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ANOMALOUS DIELECTRIC PROPERTIES OF
CARBON-BLACK FILLED ELASTOMERS

INTRODUCTION

For a long time, it has been recognized that the dielectric and dynamic elastic properties of
elastomeric solids are related. This follows from the modern model of an elastic polymer as a
"cooked spaghetti” aggregate of long flexible chains of monomeric units, each unit having an electric
dipole moment. The orientations of these dipoles in an externally applied electric field depend to
some extent upon the orientations of the chain segments to which they belong; the dipoles are not
entirely free to rotate but are under some constraint to rotate intc certain positions with respect to
their neighbors and to the axis of their parent monomer segment. In this fashion, the dipole motions
are coupled to the orientational motions of their parent chain segments which are in turn responsive to
applied mechznical forces. Thus, in a rather complex manner the electric dipoles move in response to
elastic strains, and dielectric properties should be coupled in some way to elastic properties.

Tuc connection between dielectric and elastic characteristics of elastomers has been studied both
theoretically and experimentally since the early 1950s ana has given rise to a sizable literature and to
a subfield often termed dielectric spectroscopy, though that term includes more than just the study of
elasticity by dielectric measurements. Perhaps the most extensive coverage of work up to the middle
1960s has been by McCrum, Read, and Williams {1] who surveyed both the experimental and
theoretical state of the field as it stood at that time. The theoretical foundations were treated in more
detail by Birshtein and Ptitsyn [2] in an extension to dielectric phenomena of theoretical work on
polymer chain configurations by Volkenstein [3]). More recent surveys are by Hedvig [4) and
Perepechko [5]. The most modern ideas on dielectric aspects of elastomeric polymers have been
summarized by Bottcher and Bordewijk [6]. No attempt will be made here to provide an extensive
coverage of the relevant literature since the references cited above thoroughly accomplish that task.
Only those papers will be cited that have particular importar. - for understanding the special aspects
of the subject to be covered in this report. )

Manuscript approved 23 April 1993
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The first treatment of dielectric effects in inhomogeneous materials was given a century ago by
J. C. Maxwell [7]. He considered the simplest possible case of a parallel plate condenser containing
two or more layers of lossy, semiconducting dielectric material, each layer having different static
dielectric constants and conductivities. Maxwell showed that, at the interfaces between different
dielectrics, mobile charges (the unbound conduction electrons) could accumulate and build up charged
layers giving rise to very large dipole moments. These large moments create, in effect, abnormally
high dielectric constants or permittivities in such inhomogeneous material systems.

This simple model gives a clear example of how the mobile charge can contribute to the more
familiar sources of dielectric polarization such as the rotational alignment of atomic-scale dipoles. In
Maxwell's model massive dipoles are induced on a much larger macroscopic scale by charge transport
in the semiconductive dielectric materials, blocked, or at least retarded, at interfaces within the
material.

From Maxwell’s model it is easy to show model that under suitable conditions, which are not
difficult to realize, dipole moments of the conduction slectrons can overwhelm contributions due to
rotation of the ordinary permanent dipoles to give very large static dielectric constants. It should be
pointed out that Maxwell’s model was essentially a static one though he dealt with initial and long
time equilibrium states of the inhomogeneous dielectric under the application of a step function
potential. He did not treat the dynamic features of intermediate states related to time-dependent
formation and relaxation of the large conduction dipoles.

Little attention was paid to Maxwell’s result for more than two decades until Karl Wagner (8]
undertook to expand upon the essential features of Maxwell’s moucl by considering a more interesting
and practical case — that of small spherical conducting particles ¢ ~* .dded in a normal, non-
conducting dielectric medium. Spherical particles were chosen to make it simpler to calculaie the
electric fields within a particle. Wagner's resvits confirmed the main features of Maxwell's model
and showed that, in general, any inhomogeneity within a solid dielectric with mobile charge transport
could give rise to large permittivities. He showed that the shape of the interface modified the
phenomena somewhat but not in an essential way. Wagner also went a step further and treated the
losses associated with resistance of the conduction electrons in his particles.

It remained for Sillars [9] to give a more general treatment for conducting inclusions having
shapes other than spherical. He chose to treat eilipsoidal particles with varying eccentricities so he
could deal with needle-like particles at one extreme and nearly flat platelets at the other. His results
for spheroids agreed with those of Wagner, but Sillars was able to show more clearly how the shapes
of the particles affected the overall permittivity and losses. For example, he showed that a very small
amount of conducting impurity in the form of fine needles could produce serious low frequency
losses, whereas the same quantity of impurity dispersed as small spheres would produce relatively
little effect.




NRL MEMORANDUM REPORT 7304

In the Theory section to follow, a more detailed discussion of both Wagmer's and Sillars’
results will be given together with a general treatment of the complex dielectric permittivity in the
presence of both conventional dipole rotation and dispersive or delayed conduction. Both hopping
and tunneling types of conduction as well as conventional, prompt ohmic conduction will be
considered. The treatment will show how slow or delayed conduction may be associated with dipole
rotation response.

Delayed conduction introduces a phase shift in the dynamic response, so part of the conduction
current lags the applied field by 90° and this quadrature component modifies the ordinary dielectric
response. The quadrature part of the conduction current contributes to the macroscopic overall
dielectric permittivity. The prompt cr in-phase part of the conduction and the lossy part of the
complex permittivity also combine to give the overall dielectric loss and, again, there is a contribution
from the conduction current. Since there are four rather than two phenomena operating in such cases,
and since each has a different frequency dependence, the combined dielectric response can be much
more complex than for the simple dipole rotation case.

Unconventional dielectric behavior is introduced by conduction within a heterogeneous sample.
It arises, in a sense, from the usual distinction between displacement and conduction currents. Both
come from charge motion, but displacement current involves localized charge motion in which the
charges remain tied to their "home" ions, while conduction ordinarily refers to charges that are able
to move freely through the interior of the dielectric material to the exterior circuit outside of the
material itself.

In the present treatment, we use the term conductivn to refer to electrons that may or may not
reach the exterior circuit but which can move within e dielictric beyond the influence of the ion
from which they originate. They are therefore not bound in the sense of an electron in a permanent
dipole but are somewhat free to migrate over much larger than atomic distances within the sc!id.
They may be subsequently trapped or otherwise prevented from moving all the way through the solid,
but they can move macroscopic distances -- in contrast to the dipolar charges which remain bound to
their parent ions,

Maxwell treated both conduction and dipolar or displacement currents as dynamically equivalent
inasmuch as they are both sources of magnetic fields. Those "bound charges® that move only slightly
(order of atomic dimensions) under the influence of an applied electric field constitute the ordinary
dipoles that contribute to what is usually regarded as the dielectric constant or permittivity. In the
conventional form of Maxwell's equations (curl H = dD/at + J) those charges that do not leave the
dielectric material are included in the displacement current term 8D/3t, and the current per unit area
that traverses the entire sample is J. However, the charge that moves but is subsequently trapped at
an impurity or inhomogeneity or blocked at an interface between two inhomogeneous regions in the
dielectric material must also be considered part of the displacement current.
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These distinctions between the two types of currents are evidently rather antificial, and it will
later be shown that it is often more convenient in dealing with periodic applied voltages to categorize
currents by their phase relations to the applied voltage. Thus J includes all currents that are in phase
with the applied voltage, leading to losses, while D includes all charge displacements that give
quadrature currents 90° out of phase with the voltage and constitutes stored energy that is returnat-le
to the system.

In inhomogeneous materials a whole naw range of features of the generalized displacement
current may arise due to the additional parameters presented by the various kinds of internal
conduction processes that can take place, subject only to the condition that they be blocked or slowed
in passage somewhere in the material so as not to join the conventional conduction current that moves
in phase with the applied voltage.

Two important phenomenological consequences are expected to result from the limited mobility
of conduction charges. First, the blocked or slowed internal conduction currents may give rise to
very large dipole moments because of the macroscopic distances through which they can move before
being blocked or trapped temporarily. This can lead to very high static or low frequency dielectric
constants if the amount of such charge that moves is appreciable.

Second, the relatively long and varied time scales associated with the movement and trapping of
the "slow” mobile charges should lead to a variety of dynamic effects that show up in measurements
of the dynamic behavior of the complex permittivity. It is therefore possible to take advantage of this
connection between observed dynamic dielectric properties and the internal structure of the
inhomogeneous dielectric to probe internal conduction by a form of dielectric spectroscopy different
from that generally used to study con- entional dipolar effects. It is evident that if :h< time scales for
the larter are considerably different from those of the former, as often proves to be the case, it
becomes possible in principle to separate the two classes of effects and study them independently.

One objective of this report is to develop the connection between experiment and theory of the
generalized Maxwell-Wagner-Sillars (MWS) effect embodied in the frustrated and delayed conduction
mechanisms described above and to use these connections to interpret results of measurements on
carbon-black filled elastomers.

THEORY

Maxwell’s Analysis

The simple model analyzed by Maxwell [7] will be considered first to show th. basic
mechanism of enhancement of the dielectric permittivity €' in a parallel plate configuration containing
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at least two different dielectric materials, each having some electrical conductivity. In what follows
the complex permittivity or dielectric "constant® will be designated ¢* with the superscript * referring
generally to a complex quantity. In the case of ¢, the real and imaginary parts will be ¢' and e,
respectively, and the sign convention is shown by the form

e* = ¢ -jer, M

with J = y-1 .

Maxwell considered the total time dependent current flow in a multilayered conducting
dielectric system. Only the storage permitiivity ¢’ is obtained from his model. Maxwell's treatment
can be considerably condensed as follows:

Consider a parallel plate capacitor nf unit area as shown in Fig. 1, having two or more layers
of dielectric. Let the i* layer have permittivity e, resistivity p,, and thickness a. The total current
density in the i* layer, including both displacement and conduction currents, will be given by the
Maxwell equation

(H), = (%—’f). Y @

where (3D/at), is the displacement current, and J, is the conduction current normal to the layer, both
in layer i. Since in this planar configuration there is no current parallel to the layer within a layer or
at an interface, the left hand term in Eq. (2) is a constant equal to the total current J,, consisting of
both displacement and conduction currents in the i* layer. The total current is the same in every
layer and througlr every interface, since all layers and interfaces are in series, and is the current
delivered by the external source.

(=)

v el
,,’". Y
QX g
“‘Q b FORECTAY \';Hf-,-..ﬂ.. R AT D ‘/ Electrodes
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(€, ~ ‘7‘*“"“/'-/-‘"_:—_& =235
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Fig. 1 - Schematic arrangement of Maxwell's paralic plate

capacitor model of an inhomogeneous diclectnic.
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At long times after application of an external voltage V, the system will approach a steady state
in which all 3D/3t go to zero and the total current will consist of conduction current only. At this
point all of the J, will be equal and will equal the total current J, = VR, where the total resistance
R = Zpa. Prior to attainment of steady state, the individual fields on either side of an interface and
the conduction currents J; adjust themselves in accordance with the material parameters p and ¢ to
maintain the same total current in each layer. Therefore, if D changes from one layer to the next
because e and p differ in the two layers, dD/at and J in each layer must change to compensate.
Surface charges of density o will accumulate at the interface causing J to change, as required, by a
readjustment of the local electric field in the layer. The resulting surface charges are equivalent to
charges of opposite sign separated by the thickness of the layer, and they form large electric dipoles
of magnitude proportional to the product of surface charge density times the layer thickness.

