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1. Introduction

In this paper, the longitudinal free vibrations of a fixed-free bar are studied. It
is assumed that the bar initially consists of two phases, one of which was obtained
from the other by a martensitic phase transformation.! It is also assumed that both
phases of the bar have elastic constitutive behavior. For a bar that consists entirely
of one phase that behaves elastically, it is well known that during the free vibrations
of the bar the displacement and stress at each point of the bar oscillate as time
progresses [4]). If there is damping present, these oscillations will decay and go to
zero as time goes to infinity, otherwise their amplitudes will remain constant in time.
Considering this, for a bar that initially consists of two different phases that both
behave elastically, one might expect that the displacement and stress at each point
of the bar will also have oscillatory-type behavior during the free vibrations of the
bar. If this is the case, the driving traction at the interface separating the two phases
will oscillate. As a result of this, if the nominal phase boundary velocity is related
to the driving traction through a kinetic relation that does not have an interval of the
driving traction corresponding to a zero nominal phase boundary velocity, the nominal
phase boundary velocity will also oscillate. Since energy is dissipated when the phase
boundary moves and passes over particles of material of one phase converting them
into particles of material of the other phase, one might conclude that the oscillatory-
type response of the two-phase bar during the free vibrations of the bar should decay
as time increases. It is this damping behavior of the two-phase bar that will be the

main subject of this chapter. The solutions of the boundary value problem will be ,r'.
determined by a numerical method, and the damping of the two-phase bar will be A d

! Mnmmphnmﬁmmwmmﬂuwhuwm-wmwmmnﬁmwhﬂ.mmm""
have continuous displacements, with possible discoatinuous straing, at their phase boundary. These types of ..~ """~

transformations are also characterized by the product phase having a shape deformation relative o the undeformed
parent phase, which corresponds to an unstressed undeformed configuration of that product phase. See(ﬂm‘q’lﬂw"
[8] for more detailed and comprehensive discussions about these types of transformations.
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studied as the material coefficients are varied. The values of the material coefficients

that result in the maximum damping will also be investigated.

2. The Kinematics

A one-dimensional finite bar that initially consists of two phases is considered. It
is assumed that the process under consideration occurs in a time interval I" = [to, t3].
Additionally, for the problem that is considered, a continuum model that was
developed in [6] (see also [7]) is used.

Consider a stationary reference configuration R for the bar. Let z denote a point
in R and let L be the length of the bar with respect to this reference configuration.
Considering this, R can be expressed as R = {z/ z € [0,L]}. Let y(z,t) be the
suitably smooth and invertible mapping which maps R into the deformed configuration
of the bar at each t € I, with §(z,t) = z + i(z,t) V (z,t) € R x I'. The quantity
u(z, t) represents the displacement of a particle of material at y = y(z,t) from the
point z € R at time ¢ € I". In the following, the two phases of the bar will be
referred to as phase 1 and phase 2. Let z = s(t) be the reference position of the
phase boundary separating phase 1 from phase 2 at time ¢ € I'. It is assumed that
particles of material with reference points in R~ = {z/ z € [0,s(?)]} at time t € T
are in phase 1, and it is assumed that particles of material with reference points
in R* = {z/z € [s(t),L]} at time ¢t € T are in phase 2. It is assumed that R~
coincides with an unstressed undeformed configuration of phase 1. We next assume
that there exists a shape deformation of phase 2 with respect to R* that corresponds
to an unstressed undeformed configuration of that phase. Let R} be the reference
configuration coinciding with this shape deformation for all ¢ € I'. Let z, denote a
point in R}, and let Z,(z,t) be the suitably smooth and invertible mapping which
maps R* into R} at each t € I, with z, = Z,(z,t) Vz € R* at each t € I. For the




following problem, it is assumed that Z; is given by
%)(z,t) = = + yo(z — 3(t)). 2.1)

The displacement gradient (transformation strain) corresponding to this choice of Z,
is o, the Jacobian is J = 1 + 4, and R} = {z,/ z, € [#,(s(t),1), %\(L,1)]} =
{z:/ z: € [s(t), L1(2)]}, where Ly(t) = %,(L,t) = L + v(L — s(t)). It is also
assumed that 7 > —1 so that reflections are excluded from (2.1). Additionally, the

inverse Z of the Z, given by (2.1) is

H(zut) = 170(::. +708(2)), 22)

1+

Vz; € R} at each t € I'. The mapping which maps R} into the deformed
configuration of phase 2 at each ¢t € I is represented by §,(z,,t), with §,(z,,t) =
z) + ty(z1,t) V2, € R} ateach t € I,

3. The Continuum Model

In the continuum model that is used here, the constitutive equations for each
phase are defined with respect to different reference configurations. More specifically,
the constitutive equations for phase 1 are defined with respect to R~, and the
constitutive equations for phase 2 are defined with respect to Ry. Additionally, the
field equations for phase 1 are expressed with respect to R, and the field equations
for phase 2 are expressed with respect to R} (see [6], [7]). The main advantage
of using this continuum model for the problem under consideration is that the field
equations are in forms that permit direct linearization. This is the case since the
displacements for each phase are measured from a reference configuration coinciding
with an unstressed undeformed configuration of that phase, and consequently, for




the appropriate boundary and initial conditions, the displacement gradients can be

considered infinitesimal.?

