ARL-RR-?7 AR-008-365
N g STRA
'(2 % '!éﬁ. AU LIA !_4«
T
Q=
T L= DEPARTMENT OF DEFENCE
|
o DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
< AERONAUTICAL RESEARCH LABORATORY

MELBOURNE, VICTORIA

Research Report 7

MATHEMATICAL MODELLING OF BONDED FIBRE-COMPOSITE :
REPAIRS TO AIRCRAFT \

DTIC

ELECTE
AUG3 01993
P.D. CHALKLEY

Approved for public release.

© COMMONWEALTH OF AUSTRALIA 1993

MAY 1993




This work is copyright. Apart from any fair dealing for the purpose of
study, research, criticism or review, as permitted under the Copyright Act,
no part may be reproduced by any process without written permission.
Copyright is the responsibility of the Director Publishing and Marketing,
AGPS. Enquiries should be directed to the Manager, AGPS Press,
Australian Government Publishing Service, GPO Box 84, CANBERRA ACT
2601.



AR-008-365

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORY

Research Report 7

MATHEMATICAL MODELLING OF BONDED FIBRE-COMPOSITE
REPAIRS TO AIRCRAFT | Accesion For

NTIS CRA&I
DTIC TAB
Uniannounced 0
Jastification ]
by -
By
Dist ibution|
P.D. CHALKLEY Avaifability Codes
. Avail and/or
Dist Special
SUMMARY '
DTIC QUALITY BISPECTED 3 - ( l

Bonded fibre-composite doublers are increasingly being used to reinforce andlor repair
damaged or underdesigned metallic aircraft structure. This trend will continue as the
average age of Australian civilian and military aircraft increases. Two mathematical models
of the stress state in bonded doublers are presented in this report: the end-tapered double-lap
Jjoint and the stepped double-lap joint. The mathematical development of the two models is
detailed and the fidelity of the predicted stress states compared with that obtained from finite

element analyses and experiment.

A USTRALIA

© COMMONWEALTH OF AUSTRALIA 1993

POSTAL ADDRESS: Director, Aeronautical Research Laboratory,
506 Lorimer Street, Fishermens Bend, 3207
Victoria, Australia.



l TABLE OF CONTENTS I

Page Nos.
1. INTRODUCTION 1
2. THE END-TAPERED DOUBLE-LAP JOINT 2

2.1 Elastic Analysis
2.1.1. Analytical Development
2.1.2. Comparison of the Elastic Model with an FE Analysis
2.1.3. An Approximate Analytical Solution: a First-Order Perturbation
Solution

2.2. Elastic/Perfectly-Plastic Analysis 12
2.2.1. Analytical Development

2.3. An Upper and a Lower Bound for the Peak Shear Strain .........cccceveuces 14
2.3.1. Assuming Elastic Adhesive Deformation
2.3.2  Assuming Elastic/Perfectly-Plastic Adhesive Behaviour

3. THE STEPPED DOUBLE-LAP JOINT 15

3.1. Elastic Analysis... .- . 15
3.1.1. Analytical Development
3.1.2. Comparison of the Elastic Model with an FE Analysis
3.1.3. An Upper and a Lower Bound for the Peak Shear Strain

3.2. Elastic/Perfectly-Plastic Analysis .......ccccsues 20
3.2.1. Analytical Development

4. COMPARISON OF THE END-TAPERED AND THE STEPPED

DOUBLE-LAP JOINT MODELS 21
4.1. Assuming Elastic Adhesive Deformation 21
4.2. Assuming Elastic/Perfectly-Plastic Adhesive Deformation........ccccceeceneeee 23
4.3. Comparison of the Two Models with Measured Outer-Adherend
Strains 25
5.  CONCLUSION 25
6. ACKNOWLEDGMENTS .26
7. REFERENCES 26
DISTRIBUTION
DOCUMENT CONTROL DATA




C —————

1.