The equilibrium surface charge density at an interface is proportional to the total current J,
times the difference in products of permittivity and resistivity on opposite sides of the interface. Thus
the magnitude of the "conductivity dipole moment® depends upon layer thickness, the difference in
layer conductivities, the change in e across the interface, and the total conduction current J,

Quantitatively, if a capacitor containing a layered dielectric is connected to a voltage source,
the source voltage V, will be the sum of voltages across each layer. Dynamically, the buildup of
surface charge upon application of the external voltage is not instantaneous. It takes time for the
permanent dipoles to reorient in the applied field and generally different time for the mobile
conduction charge to migrate across a dielectric layer to form the surface charge at the interface.
Maxwell calculated these times for a given layer in terms of a characteristic time constant pe for the
material of that layer.

[Note that SI units will be used throughout unless otherwise stated, and all permittivities ¢' and
¢ are assumed to be absolute values; i.e., relative permittivities multiplied by e,, the permittivity of
free space. To simplify the notation whenever it is unnecessary to distinguish between ¢' and €", the
permittivity will be c!esignated simply by e.]

Maxwell’s treatment may be paraphrased by considering the situation in the first layer of a
system of unit area. Ohm's law gives for the conduction part of the total current E,=p,J 1=V//a,,
where E, is the electric field in layer 1, and V, is the voltage across the layer of thickness a,. E, V,
and J are all functions of time. The displacement part of the current is (dD/at), , where D is
the usual electric displacement related to the dipole moment per unit volume P, as usual, by
D = ¢E + P.

The displacement D undergoes a discontiauity 0,, = D,-D, at the interface between layers 1
and 2, and ¢, is the surface charge density responsible for this discontinuity. The surface charge
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may be determined from d0,,/dt = 3D,/dt - J, - J, , which is just another way of saying that vxH (or
the total current) is continuous across an interface. Making use of D, = ¢E; and J, = E/p,, Eq. (2)
may be written in terms of E, as

E, , ¢3E, 3

J-— —
'op, ot

This equation has solutions of familiar exponential form, E(t) = E(0) exp(-t/p;¢;), so there
is in each layer an exponential response with individual time constants, 7, = p¢;. The layered system
behaves like a set of resistor-capacitor units connected in series, each with its own time constant.

The sudden application of an external voltage V, to an uncharged system of this kind places an
initial field E;(0) = Q/¢, on the i* layer (by voltage divider action), where Q is the total charge
delivered by the voltage source. Therefore, the source voltage V, = QT a/e¢, and the overall
capacitance will be C = [Ea/¢]’, the same result as would be obtained neglecting the conductivity of
the layers.

After a long time the system reaches steady state in which the layer resistivities determine the
voltages across each layer, and V, = JEpa, = RJ, , where R is the total series resistance of the
system. In this state the field across tne i* layer is

E =p J . 4)

The displacement in the i* layer then becomes

D, =¢E =pgJ, . &)

Therefore, the interfacial charge density o,, at the first interface between layers 1 and 2 will be

9, = (06, - p8) J, . ©)

This equation gives the magnitude of the final interfacial accumulated space charge density in

terms of the change in characteristic time constants 7, = pg;, , so Eq. (6) may be rewritten
simply as

0, = (1, ~1)J, . (M

A similar expression may be written for the i* interface.

The dipole moment p, developed in layer 1 by charge transfer that produces o,, from a layer of
thickness a, will be ' a,0,,, the factor % coming from the fact that or average the charge g,, has
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moved only half the thickness of the layer, while the positive charges remain fixed in the solid lattice.
In general the i* layer will contribute a dipole moment

pl - '21’ al(f(q = Tg) ", . (8)

Its "normal® permittivity is therefore enhanced by addition of the conductive dipole moments p; given
by Eq. (8).

It may be seen that enhancement by conduction dipoles appears only if there is a variation in 7
between layers, and the magnitude of the effect is proportional to the product of layer thickness, the
total steady state current density J, , and the differences in 7 across the interfaces. For macroscopic
values of a, even small variations in 7J in an inhomogeneous medium can give rise to relatively large
net static permittivities e. Note, also, that the dipole moment is proportional to the ohmic current
density J,, so conduction polarization contributes significantly to the effective permittivity only if the
materials have relatively high conductivities or sufficiently high applied voltages to give appreciable
values of J. This, then, is the origin of the MWS effect.

A special case is often encountered, when there is a single layer of conductive dielectric
bounded by highly conducting electrodes, or alternatively with a very thin, low conductivity film of
oxide or air interposed between dielectric and electrodes. The relevant interfaces here are at the
electrode surfaces where they may give rise to macroscopic dipole moments. In this case the
resulting MWS effect is often referred to as the "electrode effect”.

The conductive contribution to the total dipole moment, given by Eq. (8), takes time w become
fully established, and this time dependence can also be found for Maxwell’s simple model. Within a
given dielectric layer two related processes take place upon application of an external voltage: nhmic
conduction begins, and permanent dipole orientation also commences. As polarization by orientation
of the permanent dipoles proceeds, the effective local electric field seen by the conduction electrons
decreases due to buildup of an opposing, depolarizing field that acts to slow conduction. A
depolarizing field also arises from charge trapped at interfaces, i.e., from the buildup of conduction
dipoles. Again, this slows conduction and affects the dynamics of the process. Therefore, the two
polarization processes are not independent. The problem may be restated more simply: as charges
move under the application of the external field, the interior field begins to weaken as soon as the
system responds, and the weakened field slows the further response of the system. The net result in
the simpler case of pure dipoie rotation response (no conduction) was worked out long ago by Debye
(10], FrOhlich [11], and others. However, in the presence of conductive particles the problem is
more complex. We will not consider the general case but will assume that one process, either dipole
rotation or formation of conduction dipole moments, is much faster than the other. This is ofien the
case and seems to be true in the elastomers studied in the present work where the 5109 neoprenes
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used appear to have their principal dielectric losses, those attributabia to dipole rotation, in the
megahertz region of the spectrum. These are the so-called a-loss peaks.

In carbon filled rubber, the carbon particles themselves have resistivities of the order of
4000 u0-cm. The characteristic time constant r=pe of these particles is of the order of 10" second,
which would produce observable effects in the optical middle infra-red region of the spectrum.

Other conduction mechanisms such as hopping and tunneling between carbon particles give very
much higher resistivities sufficient to produce long time constants that can lead to loss peaks at quite
low frequencies. For example, resistivities of order 5x10"Q-cm are found at room temperature in
neoprenes with less than about 20% carbon black by weight. The time constant for such samples is
of the order of five seconds, giving loss peaks near 1 Hz. The conduction polarization is small in
such samples as long as the current density is low, as it is when the applied field is kept small to
avoid non-linear effects. Typically the applied field in our work was less than % volt/cm, giving
J = 10" A/cm?® and a conduction dipole moment density of ~ 102 cculomb-cm?. This dipole
moment is about 0.1 Debye unit per monomer molecule (1 Debye unit = 10™"* esu-cm or %x10%
coulomb-cm). Therefore, the conduction dipoles in these high resistivity materials contribute an
amount comparable to or less than the ordinary dipole rotation to the overall permittivity, i.e., the
MWS effect is present but not dominant.

Conduction permittivity will be roughly proportional to the carbon black content of the materia!
in the range under about 20% carbon, but the loss peak due to free charge motion will not be
pronounced at these carbon concentrations and may be obscured by the 1/f feature at low frequencies
to be discussed later. ’ ‘

When the carbon content increases above about 20% there is a rapid decrease in resistivity with
concentration (see Fig. 2). This is believed to be due to carbon agglomerates becoming large enough
to form continuous percolation-type conduction paths through the entire sample. As Fig. 2 shows. p
decreases to about 10° 0-cm beyond this percolation threshold. The value of 7 therefore increases by
several orders of magnitude, reducing the loss peak frequency to the milli-Hertz region or lower and
giving rise to the electrode effect mentioned earlier. Such ultralow frequency effects tend to be large
in magnitude because dipoles associated with them are macroscopic, the charge transport being across
the full thickness of the sample. In addition, beyond the percolation threshold the current density J,
increases considerably for the same applied voltage, further enhancing the magnitudes of the
conduction dipoles.




J. BURNS

124

1.8 '_(m rd P

1.64

11.44
11.24
11.04
10.8+4
10.6-
10.4+1
10.2-

Log Resistivity (Ohm-cm)

10.0
9.8
9.6
9.4~
9.24

9.0-

6 2 4 & & 10 12 14 18 18 20 2 20 28 28 0
%Carbon Black

Fig. 2 - DC resistivity vs carbon black cont+nt for a series of
5109-type neoprencs measured at 27°C.

Time Dependence

When dipc'e rotation resporse is much faster than the response of, conduction dipoles, the
effective local field for the conduction process is the applied field already fully reduced by the
equilibrium depolarizing field of the dipole rotation. The net reduction in field by depolarization
through dipole rotation depends upon the geometry of the system. In the simple parallel plate case
the depolarizing factor is simply 1/e,, where ¢, is the part of the permittivity contributed by dipole
rotation, which is not very large for materials with relatively low static permittivities, as in the
materials under study here. The conclusion is that once the dipole response is complete, the
subsequent conduction process and buildup of conduction dipoles takes place under an interior field

that is E, /e,. This is a reduced field but not drastically reduced, the reduction factor ¢, being
roughly 3-6.

Conduction electrons do not move in a constant field because, as the conduction polarization
builds up, it also produces a counterfield that slows conduction. Therefore, the conduction electrons
move under a time-varying local field. The resultant polarization produced by movement of these
electrons toward an interface is therefore not a simple exponential function of t/7, as might be
expected. Here, 7=pe is itself time-dependent, at least through the time dependence of €(t) and in
some cases from a time dependence in p, as well. It is evident that the process is inherently
nonlinear: o,, will be proportional to a factor (1 - exp[-t/7(1)])). and the dipole field in layer 1 will be

10
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proportional . 8,0,,. Since &(t) is proportional to the dipole field, we would expect to find e(t) a
function of (1-exp[-bt/e(t)]), making the problem clearly nonlinear. Only for times long enough that
*’.e exponential term is negligible does the nonlinearity vanish, with e approaching a constant limiting
value. At short times, expansion of the exponential term gives a quadratic and higher order
expression for (t), so the nonlinearity remains &t the short end of the conduction polarization time
scale. This matter seems to have been overlooked in the literature on the MWS effect, so its
ramifications have not yet been explored.

Qualitatively the effect of the nonlinearity can be seen by noting that as time goes on after
application of an external electric field, the local internal field decreases as the depolarizing field
grows. This leads to a reduction in conduction current J; below what it would otherwise be. The net
effect is to lengthen the time for charging the interface, i.e., for formation of g,,. The time constant
for conductive charging 7, is thus increased, and the increase is progressive in the sense that as the
interface charges, 7, becomes longer and longer. This leads to something akin to the "long-tailed” or
stretched-exponential response typical of dispersive transport [12,13). Experimentally we find
something like a stretched exponential character in the very low frequency dielectric response in
carbon-filled neoprene elastomers.