4. The Field Equations and Jump Counditions

It is assumed that the process under consideration is a purely mechanical process
with no body forces present. The general field equations and jump conditions using
the type of continuum model described in the previous section and for a purely
mechanical process were derived and discussed in [6], [7].

The field equations for the problem under consideration consist of the balance
of linear momentum for phase 1 and the balance of linear momentum for phase 2.

These equations are

32 = P 4.1)
Vz € R-ateacht € I, and
do
= = Al 42)
Z1

Vz; € Rf at each t € T, respectively, where p(z) is the density of the material per
unit volume of R, 5y(x,,t) = p(%)/J is the density of phase 2 per unit volume
of R}, o(z,t) is the nominal stress with respect to R~ for phase 1, o,(z,,?)
is the nominal stress with respect to R} for phase 2, a(z,t) = %ﬁ(x,t). and
a(z1,t) = [g,g,(z.(x,t),t)]iw).

As mentioned previously, the displacements at a phase boundary separating two
phases involved in a martensitic phase transformation are continuous, while the strains

may be discontinuous. Considering this, we require that § be continuous and the first

2 It is also assumed here that the unstressed undeformed configuration of each phase corresponds o a relative
minimum of the elastic notential for that phase.




and second derivatives of § be piecewise continuous on R x I', with discontinuities
occuring only at z = s(t). The continuity of displacement condition in its most

direct form is

v (s(2),8) = y~(s(t),2). 4.3)
For the %, given by (2.1), (4.3) reduces to

ay(s(t),t) = a~(s(t),1). 4.9

Considering the continuity requirements on § and anticipating the form of the
constitutive equations for the type of material under consideration, we require that
the stress be piecewise continuous, with discontinuities occuring only at z = s(t).

The jump condition at z = s(t) representing the balance of linear momentum is
of —o™ + p(v} —v7)s =0, “.5)
where 5(t) = 242, Differentiating (4.3) with respect to time yields
(o +20+7 —77)8+ 5 —v7 =0, “6)

at z = s(t), where v = 2 and v, = g—;{ Using (4.6) in (4.5), we can obtain an

alternate form for the linear momentum jump condition:
of —o” =p(n+rt0+7 —77)E) @7

The remaining equation at the phase boundary is a kinetic relation relating s and
the driving traction f (see [1]). This kinetic relation is a constitutive equation and
will discussed in the next section. For the problem under consideration the driving

traction is given by

f=dwt-w—L(of +o7)(n+r0+v —77) 4.8)




We also have the boundary conditions at z = 0 and z, = L,(¢) (or z = L). For

the fixed boundary condition at z = 0, we have
u(0,¢t) =0, 4.9)

Vt € I'. At the r, = L;(2) boundary, there is nothing applied to th» boundary ; i.e. it
is a free boundary. Therefore, the traction at this boundary is necessarily zero. Thus,
the boundary cordition at z, = Ly(%) is

a(La(2),) = 0, (4.10)

Vt € T.

5. The Constitutive Equations

It is assumed that both phase 1 and phase 2 are homogeneous elastic (or
hyperelastic) phases. In particular, for phase 1 we assume that there exists an elastic

potential

W = W(%), s
such that
ow
= —_— 52
o B 5.2)

and for phase 2 we assume that there exists an elastic potential
W, = Wi(m), (53)
such that

o= —-—. (5.4)




If we solve for u, = i,(z,,t) in the dynamic boundary value problem, the
acceleration term &,; in Equation (4.2) will contain several inertial-type terms that
are solely a result of #, being a function of time. This was discussed for the
general three-dimensional problem in [6], [7]. As was further discussed there, but
again for the general three-dimensional problem, these inertial-type terms can be
avoided by instead solving for u, = #,(z,t) in the boundary value problem, where
#y(z,t) = iy(Z,(z,t),t) and 4\(z,,t) = u,(Z(z),1),t). This will be done in the
boundary value problem that is considered here.

It is assumed that phase 1 is unstressed at v = 0 and phase 2 is unstressed at 7, =
0. We next assume that the initial conditions are such that |y| << 1V z € [0,s(t))

and |y | << 1 Vz € (s(¢),L), at each ¢t € T, where here and in the following,
24y

"= gzl 4 22 For the & given by 2.2), 1 = 77 1. For these assumptions,
W for phase 1 can be written as
W =W"+1E¥ +0(v%), (53)

where W* = W(0) and E = %?{-l.,._.o. and W; for phase 2 can be written as
W, =W, +1Ei + 0(), (5.6)

where W; = W(0) and E, = Z%|, ;. From (5.2) and (5.5), the first-order
1

approximation of o for phase 1 is

o=Ey= E-g: S.7

and from (5.4) and (5.6) the first-order approximation of o, for phase 2 is

El 3u‘
T — e | 8
El"l 1 " F) S )




We note that the constitutive quantities for phase 1 given by (5.1), (5.2), (5.5), and
(5.7) are defined with respect to R~, and the constitutive quantities for phase 2 given
by (5.3), (5.4), (5.6), and (5.8) are defined with respect to R}, even though (5.6) and
(5.8) are in terms of the independent variable z € R*.

