
00 •NASA Contractor Report 191470

00 ICASE Report No. 93-24

ICASE Ul
MAPPING ROBUST PARALLEL MULTIGRID ALGORITHMS
TO SCALABLE MEMORY ARCHITECTURES

DTIC
SELECTE

SQP 0S11993 fl
Andrea Overman I,

A U-

John Van Rosendale h W

93-20340

NASA Contract Nos. NAS 1-19480, 1A-18605
June 1993

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

MAPPING ROBUST PARALLEL MULTIGRID ALGORITHMS TO
SCALABLE MEMORY ARCHITECTURES'

Acceioi-, For

Andrea Overman N _
NASA langley Research Center I ; 1,\i3 Li

Hampton, VA 23681-0001 U,,.,,- '

John Van Rosendale By -_....................

ICASE D: ib,•tic'; I
NASA Langley Research Center ,' ,,tees

Hampton, VA 23681-0001

ABSTRACT :-I

The convergence rate of standard multigrid algorithms degenerates on problems with
stretched grids or anisotropic operators. The usual cure for this is the use of line or plane
relaxation. However, multigrid algorithms based on line and plane relaxation have limited and

awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer
multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than
line relaxation are better suited to massively parallel architectures because they require only simple

point-relaxation smoothers.

In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid
(MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon
computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation
or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism
must be exploited to map these algorithms effectively to parallel architectures. This paper describes
a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both
levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for
distributed-memory machines.

'This research was supported by the National Aeronautics and Space Administration uni,!,r NASA cmiract ,.

NASI-19480 and NASI-18605 while the second author was in residence at. the Institute for ('omIpuiter Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 236x1-o001.

INTRODUCTION

The convergence rate of standard multigrid algorithms degenerates on problems that have
anisotropic discrete operators. Such operators arise when the continuous operator is anisotropic or
when the discretization is based on highly stretched grids. Although a number of effective cures
exist for this difficulty, the best sequential algorithms (based on line or plane relaxation) do not
appear to be viable on emerging, massively parallel architectures. Thus, newer algorithms, which
achieve robustness through the use of multiple coarse grids rather than line or plane relaxation and
require only point-relaxation smoothers, are an attractive alternative.

The problems with line- and plane-relaxation algorithms on parallel architectures have only
recently become apparent. Although the tridiagonal systems involved can be solved in parallel by
substructured elimination, for example, this approach approximately doubles their computational
cost. In addition, a more subtle difficulty exists. The fastest robust sequential algorithms combine
line- and plane-relaxation algorithms with semicoarsening. Unfortunately, this means that the size
of the line and plane solutions required on coarse grids is the same as on the fine grid. For example,
an n2 point grid in two dimensions with a parallel tridiagonal solver and 0(n 2) processors gives a
theoretical upper bound on parallel efficiency of only 0(1/log2 n). Thus, the fact that parallel
implementations of such algorithms have proven problematic is not surprising (refs. 1,2,3).

An alternate approach to robustness, based on using multiple grids on every coarse multigrid
level, is newer and relatively untried. Through the use of appropriate coarse grids, one can obtain
point-relaxation algorithms as robust as line- and plane-relaxation algorithms (refs. 4,5,6,7).
However, because of the large number of coarse grids required, these algorithms are not quite
competitive with line- and plane-relaxation algorithms on sequential machines. On parallel
architectures, the opposite is true (refs. 5,8,9) because the increased parallelism due to the multiple
coarse grids is an attractive bonus. In particular, Douglas' method is robust and can be mapped
effectively to parallel architectures (ref. 5); Horton (ref. 9) has looked recently at the mapping of
Hackbusch's Frequency Decomposition method (ref. 6) to parallel architectures.