The nonlinearity in time development of €(t) leads to an integral equation. Instead of
attempting to solve it, even approximately or numerically, a more conventional, empirical approach
will be taken. The response will be assumed to be a superposition of time-delayed responses in the
form commonly used in hereditary mechanics based upon the fading memory principle [14-16). The
response v(t) to a force u is the cumulative sum (integral) of all earlier values of u(t, 7) where t>0
and G=7<t. ‘Each earlier force is modified by the fading memory function G (1, 7) acting over the
intervening interval (t - 7). The form is thus <

v(®) = v(0) * ] :G(I,‘r)ll(‘r)dr . 9)

The fading memory function is usually taken as a Jecreasing exponential of the form exp(- /7). This
form has the practical virtue of making the integral in Eq. (9) a Laplace transform of the force
function u which greatly facilitates further mathiematical manipulation. However, as already noted,
the nonlinearity of the problem spoils the simpie exponential time decay, so the memory function is
expected to have a more complicated form. Moreover, the superposition principle is not generally
applicable in nonlinear problems, leaving one at a loss to know even how to set up the problem. In
such cases it has been the practice to ignore the latter difficulty and to treat the problem in a quasi
linear manner, at least to the extent of using superposition and its basic formulation in the form of
Eq. (9). The function G(t, 7) is then determined empirically from the measured response to a simple
forcing function such as a voltage step function or a sinusoidal applied voltage. It is found in many
cases and in many diverse phenomena [13) that G(t, 7) can be fitted rather well by a “stretched
exponential” function of the form
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[ ]
Git, 1) » A exp [-b[%] ] , (10)

where A, b, and B8 are constant parameters. Scher, et al, [12] have shown that this form leads to the
"long-tailed” anomalous dispersive transport observed in the form of a t®*# depennence of the
transport flux which in our case is the conduction current that leads to internal charge buildup at
interfaces o,;,,.

Qualitatively, at least, the above procedure gives a sensible result; namely, an anow.alously long
decay time for the response to un applied force, which in the present case is internal current flow
under applied external field. This is consistent with the earlier expectation that response times would
be lengthened by reduction in the internal electric field due to buildup of macroscopic dipoles by
trapping of charge g; at interfaces. Whether there is quantitative agreement with the stretched
exponential memory function remains to be determined by a .nore systematic analysis. However, we
shall proceed using the superposition formulation embodied in Egs. (9) and (10).

Frequency Dependence

Up to this point no explicit mention has been made of the frequency response to an applied
alternating field. Formally, a Fourier transform of the time domain response gives the frequency
response. However, the conventional method of arriving at the 1equency response is to sum the
responses of all the oscillating dipoles of every kind with appro, - .¢ weighting for each. The
weighting function is, of course, unknown a priori, so it is regarded as a fitting function to be
determined from experiment.

The response of a rotating dipole with a relaxation time constant 7 to a sinusoidal electric field
of circular frequency w was found by Debye [10) (also see ref. [11]).

The form is simple:

W =, ¢ ';' -;", . (1)
= JW

Separation of real and imaginary parts gives

e, - ¢,
1 + &7

(12)

t'w) =c_ +
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and

(¢, -¢ )wr
e’ - 0 . (13)
© 1+ o
where ¢, is the static or iow frequency limiting value of ¢', and e_ is its high frequency limiting
value.

These Debye equations are used for a wide variety of relaxation processes in physics even when
the relaxation mechanisms may be quite different from the simple dipole model for which it was
derived. There is, however, a justification for this. The Debye functions form a continuous,
complete orthogonal set with respect to either w or 7, s0 any reasonably well-behaved function can be
expanded in Debye functions to give an integral equation representation of the function similar to the
Fourier integral representation. Thus, in general

e (w) = NI 0" ¢(n) D(wr) dr , (14)

where D(w7) is the Debye function, Eq (11), and g(7) is the weighting function or distribution
function for response times 7. The generality of this representation makes it useful aside from any
questions as to the "correctness” of the Debye function for a given relaxation mechanism.

Of course, if D(w7) does not properly represent the relaxation mechanism, then the distribution
function g(r) may not have much physical meaning itself, being more in the nature of a curve fitting
function. In any event, Eq. (14) will be taken as the basis for the dynamic treatment in this report.

Temperature enters the dynamic pic:grs prim~rily theough the 7's in g(7) and to a much smaller
extent through ¢, and ¢.. The 7 dependence on temperature is approximately exponential in a
semiconducting material and is evident experimentally through the frequency shift of 2 given point on
the ¢'(w) and ¢"(w) curves [e.g., the loss peak in ¢"(w)) as temperature changes. The loss peak for a
single relaxation time process occurs, for example, at wr=1 so the frequency of the peak w, shifts
inversely with 7 as temperature T changes. On the customary logarithmic frequency scale the loss
peak would shift as (-1/T), shifting to lower frequency as T goes down.

However, if the more conductive phase in a composite dielectric is a metal or semimetal, the
temperature dependence of 7 is not s0 pronounced and may in fact be very small in the case of a
metal. In the filled elastomers considered here the conductive phase consists of colloidal carbon
particles or aggregates, and these possess a small negative temperature coefficient of resistivity,
giving rise to a small loss peak shift in the same direction as temperature moves, i.e., to lower
frequency as T goes down. This is what is observed experimentally.
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The relative permittivity e of carbon in diamond form is about 5.7 [17]). The values for
graphite and amorphous forms will be somewhat less. The resistivity of graphite is about
1400 uQ-cm and for amorphous carbon is about 4000 uQ-cm. Therefore, the time constant r=pe lies
in the 10 second range, as pointed out earlier.

It is quite probable that the carbon is in the form of loose, dendritic aggregates. In this case,
the resistivity of the particulates will be much larger than the values cited, which apply to compact,
single carbon particles. Conduction within a particulate may well involve hopping and tunneling
between individual carbon particles that make up the particulate. Such conduction mechanisms are
common in amorphous materials. They can be quite slow and variable, and they often depend
strongly upon temperature, as well.

The sort of hopping or tunneling conduction that is typical of charge transfer in amorphous
materials frequently exhibits the fractional- or stretched-exponential response mentioned earlier,
leading to a long-tailed algebraic, rather than exponential, decline in conduction with time. This slow
decline makes the loss peak asymmetric on a log frequency scale with the low frequency side of the
peak trailing off slowly toward lower frequencies while the high frequency side has a normal bell-
shaped form. Such asymmetry, if it can be seen at all in the presence of the rising 1/f characteristic
of dc conduction of the system, is a good clue to the presence of hopping/tunneling conduction and
indirectly points to loose aggregate forms of the carbon particulates.

Geometric Effects

So far, the discussion of the dynamic character of the MWS effect has been in general terms
based on Debye-Frdhlich theory. It should be evident that the shapes of the conductive particles or
aggregates play an important role in the MWS effect. This is because the electric field seen by the
mobile charge within a particle is a function of its shape. From a macroscopic point of view the field
equations, Laplace or Poisson, must satisfy appropriate boundary conditions at the interfacial surface
of a semiconducting particle inside the material. The shape of the interface is therefore important; so
is its orientation with respect to the internal field. Thus, there are two parameters to be considered:
both particle shape and orientation with respect to the field.

The simplest case, dealing with spherical conducting particles, was treated by Wagner [8). His
result can be put into the following form [9):

¢ = c.[l . T’T%?)?] (15)




where

The permittivities ¢', and ', are the real part of €* for the insulating and conductive media
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T = (2 +¢')p,.

(16)

an

(18)

(19)

1espectively, g is proportional to the concentration of conducting material, and p, is the resistivity of

the conducting particles.

The form of Eqs. (15) and (16) is just that of the Debye-Fr3hlich dynamical theory, as would

be expected, with K being a shape factor having the specific form given in Eq. (18) for the special
case of spherical conducting particles. K comes from a solution of the electrostatic field problem that

satisfies the boundary conditions on a sphere of conductivity p, and dielectric permittivity ',
surrounded by an infinite insulating medium of dielectric constant ¢',. Rewriting Eq. (14) in
expanded form gives

e e [l + I: &(7)

g - wT
J 6.]’ x(r)———l e T

o7

0

@n

Wagner assumed the fogarithms of the resistivities of the individual particles to be distributed in

a Gaussian fashion about the mean value. This will be recognized as a log-normal distribution. From
this assumption, the form of g(7) can be written immediately as

15
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g = =L _exp [___[log(:l:,)]’] ’ @2
* or .

where, as before, q is proportional to the concentration of conductive materi greset, and 7, is the
time constant associated with the mean value of the resistivity. Theparamstsr - 'y & usual, a
measure of the width of the distribution and is to be regarded as sad’ ’ goeer that is found
in practice by curve fitting to the shape of an experimental curve #f € V8 lng feaqguency. It is not
clear whether the choice of a log-normal distribution was considergs by Wagner o ave any
particular physical significance or whether its choice was simply a qzer of mMhewatical
convenience in view of the fact that experimental curves of ¢ plotted QP2 | § trequency scale are
more or less symmetrical and generally bell-shaped of Gaussian form. The latter seems the more
likely.

Yager [18) has given a rather extensive discussion of relaxation time distributions in dielectrics
and has shown that the log-normal distribution is consistent with a superposition of exponentially
decaying response functions. Each such exponential response function generates 3 Debye-type
frequency response of the form in Eq. (14), the weighted sum of which gives Egs. (20) and (21).
Therefore, whatever the motivation for Wagner's choice of the log-normal form for g(7), it proves to
have been a good one.

There is one caveat, however. The log-normal distribution is symmetric about its maximum
and can only generate similarly symmetric e functions. Experimentally, asymmetric e” curves are
frequently observed. Indeed, these may well be the norm. There is also a good physical basis for
such asymmetry which can arise from *. anomalous time dispersion of hopping and tunneling
processes that are common in amorphous materials. These give a long-tailed power law t* type of
decay characteristic mentioned earlier rather than the exponential decay assumed by Wagner and most
of his followers until recently. More modern discussions of the form of the dielectric response
function may be found (19-23).

Proceeding with the conventional treatment after Wagner, the equations above for ¢' and ¢"
with g(r) given by Eq. (22) are simply extensions of Eq. (i4) to a specific distribution of conductive
response times and still do not contain any details about the shapes of the conductive particles. These
are contained in a shape factor K. Sillars [9] gives values of K for the simple Maxwell model

qc,

K® ———, 3
(1+qc, @
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Lale ) ve 4)
(1 +q)p,
and
e = (1 + 29— S22 @5)

g(e, ve) +e,’

where now q is the ratio of thickness of the conducting layer to the total thickness of the media
between the capacitor plates.

Sillars shows the dramatic change in the loss tangent tan § that takes place when the conducting
material, instead of being disposed in the form of a plane layer, is distributed in the form of small
spherical particles. Figure 3, adapted from Sillars, shows this effect. Van Beek (24) in a valuable
review article gives an extensive compilation from various sources of shape factors for a variety of
geometries: two layer and multilayered planar systems such as Maxwell treated, systems of dispersed
spheres (after Wagner), dispersed spheroids (Sillars), dispersed ellipsoids, conducting spheres and
ellipsoids dispersed in insulating dielectric media, dispersed cylinders and rods, dispersed lamellae,
colloidal solutions, and porous dielectrics. Ali of these are given in modern rationalized MKS units.

