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ABSTRACT

The goal of the subject program is to develop fundamental understandings of the relationships
between microstructure and fatigue damage in structural steels of interest to naval applications.
Quantitative descriptions of these relationships will be incorporated within practical engineering
models for the prediction of S-N fatigue life. During the second year of the program, microstructural
scaling laws have been developed for fatigue crack growth (FCG) in steels. The effects of
microstructure have been described by a dimensionless microstructural parameter, &, which is
defined in terms of yield stress, fatigue ductility, dislocation cell size, and dislocation barrier spacing.
Fatigue crack growth data from large and small flaws have been critically compared, and the
implications of this comparison for engineering fatigue life prediction are explored. Progress in
the development of probabilistic fatigue life models is also summarized.




1. INTRODUCTION
Background and Program Goals

The U.S. Navy currently employs HY -series steels in structural components such as submarine
hulls. Since 1980, the Navy has also been evaluating the potential of HSLA (high-strength, low-
alloy) steels for use in both ship and submarine construction. The introduction of these new steels
has a complex impact on the design of naval structures. In some cases, design stress levels may
increase to take advantage of improved properties, and this could cause significant decreases in
fatigue crack initiation and propagation lives. As a result, fatigue cracking could become one of
the greatest threats to structural integrity in future pressure hulls operating at higher stress levels.
On the other hand, the development of new alloys with new microstructures and new welding
process specifications provides the opportunity to improve the fatigue resistance of the material
and, ultimately, of the structure itself.

The subject program has been motivated by the desire for improved understandings of the
relationships between microstructure and fatigue damage in naval steel structures, with particular
application to the prediction of fatigue life. Among the intended products of the study are improved
methods for fatigue life prediction which give appropriate attention to different potential micro-
structures and associated microstructural influences on initiation and/or growth rates. The methods
could be used to provide guidance in optimizing alloy chemistry, processing, and welding protocols
for improved fatigue resistance, while also facilitating improved fitness-for-service assessments of
actual or postulated cracking.

Fatigue design for naval structures is currently most often based on the stress-life (S-N)
approach which relates applied stresses directly to the total life to "failure”. This approach enables
the analyst to take a "black box" approach to fatigue design in which relatively little must be known
about the actual fatigue damage processes. But fatigue "science”, such as the study of microstructural
influences on fatigue damage, must look "inside" the black box to identify and characterize the
physical damage processes as much as possible.

The total S-N life to "failure” is composed, in general, of three different life phases with
specific physical damage processes: the nucleation of a microcrack, the growth of this microcrack
until it reaches some engineering size (often on the order of millimeters), and the subsequent growth
of the engineering crack to some definition of final failure. The total fatigue "life" is the sum of
the lives associated with each phase. Under different conditions, one or more of the three phases
may be dominant or negligibly small.

The basic technical approach of this program has been first to identify the rate-controlling
fatigue mechanisms and characterize the relevant microstructures for microcrack nucleation and
growth. Quantitative relationships are established between microstructural and loading parameters
and fatigue damage. The second key step is then to develop practical engineering expressions to
predict total S-N fatigue life which incorporate these microstructure-load-damage relationships.
These life prediction models are to be expressed in an appropriate probabilistic framework which
enables a quantitative assessment of the probability of S-/V failuie at a performance level of interest
as a function of uncertainties in material/load/geometry input parameters.




Review of Progress During First Year

The focus of the first year of the subject program was on experimental observations of fatigue
damage in different microstructures for HSLA steels. Experimental methods were developed to
study microcrack nucleation and growth with S-N fatigue specimens. Microstructures were
modified with various heat treatments and characterized with appropriate optical and electron
microscopy. Test results showed that the smooth specimen S-N fatigue life could be adequately
characterized in terms of the nucleation and growth of individual microcracks, and that the
microcrack growth phase was typically the dominant life fraction. Microcrack growthrates appeared
to be only mildly dependent on microstructure, which is consistent with available data on large
crack growth rates. The growth rate was found to be relatively insensitive to the ferrite matrix
morphology. The potential effects of the size, volume fraction, and mean free path of the fine
copper precipitates on crack growth rates were not fully resolved.

At the end of the first year, and in response to these preliminary results, we identified a set
of six critical questions to guide further investigations. These questions were presented in the
Annual Letter Report for FY92, along with brief descriptions of the planned technical approach to
address each. These questions, in briefer form, are as follows:

1. Is there a fundamental difference between FCG rates for microcracks and large cracks in
HSLA-80?

2.  Does copper precipitate size and spacing have a significant effect on crack growth rates in
HSLA-80?

3. Is there any significant effect of microstructure on microcrack nucleation and growth rates
in HSLA steels? Why or why not?

4.  What is the specific form of microcrack nucleation and growth equations which can be
integrated to give good estimates of S-N fatigue life?

5. Whatis an appropriate form of a stochastic relationship to describe randomness in microcrack
growth rates, and can this description provide any insight into potential microstructural effects
on scatter in growth rates?

6. Isit possible to combine the stochastic description of microcrack growth rates with micro-
mechanical growth rate equations and fast probability integration techniques to give an
accurate description of the distribution of total S-N fatigue lives?

As will be noted, during the second year of the program we have substantially answered three of
the six questions, while making significant progress on the remaining three.

Overview of Progress During Second Year

During the second year of the program, microstructural scaling laws have been developed
for FCG in steels. The effects of microstructure have been described by a dimensionless micro-
structural parameter, &, which is defined in terms of yield stress, fatigue ductility, dislocation cell




size, and dislocation barrier spacing. Fatigue crack growth data from large and small flaws have
been critically compared, and the implications of this coniparison for engineering fatigue life
prediction are explored. Probabilistic fatigue life models are currently under development.




2. MICROSTRUCTURAL MODELS FOR FATIGUE CRACK GROWTH

A set of scaling laws has been developed for describing both intermittent and continuous
FCG in steels in the power-law regime. The proposed scaling laws are developed on the basis that
FCG occurs as the result of low-cycle fatigue failure of a crack-tip element whose width and height
correspond to the dislocation cell size and barrier spacing. A detailed description of these scaling
laws was presented in the manuscript, "Scaling Laws for Fatigue Crack Growth of Large Cracks
in Steels,” which was enclosed as an attachment to the January 30, 1993 Quarterly Report [1]. That
complete discussion will not be repeated here, but it is useful to review and summarize some of the
key results.

The scaling laws express the effects of microstructure in terms of a dimensionless micro-
structural parameter, &, which is defined as

£= Es (1)
4o,¢/d

where E is Young’s modulus, o, is the yield strength, and €’ is the fatigue ductility. The striation
spacing, s, is taken as the dislocation cell size in the intermittent growth regime. The dislocation
barrier spacing, d, is interpreted in terms of different characteristic microstructural lengths, such as
the carbide spacing, grain size, lath width, or mean free path of Cu precipitates, depending on the
specific microstructure under consideration.

In the intermittent growth regime, where crack growth is discontinuous, the FCG rate is given
by

da i, -] AK » (2)
2 —gs) [ E]

where b is the fatigue ductility exponent and AKX is the usual range of the stress intensity factor.

