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INTRODUCTION

This report provides a simple tool for the orbital mission planner to use in designing

optimal, coplanar, continuous-thrust trajectories. Six charts are presented that relate
vehicle design parameters to orbit design parameters for circle-to-circle orbit raising.

Each transfer is accomplished with constant thrust through the entire flight path with

no restriction on its magnitude. The direction of thrust is free to vary within the
orbital plane with fuel expenditure modeled by the rocket equation. Intermediate

eccentricity is allowed to grow and shrink for any number of orbit revolutions as

optimally determined.

There has been a substantial amount of work done on low-thrust trajectories. Of

particular relevance to this report are the works covering optimal, continuous, low-
thrust transfers [Refs. 1 through 17]; included in these are numerous papers by

Edelbaum [Refs. 3, 7, 8, and 11]. A mission planning tool for optimal, many-revolution,

orbit transfers was presented by Wiesel and Alfano [Ref. 12] where an analytically

derived solution was obtained and presented in graphical form.

The equations of motion used in this optimal control problem are in their complete

form for the coplanar circle-to-circle case. The initial acceleration Ai appears in these

equations and is allowed to vary from case to case as a parameter. Changing the

spacecraft's initial acceleration always changes the minimum time to accomplish the

orbit raising. To present the solution data in a user-friendly, universal form (Figs. 1

through 7), the problem is rescaled using the initial orbit radius and gravitational

parameter of the central body; in addition, the time-of-flight tf is replaced by the total

accumulated velocity change 'rf. The results of many such optimal cases are presented

in graphical form, showing the relationship between spacecraft acceleration, propellant

mass fraction, initial-to-final orbit radius ratio, and the minimum accumulated velocity 'or

change. The graphs themselves are composed of parametric families of optimal E gre
El

solutions assembled in comprehensive charts for interpolation by the orbital mission 0

planner.

The charts cover the total range of spacecraft acceleration values. Many users of space n/

assets are interested in minimum-time orbit raising and repositioning, so the high tyWon
DUC QU.r tPECTRD 3:d/or
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acceleration cases will be of increasing future interest as continuous-thrust propulsion
technology improves.

EQUATIONS OF MOTION

The differential equations that define spacecraft motion are derived under the following

assumptions:

-- The force of thrust is constant and always in the plane of motion.

-- The vehicle has a fixed propellant mass flow rate.

-- The vehicle acceleration is due solely to the force of thrust and a spherically

symmetric inverse square central gravitational field.

Using the defined nomenclature (page 13) and the above assumptions, the polar

equations of motion are

r u (1)

v2 _ A sin+ (2)r1 ry r2 - 1 + iht(2

r=- 1 + (3)

where the dot denotes the first derivative with respect to time. The specific mass flow

rate rn is the actual mass flow rate divided by the initial mass. This value is negative

when dealing with propellant loss.

OPTIMAL CONTROL FORMULATION

Given an initial and final radius, the fuel used between circular coplanar orbits must be

minimized. This is equivalent to minimizing transfer time because rh is assumed

constant. From Bryson and Ho [Ref. 18], the Hamiltonian can be written as

H = 1 + Art + Au f + \v (5)
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where the polar angle is omitted because the exact final position is not specified and 0

does not appear in the equations of motion. The behavior of the Lagrange multipliers is

given by

Ar -A r 2 r+3 r(2 (6)

"u Ar+Av (7)

Av - Au( !X)+ AV() (8)

The partial of H with respect to the control paraneter 0 must equal zero

a Aucos - Avsin¢)l+rht = 0 (9)

Knowing the acceleration term cannot be zero, the control law is established as

tan¢ = (10)

The complete transfer is characterized by the initial choice of Lagrange multipliers. To

date, the only closed-form solution that exists is for the many-revolution case where

intermediate eccentricity is assumed to be zero and only tangential thrust is considered

[Ref. 12]. Realizing that these multipliers can be scaled without affecting the control

law or A dynamics, Ar is set to -1 and a numerical search is used to find the remaining

two.