In addition, Van Beek gives some calculated results ¢' and €" for several of these geometries
using practical ranges of values of parameters and properties of particles and surrounding media to
illustrate how the MWS effect can give very large apparent permittivities and dielectric Iosses for
certain ranges of these parameters and sizes and shapes of dispersed particles. The results are
sometimes dramatic. For example, a simple two layer planar system of the type given by Maxwell,
having a low conductivity layer of thickness 10 mm with a 5 mm thick semiconducting layer of the
same basic relative permittivity ¢’ = 2 but a conductivity 10* times greater, gives a low frequency
static permittivity ¢’ = 4450 and a peak loss ¢,," = 2224 for a maximum loss tangent of about 0.5.
The loss peak occurs 2t a frequency of 0.27 mHz in this case which might occur in practice with a
heavily oxidized metal plate between two electrodes or an electrolyte between oxidized electrodes.
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Tan b

logifrequency)

Fig. 3 - Loss angle of a given concentration of semiconducting

material dispersed in an insulating dielectric as 8 function

of the zhape of the conducting material {9).

(a) Sheet form nonmal to the applied ficld.

(o) Spherica! panticles.

(b') Spheriodal particles with major axes along the ficld.

(c) Cylindrical particles extending from one face 1o the other
of the dielectric.

Magnitude of MVS Effects

Of particular interest for the present study are the cases of conducting particles of various
shapes embedded in insulating media with normal, relatively low permittivities and losses. For these
cases formulas collected by Van Beek from several different authors do not agree with experiment.

These formulas were derived for dielectric ellipsoids of various eccentricities and orientations with
respect to the external applied field, and the transition to the case of high conductivity particles was
made by letting the permittivity ¢’ of the ellipsoids become very large compared with that of the
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surrounding medium. The resulting expressions for the overall permittivity of the inhomogeneous
dielectric turn out to be fairly simple, but they do not predict the very large values of ¢' and tan & that
are found in, for example, neoprene with more than about 12% carbon black filler.

Polder and Van Santen {25) have proposed an expression for the resultant ¢' that is proportional
to the product of the concentration of conducting ellipsoids and their permittivities, so one can simply
choose the latter to give as high a value as desired for the overall ¢', but this is not a very satisfying
situation theoretically. Sillars® [9] treatment of the case of conducting spheroidal particles in a
continuous matrix gives a more complex but also more detailed picture of the effects of the various
parameters. But it, too, fails to account for the very large values of ¢' observed experimentally. The
Sillars results resemble those of Wagner shown in Egs. (15)-(19) for spherical particles. Both Sillars’
and Wagner's treatments emphasize the effects of conductive particles upon the positions and shapes
of the dielectric functions ¢' and ¢”, but the effects upon the absolute magnituues of these functions
are not adequately accounted for. A fully satisfactory treatment of the magnitudes of the dipole
moment induced in a conductive particle embedded in a dielectric insulator involves the complex
subject of screening in metals and semiconductors, as mentioned earlier. Though a completely
satisfactory theory does not yet exist for this important subject, it is possible by relatively
straightforward arguments to arrive at reasonable estimates of the magnitude of €' and " at very low
frequencies sufficient to predict static permittivities that compare with observed values.

Consider a small embedded conductive particle of volume v and initially for convenience let the
particle be a rectangular prism of sides ¢ and length £' in the direction of an externally applied
electric field E,. If there are n mobile charges (conduction electrons) per cm’ in the particle, giving
caarge density ne where e is the magnitude of the electron charge, the total free charge in a particle
wili be q = nev. If the applied field E, were able to sweep all of the free charpe tn one end of the
particle, the resulting dipole moment would be p = '4q{"' = kenv{', the factor ' arising as usual
because on average the initially evenly distributed charge g moves half the length of the particle.

This simple analysis is incomplete, however, because it fails to take into account the fact that as
the charge moves, it creates a counter field due to space charge accumulation at the downfield end of
the particle .t the interface with the insulating (or much lower conductivity) material surrounding the
particle. Eventually the motion of the charges will stop when the counterfield balances the local
applied field, and the space charge is then said to screen out the local field when the system is at
equilibrium.

Most texts on solid state physics [26, 27} reproduce the standard treatment of the problem of
screening in a conducting solid through the dielectric function e(k,w).

This form of the permittivity is a function of both the circular frequency w and spatial
wavenumber k (=2x/)\) of an electromagnetic disturbance within the conductor.
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The usual treatment is given in both the Thomas-Fermi and Lindhard approximations for the
free electron gas in a metal or semimetal. The Thomas-Fermi expression is particularly simple in the

static case when w=0:
ol 3]

Here ) is the longest-wavelength electromagnetic wave that can “fit" the length of the sample in the
field direction. In the example being considered, A=2¢".

The quantity ¢, is the Thomas-Fermi screening length,

-1
¢ = 61rne’] @7
z E/
where the Fermi energy E; is given by
PLLCLL e8)
zm .

In this expression h is Planck’s constant and m® is the effective electron mass. (Cgs units are used
here: e=4.8x10'° esu, E, is in ergs, ¢, is in cm, h=6.624x10"7 erg-sec, n is cm?>, and m’ is in
grams.)

Equation (26) is consistent with the statement often made that the dielectric constant of a
conductor (metal) approaches infinity. This is true in the Thomas-Fermi approximation only for an
infinitely long conductor for which A-c0. The more precise Lindhard expression for the dielectric
constant of a metal, based upon a quantum mechanical calculation, leads to a small correction to the
Thomas-Fermi form that is insignificant for particle sizes of the order of those of carbon fillers used
in elastomers, namely a few hundred angstrom, though agglomerates of particles may be much larger.

The particle size in the field direction determines the magnitude of the permittivity through
Eq. (26) which gives the dipole moment p per unit volums of the particle for a single particle through
the classical relation ¢ = ¢, + p/E, , where E, is the local field in the vicinity of the particle, and ¢,
is the permittivity of free space. Thus, p = (M/{,)*/xE,. If the applied field is E, and the average
permittivity of the composite sample is <e>, then E, = E,/<¢>, provided the conducting particles
are sufficiently widely dispersed not to disturb each other’s local fields. When this is true, p =

(E./<e>)NVE)

If the dipole-dipole interactions are ignored and the particles are regarded as independent and
suspended in a medium, the electrical effect of the medium will be to reduce the applied field to
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E, = E/Je, , where ¢, is the relative static permittivity of the pure, unfilled medium rather than the
average <e¢> of the composite medium plus particles. Since ¢ < < <e> in cases of interest here,
the particle dipole moment per unit particle volume will be p = E,QV/€)%e,.

Equation (26) gives the dielectric permittivity for a single, isolated particle without correction
for the depoiarization effect due to the shape of the particle. The depolarization factor F arises as a
result of fitting boundary conditions at the surfaces of the particles. Depolarization factors are
derived from classical theory and are given in any standard text on electromagnetic theory. In SI
units they are simple quantities for simple shapes; e.g., 1/3 for spheres, 1 for a thin slab, 0 for a long
thin cylinder, etc. Kittel {26) gives a useful graph of F vs axial ratio for ellipsoids.

The dipole moment of a dielectric particle is related to the local field E, through the dielectric
susceptibility, x = p/E,. For an ellipsoidal dielectric particle in a uniform local field, classical theory
gives

p =xE,/(1 + xF) . 29)

Note the similarity of this expression to the equation for effective gain of a negative feedback
amplifier (or any linear feedback system). In Eq. (29) x plays the role of the open circuit gain of the
amplifier, and F is the feedback factor, the fraction of output fed back to the amplifier input. This is
a useful analogy since it gives in a more familiar form the way in which the net response depends
upon F. When xF is small compared with unity, the net gain is large; i.e., and determined entirely
by x. When xF is large, on the other hand, the net gain is determined entirely by F independent of
the gain of the amplifier itself,

The presence of space charge in conductive particles, in contrast to insulating particles to which
the classical analysis applies, modifies Eq. (29) by changing F in ways not yet known nor easily
calculated except for a few very simple geometries. The space charge values of F will, in general, be
different from those calculated for dielectrics.

Within a conductive particle the depolarizing field E, = -Fp reduces the local field by the
amount E,, giving a lower value for the local field
E' =E[e(1 +xP))T. (30)
With p = xE,’ and x = (A/,)? one has from Eq. (26) and the classical definition ¢ =¢, + x an

expression identical to Eq. (29), but with the value of F different from the one in Eq. (29),
determined for the space charge case. The corresponding equation for the permittivity can be written

' . X
€ c°+l'xF' an

Two limiting cases of interest, xF < < | and xF > > 1, are the same as before. The first of
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these gives ¢' = ¢, + x/¢,. This case will arise when the geometry of the particles gives F=0,
regardless of the magnitude of x. In this case, x can be large if A, which is approximately twice the
length of the particle parallel to the local field, is large, i.c., for long particles oriented along the field
direction.

For graphite, and presumably also for amorphous carbon which has nearly the same
conductivity, Ashcroft and Mermin [27) give n = 3x10'" cm™ and the effective mass of the electron,
m® =(0.06m, where m, is the mass of the free electron. For these values the shielding length is
approximately 15A. Since colloidal carbon particles used as fillers in elastomers have minimum
diameters of about 300 A by electron microscope measurement, the value of M¢, is at least 20, so ¢’
will be at least 400. This is in the general range of experimental values found for carbon black filled
elastomers in this study at low frequencies.

The other limiting case, Fx > > 1, gives ¢' = ¢ + p/¢,F. This case can only arise when
F>0, and for most particle shapes it is reasonable to expect that F will be well above zero.
Therefore, ¢' will not be very large for this case, but its value will depend directly upon the
magnitude of F, independent of x, as expected from the feedback analogy.

It is evident that values of F are important to determine which of the two cases is dominant for
a given type of conducting particle. A full treatment, to include both screening and proper boundary
conditions on the local and internal fields in the particles, appears to be a rather
formidable task. Without carrying out such an analysis, a strictly correct formulation of Eq. (31)
cannot be given, but two simple special cases can be treated. Electric field lines at a conductor
surface increasingly approach normal incidence as the conducu ity becomes large, and the
depolarization factor approaches zero for cases in which most ~f he field lines are normal to the
surface. This is the situation even in the presence of space charge for flat conducting slabs whose
faces are perpendicular to the applied field, and in this case F=0 with or without space charge. At
the other extreme, for long thin conducting needle-like particles, because the E-field is tangent to the
particle surface on the sides and the tangential component of E is continuous across a boundary in
general, even in the presence of space charge, it is reasonable to expect that in this case also F=0, as
it is in the classical dielectric case for this needle-like geometry, The value of F for other shapes
will, of course, differ in the presence of space charge from the pure dielectric values. In what
follows, F will be taken to be zero.