For continuum crack growth, b = 1 and crack growth occurs at every cycle. Here Eqn. 2 is
reduced to
da _[AKY €)
dN 1 E ]

Application of the model to a wide variety of data for HSLA and conventional ferritic,
ferritic/pearlitic, and martensitic steels revealed that the lack of a strong microstructural influence
on fatigue crack growth in the power-law regime is due to increasing yield strength and fatigue
ductility with decreasing dislocation barrier spacing, which leads to a narrow range of & values
(and hence a narrow range of FCG rates).




The suitability of these FCG equations for the HSLA-80 steel of particular interest in the
current research program is illustrated in Figure 1. The FCG rate data shown in this figure were
obtained from compact tension (large crack) tests in U.S. Navy research conducted independently
at Lehigh University on the same heat of material being studied at SWRI. The slope of the lower
curve, in the intermittent growth regime, is 4, while it is 2 in the high AK (continuous growth)
regime. Direct measurements of fatigue striation spacing found that in the intermittent regime, s
was relatively constant with an average value of 0.1 to 0.2 um. This spacing was larger than the
calculated and observed FCG rates, confirming the contention that discontinuous growth occurred
in this regime. At higher AK levels, the striation spacing was larger, increasing with AKX, and was
approximately equal to the calculated and observed crack growth rates.

As indicated in the First Annual Report, the FCG data of HSLA-80 steels showed a factor of
five among nominally identical, through not necessarily microstructurally identical. specimens. To
investigate this difference, crack growth calculations were performed for three specimens at the
upper or lower limits of the FCG rate scatter band. The calculated curves are compared with
experimental FCG rate data in Figure 2. The data of Todd er al. [2] is also included in this figure
because the data set contains da/dN results for smaller AKX values. Though not perfect. the good
agreement between calculation and experiment nonetheless suggest that the variation in fatigue
crack growth rate in HSLA-80 steels originates from variations in yield strength, fatigue ductility,
and Cu-precipitate spacing. which form the dimensionless microstructural parameter, . The most
significant difference between specimen FZZ, which exhibited the fastest growth rate, and speci-
mens GAH and FDILT, which exhibited the lowest growth rates, was d, the mean free path of the
Cu precipitates. Based on direct TEM measurements, d was found to be 0.46 um for FZZ versus
0.79 um for GAH and 0.89 pm for FDILT.

The contention that the variation in fatigue crack growth rate in HSILA-80 was due to variations
in the mean-free of the Cu precipitates was tested by comparing the model calculations with small
crack data. The comparison for Specimen 353, which had an equiaxed fermtic grain structure and
wastested at R = -1, is shown in Figure 3. Because of R = -1, AK was computed based on the tensile
load range only*. The solid line is the crack growth rate calculated based on the mean-free path,
d. of the Cu precipitates, while the dashed curves are the upper and lower vounds based on the
standard deviations of the mean-free path. Figure 3 clearly shows that the statistical variations in
the mean-free path of Cu precipitates accounts for the growth rate variation in small crack at high
AK levels, where the crack lengths were larger. In contrast, the variation in crack growth rate is
substantially larger than that can be attributed tv mean-free path variation at low AK levels, where
the crack length was extremely small (a less than about 60 pm). Comparison of model calculations
with other small crack data for microstructures with accicular ferrite grain structures yields similar
results. The conclusion drawn from these observations is that the growth of small cracks in HSLA-80
steels is controlled by the mean-free path of the Cu precipitates, and not by the morphology of the
ferritic matrix. This is true for small cracks at high AK levels, and might be also true at the lower
AK levels.

* The methods of comparing large crack and small crack data on a consistent basis are discussed
in the next section. The method used here is the "nominal ASTM" approach.
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In commercial HSLA-80 steels, the copper content is expected to lie within 1-1.3 wt. %,
which also corresponds to the range of volume fraction of Cu precipitates in percent. Since HSLA-80
steel is expected to have a minimum yield strength of 552 MPa, the average size of the Cu precipitates
must be less than a certain size (usually around 5-15 nm) in order to achieve this strength level.
Since both the volume fraction and the size of the precipitates are bounded within small ranges, the
mean-free path of the Cu precipitates must also fall within a small range. The consequence is that
the fatigue crack growth rate from HSLA-80 steels should fall within a small scatter band, as
observed experimentally in large cracks. The large scatter observed in the small cracks was not
due to size variation of the Cu precipitates. Additional work is needed to investigate the source of
scatter in the crack growth rate variation for small cracks at low AK levels.




3. COMPARISONS OF MICROCRACKS AND LARGE CRACKS IN HSLA-80

Experimental studies during the first year of the program focused on investigations of
microcrack growth in HSLA-80 steel. These studies found that the total smooth specimen S-N
fatigue life could be adequately characterized in terms of the nucleation and growth of individual
microcracks. Unresolved during that first year, however, was the question of the relationship
between microcrack growth and the growth of traditional "large" fatigue cracks.

A proper understanding of the relationship between microcrack and large crack growth
behavior is particularly important. The microcrack growth phase is often the dominant fatigue life
fraction, and so accurate modeling of this regime is often of greatest significance for accurate life
predictions. On the other hand, experimental FCG rate data are most often available for large cracks
(microcrack tests are much more expensive to conduct) and most theoretical models for FCG
behavior are derived and validated for large crack data. The scaling laws developed under the
present contract, for example, were verified through extensive comparison to large crack data. In
principle, these scaling laws should also be applicable to microcracks, but this requires a certain
amount of similitude between microcrack and large crack behavior. If microcrack behavior is found
to be significantly different from large crack behavior in some way, then the applicability of large
crack models may be called into question.

Large Crack Data

The available large crack data of greatest interest is presented in Figure 4. Shown here are
data from four specimens tested at Lehigh University on the same heat of HSLA-80 being studied
at SWRI. All tests were conducted at a stress ratio of R = 0.1. The specimen identification codes
denote tests on both TL and LT orientations from both the web and flange of a structural I-beam.
The data indicate that these distinctions have relatively little influence on FCG rates; differences
in growth rates between the two nominally identical F-LT tests are no smaller than the differences
between different configurations. These data unfortunately do not provide direct information about
near-threshold behavior. In order to evaluate this regime, independent data from Todd [2] for
another heat of HSLA-80 are superimposed on the figure. The Todd data clearly agree closely with
the Lehigh data in the regime where the two sets overlap, but the Todd data also establish a clearly
defined large crack threshold around AK;, = 7 MFaVm.

Least-squares regression of the combined data (all five data sets) between AK = 9 MPavm
and 23 MPaVm gives a Paris law slope of 3.77, only slightly lower than the theoretically estimated
slope of 4.0. The scatterbands shown on Figure 4 represent £2x in FCG rate and are drawn to permit
easier comparisons with the microcrack data presented later.

Microcrack Data

Microcrack growth rate data were collected with two different specimen designs. Initial tests
were conducted on beams of square cross-section 4 mmon a side by 52 mm long loaded in three-point
bending. The stress ratio was maintained at nearly R = O for the beam as a whole, but at the outer




surface of the beam, the stress ratio was different due to locally severe plasticity. To overcome this
difficulty, subsequent experiments were conducted using a rotating beam specimen of hourglass
shape with a minimum diameter of 4.76 mm. Here the applied stress ratio was uniformly R = -1.