ACCUMULATED VELOCITY CHANGE

Accumulated velocity change, r', is defined here as the total velocity imparted by the

force of thrust during the elapsed transfer time,
tf AAif = 1 ht" dt (1

This formulation of the well-known rocket equation serves two purposes: it models the
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effect of fuel depletion and also defines the relationship between time and thrust-

induced velocity change through the equation

A.
= -- ln(l+rhtf) (12)

Recasting the minimum-time solution in terms of rf provides the means for a very

compact graphical representation when considering the initial acceleration Ai and the

propellant mass fraction,

mp = - rmtf (13)

Given Ail mp, and V'f from a transfer chart, the specific mass flow rate and final time

are computed as

m-Ai -In (1- mp) (14)

and

t mp (15)

For the limiting case where rh and mp are zero, the total transfer time is simply

S= f (16)

CHART GENERATION AND DISCUSSION

Proper scaling can eliminate the dependence on a specific central attracting body

and allow a global mapping of solutions. The following definitions for distance and time

units are based on the initial radial distance ri and the gravitational parameter of the

central body p:

1 DU* =ri (17)

r r3

1 TU*= (18)
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Although these definitions are dependent on the physical parameters of a given transfer,
the equations of motion are not. Conveniently, the gravitational parameter is always 1
DU* 3/TU* 2 and the initial values of the (r, u, v) array for any circle-to-circle coplanar
transfer are simply (1DU*, ODU*/TU*, 1DU*/TU*). The final values are (RDU*,
0ODU*/TU*, 4d'iRDU*/TU*) where R is the orbit ratio rf/ri. For this study only orbit
raising is considered (rf > ri).

As previously mentioned, the initial Lagrange multiplier values completely define the
transfer. To solve this two-point boundary value problem Ar is set to -1 and a shooting
method [Ref. 19] is used to find Au, Av, and tf. Minimum-time solutions for a variety of
orbit ratios and mass fractions are transformed to accumulated velocity change and
plotted versus initial acceleration to produce Figures 1 through 7 (pages 14 through 20).

The ripples in the curves of Figures 1 through 4 reflect a transition region from
gravitational force dominance to thrust dominance; they can be used to define the
boundaries of low thrust (flat curve), intermediate thrust (rippled curve), and high
thrust (constant upward sloping curve). Also, the ripples and subsequent upward slope
testify to the additional cost of re-circularizing the final orbit. As seen in Figure 5,
failure to complete a revolution during transfer increases the associated cost. The
optimal steering law causes the eccentricity to increase for the first half of each
revolution and then diminish in the latter half: the greater the thrust, the greater the
eccentricity increase. If the desired radius is reached before completing a full
revolution, the eccentricity must be zeroed out to meet the final condition of a circular
orbit. The additional cost of this process is reflected by the peaks in the curves. When
making more than five revolutions of the central body this effect is negligible because
the induced eccentricity is very small and correctable with little additional
maneuvering. If the final state is reached in less than one revolution, the intermediate
eccentricity and associated cost grow with the shortness of the transfer arc. This is
reflected in the positive slope of the curves. The cost of re-circularization diminishes as
the ratio R increases because the gravitational force is less, making vehicle acceleration

more effective. Also, when compared to Figure 1, the smaller ripples of Figures 2
through 4 reflect the increased thrust effectiveness due to mass loss.

Figure 6 characterizes all transfers where Ai < 10- due to the constancy of accumulated
velocity change for a given orbit ratio; this is in agreement with the results of Wiesel
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and Alfano [Ref. 121. Figure 7 characterizes all transfers where Ai > 4 due to the

constant slope of the rf lines of Figures 1 through 4; the intercept value 'o is used to

approximate the total accumulated velocity change through the empirical equation

I' = V' A (19)

CHART VERIFICATION AND USE

As a matter of convention, the input parameters will always be given as the array (ri,
rf, p, Al, mp). It is assumed the reader can determine total accumulated velocity to
two significant figures from the transfer charts; six significant figures will be carried in
all computations to reduce round-off error. Physical constants can be found in

Reierence 20. The data will be presented in the following form:
1) Unscaled Input Array

2) Scaled Input Array (Eqs. 17 and 18)
3) Accumulated velocity change from appropriate chart (Eq. 19, if needed)

4) Mass flow rate (Eq. 14, if needed)
5) Minimum time-of-flight (Eq. 15 or 16).