There is reason to question the applicability of much of what has been said above whenever
agglomerates rather than compact, dense carbon particles are responsible for MWS effects. In the
frequency range covered in this work, it is generally the case that carbon agglomerates dominate low
frequency effects. Estimation of F for dendritic particulates presents special problems not yet
addressed. To deal first with concentration, let there be N conductive particles per unit volume in the
composite material. The particle mass concentration c is then mN/p, grams of filler particles per
gram of composite material. Here m is the mass of a particle, assumed to be the same for all
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Let p' be the density ¢ the material of the conductive particles and v be the mean particie
volume, so the particle mass m = p'v. Then ¢ = p'vN/p, and the effective static permittivity of the
composite will be the simple mass-weighted sum of contributions from the pure matrix and from the
conductive particles provided the concentration is small enough that interactions between particles
may be neglected. Thus, €' may be written for the non-interacting particle case

(ML) ‘ (32)
e, + F(NIL))

e =(l-q)¢, + ¢ [c, +

in the carbon filled elastomers of interest in this study, ¢ ranges from about 8% to 25%, MN¢,
is 220, and ¢, is 3-6. Within this range of parameters one can account for values of ¢' from about
10 up to about 45 for particles that are roughly cubic with £ = 300 A. For more elongated particles
€ goes up approximately as the square of £°, so €' can easily increase to very high values. On the
other hand, for particle agglomerates, and particularly for those loose enough in structure to have low
conductivity mediated mainly by hopping and/or tunneling mechanism, the screening length is no
longer given by the simple Fermi-Thomas theory, and the applicability of our screened field results is
open to question. The simple approximate theory presented here is capable of giving magnitudes of
the static dielectric constant that are in rough agreement with experiment for quite reasonable values
of the relevant parameters but only for dense single particles.

Dynamics of Delayed Conduction Relaxation

Turning next to the dynamics of thenfarmatio:i .2 relaxation of dipoles that arise due to charge
migration in conductive particles, it is important to consider the time response of the conduction
process following the application of a local electric field. In amorphous conductors, and also in
some semiconductors and semirm.etals with deep trapping centers, part of the conductive charge motion
may be delayed, often by quite long iimes, due to trapping of free electrons at defects in the solid.
The tunneling and hopping conduction mechanisms are inherently delayed. Therefore, it is usefu! to
consider the conductivity as a complex quantity ¢° = o' + jo". The real part ¢' accounts for the
conduction current in phase with the applied time-dependent field while the imaginary part o"
accounts for current that lags the field by 90°. Note that in this case o' is the lossy part while ¢” is
the storage part of ¢". Thus, o' combines with ¢" to give the net loss in the composite material while
0" and ¢’ together form the storage part of the total permittivity of the material.

The relevant Maxwell equation may now be written in the following form for an applied field
oscillating at frequency w,
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J,-aa_?*.l-(lucw 0°)E = juE [[t ;d.] -J [C"%]J ’ (3)
where D is the dielectric displacement proportional to the storage part of the permittivity ¢’ plus the
out-of-phase part of the conductivity ¢”. J is the current density in phase with the applied electric
field, including both ¢* and the dielectric loss permittivity e*. This leads to the identification of the
real or storage part «' of the overall complex permittivity «* with (¢’ + ¢'/w), and the overall loss
permittivity «* with (¢ + ¢'/w), where x = «' - jx".

It is clear from the result

' =g "’0./(0. (34)
" =" 20w,

that at sufficiently low frequencies, the 1/w factor in the conduction terms will make these terms
dominate over the polarization processes, and ¢’ and ¢” will become the important parameters. The
frequency at which conduction begins to dominate will, of course, increase as the conductivity itself
rises, so as either the concentration of conducting particles in a composite elastomer or the
conductivity of the individual particles increases, ¢° will rise and so will the crossover frequency at
which the 1/w characteristic frequency dependence becomes important. The conductivity can also
vary markedly at constant conductive particle conzeni.2tion due to agglomeration and restructuring of
the particles [16). For this reason, there may not be a simple relation between concentration and the
conductive contributions to «°.

It should also be emphasized that in Eq. (34) all four quantities on the right kand side are
frequency dependent, giving rise to a wide range of possible frequency variations of «' and «*. In
general, however, the region of strong frequency dependence of ¢* does not overlap the region of
strong dependence of ¢°. This permits separation of the dipole and conduction effects in favorable
cases, and in such cases it becomes possible to isolate and study the peculiarities of the delayed
conduction embodied in 0", making these dielectric measurements on composites a potentially useful
tool for investigating dispersive charge transport in such solids.

The crossover frequencies at which the dipolar and conductive contributions to «' and x"
become equal are best found from experimental data plotted as log x vs log w or log f. As w
decreases, these plots should approach straight lines with slopes -1 according to Eq. (34), provided
neither o’ nor ¢ depends upon w. At frequencies weli above crossover, the frequencies are in most
cases still well below the range where ¢ depends appreciably upon w. In such cases, the frequency
dependence of both «' and «” will be rather flat. The crossover value w, can then be found at the
intersection of the two asymptotic straight lines, one with slope -1 and the other with slope = 0 for
the lossy part x”. In the transition region near w,, any structure that appears in «' would ordinarily be
attributable to 6" (w), while structures in «” in this region would likely be due to o'
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Experimentally, however, matters are not so simple. The low frequency limiting slopes of
log «' and " vs log w become linear but not necessarily with slopes of -1, as expected from Eq. (34).
The slope of the real part «' approaches -1 at sufficiently low frequencies, but the absolute value of
the slope of «" remains less than one. This is due to the frequency dependence of ¢” which goes to
zero as w0 because o" is inherently an ac term, vanishing at de. If the frequency dependence of
¢'(w) in this range were well enough known, ¢"(w) could be determined from the low frequency
experimental data.

Dispersive Transport Effects

Non-integer slopes of the kind observed at low frequencies in carbon filled elastomers are
found in responses of many other materials (see the reviews by Ngai [13], Rajagopal and Ngai (28],
Rendell and Ngai (29)], Jonscher [30], Scher, et al, [12]). Such nonlinear responses are believed by
many workers to be universal, though there is some difference of opinion as to precisely what
mathematical form the response function should follow. Two forms are presently in vogue, the
stretched exponential and the non-integer power law. Both fall into the general category designated as
dispersive transport. It will be shown presently that the power law is an asymptotic extension of the
stretched exponential, so the two formulations are actually one and the same though they do not
appear so at first glance, and this equivalence has generally been overlooked.

Jonscher [30) makes a particularly strong argument in favor of an asymptotic «* dependence of
both real and imaginary parts of the dielectric susceptibility x with 8 between zero and one for
frequencies far below the loss peak, and an asymptotic «*' dependence on ti¢ high frequency side.
He provides evidenoe for the universality of this kind of frequency dependes.:< for all types of
dielectric response in a wide variety of materials, both conducting and non-conducting. In this
respect, the power law behavior appears to apply to both the dipolar response and to the conduction
response as well. It should be remembered that these are limiting behaviors of x' and x* far from the
loss peak or the x' inflection point on plots of log x vs log w. Behavior near the loss peak is not
prescribed by the asymptotic response, of course. In attempts to bridge this gap, hybrid forms of the
power law response have been proposed (30], such as x* [(w/w)* + (w/w)"*]* where 8' and § are
not necessarily equal, though they are both numbers between zero and one; w, is the frequency of the
loss peak x" or the inflection of x*. One result of the power law response is that the ratio of loss o
storage susceptibility x"(w)/x'(w) reduces to the simple form ctn(8#/2), independent of frequency, far
from the loss peak region.

The high frequency behavior of carbon filled elastomers is dominated by dipolar processes that
may be broadened and may be asymmetric but nevertheless have well defined loss peaks and
inflection points in their storage permittivities. These features are not accounted for in any detail by
the asymptotic forms emphasized by Jonscher. Ngai and coworkers, on the other hand, were able to
fit the region around the loss peak and inflection point quite well with the stretched exponential
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function in many different materials for both elastic and dielectric responses and for viscoelastic
respunses, as well.

Unfortunately, there is no closed form for the Laplace transform of the stretched exponential
function exp(-t/7,) except for the special values 8 = 0.5 and 1. Consequently, there is no general
closed form for the frequency response, and it is not a simple matter to infer the frequency response
characteristics from the current decay response in the time domain.

The low frequency asymptote can be found rather simply, however. Let f(t) be the general
response function in the time domain. Then it can be shown [31] that the frequ:ncy response
F(w) = £, [-3f/3t), where £y, is the Laplace transform for pure imaginary argument jw (or the
one-sided Fourier transform which is the same thing). For the stretched exponential, the time
derivative df/3t may be expanded in a series in (t/7) where 7, is one of the two parameters
characterizing ¢. This series may then be Laplace transformed, term by term, to give

Fw) = 8 z.:___f‘[(nn*!l)ﬁ ) g ytamn @35)

At high frequencies (low values of t/7,), the first term of the series is the dominant term, and
F(w) = B T(8) w”. In this limit, the slope of the log-log plot is -8 in agreement with the power law
model. At the other limit, low w or t > > 7,, the asymptotic form may be evaluated from the
observation that Eq. (35) is a Laurent series expansion with ar essential singularity at w=0. The
asymptotic form is evaluated by the residue theorem as the limit as w->o0 of jwF(w) [32], and the
value is ST'(8)w'?. This also agrees with the power law result at low frequencies, so the power law is
seen 0 be simply the asymptotic form of the stretched exponential. Since the larter also appears to fit
the experimental data near the loss puaa well, the claims for universality of the stretched exponential
also encompass those for the power law response. This would seem to resolve any controversies
about the relative merits of these two models. They are in fact the same.

There still remains a problem of interpreting Jonscher’s hybrid combination of low and high
frequency power law expressions with different 5°s which seem to work for some materials {30). In
fact, physical interpretation of the conventional stretched exponential response has not proven simple
either, and various efforts have not yet led to a generally accepted physical picture of the
underpinnings of this response.

‘The exp(-jnBx/2) term in Eq. (35), when expanded into cos (n8x/2) + jsin(n8x/2), gives for
the ratio of real to imaginary parts of the n® term of the F(w) expansion the value ctn(n8x/2) which
equals x"/x‘. This agrees with the asymptotic value given by Jonscher for 8=1. For frequencies
nearer w, , where the loss peak lies, more terms in the expansion must be included. and the simple
x"Ix' = ctn(8x/2) relation no longer holds. The result is that the loss tangent near w,, and in
particular around the maximum value of tan , is no longer independent of frequency, as of course
must be the case since tan § has a peak close to w,.
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It would be nice to be able to deduce the value of tan §,,, analytically directly from Eq. (35),
but this does not seem possible. Laplace transforms of the stretched exponential for many values of 8
have been numerically evaluated by Moynihan, Boesch, and Laberge [31] and more extensively by
Moynihan [private communication]. From these calculated transforms, it is a straightforward matter
to find the loss tangent for a given 8. Values calculated from Moynihan's tables agree well with
experimental results from this study for frequencies near w,.

However, one problem with Moynihan's approximate transform of the stretched exponential
function is that his tabulated values give no peak in the loss tangent as a function of frequency within
three decades of frequency below or four decades above the loss peak, the range of his tabulated
values. On the other hand, the asymptotic w'? frequency dependence of the stretched exponential
response does lead to a finite asymptotic tan 6 = ctn(8x/2) in the low frequency limit. Experimental
data on some carbon filled neoprenes give a well defined tan 5 peak not far below the high frequency
dipolar loss peak at w,, and the tan & is properly bell-shaped, showing every evidence of a monotonic
decrease away from the peak in both directions. The reason for the failure of Moynahan's
approximation to give a peak in tan 5 remains a puzzling feature that may be simply an artifact of the
approximation when extended too far from the critical frequency w,. It appears likely, therefore, that
the Moynihan evaluation of the Laplace transform is useful only in a restricted range of frequencies
on either side of the loss peak.

