Loads

Unit load patterns, similar to those described for cantilevers, are also applied to the

arches to simplify the arch analysis. The unit radial load patterns are shown in

Figure 2-7a. They include a uniform load acting on the entire arch length and

triangular loads with a maximum pressure at one abutment and zero pressure at

the arch quarter-points. In addition, to allow for the effects of foundation

movements, a concentrated shear force is also considered at the abutmeait.

Unit tangential loads required for the computation of tangential deflections are

appiied as the uniform and triangular thrusts along the arch centerlines as shown in

Figure 2-7b. A concentrated unit thrust is also employed to account for the

abutment movements.

Unit twist loads are also employed in the form of uniform, triangular, and

concentrated loads. They are unit twisting moments applied along the arch

centerlines as demonstrated in Figure 2-7c.
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SFigure 2-6 Typical Unit Cantilever Loads (Reconstructed from 0

USBR (1977))
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3. FINITE ELEMENT METHOD OF ANALYSIS

3.1 Introduction

The concept of the finite element method (FEM) is very broad. The method is used in

a number of diffcrent formulations and is also applied to the analysis of non-

structural problems such as heat transfer, seepage, and general flow problems. The

most common FEM formulation, which is widely used for the solution of practical

structural systems, is the displacement-based FEM. Most general-purpose analysis

programs use this formulation for its simplicity, generality, and good numerical

properties (Pilkey, Saczalski, and Schaffer 1974). This manual describes only this 0

formulation. Other formulations such as the equilibrium, hybrid, and mixed models

that use stresses or a combination of nodal displacements and stresses as the field

variables are not discussed here. Therefore, in this manual, the term "finite element

method" (FEM) implies "displacement-based finite element method" for the analysis

of structural systems.

The FEM is a numerical method of analysis by which a structure such as an arch

dam is idealized as an assemblage of subdivisions (finite elements), interconnected

at a discrete number 6f nodal points having a finite number of unknowns (Figure 3-

1). The displacements of these nodal points located at the boundaries of each finite

element represent the basic unknown variables. The behavior of each finite element

is approximated by a set of assumed functions which represent displacements within 0

the element region in terms of the element nodal displacements. These

displacement functions are often in a form that ensures continuity among adjacent

elements and, therefore, throughout the complete structure. With displacements

being known at all points within the element, the strains at any point will also be

available in terms of the nodal displacements. These strains, together with any

initial strains and the stress-strain relationship of the material, will define the state

of stresses throughout the element and its boundaries. Using the strain,-

displacements and stress-displacements relationships, the stiffness of each element

can be obtained by satisfying the force-equilibrium condition between a system of

equivalent nodal forces with the boundary stresses and any distributed load acting

on the element.

Finally, the equilibrium equations for the entire system are obtained by combining

the individual elements in a manner which satisfies the conditions of equilibrium

and compatibility at the junctions of these elements. The equilibrium equations,
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0

which are essentially a system of algebraic equations, are solved using numerical

methods. •

3.2 General Formulation of FEM

The finite element procedure outlined in the previous paragraph is presented here

in mathematical form. The general finite element discretization procedure and 0

derivation of equilibrium equations are summarized in this section (Zienkiewicz

1971, Bathe and Wilson 1976). A three-dimensional (3-D) finite element, such as

that used in Figure 3-1, is considered, and the element displacements, strains,

stresses, and stiffness properties are derived. 0

3.2.1 Displacement Functions

The basic assumption of the displacement-based finite element analysis is that the 0

displacements within the entire system u can be expressed in terms of element

interpolation functions N and the vector of nodal displacements U:

u}= [N]{U} (3.1)

The most important feature of the method is that the interpolation functions are
applied separately to each element m thus: U,

{ujm =[N]m{Uym"[N,,N,,Nk,... (3.2)

where in indicates that each quantity is referred to element "m" only

The interpolation functions Ni, Nj, Nk are described in Sections 5.1, 5.2, and 5.3,

but in general, they satisfy the following relationships:

N7 (x,,y,,z,)= I

Nm (x,,y,,z,) = N (xkj,y,z) = 0 0
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3.2.2 Strains

With displacements known at all points, the strains at any point can be obtained by

appropriate differentiation of the assumed displacements. The strains in matrix

notation are given by:

{-} = [B]{U} (3.3)

For a 3-D problem, the six strain components are defined as follows (Timoshenko

and Goodier 1970):

x
.6Y

6 z
lxy XY + 34

Equations 3.2 and 3.4.

3.2. 3 Stresses

The stresses in a finite element are related to the element strains using the material

constitutive law and are given by:
{f}=[D]{•}+ { o} 

(3.5) •

where [D] = the elasticity matrixTh} = the element initial stressesd m
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0

The material law stated in [D] for each element can be arbitrary. However, isotropic

material properties are used in most cases, and orthotropic material properties are

applied to special situations (Malvern 1969).

3.2.4 Loads

The external loads acting on a general 3-D body are surface tractions fs, body forces 0

Pf, and concentrated forces Fi. These forces, in general, consist of three components

corresponding to the three coordinate axes:

f~fB.1 fy" f fs I fy F I Fy'(3.6)_FZl -FZi Z

3.2.5 Element Stiffness

The simplest approach to obtain the stiffness matrix for a finite element is to use

the principle of virtual displacements (Zienkiewicz 1971, Bathe and Wilson 1976).

This principle states that the equilibrium of the body requires that for any

kinematically compatible small virtual displacements imposed onto the body, the

total internal virtual work be equal to the total external virtual work, thus:

feTOU'V = JufUfldV +f Usfsds±ZLPTFI (3.7)
V V S

The left-hand side of Equation 3.7 corresponds to internal work. It is equal to the

actual stresses a going through the virtual strains c that correspond to the imposed

virtual displacements U. Substituting Equations 3.3 and 3.5 in the left-hand side of

Equation 3.7, the finite element stiffness matrix expressed in terms of element nodal

degrees of freedom (DOF) {U}m is obtained:

[k]m = [[B]T[DI[B]]7dVm (3.8)
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The right-hand side of Equation 3.7 is equal to work done by the actual element

forces fB, fS, and Fi going through the virtual displacements {U} and will lead to

equivalent nodal forces. 0

3.2. 6 Equilibrium Equations

The virtual work of Equation 3.7 is easily applied to an entire structure, 0

approximated as an assemblage of discrete finite elements. This is accomplished by

rewriting Equation 3.7 as a sum of integrations over the volume and areas of all

finite elements and assuming that the displacements within each element are

expressed in terms of the nodal displacements of the entire structure, i.e.; 0

ERC rodV]' = Zf[uTf dv7] + If[usfsVdS]m + U'F' (3.9)
m m ms V •

where me=1, 2,..., N
N = number of finite elements 0

One important feature to note is that the integrations are performed separately for

each element, and, thus, local element coordinates may be used for convenience.

This will be discussed further in Section 5.1, 5.2, and 5.3. Substituting element 0

displacements, strains, and stresses in Equation 3.9, we obtain:

(3.10)

ur -{Z f [[BTr[D][B]dV] U=UT =f[[N]rDff}dV]

(m y rn

{' I 1'[1Ns]T ff{C LdS] }
+UrF }
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where F is now a vector of nodal forces applied at the nodal points of

the assembled structure

By imposing unit virtual displacements UT I, the familiar static equilibrium

equations of the element assemblage is obtained:

ku= p (3.11)

where
P=PB+P-Pl+ P c (3.12)

The matrix k is the stiffness of the complete structure and is equal to the left-hand

side of Equation 3.10. The load vector p includes the effects of element body forces,

surface forces, initial stresses, and concentrated loads.

Furthermore, the element inertia and damping forces can be included as part of the

body forces to represent dynamic behavior of the system. Approximating the

element accelerations and velocities by the same interpolation functions as in

Equation 3.2, gives:

PB f ~ [[N]T[{fB I - xN U A!]dV] (3.13)
m V.

where ii and 6 = vectors of nodal velocities and accelerations

p = mass density

A = damping parameter of the element in

Thus, equilibrium equations of the entire structure for a dynamic case are given by:

mii +ci + ku = p (3.14)

where m and c are mass and damping matrices of the structure,
respectively

In practice, however, damping parameters are not defined for individual elements.

Rather, the matrix c is approximated using the mass and stiffness matrices of the

complete structure.
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(a) Arch Dam
Z

4
t (c) Reservoir Water

x

y

(b) Foundation Rock

Figure. 3.1 Dam, Foundation Rock, and Reservoir Water
Divided into Finite Elements
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4. SYSTEM IDFALIZATION

4.1 Introduction 0

The standard finite element formulation previously presented is applicable to

analysis of arch dams, but certain simplified assumptions are needed before the

method can be implemented. Arch dams are distinguished from other problems in

structural dynamics by their complex geometry as dictated by the canyon shape and

by significant interaction with the impounded water and the foundation rock

(Chopra 1988). The analysis of arch dams is especially complicated for seismic

effects because they must be treated as 3-D systems consisting of the concrete arch,

the reservoir water, and the foundation rock (Figure 4-1). The finite element

discretization of each component under the assumption of linear elastic behavior is

described in the following section.

4.2 Arch Dam

Arch dams are constructed as a system of monolithic blocks separated by vertical

joints. The joints are later grouted under high pressure to form a complete

monolithic structure in compression (USBR 1977). These joints, however, can take

little or no tension and may open under severe winter temperature loading

conditions or when subjected to intense earthquake ground motions. Such nonlinear

joint opening or slippage is not considered in the linear-elastic analysis, because

arch dams are assumed to be monolithic structures.

Using the standard finite element discretization procedure, the monolithic arch

structure is idealized as an assemblage of finite elements of appropriate shapes and

types. In principle, any reasonably accurate 3-D element and mesh arrangement

may be used. In practice, however, isoparametric solid and shell elements of the S

types included in the GDAP program (Ghanaat 1993) are best suited for the analysis

of arch dams. The curved surfaces of an arch dam are directly represented by

curved isoparametric elements, and element matrices are conveniently evaluated

with respert to the local coordinates of each element. The isoparametric element 0

formulations of several finite elements are discussed in Chapter 5.

The finite element mesh of an arch dam may be defined by specifying spatial

coordinates of arbitrary nodal points, but it is more appropriate to arrange the

element mesh mathematically. It is obvious that all the element exterior nodes that
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are also defined mathematically must lie on the upstream and downstream surfaces

of the dam. The element nodes on the surfaces of the dam, if arranged on a grid of

vertical and horizontal lines, would appropriately relate to the arches and

cantilevers of the trial load procedure described in Chapter 2. This discretization

procedure is the technique that has been adopted in GDAP for the automatic mesh

generation of arch dams of arbitrary geometries (Ghanaat 1993). Figure 4-1 is an 0

example of an arch dam model generated by GDAP. Thick-shell elements were used

in the interior regions of the dam, and the regions near the abutments were modeled

by 3-D shell elements (see Section 5.2) which also provided an easy connection

between the thick-shell elements of the dam and the solid elements of the 0

foundation rock. Guidelines regarding the size of the dam mesh are presented in the

EM 1110-2-2201, "Arch Dam Design."

4.3 Foundation Rock

Ideally, a foundation model should include the significant geological features of the

rock and should also extend to a distance at which the interaction with the dam

becomes negligible. It is generally impossible to account for all the discontinuities in

the rock in a realistic manner because geological data of the underlying rock are not

available or require as much judgment as measurement to obtain and also because

the foundation must be analyzed under the assumptions of anisotropy and nonlinear

behavior for the rock. A foundation model which extends to infinity or extends to

finite distance, but includes wave-transmitting boundaries, is also not possible

because appropriate analytical procedures for such models are not available.