In this paper, we study the mapping of the multiple semicoarsened grid (MSG) algorithm, a
variant of Mulder's multiplc coarse-grid algorithm (ref. 10), to highly parallel architectures. The
MSG algorithm (ref. 7) is relatively robust and at the same time provides ample parallelism for
current parallel architectures. We take as our model problem the symmetric, positive-definite
Helmholtz equation

au,, + bu~Y + cu,, - du = f

with a, b, c, d > 0 and focus on the mapping issues involved in implementing this algorithm on
distributed-memory architectures such as the Intel iPSC/860 and Paragon.

This paper is organized as follows. We begin with a description of the MSG algorithm in the
next section, which is followed by a discussion of observed convergence rates. Our parallel
implementation is then described. We present the experimental results, and, finally, conclusions are
given.

ALGORITHM DESIGN

We first need to describe the MSG algorithm. For notational simplicity, assume t hat tilt
domain of the model problem is the unit square in two dimensions and that this pro)blem is to be
solved on an n x n uniform grid as

Qh = {(ih,jh) I i =0,1,...,n; j 0, 1,...,n}

with h = 1/n. Define the coarser grids QIm which are obtained by successive semicoarsening of Q11
I times in the x-direction and m times in the y-direction. Thus, Qfm has (n + 1)/2' grid points in
the x-direction and (n + 1)/2- grid points in the y-direction.

Notice that the notation does not distinguish between a grid obtained by sernicoarsening first
in the y-direction and then in the x-direction and a grid obtained by semicoarsening first in the
x-direction and then in the y-direction. Either path leads to a grid of the same shape and size. As
shown by Mulder (ref. 10), such equivalent grids must be combined in order to construct reasonable
algorithms in three or more dimensions.

Figure 1 shows the interrelations between the various grids for a two-dimensional problem
with an 8 x 8 fine grid. With coarse grids combined as in this diagram, for a 16 x 16 problem one
would have only 16 grids altogether; without combining, the full binary tree of grids would contain
69 grids.

level I

level 2

level 3

level 4

\ /

level 5

Figure 1. Semicoarsening of an 8 x 8 grid.

Given this family of grids, one can construct a V-cycle correction scheme analogous to the
standard full-coarsening multigrid algorithm. One-dimensional linear interpolation provides a

2

natural prolongation operator; its adjoint gives the "full weighting" restriction operator. These
choices, together with any reasonable smoother, yield a multigrid algorithm. However, the resulting
algorithm is not robust.

The problem with this simple correction scheme is explained. If the prolongation is scaled so
that the full correction is obtained from the modes that are oscillatory in x but not y and
conversely, then the result is double the required correction of the smoothest components that
belong to both coarse grids, and divergence results. On the other hand, if the prolongation is scaled
to get the proper correction of the smooth components, then some of the oscillatory components are
undercorrected, and robustness is lost.

The resolution of this problem is to filter either the residuals that are being restricted or the
corrections that are being prolonged to achieve a convergent V-cycle for the model problem

a u,, + b uY = f

where the convergence rate is independent of a, b > 0. This filtering can be performed in several
ways.

Let vI'"' denote the correction on grid Ql',-. Also let R, and Ry denote restriction in the x-
and y-directions, and, similarly, let Px, and P,, denote prolongations. The first effective solution to
this problem was given by Mulder (ref. 10). Mulder forms the fine-grid correction

P, v 1'0 + PXR.Py v°'

given solutions v0' and v1'° on the second level and similar solutions for coarser levels. One can
think of the operator P.R. here as a high-pass filter that filters out the excess correction for the
smooth modes common to both coarse grids.

In recent work, Naik and Van Rosendale have been looking at the analogous scheme with the
correction

(1 + 1/2 PRV)P, v' 0° + (1 + 1/2 PR,)P, v°'

which can be thought of as a symmetric version of Mulder's scheme. A V-cycle proof for one variant
of this scheme appears to be possible.

A third way of making the correction is to compute a scalar-valued function a(x, y), which
depends on the strength of the discrete differential operator in each coord:nate direction. Then,
with a properly choosen a, one uses the correction

a(X, y)P, v' 0° + [1 - a(x, y)]PV v°"

A V-cycle convergence proof for this scheme, at least for constant coefficient problems, was given in
ref. 7. This reference also provides details on the computation of a(x, y).