We next assume that W* = J W;. This assumption might be most appropriate
if phase 1 and phase 2 represent two different variants of the same martensite. We
note, however, that if this were the case we need not assume that £, = E, since
in a real three-dimensional material the moduli in a given direction of two variants
of martensite separated by a phase boundary are not, in general, the same, and this
can be incorporated into a one-dimensional model by assuming that E, # E. For
these assumptions and using (5.5)-(5.8), the first-order approximation of the driving
traction given by (4.8) is

1 B (&m\ , (04
= -3 (&) +2 () 59

We next postulate a kinetic (constitutive) relation

§ = &(f), (5.10)
such that

®(f)f 20, (5.11)

for all f [1]. The requirement given by (5.11) is imposed so that energy is dissipated
(or preserved if the equality sign holds) during a phase transformation, instead of
being created. We further assume that for the problem under consideration, the first-
order form of ®(f) is




_1l.,  w) E (ou * _3_ﬁ .
<I’(f)—-;f— -2;{1_-{:;(6:) +E(3:c) }, (5.12)

where the constant v depends on the material and is such that v > 0 so that (5.11)

is satisfied.

6. The Boundary Value Problem

Substituting (5.7) into (4.1) and expressing the acceleration in that equation in
terras of 4, we obtain the following for the balance of linear momentum for phase 1:
4 %

E—

57 = o (6.1

Vz € (0,s()) at each t € I'. Substituting (5.8) and p, = p/J = p/(1 + 7o) into
(4.2), and calculating &, in that equation using §,(Z,(z,t),t) = Z,(z,t) + t\(z,t),

we obtain the following for the balance of linear momentum for phase 2:

6.2)

E_ Pu_ dis O,
Q+v) 022 P\""a™ 3¢ )°

Vz € (s(t),L) ateacht € I.

For the linearized problem, the continuity of displacement condition is still given
by (4.4), since there is nothing to linearize in that equation. We next consider the
linearized form of the linear momentum jump condition given by (4.7). Because § is
related to v and v, through the kinetic relation given by (5.12), s2 is second-order in
~ and 71; i.e 42 goes to zero at the same rate as y2, 42, and 77, go to zero. However,
the second-order terms in 2 also contain the constants E?/v, E?/v, and EE,/v.
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Considering the fact that the magnitudes of E and E,; are very large, if the magnitude
of v is not also large, v and v, might have to be unrealistically small in order for the
terms in s? to have magnitudes that are negligible in comparison to the magnitudes
of the first-order terms. In the following, it will be assumed that the values of
the material coefficients are such that the magnitudes of the second-order terms in
Equation (4.7) are negligible in comparison to the magnitudes of the first-order terms
in that equation for realistic values of the infinitesimal strains.* The restrictions that
this assumption puts on the relative values of v and the other material coefficients can
best be observed when the linear momentum jump condition and the kinetic relation
are in nondimensional fonn, which will t : done in the next section. The true first-

order approximation of the linear momentum jump condition given by (4.7) is

B ?_'Z‘_} —E a_".} =0, 6.3)
14% [ 02 [ gy 192] (494

Vit € I, which is equivalent to the continuity of tractions across the interface. Using
(6.3) in (5.12), the first-order approximation of the kinetic relation for the problem

under consideration can be written as

‘mE ou

I e e | c—

, 6.4)
v 3“] (ot))

Vt € TI.

For the linearized problem, the fixed boundary condition is still given by (4.9), and

using (5.8) in (4.10), the first-order approximation of the free boundary condition is
aii,

221 =0 (6.5)

(L)

Vterl.

? 'We note that the values of the strains at the interface as time progresses are proportional to the initial conditions
that are given.




li

7. The Nondimensional Form of the Boundary Value Problem

For the problem under consideration, we define the following nondimensional

variables: (t"/ )
. T - . s(t/w
::=-L—, t=wt, s(f): 7
(2,9 = 4(2L,t/w) , (5,1 = “_‘(_ff’_t/_w)_, .1
L L
E_ El b= v
(1+7)E’ vEp’

where w = \/E/(pL?).* Using these nondimensional variables, the nondimensional

form of the balance of linear momentum for phase 1 is

a4
il 1.2)

vz € (0,5(f)) ateacht € I, where I’ = [f0,?1] = [wio,wt)], and the nondimensional
form of the balance of linear momentum for phase 2 is

- 3%, s 3%,

Emtvam = 9
Vi € (5(f),1) at each # € T.

The nondimensional form of the continuity of displacement condition is

4(3(2).2) = a,(3(2).9), (7.4)

Vi eI, and the nondimensional form of the first-order form of the balance of linear

momentum jump condition given by (6.3) is

* In the following, # will denote the nondimensional independent varisble defined by (7.1);, and not the inverse
function of the function £, which maps R* into R} ateacht € I
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B Q'g] _ [?g] =0, (1.5)
%]Gwa  19%uma

v{ e I'. Additionally, the nondimensional form of the kinetic relation given by

(6.4) is

3 1[0i
T —5[ (7.6)

%](x04)

¥i ¢ I'. In the previous section, the issue concerning when it is appropriate to neglect
the second-order terms in the linear momentum jump condition was discussed. The
nondimensional form of the lowest-order term that was neglected in that equation
is 70(%)2- From this, (7.6), and the definitions of the nondimensional parameters,
we can observe what relative values of the material coefficients are appropriate for
the assumption that the magnitude of vo(%)’ is negligible in comparison to the

magnitudes of the terms in (7.5), for realistic values of the initial conditions.