Another important factor is that it is virtually impossible to define free-field motions

at the dam-foundation contact points, because neither realistic analytical procedures
nor sufficient recorded data are available. 0

For these reasons, an extremely simple idealization of the deformable foundation

rock is commonly used in practical aIpplications (Clough 1980). Specifically, an

appropriate portion of the deformable foundation rock is idealized as part of the arch

dam finite element model which only includes the flexibility of the foundation rock.

Thus, the inertial and damping effects of the foundation rock are ignored in the

dynamic analysis. Linearly elastic material properties are assumed, but the effects

of geology are partially accounted for by using the modulus of deformation rather

than the modulus of elasticity of the rock. 0
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As shown in Figure 4-1, the foundation rock supporting the arch dam is represented

as an assemblage of 3-D solid elements and is constructed on semicircles drawn on

planes cut into the canyon walls and oriented normal to the rock-concrete interface.

The geometry of the foundation rock model may be assumed arbitrarily, but should

match the finite element meshes of the dam at the dam-foundation contact, and

should extend to sufficiently large distances in all directions from the contact surface

at the base of the dam. For practical purposes, the foundation models of GDAP are

especially useful because they are generated automatically and include different

degrees of mesh refinement. Guidelines for selecting an appropriate size for the

foundation rock model are given in the EM 1110-2-2201, "Arch Dam Design."

4.4 Impounded Water

Interaction between the impounded water and an arch dam has a significant effect

on earthquake response of the dam and should be considered in the analysis. This

interaction is influenced by the reservoir geometry and the energy absorption of the

reservoir botLtm. A reservoir behind an arch dam may extend a great distance in

the upstream direction. The geometry of a reservoir is usually of a complicated

shape, depending on the topography of the site. The energy absorption at the

reservoir bottom is affected by the bottom' geologica! conditions for which no

measured data are available.

Currently, three procedures are available for idealization of the impounded water.

They vary from a simple reservoir model based on the Westergaard added-mass, to

a more advanced idealization which considers a more realistic dam-reservoir

interaction mechanism.

4.4.1 Generalized Westergaard Model

The simplest and least refined reservoir idealization is an extension of the

Westergaard formulation (Westergaard 1933). This approach, also known as the

Generalized W,,stergaard Method (Clough 1977), employs the same added-mass

concept introduced by Westergaard for the incompressible reservoirs. However,

unlike the standard method, the Generalized lVestergaard Method takes account of

the dam curvature and its flexibility by assuming that hydrodynamic pressure at

any point on the upstream face of the dam is proportional to the total acceleration

acting normal to the (lam at that point. This approach is available in the program

GDAP as an option and is computationally efficient, because finite element
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discretization of the fluid domain is not required. But the method only provides a
rough estimate of the hydrodynamic forces acting on the face of an arch dam, and its

use should be limited to the feasibility or preliminary studies.

4.4.2 Incompressible Reservoir Model

If water compressibility is ignored, iiteraction effects of the impounded water can

be represented by an equivalent added-mass matrix. To compute the added-mass

matrix, reservoir water is idealized as an assemblage of incompressible liquid

elements using a finite element formulation (Zienkiewicz 1971, Kuo 1982). In

general, any complicated reservoir geometry can be represented by the finite
element discretization, but a prismatic model extending to a finite distance in the

upstream direction is sufficient for practical purposes (Figure 4-1). The effects of

surface waves are usually ignored, and, thus, pressures at the free surface are

assumed to be zero. At other reservoir boundaries, the acceleration boundary

conditions are satisfied by establishing proportionality between the pressure
gradient and the normal component of acceleration.

The INCRES program, a module of GDANP (Ghanaat 1993), computes the

incompressible added-mass matrix using the finite element procedure. However, it
ignores accelerations at the reservoir floor and at thc upstream section by assuming

them to be rigid. Previous studies show that assuming zero accelerations at the
upstream boundary will have very little or no effect on the incompressible added

mass. Also, if the upstream reach of the reservoir model is at least three times the

water depth (Clough et al. 1984 (Apr)(Nov)), then the reservoir motions beyond this

distance are essentially zero. The implication of zero accelerations at the reservoir

floor is that earthquake ground motions are not applied to the reservoir bottom, arid,

thus, their effects on the hydrodynamic pressures exerted on the dam are ignored.

It is not known how much this would influence the dam response, but this reservoir
model would be more effective if the earthquake ground motions were applied to the

reservoir floor adjacent to the dam (Clough and Chang 1987).

4.4.3 Compressible Reservoir Model

Recent studies of Morrow Point Dam show that water compressibility can be

important for the interaction between the dam and reservoir, as determined by field •

measurements (Duron and Hall 1988) and by analytical procedures (Fok and

4-4 0

0 0 0 S S 0 0 0 0



Chopru 1985). When water compressibility is coasidered, interaction between the

dam and impounded water requires a solution in the frequency domain. One

effective approach (Fok and Chopra 1985) is to idealize the fluid domain as a finite

region adjacent to the dam connecied to a prismatic body of water extending to

infinity; this provides for propor transmission of pressure waves in the upstream

direction. The finite region is represented is an assemblage of liquid finite elements

(similar to the incompressible case), while the infinite. region is treated as an

assemblage of subehannels of infinite length for which a continuum solution is

available. Furthermore, this analytical procedure allows for the energy loss into the

reservoir floor by issuming absorptive boundaries. The dissipation of energy into

the reservoir boundaries is characterized by the wave reflection coefficient, a, which

is the ratio of the amplitude of the reflected to the amplitude of the incident pressure

wave.

The interaction effects of compressible water depend on the dam and reservoir 0

geometries and are influenced by the a factor and the characteristics of the

earthquake ground motions. Such elaborate analysis may not be necessary for all

dams, especially when the fundamental resonant frequency of the reservoir is

greater than the fundamental frequency of the dam with an empty reservoir by at 0

least a factor of 2. For relatively high dams, when strong coupling exists between

the dam and the impounded water, compressibility of water may be considered but

several analyses based on diffirent values of the a factor may be required.
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5. ISOPARAMETRIC ELEMENT FORMULATION

5.1 Introduction

In this section another very important aspect of the finite element analysis, i.e.

formulation of element matrices, is presented, and several elements especially

developed for the analysis of arch dams are described.

Finite elements most appropriate for the analysis of arch dams are of the

isoparametric family for which both the element coordinates and element

displacements are defined using the same (iso-) parameters or interpolation 0

functions (Zienkiewicz 1971, Bathe and Wilson 1976). They are constructed by

mapping a nondimensionalized rectangular element with a specified number of

nodes into the actual curved-surface element in the manner shown in Figures 5-1

through 5-4. The element transformation is carried out using interpolation 0

functions that are conveniently defined in the natural coordinate system.

5.2 Eight-Node Solid Elements

The standard eight-node solid element is a linear-displacement isoparametric

element developed by Zienkiewicz (Zienkiewicz 1971). A refined version of this

element included in GDAP (Ghanaat 1993) uses incompatible deformation modes

(Ghaboussi, Wilson, and Taylor 1971) for improved bending behavior. Both isotropic

and orthotropic material properties can be specified. This element is used to model

the foundation rock or thick section of gravity arch dams.

Element Geometry. Figure 5-1 shows the eight-node solid element. The element

geometry is described in terms of the nodal coordinates using the following

isoparametric relationship:

8 8 8X= JV, X, ; Y= N, Y, z--Z N, Z, (5.1)
1=1=1 i=|

where X, Y, Z = global coordinates at any point within the element S

Xi, Yi, Zi = coordinates of node i
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Figure 5-1 Eight-Node Solid Element

The interpolation functions are specified in the natural coordinate system:

N, i = l,2,...,8 (5.2)

where Qi, ýqi, Qi are +1 or -1 and represent the coordinates of node i

Element Displacements. Displacement approximation of the modified eight-node

element includes three additional terms in each direction and the total expansion is

of the form:

gS

8

u = Z•_, N +Nqqh +Noq 2 + Nq 3
i=j

8v ý +Nq + N10t 5 + N11q 6  (5.3)

w = Z•Nw + Ngq7 + Noqs + N,Iq 9
i=1
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where

The displacemeut amplitudes qi are additional DOF's that may be visualized as

displacements of midedge nodes that are eliminated by static condensation in the

subsequent analysis operations.

Element Stiffness Matrix. The element stiffness corresponding to the natural

coordinate system shown in Figure 5. lb is:

[k]= f I j[B]T[D][B]detJd~d7ld4 (5.4)
-1-I -I

where matrices [B] and [D] are defined in Equations 3.3 and 3.5, and detJ is the

determinant of the Jacobian operator. The Jacobian operator which relates the

natural coord-nate derivatives to the local coordinate derivatives is given by

J=/O/IOý 0109ý 41/ (5.5)

Element Mass Matrix. Mass matrix for an eight-node solid element can be obtained

from the inertia forces given in Equation 3.13. The mass matrix expressed in the

natural coordinate system is:

[m]= pif j[N]T[N]detJd~dqd4 (5.6)
-I -I -I

This is called the consistent mass matrix because the interpolation functions used

here are the same as were used in the evaluation of the stiffness matrix. The

consistent mass formulation requires more computer effort than does a simple

lumped mass matrix but provides greater accuracy and is more appropriate for the

analysis of arch dams.

Element Surface Loads. Surface loads included in the eight-node element are •

hydrostatic water and silt pressures; uniform pressure distributions can also be
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specified. The nodal forces due to distributed surface pressures are obtained from

Equation 3.10 and, in the natural coordinate system, are given by:

{Rs) = f [Ns]r{fs detJdýd&l (5.7)
-I-I

where [Ns] are interpolation functions corresponding to the surface •

on which pressures {fs) are acting

Element Loads Due to Initial Strains. The initial strains due to the temperature

changes in the element are given by:

S=[A 0,4 o,oq 0,0, 0, (5.8)

where Px, Py, Pz = coefficients of thermal expansion in the

x, y, and z directions

0 temperature change from the stress-free state

For an isotropic material, coefficients of thermal expansion are the same in all

directions. The temperature changes at any point within the element are obtained

from the nodal temperature values using the displacement interpolation functions

given in Equation 5.2: 0

8

S: = Ne, (5.9)
3=1

The vector of initial nodal forces is obtained by substituting eo in Equation 3.10 and

expressing the integration in the natural coordinate system:

{f1 }= j JJ[B]Tr[D]f{fidetJ d~did# (5.10)

-I -I (510

Numerical Integration of Element Matrices. The element matrices presented in

integral forms must be evaluated numerically. The numerical integrations are most

effectively obtained using Gauss quadrature scheme (Zienkiewicz 1971). For

example numerical integration of the element stiffness is given by:
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k= ZZw PvwwkBT(4i, ,4 )DB(ýj,ri ,4ý) (5.11)
i j k

where wi, wj, wk = weight factors for the integration points

corresponding to ýi, 9j,Ck

The number of Gauss integration points used to evaluate a specific element matrix

depends on the order of the function to be integrated. iFor eight-node solid
elements, two integration points in each direction are usually used.

