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Abstract

This paper discusses the use of software methods to collect system trace for DEC Ultrix and 3.0
Mach on a DECstation 5000/200. We assert that software methods are a valuable tool for coilect-
ing system trace and understanding operating system and memory system behavior for modern
workstation workloads. Software methods have some well documented shortcomings. We dis-
cuss how their impact was minimized in our system. We further support the validity of the
software approach by comparing behavior predicted by our tracing/simulation system to measure-

ments made with less intrusive methods.
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1. Introduction
Prior research has established address tracing and trace-based simulation as important tools for
understanding memory behavior of modemn workstation workloads

{1,2,3,5,7,8, 11,13, 16, 17, 18, 20]. Several studies have used hardware methods to collect
system trace, and have demonstrated the importance of system activity in understanding overall
behavior (1, 10, 20]. With one exception!. The current system is a direct descendent of the DEC
WRL system. Tie Titan work was not published. software address tracing has not been used in
studies of system behavior. This paper discusses our experience using software methods to trace
DEC Ultrix and Mach 3.0 systems on a DECstation 5000/200. We will demonstrate that software
methods are an important tool for understanding system behavior.

2. Some Answers

Many issues were raised during the development of the tracing system, both by skeptics of
software tracing methods and skeptics in general. Now that the system has been built, the
answers to some of their questions are clearer. Here we present a2 number of potential weaknesses
of software methods, and how we have addressed them in our system.

workload Description Mach | Ultrix
time | time
egrep The pattern search program run three times over a 2.01 1.90
27K input file.
gee The GNU C compiler converts a 17K (preprocessed) | 3.69| 4.20
source file into optimized Sun-3 assembly code.
tomcatv | A vectorized mesh generation program, in Fortran. | 139.42 | 155.44

Table 2-1: Example workloads.
Times are in seconds.

We use three example workloads during the following discussion. Table 2-1 describes the
workloads. Table 2-2 gives some execution information.

1The exception is the software-based tracing system developed at DEC WRL for WRL Titan [5)




_instructions data references
| workload Ultrix Josys Mach Fosys Ultrix %sys Mach Josys
egrep 43488134 4.0 45063095 7.4 9398189 7.7 10065385 13.8
gee 33212131 313 38793106 41.2 | 10192423 287 13539261 46.3
tomcatv_| 2006490556 1.0 2004860546 0.9 [ 970307776 _ 0.7 970804032 0.0

Table 2-2: Example Workloads: Instruction and Data Reference Counts

2.1. Why bother? Just trace with hardware.

Using direct measurement of hardware was relatively straightforward for the VAX 11/780,
when measurement devices as fast as the CPU were not hard to obtain. For the VAX, speed and
accuracy were significant advantages of hardware tracing methods. Computer architecture has
changed in several fundamental ways since the VAX 11/780. Current trends suggest two fun-
damental limitations of hardware tracing:

¢ The Relative Speed of Memory and CPU: Any measurement system will be fun-
damentally limited by the speed at which measurements can be recorded. It follows
that hardware methods are fundamentally limited by the speed of the memory device
they use. Among measurement methodologies, the data requirements of address
tracing are extreme. Though it should be possible to build a memory device as fast
as the fastest existing processor, the cost and engineering talent required to build
such a device increases as computer architectures become complex and as semicon-
ductor processes become exotic. This has direct impact on use of hardware methods
to collect address trace. In contrast, software methods scale with the performance of
the subject machine. They benefit fully from the subject machine’s memory hierar-
chy, while avoiding the engineering effort required to build it.

A further advantage of software methods for address tracing is that trace can be made
significantly more compact than trace from hardware methods.

¢ On-Chip Structures: Another aspect of modemn architectures that interferes with
hardware measurement is the movement of more functionality inside of sealed chip
packages. This limits the signals that are realistically available for measurement to
those appearing on the chip’s output pins. A straightforward example of the
problems this creates is on-chip caches. Normally an on-chip cache will prevent the -
majority of memory references from ever appearing on chip output pins. It follows
that on-chip caches much be disabled when a hardware monitor is used to collect
address trace2. Other structures, such as write buffers, instruction prefetch buffers,
or translation buffers, may simply be inaccessible.