The nondimensional form of the fixed boundary condition is
i(0,7) =0, 1.7

Vi eI, and the nondimensional form of the free boundary condition is

gl _, 1.8)
3: (l,t-)

Lo |}

Vi e
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We must also specify initial conditions for the two-phase bar. In particular, for
phase 1 we specify

a9
dii a0
?a_i" . = g(z) )
(s40)
for 0 < # < 3(%), and for phase 2 we specify
i, (%,%) = hi(%),
(7.10)
Oi - =
7:'{_1 . = gl(z) 9
(24)

for 5() < # < 1. We also must specify an initial position for the phase boundary.
In particular, we specify

5(t0) = 3o - (7.11)

The initial boundary value problem that will be considered consists of the field
equations (7.2) and (7.3), the continuity of displacement condition (7.4), the linear
momentum jump condition given by (7.5), the kinetic relation given by (7.6), the fixed
boundary condition (7.7), the free boundary condition (7.8), and the initial conditions
given by (7.9)-(7.11).

8. The Numerical Method of Solution

We can observe that the differential equations involving time derivatives in the

boundary value problem presented in Section 7 consist of a wave equation given by
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(7.2), a forced wave equation given by (7.3), and an ordinary differential equation
given by (7.6). The boundary conditions for Equations (7.2) and (7.3), given by (7.7)
and (7.8), are both with respect to fixed boundaries®> However, the jump conditions
given by (7.4) and (7.5), which are also types of boundary conditions, are with respect
to a moving boundary (i.e. the interface). We also note that because 3(%) is one of the
unknown dependent variables in the problem and the jump conditions are evaluated
at = §(), the boundary value problem is inherently nonlinear with respect to 5(%).

Dynamic boundary value problems involving moving interfaces within finite
bodies have been studied before (see [3]). Some of the more well known of these
problems are the class of problems considered to be Stephan problems. These types of
problems involve melting solids, with a moving interface (or boundary) separating the
solid from the liquid. The unknowns in these types of problems are the temperature
distributions of both the liquid and solid phases, and the position of the interface
separating these two phases. The governing equations for these Stephan problems
consist of heat equations for both phases and an equation governing the motion of
the interface. There are a variety of numerical methods that have been used to study
these Stephan problems (see [3] for an overview and discussion of these methods).

Among these numerical methods are several types of finite difference methods.

For the problem that is considered here, the type of numerical method that will be
used is a finite difference method. This type of numerical method has been chosen,
as apposed to, e.g., a finite element method, because it is probably the most straight
forward to apply to the type of boundary value problem that is being considered. The
particular finite difference method used here, however, does differ somewhat from

the finite difference methods that have been used for the Stephan problems that are

3 Note that if we were solving for %) instesd of & in the boundary value problem, the free boundary condition
would be with respect to a moving boundary.
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discussed in [3]. Most of these differences reflect the fact that the field equations in
the Stephan problems are of parabolic-type with monotonically decaying solutions,
and the field equations in the problem considered here are of hyperbolic-type with
decaying oscillatory solutions.

In the following, let Z[a,b] = {m€ Z/a<m <b, a€ 2, b€ Z}, where Z
denotes the set of all integers. For the finite difference method that is used here,
the bar will be divided into n intervals, each of length h = 1/n. The points
z =th, 1 € Z[0,n], will be referred to as the nodes of the bar. In the finite difference
method, the displacements at these nodes will be determined (i.e approximated). The
time increment is denoted by T, and for convenience we assume in the following
that £p = 0. Considering this, # = jT, j € Z[0,l;], where #; and I, are chosen
such that [,T = ;. We let s(j) represent 5(;T'), and k(j) denote the node such
that |s(j) — k(j)h] < h/2, at time # = jT. Additionally, we let p(j)h represent the
distance from the node k(j) — 1 to s(j), at time ¢ = jT. Considering this, we can
write s(7) as s(j) = [k() — 1+ p(7)}h, at each j € I[0,1;). Let u(i,j) represent
4(ih,jT), 0 < th < s(j) at each j € Z[0,1;], and let u,(¢,5) represent 4,(ih,3T),
s(j) <ih <1 at each j € Z|0,1,]. Additionally, let g(;) denote the displacement at
the interface at time ¢ = jT); i.e. let q(j) represent #(3(;T),;T) = &(3(;T),5T).
We also let ®(;) represent the nondimensional kinetic relation given by (7.6) at time
t = jT.