INTRODUCTION

Aging aircraft, both civilian and military, are prone to various types of deterioration and
damage in their metallic components including general corrosion and cracking due to stress
corrosion and fatigue. A technique pioneered at ARL' to extend the life of these aircraft is
to bond fibre-composite reinforcements, such as boron/epoxy or graphite epoxy, over the
damaged regions. In demanding situations, such as highly-stressed thick-section repairs,
accurate methods of design and analysis are needed. This report details the development of
two mathematical models for the adhesive shear-strain distribution in a scarfed repair: the
end-tapered double-lap joint (Figure 1a) and the stepped double-lap joint (Figure 1b).
These two joints are idealised representations of an end-tapered repair. An actual
end-tapered repair or doubler, such as the ARL? developed F-111 wing-pivot-fitting (WPF)
doubler (Figure 2), has a geometry as shown in Figure 1c, where after lay-up the doubler
has been inverted and the outer plies bent over by pressure in an autoclave. Also in this
report is a comparison between the mathematical model developed herein and a finite
element (FE) analysis for both the end-tapered and the stepped double-lap joint. Finally a
comparison is made between the measured strains in the outer adherend of a boron doubler
(Figure 1c) and the strains predicted by the models of the end-tapered and the stepped
double-lap joints.

The primary reason for tapering the
ends of a composite doubler is to
reduce the peel and shear stress, which
arises there due to the load transfer
conditions. A high peel stress (tensile
stress that acts transverse to the plane
of the bond) is detrimental because the
interlaminar tensile strength of a fibre
composite lay-up is typically less than
10% of its longitudinal tensile strength.
For example, the longitudinal tensile
strength’ of unidirectional boron/epoxy
is 1260 MPa whereas its interlaminar
tensile strength is only 61 MPa - and
the ratio of interlaminar to longitudinal
toughness is even smaller than that of
the strengths.  Adhesives are also
susceptible to failure induced by peel @l  adhesive
stresses. Tapering the ends reduces the
adhesive shear-stress concentration at
the ends of the doubler and hence also
reduces the peel stress resulting from
the unbalanced shear stress acting on Figure 1

the doubler. An optimum taper angle is

generally about three degrees since this Schematic of the Two Mathematical Models and
gives an adequate degree of stress relief an Actual Doubler

while ensuring the size of the doubler is

not too great. The modelling of the

D aluminium inner adherend

fibre-composite outer adherend




peel-stress distribution is a more difficult mathematical problem and is not addressed in this
report, however, minimising the shear will also minimise the peel stress.

The application of doublers to an aircraft structure can induce some bending due to the
added eccentricity of the load path. However, most aircraft structures have supports that
act to reduce this bending. For example, the WPF of the F-111 (Figure 2) has stiffeners
and shear webs and is bolted to the sub-structure. The strength of the single-sided

end tapering |
softening strip end tapering

— -

/ D6AC wing pivot fitting
aluminium skin \- lower doubler
steel bolts stiffener runout

UP
OUTBOARD 4——T

Figure 2. F-111 Doubler-Section Looking Aft on Right Wing,

end-tapered joint will then approach that of the end-tapered double-lap joint. Analysis of
the single-sided end-tapered doubler can then be approximated by considering either the
idealised geometry of the end-tapered double-lap joint (Figure 1a) or the stepped
double-lap joint (Figure Ib) and by using a ‘'mechanics of solias' approach similar to that
employed by Hart-Smith” in the analysis of the double-lap joint.

2. THE END-TAPERED DOUBLE-LAP JOINT

2.1.  Elastic Analysis

2.1.1. Analytical Development
In this analysis, it is assumed that the . ‘-—-—)g \
adhesive deforms only by shear and that the to l m .t

adherends deform only by stretching in the —

longitudinal direction. This one-dimensional p 4_| | : >y

approach works reasonably well for the ' Y Euts
non-tapered double-lap joint' and should,
given the reduced peel stresses, work even —\
better for the end-tapered double-lap joint. '—>l 1 l‘—

Geometry and nomenclature for the
end-tapered double-lap joint is shown in
Figure 3. A fibre-composite outer adherend
can be accommodated by using an effective
modulus in the longitudinal direction. As
most doublers employed at ARL have

Figure 3. Geometry and Nomenclature
for the End-tapered Double-Lap Joint




unidirectional reinforcement, the modulus along the fibre direction of a single ply can be
used. To aid the analysis, the joint is divided into two regions: the tapered region from x=0
to x=I and the non-tapered region from x=l to x=~ (or § =0 to § =w). The differential
equation describing adhesive deformation in the first region is derived below and the
differential equation for the second region can be found from the first by putting the angle
of taper to zero.

