Analysis of Seating and Restraint Limitations
Restricting Total Body Weight
for Aircrew and Passengers
on U.S. Army Helicopters

By

James E. Bruckart
Joseph R. Licina
Samuel G. Shannon

Impact, Protection, and Tolerance Division

and

Joseph L. Haley, Jr.
SAIC, Inc.

July 1993

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-5292
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

JOHN V. BARSON
LTC, MC, SFS
Director, Impact, Tolerance, and Protection Division

Released for publication:

ROGER W. WILLEY, D.D., Ph.D.
Chairman, Scientific Review Committee

DAVID H. KARNEY
Colonel, MC, SFS
Commanding
Analysis of seating and restraint limitations restricting total body weight for aircrew and passengers on U.S. Army helicopters

Aviation Life Support Equipment (ALSE) and crashworthy seating protect the crew and passengers in military aircraft. If the user exceeds the design weight or size range for personal protective equipment, it may not function properly. The distribution and changes in body weight and relevant anthropometric measures were evaluated for soldier and aviator groups. Current ALSE and aircraft restraints were surveyed to determine the largest available sizes. Each aircraft seat was evaluated to determine the crash strength and maximum allowable weight for a given crash pulse.

The 99th percentile male soldier and aviator weigh 237.5 and 228.2 pounds, respectively. The average body weight increases with age for the male aviator population. The largest available flight suit (size 48L), SRU-21/P survival vest, and webbing restraints accommodate a 47-inch waist circumference.
# Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of figures</td>
<td>2</td>
</tr>
<tr>
<td>List of tables</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>5</td>
</tr>
<tr>
<td>Results</td>
<td>6</td>
</tr>
<tr>
<td>Discussion</td>
<td>8</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
</tbody>
</table>

**Accession For**

- NTIS CRA&I
- DTIC TAB
- Unannounced
- Justification

**Distribution/Availability Codes**

<table>
<thead>
<tr>
<th>Dist</th>
<th>Avail and/or Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td></td>
</tr>
</tbody>
</table>

**DTIC QUALITY INSPECTED**
List of figures

Figure Page
1. Distribution of body weights among male and female pilots.................. 4

List of tables

Table Page
1. Anthropometric limits for disqualification on Class 1 and 1A flight physicals . . . . . . . . 3
2. Distribution of body weight (pounds) among male and female soldiers and aviators . . . . 6
3. Weight of standard items worn by U.S. Army pilots and crew . . . . . . . . . . . . . . . . . 7
4. Distribution of waist circumference (inches) among male and female soldiers and aviators . . 7
5. Seat crash strength (pounds) under quasi-static loads . . 9
6. Seat static test requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7. Maximum weight (pounds) for aircraft seats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Introduction

Army aviation provides a flexible and mobile means to project combat power. Every soldier has specific tasks that must be completed to ensure survival and victory on the battlefield. The considerable expense required to train and equip our soldiers makes each a valuable asset. The injury or loss of any soldier represents a significant loss in the battlefield commander's warfighting capacity.

Aviation Life Support Equipment (ALSE) and crashworthy components of new military aircraft have been developed to protect the crew and passengers. However, for these components to work correctly, each user must be within the physical design parameters for the particular component. If an aircrew member or passenger exceeds the design weight and/or size range for the personal protective equipment, the equipment may not function properly. Malfunction of personal protective equipment can permit excess morbidity and/or mortality.

Background

The weight of a U.S. Army servicemember is regulated in accordance with Army Regulation (AR) 600-9, The Army weight control program, and AR 40-501, Standards of medical fitness (1989). The standard states a male soldier can weigh from a minimum of 100 pounds to a maximum of 250 pounds or up to 26 percent body fat (age 40 and over). A female soldier can weigh from a minimum of 90 pounds to a maximum of 227 pounds or up to 34 percent body fat (age 40 and over). The distribution of body weight for male and female soldiers has been studied by Gordon et al. (1989).