On sequential machines, any of these schemes is effective and robust. Mulder's scheme and its
symmetrized version eliminate the necessity of choosing a; the extra work involved in their
interpolations is trivial. However, because the communication required for interpolation is awkward

3

and expensive on parallel architectures, we used tl!e tipha-switch algorithm here, which reduces the
complexity of the interpolations. It is as robus't as the alternatives and simpler to implement.

Generalization of this alpha-switch algorithm to the three dimensions is straightforward.
Instead of simply computing a(x, y), one computes o(x, y, z) and /3(x, y, z) and then uses the three
weights

a(x,y,z) /3(x,y,z) 1 - a(x,y,z) - /3(x,y,z)

From the point of view of parallel architectures, computation of the switching factors a and /3 is
analogous to a Jacobi sweep, which needs to be done only once at the beginning of the computation.

OBSERVED CONVERGENCE RATES

Experimentally, the MSG algorithm converges extremely well for the model problem

a u., + b u~Y + c uZ - d u = f

where the convergence rate is independent of a, b, c, d > 0 and uniform mesh size. Alternatively,
MSG can be used for stretched grids, as shown in Table 1. The results given are observed
convergence rates for Poisson's equation with Dirichlet boundary conditions and a random initial
guess. Slow variation in the coefficients a, b, c or in mesh spacing have a similar impact on
convergence. The Helnholtz term d > 0 can improve convergence on coarse grids, but is largely
irrelevant. All of the above information applies only to problems with smooth coefficients. Special
algorithms are required for problems with severe coefficient jumps (refs. 11,3). The discretization
used throughout our experiments was a symmetric seven-point finite-difference stencil, with the
smoothing done by three red-black successive over-relaxation (SOR) sweeps on every grid.

The problem with this algorithm on sequential machines is the large number of grids required
and the resulting high cost per V-cycle. With the usual coarsening by a factor of 2 (as shown in
Table 1), the total storage for all grids in three dimensions is eight times that of the finest grid.
Thus, the work per V-cycle is also eight times the work on the finest grid, which does not include
the cost of the interpolations.

A more attractive sequential algorithm can be made by changing the coarsening factor. In any
semicoarsening algorithm, one has fewer Fourier modes to reduce than in full-coarsening algorithms:
thus, one can afford to coarsen the grids faster.

If we use coarsening by a factor of 4, for example', then the total storage becomes

(1 + 1/4 + 1/16 + ...)3 = 64/27

times that on the finest grid. Thus, the total work is about 24 times that on the finest grid.

'The red-black SOR smoother used yields poor convergence rates for odd coarsening factors. Thus, the reasonable
choices for the coarsening factor are 2 and 4 because either 6 or 8 would make the space of "oscillatory" functins
(which must be effectively reduced by the smoother) too large.

4

Table 1. Convergence Rates of MSG on Various Grids With Factor-of-2 Coarsening

8 x8 x8 16 x 16 x16 32 x32 x 32

Uniform Grids
dx = 1000, dy = dz = 1 0.04 0.06 0.07

dx = 10, dy = dz = 1 0.04 0.06 0.08

dx = 0.1, dy = dz = 1 0.02 0.05 0.07

dx = 0.001, dy = dz = 1 0.03 0.07 0.08

Chebyshev Grids
Chebyshev in x 0.04 0.06 0.11

Chebyshev in x, y 0.04 0.04 0.12

Chebyshev in x, y, z 0.03 0.04 0.15

Table 2 gives the observed convergence rates for the same problems as in Table 1; however,
factor-of-4 coarsening was used. Although the convergence rates in Table 2 are poorer than in Table
1, the reduced computational cost per V-cycle more than compensates for this. Three V-cycles of
the algorithm can be accomplished with factor-of-4 coarsening for less than the cost of one V-cycle
with a factor-of-2 coarsening. With the 32' grid, because 0.3' = 0.027, the three V-cycles with a
factor-of-4 coarsening are more effective than one V-cycle with a factor-of-2 coarsening.