Force equilibrium in the horizontal direction dictates that:

dT, __
dx t=0, n
and,
dT; _
Tx +2t=0. )

Here, 1 is the adhesive shear stress and T, and T, are tractions in the outer and
inner adherends respectively. The elastic stress-strain relations for the
adherends are:

dao To
Ix (3)
Eo(x tan® + to")
and,
as;, T,
E B Eit ) “)

The terms §, and &, are the displacements of the outer and inner adherends
respectively. The elastic shear-stress shear-strain relation for the adhesive is:

T=Gy. )

In this analysis, the adhesive shear strain is averaged across the thickness of the
adhesive layer:

Y= ©)

Taking the derivative of equation 6 with respect to (w.r.t.) x and substituting in
equations 3 and 4 yields:




ﬂ = _1_ To - T 0
& frwnos ) B
Differentiating again w.r.t. X yields:
o)4Ts _
_d_z_‘z__l Eo(x tan 9+ to) e EoTotanG _ dT, 1 (8)
dc2 M 2 dx E;t; |
* E2(x o+ )
dT;

but equations 1 and 2 imply T, = J-: Tdx and = -21, so that equation

dx

8 becomes in terms of shear stress:

g2y 1 |Ee(xn®+ 1§ )i— Eqtan [y wx)dx

Zx-T:ﬁ + 27

1
Eit; |

p 2 ©®
EOZLx tan 6 + té’)

2
Multiplying both sides of equation 9 by Eoz(x tanQ + tf,’) , substituting T= GY,

and taking the derivative w.r.t. x yields the third-order ordinary-differential equation:

>y, _2tn® d4°Y_G| _2 1 dy

= +
3 o 2 .t

4tan9 y
E; ti(x tan0 + tg)

G
+ M (10)

Equation 10 is probably not soluble in closed form. It is amenable, however, to a numerical
solution using the NAG' subroutine DO2HAF. This is a subroutine for solving boundary-value
problems involving ordinary differential equations of arbitrary order. The equations are
re-written as a system of simultaneous first-order differential equations and the problem solved
by a shooting and matching technique.

Numerical Algorithms Group library of mathematical subroutines.




The boundary condition at x=0 is obtained from equation 7:

HNgy=-L_
2 0= an

The other two boundary conditions are derived by matching y and ¥' at x=1 from
the preceding solution with y and y' at ¢=0 from the solution for the
non-tapered double-lap joint. The form of the solution for the non-tapered
double-lap joint is:

ORI

where the subscript n refers to the non-tapered double-lap joint and P, is the
load remaining at x=I to be transferred from the inner to the outer adherends at
x=L

The solution shown above for the non-tapered double-lap joint can be obtained
from the previous equations by substituting 6 =0 and t‘'=t  in equation 8.
Then:

dzynzl 1 _dT, 1 dT; (13)
dx? M|E,td dx Eity dx
Substituting the equilibrium equations 1 and 2 and equation § gives:
d*yn _G 1 2
dx?2 M E013+Eili Yo
= BZ‘YIH (14)
where
2G| 1. 2 5
P n[sot:: TEn ] (13)

The solution of equation 14 over a semi-infinite domain is equation 12 above.
The boundary condition Y(ee) = 0 is implicit in this formulation. Solution over a
finite domain, p say, is:

n(&) =Acosh (B(p-é))msinh (B(p-g)). (16)

P, in equation 12 is the load remaining at x=l to be transferred from the inner to
the outer adherends and is given by:




E;t;

P R

a7

The last term in equation 17 expresses the condition that at x = « the load is
distributed to each adherend according to its stiffness.

Matching at x=I (€=0) implies that:

YD) =v.(0) ,
= E:P—I:B (18)
and,
A= %«»,
- (19)

Since P, is not known a priori neither are the boundary conditions at x=l.

Consequently, an iterative scheme was implemented on computer to solve the

governing differential equation (equation 10) and its boundary conditions

(equations 11, 18, and 19). The iterative scheme involved making repeated

guesses at the parameter P, until the load transferred to the outer adherends
EO t0

2E, t,+E; t; )

2.1.2 Comparison of the Elastic Model with an FE Analysis

(which was found by integrating equation 1) was equal to P

An FE analysis of an end-tapered double-lap joint was set up in PAFEC. Only one quarter
of the joint needed to be modelled due to the twofold symmetry of the joint. The adhesive
and the adherends were modelied using eight-noded isoparametric elements. Previous
experience in modelling double-lap joints dictated the need for four elements through the
thickness of the adhesive layer to achieve convergence. Adhesive shear strains were
calculated by subtracting the longitudinal displacements of nodes on either side of the
adhesive layer and dividing through by the adhesive thickness. The adhesive shear strain is
therefore averaged across the thickness, as in the analytical development, thus allowing
proper comparison. The graphs that follow show the effect of varying joint parameters on
the adhesive shear-strain distribution in the joint. Table 1 contains those joint parameters.