Summary of Theoretical Status

The status of the theo:y of the MWS effect in particular, and dielectric response in
inhomogeneous materials in gereral, may be summarized in the following way.

First, the dipolar response, largely due to rotational alignment of permanent dipoles in the
polymer chains of the elastomer, generally occurs at relatively high frequencies, well above
frequencies at which MWS conduction effects are important. Therefore, dipolar dielectric effects can
usually be studied in relative isolation from MWS effects.

The simple, single response-time Debye model for dipole rotation is not adequate to account for
the observed diclectric response at high frequencies, but it provides a convenient, if overly simple,
initial model. A better representation of the real response appears 10 be given by the two-parameter,
stretched exponential response function. One parameter, 7,, locates the position of the loss peak,
while the other, 8, determines the width and asymmetry of the loss peak and its associated inflection
region of the storage part of the complex permittivity. Both parameters are functions of composition
and microstructure of the material, and they also depend upon temperature and pressure and possibly
the past history of the sample.

27

P e e T o o - ST T S A e =




J. BURNS

There are exceptions to the rule that ordinary dipole and MWS effects are well separated in
frequency. If conduction takes place in sufficiently small particles dispersed in the polymer, the
particles mimic rotating dipoles in their frequency response. The time scale for the response is
determined approximately by the transit time for a mobile charge to cross a particle, and this can be
in the subpicosecond range for colloidal-size particles with relatively high conductivity. Carbon black
particles are a good example; they may be only a few hundred angstrom in diameter, and their
conductivity, while not in the range of a typical metal, is nevertheless large enough to place loss
peaks at infrared frequencies.

At low to very low frequencies MWS effects are almost always present without any interference
from dipolar influences. Again, their presence is revealed by large observed values of «°, but in this
case there is a large trend upward as frequency decreases in both real and imaginary parts of «*. It is
possible for these low frequency effects to occur without appreciable dc conductivity, but it is likely
that this effect will be too small to be observable if it happens because of the very small conduction
currents present in such cases. Usually, low frequency MWS effects occur as a result of
agglomeraticn of conducting particles into larger, longer aggregates that are likely to form percolation
paths for conduction through the sample. In the present work when carbon filler was present in
concentrations above the percolation threshold, both dc conduction and the MWS effects increased
markedly.

Low frequency MWS effects are complicated by the presence of both in-phase and quadrature
components of conduction. The latter are conduction currents delayed by being trapped at impurities,
interfaces, or structural defects particularly prevalent in amorphous materials, or the conduction
elections may be delayed having to hop or tunnel through barriers due again to structural defects of
amorphous origin. Such slow or dispersive transport can introduce a large out-of-pha: * ~ .mponent
into what is normally regarded as simple conduction, and this component is both dispersive and
frequency dependent.

Though the various low frequency effects combine in complex ways to give the observed
overall response, empirically these responses appear to fit the same, relatively simple two-parameter
stretched exponential model as the simpler rotating dipoles. This fact is both a blessing and a curse
for interpretation of results. The blessing is that there are, after all, only two parameters to contend
with. The curse is that, as in the case of statistical thermodynamics, averages over large numbers of
microsystems yield macro observables with few variables but at the same time effectively obscure the
underlying processes at the microscopic level. One is prevented from working backward from macro
to micro scales and is forced to devise micro models, perform the averaging which is not trivial in
most cases, and then compare the results with experiment. The problem is that there may be many
models that give similar macroscopic results. This is the major reason why it has been so difficult to
give a good physical interpretation of 7, and 8.
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EXPERIMENT

Two types of dielectric measurements constitute the experimental techniques employed in the
present work. One, the bridge method, is commonly used and operates in the frequency domain over
a frequency range from low audio (=20 Hz at the low end) well up into the megahertz range (to a
high limit of =20 MHz in this work). The other method operates in the time domain and is useful at
frequencies from millihertz, or lower, up to about one kHz, providing a sizable region of overlap
with the bridge measurements. The time domain method is a modification of what has usually been
called the pulsed or dc transient method because it commonly makes use of an input step function
voltage applied to a dielectric sample in a parallel plate type holder in the form of a parallel plate
capacitor. Charging or discharging currents are measured as functions of time folowing a step-type
change in capacitor voltage. A one-sided Fourier transform (or a Laplace transform with pure
imaginary argument) of the time derivative of the time-varying transient current can be shown to give
both real and imaginary parts of the complex dielectric permittivity €° (1, 6, 31].

The samples were in the form of 2-in. diameter circles cut from flat sheets. Sample thicknesses
ranging from ~ 0.2 in. to 0.85 in. were measured. Samples were prepared by standard procedures
from formulations that are commonly used for NRL-USRD underwater applications (33, 34, 35).
Measurements were usually made on samples with silvered faces. The silver was applied by spraying
an airdrying silver paint thinned with amyl acetate from a small CO, powered airbrush. The paint
thickness was sufficient to give a good smooth conductive coating, and edges were masked to prevent
shorting or current leakage around the edges. A few samples were measured with brushed silver
airdrying paint and some were measured without any conductive surface coating. The airbrushed
suifaces gave by far the most reproducible results.

i ld

Samples were held for measurement in a General Radio Type 1690 Dielectric Sample Holder
that maintains a constant, light pressure upon the sample faces by spring force. This pressure is
maintained when the holder is heated or cooled, and the plates of the holder are moved by a
micrometer mechanism so the plate spacing can be monitored accurately and corrections made for
creep of the sample if necesssary.

The sample in its holder was placed for measurement in an insulated, heated and cooled box.
An external Endocal heating/cooling bath provided a flow of coolant at constant temperature to copper
coils inside the box, and the box temperature was measured with a laboratory mercury thermometer
inserted through the top. The whole apparatus was kept in an airconditioned lab, and the sample
temperature could be held constant to £0.1 °C. Whenever the temperature was changed, at least 6-8
hours were allowed to elapse before any measurements were made to be sure the sample had come to
equilibrium. Equilibrium in this case does not merely mean constant temperature, which is
established much sooner, but the sample must relax elastically and dielectrically which is a much
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slower process especially at low temperatures. With this sstup measurements could be made from
about -15°C to +40*C which was as high as desired to avoid thermal deterioration of any of the

samples.

The bridge measurements were made on two General Radio Capacitance bridges. A
Type 716-C was used for low frequencies from 20 to 100 kHz. Frequencies above 100 kHz were
measured on a GR Type 716-CSI which is similar to the 716-C but designed for higher frquencies.
Bridge nulls were detected with an HP 400D vacuum tube voltmeter (VTVM) capable of nulling the
bridges to within a few microvolts. The sensitivity of this detector falls off above about a megahertz,
so for higher frequencies a shortwave radio receiver was substituted for the VTVM. The input
voltage to the bridge was kept small, under 0.5 v, to avoid nonlinear effects that began to appear at
driving voltages above about 1 v. In the frequency range above about 200 kHz, the coaxial
connecting cable between sample holder and bridge behaved increasingly like a short waveguide, and
it was necessary to correct for cable impedance variation with frequency.

When measuring samples that exhibited appreciable MWS effect, frequently either the
capacitance or the dissipation or both exceeded the range of the bridge, and it was the practice in
these cases to place a small 473 pF mica capacitor in series with the sample holder at the holder
terminals. Corrections were then made for both the capacitance and the very small losses of the
added series capacitor. With this modification, the highest capacitances and losses encountered in our
samples could be brought within ranges of the bridges.

Bridge measurements were made manually and transferred to a spreadsheet; the data were
reduced, sr..othed, and grapked by computer.

Initially, the pulse decay technique was used in a straightforward way. A small d¢ voltage,
again small to avoid nonlir.ear effects, was switched on by a solid state switch to the sample in the
same GR holder used in the bridge measurements. A very low input impedance operational amplifier
in series with the sample acted as a current-to-voltage converter or current amplifier. This amplified
the charging current giving an output voltage waveform that could be digitized and stored in a Nicolet
“Explorer” digitai storage scope. The current amplifier was a Keithley Model 428 with a fast
response suitable for such applications. The resuiting waveforms superficially resembled simple
exponential decay curves, but they actually contained a continuous distribution of time constants.

Data reduction in this case was also done by computer. Three methods were used at various
times. The simplest method was devised by Hamon [36). It is valid for currents with an algebraic
type decay of the form t* with 0.3 < 8 < 2, and it gives ¢ directly, but not ¢'. The value of ¢" at
frequency f is proportional to the current at time t = /10 from the onset of the voltage divided by f.
The Hamon reduction seems to give good results down to frequencies a little below the frequency at
which ¢” has its peak, but the accuracy deteriorates rapidly below that point.
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A second reduction method is described by Moynihan, Boesch, and Laberge [31]. It is based
upon an approximation of the current decay function as a weighted sum of simple exponential decays.
The weighting function in this case is the (unknown) distribution function for the time constants. The
case for a continuous distribution is a simple extension of the discrete case. Moynihan et al. showed
that the dielectric modulus M* = 1/¢° can be expressed in the simple form of a purely imaginary
Laplace or one-sided Fourier transform of the time derivative of the current decay curve. This is
amenable to computer calculation and is the favored method for current decay data.

Moynihan also tabulated the frequency dependence of the real and imaginary parts of the
dielectric modulus M"* for a stretched exponential form of decay curve I = I, exp[-(t/7,)] that was
mentioned earlier as being a prevalent time response for many materials and different types of
processes. This function has no closed form of Laplace transform except for the special values
B=0.5 and 1. Moynihan's tabulated values are convenient for finding the values of the parameters 8
and 7,.

Two experimental difficulties made the pulse decay method, as outlined above, less attractive
than it first seemed and led to a modification that will be described below. The first problem wita the
decay method is degraded accuracy at the high-frequency end of the spectrum. The origin of this
difficulty was the limitation on the sampling rate of the digital scope which in turn iimited the highest
frequencies that could be measured (by Nyquist’s criterion). In addition, there was a limit to the
frequency response of the current amplifier that imposed an additional high-frequency limit for small -
signals. It was possible to push these limits up into the tens of kHz range at some sacrifice in
accuracy, so the pulse technique was not used above 1 kHz.

At the low end of the spectrum, a different limitation arose. The low-frequency information in
the decaying pulse is to be found in the current at relatively long times after the voltage pulse is
applied, but at long times the current has decayed to very low values, making accurate measurement
increasingly difficult. To make matters worse, it is the time derivative of the current that is used to
transform into the frequency domain, and at long times the slope of the I(t) curve is nearly zero.
Under such conditions amplifier noise and stray pickup, small as they were, were sufficient to
seriously degrade the accuracy and, in the case of pickup, to introduce spurious peaks in the
frequency spectrum.