At each time increment, the numerical routine begins by calculating s(; + 1).
We are given s(0) as an initial condition. At j = 0, we use an Euler’s method to

approximate Equation (7.6) and obtain s(1). In particular, we use

p(1) = (0) + 78(0) 3.1)




-

16

to obtain p(1). Since &(0) is given when s(0) is given, we can then obtain s(1). For
this case where j = 0, we can use the initial conditions given by (7.9); and (7.10), to
obtain the derivative term in $(0). The specific form of these initial conditions will
be discussed at a later point in this section. Also, we note that Euler’s method has
an O(T) numerical error. At j = 1, we use an Adams-Bashforth two-step method,
which has an O(T?) error (see [2]), to approximate Equation (7.6) and obtain s(2).
The resulting equation for p(2) is

p(2) = p(1) + 5-{38(1) ~ H(0)}, ®2)

which can then be used to obtain s(2). Also, to obtain the derivative term in $(1) we
can use the initial conditions given by (7.9) and (7.10). For j € Z[2,; — 1], we use
an Adams-Bashforth three step method, which has an O(T?) error, to approximate
Equation (7.6) and obtain s(j + 1). In particular, we use
PG +1) = pi) + L (288() ~ 168G~ 1) +58G - 2)} (8
to obtain p(j + 1) for j € Z[2,l; - 1]. p(j + 1) is then used to obtain s(j + 1).
The specific form of the finite difference approximation in ®(j), j € I[2,1;], will be
discussed at a later point in this section. Also, because of the definition of k(5 + 1),
after each p(j + 1) is calculated, it must be checked to determine whether it is such
that 0.5 < p(j + 1) < 1.5. If p(j + 1) is calculated to be such that p(j + 1) < 0.5,
k(7 + 1) must be set to k(j +1) = k(;) ~ 1 and p(j + 1) must be updated to
p(j+1) = p(7 +1)+ 1. If p(j + 1) is calculated to be such that p(j + 1) > 1.5,
k(3 + 1) must be set to k(j +1) = k(j) + 1 and p(; + 1) must be updated to
pi+1) - p(i+1) -1
At each time step, once p(j + 1), k(j + 1), and s(j + 1) are determined, and
p(j + 1) is updated if necessary, the displacements at the nodes are determined.




-
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For each j € I1,l, ~1], the displacements u(i,j + 1), ¢ € I[1,k(j +1)—1],
and u,(3,j +1), i € I[k(j +1)+1,n—1), are determined from centered-type
difference equations. It will also be assumed in the following that (s(5 + 1) — s(j)| <
h/4, ¥V j € I[0,l;]. This is done so that u(i,j — 1), u(i,j), and u(z,j +1)
in the difference equations representing Equation (7.2) all correspond to phase 1,
and u,(3,j — 1), u,(%,5), and u,(i,7 + 1) in the difference equations representing

Equation (7.3) all correspond to phase 2.

To obtain the initial displacements at the nodes, we use the initial conditions
given by (7.9), and (7.10);. We assume that these initial displacements are continuous
V z € (0,1), satisfy the boundary conditions given by (7.7) and (7.8), are such that
the linear momentum jump condition given by (7.5) is satisfied, and have a first mode

type mode shape. In particular, we assume that

h(z) = e, (8.4)
for 0 < # < 3(0), and
i(=\y — €0 7 -1V —(500) —1)° -
hy(2) = 2BGO) - 1) _1){( 1)* ~ (3(0) - 1)°} + &03(0), (8.5)

for 3(0) < £ < 1. The values of the displacements at the next time increment |
can be approximated by the Taylor series expansion in time of the displacements.
In particular, using the initial conditions given by (7.9) and (7.10), the first-order

approximation of & and @, at £ = T are

(%,T) = h() + §(2)T, (8.6)

¢ Nwmmhhmmmempﬁmmnmempﬂnnaonhemmﬂ’indnﬁmm
jump condition are negligible in comparison 10 the magnitudes of the first-order terms in that jump condition.
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for 0 < # < §(0), and
i(2,T) = h(2) + ()T, 8.7

for 3(0) < # < 1, respectively. It is assumed that the initial velocity distribution
results in a continuous displacement at the phase boundary at time ¢ = T, results
in the boundary conditions given by (7.7) and (7.8) being satisfied at time £ = T,
results in the linear momentum jump condition given by (7.5) being approximately
satisfied at time f = T, and has a first-mode type velocity profile. Such an initial

velocity distribution is given by

§(%) = voi, (8.8)
for 0 < # < 5(0), and
() = 5-5(3—(”;)—_-1-){(5 — 1) - (3(T) - 1)*} + wd(T), (8.9)

for 3(0) < # < 1. This initial velocity distribution was used in (8.6) and (8.7), which
were then used to obtain the displacements at the nodes at ¢ = T.”

For j € I(1,1; - 1], u(0,5 + 1) is obtained from the following equation which
represents the fixed boundary condition given by (7.7):

u(0,j +1)=0. (8.10)

Vj € I[1,l; - 1. We can obtain u(i,j + 1), for : € I[1,k(j +1)— 2] at each
j € I[1,4 — 1}, from a finite difference approximation of Equation (7.2) which uses
centered difference equations for equally spaced nodes to approximate each term in