Parameter Figure 4 Figure S Figure 6 Figure 7
value
1 (mm) 0.14-0.42 0.28 0.28 0.28
G (MPa) 600 600 600 600
E_  (MPa) 208,000 208,000 208,000{ 72,000-208,000
0 (degrees) 2.7 2.7 2.7-80 2.7
t.°(mm) 0.14 0.14-042 0.14 0.14
E (MPa) 208,000 208,000 208,000 208,000
t, (mm) 6.36 6.36 6.36 6.36
1 (mm) 27 27 27 27
P (N/mm) 2,300 2,300 2,300 2,300
Table 1.
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shear strain

shear strain

Figures 4,5,6, and 7 show that the model of the end-tapered double-lap joint, assuming
elastic adhesive deformation, is in excellent agreement with the finite-element analysis for a
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Figure 7.

wide range of joint parameters.

2.1.3. An Approximate Analytical Solution: a First-Order Perturbation Solution

An approximate analytical solution to the differential equation governing elastic
deformation of the adhesive (equation 10) can be found by proposing a regular perturbation

expansion of the shear strain:
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1) = Yo(¥) + €71 (x) + 22 (x) + ..... (20)
where the parameter € is a small number much less than one. This parameter is

associated with term ftan® in equation 10. If the taper angle, © , is very small
then tan® will also be small. Rewriting equation 10 in terms of € gives:

(xs+t:)-{”+2ef’=%[ﬁi2—ti-(xe+t§)+E-1—0]Y+Ei_%y_ 1)

The first order perturbation expansion of the shear strain (i.e. the first two terms
on the right hand side of equation 20) is then substituted into equation 21 and
terms with like powers of € collected. The zeroth order terms are:

o . G| _2_ 3 PP I
t3Yo = n[E;ti(xe+t°)+Eo]y°' (22)

The relevant boundary conditions are:

Ao gy = 2.
(ix (0) - ‘nEjtj,

° nEt.fy’
/ -P,
1) i
YO( nEit;
The parameter B ,is given by:

b=[8( )]

The zeroth order function, 7,, is then:
Yolx) =A cosh[Bo(l—x)]+Bsinh[[3°(l-x)]+C. (23)
The parameter B , is given by:

1
-16(2 .1 \}
Bo—[“(Eiti+Eot§)] '

The constants A, B, C are found by substituting the boundary conditions into
equation 23:
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cosh (Bol) (P-P)).
Bo sinh (Bol) nEit;’

A=

N <
B—TlEitiﬂo’

_pBo _
=B

Note that the parameter P, is not yet determined. It is found by setting the
integral of the shear stress equal to the load per-unit-width that has to be
transferred from the inner to each outer adherend.

The first order terms found on substituting the perturbation expansion into
equation 10 are:

2to
yronet oy = S2x S(E Ll @0

The relevant boundary conditions are:

T (1) =0,
¥{(0)=0;

ﬂ@):o

The homogeneous solution to the above differential equation is:

¥1°"(x) =Dcosh [Bo (l -x )]+E5inh [Bo (1 -X ) ]+F~ 25

The particular solution to the above differential equation, having first
substituted for y,(x), is:

¥;(x) =aa x+bb x cosh[Bo(l —x)]—mc xsinh [Bo(l - x)]+dd x? cosh[[io(l - x)]

+ee x? sinh{ﬁo(l —x)]. (26)

The constants aa, bb, e.t.c. are given by:
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~4G 1 .
nEit; ﬁEt:C’

__1 _op24 4G -28.G t:) . ]
bb= Zﬁgt‘?[( 2Bs+ nE;t; )A+( nEit; B+6f, tg ee ;

1_[{ a2, 4G —230613) . }
“ 21331:;_( 2B°+nEiti)B+( TR JAtOBatodd

_Bog.
dd= 42

_B

ee= 4t§A'