5.3 Three-Dimensional Shell Elements

The eight-node element described is the simplest 3-T) cl.ment in the isoparametric
family. It can be extended to more refined elements by assuming higher order 0

interpolation functions and expressing them in terms of an appropriately increased
number of nodal points. The 3-D shell element shown in Figure 5-2 is such an

element. It is a 16-node, curved solid element which uses quadratic displacement
and geometry interpolation functions on two faces and linear interpolation functions 0
through the thickness (Ghaboussi, Wilson, and Taylor 1971). The element also
includes incompatible deformation modes to improve the bending behavior and thus
its accuracy. This element has been very effective in the analysis of arch dams, and
usually one element in the thickness direction is adequate. S

Element Geometry. Figure 5-2 shows the 16-node shell element in the natural, local,

and global coordinate systems. The element geometry is expressed in terms of the
nodal coordinates through a set of interpolation functions: 0

16 16 16X= NX Y=ZNY, ,; z=EN,4Z (5.12)
S5-5 i=I
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where

N, =-(la-4•)(1 + ?)(I + )(ý+ 77-1)

N2 = -(1-,-)(1+ 1)(+)(-+6 + 77-1)

N3 = (I- ( )(- +7)(l + (-- 17-1)

N4 = : + 6)(I- 17)(1+4)(ý- 7-1)
Ns = -(I+ 6)(1 + 7 )(1- 6)(ý+ 77-1)
N6 =-(1- •1 + )(- 4)(-k + 77-1)

N7 = -(- 6(l -(l )(1- )(- + 77-1)

Ng = -(I+ ý)(1- 71)(1)- 6(+ 77-1)

NA9 = (1- 42)(1+ r7)(1+6
NIo = ¼(1_ )(l_ r2# 1 + - •

NI, = 4L(I1- a)(1 - 77)(l+ 6

N12 = ¼L(1+ #)1 - ?/)(I1+

N1 3 =(1- )(1 + 77)(1-4) •

N14 = (1- ý)(1-- 7/2)(1- 6
N15 4 ¼(1 -'e)(1 - r7)(1- 6"
N,6 =4 ¼(I + 6)(1 - r/ )(1-0 6

Element Displacements. The displacements within the element are approximated

by: 0

16

U = Niu +N17 q, +N1sq2 + NUq3 + N2oq4 + N2,q5
i=1

16

v = Niv, + NA7 q6 +N, 8q7 + Ng9q + N20 q9 + N 2tq1 o (5.13)
i=1

16

W = N , + 'VIA1 q I +gA Nq,2 +1NV9q3 3 +N2oq1 4 +N2,q,5  •
i=I
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(a) Local and Global Coordinate Systems (b) Natural Coordinate System

Figure 5-2 Three-Dimensional Shell Element

where

An important feature of the element is that any midside node can be eliminated by

introducing a kinematic constraint along that side. This is done by assuming that

the side remains straight during the element deformation, and, thus, the midside

displacements can be expressed in terms of the corresponding corner displacements.

This feature permits a 16-node shell element to be attached to an 8-node solid

element used in the foundation while maintaining displacement compatibility.

Element Matrices. The stiffness matrix, consistent mass matrix, and the nodal load 0

vectors for 16-node shell elements are obtained using the procedures outlined. All

matrix integrals are evaluated numerically using the Gauss quadrature procedure.

The integrals are evaluated exactly using a 3 x 3 Gauss integration in the surface

direction combined with 2 points through the thickness, i.e. a total of 18 points for 0

the element. The temperature changes within the element are related to nodal
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temperature values, using the same quadratic interpolations on two faces and linear

interpolations through the thickness.

5.4 Thick-Shell Elements

Another specialized element for the analysis of shell structures such as an arch dam

is the thick-shell element included in GDAP. This element is based on an

isoparametric formulation using quadratic displacement and geometry variations in

the surface directions and linear variation through the thickness. However, the

surface nodes are reduced to only eight nodes lying on the midsurface, half-way

between the corresponding surface nodes (Pawsey 1970). Each node on the

midsurface has five DOF's, three translations in the global directions, and two

rotations about two axes perpendicular to the midsurface normal (Figure 5-4). The

sixth DOF, associated with the change of thickness of the element, is replaced by a

zero stress condition (a. = 0) in the normal direction. The element also uses a

reduced integration scheme which excludes the excessive shear strain energy in the

stiffness matrix and, thus, improves the bending behavior. The resulting element

provides an efficient tool for representing the shell behavior of an arch dam. It

permits for a significant transverse shear distortion and is applicable to both

moderately thick and thin arch dams.

Z0
z

Y

10.

4 3 14
S/ 0

12 15 .1

11 g~11

(a) Local and Global Coordinate Systems (b) Natural Coordinate System

Figure 5-3 Curved Thick-Shell Element
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Element Geometry. The geometry of the element surfaces are defined by 16 nodal

points, 8 on each curved surface (Figure 5-3). The coordinates of any point within

the element are described in terms of the midsurface coordinates and a vector

connecting the two upper and lower points, as shown in Figure 5-4:

{*}=ZNj{14 + INC VU (5.14)

where

Vi={I~{~

The interpolation functions Ni are the standard quadratic functions of a two-

dimensional (2-D) element and are defined with respect to the natural coordinate

system shown in Figure 5-3b:

(5.16)

N, = I(1- 4)(l + q7)- N,/2- N8 /2

N, = ¼(1 + ( )(I + 7)- N1/2- N6 /2

N3 = ¼(l+ ý)(1- 1)- N6/2-N7/2

N4 = I(I- )(I- i)-N 7 /2-N 8 /2

Ns =1(1- e)(I+ 77)

N6 = 1(1- 4 +2)( +6)

N7 = (l- )(1- 7)
N8 = -(I- _L 2)(l-)

Element Displacements. Figure 5-4 illustrates displacements and various local and

global axes of the thick-shell element. The displacements at any point within the

element are defined by three translations of the midsurface nodes and by two

rotations of the nodal vectors V3 i about two orthogonal directions Vli and Vi. If Yi

and 8i represent the two rotations at node i, and vu and vui denote the two-unit
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vectors in the V, and V1j directions, the displacement at any point is defined in the

form:

v =ZNV vi .+ZNAv-i-i'[ ,J ,i (5.16)
20

where u, v, and w = displacements in the global directions

uj, vi, and wi = displacement components of the midsurface

node i

ti = element thickness at this node

Y (v

'dow z (w, V

SX(u)

Figure 5-4 Local and Global Axes of Thick-Shell Element
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Element Matrices. The element property matrices are derived following the

standard procedures described previously, except that for the thick-shell elements,

strain and stress components at any point on the surface are defined with respect to

mutually perpendicular local axes at that point, and, thus, an additional

transformation is necessary. The local axes are constructed such that z' is normal

and the orthogonal x', and y' axes are tangent to the element surface (Figure 5-4).

The first transformation which relates the global displacements to curvilinear

coordinates is carried out as in the case of 3-D elements using the relationship given

in Equation 5.15. The global derivatives of displacements are then transformed to

the local derivatives of the local displacements using the standard coordinate

transformation. From this transformation, the element strain-displacement matrix

[B] is obtained; other relevant element matrices are easily established following the

standard procedures discussed earlier.

Numerical Integration of Element Matrices. All element matrices are evaluated

using a reduced integration scheme to improve accuracy of the solution (Pawsey

1970). Pure bending deformations of finite size elements are always accompanied

by extraneous shear stresses that actually do not exist under the shell theory. The

contribution of this shear strain energy to the stiffness matrix results in a stiffer

element. In the limit, the extraneous strain energy vanishes because it becomes

smaller as the element size decreases. However, such restriction on the element size

can be easily removed by reducing the integration order (Pawsey 1970).

The thick-shell element included in GDAP uses two integration points in the

thickness direction (Q but uses different reduced integration grids in the surface

directions (&, i) for evaluation of the strain energy due to various strain components.

For example, exx and es. are integrated using 2 x 3 and 3 x 2 grids, respectively,

rather than the usual 3 x 3 Gauss quadrature points. Similar reduced integration

orders are also used to calculate the transverse shear energy from yzx and y-,.
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6. STATIC ANALYSIS PROCEDURE

6.1 Introduction

This chapter presents linear-elastic response analysis of arch dams under the static

loads. A typical finite element static analysis involves the following basic steps: 0

1. Idealization of the dam and an appropriate portion of the foundation
rock as an assemblage of finite elements

2. Evaluation of the stiffness properties of the elements, and the element
load vectors

3. Formulation of the equations of static equilibrium for the entire
structure by direct addition of the stiffness matrices and the load
vectors of the individual elements, as well any externally applied
concentrated nodal loads

4. Solution of the system of equilibrium equations by numerical methods
to obtain displacements at nodal points of the assembled structure

5. Determination of the element stresses from the computed nodal
displacements and the element stress-displacement relationship

Finite element idealization of the concrete arch dam and the foundation rock are

based on the procedures described in Chapter 4. The concrete arch as shown in

Figure 4-1 is usually modeled by a combination of the thick-shell and 3-D shell 0

elements. The main body of the dam is represented by the thick-shell elements, and

the regions near the abutments where the shell behavior diminishes are modeled

using the 3-D elements. The foundation rock as described earlier is represented by

the eight-node solid elements and should at least extend one dam height in the

upstream, downstream, and downward directions. Guidelines for the appropriate

selection of the element types, size of the dam finite element mesh, and the size of

the foundation rock region are provided in EM 1110-2-2201, "Arch Dam Design."

The stiffness properties and the load vectors for each element type are calculated

following the formulations given in Chapter 5; linearly elastic material properties

are assumed. Finite elements used in the body of the dam are usually assumed to

be isotropic, but orthotropic properties may be specified for the eight-node solid 0

elements to represent the foundation rock.
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The system equations of equilibrium for the complete structure approximated as an

assemblage of finite elements are formed using the principle of virtual

displacements. The solution of this algebraic system of equations, the static loads

relevant to the analysis of arch dams, and the results of a typical static analysis are

discussed in this chapter.

6.2 System Equations of Equilibrium

The linear system of equations that arises in a typical linear-elastic static analysis

of arch dams are given for the entire assembled dam-foundation system by

ku =p (6.1)

where k = stiffness matrix

u = displacement vector

p load vector

The assembled stiffness matrix k, which is Obtained from the symmetric stiffness

matrices of the individual elements, is also a symmetric matrix. Thus, only the main

diagonal and the terms on one side of the main diagonal must be stored. Another

important feature of the matrix k is that the stiffness coefficient corresponding to a

particular DOF is influenced only by the DOF's associated with the elements

connecting to that DOF; tie stiffness coefficients associated with nonconnecting

DOF's are zero. Therefore, the global stiffness matrix usually contains many more

zero terms in each row than nonzero terms. In a typical stiffness matrix, the

nonzero terms are clustered in a band centered along the main diagonal called

bandwidth. In a finite element analysis it is important that all the zero terms

outside the bandwidth not be included in the equation solution. The computer

program GDAP (Ghanaat 1993) , like many other finite element programs stores

only those terms in the banded region that are on and above the main diagonal,

and usually a term known as the half-bandwidth is used instead of the bandwidth.

