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INTRODUCTION

The fractal character of fracture surfaces prnduced by Charpy impact and by the final fast fracture
of thick-walled pressure vessels during low cycle fatigue testing in high strength and toughness ASTM
A723 (moditied AISI 4340 with 0.2 percent vanadium) steels has been determined.

Substantial differences were observed in the qualitative appearar.ce ,tnd in the fractal character of
the fracture surfaces produced by the two mechanisms. The Charpy specimens were typical of high
toughness steel fracture surfaces ;refs 1-5) and had fractal dimension approximaely 1.25, while 'he low
cycle fatigue specimen exhibited an extremely high fractal dimension near 1.40. since the character ot the
low cycle fatigue specimen fracture was atypical of fracture surfaces in high toughness steels previously
studied, a thorough study of its structure was undertaken.

We follow the usual convention of giving the fractal dimension as that determined for islands
and/or lakes on sections through the fracture surface. Thus, according to Mandelbrot's rule for sections,
the actual fracture surface fractal dimensions are 1.0 greater than the fractal dimensions reported here.

EXPERIMENTAL

Char•y Specimen

Charpy specimens were standard notched 3M8 inch AST'M A723 bars with a norir.al strength ol
160 Ksi and hardness of 38 Rc. Fracture surfaces were coated with elec'roless nickel prior !o grinding on
a metallurgical polishing wheel wo obtain the island and lake configuration. Perimeter and area
measurements were obtained with the JAVA' image analysis system (ref 6).

Low Cycle Fatigue Specimen

The low cycle fatigue specimen fracture surface was produced in a 10-cm inner diameter thick-
walled cylinder subjected to hydraulic piessnre cycling, which culminates in a fina. fast fracture when the
fatigue crack depth exceeds the critical crack length (refs 7,8).

A large section (2 inches by 5 inches) of the fracture surface was selected for analysis. Electroless
coating of the surface ic protect fine detail during grinding was unnecessary because of the low
magnification used for the large islands and lakes on this specimen. However. lake regions w,: ce filled
with paint to enhance contrast. The images were recorded with a video camera and analy-zed with the
JAVA' system (ref 6).

DATA ANALYSIS

The primary analytical technique employed in these expeniments was the slit island method of
Mandelbrot, Passoja, and Paullay (ref 1). Island data were accumulated, ignoring lakes within islands, and
lake data were accumulated, ignoring islands within lakes.

Conventional slit island analysis was performed on the islands produced by sectioning the Charpy
bars.

The low c.ycle fa,,-ue speLimen was more extensively studied. Conventional slit island analysis was
supplemented by sepa, ate analyses of island and lake data on individual sections. l-he distributions of
island and lake areas on i. . ! .' 60 • .d -, ý., f, ;.kf W •.. niitn6ed * .-it;' , , oo tit Lu thcl1,orcak .h.,,caa
law ti.e., a nvperbolic distribution function) as suggested in the discussion of diameter-numher relations by
Mandelbrot (ref 9). Curve fitting and computation employed MATLAB- software (ref 10).



RESULTS

Slit Island Analysis

1. Charpy impact fracture. The log-log perimeter-area data in Figure 1 are r.cpical of slit island
results obtained from Charpy fractures in tempered martensite for ASTM A723 steels. The Iog,0
(perimeter) values shown comprise about seventy islands and are linear in log,0 (area) over about four
orders of magnitude in the area (from about 10s to 10- mm-); the fractal dimension is determined to be
1.25. Values of the fractal dimension measured for Charpy impact fractures in A723 steels ranged
between about L.O and 1.30.
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Figure 1. Log,0 (perimeter) versus log,, (area) for a typical Charpy fracture surface.
One unit of perimeter is approximately 0.1 cm and one unit of area is
approximateiv 0.01 cm:. The least-squares fit line yieids D = 1.25.

2. Low cycle fatigue specimen fracture. Perimeter-area plots were obtained for a sequence of
sections through t'e low cycle fatigue specimen fracture surface. Each section comprised about two
hundred isl. nds or lakes. Areas varied from about 0).5 10' to 10' mmr-.

a. Island sections. The initial sections, which exhibited (essentiallv) only islands. and
intermediate depth sections, which exhibited comparable numbers of islands and lakes, provided data for
eleven separate island-only perimeter-area analyses. The data were strikingly consistent. Fractal
dimension determinations on the individual sections ranged from 1.37 to 1.4!. the combined data yielde
1.40. There was a trend toward lower values at deeper se'tions. Figure 2 shows the perimeter-area (in
arbitrary units) data for th.- inmbined island data and for a typical section.
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Figure 2. Sorted and averaged log, 0 (perimeter) versus logo0 (area) for all island sections
in low cycle fatigue fracture surface. The islands are sorted in order of
increasing area and arranged into sets of 50 islands. Each point represents
the average value for a set of 50 islands (e.g., the nth point represents the
average values for islands (50n- 4 9) through 50n in the sorted iist). The least-
squares fit line yields D = 1.395 ± 0.004.

b. Lake sections. The deeper sections provided data for seven separate lake perimeter-
area analyses. The data were remarkably consistent among themselves and with the results of the island
analyses. Fractal dimension determinations on the individual sections ranged from 1.36 to 1.39: the
combined data yielded 1.37. Figure 3 exhibits the perimeter-area dependence of the combined lake data.