Since the constants A, B, C depend only on P, the constants aa, bb, cc, e.t.c.
depend only on P,. The constants D, E, and F can now be found by evaluating
the boundary conditions for y,(x). These boundary conditions give rise to three
simultaneous equations in which D, E, and F can be solved for in terms of P, .
Thus the solution is fully determined once P, is found. P, is found by setting:

e — P Eoto
J, wae= 2E 1, +Ejt; 27
The term t(x) is given, on 0<x<l, by:
%) =6(Yolx) + ) ), (28)
and on I< x < o by:
__PhG (_ )
(x) = NEB, exp | —fix |. (29)

Figure 8 shows a comparison of the numerical solution for the joint configuration that
follows and the first-order perturbation solution.



12

v L] T d T T

——= 18t order perturbetion 1
= = NAG numerical result

perturbation parameter ¢ = 0423

0.005

o.oo%.o * ols - 1.Lo 1‘.5 ~ ?)
distance along bondline normalised against taper length
Figure 8.
n G E, t° E, t, 0 | P
(mm) | (MPa) | (MPa) | (mm) (MPa) | (mm) |(degrees)| (mm) | (N/mm)
0.14 760 208e3 0.13 71e3 6.36 242 27 500
Table 2.

The Ist order perturbation solution shows reasonable agreement with the more accurate
numerical solution. A higher order perturbation expansion for the adhesive shear strain
would be necessary to achieve a more accurate approximation.

2.2. Elastic/Perfectly-Plastic Analysis
2.2.1. Analytical Development

To obtain the solution for the adhesive shear-strain distribution in a joint deforming in an
elastic/perfectly-plastic manner the tapered region must be divided into an elastic region
and a plastic region. Firstly the adhesive shear-stress shear-strain curve is idealised as being
elastic/perfectly-plastic.

In the plastic region a solution is obtained by setting t(x)=r, (the yield stress) in
equation 9:
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dy 1 T Eot 217,
— = . 0
2 M 2 2 ¥ Eiti 30)
E, (x tan6+t§)
Integrating equation 30 w.r.t. x yields:
%:% é’f’tx - Tplo +C. 31)
o Eotane(xtan9+t§)
Integrating once again:
TptoIn|{xtan O+t
1 ox2_ P ( )
== - + Cx + D. 3
) M| Eit; E,tan2@ & (32)

Applying the boundary condition given by equation 11 to equation 32 yields:

YO =7l £, ~ E, tan’0

T __P
+[nE°tan9 nE; ti]x + D &)

As in the elastic analysis the other boundary conditions are found by matching. In this case,
however, the adhesive in the tapered region can deform fully plastically or partly plastically
and partly elastically. If the deformation in the taper is fully plastic then equation 33 is
matched with the solution describing adhesive plasticity in the non-tapered double-lap joint
at x=I. That solution is obtained by setting tan@ = 0 in equation 30 and integrating:

(34)

and hence,

y..(&) =5’-B—2-§—2+E§+F. (35)
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This solution is then matched with that assuming adhesive elasticity in the non-tapered
double-lap joint (equation 12) at the plastic-to-elastic transition point. The location of this
transition point is not known a priori and so an iterative scheme was again implemented on
computer to find the full solution by making guesses at the starting strain.

If the adhesive deforms plastically for only part of the scarfed region then a different
procedure is necessary. Equation 33 is now matched with the equation 10 (the solution
assuming adhesive elasticity in the scarfed region) at the plastic-to-elastic transition point.
At x=I equation 10 is matched with the solution assuming adhesive elasticity in the
non-tapered joint (equation 12). A computerised iterative solution was again necessary to
find the full solution.

2.3. An Upper and a Lower Bound for the Peak Shear Strain

It is desirable, from an engineering design viewpoint, to find a simple expression for both
the upper and lower bound for the peak shear-strain in an end-tapered double-lap joint. A
simple approach is to consider two separate double-lap joints. The joint used to estimate
the upper bound would have an outer adherend thickness equal to t, and the joint used to
estimate the lower bound would have an outer thickness of t,°. By comparing the results
from the end-tapered double-lap joint model (with fixed values of t, and t° but varying
values of @) with the results from the two double-lap joints the usefulness of the estimates
for the upper and lower bounds can be evaluated. To be useful, at small values of © the
peak shear-strain should approach the lower bound and at large values of © it should
approach the upper bound. Two cases were investigated: elastic and
elastic/perfectly-plastic adhesive deformation.