Even when counters or accurate timers are available to measure events or cycles for a
given sequence of instructions, using the counters can be tricky. In general, system
modifications/reconfiguration are required to delimit each code sequence of interest.
The problem becomes more complex when contributions from various system com-
ponents (i-cache, d-cache, write buffer, etc.) need to be isolated in the measurements.
All such measurements are straightforward with a software simulator.

Note that disabling caches will also have impact on the time to execute a traced workload. However, as the time to
analyze trace tends to be an order of magnitude more than the time required to collect it, by hardware or software
methods, the time to collect trace is not an important issue.
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Figure 2-1: Overview of the tracing system.

2.2. Software methods don’t work with operating system code.
Software methods have been used to trace DEC Ultrix and 3.0 Mach, running on a DECstation

5000/200. The tracing system is based on a design developed at DEC WRL, and is a direct
descendent of earlier WRL tracing systems [S]. The system is based on an object-code rewriting
tool called epoxie [21]. Epoxie rewrites programs such that they generate address trace as a
side-effect of program execution. See Figure 2-1 for a high-level diagram of the tracing system.

There are three kinds of entities in the tracing system: traced user workloads, the traced kernel,
and an analysis program to consume the trace. The kernel is also involved in controlling the
tracing system. Appropriate mechanisms are employed to avoid tracing kernel activity that oc-

curs on behalf of the tracing system.
At any instant during tracing the system is in one of two modes: trace-generation or trace-
analysis. During trace-generation, references from a given user workload goes into a per-process
buffer. When that buffer becomes full, a kernel trap occurs and the per-process trace is trans-
ferred to the large in-kernel buffer. When the in-kernel buffer becomes full, the system switches
from trace-generation to trace-analysis, during which an analysis program (such as a memory
system simulator) digests the trace. Analysis continues until all pending trace has been analyzed
and the in-kemel buffer is empty, at which time trace-generation resumes. To preserve the inter-
leaving of trace from kernel and user processes, transfer of trace into the kernel buffer also occurs

each time the kemel is activated.
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2.3. Locore is too complicated and delicate to trace.
Everything is traced. Epoxie instrumentation is used for all user workloads and for all system
code written in C. Some system code written in assembler is instrumented by hand.

Tracing interrupt and exception handling code is tricky but it’s not impossible. When epoxie
instrumentation cannot be used, code is instrumented by hand. The high-level strategy is to
execute as much of the routine 2s is necessary to put the machine in a ’clean’ state, then write
enough machine state to the in-kernel trace buffer to regenerate all memory references. Four or
five words of trace was sufficient for most of the hand traced routines.

Wbflush (), which flushes the write buffer, is one routine that could not be instrumented by
epoxie. The code for wbflush () looks something like this:

LEAF (wbflush)

1:
becOf 1b
nop
3 ra
nop
END(wbflush)

This routine has two basic blocks of two instructions each. In the first basic block, the first
instruction (bc0£) tests if the write buffer is empty. The nop that follows fills a branch delay
slot. Epoxie instrumentation inserts a call to the basic block trace routine at the beginning of the
first basic block. Unfortunately, the basic block trace routine does two writes, so when it returns
and the bc0 £ instruction checks the state of the write buffer, it is never empty.

~ Another situation in which epoxie instrumentation fails is when the machine runs with caches
isolated. Cache isolation is used during cache flush routines. In this mode, cache misses fail
without going to memory. Although it may have been possible to fix the trace routines to refer-
ence memory through the uncached segment when the machine runs with caches isolated, in-
strumenting them by hand was straightforward and probably an easier solution.

A further case where epoxie instrumentation can’t be used is the general exception handler.
The overall high-level strategy applies. A further problem occurs because the machine could
have been executing either epoxie-instrumented or hand-instrumented code at the time of the
exception. This creates in a certain amount of additional state that must be maintained.

For the traced Ultrix kernel there are 866 lines of hand-instrumented assembler. The traced
Mach kernel required 711 lines of hand-instrumented assembler.

2.4. An operating system instrumented by software methods will introduce excessive
distortion into trace data. The resulting system will be so complicated, you
can’t tell if the trace is good or not.

There are two principle sources of distortion when tracing the system with software methods:
memory dilation and time dilation. Memory dilation occurs because object code expands when it
is instrumented. For user programs and system servers, this text growth can result in increased
/O, paging and TLB miss rates [9]. Memory dilation is not an issue for kernel text, as the kernel
is loaded at boot time, and runs in unmapped, unpaged memory [12).