This scheme reduces both the storage requirements and the number of operations

needed in the solution process. It is obvious that greater efficiency can be achieved

by minimizing the bandwidth of the stiffness matrix. This often can be

accomplished by appropriate node numbering so that the maximum difference in
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4
global DOF's in any one of the finite elements is minimized. However, this is not

always easy to generate, and various automatic bandwidth minimization schemes 0

are currently available that can be used. The load vector p, in general, consists of

the concentrated forces or moments applied at the nodal points and the consistent

loads due to the distributed element loads. The element loads include the gravity,

water, and temperature loads that are discussed later. 0

6.3 Solution by Gauss Elimination

In practice, the linear system of equations for an arch dam structure may include

several thousand equations that must be solved simultaneously. The number of

equations increases with the number of finite elements used to approximate the

actual dam-foundation and the appurtenant structures. For example, the number of

equations for finite element analysis of a multiple arch dam can easily approach or

exceed 10,000 equations. Thus, it is obvious that the cost of analysis and its

practical feasibility depend to a great degree on the effectiveness of the available

solution algorithms. The most effective algorithms for the solution of the linear

system of equations with symmetric banded matrix, which is obtained in a finite

element structural analysis, are applications of Gauss elimination (Dahlquist and

Bjorck 1974). The basic concept of the Gauss elimination method is to eliminate the

unknowns in a systematic way and to produce an upper triangular matrix from

which the unknown displacements u are solved by a back substitution. A detailed

description of the standard Gauss elimination scheme and other various applications

of the method are given by Bathe and Wilson (1976).

6.4 Static Loads

The most common loads considered in the static analysis of arch dams are weight of

the dam, hydrostatic pressures of the impounded water, silt pressures, and the

temperature changes in the concrete. The contribution of less common loads, such

as the tail water, ice, uplift or pore pressures, and the loads due to the appurtenant

structures should also be included when they are significant. Arch dams should be

designed for all appropriate combinations of such loads. Combination of transient

loads whose simultaneous occurrence at any given time is highly improbable is not

appropriate and should not be considered. The loading combinations applicable to
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arch dams include usual, unusual, and the extreme loading combinations and are

described in EM 1110-2-2201 on arch dam design.

6.4.1 Gravity Loads

Gravity loads due to dead weight of the dam are calculated from a uniform weight

density throughout each element. They are distributed body forces that are easily 0

obtained using the standard procedures outlined in Chapter 3. Calculation of the

nodal loads for each individual element is straight forward, but the way gravity

loads are applied to the dam structure depends on the construction and joint

grouting sequence. 0

Concrete arch dams are constructed as a system of cantilever blocks separated by

vertical joints (Figure 6-1). The joints are open during the construction to permit

cooling and shrinkage to take place independently in each cantilever, but later they

are grouted under high pressure to form a monolithic structure. The gravity loads

imposed on the individual cantilevers separated by joints are assumed to be

transmitted vertically to the foundation without any arch action. The actual

construction process, especially for the large dams with overhanging sections, is

more complicated and may proceed in several layers as shown in Figure 6-1. In

each layer, cantilevers are constructed independently, but the joints are grouted

before the next layer is built. In principle, stress analysis for gravity loads should

approximately follow the construction sequence, but the calculation process is quite

tedious. In practice, the construction process is simulated by a series of independent

cantilevers with the vertical joints being open along the entire height of the

cantilevers as shown in Figure 6-1d. The static analysis for the gravity loads is then

performed in two steps. First, gravity loads are applied to alternate cantilevers by

setting the modulus of elasticity to zero for the remaining cantilevers. In the second

analysis, modulus of elasticity is switched on for the alternate cantilevers and set to

zero for the first set.

Alternatively, the gravity loads may be applied to the continuous and completely

finished dam in a preliminary design calculation. In fact, this assumption may

actually be more realistic for dams in narrow canyons where arch action exists
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INDEPENDENT
CANTILEVERS

INDEPENDENTl

0

(a) Construction Sequence 1 (b) Construction Sequence 2

GROUTED
CANTILEVE

(d) Idealized Gravity Load Model (c) Construction Sequence 3

Figure 6-1 Construction Sequence and Idealized Gravity Load Model

even without grouting. In either case, it is obvious that gravity loads should not be 0

applied wiLhin the foundation rock.

6.4.2 Hydrostatic Loads

When the reservoir is filled after the contraction joints are grouted, the compressive

stresses across the joints are further increased, so the dam resists the hydrostatic

loads as a truly monolithic structure. The static analysis for the hydrostatic loads

uses the complete dam-foundation model, and the water loads are applied as

external surface loads acting on the dam and foundation rock. The weight of

impounded water causes deformations of the foundation rock at the valley floor and
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flanks which affect deformations and stresses in the dam. These foundation effects

may not be negligible and should be included in the analysis (EM 1110-2-2201, •

Herzog 1989).

6.4.3 Temperature Loads

Temperature loads play an important part in the design and safety evaluation of

arch dams, especially when operating under severe temperature variations.

Operating temperature loads are applied to the monolithic dam structure after the

contraction joints are grouted. The element nodal loads due to temperature changes 0

are obtained using the procedures discussed in Chapter 4. In general, temperature

distributions within a dam vary in a nonlinear manner but they are usually

approximated by a combination of uniform and linear variations in practical

applications. The computer program GDAP permits temperature changes to vary 0

with elevation, across arch sections, and through the dam thickness. However,

when nodal temperature values are generated by the program, constant

temperatures are assumed across each arch section. Only operating temperature
loads are discussed in this report. Thermal studies to determine appropriate placing •

and closure temperatures during the construction are discussed in EM 1110-2-2201.

When a temperature change occurs in an arch dam, the resulting volumetric change,

if restrained by the dam boundaries, induces thermal stresses in the dam. The

magnitudes of the temperature loads depend on the difference between the closure

temperature and concrete tempetatures expected during operation (USBR 1965).

The closure temperature is the mean concrete temperature at the time the

contraction joints are grouted to form a monolithic structure. This temperature is

very important because it directly affects the thermal stresses induced in the dam.

The adverse effects of the extreme operating temperature variations can be

minimized by selection of an appropriate closure temperature.

Concrete temperatures to be expected during operation of a dam are determined

from studies that consider the ambient air temperatures, reservoir water

temperatures, and solar radiation. These studies are made using the measured

thermal properties of the materials, recorded air and water temperatures at the 0

dam site, and accurate analytical calculations.
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6.4.4 Silt Loads

Silt loads are treated in the same manner as the impounded water loads. They are

applied as hydrostatically varying surface loads using an appropriate weight

density.

6.4.5 Concentrated Loads

Any concentrated force or moment can be applied at a given nodal point. This may

include dead weight of the appurtenant structures such as gates and bridges or any

static load approximated as a point load. These loads are applied after grouting of

contraction juints, and, thus, are resisted by both the arch and cantilever units of

the monolithic dam structure.

6.4.6 Ice Loads

Ice pressures exerted on a dam are represented by a distributed surface load or by

equivalent concentrated loads applied at appropriate nodal points. The magnitude

of ice pressures depends on many parameters that are not easily available. Some

estimates of ice pressures are given in EM 1110-2-2201.

6.4.7 Uplift Pressures

Uplift or pore pressures develop when water enters the interstitial spaces within the

body of an arch dam as well as in the foundation joints, cracks, and seams. The

effect of uplift pressures is to reduce the normal compressive stresses on horizontal

sections within the concrete and to increase the corresponding tensile stresses S

should they exist. Uplift pressures have negligible effects on the stress distribution

in thin arch dams, but their influence on thick gravity-arch dams may be significant

and should be included in the analysis.

The effects of upliif pressures generally are not incorporated as part of the regular

finite element analysis of arch dams. This is partly due to the minor stress changes

they cause in thin arch dams, and also to the lack of accurate data associated with

the magnitudes and distributions of uplift pressures. The uplift pressure 0

distributions at the dam-foundation interface and within the foundation rock depend
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on the depth and size of drains, grout curtain, rock porosity, jointing, faulting, and

any geological features that may affect the flow of water through the system.

The effects of uplift pressures, if significant, can be accounted for by using Terzaghi's

effective stress concept which states that a pore pressure P, in a rock causes the

same reduction in peak normal stress that would be caused by a reduction of the

confining pressure by an amount equal to P.. The effective stress at a particular

location can be obtained as the algebraic sum of the total stress and the uplift

pressure at that location. The uplift pressures can be determined by measurements

or may be estimated by analytical methods from flow nets. The positive uplift

pressures are then added algebraically to the horizontal and vertical components of

the total stresses computed in a finite element analysis ignoring the uplift. When a

crack exists in the dam, uplift pressures exerted on the surfaces of the crack are

applied as external hydrostatic pressures.

6.5 Results of Static Analysis

The results of a typical static analysis include nodal displacements and element

stresses computed at various locations for all expected loading combinations. The

appropriate loading combinations for an arch dam are discussed in EM 1110-2-2201.

At each nodal point, three displacement components corresponding to a global

system of axes are computed. They may be presented in the form of 3-D plots

showing the deflected shape of the entire dam or as 2-D plots along the arch and

cantilever sections as shown in Figure 6-2. The magnitudes and deflected shapes of

the resulting displacements provide important data that can be used to visually

evaluate the acceptability of a new design or the overall behavior of an existing dam.

0

0
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Figure 6-2 Nodal Displacement due to Water Load

S

The most meaningful stress results for evaluation of an arch dam are the surface

stresses in the arch and cantilever directions. In general, six stress components --

three normal and three shear stresses -- are computed at each stress point of a 3-D

element; thick-shell elements have only five stress components, because the stress

component normal to the element surface is assumed to be zero. If such stresses are

calculated with respect to a global coordinate system, they should be transformed to

arch and cantilever stresses by suitable transformation. The computer program

GDAP which has been especially developed for the analysis of arch dams,

automatically provides arch, cantilever, and shear stresses on the surfaces of each

element, and then uses this information to calculate the magnitude and direction of

the principal stresses on the upstream and downstream faces of the dam. The arch

and cantilever stresses are usually presented in the form of stress contours, whereas

the principal stresses are shown as vector plots containing both the magnitude and

the stress direction. Figure 6-3 shows an example of surface stresses computed for

the impounded water loads.
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7. EARTHQUAKE ANALYSIS PROCEDURE

7.1 Introduction 0

The earthquake response analysis of concrete arch dams generally is performed

by the standard dynamic FEM. However, prediction of the dam response

during earthquakes is more complex than a typical problem in structural

dynamics. The response of an arch dam to earthquakes is significantly influenced

by its dynamic interactions with the deformable foundation rock and the

impounded water. It may also be considerably affected by the variation of

earthquake ground motion over the width and height of the canyon. Analytical 0

procedures are now available to account for the interaction with the reservoir

water using three different levels of sophistication (Chapter 4). But interaction

with the foundation rock is still represented by the oversimplified massless

foundation model, due partly, to the uncertainties and difficulties associated with 0

definition of the seismic input. During intense earthquake motions, the dam

response is further complicated by the opening and slippage of the vertical

contraction joints; tensile cracks may occur; and the impounded water may
momentarily separate from the upstream face of the dam at the locations of 0

negative pressures, resulting in cavitation. These types of responses are

nonlinear in nature and are very difficult to model and calculate reliably. The

linear-elastic earthquake response analysis of arch dams is summarized in this

section. A typical earthquake response analysis involves several steps as follows:

1. Finite element idealization of the dam-foundation system

2. Idealization of the impounded water by the Westergaard added-mass
assumption or as an assemblage of finite element fluid elements

3. Evaluation of the stiffness, damping, and mass properties of the finite
elements

4. Evaluation of the effective earthquake forces due to the mass of the dam
structure, as well as the hydrodynamic forces due to the earthquake-
induced motions of the reservoir, to formulate the equations of motion

5. Evaluation of the vibration mode shapes and frequencies of the dam-
foundation-reservoir system and transformation of the equations of motion
from the finite element coordinates to modal coordinates

6. Computation of the earthquake response in each of the uncoupled modal
coordinates using a response spectrum or acceleration time history as the
earthquake input, and then superposing the modal responses to obtain the
total response.
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The same finite element idealizations of the dam and foundation rock developed for

the static analysis are also used for the calculation of earthquake response.