Microcrack growth tests were conducted on the material in the as-received condition and in
three alternative conditions created through additional heat treatments, plus one specimen fabricated
from weld material. To eliminate possible sources of confusion, the initial comparisons with large
crack data will incorporate only the microcrack tests in the as-received condition. This data base
includes multiple cracks from one square beam specimen (347) and two rotating bending specimens
(353 and 354). Specimen 347 experienced a total stress range of 840 MPa (122 ksi), Specimen 353
atotal stress range of 1120 MPa (162 ksi), and Specimen 354 a total stress range of 1040 (151 ksi).
From tensile tests conducted on the same heat of HSLA-80 at Lehigh University, the average yield
strength is about 88 ksi (607 MPa) and the average ultimate strength about 99 ksi (683 MPa).

Crack growth rate data from these three microcrack specimens is summarized in Figure 5
(square beam specimen, 347) and Figure 6 (rotating beam specimens, 353 and 354). Individual
cracks are identified here by different symbols.

Comparisons

An initial comparison of the microcrack and large crack data based on the full-range AX
values, where the entire stress range AG is used to calculate AKX regardless of stress ratio, does not
indicate agreement between the different data sets. See Figure 7. The slopes of the data appear to
be generally similar, but differences in the intercepts leads to an apparent "layering" of the data,
including disagreements between the two sets of microcrack data.

There are several differences between the various data sets which could admit some rational
basis for calculating an adjusted AK. The most obvious difference is that of stress ratio. The large
cracks are growing at R = 0.1 and the rotating bending microcracks are growing at R = -1. The
square beam microcracks are growing in a local stress field with an estimated stress ratio of about
R =-0.35. This local stress ratio was estimated by assuming that the maximum local stress at the
outer fiber was approximately equal to the yield stress due to plastic deformation at the outer fiber,
but that the stress range was still equal to the full applied (elastic) outer fiber bending stress range.
A more subtle difference between the different specimens which may also have some effect is that
the microcrack tests were conducted with maximum stresses near the yield stress, while the large
crack tests were conducted at much lower stresses.

We have identified two alternative approaches to addressing these differences. The first
approach, which we will call the "nominal ASTM approach,” is based on the recommendations of
ASTM Test Method E 647, "Standard Test Method for Measurement of Fatigue Crack Growth
Rates." This test method instructs that AK = K, - K, When R 2 0, but that AK should be calculated
according to AK = K., when R < 0 (i.e., take only the tensile portion of the stress intensity factor
range). For the particular tests under consideration here, we will write an appropriately "adjusted"”
AK, = UAK, where AK is always computed as K, - K.;, and any stress ratio "adjustment” is
expressed by the fraction U. The large crack tests have U = 1, the rotating bending tests have U =
0.5, and the square beam tests have an estimated U = 0.72.




A second approach is based on the phenomenon of plasticity-induced crack closure. Of
several different proposed mechanisms for crack closure, the development of a plastic wake and
the corresponding influence on residual stress fields is thought to be the most significant outside
of the near-threshold regime [3]. Several different mechanics approaches have been developed to
characterize plasticity-induced closure, including simple analyses based on a modified Dugdale
strip-yield model, finite element analyses, superdislocation models, and boundary element models.
These different formulations are nearly unanimous in their conclusions that crack opening levels
outsice the near-threshold regime are, in general, a function of maximum stress, stress ratio, and
stress state. Many experimental observations are available to support these theoretical projections.

The specific task at hand is to estimate the magnitude of the adjustment factor U, which here
functions as the effective stress intensity factor range ratio. We have chosen a specific analytical
approach based on published closure models in order to eliminate the opportunity of inserting an
arbitrary fudge factor. The approach is identical to a robust closure strategy under development as
part of a comprehensive methodology for elastic-plastic fatigue crack growth rate prediction to be
applied to aerospace propulsion systems [4]. The approach is based on the modified-Dugdale model
of Newman, which has been conveniently expressed as a simple closed-form equation giving
Oopen/ Omax @S @ function of ©,,,,/Cg,., R, and the stress state (plane stress vs. plane strain) [5]. Here
Oow 18 the average of the yield and ultimate strengths. The stress state is quantified by the constraint
factor a, where o = 1 for plane stress, o = 3 for full plane strain, and intermediate values represent
partial constraint. The Newman model is based on a center crack in an infinite plate. This model
can be applied satisfactorily to other geometries by reinterpreting 6,,,,/Ggow a8 Knax/ Know, Where K,
= OpwVTa [6].

Based on the measured tensile properties, the estimated flow stress is 93.5 ksi (645 MPa).
The stress state is identified as plane strain (o = 3) for the large crack tests on the basis of a comparison
of the crack tip plastic zone sizes with characteristic specimen dimensions [7]. The estimated stress
state varies for the microcrack tests, but the differences between plane stress and plane strain closure
stresses under these conditions (large maximum stresses) are negligible. The maximum stress for
the rotating bending specimens is just the stress amplitude Ac/2, which is given in Table 4 of the
First Annual Report. The maximum stress for the square beam specimens is estimated as o, =
oy, due to the yielding at the outer fiber. The ratio of K,,,,/Kp,, 10 G,,,/Cq, for the semi-circular
surface cracks which form in the microcrack tests is equal to the geometry correction factor on the
stress intensity factor solution used here, 0.73. The maximum stresses (loads) for the large crack
tests are small enough that no strong dependence of O ypey/Cmax 0N Kri/Ki., i8 present. On the basis
of these numbers and methods, the effective stress range ratio U is calculated as U = 0.8 for the
large crack tests, U = 0.45 for the rotating bending tests, and U = 0.6 for the square beam tests.

Comparisons of the large crack and microcrack data based on these two approaches, the
nominal ASTM approach and the closure approach, are presented graphically in Figures 8 and 9.
Note that the two approaches give similar results. The comparison based on an explicit treatment
of crack closure appears to give slightly closer agreement between large crack and microcrack data
in the region where the two sets overlap, but at this point it is not our primary concern to evaluate
which approacl. is "correct” or preferable. Instead, we only conclude from the mutual agreement
that these are valid means of comparing the large crack and microcrack data, which is our primary
goal here.
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Conclusions

What can be concluded from these comparisons? First of all, it appears that microcracks and
large cracks grow at similar rates in the traditional large-crack power-law regime. This agreement
suggests that large crack FCG relationships (including scaling laws) should also be applicable to
microcracks, at least for larger microcracks.

Second, it is clear that microcracks can grow at applied stress intensity factors which are
smaller than the traditional long crack threshold values, AK,,. The microcracks exhibit no clear
threshold behavior, even at smaller AK values. The microcrack data do exhibit occasional crack
arrests at extremely low AK, but these are not consistently observed. The occasions of crack arrest
which are observed may be due to unique microstructural interactions when the crack size is on the
same order as the microstructure. Of greater importance to the fatigue life prediction problem,
however, is the conclusion that the FCG laws used to describe microcrack growth should not, in
general, include a long crack threshold. We have declined further study of large crack FCG growth
very near the (large crack) threshold, since the phenomenon is not significant for fatigue life pre-
diction based on microcrack growth relationships.

