OFFICE OF NAVAL RESEARCH
TECHNICAL REPORT

for
1 September 1990 through 28 February 1991
for
Contract N00014-90-J-4141

Fundamental Properties and Device Applications of
$Ge_x Si_{1-x}/Si$ superlattices
(Supplemental)

Principal Investigator: Professor Kang L. Wang
University of California, Los Angeles
405 Hilgard Avenue
Los Angeles, CA 90024

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

* This document has been approved for public release and sale; its distribution is unlimited.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Fundamental Properties and Device Application of Ge/Si Superlattices
Contract Number N0014-89-J3227
Principal Investigator: Kang L. Wang

Description of Work:
The objectives of this contract is to expand the work on the current ONR supported re-
search in the study of Ge$_x$Si$_{1-x}$/Si superlattice and quantum well structures into the electromagnetic wave generation and detection applications. The control pa-
rameters such as the band offsets as well as the strain induced critical thickness limitation will be investigated. The band-gap engineered superlattices and quantum structures will be designed for tunable frequency detector applications and studied for their strain induced electrical characteristics.

Approach:
Devices to be considered for this study are based on the concept of the band-gap engineering. In the case of Si-Ge heterosystem, strain induced tunability adds a new degree of freedom on the structure design. The effect of strain on the critical thickness limitation and the band offset is investigated. Resonant tunneling diodes with several different structure, grown at low temperature are studied by tunneling spectroscopy.

Progress:
The dependence of the pseudomorphic thickness of strained Ge$_x$Si$_{1-x}$ layers on
the growth temperature and the growth pressure are extensively studied. Very thick coherently strained Ge$_x$Si$_{1-x}$ layers are successfully grown at low temperatures. After growth, the samples are characterized by Rutherford backscattering spectroscopy and X-ray rocking curve techniques for the structure controlability. In addition, the I-V-T method is employed to determine the valence band discontinuity ΔE_v in the coherently strained Ge$_x$Si$_{1-x}$/Si heterostructures. The results obtained are in good agreement with the theoretical calculations by pseudopotential method. The microwave time of flight set-up have been completed and microwave mobility measurement of the Si-Ge alloys are in progress.
Publication:

ABSTRACT 1991 SPRING MEETING

Submitted to: Symposium B
Symposium Title: Silicon Molecular Beam Epitaxy

MEASUREMENT OF VALENCE BAND OFFSET IN STRAINED Ge_xSi_{1-x}/Si HETEROJUNCTIONS. S. Khorram, C. H. Chern, and K. L. Wang, Device Research Laboratory, 7619 Boelter Hall, UCLA, Los Angeles, CA.

The valence band discontinuity ΔE_v in the coherently strained Ge_xSi_{1-x}/Si heterostructures is determined using I-V-T measurement. Previously, band offsets have been determined using XPS. The electrical measurements are difficult due to the thin layer imposed by the strain. Recently, low temperature growth of thick layers (>1000 Å) of coherently strained Ge_xSi_{1-x} on Si has been achieved and thus made it possible for an accurate electrical measurement of band offset.

These samples are grown at 350°C, on (100) p⁺ Si substrate. The structure consists of 3000 Å p-type Si buffer layer, followed by 600-1000 Å of undoped Si layer, and capped by a p-type strained Ge_xSi_{1-x} layer. Depending on Ge concentration, x, the thickness of the strained Ge_xSi_{1-x} layer is varied from 1000 - 3000 Å. In order to avoid complications associated with the heavily doped semiconductors, the layers are chosen to be lightly doped. The crystallinity and the quality of these layers have been verified using x-ray rocking curve technique. Due to high metastability of these structures, exposure to extreme temperatures or rapid temperature variations are avoided.

The I-V measurement is done for mesa structures of various Ge concentrations at temperatures between 77K to 300K. The electrical measurements of the band discontinuity, in principle provide better accuracy than XPS. Typically, for the Ge_xSi_{1-x} and the $Ge_{0.5}Si_{0.5}$ structures used in this experiment, the valence band discontinuity are measured to be 2.5 - 3.5 meV and 330 - 20 meV, respectively. These results are in good agreement with the theoretical calculations of van der Waals.
MEASUREMENT OF VALENCE BAND OFFSET IN STRAINED Ge_xSi_1-x/Si HETEROJUNCTIONS

S. KHORRAM, C. H. CHERN AND K. L. WANG

Device Research Laboratory, 7619 Boelter Hall, University of California, Los Angeles, CA 90024

ABSTRACT

The valence band discontinuity ΔE_v in the coherently strained Ge_xSi_1-x/Si heterostructure is determined using I-V-T measurement. The electrical measurements of the band discontinuity of the pseudomorphic layers are difficult due to the thin layer imposed by the strain. Recently, low temperature growth of thick layer (>1000 Å) of coherently strained Ge_xSi_1-x on Si has been achieved and thus made it possible for an accurate electrical measurement of band offset. The results obtained are in good agreement with the theoretical calculations by pseudopotential method.
OFFICE OF NAVAL RESEARCH
PUBLICATION/PATENTS/PRESENTATION/HONORS REPORT
for
1 Sept 90 through 28 Feb 91

P&I Number:

Contract/Grant Number: N00014-90-J-4141

Contract/Grant Title: Fundamental Properties and Device Application of Ge_xSi_1-x/Si Superlattices

Principal Investigator: K. L. Wang

Mailing Address: Department of Electrical Engineering, UCLA
66-147B, Engr. IV
Los Angeles, CA 90024

Phone Number (with Area Code): (310) 825-1609

E-Mail Address: Wang@EE.UCLA.EDU

a. Number of Papers Submitted to Referred Journal but not yet published: 0

b. Number of Papers Published in Referred Journals: 1
 (list attached)

c. Number of Books or Chapters Submitted but not yet Published: 0

d. Number of Books or Chapters Published: 0
 (list attached)

e. Number of Printed Technical Report & Non-Referred Papers: 0
 (list attached)

f. Number of Patents Filed: 0

g. Number of Patents Granted: 0
 (list attached)

h. Number of Invited Presentations at Workshops or Prof. Society Meetings: 0

i. Number of Presentation at Workshop or Prof. Society Meetings: 1

j. Honors/Awards/Prizes for Contract/Grant Employees:
 (list attached, this might include Scientific Soc. Awards/Offices, Promotions, Faculty Award/Offices etc.) 0

k. Total number of Graduate Students and Post-Docs Supported at least 25% this year on this contract/grant:
 Grad Students 1 and Post Docs 0

 [Grad Student Female 1]
 [Grad Student Minority 0]
 [Grad Student Asian e/n 0]
 [Post-Doc Female 0]
 [Post-Doc Minority 0]
 [Post-Doc Asian e/n]