Initial flight physicals for pilots also require applicants to fall between several minimum and maximum anthropometric measures to ensure that they are able to reach the controls in Army aircraft. (Schopper, 1986) These measures and limits are summarized in Table 1.

Table 1.

<table>
<thead>
<tr>
<th>Anthropometric measure</th>
<th>Disqualified if ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total arm reach</td>
<td>Less than 164 cm</td>
</tr>
<tr>
<td>Crotch height</td>
<td>Less than 75 cm</td>
</tr>
<tr>
<td>Sitting height</td>
<td>Greater than 102 cm</td>
</tr>
</tbody>
</table>
Limits on anthropometric measures have resulted in a pilot population with a different body weight distribution from the Army in general.

Most Army aircraft systems and ALSE were designed to accommodate the 5 percent to 95 percent male aviator in relevant anthropometric measures. Today, these measures may be invalid due to aviator selection bias, aging of the pilot population, and an increased number of female pilots. For example, a comparison of body weight for the male and female pilot population groups is presented in Figure 1. As a result of these changes, current ALSE may not fit some of the aircrew at the extremes of anthropometric measures and crashworthy seating may not function properly for an individual with a body weight above or below the design weight.

Figure 1. Distribution of body weights among male and female pilots (Donelson and Gordon, 1991).
This study evaluates body weight distributions for the soldier and aviator populations, currently available ALSE, and design weight limits for aircraft seating. These factors are analyzed to determine body weight design limits and effects of restricting total body weight for passengers and crew in U.S. Army aircraft.

Materials and methods

Soldier and aviator weight distributions

The 1988 anthropometric survey of U.S. Army personnel (Gordon et al., 1989) was used to obtain representative distributions of total body weight for soldiers and aircrew. A separate study of the Aviation Epidemiology Data Registry (AEDR) was used to detect the trend in weight change for aircrew since 1988 and the differences in body weight among active duty, National Guard, and Army Reserve aviators (Shannon, Bruckart, and Mason, 1993).

Survey of aviation life support equipment and restraints

The available sizes of personal aviation life support equipment were surveyed. The largest size of each item was examined to determine if persons with a large body weight would have difficulty donning, doffing, or wearing the equipment. The length of the restraint webbing was measured in several aircraft to determine available webbing to accommodate individuals with a large abdominal girth.

Survey of aircraft seats and maximum weight calculations

The design strength and static strength for troop and crew seats for each U.S. Army aircraft was determined from the engineering design specifications and prior testing. This included both rigid and energy-absorbing (crashworthy) crew and troop seats. The strength of each seat was divided by the impact load factor (Table 6) to obtain the maximum allowable seat weight using the method specified in the Aircraft crash survival design guide (Zimmermann and Merritt, 1989). The weight of the seat and aviator clothing was subtracted from the maximum allowable seat weight to obtain the calculated maximum nude weight for the seat occupant. The clothing and equipment weights were determined by weighing representative equipment. As specified in the design guide, the maximum nude weight is increased by 25 percent for vertical (downward) impacts to account for the weight of the legs supported by the floor in these crashes.
Results

Soldier and aviator weight distributions

The weight distribution for male and female U.S. Army soldier and aviator groups are presented in Table 2.

Table 2.

Distribution of body weight (pounds) among male and female soldiers and aviators.
(Gordon et al., 1989; Donelson and Gordon, 1991)