Along this line, it should be noted that we have made no special attempt here to correlate the
very-near-threshold long crack data with the other data presented. It may be the case that very near
the threshold, the crack closure levels increase significantly. This increase would cause a sharp
decrease in the calculated driving force, AK ¢, near threshold, which might bring the near-threshold
daldN data into line with the other data. These changes in crack closure behavior for near-threshold
long cracks have been measured for other engineering materials [3]. Similar data are not currently
available for HSLA-80 steels, so we are not currently able to evaluate this possibility.

A third conclusion of note is that microcracks which grow at AK values below the long crack
threshold appear to grow at rates which are generally consistent with a downward extrapolation of
the power-law trends from the long crack regime. In other words, the long crack power-law FCG
relationship may be equally applicable to shorter microcracks (in addition to longer microcracks,
which were addressed above in the first conclusion). A rigorous extrapolation of the long crack
power-law scatterband (m = 3.77) passes through much of the microcrack data (see Figure 6, for
example). Slightly more of the microcrack data lies above the scatterband than below it, so it is
possible that the growth rates of the shortest microcracks are slightly accelerated relative to the long
crack growth. Since the scatter in da/dN increases significantly for the smallest microcracks (a =
2 to 50 pm), it is difficult to make this judgment rigorously. Further study of the problem from the
statistical perspective is required.

From an engineering standpoint, it is relatively easy to address the microcrack and long crack
data on an entirely consistent basis. Figure 10 shows that a single power-law fit to the combined
long crack and microcrack data is very satisfactory. The slope of this particular Paris line is m =
3.23, which is only slightly smaller than the regression of the long crack data alone.

Our engineering conclusion, then, is that we can treat the microcrack data and long crack data
in a similar manner for the purposes of fatigue life prediction. We also conclude that the scaling
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laws derived for long crack behavior should also be applicable to the microcrack regime for
HSLA-80 steels. The primary differences between the long crack and microcrack regimes involve
the statistical dispersion of the data.
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4. ENGINEERING LIFE MODELS

Fatigue life prediction which is based on an explicit treatment of the crack growth phenomenon
requires integration of the FCG equation. Consider the common choice of the simple Paris law for
FCG,

da m 4)
E—C(AK)

where AK is given by the general expression

AK =FAc\ra (5)

Note that these same expressions can be written in terms of some AK 4 if an alternative formulation
for the driving force is more appropriate. We will write everything in terms of a simple AKX here
for convenience. If the geometry correction factor F can be treated as approximately independent
of crack length, which is roughly correct for small crack problems, then the total crack propagation
life, N, can be calculated as

N = 2 { 1 1 } (6)
" m-2)CENm" a0y @ gt

when m not equal to 2. Here g, and a, are the initial and final crack sizes. The final crack size is a
function of applied stress, based on fracture mechanics arguments. This dependence, however,
often has little impact on total predicted lives, since 1/a/™>? << 1/a/*? in many applications. If
we take both of these crack sizes to be constants independent of applied stress, which is therefore
an acceptable approximation from an engineering perspective, then Eqn. 6 can be simplified to the
general S-N form

N,=A(C,m,F)(Ac)™ 0

This result implies that a traditional S-N equation can be constructed directly from a FCG
relationship. For our HSLA-80 steel, the implied value of m is between 3 and 4 for crack growth
in the microcrack or intermittent FCG regimes. The remaining question is how accurately this
derived relationship reflects actual S-N fatigue life data.

The answer to this accuracy question is dependent on the definition of "S-N" data. At least
two definitions are meaningful for naval structural applications. The first definition is the life of a
polished smooth specimen, loaded either axially or in bending. The second definition is the life of
a large-scale welded component. We will consider each definition separately.

Smooth Specimen S-N Behavior

Available data for smooth specimen axial fatigue tests of HSLA-80 in air [8] indicate that
the S-N "slope" m should be about 10-12 for tests in which the stress amplitude was less than about
100 ksi (690 MPa). See Figure 11. This slope corresponds to a fatigue strength exponent (the
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exponent in the conventional stress-life expression, AG/2 = 0,’(2N,)‘) ¢ = -1/m of about -0.08 to

-0.10, which is a typical value for this class of steels. This observed value of m is significantly
different from our implied value based on FCG rates. The difference is due to the influence of the
crack nucleation life phase. As discussed in the introduction, the total S-N "life" can be thought of
as consisting of three independent phases: nucleation, microcrack growth, and large crack growth.
Under different conditions, one or more of the life phases may dominate the total life.

In particular, the nucleation phase tends to be negligibly small at relatively short lives (high
stresses) and dominantly large at very long lives (low stresses). This trend is clearly evident in the
microcrack growth tests reported in the First Annual Report. The average nucleation life fraction,
N/N,.., was 0.233 for tests at a stress amplitude of 420 MPa, 0.113 at a stress amplitude of 520
MPa, and 0.024 at a stress amplitude of 560 MPa. The generally accepted rule of thumb is that
very close to the fatigue limit, the nucleation life fraction approaches 1. This trend implies that the
dependence of nucleation life on stress is extremely strong. For situations in which the nucleation
phase is a significant fraction of the total life, a simple integration of the microcrack growth law
will not give an entirely satisfactory description of total life. For the particular microcrack tests
conducted in this program, the nucleation life fraction was typically small, and so this integration
should give reasonably good life results. This method, however, will likely fail when applied to a
much wider range of applied stresses.

In order to treat the total smooth specimen S-N problem more accurately, explicit attention
must be given to the nucleation phase of life. The nucleation lives can be modeled by a general
Coffin-Manson type of equation which relates the applied (plastic) strain range directly to N;. We
observed in the First Annual Report, based on our experimental results, that microstructure could
have a pronounced effect on crack nucleation, and the nucleation equation may be able to incorporate
microstructural effects explicitly. For example, if nucleation occurs at inclusions (as was the case
for all fatigue tests of as-received material), then the inclusion size and the volume fraction of
inclusions may be significant quantitative variables in a nucleation equation. It follows naturally
that any treatment of the probabilistic S-N problem under these conditions must also address
variability in the nucleation event.

It should be emphasized, however, that this quantitative treatment of the complex nucleation
problem is required only when the nucleation life phase is a non-negligible fraction of the total life.
When nucleation occurs relatively early in life, then a treatment based entirely on integration of the
microcrack FCG equation may be satisfactory.

Welded Component S-N Behavior

Recent data from fatigue tests of large-scale welded structures fabricated from HSLA-80 [9]
suggests an S-N slope m between 3 and 4, as shown in Figure 12. In contrast to the smooth specimen
results, this slope agrees closely with the Paris exponent from the available fatigue crack growth
rate data. In these structural fatigue tests, cracks initiated at relatively large defects and disconti-
nuities in the weldments, and crack nucleation lives were relatively insignificant in comparison to
toial propagation lives. Simple estimates of total fatigue life based on fracture mechanics arguments
(and using the same large crack baseline FCG data presented earlier in this report) were relatively
successful in predicting the observed trends in experimental lives [10].
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Many large-scale welded structures such as bridges and steel buildings are engineered on the
basis of fatigue design curves first developed by the American Association of State Highway and
Transportation Officials (AASHTO) [11]. These design curves are aset of standard S-Nrelationships
which correspond to categories of welded details grouped according to their relative fatigue
strengths. The AASHTO curves are based on the lower 95% confidence limit (using log-normal
statistics) of full-scale fatigue test data. The slopes of these AASHTO design curves and similar
curves published by other regulatory bodies have been fixed at m = 3.0, which is again consistent
with known relationships for the fatigue crack growth behavior. It is particularly interesting that
the AASHTO curves appear to provide a reasonably accurate description of the Lehigh HSLA-80
welded structure S-N data (see again Figure 12), even though the AASHTO curves were developed
from tests mostly on carbon-manganese steels. This coincidence occurs because, as noted earlier
in Section 2, large crack FCG rates differ relatively little among different steel microstructures.