2.3.1. Assuming Elastic Adhesive Deformation.

Figure 9 shows the variation of peak shear strain with taper angle when the adhesive is
assumed to deform elastically. The joint parameters are as for Figure 4 with these
exceptions: P=2000 N/mm and n1=0.14mm.

aos uppet deund
_.-__.__-—.———.—l—c-{
peak coeq
shear
strain o
wd - - T T - = e bound |
a3 23 - " ”» ”0
taper angle
Figure 9.
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The upper bound provides a sound upper limit for the peak shear strain at large angles of
taper but the lower bound underestimates the peak shear strain at small angles of taper.
Taper angles in a repair are typically 2-4° and hence the upper bound may be too
conservative to be used for design purposes. Likewise, the lower bound may be too low to
be used for design purposes (e.g. for a taper angle of 2.7° the actual peak shear strain is
58% greater than the lower bound).

2.3.2. Assuming Elastic/Perfectly-Plastic Adhesive Behaviour

When the adhesive is allowed to deform in an elastic/plastic manner a similar graph is
obtained (Figure 10). In this case the lower bound greatly underestimates the peak

shear strain.

encountered. Table 3 contains the parameters for the joint.

Loads high enough to cause adhesive plasticity, however, are rarely

3. THE STEPPED DOUBLE-LAP JOINT

3.1. Elastic Analysis
Analytical Development

3.1.1.

P Ei ti Eo t° t, T, n
(N/mm) | (MPa) | (mm) | (MPa) | (mm) | (mm) | (MPa) | (MPa) | (mm)
4,0001 71,000 6.36] 205,000 0.13 1.27 750 37 0.13
Table 3
12p
M o o o o o e u&vbound_
peak of . . = ]
shear 08 f'
strain o ]
o4 f 4
02T T T T T = werboums
e = > o T
taper angle
Figure 10.

This model of the stepped double-lap joint (Figure 1b) applies the solution for the
double-lap joint (equation 16) to each step. Each ply of the outer adherend is assumed to
be of step length 1, thickness t,, and Young's modulus E,. A joint of this type could be
made by stepping the plies of a fibre composite lay-up to form the outer adherends. The
form of the solution on the kth step is:
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" (&,) =Aysinh (ﬁk§)+Bkcosh (Bk.’;), (36)

where & is the local coordinate for each step and where

2_G{_1 2
B“—Tl(Eotok+Eiti ) 37)

The boundary condition given by equation 11 applies to the first step:

dy P
3 ——(0)= TEL

=A1B1. (38)

At the end of each step, of length 1, continuity of the shear strain must be
enforced, though the derivative of the shear strain may not necessarily be
continuous since the profile of the outer adherend is not smooth.

Therefore,

() = Y1 (0) (39

or,

Bx+1=Aysinh (Bkl)+BkCOSh (Bkl) (40)

At the start of each step, the derivative of the shear strain is:

dyx Sy L_ T; )
dg(o) ﬂ(E tok E;it; 1

This equation can be derived from equation 7 by setting tan8 = 0 and t3=kt, *

If the load transferred from the inner to each outer adherend over the Ath step is
F, then at the start of the k+Ith step the tractions are:

k
To= 2, Fj, (42)
j=1

and,
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@ T=P-23F, . 43)
: 2
; Therefore, from equation 41:
Ay =ZE0) = N -, @)

where F, is given by integrating equation 36:

Fx = G{A;{cosh (Bkl) - 1] + By sinh (Bkl)} . (45)

Thus if B, in equation 36 is known then all the coefficients A, and B, can be
found. At the start of the last step the shear strain must also be continuous.
The form of the solution for this last (nth) step is as for equation 12:

y(g) - %ﬁre “Bak (46)

Continuity of the shear strain implies:

P,

m =A,.;sinh (Bn.1l)+Bn-1COSh (ﬁn-l ]). 47)

The total load transferred from the inner adherend to each of the outer
adherends is;