7 We not that #(T') is not a given constant in the problem and therefore cannot be used if an analytical solation
was 0 be obtained. In this case, we could use 5(0) instead of #(7T) in (8.9) as an approximation. For the
numerical method, however, we can use i(T).
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that equation. In the following, centered difference equations for equally spaced
nodes will be referred to as standard centered difference equations. The resulting

difference equation that is used to obtain u(é,j + 1) is

u(i,j +1) = 2u(i,j)—u(i,j - 1) +af{u(@ +1,7) ~ 2u(s,j) + u(i - 1,5)}, (8.11)

fori € I[1,k(j +1) — 2] ateach j € Z[1,1; — 1}, where a = (T'/h)®. The difference
equation given by (8.11) is commonly used for the wave equation [2]. It is also
well known that a numerical routine using this difference equation is numerically
stable if and only if a < 1, and that the numerical error increases as a decreases
from 1 [2]. We can obtain u(i,j +1), for i € I[k(j +1)+2,n— 1] at each
J € I[1,1, — 1], from a finite difference approximation of Equation (7.3) which uses
standard centered difference equations to approximate each term in that equation. The

resulting difference equation that is used to obtain u,(i,7 + 1) is

(1,5 + 1) = 2uy(i,5) — wi(i,j — 1) + Ea{ul(i +1,7) = 2uy(i,5) + wi(i — 1,5)}

+%{s(G +1) - 2s(j) + s(7 - 1)},
(8.12)

fori € I{k(j + 1) +2,n — 1] at each j € I[1,1, — 1]. For j € Z[1,1, — 1], we can
obtain u(n, j + 1) from an O(h?) difference equation representing the free boundary

condition given by Equation (7.8). This difference equation is
. 1 . .
uwin,j+1)= 3 {4uy(n - 1,7 +1) - u(n —-2,5 + 1)}, (8.13)

for each j € I[1,l, -1].

For the displacements u(k(j +1)—~ 1,57 +1) and/or u,(k(; +1)+ 1,5 +1),
finite difference methods using ¢(j) will be used. For the derivation of the difference

equations for these displacements, we first note that the distance separating s(j)




from its nearest nodes is not equal to h. Because of this, difference equations for
unequally spaced nodes must be used to represent %‘} and/or 9;—:-}. These difference
equations will be derived from the second-degree Lagrange interpolating polynomials
for 4 and/or 4, near the interface. For a function g(z), its second-degree Lagrange

polynomial, denoted by P(z), is given by

P(z) = (z —z)(z — z9)

(z — zo)(z — z3)
(zo — z1)(z0 — z2) 9(=1)

(::; - :32:1_—;;) o (8.14)
(@1 —zo) @ —z1) "

9(zo0) +

where zg, z1, z2, g(z0), 9(1), and g(z;) are given (see [2]). The first derivative
of P(z) = g(z) is

dP(z) z-m+z-1 (z0) + T—To+ZT— 129
dz (zo—z)(@o—z2) VT (21 — zo) (71 — 22

)9(31)

T—Tp+z— 1 (1) (8.15)
(@1~ zo)(zs—21)° 2
and the second derivative is
d*P(z) 2 2
dz?  (zo — z1)(z0 - 32)9(%) * (z1 = zo)(21 - Iz)g(zl) (8.16)

' 2
(z2 — zo)(z2 — 71)

9(z2) .

If we choose z = zy, z;, or z; in Equations (8.15) and (8.16), the errors in these
equations are approximately O(d?), where d is the maximum distance between any
of these three points.® Also, we note that when zy, z;, and z, are equally spaced,
(8.16) reduces to a standard centered difference equation of the form that was used
in (8.11) and (8.12).

* See [2] for a more detailed discussion of the error that is involved in the Lagrange interpolating polynomial
and its derivatives. Also, difference equations of this type are used in some finite difference methods for Stephan
problems (see {3]).
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Case I: Consider the case where 0.5 < p(j + 1) < 1.5, before being updated (Figure
1a). For this case, k(7 + 1) = k(j), and for the calculation of u(k(; + 1) — 1,5 + 1),
a difference equation of the form (8.16) will be used to approximate 2% at f = jT
in Equation (7.2). Using this difference equation and a standard centered difference

equation for the second time derivative term in Equation (7.2), we obtain

uk(j+1) -1+ =2u(k(G+1)-1,5)-u(k(G+1) -1, - 1)

+ 2 {u(k(j)—z,j) ORI O }
1+ p(j) p(7) [1 + p(3))p( g
8.17)
Similarly, for the calculation of u,(k(; + 1) + 1,j + 1), a difference equation of the
form (8.16) will be used to approximate 5’%} att = jT in Equation (7.3). Using this
difference equation and standard centered difference equations for the second time

derivative terms in Equation (7.3), we obtain

(kG +1)+1,5 +1) =2u(k(G + 1)+ 1,5) ~ui(k(j +1) +1,j - 1)

~ Q(J) _ ul(k(])+1,1) ul(k(J)+2,])
+2Eo‘{[2‘P(J')][f*'-l’(j)] 2-p(j) + 3-20) } (8.18)

+7{s(j +1) - 2s(j) + s(j - 1)}.
We note that when p(j) = 1, Equations (8.17) and (8.18) reduce to Equations (8.11)

and (8.12), respectively.