Total life scatter in the Lehigh HSLA-80 welded structure tests was relatively large, as much
as a factor of 10 for nominally identical conditions. Preliminary investigations into the origins of
this scatter concluded that variations in the size of the initiating weldment defect contributed rel-
atively little to the overall variation in life for longitudinal fillet welds. Scatterin defect size appeared
to be more significant for transverse groove weld specimens. Other factors, such as variations in
local weldment and crack geometry, residual stresses, material microstructure, and small flaw
growth rates, will also contribute to total scatter, but these effects were not characterized in the
Lehigh research.

In conclusion, acceptably accurate characterization of total life S-N behavior for welded
structures based on an integration of appropriate FCG relationships appears to be feasible. Detailed
attention to the crack nucleation phase of life does not appear to be necessary, although variability
in the size of the initial defect (crack) may need to be addressed explicitly.
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5. PROBABILISTIC MODELING

Fatigue crack growth is fundamentally a random phenomenon because of the macroscopic
variation (from specimen to specimen) as well as the microscopic variation (along the crack path
in asingle specimen). This randomness may be most apparent and most significant for microcracks,
when crack-microstructure interactions are also most significant. Microcrack growth rate data are
often characterized by great variability, especially in comparison to growth rate data for large cracks
outside of the near-threshold region. Because of this large variability, simple deterministic schemes
to compute microcrack-dominated life are often not satisfactory. Algorithms based on bestestimates
such as mean values cannot account for the significant possibility of nonconservatively faster
growth, and attempts to "envelope” the data with upper bound crack growth curves may be
excessively conservative under some conditions (leading to unnecessary rejection of safe hardware).

Therefore, microcrack growth is a particularly good candidate for probabilistic methodolo-
gies. Unfortunately, microcrack growth also presents special obstacles to developing probabilistic
models. In particular, it is often difficult to collect raw FCG data of sufficient quality and quantity
to compute necessary probabilistic parameters. Crack length measurement is expensive and often
cumbersome for microcracks, involving indirect means such as multi-step replication (rather than
direct visual inspection of the specimen surface). Microcrack initiation and growth is especially
unpredictable, and so it is nearly impossible to obtain data at fixed crack lengths or fixed growth
intervals (as required by some probabilistic methodologies). Smooth specimens are characterized
by multiple microcrack initiation and growth, so it is not usually possible to identify a priori a single
dominant crack, and different microcracks may interact or link up later in life. These difficulties
are not insurmountable, but they do influence the path to a solution.

Complete solution of the probabilistic, microstructure-based fatigue life prediction problem
requires two steps. First, an appropriate stochastic FCG model, which explains reasonably thc
macroscopic variation (from different tests) as well as the microscopic variation (along the crack
path in each test) in the material test data, must be constructed. Second, a robust, efficient, and
accurate probabilistic method must be used to predict the fatigue life by using the stochastic FCG
model which includes time-dependent parameters.

The development of appropriate probabilistic models is currently in progress, with most of
the work to be completed during the third year of the program. The discussion that follows describes
the work plan in some detail, highlighting preliminary results and deriving the key equations to be
employed in subsequent research.

Stochastic Fatigue Crack Growth Model

The selected stochastic fatigue crack growth (SFCG) model should be as simple as possible
while maintaining a reasonable accuracy for the prediction of the FCG damage accumulation. The
model of Ortiz [12] is an intriguing SFCG option, because it attempts to address the influence of
microstructure on rate variation along the crack path. This proposed model uses a random FCG
model to deal with the macroscopic variation, and an additional random noise model to deal with
the microscopic variation. As a result, this model needs the probability distribution functions of
the coefficients of random FCG, the probability distribution function of the variance of random
noise, and the correlation length of the autocorrelation function of random noise.
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Unfortunately, the Ortiz model requires that a large number of replicate test data must be
available to construct accurately the required random parameters such as the joint distribution of
the coefficients of random FCG, or the distribution of the variance of random noise. Under the
given experimental conditions, the quantity and quality of microcrack data generated is not good
enough to construct all these parameters. In addition to this data limitation, the Ortiz model also
requires the crack growth measurements, a vs N, at constant growth increments, Aa, so that the
correlation length can be measured more exactly. This requirement also violates the usual test
procedure, which generates FCG data at constant AN increments. Several other stochastic fatigue
growth models also share the same fundamental limitation, including the Markov chain and
semi-Markovian models [13, 14]. The estimation of a large Markov transition matrix usually
requires a larger data base for crack size vs cycles.

Lognormal Random Variable Model. When only limited data are available, a lognormal
random variable model proposed by Yang et. al. [15, 16] is more suitable. This model uses the
simplest mathematical model for which the analytical solution is possible for many problems.
Likewise, it can easily be understood by engineers. The model always results in a slightly con-
servative prediction. This model does not require the correlation parameter for the crack growth
rate, thus eliminating the requirement for intensive test results. A few crack propagation parameters
and the model statistics can be estimated from a limited amount of base-line test results, which is
usually all that is available in practical applications. This model can be viewed as an ideal initial
stage model for fatigue life prediction because a simple analytical function can be derived. The
results calculated from this initial FCG model can be used to determine the strategies for more data
acquisition or material selection. Ultimately, this model should consider other statistical uncer-
tainties such as the microstructure parameters and the FCG model parameters in order to predict
the fatigue life more accurately.

Lognormal Random Process Model. To account for microstructural effects, this lognormal
random variable model can be coupled with a non-infinite correlation time (or correlation distance,
like the Ortiz model) without necessarily having to perform computations on a large data base. In
addition, the microstructural fcatures may be modeled as random variables if enough data are
available. A simple analysis procedure will be produced to estimate the correlation length by
calibrating the available fatigue data with the model. The main purpose of using correlation length
is to predict the fatigue life more accurately and less conservatively. This resulting stochastic model,
called a lognormal random process model, is composed of a random FCG law and a stochastic
process, i.e.,

8
% = f(M’AK’a9R)XM(t) ( )
where da/dN is the crack growth rate and f(g, AK, a, R) is a user-defined function (FCG model) of
microstructural features (M), stress intensity factor range (AK), crack size (a), and stress ratio (R).
Note that the simpler lognormal random variable model introduced earlier is actually just a special
case of the more general lognormal random process model. X, (f) represents a non-negative
stationary lognormal random process which will be used to account fcr the combined effect of
unknown contributions toward changing the crack growth rate with time, ¢ (expressed in terms of
the number of cycles, N). X,(#) is also considered to be a function of microstructural features. The
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FCG model considered in the preliminary investigations is based on simple linear elastic fracture
mechanics. When microstructural features are addressed explicitly, the scaling laws discussed in
Section 2 will be employed.