ZF+

: 48
EtBn “®

Therefore, all that remains is to find B, and then all other coefficients can be found from
equations 41 and 45 and P, can be found from equation 47. A computerised iterative
scheme was again implemented in which repeated estimates were made of B, and the load
transferred to the outer adherends calculated (from equation 48) until that value was to
Eo to

equal to P TEmt +EL YEL

3.1.2. Comparison of the Elastic Model with an FE Analysis

An FE analysis of a stepped double-lap joint was set up in PAFEC. The model was similar,
in terms of element type and spacing, to the end-tapered double-lap joint model. Once
again, only one quarter of the joint needed to be modelled due to the symmetry of the joint.
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The adhesive shear strain was again calculated by subtracting displacements across the
adhesive layer and dividing by the adhesive thickness. Three joints were modelled and the
table of their joint parameters and figure numbers are shown below. The figures show
excellent agreement between the mathematical model and the FE results.

Figure 11 Figure 12 Figure 13
E, (MPa) 208,000 208,000 138,000
t, (mm) 0.13 0.13 0.15
E (MPa) 71,000 71,000 71,000
t (mm) 6.36 6.36 6.36
n (no. steps) 10 10 10
I (mm) 3 5 5
P (N/mm) 2,000 2,000 2,667
G (MPa) 590 590 590
N (mm) 0.1 02 0.2
Table 4.
010
o FE Resuts
Anghticol Results
08
1
0064
T
0.04
0.02 4
000 — . - — .°° L
1 . ¥ T

distance along joint (mm)

Figure 11.
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Figure 13.




20
3.1.3. An Upper and a Lower Bound for the Peak Shear Strain

Bounds for the peak shear strain in the adhesive assuming elastic deformation can be
developed in much the same way as for the end-tapered double-lap joint. The lower bound
is taken to be the adhesive shear strain when only one outer-adherend ply is present. The
upper bound is taken to be the adhesive shear strain when all plies are present in a
non-stepped geometry. Table five below has the parameters for this joint. The results are
shown in figure 14.

P (N/mm)| Ei (MPa) | ti (mm) |Eo (MPa)| to (mm) n G (MPa) | 1 (mm)
1,500 71,000 6.36] 205,000 0.13 5 750 0.13

Table 5.

The lower bound is quite sound for this joint configuration. The peak shear strain for this
joint with a step length greater than 6 mm can be readily approximated by a joint having a
single outer-adherend ply. This step length is equivalent to a taper angle of about 1.2°. A
typical step length is about 3 mm (2.6°) in which case the lower bound underestimates the
peak shear strain by about 20%.

012
on
r bound
0104.____________229“______
009 *
peak 1.
shear 008 1
strain 007 4 .
°°°1 - lower bound
0051’_ — e — —"__ & s g—a =
004 3 ™ - Y T
[} 2 4 € 8 10 12 1“4 16
step length (mm)
Figure 14.

3.2. Elastic/Perfectly-Plastic Analysis
3.2.1. Analytical Development

Solving for the elastic perfectly-plastic adhesive shear strain distribution in a stepped
) double-lap joint is similar to solving that for the elastic case except that the adhesive under
each step can now also deform fully plastically or partly plastically and partly elastically.

-t

The solution assuming perfectly-plastic adhesive deformation on the kth step is
as given by equation 35:




21

Tk (&) k. B“ F’2+CF,+D (49)

where & is a local coordinate for each step. The boundary condition given by
equations 11 still applies. Hence, on the first step the constant C in the above
equation is:

P

“TEN

(50)

If on any step there is a transition from plastic-to-elastic adhesive deformation
then the shear strain and its derivative given by equation S0 is matched with the
elastic solution (equation 37). At the end of each step continuity of the shear
strain is enforced.

The derivative of the shear strain at the start of the kth step is given by
equation 41

dre _l(___To T )
Z O N\KEL TEL) 1)

The traction T, at the start of kth step is found by integrating equation 1 for the
previous k-1 steps. The traction T, is simply equal to P-2T, Thus once the
shear strain at the start of the first step is known the full solution can be found.

Once again a computerised iterative scheme was implemented whereby repeated guesses
were made at the starting shear strain until the load transferred was equal to
E.t,
2Emt,+E t,

4. COMPARISON OF THE END-TAPERED AND THE STEPPED DOUBLE-LAP
JOINT MODELS

4.1. Assuming Elastic Adhesive Deformation.

Table 6 contains the joint parameters used in the model of an end-tapered double-lap joint
and in the model of an equivalent stepped double-lap joint assuming elastic adhesive
deformation. The adhesive shear strains and outer adherend strains for these two joints
appear in the figures that follow.