The instrumentation tools were modified extensively to minimize text expansion. The text
growth factor is observed to range between 1.9 and 2.3. This compares very favorably with other
instrumentation tools. Text commonly grows by a factor of five with the original epoxie. When
used for address tracing, the pixie tool from MIPS Computer Systems [19] commonly increases
text size by a factor of six3. Text growth for QPT [4, 14] ranges from four to six [15]. It should
be noted that, excepting the modified epoxie, minimal text growth was not a design objective for
any of the these tools.

Limiting text growth reduces the impact of memory dilation. The impact of memory dilation is
further minimized by collecting trace on a machine with sufficient memory to avoid paging, and
by simulating calls to the user TLB miss handler, rather than tracing TLB misses with expanded
text.

A second source of distortion is time dilation, which causes an apparent speedup for behavior
independent of CPU speed: clock interrupts, scheduler policy and I/O delays. Instrumented code
runs slower than uninstrumented code by a factor of approximately fifteen, so any activity whose
latency is independent of CPU speed appears to complete about fifteen times faster. For clock
interrupts, the clock interrupt rate was slowed by a factor of fifteen. Scheduler policy is more
difficult to adapt, as it depends significantly on behavior and slowdown of individual workloads.
To avoid this source of distortion, we concentrate on workloads where scheduler activity is
dominated by client-server relationships, such that scheduler policy has no impact. Similarly, no
special modifications were made to adapt /O delays. While it would be possible to artificially
slow down VO devices during tracing, /O delays are spent in the idle loop for our restricted class
of workloads, and thus have limited impact on memory system behavior.

Additional trace analysis techniques provide a high degree of confidence in the quality of the
trace generated by the instrumented system. Using a kernel with a user TLB miss counter, we
compared the TLB miss counts predicted by the simulator to TLB miss counts from an
uninstrumented system (See Table 2-3),

_predicted measured
workload Mach Ultrix Mach Ultrix
egrep 6430 176 6122 191

gee 53389 32617 48355 30574
tomcatv | 340968 317839 | 359976 314950

Table 2-3: TLB misses, measured and predicted.

One source of error in the TLB miss predictions is explicit TLB writes from the kernel. The
kernel sometimes avoids a user TLB miss by writing the TLB explicitly, using t 1bdropin ()
in Ultrix or t1b_map_random () in Mach. In the simulator, which doesn’t know about these
writes, all TLB fills are caused by TLB misses. Kernel instruction reference counts for gcc
showed about 1800 calls to t 1bdropin () for Ultrix, and 3700 calls to t 1b_map_random ()
for Mach. Overall, the miss rates predicted by the simulator are reasonable.

3For a gcc binary with 688128 bytes of text, pixie -t gcc grows program text to 4131968 bytes. Epoxie -t
gcc grows text to 3780608 bytes. QPT expands gec text by a factor of 5.5 [15]. The modified epoxie grows text to
1515520 bytes.




We also used a high resolution timer to measure execution times of the workloads. These times
are compared to predicted times from the simulator in Table 2-4.

predicted measured
| workload | Mach Ultrix Mach Ultrix
egrep 195 1.82 2,01 1.90
gec 2.66 1.84 3.69 4.20
tomcatv | 13488 15136 | 13942 15544,

Table 2-4: Run Times, measured and predicted, in seconds.

The simulation system measures delay cycles from the memory system, but does not count
pipeline stalls from the floating point unit. The simulator predictions for tomcarv includes 17.08
seconds of pipeline stalls, as estimated by pixie.

When predicting time from simulator events, /O is reflected by instructions executed in the
idle loop. For long running programs that do little /O, the predictions from the simulator show
good correlation, as in the estimates for tomcatv. When the ratio of /O to computation is high, as
for egrep and gcc, the simulator tends to underestimate the execution time. To understand why,
note that for a given /O operation, the delay will be the same for instrumented and
uninstrumented systems, but in the instrumented system the idle loop will execute (ap-
proximately) 1/15 as many instructions. As traced instruction and data references are the basis
for the simulator’s estimate of elapsed time, low estimates result.