Massively parallel architectures that have hundreds or thousands of processors might change
these considerations and increase the effectiveness of the algorithm with a factor-of-2 coarsening
because it provides more parallelism on coarse grids. However, because the algorithm with a
factor-of-4 coarsening seemed to provide ample parallelism and the memory per processor is limited
on the Intel iPSC/860, we used a factor-of-4 coarsening in our code.

In addition to the use of a factor-of-2 coarsening, the parallelism can be further increased by
use of concurrent iteration on all grid levels (refs. 12,13). This form of MSG is particularly
attractive on SIMD machines, where the mapping strategies needed for the V-cycle algorithm are
prohibitively complex. In joint research with J. Dendy, this alternative is currently being explored
for problems with severe coefficient jumps. However, while the concurrent iteration version of MSG
maps very nicely to SIMD machines (ref. 7), its convergence rate is in the range of 0.5-0.6, even
with a factor-of-2 coarsening. Thus, one trades numerical performance for massive parallelism.

5

Table 2. Convergence Rates of MSG on Various Grids With Factor-of-4 Coarsening

8 x8 x8 16 x 16 x 16 :32 x32 x 32

Uniform Grids
dx = 1000, dy = dz = 1 0.21 0.20 0.23

dx = 10, dy = dz = 1 0.21 0.20 0.24

dx = 0.1, dy =dz= 1 0.11 0.13 0.18

dx =0.001, dy=dz= 1 0.11 0.15 0.14

Chebyshev Grids
Chebyshev in x 0.19 0.18 0.26

Chebyshev in x, y 0.11 0.14 0.25

Chebyshev in x, y, z 0.05 0.19 0.26

MAPPING MSG TO SCALABLE ARCHITECTURES

The V-cycle MSG algorithm achieves fast convergence and contains substantial parallelism,
although exploitation of this parallelism is fairly awkward. This awkwardness is in contrast to the
standard (full-coarsening) multigrid, where parallel implementation is straightforward. For the
MSG case, we designed a program to compute efficient mappings of the algorithm to a
distributed-memory architecture. The computed mappings were then implemented with the
PARTI2 runtime primitives developed at ICASE (refs. 14,15). Although this implementation was
complex, without PARTI or analogous tools, implementation would have been prohibitively
difficult. In this section, we describe our implementation strategy.

Load Balancing

Two basic issues must be addressed in mapping the V-cycle MSG algorithm to
distributed-memory architectures: processors must be assigned to the grids on each level and each
grid must be partitioned across the processors assigned to it. Because a large number of possible
mapping strategies exist, we made two major simplifying choices. First, we chose to map each
multigrid level independently of the mapping of all other levels. Second, if the number of processors
was greater than the number of grids on a level, we chose to assign each processor to, at most, one

2PARTI is an acronym for Parallel Automated Runtime Toolkit at ICASE.

6

grid on that level.

The first assumption is justified by the observation that the smoothing iteration is more
frequent and more computationally intensive than the interpolation, so that the achievement of a
good mapping during the smoothing step is crucial to performance. Also, any mapping that
achieves an approximate load balance during the smoothing step is bound to induce a large amount
of communication during interpolation. One reason for this is that the number of grids on each level
almost always differs from the number on neighboring levels; thus, no mapping exists that
simultaneously minimizes communication and achieves load balance.

The second assumption that each processor is assigned to no more than one grid on every level
was taken to minimize communication, although it does induce some load imbalance. For example,
suppose one has three grids on a level to be split over eight processors. Then each grid would ideally
receive 2.66 processors. However, such a mapping is complex and clearly increases communication.
Instead, one grid would be assigned to two processors, and the other two grids to three each.