To get around both of these limitations, the pulsed source was replaced by a low-frequency sine
wave oscillator (Rockland 5100 Programmable Frequency Synthesizer), and the digital scope was
synchronized precisely with the Rockland so the phase shift of the sample current with respect to the
input voltage could be preserved in the digitized waveform. Since the input voltage and the resulting
current were both measured, the method was actually a direct measurement of the complex impedance
of the sample plus its holder and associated cabling. It proved possible with care to measure the
phase to ~0.2% over the entire frequency range covered in this manner (10° Hz to 1 kHz). With
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both amplitude and phase of the current measured directly in this way, it was no longer necessary to
go through the process of differentiation and Fourier transformation to reduce the data, which was
already in the frequency domain. This also improved final accuracy.

An overlap of nearly two decades in frequency (20-1000 Hz) was maintained between the low
frequency measurements and the bridge measurements. In this overlap range the low frequency
values of ¢' and ¢" were brought into agreement with bridge values so it was not necessary to
calibrate the current gain of the amplifier accurately. The bridge measurements provided a
convenient calibration datum in the overlap region.

The frequency range over which this technique can be used is very wide. It can be extended
into the radiofrequency (RF) range at one end and into the millihertz range at the other. There is a
commercial instrument, the GenRad Digibridge that, contrary to its name, is not a really a bridge but
an impedance measuring instrument that uses the same basic technique as described above over the
range ~ 20 - 70 kHz. In this instrument, however, phase is measured by the time delay between two
zero crossings of the waveform, a more conventional method than the use of a digital scope for
precise phase measurement.

It would have been advantageous to employ a very-low-frequency lock-in amplifier to improve
signal-to-noise ratio had such an instrument been available; at higher frequencies lock-ins are readily
available. An alternative method of noise reduction would be to use a summing digital storage scope
such as the Tracor-Northern NS560 Signal Averaging Computer, or a low frequency boxcar averager,
which digitizes repetitive waveforms on each cycle and adds the amplitudes at each point of the
waveform. In this way, several hundred such waveforms couid be superimposed with the result that
the random noise would tend to cancel or average toward ze:~ * hile the signal would add.

In the present work, such instruments were not on hand so noise reduction was performed by
smoothing the final calculated values of ¢’ and ¢” as functions of frequency. A simple, unweighted,
9-point moving average method, performed by spreadsheet calculation, proved convenient and
satisfactory. Some distortion at the ends of a data set is introduced by this method, but such
distortion is troublesome only if the data vary rapidly at the ends which was not the case here.

RESULTS AND DISCUSSION

Neoprene formulation 5109G has no carbon filler added, so it provides a baseline against which
to compare the effects of added carbon. Samples, all prepared in the same way, but with added
carbon black filler, are designated S109K (8% C), 5109L (12.8% C), 5109S (21% C), 5109572
(23%C), and 5109 (26% C). The room temperature resistivities of these samples as measured in this
work are shown in Fig. 2. The percolation threshold for conduction through the sample thickness
(= 2 mm) is approximately 16% carbon black in this particular series of samplies.
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Figures 4-8 show the measured dielectric permittivities ' and losses ¢" as functions of
frequency on a log scale for a temperature of 300 K. Figure 4 is shown for 5109G with no carbon
black. Its low frequency relative permittivity is 7.0 at 100 Hz, and its loss tangent is a low 0.014 at
this frequency.

These are reasonable values for unfilled neoprenes (poly 2-chloro-1,3-butadiens) which contain
chlorine and, therefore, have relatively large permanent dipole moments. The relatively small loss
peak at 4 MHz (tan § = 0.12) would appear to be a simple dipole rotation peak were it not for the
fact that this peak increases markedly as the carbon black content rises, particularly when it is above
the percolation threshold value.
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Fig. 4 - Relative permittivity ¢' and loss ¢* for $109G Neoprene
at 27°C. Carbon content of $109G is zero.
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Fig. S - Relative permittivity ¢' and loss ¢* for $109K Neoprene
at 27°C. Carbon content is 8% by weight.

4

Ponniiivly, o
g $
o, &

1
|

— —
:- y or rrvoret LE A BB ARAN L) T rree ¥ V3rrrrin L LRS! -y
a " o
Frequengy, 2

Fig. 6 - Relative permittivity ¢ and loss «* for $109L Neoprene
at 27°C. Carbon content is 12.8% by weight.
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Figure 9 is a plot height of this loss peak against carbon content for the neoprene series 5091G
through 5109. The loss curves from which these data were taken are found in Figures 4-8. The
magnitudes of the peaks are approximately proportional to carbon content up t> the percolation
threshold where ¢",, then rises exponentially at a high rate.
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Fig. 9 - Loss peak magnitude ¢",, as 8 function of carbon black
content for 5109 series of neoprenes.

The samples 510954 and 510953, with 8% and 12.8% carbon black respectively, both well
below the conduction threshold, show only a small dependence of ¢' and ¢" on carbon concentration.
It is evident that a little below the 20% carbon content of $109S a substantial internal change takes
place that affects the dielectric properties as well as the conductivity (Fig. 2). The similarity between
Figs. 2 and 9 suggests that clustering of carbon black particles in the material is responsible for the
large increase in permittivity at the percolation threshold. It seems likely that the same mechanism
that gives rise to percolative conduction paths through the full sample thickness also gives rise to very
large dipole moments and losses via the MWS effect.

Clusters of carbon particles can form at all carbon concentrations, but the number and sizes of
the clusters increase rapidly with concentraticn up to the percolation threshold [37-38). These
clusters, even when they are below the threshold, still form sizable conductive paths within the
material in which large dipole moments c. . .orm by movement of conduction electrons under the
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influence of an applied field. Thus, under ac excitation sizable MWS effects can be present below the
percolation threshold, and these can give loss peaks at high frequencies provided the carbon clusters
are small and reasonably conductive.

The morphology of these clusters is not well defined. However, they probably form dendrites
{37). If the carbon particles that make up a cluster are in good conductive contact, meaning that there
is no significant potential barrier to electron transport across the interface between them, then they
form a single large carbon particle as far as conduction is concerned, and the relevant time constant,
r = pe’, discussed in an earlier section, still determines the frequency where the loss peak occurs (in
the infrared as pointed out earlier). However, if there are interfacial potential barriers betweea
carbon particles that make up a cluster, then conduction across the barrier between individual carbon
particles in a cluster will be considerably retarded, and the applicable time constant for the process
will be much longer. Conduction across such barriers will take place by a mixture of tunneling and
thermally activated hopping mechanisms. The number of such barriers that slow the development of
a conduction dipole in time will increase rapidly with cluster size. Therefore, the simple time
constant 7 of Maxwell and Wagner which involves only the properties of the pure carbon itself would
no longer determine the overall response time of the conduction dipoles. Instead, the response time
would be dominated by slow electron transport across the interfaces between carbon particles in a
cluster and would also be a function of cluster size.

Another likely possibility is for the individual carbon particles to be attached chemically to
polymer molecules. A clean carbon surface is chemically active because of the unsaturated p-electron
orbitals at the surface. These "dangling bonds” readily chemisorb other materials with free bonding
electrons. Of course, the carbon surface is anything but clean initially, but when the carbon black :s
mixed with other ingredien:s aud raised to high processing temperatures, bonding with the polymer !
possible and is usually assumed to take place. If this is correct, then the picture is one of individual
carbon grains, roughly 300-400 A in diameter, bound up in a net of polymer molecules and rarely in
good conductive contact with other carbon particles. Conduction can take place between two of these
particles when, still cloaked in their polymer nets, they approach closely enough under thermal
agitation. Since electron transport across a contact oarrier between carbon particles depends
exponentially upon the barrier height and temperarure (in the case of hopping) or barrier width (in the
case of tunneling), it follows that the conduction process can be many orders of magnitude slower
than ordinary ohmic conduction. Moreover, th: screening effects that were important for conduction
within a single particle and which led to earlier estimates of the magnitude of ¢’ are no longer
relevant for clusters where barrier effects predominate.

Lacking detailed knowledge about these carbon-carbon contacts for the present case, only a
qualitative phenomenological picture can be given like the one above. Within this picture, it is
entirely possible to have loss peaks in the 4 MHz range and below, as observed. In fact, if a
quantitative relation between cluster size and charge transport response time in clusters were
available, the position of this loss peak could be used to find the cluster size or size distribution
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function, making the MWS effect a valuable analytical tool. Furthermore, such a tool could follow
cluster development as a function of carbon concentration, processing conditions, etc.

In the 5109 neoprene elastomer series used in this work, experiment shows (Fig. 4) that a
fundamental loss peak is present at about 4 MHz in 5109G which has no added carbon black filler.
This observation clearly identifies this peak as not being due to carbon effects and as being most
likely due to rotational orientation of the permanent dipoles of the unfilled polymer material itself.

It is a noteworthy feature of the curves in Figs. 4-8 that addition of carbon serves only to
increase the magnitude of the 4 MH2 loss peak without appreciably shifting its frequency or changing
its shape. This is taken to mean that this peak, while due to permanent dipole rotation, is somehow
enhanced by indirect action of the conduction dipoles induced in the carbon particles or clusters.
Clearly, in 5109G the 4 MHz peak can have nothing to do with carbon since none was present in that
sample. However, there is a strong enhancement of this loss peak when carbon is added, and the
effect is particularly striking when the percolation threshold associated with conduction through the
full thickness of the sample is passed, as Fig. 9 shows.

At any given freqency ¢' (or «') is the sum of all polarization effects that occur at higher
frequencies. Therefore, the effect of adding carbon particles that do not agglomerate or cluster is
present at al) frequencies in the range of our measurements, so the measured values of ¢’ will increase
uniformly in proportion to the carbon content over the entire frequency range of our measurements.
There is an additional increase in €' on passing through the 4 MHz loss peak that is proportional to
the height of the loss peak ¢",,, as theory requires.

A possible explanation for enhancement of the 4 MHz loss peak by carbon bla“V - articles is
offered along the following lines: When an external field is applied, a given carbon particle
conductively polarizes almost instantaneously, following the local field with virtually no time lag. A
large dipole is thus immediately induced in this carbon particle, and it gives rise to a strong local
orienting torque that acts upon permanent polymer dipoles in the vicinity of the carbon particle. The
presence of the carbon particle also mechanically strains the polymer structure locally, increasing the

ree volume there, thus fasilitating rotation of the polymer dipoles in that region. This mechanism
would act to enhance polarization of the polymer around a carbon particie. The result would be an
increase in both ¢' and ¢” at frequencies near the natural dipole orientation frequency of the polymer
medium, i.e., in the vicinity of the loss peak of the unfilled polymer which is the 4 MHz peak in the
present case. This enhancement at low carbon concentrations would be proportional 10 the amount of
carbon present, as observed experimentally.

At somewhat higher carbon concentrations where clustering begins to be important, there are
two different possibilities depending upon whether o not the carbon particles in a cluster form high
or low conductivity interfaces. If the clusters have high conductivity, they may be treated simply as
large carbon particles, meaning that they would still respond practically instantaneously to the applied
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field, and the enhancement of the 4 MHz loss peak would mirror the development of cluster sizes and
numbers with no shift to lower frequencies.