<table>
<thead>
<tr>
<th></th>
<th>Male soldiers</th>
<th>Female soldiers</th>
<th>Male aviators</th>
<th>Female aviators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>173.0</td>
<td>136.7</td>
<td>175.9</td>
<td>144.1</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>24.5</td>
<td>18.4</td>
<td>21.2</td>
<td>18.8</td>
</tr>
<tr>
<td>Minimum</td>
<td>104.9</td>
<td>91.0</td>
<td>125.1</td>
<td>102.1</td>
</tr>
<tr>
<td>Maximum</td>
<td>281.8</td>
<td>213.1</td>
<td>249.9</td>
<td>212.7</td>
</tr>
<tr>
<td>1st %</td>
<td>121.9</td>
<td>99.7</td>
<td>132.5</td>
<td>105.2</td>
</tr>
<tr>
<td>5th %</td>
<td>135.8</td>
<td>109.4</td>
<td>143.7</td>
<td>115.8</td>
</tr>
<tr>
<td>50th %</td>
<td>171.3</td>
<td>135.0</td>
<td>174.4</td>
<td>142.4</td>
</tr>
<tr>
<td>95th %</td>
<td>216.2</td>
<td>169.7</td>
<td>213.8</td>
<td>177.6</td>
</tr>
<tr>
<td>99th %</td>
<td>237.5</td>
<td>186.7</td>
<td>228.2</td>
<td>196.2</td>
</tr>
</tbody>
</table>

Study of the AEDR (Shannon, Bruckart, and Mason, 1993) shows the average age of the aviator population has increased since 1988. Along with the increase in age, there has been a corresponding increase in average body weight.

Aviation life support equipment and restraints

The weight of standard items worn by U.S. Army pilots is shown in Table 3. The largest U.S. Army flight suit (size 48L) will accommodate a waist circumference up to 47 inches. The personal survival vest is adjustable and also accommodates a waist circumference of 47 inches. The UH-60 pilot seat will accommodate an abdominal girth of 48 inches within the seat pan and restraint webbing. The UH-60 crew seat and troop seat will accommodate 54 and 48 inches abdominal girth, respectively. The
pilot seat in the AH-64 will accommodate a 48-inch abdominal girth. The distribution of waist circumference for the Army in general and aviator populations are shown in Table 4 (Gordon et al., 1989, and Donelson and Gordon, 1991).

Table 3.
Weight of standard items worn by U.S. Army pilots and crew.

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight helmet, SPH-4B</td>
<td>2.9</td>
</tr>
<tr>
<td>Flight suit (Nomex coveralls)</td>
<td>3.1</td>
</tr>
<tr>
<td>Boots</td>
<td>4.0</td>
</tr>
<tr>
<td>Gloves</td>
<td>0.3</td>
</tr>
<tr>
<td>Flashlight</td>
<td>0.1</td>
</tr>
<tr>
<td>Survival vest, SRU-21/P with contents</td>
<td>7.3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>17.7</strong></td>
</tr>
</tbody>
</table>

Table 4.
Distribution of waist circumference (inches) among male and female soldiers and aviators. (Gordon et al., 1989; Donelson and Gordon, 1991)

<table>
<thead>
<tr>
<th></th>
<th>Male soldiers</th>
<th>Female soldiers</th>
<th>Male aviators</th>
<th>Female aviators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>33.95</td>
<td>31.18</td>
<td>34.98</td>
<td>32.15</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3.40</td>
<td>3.26</td>
<td>2.99</td>
<td>3.53</td>
</tr>
<tr>
<td>Minimum</td>
<td>25.75</td>
<td>24.02</td>
<td>27.17</td>
<td>25.20</td>
</tr>
<tr>
<td>Maximum</td>
<td>46.65</td>
<td>43.62</td>
<td>46.85</td>
<td>43.27</td>
</tr>
<tr>
<td>1st %</td>
<td>27.42</td>
<td>25.36</td>
<td>28.85</td>
<td>25.96</td>
</tr>
<tr>
<td>5th %</td>
<td>28.84</td>
<td>26.60</td>
<td>30.16</td>
<td>27.13</td>
</tr>
<tr>
<td>50th %</td>
<td>33.68</td>
<td>30.75</td>
<td>34.94</td>
<td>31.73</td>
</tr>
<tr>
<td>95th %</td>
<td>40.00</td>
<td>37.26</td>
<td>39.96</td>
<td>38.66</td>
</tr>
<tr>
<td>99th %</td>
<td>42.39</td>
<td>40.40</td>
<td>41.59</td>
<td>41.21</td>
</tr>
</tbody>
</table>
Aircraft seats

The available data on the crash strength of crew and troop seats for Army aircraft are shown in Table 5. The minimum load factor, from MIL-S-58095A, for static seat tests is shown in Table 6. The calculated maximum soldier weight for each aircraft seat is shown in Table 7.