In the current implementation, we did not split processors across grids. Instead, we carefully
determined those grids that should get fewer and those that should get more processors to achieve
approximate load balance without splitting processors across grids. In general, long thin grids (grids
with one array dimension much smaller than the others) induce less communication when split over
multiple processors than fat grids (grids with all array dimensions about equal). Thus, one
maximizes load balance by assigning excess processors to the fattest grids.

Given these preliminaries, our load balancing algorithm follows. By assuming one has p
processors and more processors than grids on all multigrid levels, the algorithm for distributing
processors to grids is

Assign p processors to the finest grid
For level := 2 to max-level {

ngrids := number-of-grids(level)
assign [p/ngridsj processors to each grid
p-excess := p - ngrids [p/ngridsJ
assign one more processor to each of the p-excess fattest grids

We call this the maximally distributed strategy.

This algorithm gives a distribution of processors to grins. Afterwards, one still has to partition
each grid across the processors. To do this, we blocked the finest grid across processors in all three
directions; coarser grids were blocked in one direction. One reason for this choice is that coarser
grids often have an odd or prime number of processors, so that partitioning in more than one
direction can be quite awkward. In all cases, the direction in which the coarser grids were blocked
was chosen to minimize interprocessor communication.

In an alternate implementation referred to as the aligned strategy, all coarse grids were aligned
to the finest grid, which requires each coarse grid to be partitioned among the full set of processors.

7

Although this strategy will eliminate communication during the interpolation, it leads to increased
communication within a single grid and may quickly lead to idle processors. In the future, a
strategy that uses a combination of the two described above may be implemented. In this hybrid
implementation, coarse grids would be aligned in the first few levels; on lower levels, individual grids
would be assigned to only a subset of processors.

PARTI Implementation

As stated, the MSG algorithm was implemented in parallel with the multiblock PARTI
routines. The multiblock library was designed to support block-structured aerodynamics codes in
which one uses multiple, logically rectangular grid blocks to resolve complex aerodynamic
geometries (ref. 16). Because the structure of such codes is fairly similar to that of MSG, we found
that the same routines could be effectively used to implement this algorithm.

The PARTI library for block-structured codes allows multiple grid blocks to be processed in
parallel and carries out the necessary communication required to move information among the grids.
In our parallel implementation that maps coarse grids to subsets of processors, an individual
"decomposition" is defined for the fine grid and for each coarser grid. In order to have all processors
active on the finest grid, the fine-grid decomposition is embedded into the entire processor space.
Then, for each subsequent level, the coarse-grid decompositions are embedded into an
approximately equal portion of the processor space, as described in the last section. The single
coarse grid on the coarsest level contains few points so it is mapped to one physical processor.

Our parallel version reads a file that holds the grid mapping and distribution information. A
subroutine was created to use this mapping information along with the appropriate PARTI routines
to set up the problem. As in most multigrid codes, the sequential code uses several large arrays to
hold the residual, solution, and right-hand-side data for all grids on all levels. Individual grid sizes
and starting index locations into the large arrays are computed and passed as parameters to
subroutines. This strategy was maintained in the parallel version; however, the sizes and starting
locations were modified to reflect the parallelism and the additional space required for holding
boundary data for those grids distributed over more than one processor.

While PARTI aims to require minimal changes to the sequential source program, our parallel
implementation was 20 to 25 percent larger than the original sequential program, and some
subroutines required an extensive rewrite. Emerging FORTRAN dialects, like High Performance
FORTRAN, FORTRAN D, and Vienna FORTRAN, may soon ease this programming burden.
However, the current versions of these languages are not expressive enough to allow mapping
strategies as complex as those described in this paper. The improvement of such languages, and of
software tools like PARTI, is an area of active research at ICASE and elsewhere. The present
situation, in which the effective mapping of an algorithm to a parallel architecture is an arduous
task of many months, is clearly unacceptable.