Test Case J1 The first test case is an Earth-Mars transfer where both planetary orbits
are assumed to be circular and coplanar. The spacecraft starts in a heliocentric orbit
free of Earth's gravitational field and finishes free of Mars' field. Earth escape and Mars

capture are not considered.

1) ( 1.49598 x 101 m, 2 .27939 x 101 m, 1.32712 x 1020 m 3 /s 2 , 8.33173 x 10-1 m/s 2, 0.0)

2)( 1.0 DU*, 1.52368DU*, 1.ODU* 3/TU*2, 0.1405DU*/TU*2 , 0.0)
3)'Vf=0.50DU*/TU* (From Fig. 1)

4)r•i = 0/TU*

5)tf=3.55872TU* = 1.78742x 107S.

The exact numerical answer is 3.53186TU*, 1.77393x 107s, or 205.316 days.

Test Case L An Earth-Mars transfer solution can be found in Bryson and Ho [Ref.
18], but a mass flow rate of -12.9 lb/day is given for a 104 lb vehicle instead of the

propellant mass fraction; interpolation will be needed to find a solution. The specific
mass flow rate is -1.29x 10-3/day or -1.49306x 10-7 /s; as a starting point mp is set at 0.25.
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1) ( 1.49598 x 10"1 m, 2.27939 x 10"i m, 1.32712 x 102 0 m 3 /s 2 , 8.33173 x 10-4 m/s 2, 0.25)

2) (1.0 DU*, 1.52368 DU*, 1.0 DU* 3 /TU* 2 , 0.1405 DU*/TU*2, 0.25)

3) 'rf= 0.54 DU*/TU* (From Fig. 2)

4) rh = - 0.0748506 /TU* = - 1.49026 x 10-'/s

5) tf = 3.33999 TU* = 1.67756 x 107 S.

This final time solution is adequate because rh from Equation 14 is within two

significant figures of the original. For illustration purposes, mp will be increased to 0.5

and interpolation will be used to refine the results and better determine the transfer

time.

1) (1.49598 x 1011 m, 2.27939 x 1011 m, 1.32712 x 1020 m 3/s 2, 8.33173 x 10-4 m/s 2, 0.5)

2)( 1.0 DU*, 1.52368 DU*, 1.0 DU*3/TU* 2 , 0.1405DU*/TU* 2, 0.5)

3) Vff= 0.59 DU*/TU* (From Fig. 3)

4) rii = - 0.165063/TU* = - 3.28637x 10-"/s

5)tf=3.02915TU* = 1.52144x 107 s.

Linear interpolation of rh produces a final ti ae of 3.33951 TU*, 1.67729x 10rs, or

194.131 days. This is within two significant figures of the Bryson and Ho solution of

193 days [Ref. 18] and the exact numerical solution of 192.748 days.

Test Case 11 This case involves a LEO-GEO transfer using earth canonical units and

metric units for a propellant mass fraction of 0.463, requiring interpolation between mp
values of 0.25 and 0.5.

1)(1.05DUS, 6.61DUe, 1.0DUe 3/TUe 2, 4.0x10-3 m/s 2 ', 0.25)

2) ( 1.0 DU*, 6.29524 DU*, 1.0 DU*3/TU* 2 , 4.50079 x 10- 4 DU*/TU*2, 0.25)

3) Y f = 0.60 DU*/TU* (From Fig. 2)

4) rh = - 2.15799 x 1.9-4/TU* = - 2,48596x 10- 7 /s

5)tf= 1.25849x10 3 TU* = 1.00565x10 6 s.

Increasing mp to 0.5 yields

1) (1.05DU e, 6.61 DU e, 1.0DU e 3/TU e2, 4.Ox 10-3 m/s 2, 0.5)

2)( 1.0 DU*, 6.29524 DU-, 1.0 DU*3 /TU* 2, 4.50079x 10-4 DU*/TU* 2, 0.5)

3) rf = 0.60 DU*/TU* (From Fig. 3)

4) rh = - 5.19952 x 10-4 /TU* = - 5.98972 x 10-7/s

5) tf = 9.61628 x 10 2 TU* = 8.34763 x 10' s.