However, for earthquake analysis the element properties should be evaluated using

the dynamic elastic material properties of the concrete and the foundation rock.

Formulations of the equations of motion for incompressible reservoir water, of the

free vibration analysis, and of the earthquake response calculations are described in

the following section.

7.2 System Equations of Motion

The equations of motion for a dam structure idealized by finite elements are:

m iic + e + ku = p(t) (7.1)

where m, c, and k = mass, damping, and stiffness matrices of the system
evaluated by the procedures described in Chapter 3

u = vector of displacements of the finite element nodes
p(t) = vector of time varying external forces or of effective

loads resulted from earthquake ground motion

In the case of earthquake ground motion, no dynamic external forces are applied

directly to the structure. Instead, the structure is subjected to ground accelerations

applied at the base of the structure. The base excitation produces inertia forces

that depend on total accelerations jit of the DOF's which are due to the relative

motion within the structure plus the effect of support motions, i.e.:

t-+ r=ii2  (7.2)

where iig = the vector of three components of the free-field ground
accelerations at all support points

r = influence coefficient matrix which represents structural
displacements resulting from a unit displacement in
each component of the support motions

Thus, the equations of motion for a dam-foundation-reservoir system subjected to
earthquake ground motion can be written as:

mi + cu + ku = -mrii + fh (7.3)
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where m and c =mass and damping matrices of the dam
k stiffness matrix of the dam and foundation rock

-mraig effective earthquake loads
fi= vector of hydrodynamic forces acting on the dam- •

water interface only

Note that the foundation rock contributes only to the stiffness matrix because its

inertia and damping effects are ignored. Procedures for calculating hydrodynamic

forces fh for the incompressible reservoir water are presented in the following

section.

7.3 Westergaard Analysis of Added-mass

The effect of reservoir water on the earthquake response of concrete dams was first

considered by Westergaard (1933). He introduced the added-mass concept for an

incompressible reservoir which has been used as the standard method in the

earthquake response calculation of most gravity dams. In his analysis, the dam was

idealized as a 2-D rigid monolith with vertical upstream face; the reservoir water

was assumed to be incompressible and to extend to infinity; and the effects of

surface waves were ignored. Based on these simplified assumptions, Westergaard
indicated that the hydrodynamic pressures exerted on the face of the dam due to

earthquake ground motion is equivalent to the inertia forces of a prismatic body of
water attached firmly to the face of the dam and moving back and forth with the

dam while the rest of reservoir water remains inactive. He also suggested a

parabolic shape for this body of water with the base width equal to seven-eights of

the height, as shown in Figure 7-1.

7.3.1 Arch Dam Extension of Westergaard Analysis

The Westergaard added-mass concept is also applicable to the earthquake analysis

of arch dams, but it should be modified to account for the curvature and flexibility

of the dam structure. In general, arch dams are curved in both the plan and

elevation, and, thus, the orientation of the pressures normal to the dam face varies S

from point to point. When making this modification, it is also convenient to account

for the dam flexibility by recognizing that the hydrodynamic pressure exerted at any

point on the dam is proportional to the total normal acceleration at that point. The

added mass calculated in this manner is known as the generalized added mass, S

because it is applicable to the general geometry of the upstream face of flexible arch
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dams. This extension can be easily included in the finite element response analysis

of arch dams and is available as an option in the GDAP (Ghanaat 1993) program.

The basic assumption in the Generalized Westergaard Mettod (Clough 1977)

analysis is that the pressure at any point i on the face of the dam is expressed by

the Westergaard parabolic shape shown in Figure 7-1, i.e.:

pi = au (7.4)

where a, = 7pW , (H;-TZ,

80

ii-, = total normal acceleration at point i
ai = Westergaard pressure coefficient

p, = mass density of water
Hi = depth of water at vertical section that includes point i
Zi = height of point i above the base of the dam

It should be obvious that there is no rational basis for this assumption because
limitations imposed in the original Westergaard analysis are not met. Furthermore,

the same Westergaard pressure coefficient is used for all three components of the

ground accelerations. The procedure, however, provides a somewhat reasonable

generalization and is useful for the preliminary or feasibility studies , -'.Ams.

Z

b = 7/8 \i-(H-Z)

77/8 H

uig 0

Figure 7-1 Westergaard Added-Mass Representation
For Arch Dams
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In the finite element analysis, ii,•, is expressed in terms of Cartesian coordinate

components of the ground acceleration iig and of the acceleration components of node

i relative to the base of the dam ii. This relationship is given by the direction

cosines between the Cartesian coordinates and the normal:

nii•=A(i i (7.5)

where Xi = a vector of normal direction cosines at node i
boldfaced terms = a vector or matrix quantity 0

7.3.2 Hydrodynamic Forces Acting on the Dam

The normal pressure pi is now converted to an equivalent normal hydrodynamic

force at node i by multiplying by the surface area A, tributary to point i:

F., = -p, A (7.6)

The normal force Fn, however, should be resolved into its Cartesian components 0

given by:

F, = F.?, (7.7)

Combining Equations 7.4, 7.5, and 7.6 with Equation 7.7 leads to:

Fj = -mi(ii + rii2 ) (7.8)

where m,,, = a, A, ?j, X, (7.9)

Here mr is a full 3 x 3 added-mass matrix associated with node i on the upstream 0

face of the dam. Following the direct stiffness assembly procedure, the vector of

hydrodynamic forces acting on the upstream nodes of :he dam is given by:

fh=, F, = m.(ii + rii) (7.10)
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where m. is the added-mass matrix resulting from the hydrodynamic

pressures acting on the upstream face of the dam. The added-mass terms associated 0

with each node form a 3 x 3 full submatrix along the diagonal of mto, but the

submatrices are not coupled.

7.3.3 Coupled Dam-Water Equations of Motion 0

Substituting Equation 7.10 into Equation 7.3, the equations of motion including the

hydrodynamic effects of the reservoir can be written as:

@

(m + n)ii +c 6 + ku = -(m + m,)rii2  (7.11)

The right-hand side of this equation is the effective earthquake loads, which depend

on the added mass of the reservoir as well as the mass of the dam structure. In the

computer implementation of the Westergaard added mass, the global matrix ma,
need not be assembled separately. Instead, the added mass of the impounded water

is combined with the mass of the concrete for each individual element on the

upstream face of the dam, and then the mass matrix for the entire structure is

assembled according to the standard procedure.

7.4 Finite Element Analysis of Incompressible Water

The Westergaard added mass discussed previously is computationally efficient, but 0

it does not properly represent the hydrodynamic forces acting on arch dams. A

better approach is to idealize the impounded water by the finite element method,

which permits a realistic treatment of the complicated geometry of an arch dam

reservoir. Assuming that water is incompressible, finite element solution of the 0

dam-water interaction is represented by an equivalent added-mass matrix. The

finite element formulation of an incompressible reservoir model with nodal

pressures as unknowns is summarized by Kuo (1982) and Zienkiewicz (1971).

7.4.1 Equations of Motion

The equation of motion for hydrodynamic pressures of an incompressible and

inviscid fluid is given by the wave equation:

V2p=O (7.12)
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4
where V2 = Laplacian operator in three dimensions

p = p(x,y,z,t) = hydrodynamic pressure in excess of the static pressure in 0
the fluid domain 0, as shown in Figure 7-2

The hydrodynamic pressures acting on the face of a dam are obtained by solving this

equation, with appropriate boundary conditions. The boundary condition at the free

surface R. in the absence of surface waves is: 0

p=0 (7.13)

Rs w.-

/ Rd

S/ RESERVOIR/ / WATER

Figure 7-2 Dam and Reservoir Water

On the upstream face of the dam Rd, where the normal motion is prescribed, the

boundary condition is:

S=P~'nd - i(7.14) 0
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where p = mass density of water
U.d = total acceleration normal to upstream face of the dam

n the direction normal to the boundary and is positive when
pointing out of the fluid domain

A similar boundary condition may also be applied at the reservoir boundary Rb:

= -P.b (7.15) 0

where iinb is the normal component of the ground motion at the reservoir boundary.

However, the computer program GDAP (Ghanaat 1993) assumes that the reservoir

boundary Rb does not move, thus the pressure on the dam due to the motion of the

reservoir boundary is ignored. The finite element discretization of the reservoir

water cannot be applied to a reservoir of infinite extent. It is necessary to truncate

the reservoir model at an appropriate distance from the upstream face of the dam,

at which location the boundary condition is given by:

---'= -/O.. (7.16)

where il,, is the acceleration normal to the upstream boundary RU. The

acceleration, 5,, can be obtained from the coIntinuum solution (Hall and Chopra

1980), or from the finite element solution (Saini, Bettes, and Zienkiewicz 1978) of a

fluid domain extc_,ding to infinity from the truncated boundary. In the former

solution, constant depth is assumed for the infinite fluid domain, whereas the latter

uses specially developed infinite elements extending to infinity. However, if the

upstream extent of the incompressible reservoir ;s greater than three times the dam

height (Clough et al. 1984 (Apr)(Nov)), the acceleration at the truncated boundary

has a small effect on the hydrodynamic pressures at the face of the dam and, thus,

can be set to zero in practical applications.

7.4.2 Finite Element Discretization

The solution of the wave equation for hydrodynamic pressure is obtained

numerically using the Galerkin FEM. The Galerkin form of the hydrodynamic

pressure equation, Equation 7.12, is given by:

SNTV pdn (7.17)

7-8
O

0 0 0 0 0 0 • • 0



where interpolation functions N for pressure are selected as weighting functions.

This equation applies only to the pressures within the region Q without reference to

boundary conditions specified in Equations 7.13 to 7.16. To produce boundary

conditions, Green's Theorem (or integration by parts) is applied t. Equation 7.17,

yielding integrals on both the region f) and its boundary Rd:

JVNTVp dn + pJR Nrpii.ddR = O (7.18)

Accordingly, as shown in Figure 7-3, the fluid region fl and interface boundary Rd

are discretized into 2-D and 3-D finite elements with nodal pressures as unknowns. 0

The pressure distribution within each element is given by:

p = Np (7.19)

where N = interpolation functions for pressure
p = vector of nodal pressures y0

Figure 7-3 Dam and Water Finite Element Models

Substituting Equation 7.19 into Equation 7.18 gives the matrix form of the

hydrodynamic pressure equation as follows:
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gp = phd ii (7.20)

g = JVNTVN dQ (7.21)

hd = rTnrTNd dR (7.22)

where matrix g = assembled for all 3-D elements in the
fluid domain 2 •

matrix hd = assembled for the 2-D elements in contact with the
dam face

These matrices are evaluated numerically using Gaussian quadrature as described

previously. Here, Nd are the interpolation functions associated with the dam

elements, and n is the outward normal from the dam for expressing the normal

acceleration of the dam iind in terms of three Cartesian components 4d'.