Area-Number Relations

Hyperbolic distributions and fractal structures are closely related. For example, in the theory of
self-ordered criticality they reflect abserice of intrinsic time and spatial scales, respectively. Mandelbrot's
discussion (ref 9) of diameter-number relations for geographic islands aefined by sea level, suggested that
islands produced by sections through fractal surfaces should exhibit hyperbolic distributions. (Mandelbrot
credits J. Korcak with the discovery of the existence of such distributions and refers to them as Korcak
distributions.)

The generalized Korcak law. as formulated by Mandelbrot (ref 9), relates the hyperbolic area-
number relation and the fractal dimension of the surface as

N,(A > a) = F aD

where N,(A > a) is the total number of islands of area greater than a, and D is the surface fractal
dimension. Mandeibrot (ref 9) also asserts that the fractal dimension D, governing the hyperbolic
distributi~m, L cnxcccd the coastline fractal dimension D. as a result of "fragmentation."

3
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Figure 3. Log,0 (perimeter) versus log,0 (area) for all lake sections in low cycle fatigue
fracture surface. One unit of perimeter is approximately 2.4 cm aud one unit
of area is approximately 5.7 cm2 . The least-squares fit line yields
D = 1.372 " 3.0041.

1. Island sections. The number-area data accumulated for all the islands in the low cycle fatigue
fracture surface are shown in Figure 4. The data are consistent with a hyerbolic distribution over three

orders of magnitude in the area. Least-squares fitting yields D - 1.54, which is substantially greater than
the coastline fractal dimension (D. = 1.40) and would seem to imply a substantial fragmentation
contribution to D. Furthermore, anayses of the hyperbolic distribution of island areas for individual
sections also gave D values greater than D,. The deviations of the deduced D values were within
"t 15 percent of 1.54 over the eleven island sections.

A smaller D would be obtained for the island number-area data if one invoked a smadler "outer
cutoff on the distribution, but the data are '.ssentially linear over the three orders of magnitude in the
area over which the parameters were fit.

2. Lake sections. The lake sections were consistent with a hyperbolic distribution over about one
and a half orders of mapnitude: however, for the lake sections, the deduced dimension (D = 1.40) is in
close accord with the coastline fractal dimension.
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Figure 4. Korcak plot for island sections. The least-squares fit line through the linear
portion (points 3 to 10) yields D = 154 t 0.06.

DISCUSSION

Perimeter-area analysis was applied to fracture surfaces produced in Charpy impact and low cycle
fatigue tests in high strength and toughness ASTM A723 (modified AISI 4340 with 0.2 percent vanadium)
steels. The fractal dimension of the Charpy impact fracture surfaces was determnined to be approximately
1.2L, which is consistent with the results of other fractal studies of fracture in high strength steels (refs 1-
5). However, the fractal dimension was determined to be approximately 1.39 for low cycle fatigue fracture,
an extremely high value for fracture in a high strength and toughness steel alloy.

The major difference in the rwo experiments is the scale over which the fractures were generated.
T'he Charpy fracture surfaces were studied under a mict )scope and island areas ranged from about 10" to
abut 10.2 mm". The low cycle fatigue specimen fracture surfaces studied were about 10 cm across, and the
island area ranged from about 0.5 10' to about 10' mm. There was approximately one order of
magnitude overlap in the ranges of area or perimeter.

The region studied in the low cycle fatigue specimen fracture was more than 10 mm from the
initiation of fracture, while the Charpy fracture surface studied was within about 0.3 mm from the point of
initiation of the fracture.



The rate of crack growth in the Charpy test and in the final fast fracture of the low cycle fatigue
specimen are presumed to be comparable.

Since the higher fractal dimension is associated with a higher degree of complexity., a tentative
conclusion from these data is that the complexity of the fracture surfaces increases with volume available
for fracture.

The distributions of areas and perimeters of islands and lakes produced by sectioning the low cycle
fatigue specimen fracture surface were hyperbolic in accord with the principle, the Korcak law, which
Mandelbrct advanced to describe the distribution of geographic islands.
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