Note that for gcc, the simulator predicts that the Ultrix run will be faster, but in measured time
the contrary is true. This is due to I/O time distortion. For gecc, counts of idle loop instructions
show about 1.9 million instructions for Mach, as compared to 4 million instructions for Ultrix.
This is due in part to differences in buffer-cache implementations. Assuming a factor of fifteen
slowdown for instruction execution, this implies that, for an untraced system, the gcc run ex-
ecutes about (1.9x15)=28 million idle-loop instructions for Mach, as compared to 60 million
idle-loop instructions for Ultrix. Using an idle-loop CPI of 1, we get that the simulator should
underestimate Mach I/O time by about 1 second, and Ultrix /O time by about 2.2 seconds.
Adding these corrections to the predicted times we get 3.7 seconds for Mach and 4.1 seconds for
Ultrix. With corrections for I/O time distortion, the predicted run times become quite good.

Ultrix Mach 3.0
inst. count  routine inst. count  routine
2332170 idle 1942951  idle_thread_continue
872736  spiclock 1663346  aligned_block_copy
727430 splO 553547 mipscache_Iflush
642095 bcopy 454014 TRAP_exception
501032 kn01_clean_icache 425088 pmap_zero_page
489288 bzero 308968 TRAP_exception_exit
376999 memalil 280808  vm_fault
305919 sz_start 225723  ipc_kmsg_copyin
275892 pagein 222159  vm_fault_page
223608  ascintr 212926  pmap_enter

Table 2-5: The Ten Most Active Kemel routines for gcc.




As a further means of verifying the tracing system, we used an analysis program that did
reference counts for all the instructions in the kernel. This made it straightforward to identify and
correct situations where tracing code was erroneously generating trace. Additionally, the data
gives a feeling for kernel behavior by identifying active routines. Table 2-5 shows the ten most
active routines in Ultrix and Mach during a run of gcc.

This data suggests a number of observations. Ultrix spends more time than Mach waiting in
the idle loop, again a reflection of buffer-cache implementation. Most of the Ultrix calls to
splclock () and spl0 () occur during the idle loop. Mach executes many more instructions
in the general exception handler than Ultrix. A closer look at the data shows that 3563 exceptions
occur during the Ultrix run and 11399 exceptions occur during the Mach run. Most of the
additional exceptions can be attributed to Mach system call emulation, with three exceptions per
system call rather than one. Both system do similar amounts of zeroing and copying of pages,
although Mach executes far more instructions for block copies.

The instruction reference counts of Table 2-5 are one example of analysis that is straightfor-
ward with address trace data. Using a cache simulator, we can do a similar analysis for cache
misses. Figure 2-2 shows cache temperature for system (kernel+server) instruction misses during
a run of gcc. Dark squares indicate "hot spots,” cache lines where a disproportionate number of
misses occur. In the Ultrix diagram, there is a distinct dark area on the right side, six lines from
the bottom. In this region, memall(), swap (), and t1bmiss () all collide in the cache.
They were called 660, 253, and 1487 times, respectively. Similarly, several dark regions are
visible in the top line of the Mach diagram. TRAP_exception|(), ipc_mqueue_send (),
vm_map_lookup () and vin_fault () all overlap in this part of the cache. These concentra-
tions of cache misses suggest situations where instruction cache behavior could be improved
through better text placement.

2.5. You’ll never get accurate results for /0-bound workloads. You can’t duplicate
scheduler behavior. For these reasons, software methods aren’t applicable to
complicated multitasking workloads.

These are problems that have not yet been resolved in the current system. They may eventually
be addressed, although at present we feel there is much to be learned by thoroughly understanding
the limited class of workloads for which the system works well.

For other classes of workloads, several observations are immediate. To the degree that perfor-
mance of /O bound workloads is function of I/O device speed, the impact of memory behavior is
not significant. For competing compute-bound processes, prior studies [16] have demonstrated
that performance degradation will occur.

3. Epilogue

Publications are in preparation for our experiments on memory system behavior. The tracing
system has already helped us understand performance anomalies and discover performance bugs
in both Ultrix and Mach. Readers interested in a comprehensive report should watch for future
publications [6].




Ultrix Mach

Figure 2-2: Cache Temperatures for system instruction cache misses.

This figure illustrates system misses in a 64 Kbyte instruction cache during a run of the gcc
benchmark. Each square represents a sixteen byte cache line, with a darker square indicating a
relatively large number of misses for that line. The gray level for a given square is determined by
the percent of total misses occurring in that line. The darkest squares indicate cases where more
than 1% of total misses occurred in that line. There are six gray levels, representing 1%, 0.5%,
0.25%, 0.125% 0.0625% and 0.03125%.
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