In the analysis of interaction between the dam and reservoir water, only the

pressures at the upstream nodes of the dam are needed. Thus, Equation 7.20 is

partitioned into quantities associated with the nodes on the dam upstream face (d)

and all other nodes in the reservoir (r):

g& gddlPd 0 U~hdJ"

Eliminating noninterface quantities (r) from this equation gives: •

gpd =ph Ud (7.24)

where g = gdd - gd, g;;l grd (7.25)

is a full symmetric matrix coupling all nodal pressures at the upstream face of the

dam, given by:

Pd = Pg-' hd iiý (7.26)
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7.4.3 Hydrodynamic Forces Acting on the Dam

The pressure distribution acting on the upstream face of the dam is now available in

terms of the computed nodal pressures Pd and the assumed pressure interpolation

functions N. The nodal hydrodynamic forces that are equivalent to these pressure

distributions are computed in a consistent manner using the principle of virtual

displacements:

f, = -hrPd (7.27)

Combining Equations 7.26 and 7.27 gives:

fh = --Phy g- hdiia (7.28)

or fh = -mn iud (7.29)
where m,= ph g- hd

is an equivalent added-mass matrix, representing the inertial effects of the

incompressible reservoir. This is a symmetric full matrix that couples all DOF on

the upstream face of the dam.

7.4.4 Coupled Dam-Water Equations of Motion

The dam structure and the impounded water are coupled through the hydrodynamic

forces fh at the interface nodes as indicated in Figure 7-3. The equations of motion

for the coupled dam-reservoir water system is obtained by the direct substitution of

Equation 7.29 into Equation 7.3. However, prior to this substitution, fh must be

expanded to include all DOF's of the e im structure. Thus, Equation 7.29 is written

as:

fh(t)={f} 0 = = Ml4 (7.30)

where u" is a vector of total acceleration associated with all DOF's of the dam-

foundation system, excluding the nodes on the upstream face. Introducing this

equation into Equation 7.3 and expanding the total acceleration in terms of the

acceleration relative to the fixed base and the ground acceleration give:

7-11

• • •• • •• @ -



(m+m.)ii+rc+ku = -(m+ma)raii (7.31)

This equation is in the form of the standard earthquake response equation of

motion, with the effects of reservoir water expressed as the added-mass matrix, m'.

However, the program GDAP does not expand ma to a matrix that includes all

DOF's because it is not computationally efficient. Instead, the effective earthquake •

forces and the generalized-coordinate mass matrix, due to the added-mass, are

computed separately.

7.5 Modal Analysis 0

The finite element model of an arch dam system represented by Equation 7.31

includes a large number of DOF's. The solution of this equation for the time history

of response can be performed directly by a step-by-step method dealing

simultaneously with all DOF's in the response vector by a procedure equivalent to

that described for a single degree of freedom (SDOF) in Section 7.6.1 However, it is

computationally advantageous to transform the equation of motion, Equation 7.31,

to modal coordinates before carrying out the analysis. The reason for this is that, in

most cases, the significant response of the dam structure can be adequately

described by the few lowest vibration modes, and thus solution of the complete set of

equations in the finite element coordinates is avoided.

Transformation to modal coordinates is accomplished by using the free vibration

mode shapes of the system. For damping ratios less than 0.2, a range which

includes the concrete arch dams, the effects of damping on vibration frequencies

are neglected. Therefore, viw ation mode shapes and frequencies of the dam

structure are conveniently computed for the undamped structure.

The modal coordinates for the arch dam structure are obtained by solving the

eigenproblbm:

ko = o'(m + m.)• (7.32)

for the undamped free vibration mode shapes 4 and frequencies co. Note that these

modal properties are for the combined dam-water-foundation system because the 0

stiffness of the foundation rock and the added-mass of the incompressible reservoir

water are incorporated in Equation 7.32.
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Applying the modal coordinate transformation: 0

u = (Dy (7.33)

where (1= [01,02,..-, 0.]

0

and Y [y ] y2,.. T.]T

to Equation 7.31 leads to a set of uncoupled modal coordinate response equations of 0

the form:

Y+ , w,+ o2 •__.• iis (t) (7.34)j ~ + =(74

0

where L, = ,r,(m + m.)r

M. = 0.r(m + M.) 0,.

0
This modal equation represents a SDOF equation of motion for mode n of the dam

structure, which can be solved independently of the others.

7.5.1 Calculation of Frequencies and Mode Shapes 0

The first step in dynamic analysis based on mode superposition method is

evaluation of the natural frequencies and mode shapes of undamped free vibration

of the dam structure. These are obtained by solving the eigenproblem given in

Equation 7.32 using the iterative procedures. Most iterative eigensolution 0

procedures are based on some variation of the Stodola method 'Clough and Penzien

1975, Wilson 1982), in which an initial mode shape is assumed, and it is adjusted

iteratively until an adequate approximati° n of the true mode shape is achieved; the

frequency of vibration is then obtained from the equation of motion. One such

iterative procedure is the subspace iteration method (Bathe and Wilson 1976) which

has been implemented in the GDAP (Ghanaat 1993) program as well as in several

general-purpose structural analysis programs.
0

The subspace iteration method iterates simultaneously on a group of eigenvectors to

solve for the lowest p mode shapes and frequencies satisfying:

7-13 0

S0 0 0 . 0 0 0 "0



k D = (m + in) (7.35)

where 92= diag(ow)

and 4) [011029-9,P]

In addition to Equation 7.35, the mode shapes also satisfy the orthogonality

conditions:

(Drk (D = n2 ;(IDr(m + m.) (D) = I

where I is a unit matrix of order p because (D contains only p mode shapes. The

solution starts with establishing q starting iteration vectors (q>p), which are

adjusted in each iteration step and used as trial vectors for the next iteration until

convergence to the required p frequencies and mode shapes is obtained. If X1

contains the p starting iteration vectors, then the k'th iteration is described as:

kXk = (m +m.)X,_, (7.36)

The unscaled improved eigenvectors in Xk are obtained by solving Equation 7.36.

But they must be normalized and orthogonalized before they can be used in the

subsequent iteration cycle. This is achieved by computing the generalized stiffness

and mass matrices for the p-dimensional subspace associated with the Xk and then

solving the corresponding eigenproblem. The generalized stiffness and mass

matrices associated with Xk are given by:

k= XKkXk (7.37)

m =XkmXk + Xk MXk (7.38)

The corresponding eigenproblem:

kk Yk mYk (7.39)
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is solved for the mode shapes Yk and frequencies K. Then the scaled improved
approximation to the eigenvectors are given by:

X, = Xk Yk (7.40)

The entire iterative cycle is repeated many times until the process converges to the
true mode shapes and frequencies as follows:

•k--Ž2 and Xk ->+ ask-> oo

7.6 Response-Spectrum Mode Superposition

The natural frequencies and mode shapes of undamped free vibration of the dam

structure are used to compute the dam response to earthquake ground motion. For •

design and preliminary evaluation purposes, it is usually sufficient to compute only

the maximum values of the response due to earthquake. The maximum response

values for the dam structure are obtained by response-spectrum mode superposition.

First, the maximum response values for each mode of vibration modeled by an •

equivalent SDOF system are directly obtained from the earthquake response

spectrum, and then the modal maxima are combined to obtain estimates of the

maximum total response.

The response of each mode of vibration is obtained by solving the modal equation of

the form presented in Equation 7.34. The response of mode n with natural

frequency o,, damping ýn, generalized mass M, and the modal earthquake-

excitation factor L to a specified ground acceleraticn iig(t) is given by: 0

Y. =-- V.(t)(7.41)

where Vn(t) can be evaluated by numerical integration of the Duhamel integral

(Clough and Penzien 1975 (pp 102- 105)): 0

(t)= u(ep[- (t- r)]sine (t- z)d (7.42)

In this equation, ,D = On, 1•-- is the damped vibration frequency of the 0

structure. But the difference between the damped and undamped frequencies is

negligible for damping ratios less than 20 percent, and it is normally ignored in
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practical analyses. The maximum value of Equation 7.42, which is called the

spectral displacement for frequency on, may be expressed as:

Sj. = max• VtQA (7.43)

These equations indicate Sdn depends not only on the ground-motion history but also

on vibration frequency and damping of the particular mode represented by a SDOF

oscillator. A plot of Sd. as a function of natural vibration frequency or period and for

a specified damping value is denoted as the displacement response spectrum for the
given earthquake accelerogram ii,(t). Similar response-spectrum plots can be

developed for other response quantities. The pseudo-velocity Svn and pseudo-

acceleration San are two such quantities that have units of velocity and

acceleration, respectively, and are related to Sdn as follows:

T.= 6,Sd,, = (7.44) 0

S. = =, S. 1), 1, (7.45)

The displacement, pseudo-velocity, and pseudo-acceleration response spectra all

provide the same information, and any one of them can be used. But all three
response spectra can also be presented in a compact tripartite or four-way

logarithmic plot as shown in Figure 7-4. As illustrated in this figure, for a given

period and damping value (for example for T = 1 see, 4 = 5%), S, = 190 is read from 0

the vertical logarithmic scale, while Sd = 30 and S. = 1.22 are read from the

logarithmic scales oriented at 45 degrees (0.7854 radians) to the period scale.

Finally, the maximum modal displacement expressed in terms of S.* or Sd is: 0

Y L, M Sd. = M- L ---S (7.46)

and the maximum relative displacement vector is

un.,," = on 'MMg = LS. (7.47)

0

* Use of Sa is more common than Sd and Sv
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The ratio Ln/Mn is a participation factor indicating the degree to which mode n is

excited by the ground motion.

7. 6.1 Combination of Modal Responses

The previous section demonstrated that the maximum response for each individual

mode of the dam structure can be obtained directly from the earthquake response 0

spectrum. In general, because the modal maxima do not occur at the same time,

they must be combined by approximate procedures to estimate the maximum total

response. Two common procedures for combining the modal maxima are the square

root of the sum of the squares (SRSS) and the complete quadratic combinaticn 0

(CQC) methods. Assuming that only p lower modes contribute significantly to the

total response, the SRSS combination of the modal maxima unimx to a single input

spectrum in n direction is given by:

ua - )2 (7.48)

The SRSS method usually provides a conservative estimate of the maximum
response when the vibration periods of the dam structure are well separated. But it 0

underestimates the total response for the closely spaced vibration periods, because it

ignores the correlation between the adjacent modes. A better alternative is to use

the CQC method (Wilson, Der Kiureghian, and Bayo 1981) which includes all cross-

modal terms as expressed by: •

Umax= umazPui,,j (7.49)

where ui, mo, = modal maximum response corresponding to mode i
Pii = modal correlati, i coefficients

For a constant modal damping ý, this coefficient is given by:

3

P,=- 8e(l+r)r2 (7.50)
(1-r 2)1 +44r(l+r)

2

where r = ojfbi is the frequency ratio
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Figure 7-4 Four-way Logarithmic Plot of Response Spectrum

For S14W Component of Pacoima Dam Accelerogram
(shown for damping ratios of 0,5, and 10 percent)
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7.6.2 Combining for Multicomponent Response Spectra

The maximum total response to a single response-spectrum input has just been

described. For a three-component response-spectrum input, the following directional

combination methods may be used:

SRSS: u = (7.51)

3

Algebraic Summation: U = zui (7.52) •
"n=I

The maximum modal displacement u,,i, as evident from Equation 7.47, takes the

sign of the modal participation factor and may be positive or negative. Thus, the

algebraic summation for multicomponent input to response in each mode must be

performed prior to combination of the modal responses, otherwise the signs are lost.

The SRSS combination of directional responses can be performed in any order with

the SRSS modal combination but should be applied after the CQC combination of 0

modal responses.