Because X(r) is a nonnegative stationary lognormal random process, its logarithm, i.e.,
log(X(t)) = Z(), is actually a stationary gaussian (or normal) random process. This stationary
gaussian random process is defined by the mean value, |1,, and the autocorrelation function, R,(1).
The autocorrelation function between Z(#) and Z(t + 1) is given by

R,(t) = E(Z@t)Z(t+71)) 9)

in which E(*) is the ensemble average of the bracketed quantity. Because Z(¢) is a stationary process,
the autocorrelation function depends only on the time difference 1. Because the correlation decays
as the distance in space increases, it is reasonable to assume that the autocorrelation function R,,(1)
of the normal random process Z(f) is an exponentially decaying function of the time difference, T;
ie.,

Ryt) = ole™ (10)

where & represents the correlation time and & represents the measure of the correlation distance
for Z(t)**. As E—)oo, the autocorrelation function becomes a Dirac delta function,

Rp(1) = o33(1) an

indicating that the random process Z(f) or X(#) is totally uncorrelated at any two time instants. Such
a random process is referred to as the white noise process. At the other extreme as &—)0, the
autocorrelation function becomes a constant, i.e.,

R = o 12)

indicating that the random process Z(t) or X(¢) is fully correlated at any two time instants. When
this condition is satisfied, the SFCG model is referred to as the lognormal random variable model.
Inreality, the stochastic behavior of crack propagation lies between the two extreme cases described
above. To predict the fatigue life for using this stochastic fatigue model, the probabilistic analysis
method must be capable of dealing with the time dependency problem effectively.

**  Note that at this point two conflicts emerge in the nomenclature due to the merger of two
different scientific disciplines. In this equation, 6° is the statistical variance, not the square
of the stress (which is also customarily denoted by 6. The second conflict is that the customary
symbol for the correlation time, &, has been already been assigned to the dimensionless
microstructural parameter in the microstructural scaling laws. In order to reducc confusion,
since both variables will occasionally appear in the same equation, we will write the correlation
time in this report as &.
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Construction of a Lognormal Random Variable Model

To construct the lognormal random variable model successfully, the following key factors,
which can influence the accuracy of the prediction, must be addressed:

An Appropriate Fatigue Crack Growth Model. The choice of the crack growth law has a
significant impact on crack growth predictions. A poor fit may introduce a low frequency signal
into the residuals, which increases the variance and adds to the correlation of the residuals. The
well-known Paris law is often adequate for the power-law FCG regime. As discussed in Ref. [6],
for some materials the power-law regime may be further subdivided into intermittent and continuous
growth regimes. In this case, a simple Paris law becomes inadequate and a bilinear model becomes
the best choice.

An Equal Number of Data Points for Each Test Specimen. In the microcrack data sets gen-
erated in this study, each crack growth specimen (and often each crack) has an unequal number of
data points. In particular, more crack size measurements were taken for slow growth
specimens/cracks than for fast ones. This may introduce some bias to the crack growth rate cal-
culated. As such, it clearly violates the statistical premise that each specimen is of equal weight.
Consequently, the resulting statistical FCG predictions are biased toward the nonconservative side:
the stochastic model tends to predict a longer propagation life or smaller crack size.

To circumvent such an error due to an unequal number of measurements for each specimen,
additional data points for the primary data (a versus A or log(da/dN) vs AK) may be added artificially
to the fast crack growth specimens. The goal is to equalize the number of data points for each
specimen. In most cases, the artificial points can be determined by interpolation. However, cir-
cumstances may arise where additional data points are needed outside the region of available primary
data, and simple extrapolation procedures may not be satisfactory. One approach to solving this
problem is first to fit the primary data for a particular specimen with the crack growth model. Then
the additional data points outside the available primary data region are obtained from the model.
This approach clearly does not address the point-to-point scatter as a given crack grows, but it does
satisfactorily identify the central growth trends for the crack and enable acceptably accurate
crack-to-crack comparisons for this preliminary SFCG model. The point-to-point scatter can be
addressed by other elements of more sophisticated SFCG models.

Data Processing Procedure. According to the microcrack data generated in this study, each
crack growth data set contains very large statistical dispersion especially in the low AK regime.
These statistical dispersions may be caused mainly by crack measurement error (or human error)
and microstructural effects. In addition, it is very difficult to use these raw data directly in the
modeling, and so data processing methods become important.

Among the available data processing methods, the secant method introduces a much larger
additional statistical dispersion for the crack growth rate data than any of the incremental polynomial
methods. To reduce the undesirable statistical variability of the crack growth rate data, a polynomial
method should be used. While it may be desirable to use the 5-, 7-, or 9-point incremental polynomial
method, the limited amount of data available may inhibit its application. Another approach is to
fit all data points with the selected FCG model first. This fitted model can also be used to produce
an equal number of data for each data set.
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Goodness-of-Fit Test. Because a lognormal random variable model assumes X(r) to be a
stationary lognormal random process with a median of unity, it is necessary to demonstrate that
Z(1) = log(X(1)) follows the normal distribution with zero mean and standard deviation. To prove
the accuracy of the model, Kolmogorov-Smirmnov (K-S) tests for goodness-of-fit should be used to
determine the observed K-S statistics of Z(r). These statistics will then be used to determine if the
normal distribution is acceptable or not, at a certain significance level, given the available data sets.
For problems with either not enough data sets or bad quality data, the use of this lognormal random
variable model must be carefully reconsidered. As suggested in Ref. [14], a bootstrap method of
simulation may be used to create more available data, however, the usefulness of these data need
to be evaluated.

In view of these key factors, this lognormal random variable model can be constructed as
follows:

1. Take a logarithm of Eqn. (1), i.e.,

da (13)

log( d_ﬁj = log(f(M,AK,a,R))+log(X,,(t))
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Because the quantity and quality of microcrack data generated is limited, as discussed earlier,
these data are fitted using least squares regression with the selected fatigue model to get the
parameters of the model. For example, when a Paris law is used, the Paris coefficient C and
Paris exponent m are determined based on the data. The process is repeated for other data
sets.

3. Determine a global range of stress intensity factor and obtain an equal number of data point
for each data set based on the fitted FCG models calculated in step 2.

4. Use all data created from step 3 to fit Eqn. (1) by using linear regression analysis. Since Z(?)
at time ¢ is a normal random variable, log (da/dN) is also a normal random variable. The
mean value of log (da/dN) = log (f), and the standard deviation of log (da/dN) is equal to .

5. Perform K-S test for normal distribution.

Example 1: 347 data (as received material)

One example of the SFCG model in application to a particular data set is shown in Figure 13.
Here the lines describing the 10%, 50% (mean value), and 90% probability of exceedance in growth
rate as computed from the SFCG model are superimposed on the raw crack growth data from
Specimen#347 (see First Annual Report for test details), with a simple power law as the user-selected
FCG model. Final results are listed in Table 1.

