
STATI-STICS

AND

PH-YSICAL. OCEANOGRAPHY

ELEC/

AU 0A9

a NThisia duerh oni



Accesion For
NTIS cQ[-,f&

U ...... ...ed

By ........ ,................ .... .
Dt!tribufic, !

Avail.4 "

STATISTICS Dist

AND LL I

PHYSICAL OCEANOGRAPHY

Panel on Statistics and Oceanography
Committee on Applied and Theoretical Statistics

Board on Mathematical Sciences
Commission on Physical Sciences, Mathematics, and Applications

National Research Council

National Academy Press
Washington, D.C. 1993

, 93-18993

923 iflý 0 C 32



NOTICE: The project that is the subject of this report was approved by the Governing Board of the National
Research Council, whose members are drawn from the councils of the National Academy of Sciences, the
National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible
for the report were chosen for their special competences and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved
by a Report Review Committee consisting of members of the National Academy of Sciences, the National
Academy of Engineering, and the Institute of Medicine.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars
engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to
their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the
Academy has a mandate that requires it to advise the federal government on scientific and technical matters.
Dr. Frank Press is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National
Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its
administration and in the selection of its members, sharing with the National Academy of Sciences the
responsibility for advising the federal government. The National Academy of Engineering also sponsors
engineering programs aimed at meeting national needs, encourages education and research, and recognizes
the superior achievements of engineers. Dr. Robert M. White is president of the National Academy of
Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the
services of eminent members of appropriate professions in the examination of policy matters pertaining to the
health of the public. The Institute acts under the responsibility given to the National Academy of Sciences
by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify
issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to
associate the broad community of science and technology with the Academy's purposes of furthering knowledge
and advising the federal government. Functioning in accordance with general policies determined by the
Academy, the Council has become the principal operating agency of both the National Academy of Sciences
and the National Academy of Engineering in providing services to the government, the public, and the
scientific and engineering communities. The Council is administered jointly by both Academies and the
Institute of Medicine. Dr. Frank Press and Dr. Robert M. White are chairman and vice chairman, respectively,
of the National Research Council.

Support for this project was provided by the Office of Naval Research.

Copyright 1993 by the National Academy of Sciences. All rights reserved.

Additional copies of this report are available from:
Board on Mathematical Sciences
National Research Council
2101 Constitution Avenue, N.W.
Washington, D.C. 20418

Printed in the United States of America



PANEL ON
STATISTICS AND OCEANOGRAPHY

DUDLEY B. CHELTON, Oregon State University, Cochair
WILLIAM F. EDDY, Carnegie Mellon University, Cochair
RICHARD DEVEAUX, Princeton University
RAISA FELDMAN, University of California at Santa Barbara
ROMAN E. GLAZMAN, Jet Propulsion Laboratory, California Institute of Technology
ANNALISA GRIFFA, University of Miami
KATHRYN A. KELLY, Woods Hole Oceanographic Institution
GORDON J. MACDONALD, University of California at San Diego
MURRAY ROSENBLATT, University of California at San Diego
BORIS RozovsKIi, University of Southern California

Staff
JOHN R. TUCKER, Senior Program Officer

COMMITTEE ON APPLIED AND THEORETICAL STATISTICS

WILLIAM F. EDDY, Carnegie Mellon University, Chair
YVONNE BISHOP, U.S. Department of Energy
MARY ELLEN BOCK, Purdue University
MARJORIE G. HAHN, Tufts University
DOUGLAS M. HAWKINS, University of Minnesota
DAVID G. HOEL, Medical University of South Carolina
JON R. KE'NTNRING, Bellcore
KARL E. PEACE, Biopharmaceutical Research Consultants
STEPHEN M. POLLOCK, University of Michigan
DARYL PREGIBON, AT&T Bell Laboratories