7.7 Time-History Mode-Superposition

The complete response history of the dam structure to earthquakes could be 0

determined by computing the response history for each vibration mode separately

and then combining the modal responses to obtain the total response. The time-

history mode-superposition method involves the same analysis steps previously

described for the response-spectrum method, except that the response computation 0

is carried out for the entire duration of the ground shaking. The equation of motion

for the nth vibration mode of the dam described earlier is given by:

+2 +2ý, wJ, + o)2y, = L- ii8(t) (7.34) 0

Although modal response history can be obtained by numerical integration of the

Duhamel integral (Equation 7.42), it is more common to directly solve the equation

of motion (Equation 7.34) by numerical procedures. Among many procedures

available for this purpose, the linear acceleration method (Clough and Penzien 1975)

implemented in the GDAP (Ghanaat 1993) program is the simplest and is described

here.
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7.7.1 Linear Acceleration Method

The basic assumption of this method is that the acceleration varies linearly during

each time-step At as illustrated in Figure 7.5. Assuming that the motion at time t

is given, the acceleration, velocity, and displacement responses at t + t, where t < t,

are obtained as follows:

Yt ,+ (f ÷,-Y)- (7.53)

.. T2(7.54)

2At
A YW

t +At

y(t)

Figure 7-5 Motion of System During Time-Step At

t3

Y,÷, = Yt +t+Tt (tAt - A)- (7.55)6At

At the end of the time interval t+At, these expressions lead to:
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At
ý,= Y +(Y,+At +y•)_ (7.56)2

.. .At 2

y,+At= yt + ýA t + (2yt + y,+At)-- t- (7.57)
6

The equilibrium equation (Equation 7.34) at time t + At is written as:

5,+A, + 2 07 ,+A, + ao2y,+•, = r,+A, (7.58)

Substituting Equations 7.56 and 7.57 into Equation 7.58, leads to an equation with

ýt+Atas the only unknown. Solving for Yt+At and substituting into Equations 7.56

and 7.57, the following relationship is established:

[.v+A, =Aj ', +Lr,+A, (7.59)

Yt+I, [YJ

where

-'8-2K -__ /8
At At2  (O)At) 2

A= At(1/2-fl/6-K/2) 1-,8/2-K ,fl L=
2At 2072At

At 2(1/3-/3/18- I/6) A•(l-/3/6- K/3) 1-,3/6 )6

60)2

S+;
=(w7At) ( t) 6 (roA t)

The linear acceleration method provides an efficient step-by-step integration

procedure so long as the time-step is sufficiently short. The choice of the time-step

for linear analysis depends on the rate of variation of the applied load, and the dam

vibration period T. The time-step must be short enough to provide satisfactory

representation of these factors. The linear acceleration method is only conditionally

stable and will give divergent solution if the time-step is greater than about one-
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half the vibration period. The stability limit is determined by examining eigenvalues

of the approximation operator A. An integration method is stable if and only if the

spectral radius (absolute value of eigenvalues) p(A) < 1. Figure 7-6 demonstrates

stability characteristics of the linear acceleration method as a function of At/T.

p(A)

2.5

2

1.5

0.5

0.0001 0.001 0.01 0.1 1 10 100 1000

At/T 0
Figure 7-6 Spectral Radius p(A) as a Function of At/T, ý=O

It is noted that At/T < 0.1 provides a reasonable solution. For the earthquake S

analysis of arch dams, a 0.01-sec time-step provides an adequate description of the

ground motion, and the shortest period of vibration that produces significant

response generally is considerably longer than this time-step. Thus, the linear

acceleration method with a 0.01-sec time-step should be effective in most arch dam 5

analyses. For special cases, when the linear acceleration method requires very short

time-steps to avoid instability, unconditionally stable methods such as the Newmark

and Wilson 0 methods (Bathe and Wilson 1976) may be used. Using these methods,
integration parameters can be selected so that the stability will be maintained •

regardless of the At/T ratio.
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7.7.2 Total Response History

The modal displacement, velocity, and acceleration histories are obtained from

Equation 7.59 by solving this recursive equation for entire duration of the ground

motion. Knowing the modal response quantities, the contributions of the p lower

modes to the dam response are given by:

U. Wt =.Q)0

(t) (t) 0 n = 1,2,...p (7.60)
•(t)= (t)• 0

The element stresses associated with the dam deformations are determined using

the stress-displacement relationship given in Chapter 3 (Equations 3.3 and 3.5). At

each time-step the stresses associated with modal displacements uj(t) are:

a. (t) = [D][B]u. (t) (7.61)

Any internal forces can be determined from the nodal displacements and the

element stiffness adjacent to the particular nodes. For example, the thrust forces at

the dam-foundation interface for mode n are:

fL (t) = ku. (t) (7.62)

Finally, the total earthquake response of the dam due to all vibration modes is

obtained by superposition as follows: S

PaUt)= 2_uU.tW (7.63a)
"n=3

Siff)= •ii,(t) (7.63b)
"R=1

n=1
p

00t) a,,o- (t) (7.63d)

fAt)= _f. (t) (7.63e)
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7.8 Results of Dynamic Analysis

The results of a typical dynamic analysis of arch dams include natural frequencies, 0

vibration mode shapes, nodal displacements, and element stresses for a specified

seismic input. The seismic inputs typically are the operating basis earthquake

(OBE) and the maximum credible earthquake (MCE) ground motions specified in

EM 1110-2-2201. 0

7.8.1 Response Spectrum

The natural frequencies and mode shapes of a dam structure are the basic vibration

properties used for computing its maximum response using the response-spectrum 0

method of analysis. They are obtained from the undamped free vibration analysis of

the dam structure discussed previously. The natural frequencies and mode shapes

provide insight into the basic dynamic response behavior of the dam structure, as

well as some advance indications of the sensitiv-,,o of the dynamic response to 0

earthquake ground motions having various frequency contents.

The maximum response quantities computed in a typical response-spectrum

analysis include maximum nodal displacements and element stresses. The

maximum modal displacements and stresses, if -printed out, take the sign of the

modal participation factor (Section 7.5), and may be positive or negative. But the

maximum total nodal displacements and element stresses that are computed by

SRSS or CQC comoinations of the modal maxima are all positive. The maximum

nodal displacements for 8-node solid and 3-D shell elements described in Chapter 5

consist of three translations corresponding to global DOF's of each element node.

The maximum nodal displacements for thick-shell elements (Section 5.4) include

three translations in the global directions and two rotaticns about two axes

perpendicular to the midsurface normal. 0

For each element, the stresses are directly computed at the element integration

points. But by using the interpolation functions, they may also be computed at the

element nodal points, element center, or at the center of element surfaces. The 0

element stresses are given in the global directions or in the direction of element local

axes. The stresses defined in the element local axes are more practical for arch

dams, because they can be interpreted as surface arch and cantilever stresses that

better represent the arch dam behavior. 0
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The maximum stresses for the GDAP eight-node solid element are given at the

element center in the global directions and at the center of one element surface with

respect to the local element axes which are useful when these elements are used to

model the dam. The stresses for the eight-node solid elements consist of six

components, three normal (ax, a y, az) and three shear stresses (,txyyz,•zx) . The

maximum stresses for the GDAP 3-D and thick-shell elements, primarily used to

model the dam body, are provided with respect to local axes of the Olement surfaces.

They are computed at 10 locations corresponding to eight midedge nodes and two

center points on the element surfaces. At each point six stress components, three

normal and three shear stresses similar to those described for the eight-node 0

elements, are provided. The surface stresses for thick-shell elements are computed

at eight integration points, four on each element surface. They include two normal

stress components (arx, ay) in the direction of two surface axes (Figure 5.4) and three

shear stresses (TxyTyz,rzx); the stress component normal to the element surface is

assumed to be zero (az= 0).

In addition to the maximum nodal displacements and element stresses discussed

previously, the GDAP program also computes the maximum nodal forces (thrusts) at

the dam-foundation interface nodes as well as at any other selected points.

7.8.2 Time-history

The time-history mode-superposition method also requims undamped natural

frequencies and mode shapes for compu;ing response history of the dam structure to

earthquakes. Thus, similar to the response-spectrum analysis, first an undamped

free vibration analysis or eigensolution is carried out to compute vibration properties

of the dam structure. •

Similar to the response-spectrum method, the primary results of a time-history

analysis include the nodal displacements and element stresses, except that they are

computed for the entire duration of the earthquake ground shaking. Therefore,

response quantities computed in this manner not only contain the maximum

response values but also include variation of the response quantities with time. At

each dam and foundation nodal point, three displacement histories corresponding to

the translation DOF's are computed. These usually represent relative dynamic 0
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displacements of a particular node with respect to ground displacements (fixed

foundation boundary nodes). When thick-shell elements are used, two additional

time-histories associated with two rotation DOF's at each element node can also be

obtained. Some computer programs also have options for acquiring other response

quantities such as the nodal velocity and nodal acceleration histories.

In the time-history analysis, stress histories for each finite element are computed at

the same locations described previously for the response-spectrum analysis. For the

shell elements, they include surface arch, cantilever and shear stresses which can be

used to also compute the asscciated principal stress-histories on dam surfaces. For

the eight-node solid elements also discussed previously, stress-histories at the

element center are computed in the global direction, whereas at the center of the

element surfaces they are given with respect to the particular surface local axes.

These stress-histories, when examined, provide not only the extreme stress values

but also the times at which they occur, the number of stress cycles exceeding

allowable values, and the excursions beyond the allowable values, all of which will

be discussed in Chapter 8.

7-26



8. EVALUATION AND PRESENTATION OF RESULTS

The presentation and evaluation of results of static and earthquake analyses are

discussed in this chapter. It is assumed that the analysis has been performed using

the GDAP (Ghanaat 1993) program, but the discussion can also be applied to results

obtained by other programs.

8.1 RESULTS OF STATIC ANALYSIS

The basic results of static analysis for an arch dam include nodal displacements,

element stresses, anc arch thrusts exerted on the dam abutments. These response S

quantities should be evaluated for the usual, unusual, and extreme static loading

combinations --pecified in EM 1110-2-2201. The results of static analysis should also

be obtained and presented for each individual load to facilitate examination of the

consistency of the results. 0

The static nodal displacements may be displayed in the form of deflected shapes

across the arch sections or as 3-D plots for the entire dam structure. Figure 8-1

shows three such deflected shapes displayed across the arch sections for the

hydrostatic pressures, temperature changes, and the combined hydrostatic plus

temperature loads. As expected, this figure shows that an arch dam deflects

downstream under water loads, whereas it moves upstream when subjected to ,oads

due to the temperature increase. In the analysis, the deflected shapes for various

loading combinations are obtained for the monolithic structure by applying the

associated static loads (excluding gravity) simultaneously or separately. When

applied separately, displacements for each individual load are computed alone and

then are combined to ohtain the total displacements for a particular loading

combination. The magnitudes of the resulting deformations are not directly used in

the design or safety evaluation of arch dams. But the deflection patterns should vary

smoothly from point to point and are used to evaluate the adequacy of the design by

visual means.

The current approach for the design and evaluation of arch dams is based explicitly

on the values of induced stresses computed using the linear-elastic analysis.

Whenever the overall stresses in the structure are below the allowable values as

specified in EM 1110-2-2201, the design is considered to be adequate. A well-

designed arch dam will develop compressive stresses only under the static loads,

and these are mostly much smaller than the compressive strength of the concrete.
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Tensile stresses usually develop when the dam is subjected to multiple loading

combinations which include severe temperature changes or other unfavorable

loading conditions. Although limited tensile stresses can be tolerated under static

loading conditions, they should be minimized by reshaping the dam whenever

possible. However, it should be noted that tensile stress limits are seldom satisfied

near the dam-foundation contact zone by an elastic analysis which ignores cracking

and nonlinearity in the foundation joints. At this location, the tensile stresses can

be interpreted as openings of the dam-foundation interface joint or of joints within

the foundation rock below.