As shown in Figure 13, the resulting model seems able to account approximately for all the
uncertainties. However, in the higher AK region (longer cracks), the estimates may be overcon-
servative.
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Table 1. Example 1 Results Summary

Data Set Paris Coe. C | Paris Expo. Std. Dev.
m C;
347 1.08E-12 3.3792 0.422

Example 2: 353/354 data (as received material)

In Figure 14, the lines describing the 10%, 50% (mean value), and 90% probability of
exceedance in growth rate as computed from the SFCG model are superimposed on the raw crack
growth data from Specimens #353/#354 (see First Annual Report for test details), with a simple
power law as the user-selected FCG model. Final results are listed in Table 2.

As discussed in Example 1, the model may be overconservative in the higher AK region (larger
cracks). To improve this model further, microstructural effects should be included.

Table 2. Example 2 Results Summary

Data Set Paris Coe. C | Paris Expo. Std. Dev.
m o,
353/354 1.004E-12 2.8662 0.187

Construction of a Microstructure-based SFCG Model

Beginning with this simple application of a lognormal random variable model, it is planned
to build a progressively more sophisticated SFCG model which explicitly addresses some of the
microstructural effects. The planned steps and some of the relevant issues are briefly described
below.

Consistent Treatment of Large Crack and Microcrack Data. Large crack and microcrack
FCG data must be treated on a continuous and consistent basis not only in deterministic analysis
(as discussed in Section 3) but also in probabilistic analysis. It is planned to use the same effective
stress intensity factor concept proposed in Section 3 as the first step in a consistent probabilistic
treatment, so that the large crack scaling laws can be applied to microcracks. Later probabilistic
analysis should address and perhaps explain the increased scatter observed for the smallest
microcracks.

Microstructural Scaling Laws. The microstructural scaling laws discussed in Section 2 will
be applied as the user-defined fatigue crack growth law function, f, in £gn. 8. In the intermittent
crack growth regime, for example, this gives the general form
da b 1-1/6 AK » (14)
= = 2 =22
N = 5@ | XO
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Microstructural variables such as the dislocation barrier spacing, the yield strength, and the fatigue
ductility will be explicitly modeled as random variables in the SFCG mode!. Required information
about the probability distribution functions for these parameters (e.g., the variation in dislocation
barrier spacing) will be derived from appropriate experimental measurements. Some of this
statistical information has already been presented in the First Annual Report and the January 1993
Quarterly Report.

Treatment of the Correlation Length (Lognormal Random Process Model). Both examples
1 and 2 showed that the simple lognormal random variable model may be too conservative. As
discussed earlier, one response to this problem is to replace the simple lognormal random variable
model with the lognormal random process model (including a finite correlation length). This
involves a modification of the random process function X in Eqn. 8. By incorporating a correlation
length into the model, the model should be able to deal with large variability observed in the small
crack regime as well as long crack regime. Ortiz [12] has shown that a finite correlation length is
consistent with an increase in the variability of crack growth rates at shorter crack lengths, and he
postulated that this effect was attributable to microstructural effects. To determine the correlation
length in practice, an efficient calibration procedure which uses the available data without per-
forming additional experiments is required. Detailed calibration procedures will be developed later.

General Lognormal Random Process Model with Microstructural Scaling Laws. If the
probabilistic treatment of the microstructural scaling laws and the development of a general log-
normal random process model are both successful, then a final planned step is to merge these two
models into a single general microstructural SFCG model.

Overview of Planned Stochastic FCG Model Development. An overview of the planned
development of progressively more sophisticated stochastic FCG models is given in Figure 15.
Beginning with the general form of the model, the first step has been to make the simplest possible
choices of both the FCG function and the stochastic process. This step has been illustrated in the
two ex~mples given above. The next two steps are to independently explore more advanced choices
of the FCG function and the stochastic process. The goal of these two steps is to improve the
numerical quality of the probabilistic description by incorporating microstructural information. The
final step is to to compare and ultimately combine these two different approaches.

Overview of Probabilistic Analysis Methods

As noted above in the introduction to the probabilistic modeling section, complete solution
of the probabilistic, microstructure-based fatigue life prediction problem requires two steps. So far
we have discussed only the first step, the development of an appropriate stochastic FCG model.
The necessary second step is the development oi a robust, efficient, and accurate probabilistic
method to predict the fatigue life using the stochastic FCG model.

In general, the probabilistic analysis method is developed to solve a limit-state function g(X).
Given the joint probability density function, fx(x), the probability of failure can be formulated as
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p; =P(g <0)

=f...ffx(x)dx

where Q is the failure region. This multiple integral is, in general, very difficult to evaluate.
Alternatively, the Monte Carlo (MC) method provides a convenient, but usually time-consuming,
solution. Alternative analytical procedures are available, and these are briefly discussed in the
paragraphs that follow.

(15)

The first step in these analysis methods requires the transformation of a generally dependent,
random vector X into an independent, standardized normal vector u. The Rosenblatt transformation
has been suggested when the joint distribution is available [17, 18]. If only the marginal distributions
and the covariances are known, a transformation can be made to generate a joint normal distribution
that satisfies the given correlation structure.

By transforming g(X) to g(u), the most probable point (MPP) in the u-space, u*, is located.
The MPP u* is the point that defines the minimum distance, B, from the origin (u = 0 point) to the
limit-state surface. This point is most probable because it has the maximum joint probability density
on the limit-state surface. The MPP may be found by using optimization, advanced mean value
(AMYV), or other iteration schemes.

Next, the g(u) or g(X) function is approximated by a polynomial that approximates the true
function in the vicinity of the MPP. Once the approximate function is obtained, the associated
failure probability can be computed. If the g(u) formulation is used, several analytical solutions
are available for linear and quadratic functions [19, 20]. For example, the first-order reliability
method (FORM) estimate is:

P(g <0)=D(-P) (16)
and the asymptotic second-order reliability method (SORM) estimate, derived by Breitung [20], is:

P(g so)zq,(_ﬁ)fﬁ:(l +BO)™ B (17)
i

where @(*) is the cdf of a standard normal distribution and X;, j = 1, ...n ~ 1 are the main curvatures
of the limit-state surface at u*.

However, for complex problems that require computation-intensive computer programs, it is
very important to use an efficient method to calculate the cumulative distribution function of the
response. The AMV and AMV+ methods were developed to search for the MPP with fewest extra
g-function calculations by comparing with the conventional mean-based second-moment method
(MVFOSM). AMYV and AMV+ methodologies are discussed in greater detail in Ref. [21].
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Fatigue Life Prediction Using Probabilistic Methods

The choice of a specific probabilistic method depends on the complexity of the particular
stochastic fatigue crack growth model under consideration. In the following, the probabilistic
methods anticipated to be selected to different SFCG models are briefly discussed.

Lognormal Random Variable Model. By using a lognormal random variable model, an
analytical function for the probability distribution for crack length at the given time (or, alternatively,
the probability distribution for time at the given crack length) can be derived and used to predict
the fatigue life. Because only one lognormal random variable is considered, this problem can be
solved by most of the probabilistic approaches. Total required calculation effort is minimum. In
addition, this model can easily be extended to include inspection and repair strategy.

Lognormal Random Variable Model With Microstructural Scaling Laws. This model can be
solved using the same analysis strategy as the previous lognormal random variable model, but more
random variables are considered in the model. Therefore, more advanced probabilistic methods
may be needed to solve the problem.