8

EXPIl'RIMENTAL RESULTS

We recently implemented this algorithm and the mapping strategy on a 32-node Intel
iPSC/860 and will soon migrate this program to a 64-node Intel Paragon anrd possibly a CM-5. The
current results are preliminary, but are sufficiently encouraging to suggest the relative efficacy of this
class of algorithms. For a problem with 16' mesh cells, the achieved efficiencies are given in Table 3.

Table 3. Efficiency of Problem With 16a-Point Grid on iPSC/860

Processors 1 2 4 8 16

Efficiency 1.0 .83 .66 .42 .25

Table 4. MSG Performance on the Intel iPSC/860

Total Time V-cycle Time, (secs)
Size Nodes (secs) First V-cycle Subsequent V-cycles

1 6.96 3.07 1.22
2 4.21 1.70 .804

163 4 2.63 1.05 .508
8 2.07 .925 .373

16 1.71 .793 .302
4 22.6 11.6 3.55

323 8 13.5 7.15 2.03
16 8.39 4.59 1.23
32 5.27 2.61 .867

643 16 49.5 28.8 6.63
32 24.1 12.1 3.87

These efficiencies were computed relative to the parallel implementation run on one node. A
large amount of overhead can be incurred with the runtime software. For the 16' problem, the
parallel code run on one processor takes approximately four times longer than the sequential code
that contains no PARTI calls. For larger problems, the overhead should become less significant.

Another issue here is the choice of stencil. With the 7-point stencils used, the
communication/computation ratio is four times greater than for 27-point stencils, and our
efficiencies -re correspondingly lower. However, the PARTI library does not currently update the
corner ghost points needed for the 2 7-point stencils, so we were restricted to the use of 7-point.
stencils. This restriction will be changed in the next release of the library.

9

50

40 643

4\6
S30

..............
.2• 20

m 20
3

10 16 32

.............

1 2 3 4 5 6

Log # processors

Figure 2. Execution time versus number of processors.

Table 4 shows performance results for several problem sizes. The table contains the overall
program timings, along with the timings for each V-cycle. The results show the extra time required
in the first V-cycle for setting up the communication schedules. These schedules are saved and,
therefore, do not need to be recomputed on subsequent iterations.

Figure 2 expands on the data in Table 4. The graph shows that the 32' problem run on 4
nodes requires approximately the same a-nount of time as the 64' problem run on 32 nodes. This
result is to be expected because the 64' problem has about eight times as much work. In Figure 2, a
horizontal connecting line between the two cases (the dashed line on the graph) would indicate the
achievement of perfect memory-bounded speedup (ref. 17); however, because of various overheads,
this line slopes slightly.

The number of cases plotted here was constrained by current limitatioLs of the PARTI library.
For example, we were unable to obtain any timings on the machine that used more than 32
processors. Also, becaase of the large amount of memory consumed by the PARTI communication
library, the user memory available on each processor decreased. These problems should be resolved
in future releases of the PARTI library. The multiblock library is in a preliminary stage. We expect
that further optimizations will improve the performance of block-structured codes with the
multiblock library. The performance effects of some optimizations made to the PARTI primitives
used in unstructured codes are described in ref. 18.

Alternate Mapping Strategies

We have also experimented with the aligned mapping strategy that was described briefly in

10

it, previo,,s sect ion. With this strategy, the cost of the first, V-cycle is much lower than in the
maximally. dit.,ributed strategy because the communication that occurs in the interpolation is easier
to analyvze. llowever, sublse(quent V-cycles are more expensive than in the maximally distributed
sl rat ,,gv. This liflerei'e seems to be due both to the increased communication within each grid
(1 eauis, each grid is subdivided more finely) and to the sequentialization of all grids on every level.
As a result. thle aligned strategy is less effective than the maximally distributed strategy, even
though it reduces interprocessor communication during the interpolation. 3 In future work, we plan
to studyv various hlybrid strategies like those proposed in ref. 9 that combine the advantages of both
the aligned and maximally distributed strategies.