Discussion

The anthropometric data for the Army in general and aviator groups show that male soldiers are 25 percent heavier on average than female soldiers. Likewise, average body weight increases with age in the male aviator group.

The restraint webbing will accommodate at least 48 inches waist circumference in the UH-60 pilot seat and the AH-64 pilot seat. This is greater than the maximum measured waist circumference (46.85 in) from the Natick anthropometry studies. The largest flight suit and survival vest also will accommodate a soldier with this abdominal girth (up to 47 in).

Only the pilot seats in the UH-60 and AH-64 meet the static strength required by MIL-S-58095A. Most of the other seats fail first with the 35 G load along the X (forward) axis. These older aircraft were designed and fielded with less stringent crash performance designs. In fact, most of these airframes will not maintain structural integrity and livable space when the floor sustains a 35 G crash load. Future aircraft seats are expected to meet or exceed these performance requirements. Therefore, the recommended maximum weight should be based on a seat and aircraft which is expected to maintain a survivable space and environment under a 95th percentile crash loading as stated in the Aircraft crash survival design guide (Zimmermann and Merritt, 1989). The maximum nude weight for the UH-60 and AH-64 pilot should be 238.8 pounds. Pilots that weigh more than 238.8 pounds may experience structural failure of the seat during a mishap with survivable X-axis loads in the UH-60 and AH-64 aircraft.

None of the troop or crew seats match the crash performance of the AH-64 or UH-60 pilot seats. Arguably, most soldier passengers spend only a small amount of time in the aircraft and are exposed to only an infrequent risk from these seats. Crew members that must perform frequent flights are at the greatest risk. In this case, there is no clear milestone on which to base a recommended maximum weight for crew or passengers. Everyone is at risk of seat failure in a crash with significant impact forces.
Table 5.

Seat crash strength (pounds) under quasistatic load.

<table>
<thead>
<tr>
<th></th>
<th>Type seat</th>
<th>Rotary-wing</th>
<th>Fixed-wing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH-47</td>
<td>UH-1</td>
</tr>
<tr>
<td>Seat weight (lbs)</td>
<td>Pilot</td>
<td>30</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Crew</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Troop</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>X-axis load (lbs)</td>
<td>Pilot</td>
<td>2760</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>Crew</td>
<td>3900</td>
<td>1680</td>
</tr>
<tr>
<td></td>
<td>Troop</td>
<td>2000</td>
<td>2000c</td>
</tr>
<tr>
<td>Y-axis load (lbs)</td>
<td>Pilot</td>
<td>2760</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>Crew</td>
<td>2000</td>
<td>1680</td>
</tr>
<tr>
<td></td>
<td>Troop</td>
<td>2770</td>
<td>2200c</td>
</tr>
<tr>
<td>Z-axis load (lbs)</td>
<td>Pilot</td>
<td>2760</td>
<td>2200d</td>
</tr>
<tr>
<td></td>
<td>Crew</td>
<td>2200f</td>
<td>2200f</td>
</tr>
<tr>
<td></td>
<td>Troop</td>
<td>2200f</td>
<td>2200f</td>
</tr>
</tbody>
</table>

* Seat is integral to aircraft structure
* Exact strength unknown since seats did not pass dynamic qualification tests
* Side facing troop seat
* Net cushion "bottoms out" on seat frame
* 12-inch stroke results in 14.5 G for 170.5-pound occupant
* Cloth seat rips apart

Table 6.

Load factors (G) for static seat tests
(Department of Defense, 1986; Desjardins et al., 1989).

<table>
<thead>
<tr>
<th>Loading direction</th>
<th>Pilot seats</th>
<th>Crew &amp; troop seats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward (X)</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Lateral (Y)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Downward (Z)</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 7.

Maximum soldier weight (pounds) for aircraft seats.