Lognormal Random Process Model. By using a lognormal random process model, crack
growth at any length becomes correlated. In this case, no explicit function can be derived. To
predict the fatigue life, two approaches will be considered. First, a Monte Carlo approach proposed
in Ref. [15] will be used, and second, an analytical approach will be used, as described below.

The MC approach is a simple but time-consuming method, especially for far-tail probability
regions, because MC is a simulation process which requires many simulations. Each simulation
includes at least three steps: first, generate a random process for the stationary gaussian process;
second, integrate this random process with the FCG model; and third, calculate the crack length as
a function of time. The process is repeated when the required sample number is reached. All crack
size functions are stored and used to construct the crack length distribution function.

The analytical approach is based on a Markov process model proposed by Lin and Yang [22].
This model is fracture mechanics-based, whereas the Bogdanoff-Kozin model [13] is not. The
following autocorrelation function is used:

Ro(t) = 2B(1-|1|/A) |TI€A
(18)
= 0 otherwise

With this assumption, a complicated analytical function for crack size probability distribution
function at the given time can then be derived. However, this analytical function is based on an
assumed autocorrelation function. To fully utilize this analytical function, an approximate function
to simulate the difference between Eqn. 10 and Eqn. 18 will be included in the previous analytical
function. By using this updated function, an AMV+ based probabilistic method will be used to
compute the final probabilistic results.

Lognormal Random Process Model Plus Microstructural Scaling Laws. This model can be
solved using the same analysis strategy as the previous lognormal random process model, but more
random variables are considered in the model.
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It should be noted that for all of these SFCG laws, appropriate attention must also be given
to the determination of the initial crack size and final critical crack size conditions in order to perform
a complete life prediction. If the nucleation phase is a significant fraction of the total life (e.g.,
smooth specimen life predictions), then the nucleation life must also be modeled. These factors
may introduce additional sources of uncertainty, and further influence the selection of the proba-
bilistic method.

Example 3: 353/354 fatigue life prediction using lognormal random variable model

The initial crack size and the crack initiation life selected for this data set are 9.43 pm and
10* cycles, respectively. By using both data and the results shown in Table 2, the crack growth
curves at 10%, 50% (mean value), and 90% can be easily calculated, as shown in Figure 16. As
predicted, the 90% and 10% curves have incorporated the data well except in the small crack regime.
The disagreement in this regime is due, at least in part, to the specific selections of initial crack size
and initiation life in this example. Therefore, it is important that both values be selected carefully.

Other Potential Applications of Probabilistic Modeling

Development of the probabilistic models discussed above provides the opportunity and the
technical foundation to solve additional aspects of the fatigne life problem. Substantial progress
on some of these auxiliary issues is not anticipated under the current contract effort, but the potential
extensions are worthy of brief note.

Design Strategy: Probabilistic Sensitivity Factois. Probabilistic sensitivity factors are a
significant by-product of the probabilistic analysis. These factors provide guidance on the manner
in which input uncertainties influence variability in the response function, identify those random
variables which are most significant for this variability, and help to determine the optimum strategy
for subsequent design analysis. Probabilistic sensitivity factors will be of particular benefit in the
current contract effort to help identify those microstructural variables which are of greatest sig-
nificance for both the mean value and the variability of the fatigue life, and to assess the relative
significance of microstructural effects for the total fatigue life problem. They have the potential to
play astronger role in future efforts to design better critical experiments and, ultimately, to influence
the direction of future engineering design strategies for naval structures.

Life Extension (Remaining Life) Prediction. Inspection and repair strategies are useful for
extending the total fatigue life. However, calculation of the remaining life after an inspection and
repair process introduces new challenges. To implement the analysis, the following quantities must
be determined or developed: an initial quality of thc damaged element before and after repair; a
stochastic FCG model; a probability of detection curve, which is used to simulate a specific
inspection technique; and advanced probabilistic methods for determining the probability of
detection or remaining life. These expanded models can be used to determine both an inspection
strategy (when to inspect) and a repair strategy (whether to replace or repair).
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6. FUTURE WORK

Research in the third year of the subject contract will emphasize further development of the
stochastic fatigue crack growth models, as outlined in Section 5. Microstructural effects will be
incorporated into the SFCG models in two different ways. First, the deterministic microstructural
scaling laws presented in Section 2 will be employed as the user-defined FCG law in the SFCG
model. Appropriate microstructural parameters, such as the dislocation barrier spacing and yield
strength, will be defined as random variables with specified mean values and standard deviations.
Second, a lognormal random process model with a finite correlation length will be explored as a
means of describing the increased dispersion observed at smaller crack lengths. A suitable pro-
babilistic analysis method will be chosen to solve the resulting SFCG model and perform actual
fatigue life prediction calculations.

Development of engineering life models will be integrated closely with this stochastic model
development task. The engineering life model task will insure that the engineering problem being
addressed by the SFCG model is properly defined and that the results are relevant and meaningful
to practical engineering challenges. The final engineering life model is expected to be largely
inseparable from the final stochastic FCG model.

For the past two years, research in the task on modeling of microstructure/fatigue relationships
has been focused on the crack growth problem. The result of this effort was the development of
scaling laws for fatigue crack growth in steels. In the coming year, a smaller additional research
effort will focus on developing scaling laws for nucleation of microcracks. The nucleation phase
was shown in Section 4 to be significant for total S-N life under some conditions (e.g., smooth
specimens at long lives), although under other conditions the nucleation phase is negligible. The
role of microstructural parameters such as dislocation cell size, dislocation barrier spacing, and
inclusion size on microcrack nucleation life will be established. The effects of microstructure on
fatigue life will be elucidated by examining individually as well as totally its influence on nucleation
and propagation lives. These fatigue life relations will be further verified for HSLA-80 and HY-80
steels.
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. SUMMARY AND CONCLUSIONS

Scaling laws have been developed to explain/predict the effects (or lack of effects) of
microstructure on fatigue crack growth rates in steels.

The critical microstructural feature of HSLA-80 steel for fatigue crack growth rates appears
to be the Cu precipitates.

Properly correlated microcrack behavior (e.g., average FCG rates) in HSLA-80 steel appears
to be consistent with large crack behavior.

Fatigue crack growth equations appear to be adequate to describe total S-N fatigue lives in
HSLA-80 steel when nucleation lives are negligibly short (e.g., welded structures).

Alognormal random process stochastic FCG model appears to be a suitable choice to address
the dispersion in microcrack growth rate data.
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Figure 1. Comparison of experimental and calculated da/dN curves for HSLA-80 steel.
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Figure 5. Microcrack FCG data from square beam specimen #347.
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Overview of planr. :d stochasiic FCG model development.

45




"YSE/ESE# Suawoads Joj uondipard 9y andueg 9y un3iy

N ‘919D
000000F 000009 000002 000001 00005 0000¢ 00001 ooom
| | | | | |
“ - o1
punog %06
Q
H40e &
(@)
Q
door @
i
(@]
-
4 oog <
Q
- 000t
uean °
W 000€

vGE# B €GCH#
919A9 'sA y1Bua yoeun

e e e R e R R T R R R