On the other hand, if the clusters exhibit low conductivity, as they certainly do when they
extend through the sample thickness where they can be measured as the overall sample conductivity,
then the clusters do not respond so rapidly to the applied local field. There are still conduction
dipoles induced in the individual particles in each cluster, but in addition much larger cluster dipoles
develop slowly as conduction proceeds through the cluster, a process that becomes slower the larger
the cluster. As long as cluster dipoles form in times shorter than the polymer dipole rotation time,
enhancement of the 4 MHz loss peak will be essentially the same as outlined above for the case of
separated individual carbon particles. As clusters grow, the cluster dipole induction time will increase
due to the slow conduction in clusters, and there will be an appreciable time delay before a cluster
dipole can contribute any enhancement to rotation of the polymer dipoles. The result is that the
clusters themseives no longer contribute much to the enhancement of the 4 MHz loss peak but instead
give rise to their own broad loss peak at lower frequencies. However, individual carbon particles that
make up the clusters will still continue to respond rapidly as though they were isolated and will still
act to enhance the 4 MHz peak.

In other words, as the carbon clusters grow their polarization increasingly lags the field, i.e.,
the cluster loss peak shifts to lower frequencies. The 4 MHz peak of the polymer dipoles remains at
the same frequency but is less and less subject to enhancement at that frequency by the shifted
conduction dipole moments of the carbon clusters, though the enhancement effect of the individual
carbon particles upon the 4 MHz polymer peak remains whether the particles are in clusters or not.

After the percolation threshold is reached, the maximum possible cluster <‘ze has also been
reached, i.e., it equals the sample thickness. Beyond this point, there should be little or no further
frequency shift in the contributions of the maximum size clusters which would then be shifted to the
Jimiting very-low-frequencies characteristic of electrode effects. Since this maximum cluster length is
directly related to sample thickness, it follows that the low frequency limit will depend upon the
sample. It has been found experimentally, both in this work and elsewhere [12), that the very low
frequency dielectric properties are indeed dependent upon sample thickness. Once past the
percolation threshold, the sample conductivity will continue to increase due to formation of additional
parallel conduction paths through the sample, and the very low frequency MWS contribution to «* will
continue to grow in magnitude with addition of more carbon.

All of these effects may be seen in Figs 4-8. In Fig. 8, the 5109 sample with 25% carbon is
well past the percolation threshold, and a shift of the high frequency ¢” loss peak to lower frequencies
is evident. The 4 MHz peak has become submerged in the high side of the much stronger, broad
cluster peak and is no longer resolved.
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At the other end of the frequency range, conduction through the full thickness of the sample
produces a marked rise in both ' and «" as shown for 5109 in Fig. 10. (Note that at low frequencies
where the conduction effects are significant the notation of Eq. (34) will be used, i.e., «' and «*
signify the net effective storage and loss permittivities instead of ¢’ and ¢”.)

In Fig. 10, both axes are on logarithmic scales, and a 1/f line is included to show how far down in
frequency it is necessary to go to obtain ohmic conduction in this material. Over most of the
frequency range shown in the figure, the loss appears to be dominated by dispersive transport [12], a
mixture of tunneiing and hopping conduction with the "long-tailed®, power-law response characteristic
discussed earlier. In thinner or more conductive samples, the 1/f characteristic extends to somewhat
higher frequencies.

LA l'mi L. J l'l"!

s
Loss Permiiivity, K °

Trirme

Froquengy, i

Fig. 10 - Relative effective permitivity k' and Joss k° at very low
frequencies for 5109 Neoprene with 26% carbon at 27°C.

The curves in Fig. 10 are the real and imaginary parts of the total response, «*. The real part,
«' = ¢ + ¢"/w, contains a 1/f component multiplied by the delayed conductivity 0° while the
imaginary part, x* = ¢* + ¢'/w, has a contribution from the ordinary ohmic in-phase conductivity ¢'.
The latter is not considered to have any significant temperature dependence, but ¢”, depends strongly
upon temperature by virtue of its connection with hopping and tunneling mechanisms. Since it
represents “slow conduction”, it is an inductive term in contrast to the capacitive ¢’ term. It is
inductive because the conduction current it represents lags the applied field rather than leads it as does
the displacement current represented by e'.

The 1/w factors in both «* and «* would lead to divergences as w — 0 unless both parts of ¢°
vanish at least linearly with frequency at very low frequencies. The practical distinction between in-
phase conduction o’ and slow conduction o” becomes blurred at sufficiently low frequencies. The
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fact that there exists a finite dc conductivity means that ¢ must eventually become proportional to w
at sufficiently low frequencies, making both ¢'/w and 0"/« constant as frequency goes to zero.

At high frequencies ¢* must vanish since it is a slow conduction term by definition. At zero
frequency o" must also vanish because it is defined only for ac currents. Thus, ¢"(w) must have a
peak of some sort at intermediate frequencies. This peak may be, and probably is, quite broad and
indistinct because hopping and tunneling time scales are poorly defined. The ¢" peak may also lie
almost anywhere below the polymer dipole rotation peak frequency, but it will most likely be at
relatively low frequencies, especially in heavily carbon filled elastomers containing a predominance of
large clusters in wkich conduction will be relatively slow.

The study of dispersive transport that seems to be a feature of the 0" part of «' is a topic of
much current interest in condensed matter physics, and it would be a matter of some basic importance
to be able to extract this 0"(w,T) feature cleanly out of the data. At present, this is still not quite
possible. The place to look for the clearest view of " seems to be in the transition region of the
spectrum between the broad range where «' is nearly constant and the onset of a strong 1/f trend.
This region merits special attention using a series of four or five neoprenes having finer gradations of
carbon content than present samples in the region 14% to about 18% carbon. This is primarily where
formation of carbon clusters takes place and where there is the most rapid variation in both numbers
and sizes of these clusters.

The particular choice of the 5109 neoprenes for the present work has no special significance. It
was a matter of convenience because the materials to make up this series were on hand. Other filled
elastomers are expected also to exhibit similar properties, and some of them may have properties
berte: suited t0 such studics than the 5109 neoprenes. Also, only one kind of carbon black filler was
used and only one processing procedure. There are many carbon blacks available with different basic
particle sizes and clustering properties, and it has been shown that variations in processing have
strong influences upon carbon black aggregation in 5109 neoprenes {33). It would be instructive to
obtain data on some of these other blacks and other modes of preparation.

Finally, the temperature dependence of the dielectric properties has not been extensively
examined. Only a few low temperature measurements were made (0 assess the general features of
temperature dependence. A more detailed study should cast some light on relative importance of
hopping vs tunneling conduction since these mechanisms have different temperature dependences.
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CONCLUSIONS

The material treated in this report covers a rather wide range of topics in several related areas
of physics of amorphous and inhomogeneous materials, and it seems appropriate to attempt to
summarize the more important aspects of the study, particularly as related to the original objectives of
the work.

The original goal centered upon the prospect of being able to derive some information about the
size and shape distributions of inhomogeneities, specifically of carbon black fillers in elastomers,
through interpretation of details of the dynanic dielectric properties as measured by more or less
standard methods requiring no elaborate equipment or special skills. The earlier work on the MWS
effect in several types of materials with conductive particles added supported the expectation that this
goal could be achieved in carbon filled elastomers, as well {16).

It has become clear in the course of this study that the dielectric response of carbon filled
elastomers is a much richer and more complex subject than prior treatments of the MWS effect would
suggest. The subject of the present work touches upon several areas at or near the forefront of
contemporary condensed matter research such as the dielectric response of semimetals like carbon,
mixed tunneling and hopping conduction and dispersive charge transport in amorphous materials,
local vs mean field theory in such materials, free volume effects in dispersive transport and the
secondary effects of local strain-induced free volume, interface effects between conductive inclusions
and the polymer surroundings, clustering and agglomeration of the particles, and conduction in such
clusters, to name a few. None of these areas have been considered in earlier treatments of the MWS
effect, so the present investigation has served to reveal some of the subtleties of the problem that were
unforseen at the outset. :

Despite the difficulties in making physical sense of the experimental results in light of the
inherent complexities of the problem, some progress was possible through simplifications resulting
from the fact that major features of the problem are, under proper conditions, positioned in different
regions of the frequency spectrum where they can be studied in some degree of isolation. Even so,
the real goal of using dielectric spectroscopy to reveal size and structure of carbon clusters within an
elastomer has proved elusive mainly because of our ignorance about electronic conduction in such
clusters. There are still too many undetermined variables in such conduction processes. Arbitrary
adjustment of these variables can produce nearly any desired result, so one cannot work backwards
from the experiment to identify a unique set of such variables, specifically cluster size and shape
distribution, as one would require of a valid speciroscopy. :

Though it has not proved possible to deduce finer details about the distribution of carbon in
elastomers, it has been possible to obtain some useful qualitative information. For example, the
results of agglomeration of carbon and the growth of clusters to form conduction paths through the
material can be followed qualitatively from the experimental data on series of elastomers with varying
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amounts of carbon. This has been done systematically in this study in only one type of elastomer, a
particular 5109 neoprene. However, the same approach should be fruitful for other elastomers.

Even though at present the methods used in this work give only a qualitative picture of what
goes on, such a picture can be of value in judging the effects of variations in formulation and
processing conditions on the dispersion of carbon filler. Correlations between carbon dispersion
determined this way and mechanical properties that presumably also depend upon carbon dispersion
might prove useful in a practical way even in the absence of a sound theoretical connection between
experimental results and underlying details of the processes.

Little emphasis has been placed upon the extraordinarily high dielectric permittivities exhibited
at low to intermediate frequencies by some of these materials. These may have some practical
applications as dielectrics, especially if they can be applied in the form of thin coatings to metals.

In the present study, pains were taken to keep applied fields small to avoid complications due to
nonlinear effects. Such effects were noticed at fields above a few volts per centimeter, but were not
further investigated. In addition, electrical properties in heavily filled materials were somewhat
dependent upon sample thickness, an effect also found by others in semiconductors exhibiting
dispersive transport [12]. This feature, too, was noted but not explored. Thompson et al. {33, 33a]
has shown that the dc conductivity of carbon-filled 5109 neoprenes depends rather strongly upon
pressure, presumably through its effect on conduction between carbon particles in clusters, and this
observation offers further possibilities for study of dispersive transport in these materials.

These points are mentioned to show that mucn remains to be discovered and explained about
carbon filled elastomers which have shown themseiv:: (0 be much more puzzling and interesting
dielectric materials than hitherto suspected.
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Appendix

$109-SERIES RUBBER FORMULATION

Basic formula:
—Material Bants
Neoprene GRT 100.0
Zinc Oxide 50
Octamine 2.0
90% Red Lead 15.0
TE-70 20
Stearic acid 1.0
Altax 1.5

To the above base mixture is added the following parts of N550 carbon black to make up the

designated 5109 rubber:
5109-G 0 0
5109-S4 11 8.0
5109-S3 18 12.5
5109-S 31 19.7
5109-S2 36 22.2
5109 40 24.0
5109-H 45 26.2
5109-SH 60 323

Note: Many of the mechanical and electrical properties of these filled elastomers depend sensitively
upon details of the preparation such as time, temperature, and pressure in addition to their material
formulation. Thus, some properties reported in this memorandum may differ from those reported
elsewhere on what appears, from just the basic chemical formulation, to be the same elastomer.
Great care was taken in preparing the series of samples used in this work to standardize the
preparation. Comparisons of dielectric measurements made on different batches of the same sample
designation, e.g., 51098, differed by only a few percent.
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