<table>
<thead>
<tr>
<th>Aircraft and seat</th>
<th>Seat weight</th>
<th>Strength</th>
<th>Load Factor (G,&lt;i&gt;s&lt;/i&gt;)</th>
<th>Calculated maximum weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-47 pilot</td>
<td>30</td>
<td>2760</td>
<td>35</td>
<td>31.1</td>
</tr>
<tr>
<td>CH-47 crew</td>
<td>10</td>
<td>3900</td>
<td>30</td>
<td>102.3</td>
</tr>
<tr>
<td>CH-47 troop</td>
<td>10</td>
<td>2000</td>
<td>30</td>
<td>39.0</td>
</tr>
<tr>
<td>UH-1 pilot</td>
<td>135</td>
<td>6000</td>
<td>35</td>
<td>153.7**</td>
</tr>
<tr>
<td>UH-1 crew</td>
<td>12</td>
<td>1680</td>
<td>30</td>
<td>26.3</td>
</tr>
<tr>
<td>UH-1 troop</td>
<td>10</td>
<td>2000</td>
<td>30</td>
<td>39.0</td>
</tr>
<tr>
<td>OH-58 pilot</td>
<td>integral</td>
<td>4200</td>
<td>35</td>
<td>102.3</td>
</tr>
<tr>
<td>OH-6 pilot</td>
<td>integral</td>
<td>3400</td>
<td>35</td>
<td>79.4</td>
</tr>
<tr>
<td>UH-60 pilot</td>
<td>115</td>
<td>13002</td>
<td>35</td>
<td>238.8</td>
</tr>
<tr>
<td>UH-60 crew</td>
<td>18</td>
<td>6000</td>
<td>30</td>
<td>164.3</td>
</tr>
<tr>
<td>UH-60 troop</td>
<td>15</td>
<td>6000</td>
<td>30</td>
<td>167.3</td>
</tr>
<tr>
<td>AH-64 pilot</td>
<td>138</td>
<td>13807</td>
<td>35</td>
<td>238.8</td>
</tr>
<tr>
<td>OV-1 pilot</td>
<td>175</td>
<td>16480</td>
<td>35</td>
<td>278.1***</td>
</tr>
<tr>
<td>C-12/U-21 pilot</td>
<td>30</td>
<td>2760</td>
<td>35</td>
<td>31.1</td>
</tr>
<tr>
<td>C-12/U-21 crew</td>
<td>20</td>
<td>2640</td>
<td>30</td>
<td>50.3</td>
</tr>
</tbody>
</table>

*(strength/load factor) - (seat weight + 17.7 lbs equipment weight)

** maximum weight based on strength of floor-attached harness strength, seat weight disregarded.

*** based on seat crash strength, actual weight limited to 220 lbs for ejection capability.
Summary

More than 99 percent of Army soldiers and aviators weigh less than 240 pounds and have a waist circumference less than 42.5 inches. Male soldiers are on average 25 percent heavier than female soldiers and average body weight increases with age.

The current flight suit and survival vest will accommodate a waist circumference up to 47 inches. Restraint webbing in UH-60 and AH-64 aircraft should accommodate these individuals.

Pilot seats in the AH-64 and UH-60 are expected to accommodate a 238.8-pound individual with 17.7 additional pounds of clothing and equipment without failure during the static load tests. Seats and aircraft structure from older aircraft will not meet this performance.

Crew and troop seats in all aircraft will not meet the crash performance of the AH-64 and UH-60 pilot seats. All passengers in these seats are at risk of seat failure in severe crashes (greater than 35 Gs).
References


Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

U.S. Army Communications-Electronics Command
ATTN: AMSEL-RD-ESA-D
Fort Monmouth, NJ 07703

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Director, U.S. Army Human Engineering Laboratory
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B (Mr. Brindle)
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander, U.S. Army Institute of Dental Research
ATTN: Jean A. Setterstrom, Ph. D.
Walter Reed Army Medical Center
Washington, DC 20307-5300