Linear interpolation to match the given mp produces a final time of 1.00556x 10 3 TU*,

8.72902x 105 s, or 10.103 days. This solution is close to the 10.0 day result of Prussing
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[Ref. 17] and the exact numerical solution of 10.0808 days.

Test Case #4 This is a LEO-GEO transfer similar to #3 with the acceleration reduced

by a factor of 1000 and a propellant mass fraction of 0.25.
1)(1.05DUe, 6.61DU e, 1.0DUe 3/TUe 2 , 4.0x10-6 m/s 2 , 0.25)

2) (1.0 DU*, 6.29524 DU*, 1.0 DU*3/TU* 2 , 4.50079 x 10-7 DU*/TU*2 , 0.25)

3) ff= 0.60 DU*/TU* (From Fig. 6)

4) rh = - 2.15799 x 10-7 /TU* = - 2.48596 x 10`0°/s

5)tf= 1.25849x 106 TU* = 1.00565 x 109 s.
This case and the previous one involve low thrust (flat curve for Figures 1 through 4, 'f
constant for a given orbit ratio R regardless of mp or Ai). Scaling the acceleration
causes an inverse scaling of transfer time. As expected, the final time is 1000 times
greater than the test case #3 results for mp = 0.25. This agrees with Reference 12.

Test Case 5 This is a high-thrust, LEO-GEO transfer; it is similar to #3 with the
acceleration increased by a factor of 10' and a propellant mass fraction of 0.75.

1) (1.05DDU e, 6.61 DU e, 1.0DU e 3/TU e 2', 4.0x 10 2 m/s 2, 0.75)

2) ( 1.0 DU*, 6.29524 DU*, 1.0DU*3/TU* 2, 45.0079 DU*/TU* 2, 0.75)
3 )'ro -.z6.4DU*/TU* (From Fig. 7), Vf=42.9363DU*/TU* (Eq. 19)

4) rh= - 1.45309/TU* = - 1.67292x 10-3 /s

5) tf 0.516144 TU* = 448.05 s.
The exact numerical solution is 445.582s.

Test Case #6 The last test case is an intermediate-thrust, Earth-Jupiter transfer where
both planetary orbits are assumed to be circular and coplanar. Earth escape and

Jupiter capture are not considered.

1) ( 1.49598 x 1011 m, 7.78299 x 1011 m, 1.32712x 1020
rm3/s 2, 1.77902 x 10-4 m s 2, 0.75)

2)(1.ODU*, 5.20260DU*, 1.ODU* /TU* 2, 0.03DU*/TUJ2, 0.75)

3) Vf= 1.1 DU*/TU* (From Fig. 4)

4) rh = -0.037808 /TU* = -1.89897 x 105 /s

5) tf= 19.8371 TU* = 9.96348x 107 s = 1153.18 days.
The exact numerical solution is 1150.34 days.
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CLOSING REMARKS

This report outlines a method to generate minimum-fuel circle-to-circle coplanar

transfer trajectories for a vehicle with constant thrust. Accumulated velocity change

replaces the time-of-flight while also accounting for propellant mass loss. The solutions

are globally mapped with no restrictions on initial thrust magnitude, intermediate

eccentricity, or number of revolutions of the central body. Several examples are

presented that verify the transfer charts and show their ease of use. These charts are

useful tools for mission planners and satellite builders to assess preliminary fuel

requirements or to compare different propulsion technologies.
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NOMENCLATURE

Ai = initial vehicle acceleration

DU* = scaled distance unit

DU e = earth distance unit

H = Hamiltonian

m = meters

rh = specific propellant mass flow rate of vehicle

mp = propellant mass fraction

r = radial distance of vehicle from attracting center

rf = final radial distance

ri = initial radial distance

R = ratio of final to initial radial distance

s = seconds

t = time

tf = total time of transfer (time-of-flight)

TU* = scaled time unit

TU E = earth time unit

u = radial component of velocity

u = radial component of velocity

v = transverse component of velocity

Irf = total accumulated velocity change

Iro = accumulated velocity change intercept value

0 = polar angle

A = Lagrange multiplier

Ar = Lagrange multiplier associated with r

Au = Lagrange multiplier associated with u

Av = Lagrange multiplier associated with v

P = gravitational constant of attracting center

0 = in-plane thrust direction angle (control parameter)
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