CONCLISIONS

We have examined the parallel implementation of a multigrid algorithm based on multiple
coarse grids. Such multigrid algorithms have a fast convergence that is independent of grid
stretching and can be effectively mapped to highly parallel architectures. We have developed a
strategy for mapping such algorithms to parallel machines and have given preliminary results on the
effectiveness of this strategy in mapping MSG to the Intel iPSC/860. The PARTI library is being
ported to the Intel Paragon; we plan to try our algorithms on this larger machine in the near future.

ACKNOWLEDGMENTS

The authors wish to thank Alan Sussman for making the library available to us while it has
been under development and for frequent consultations on the use of the multiblock PARTI
routines. We also wish to acknowledge discussions on parallel multigrid issues with Joe Dendy,
Naomi Naik, and Graham Horton.

REFERENCES

I. Dendy, J. E., Jr.; Ida, M. P.; and Rutledge J. M.: A Semicoarsening Multigrid Algorithm for
SIMI) Machines. SIAM J. Sci. Stat. Comput., vol. 13, no. 6, Nov. 1992, pp. 1460-1469.

2. Overman, A.; and Van Rosendale, .J.: Mapping Implicit Spectral Methods to Distributed
Memory Architectures. ICASE Report 91-52, June 1991.

3. Smith, R. A.; and Weiser, A.: Semicoarsening Multigrid on a Hypercube. SIAM J. Sci. Stat.
Comput., vol. 13, no. 6, Nov. 1992, pp. 1:314-1329.

'A problem also exists with using the PARTI library for the aligned strategy. C(urrently, TPARTI does not handl,
cases in which the decomposition of a coarse grid across processors results in a processor that receives no mesh points,
a case that. frequently arises with this strategy. Future versions of the PARTI library may eliminate this restriction.

II

4. Ta'asan, S.; and Brandt, A.: Multigrid Solutions to Quasi-Elliptic Schemes. In Progress i7
Supercomputing in Computational Fluid Dynamics. E. Murman and S. Abarbanel, eds.,
Proceedings of the U.S.-Israel Workshop, 1984, pp. 235-255.

5. Douglas, C. C.: A Tupleware Approach to Domain Decomposition Dethods. Appl. Numer.
Math., 8, 1991, pp. 353-373.

6. Hackbusch, W.: The Frequency Decomposition Multigrid Method, Part I: Application to
Anisotropic Equations. Numer. Math., 56, 1989, pp. 229-245.

7. Naik N.; and Van Rosendale, J.: The Improved Robustness of Multigrid Elliptic Solvers Based
on Multiple Semicoarsened Grids. SIAM J. Numer. Anal., vol. 30, no. 1, Feb. 199:3, pp.
215-229.

8. Frederickson, P.; and McBryan, 0.: Parallel Superconvergent Multigrid. In Multigrid Methods:
Theory, Applications, and Supercomputing. S. F. McCormick, ed., Marcel Dekker, New York,
1988, pp. 195-210.

9. Bastian, P.; and G. Horton, G.: Parallelization of Robust Multigrid Methods: ILU

Factorization and Frequency Decomposition Method. SIAM J. Sci. Stat. Comput., vol. 12,
no. 6, Nov. 1991, pp. 1457-1470.

10. Mulder, W.: A New Multigrid Approach to Convection Problems. J. Comp. Phys., vol. 83,
1989, pp. 303-329.

11. Alcouffe, R. E.; Brandt, A.; Dendy, J. E. Jr.; and Painter, J. W.: The Multi-Grid Method for
the Diffusion Equation with Strongly Discontinuous Coefficients. SIAM J. Sci. Stat. Comput.,
vol. 2, 1981, pp. 430-454.

12. Gannon, D.; and Van Rosendale, J.: Highly Parallel Multigrid Solvers for Elliptic PDE's: An
Experimental Analysis. ICASE Report 82-36, 1982.