Case II: Consider the case where p(j + 1) < 0.5, before being updated (Figure
1b). For this case, k(j + 1) = k() — 1 and p(j + 1) — p(j + 1) + 1. Additionally,
in this case, we can use the difference equation given by (8.11) for the calculation
of u(k( + 1) — 1,7 + 1). However, for the calculation of u,(k(; +1)+ 1,5+ 1), a
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difference equation of the form (8.16) will be used to approximate 2;—1'3} and standard
centered difference equations will be used to approximate the two time derivative

terms in Equation (7.3). The resulting difference equation is

ul(k(J + 1) + lvj + 1) = Zul(k(j + 1) + l,j) = ul(k(J + 1) + l’j - 1)

vobaf ot wlbi)) | w4 L)) @19

-p)2-p01) 1-p0) 2 - p(4)
+70{s(7 +1) — 2s(j) + s( — 1)}

Case III: The last case that can occur is p(j + 1) > 1.5, before being updated
(Figure Ic). In this case, k(j +1) = k(j) + 1 and p(j + 1) = p(j + 1) — 1. In this
case, for the calculation of u(k(j + 1) — 1, + 1), a difference equation of the form
(8.16) will be used to approximate 2% and a standard centered difference equation
will be used to approximate the second time derivative term in Equation (7.2). The

resulting difference equation is

wk(G+1)-1,7+1)=2u(k(j +1) - 1,j) —u(k(j +1) - 1,j - 1)

u(k(s)~1,5)  u(k(j),) q(5) }
+2 - - - + — - .
“{ 20) 2G) -1 ' pG)PG) - 1]
(8.20)
For this case, we can use the difference equation given by (8.12) for the calculation

of ul(k(J + 1) + 11J + l).

Once s(j + 1) and the displacements at the nodes i € Z[0,k(; +1) —1]andi €
I[k(j + 1) + 1,n] have been determined, we determine the displacement ¢(j + 1) at

the interface from the difference equation representing the linear momentum jump




condition. Using difference equations of the form (8.15) to approximate the spatial

derivatives in Equation (7.5), we obtain

- -1
| Eep-5  2p+1 P ko
"(’“)‘{[2—1»1[3—;»1 [1+p1p} (k=21

1+p

wk—1,j+1) B g—iul(k+1,j+1) 821)

_p—2 .
—-Eg_pul(k+2,1 +1)},

where k = k(j +1) and p = p(j +1).

The last displacement that must be calculated at each time increment is the
displacement at the node k(; + 1). This displacement will be calculated using
a second-degree Lagrange interpolating polynomial. In particular, if k(j + 1)k <
s(j + 1), we calculate u(k(j +1),7 + 1) from

2(j +1)

. (822
+pp &2

u(k,j+1)=

u(k -2,j+1)+ — [pp ]u(k—l )+ 1)+
where k = k(j+1) and p = p(j + 1), and if k(7 + 1)k > s(j + 1), we calculate
uy(k(j +1),j +1) from

2¢(j +1) 2[1 P}
(2-p)3-7]

ul(k+2 J +1),
(8.23)

uy(k,j+1) = “l(k+1 J+1)+

where k = k(j +1) and p = p(j +1).

The last quantity that is calculated at each time step is $(j +1). Recall that
this quantity is used in the calculation of p(; + 1) at the next time step. For the




calculation of &(j + 1), j € I[1,l, — 1}, a finite difference equation of the form
(8.15) is used for the approximation of g§| ((i))" The resulting finite difference
equation for $(; + 1) is

PP k—1,5+1)

u(k 2, +1)—

. 1
G +1)= - h{
(8.24)

2p+1

[1+ o —q(J + )}

forj € I[1,1i - 1), where k = k(j + 1) and p = p(; + 1).

The numerical routine that was discussed above allows for the phase boundary to
pass over nodes other than the node k(j). However, for a problem that uses a kinetic
relation of the form given by (7.6), most values of the material coefficients that are
consistent with the assumption that the second-order terms in the linear momentum
jump condition are negligible in comparison to the first-order terms in that equation
and most initial conditions that produce infinitesimal initial stains will result in the
phase boundary staying within the interval between the nodes k(j) — 1 and k() +1
forall £ € I. In this case, a simplified numerical routine can be used where k(;) has
the same value at each time increment, p(j + 1) never needs to be updated (in the
sense that it was updated in Cases II and III), and only Case I for the calculation of

the displacements near the interface needs to be considered.

9. The Free Vibrations and Damping Properties

In this section, the free vibrations of the two-phase bar that were determined
from the finite difference method that was discussed in the previous section are
discussed. As expected, the response of the two-phase bar to the initial conditions
given by (8.4), (8.5), (8.8), (8.9), and (7.11) has a decaying oscillatory form. In




particular, the position of the phase boundary oscillates as time progresses and decays
to a new position that has a distance and direction from its initial position that is
proportional to the magnitude and “direction” of its initial conditions (Figures 2—4).
The displacements also Jave a decaying oscillatory form, and they go to zero as time
goes to infinity (Figures 5-9). The mode shape of the bar during these free vibratioas
has a first mode type form (Figure 10)°. This is most likely a result of the fact that

first mode type initial conditions were given.