Commander, U.S. Army Test and Evaluation Command
ATTN: AMSTE-AD-H
Aberdeen Proving Ground, MD 21005
Commanding Officer  
Naval Biodynamics Laboratory  
P.O. Box 24907  
New Orleans, LA  70189-0407  

Assistant Commandant  
U.S. Army Field Artillery School  
ATTN: Morris Swott Technical Library  
Fort Sill, OK 73503-0312  

Commander  
U.S. Army Aviation Center  
Directorate of Combat Developments  
Building 507  
Fort Rucker, AL 36362  

U.S. Army Dugway Proving Ground  
Technical Library, Building 5330  
Dugway, UT  84022  

U.S. Army Yuma Proving Ground  
Technical Library  
Yuma, AZ  85364  

AFFTC Technical Library  
6510 TW/TSTL  
Edwards Air Force Base,  
CA 93523-5000  

Commander  
Code 3431  
Naval Weapons Center  
China Lake, CA  93555  

Aeromechanics Laboratory  
U.S. Army Research and Technical Labs  
Ames Research Center, M/S 215-1  
Moffett Field, CA 94035  

Sixth U.S. Army  
ATTN: SMA  
Presidio of San Francisco, CA  94129  

Commander  
U.S. Army Aeromedical Center  
Fort Rucker, AL  36362  

U.S. Air Force School  
of Aerospace Medicine  
Strughold Aeromedical Library Technical  
Reports Section (TSKD)  
Brooks Air Force Base, TX 78235-5301  

Dr. Diane Damos  
Department of Human Factors  
ISSM, USC  
Los Angeles, CA  90089-0021  

U.S. Army White Sands  
Missile Range  
ATTN: STEWS-IM-ST  
White Sands Missile Range, NM  88002  

U.S. Army Aviation Engineering  
Flight Activity  
ATTN: SAVTE-M (Tech Lib) Stop 217  
Edwards Air Force Base, CA  93523-5000  

Ms. Sandra G. Hart  
Ames Research Center  
MS 262-3  
Moffett Field, CA 94035  

Commander, Letterman Army Institute  
of Research  
ATTN: Medical Research Library  
Presidio of San Francisco, CA 94129  

Commander  
U.S. Army Medical Materiel  
Development Activity  
Fort Detrick, Frederick, MD 21702-5009  

Commander  
U.S. Army Health Services Command  
ATTN: HSOP-SO  
Fort Sam Houston, TX 78234-6000  

17
Commander, U.S. Army Foreign Science and Technology Center
AIFRTA (P'vis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Director,
Applied Technology Laboratory
USARTL-AVSCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604

Commander, U.S. Air Force Development Test Center
101 West D Avenue, Suite 117
Eglin Air Force Base, FL 32542-5495

Commander, U.S. Army Missile Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R
/ILL Documents
Redstone Arsenal, AL 35898

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

Director
Army Personnel Research Establishment
Farnborough, Hants GU14 6SZ UK

U.S. Army Research and Technology Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

COL John F. Glenn
U.S. Army Medical Research & Development Command
SGRD-ZC
Fort Detrick, Frederick, MD 21702-5012

Dr. Eugene S. Channing
7985 Schooner Court
Frederick, MD 21701-3273

LTC Gaylord Lindsey (5)
USAMRDC Liaison at Academy of Health Sciences
ATTN: HSHA-ZAC-F
Fort Sam Houston, TX 78234

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Dr. A. Kornfield, President
Biosearch Company
3016 Revere Road
Drexel Hill, PA 29026

NVEOD
AMSEL-RD-ASID
(Attn: Trang Bui)
Fort Belvoir, VA 22060

CA Av Med
HQ DAAC
Middle Wallop
Stockbridge Hants S020 8DY UK

Commander and Director
USAE Waterways Experiment Station
ATTN: CEWES-IM-MI-R
Alfrieda S. Clark, CD Dept.
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Mr. Peter Seib
Human Engineering Crew Station
Box 266
Westland Helicopters Limited
Yeovil, Somerset BA202YB UK

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NOLON
Groton, CT 06349-5900