13. Gannon, D.; and Van Rosendale, J.: On the Structure of Parallelism in a Highly Concurrent
PDE Solver. J. Parallel and Distributed Comp., vol. 3, 1986, pp. 106-135.

14. Sussman, A.; Saltz, J.; Das, R.; Gupta, S.; Mavriplis, D.; Ponnusamy, R.; and Crowley, K.:
PARTI Primitives for Unstructured and Block Structured Problems. Computing Systems in
Engineering, vol. 3, no. 1-4, 1992, pp. 73-86.

15. Chase, C.; Crowley, K.; Saltz, J.; and Reeves, A.: Parallelization of Irregularly Coupled
Regular Meshes. ICASE Report 92-1, Jan. 1992.

16. Vatsa, V.; Sanetrik, M.; and Parlette, E.: Development of a Flexible and Efficient
Multigrid-Based Multiblock Flow Solver. AIAA Paper 93-0677, Jan. 1993.

17. Gustafson, J.; Montry, G.; and Benner, R.: Development of Parallel Methods for a
1024-Processor Hypercube. SIAM J. Sci. Stat. Comput., vol. 9, 1988.

18. Das, R.; Mavriplis, D. J.; Saltz, J.; and Gupta, S.: The Design and Implementation of a
Parallel Unstructured Euler Solver Using Software Primitives. AIAA Paper 92-0562, Jan.
1992.

12

I Form Approved
REPORT DOCUMENTATION PAGE OM8 No 0704-0188

Public reporting burden for this collection of information is estimated to a~erage n!our per lesoorse rccudinq the time rot re ewing instructions. searcengc eist nottc• sourcý'
gatftsrnq and maintaining the data needed, and tomgaieting and reviewing the 0OllecTrOn Of information Send comments rearding this burden estimate or an, other asoed of trio
collection of rintormatiOn. including suggestions for reducing this burden to Waingto to i ons and Reports 215 1 erfer s so

aOavs• Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Bud0ge! Paperswor- Reducto, Prloject (0704-0 188) Wasnington. DC 20503

1. AGENCY USE ONLY (Leave bMank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1993 Contractor Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

MAPPING ROBUST PARALLEL MULTIGRID ALGORITHMS TO SCALABLE C NAS1-19480
MEMORY ARCHITECTURES C NAS1-18605

6. AUTHOR(S) WU 505-90-52-01

Andrea Overman
John Van Rosendale

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering ICASE Report No. 93-24

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-191470

Hampton, VA 23681-0001 ICASE Report No. 93-4

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card To appear in the Proc. of the

Final Report Copper Mountain Multigrid

Conference

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 61, 64

13. ABSTRACT (Maximum200words) The convergence rate of standard multigrid algorithms degen-

erates on problems with stretched grids or anisotropic operators. The usual cure for

this is the use of line or plane relaxation. However, multigrid algorithms based on
line and plane relaxation have limited and awkward parallelism and are quite difficult
to map effectively to highly parallel architectures. Newer multigrid algorithms that

overcome anisotropy through the use of multiple coarse grids rather than line relaxa-
tion are better suited to massively parallel architectures because they require only

simple point-relaxation smoothers.
In this paper, we look at the parallel implementation of a V-cycle multiple semi-

coarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel
iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism:
parallelism within the relaxation or interpolation on each grid and across the grids
on each multigrid level. Both levels of parallelism must be exploited to map these

algorithms effectively to parallel architectures. This paper describes a mapping of
an MSG algorithm to distributed-memory architectures that demonstrates how both levels
of parallelism can be exploited. The result is a robust and effective multigrid al-
gorithm for distributed-memory machines.

14. SUBCT TEMS 15. NUMBER OF PAGES
parallel multigrid; robust multigrid 14

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

NSN 7540-1-280-5500 Standard Form 298 (Rev 2-89)
PrmKcrbpd by ANSI Std 139.18
291-102

*lU.S. GOI'ERNMENT rRINTING OFT'CE: 1993 - 727.-064/16OT23