9.1. The Damping Behavior

The damping of the bar was studied as #, E, and 4o were varied. In Figure 11,
a plot of the settling time versus ¥ is presented.!® Here, the settling time is defined as
the nondimensional time necessary for the amplitude of 4,(L,t) to become less than
10~4. As the settling time decreases, it is said that the damping of the bar increases.
As expected, as v decreases, the damping of the bar increases. This is primarily a
result of the fact that for a given amount of strain at the interface, the nominal phase
boundary velocity increases as v decreases. Consequently, as ¥ decreases, there is
more motion of the phase boundary in a given interval of time, which results in
more energy being dissipated in that interval of time. This increase in damping as
v decreases is also displayed in Figures 2-7. From Figure 11, it appears that the
“frequency” of oscillation does not significantly depend on #. In particular, it can be
observed from this figure that as i is varied the settling time remains constant over

an interval of 7/, and when the settling time changes, it does so discontinuously. This

® In Figure 10, & vs ¢ is ploued for 0 < < (i) and &, vs { is plotted for 3(f) < < 1. The shape deformation
for phase 2 is not ploued.
'°lnthisﬁgum.uxesen1ingmnevcrspsiisnotpresenledfor0<i<0.09becauscﬂwnmncﬁalmuﬁneis
unstable for these values of # when £ = 1.15, w = 0.1, T = 0.01, and & = 0.02. This will be discussed
further in the next section. Also, in this figure and in Figures 12 and 13, the initial conditions that were used are
eg = 0.00], vy = 0.001, and sp = 0.5.




is a reflection of the fact that as & decreases the amplitude of oscillation decreases,

but the “frequency” of oscillation does not.

In Figure 12, the settling time versus E is presented. From this figure it can be
concluded that as E goes to zero, the damping goes to zero (i.e. the settling time goes
to infinity), and as E increases, the damping increases. Additionally, this increase
in damping levels off at a relatively high level of damping (i.e. at a relatively short
settling time) after £ ~ 0.15.

For the plots of the settling time versus the transformation strain «,, we do
not vary o and keep E and 7 constant. This is because £ and # can remain
constant as vy is varied only if E,/E and v/\/pE also change values. We instead let
E' = E,/E and ' = v/\/pE and substitute £ = E'/(1 + ) and & = &' /v, into the
difference equations of the finite difference program. We then plot the settling time
versus o while keeping £ and & constant. An example of such a plot is shown in
Figure 13. From this figure we can conclude that as v, goes to zero the damping goes
to zero, and as the magnitude of v, increases the damping increases. We can also
observe from this figure that as the magnitude of v, becomes greater than |yo| =~ 0.06
the damping becomes appreciable, and for |y,| less than this value the damping is
relatively small. It is interesting to note that if one were to define an infinitesimal
transformation strain as one that produces a vibration response that is qualitatively like
that produced as vy — 0, and if one were to define a finite transformation strain as one
that produces a vibration response that is qualitatively like that produce by a v that is
close to or less than —0.5 or is close to or greater than 1, for the values of E’ and i’
considered, a transformation strain with a magnitude that is less than |y| =~ 0.06
would be considered infinitesimal, and a transformation strain with a magnitude that
is greater than |v;| = 0.06 would be considered finite. These “transition™ values
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Yo & —0.06 and 4y ~ 0.06 separating the infinitesimal transformation strains from
the finite transformation strains are probably much smaller than most might have
guessed beforehand. This also underlines the importance of treating a transformation

strain that is not truly infinitesimal as a finite strain, for at least vibration problems.

9.2. Instabilities of the Numerical Routine

As mentioned previously, there are some instability problems with the numerical
routine for values of 7, E, and v outside of a certain region of the parameter space.
In some cases, these instabilities resemble those of highly damped systems, which
are sometimes referred to as stiff systems in the numerical methods literature [2].
In the remaining cases, the loss of stability of the numerical routine resembles that
of a standard centered difference numerical routine for a wave equation when the
coefficient multiplying the term representing the spatial derivative becomes greater
than one. In both cases, however, the values of 7, E‘, and vy where the numerical
routine loses stability depends on the values of T and k that are used. For example,
for h = 0.02, E = 1.15 and v = 0.1, the numerical routine loses stability as v
is decreased at © ~ 0.22 when T = 0.018, and at 7 =~ 0.09 when T = 0.01. The
loss of stability in both of these cases resembles that of stiff systems. In fact, for
the latter case, the displacements reach their settling time in almost one half of one
“cycle” of oscillation. One should note however that as ¥ gets close to zero, the
assumption that v is such that the magnitude of §* is negligible in comparison to
the magnitudes of the first-order terms in Equation (4.7) becomes less valid. For
h = 0.02, ¥ = 0.5, andv, = 0.1, the value of E beyond which the numerical
routine is unstable is £ ~ 1.23 when T = 0.018, and E ~ 4.01 when T = 0.01.
Both of these values of E correspond to E(T'/k)? ~ 1 (recall that this term appears

in the finite difference approximation of the forced wave equation for phase 2 given
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by (8.12)). For T = 0.018, h = 0.02, E' = 1.265, and & = 0.05, the numerical
routing is stable for 0.021 < v, < 0.152. The loss of stability at vo = 0.021
corresponds to E(T/h)* ~ 1, and the loss of stability at 7o = 0.152 resembles that of
a stiff system. For T = 0.01, k = 0.02, E' = 1.265, and 7 = 0.05, the numerical
routing is stable for —0.232 < v, < 0.256. For this case, the loss of stability at both
~0 =~ 0.256 and v =~ —0.232 resembles that of stiff systems.
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