0

Since maximum stresses in an arch dam usually occur at the faces of the structure,

stresses resolved into arch, cantilever, and principal stresses at the upstream and

downstream faces of the dam are the primary stresses used for the evaluation of the

analysis results. However, shear stresses induced in the body of the dam by bending

and twisting moments should also be examined to assure that they are within the

allowable limits. The arch and cantilever stresses are ordinarily displayed as stress

contours, whereas the principal stresses are shown in the form of vector plots on

each face of the dam (Figure 8-2). The evaluation of the adequacy of a new design

or safety assessment of an existing dam involves comparing the maximum computed

stresses with the allowable compressive and tensile strengths of the concrete. The

largest compressive stress6 3 should be less than the compressive strength of the

concrete by the factors of safety established in EM 1110-2-2201 for each particular

loading combination.

8.2 RESULTS OF EARTHQUAKE ANALYSIS

The design and evaluation of arch dams for earthquake loading are generally based

on the results of linear-dynamic analysis as described in this manual. In most cases,

the linear analysis provides satisfactory results for evaluation of the dam response

to low- or moderate-intensity earthquake ground motions. This level of ground

motion corresponds to the OBE for which the resulting deformations are usually

expected to be within the linear-elastic range of the concrete. The OBE is defined as

a level of ground motion with a 50 percent probability of being exceeded during the

service life of the dam, which is normally assumed to be 100 years as specified in

EM 1110-2-2201. In this case, the evaluation of earthquake performance is based

on simple stress checks in which the calculated elastic stresses are compared with

the specified allowable tensile stresses. However, under more severe MCE, it is
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possible that the calculated stresses would exceed the tensile strength of the

concrete, indicating that damage would occur. If the damage is significant, the

actual earthquake performance of the dam can be evaluated only by a nonlinear

analysis that includes the basic nonlinear behavior mechanisms such as joint

opening, tensile cracking, and foundation failure. A complete nonlinear earthquake

analysis to account for all of these nonlinear mechanisms is not currently possible, •

although the effects of contraction joint opening during major earthquakes can be

studied using a recently developed modeling technique and numerical procedure

implemented in the ADAP-88 program (Fenves, Mojtahedi, and Reimer 1989).

Consequently, the linear method of analysis continues to be the primary tool in 0

practice for the evaluation of earthquake performance of arch dams. The

evaluation process for damaging earthquakes, however, is quite complicated and

requires both judgment and careful interpretation of the numerical results.

Presentation and interpretation of the results of response-spectrum and time-history 0

analyses are discussed in the following sections.

8.2.1 Results of Response-Spectrum Analysis

The basic dynamic characteristics of an arch dam are obtained from the study of its

undamped natural frequencies and mode shapes that are computed prior to
performing the response-spectrum analysis. The examination of these results

provides some advance indications of the sensitivity of the dam response to

earthquakes having various frequency contents, as well as the deflection patterns

that would dominate the earthquake response. For example, the four lowest mode

shapes and frequencies shown in Figure 8-3 indicate that the example dam model

has several closely spaced vibration frequencies below 10 Hz and that the

contribution of each of these modes to the earthquake response of the dam appears

to be significant, because their frequencies occur in the dominant frequency range of

most earthquakes.

The basic results of a response-spectrum analysis consist of the maximum nodal

displacements and element stresses. As discussed in the preceding chapter, these

are first computed separately for each mode of vibration, and then the resulting

modal maxima which do not occur at the same time during the earthquake are

combined by the SRSS or CQC method to obtain an estimate of the maximum 0

dynamic response to a specified component of the earthquake ground motion. In

addition, because the responses to the three earthquake components (two horizontal
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plus vertical) are developed independently, the maximum dynamic responses due to

the earthquake components are further combined by the SRSS method to include

the effects of all three components. It is obvious that the resuiting dynamic

responses obtained in this manner have no sign and may be interpreted as being

positive or negative. In particular, the maximum element stresses ad are assumed

to be tension (positive) or compression (negative).

8.2.1.1 Total Response

In the response-spectrum method of analysis, total stresses due to static plus

earthquake loads are the single response quantity used to evaluate the earthquake 0

performance of an arch dam. The evaluation involves comparison of the total

stresses with the specified allowable tensile and compressive stresses of the

concrete. As discussed in EM 1110-2-2201, the allowable compressive stresses are

obtained from the dynamic compressive strength of the concrete by applying 0

appropriate factors of safety. The allowable tensile stress is equal to the dynamic

tensile strength of the concrete which is obtained from splitting tensile tests

modified by applying adjustment factors to account for the seismic strain rate and

the nonlinear characteristics of the stress-strain curve as discussed by Raphael

(1984).

Total stresses are obtained by combining dynamic stresses ad obtained from the

response-spectrum analysis with static stresses 0 st. The static stresses are

computed for the gravity, hydrostatic, and temperature changes expected to occur

during the normal operation of the dam, as specified in EM 1110-2-2201. Since

response-spectrum stresses have no sign, this combination should consider dynamic

stresses to be positive or negative, leading to the maximum values of total tensile or

compressive stresses:

amax = ast ± Gd

It should be noted that this combination of static and dynamic stresses is

appropriate only if the Gst and ad are oriented similarly. Thus, it is true for the

ch or cantilever stresses, but generally it is not true for the principal stresses. The

r.sulting total arch and cantilever stresses for the upstream and downstream faces

of the dam are then displayed in the form of stress contours similar to those shown

in Figure 8-4. In general, the maximum tensile and compressive stresses computed
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in this manner for different points do not occur at the same time, and thus the

contour plot does not represent concurrent data.

8.2.2 Evaluation of Results of Time-History Analysis

In the time-history analysis using GDAP, envelope values as well as the entire

response histories of element stresses and nodal displacements of the dam to the

design earthquake are computed. Thus, the results of such analyses include not

only the maximum response values but also provide information on the variation of

response with time which is essential for evaluation of the dam response to major

earthquakes. The interpretation and presentation of response histories require a

systematic postprocessing capability such as the one available in GDAP (Ghanaat

1993). The basic results of time-history analysis and procedures for their

presentation and evaluation are described in the following paragraphs (Clough

1989).

8.2.2.1 Mode Shapes and Nodal Displacements

Vibration mode shapes and frequencies are only required for the response-spectrum

and the time-history mode-superposition methods. But they may be computed even

when the direct method of time-history analysis mentioned in Section 7.5 is used,

because they are useful for developing a basic understanding of the dynamic

response. The computed vibration modes may be presented as shown in Figure 8 3.

The resulting displacement histories for a time-history analysib may be presented

as shown in Figure 8-5, for the upstream, cross-stream, and vertical directions. As

a minimum, displacement histories for several points along the dam axis at the crest

and at midheight elevations should be displayed and evaluated. These

displacement histories can be used to identify the time and duration at which the

critical stresses occur. This is because the critical stresses correspond to the time-

steps at which the displacements reach their maximum. Displacement results are

also used in the design of open joints for separating two adjacent independent

structural components.

8.2.2.2 Envelopes of Maximum and Minimum Stresses 0

The envelopes of maximum and minimum stresses are among the first results to De

examined. They are displayed as con' our plots of the arch stresses and cantilever
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stresses on each face of the dam. Contours of the maximum arch and cantilever

stresses represent the largest static plus dynamic tensile (positive) stresses that

have occurred at any location in the dam during the earthquake ground shaking

(Figure 8-4). Similarly, the contours of minimuxim stresses correspond to the largest

compressive (negative) arch and cantilever stresses that are developed in the dam.

It is clear that the envelope stresses for different locations occur at different times

and, thus, are not concurrent.

These contours are used to identify regions where the tensile stresses exceed the

tensile 3trength of the concrete. It. i-q only these regions that must be examined for

possible damage. The extent and severity of damage is determined by further

evaluation accounting for the time-dependent nature of the dynamic response which

is described in the following sections.

Contours of the minimum stresses show the extreme compressive stresses that could •

develop in the dam during the earthquake excitation. They are compared with the

allowable compressive stresses to ensure that they meet the required factors of

safety for the earthquake loading, but generally they are not a critical factor with

regard to dam safety. 0

8.2.2.3 Envelopes of Maximum and Minimum Principal Stresses

Time-histories of principal stresses for any point on the faces of the dam are easily

computed from the arch, cantilever, and shear stresses at that point. When the

effects of static loads are considered, the static and dynamic arch, cantilever, and

shear stresses must be combined prior to the calculation of the principal stresses.

The resulting time-histories of principal stresses are then used to determine the

envelopes of the maximum and minimum principal stresses similar to those

obtained for the arch and cantilever stresses. When displayed in the form of vector

plots (Figures 8-6 and 8-7), they can be used to determine the direction of tensile

cracking.

8.2.2.4 Simultaneous or Concurrent Critical Stresses

The envelopes of maximum stresses discussed in Section 8.2.2.2 indicate the over-

stressed areas where the tensile strength of the concrete is exceeded. For each

stress point showing an arch stress value exceeding the tensile strength of the

concrete (called the critical arch stress points), the Uime-step when the peak arch
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stress is reached is determined. This is repeated for each point having a cantilever

stress value exceeding the tensile strength of the concrete (called the critical 0

cantilever stress points). This information is then used to determine the concurrent

(or simultaneous) states of stress corresponding to the time-steps at which the

critical arch and cantilever stresses reach their maxima. The concurrent arch and

cantilever stresses are displayed as contour plots (Figure 8-8) and can be 0

interpreted as snap shots of the worst stress conditions. They are evaluated similar

to the envelope stresses, except that concurrent stresses which occur at the same

time indicate the true stress distribution corresponding to critical time-steps during

the earthquake excitation. Compared to the envelope stresses, the concurrent

stresses are not necessarily all tension, and the overstressed regions will be smaller.

8.2.2.5 Time-history of Critical Stresses

When the envelope of maximum stresses and concurrent stresses show tensile

stresses that exceed the allowable value, the stress histories for the critical points

are examined for a more detailed evaluation (Figure 8-9). For each critical arch and

cantilever stress point, the stress history for the point on the opposite face of the

dam should be also examined. For example, a pair of arch stress histories as shown
in Figure 8-9 can be used to evaluate the linear variation of arch stress through the

dam thickness at critical time-steps. Noting that the vertical contraction joints in

arch dams cannot resist tension, the arch tensile stress distribution through the

thickness may be interpreted in terms of joint opening. Similar stress distribution

should be also determined for the critical cantilever stress points. At the dam-rock

interface, the critical tensile cantilever stresses can be interpreted as openings of the

rock-concrete joints or of the joints within the rock below. For locations within the

body of dam away from the foundation boundary, it can be expected that cracking

will occur at the critical cantilever stress points. The time-history of cantilever

stresses at each critical location should be examined to determine the number of

cycles and the total duration of stress exceeding the tensile strength of the concrete.

This would indicate whether the excursion beyond the allowable value (or cracking

stress) is an isolated case or is repeated many times during the earthquake

excitation. The estimated total duration of excursions beyond the allowable value

is used to demonstrate whether the maximum stress cycles are merely spikes or

have longer duration and thus could be more damaging. Acceptable limits for the
numbor of times that the allowable stress can be safely exceeded have not yet been

established. In practice, up to five stress cycles have been permitted based on
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judgment but such performance has not been substantiated by experimental data.

In addition, the number of adjacent finite elements that crack, the extent of

cantilever cracks through the dam thickness, as well as arch stress distribution

through the thickness should be established for the evaluation.

0
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