22

| Figures 15 and 16
End-tapered Double-Lap Joint| 0 (degrees) 2.7
1 (mm) 27
t,” (mm) 0.13
Stepped Double-Lap Joint t, (mm) 0.13
. n (no. steps) 10
step length (mm) 3
Table 6.
016
| 014 — — — - end-scarfod double-fap joint
012 E ~——————— stepped double-iap joint
010
e
strain 006

0.04

002

0.00

distance along joint (mm)

Figure 15.
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0.006 ~ — — end-scarfed double-lap joint

stepped double-lap joint

strain in the 9994

outer
adherend

0.002H

0.000 A 1 . 1 . 1 PE—
10 20 30 40

distance along the joint (mm)

Figure 16.

Significantly, however, the stepped double-lap joint does predict a lower peak shear strain.
The outer adherend strains are close in an average sense.

4.2. Assuming Elastic/Perfectly-Plastic Adhesive Deformation.

Table 7 contains the joint parameters used in the model of an end-tapered double-lap joint
and in the model of an equivalent stepped double-lap joint assuming elastic/perfectly-plastic
adhesive deformation. The adhesive shear strains and outer adherend strains for these two
joints appear in the figures that follow.

Figures 17 and 18
End-tapered Double-Lap 0 (degrees) 29
Joint | (mm) 27
t.° (mm) 0.15
Stepped Double-Lap Joint to (mm) 0.15
n (no. steps) 10
step length (mm) 3

Table 7.
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Allowing the adhesive to deform in an elastic/perfectly-plastic manner leads to a slight
divergence but still similar prediction of the adhesive shear strains by the two models. The
predicted outer adherend strains for the two joints remain close in an average sense.

adhesive
shear
strain

microstrain
in the outer
adherend

025

020

0.15

Q.10

0.05

0.00

\ — — — ad-scarfod double-lap joint

stepped double-lap joint

50
distance along joint (mm)
Figure 17.
0.004
— — -— end-scarfed doudle-iap joint

stopped double-lap joint
0.003

0.002

0.001
om A _e A e A A '3 i
0 10 20 30 4 50
distance along joint {(mm)
Figure 16.



25

4.3. Comparison of the Two Models with Measured Outer-Adherend Strains

The ability of the two models to predict strain in the outer adherend of an actual joint
(Figure 1c) was investigated. A strip of strain gauges was bonded to the outer adherend of
a boron/epoxy doubler near the end of the taper. The joint was loaded and the strain
measured. The results and the predicted strains (calculated using the elastic models) are
shown in Figure 19. :

| stepped doubie-lap joint model
- - -end-scarfed double-lap joint model
8004 8  measured strains

Strain in the
Quter
Adherend

0 - . - v . —
0 5 10 15 20
distance along joint (mm)
Figure 19.

Clearly, the stepped structure of the doubler is reflected in the strain measured on the outer
ply. The stepped double-lap joint model is better suited to describing the lack of
smoothness in the strain/distance curve though the end-tapered model is accurate in an
average sense. The boron/epoxy doubler consisted of 10 plies and a step length of 3mm.
The resultant taper angle was about 2.5°. Five strain gauges were bonded to the doubler:
the strain gauges were spaced 2mm apart starting at 3mm from the end of the doubler.

CONCLUSION

Two alternative mathematical models have been successfully developed to predict adhesive
shear strains in fibre-composite reinforcements. The validity of both the end-tapered
double-lap joint model and the stepped double-lap joint model has been verified by an
elastic finite-element analysis. For a typical repair or doubler geometry the two models
yield approximately the same adhesive shear strains for both elastic and elastic/perfectly
plastic analyses. The end-tapered double-lap joint model is numerically more stable than
the stepped double-lap joint model and is perhaps therefore more useful in predicting
adhesive shear strains. The stepped double-lap joint model, however, gives a better
prediction of the strains in the outer adherend. Estimation of the peak shear strain in the
stepped double-lap joint may be simplified by using a single ply model for certain joint
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configurations. The stepped double-lap joint geometry appears to be more effective for
repair than the end-tapered double-lap joint geometry as the predicted peak shear stress is
lower. The two models could be useful design tools when used in conjunction with
adhesive design allowables such as the fatigue threshold, the yield strain, and the strain to
failure.
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