PERFORMANCE ORIENTED PACKAGING TESTING
OF
PA19 SHIPPING AND STORAGE CONTAINER
FOR PACKING GROUP II SOLID HAZARDOUS MATERIALS

Author:
Kerry J. Libbert
Mechanical Engineer

Performing Activity:
Naval Surface Warfare Center
Code 4045
Crane, Indiana 47522-5001

Date
July 1993

FINAL

DISTRIBUTION UNLIMITED

Sponsoring Organization:
Naval Surface Warfare Center
Code 4027
Crane, Indiana 47522-5001
Qualification tests were performed to determine whether the in-service PA19 Shipping and Storage Container could be utilized to contain properly dunnaged solid type hazardous materials weighing up to a gross weight of 15 kg (33 pounds). The tests were conducted in accordance with Performance Oriented Packaging (POP) requirements specified by the United Nations Recommendations on the Transportation of Dangerous Goods, ST/SG/A-C.10/1 and the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178. The PA19 has conformed to the POP performance requirements; i.e., the PA19 successfully retained its contents throughout the specified tests.
INTRODUCTION

This Performance Oriented Packaging (POP) test was performed to ascertain whether the PA19 Shipping and Storage Container meets the Packing Group II requirements specified by the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 31 December 1991. The objectives were to evaluate the adequacy of the container in protecting hazardous materials.

TESTS PERFORMED

1. Drop Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.603. One container was used for each drop orientation. The drop height was 1.2 meters and the drop sequence was as follows:

 a. Flat on Bottom
 b. Flat on Top
 c. Flat on Long Side
 d. Flat on Short Side
 e. One Corner

The test was performed at ambient temperature (70°F ± 20°F). The corner drop was performed on a corner of the lid near the latch. The contents of the container should be retained within its packaging and exhibit no damage liable to affect safety during transport.

2. Stacking Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.606. Three different containers were used, each with a stack weight of 560 pounds. This represents the weight imposed on the bottom container of a sixteen-foot stack of like containers weighing 33 pounds. The test was performed for 24 hours. After the allowed time, the weight was removed and the container examined. Any leakage, deterioration, or distortion which could adversely affect transport or reduce its strength or cause instability in stacks of packages is cause for rejection.

3. Base Level Vibration Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.608. Three sample containers were loaded with inert signals and closed as for shipment. Each container was placed on a vibrating platform that had a vertical double-amplitude (peak-to-peak displacement) of one inch. The packages were constrained horizontally to prevent them from falling off the platform, but were free to move vertically, bounce and rotate. The test was performed for one hour at a frequency that caused each point of the container bottom to be
raised from the platform 1.6 mm. A 1.6 mm thick metal strip was
passed between the bottom of the container and the platform.

PASS/FAIL

1. Drop Test

The criteria for passing the drop test is outlined in
Title 49 CFR, Part 178, Subpart M, Sec. 178.603(f): A package is
considered to successfully pass the drop test if for each sample
tested, no rupture occurs which would permit spillage of loose
explosive substances or articles from the outer packaging.

2. Stacking Test

The criteria for passing the stacking test is outlined in
Title 49 CFR, Part 178, Subpart M, Sec. 178.606: No test sample
may show any deterioration which could adversely affect
transportation safety or any distortion likely to reduce its
strength, cause instability in stacks of packages, or cause
damage to inner packagings likely to reduce safety in
transportation.

3. Base Level Vibration Test

The criteria for passing the Base Level Vibration Test is
outlined Title 49 CFR, Part 178, Subpart M, Sec. 178.608: Immediately following the period of vibration, each package must
be removed from the platform, turned on its side and observed for
any evidence of leakage. A packaging passes the vibration test
if there is no rupture or leakage from any of the packages. No
test sample should show any deterioration which could adversely
affect transportation safety or any distortion liable to reduce
packaging strength.

TEST RESULTS

1. Drop Test

Satisfactory.

2. Stacking Test

Satisfactory.

3. Base Level Vibration Test

Satisfactory.
DISCUSSION

1. Drop Test

 After each drop the container was inspected for any damage which would be cause for rejection. The container dropped on the corner of the lid was slightly dented, but did not open or spill any contents.

2. Stacking Test

 Three containers were individually tested. Each container was visibly inspected after the 24-hour period was over. There was no leakage, distortion, or deterioration to the container as a result of this test.

3. Base Level Vibration Test

 Immediately following the vibration test, each container was removed from the platform, turned on its side and observed for any evidence of leakage. All containers remained securely closed and there was no evidence of leakage of contents.

REFERENCE MATERIAL

DISTRIBUTION LIST

Commander
Crane Division
Naval Surface Warfare Center
Code 4045 and Code 4027
Crane, IN 47522-5000

Commanding Officer
Naval Weapons Station Earle
Code 50 and Code 50232
Colts Neck, NJ 07722-5000

Defense Technical Information Center (2 copies)
ATTN: DTIC/FDAC (Virginia Guidi)
Bldg. 5, Cameron Station
Alexandria, VA 22304-6145

Commander
U.S. Army Armament, Research, Development and Engineering Center
SMCAR-ESK
Rock Island, IL 61299-7300

Defense General Supply Center
DDRV-TMPA (Dave Gay)
Richmond, VA 23297-5000
DATA SHEET

<table>
<thead>
<tr>
<th>CONTAINER:</th>
<th>POP MARKING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA19 Shipping and Storage Container</td>
<td>u 4A2/Y15/S/**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>UN Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A2</td>
<td>1.4G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification Number:</th>
<th>Material:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing 19200-8865541</td>
<td>Steel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gross Weight:</th>
<th>Dimensions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0 kg</td>
<td>.30m L x .15m W x .26m H</td>
</tr>
<tr>
<td>(33.0 pounds)</td>
<td>(12.00" L x 6.09" W x 10.31" H)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Closure (Method/type):</th>
<th>Tare Weight:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latch</td>
<td>3.1 kg</td>
</tr>
<tr>
<td></td>
<td>(6.9 pounds)</td>
</tr>
</tbody>
</table>

| Additional Description: | |

PACKAGED COMMODITY:
MK 138 Mod 0 Recall Signal
DWAL, 1370-01-271-8299

<table>
<thead>
<tr>
<th>Proper Shipping Name:</th>
<th>Cartridges, Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Nations Number:</td>
<td>0312</td>
</tr>
<tr>
<td>United Nations Packing Group:</td>
<td>II</td>
</tr>
<tr>
<td>Physical State:</td>
<td>Solid</td>
</tr>
<tr>
<td>Amount Per Container:</td>
<td>21</td>
</tr>
<tr>
<td>Net Weight:</td>
<td>1.2 kg (2.7 pounds)</td>
</tr>
</tbody>
</table>

PACKAGED COMMODITY USED FOR TEST:
Name: Steel rods
Physical State: Solid

<table>
<thead>
<tr>
<th>Size:</th>
<th>Quantity:</th>
<th>Net Weight:</th>
</tr>
</thead>
<tbody>
<tr>
<td>.15m L x .02m Dia (6.00"L x 1.00"Dia)</td>
<td>26</td>
<td>11.8 kg (26.0 pounds)</td>
</tr>
</tbody>
</table>

| Dunnage: | Polyethylene foam |