Staff
JOHN R. TUCKER, Senior Program Officer

nli



BOARD ON MATHEMATICAL SCIENCES

SHMUEL WINOGRAD, IBM T.J. Watson Research Center, Chair
RONALD DOUGLAS, State University of New York at Stony Brook, Vice-Chair
LAWRENCE D. BROWN, Cornell University
SUN-YUNG A. CHANG, University of California at Los Angeles
AVNER FRIEDMAN, University of Minnesota
JOHN F. GEWEKE, University of Minnesota
JAMES GLIMM, State University of New York at Stony Brook
DIANE LAMBERT, AT&T Bell Laboratories
GERALD J. LIEBERMAN, Stanford University
PAUL S. MUHLY, University of Iowa
RONALD F. PEIERLS, Brookhaven National Laboratory
JEROME SACKS, National Institute of Statistical Sciences
ROBERT J. ZIMMER, University of Chicago

Ex Officio Member
WILLIAM F. EDDY, Carnegie Mellon University

Chair, Committee on Applied and Theoretical Statistics

Staff
JOHN E. LAVERY, Director
RUTH E. O'BRIEN, Staff Associate
HANS OSER, Senior Program Officer
JOHN R. TUCKER, Senior Program Officer
BARBARA WRIGHT, Administrative Assistant

iv



COMMISSION ON PHYSICAL SCIENCES, MATHEMATICS,
AND APPLICATIONS

RICHARD N. ZARE, Stanford University, Chair
JOHN A. ARMSTRONG, IBM Corporation (retired)
PETER J. BICKEL, University of California at Berkeley
GEORGE F. CARRIER, Harvard University (retired)
GEORGE W. CLARK, Massachusetts Institute of Technology
MARYE ANNE FOX, University of Texas-Austin
AVNER FRIEDMAN, University of Minnesota
SUSAN L. GRAHAM, University of California at Berkeley
NEAL F. LANE, Rice University
ROBERT W. LUCKY, Bellcore
CLAIRE E. MAX, Lawrence Livermore Laboratory
CHRISTOPHER F. MCKEE, University of California at Berkeley
JAMES W. MITCHELL, AT&T Bell Laboratories
RICHARD S. NICHOLSON, American Association for the Advancement of Science
ALAN SCHRIESHEIM, Argonne National Laboratory
A. RICHARD SEEBASS III, University of Colorado
KENNETH G. WILSON, Ohio State University

NORMAN METZGER, Executive Director

v



PREFACE

This report was prepared in response to a request from the Office of Naval Research
to the National Research Council's Committee on Applied and Theoretical Statistics. It
describes research opportunities in statistics and applied probability arising in physical
oceanographic applications. The report is expository, with the intended audience being
statisticians and quantitatively literate people with a background in statistical applications
to science, as well as federal agency representatives interested in encouraging such cross-
disciplinary research.

In producing this report, the panel had to surmount communication and
comprehension difficulties to truly understand, e.g., what someone from another discipline
had expressed. One result was an appreciation of just how difficult it is to engage in truly
collaborative, cross-disciplinary work. Another result was an insight into what strategies will
(and will not) be likely to succeed in performing such work. The panel believes
understanding and appreciating these matters are as important to the encouragement and
accomplishment of statistical research in physical oceanography as are the descriptions of
statistical research opportunities discussed in Chapters 2 through 8. Accordingly, Chapter
9 gives the panel's conclusions, observations, and suggestions on encouraging successful
collaborations between statisticians and oceanographers.

The panel gratefully acknowledges the support of the Office of Naval Research in this
project and expresses appreciation to all of the people who provided information that aided
the panel in the preparation of this report. They include Mark Abbott, Andrew Bennett,
Hans Graber, Greg Holloway, Ricardo Matano, Robert N. Miller, Leonid Piterbarg, Michael
Schlax, P. Ted Strub, V. Zlotnicki, and four anonymous reviewers who offered insightful
comments and suggestions. In particular, L. Piterbarg helped write Chapter 3, P. Strub
helped write Chapter 4, M. Abbott helped write Chapter 5, R. Miller and V. Zlotnicki
helped write Chapter 6, and H. Graber helped write Chapter 7. The panel also gratefully
acknowledges the editorial help of John Tucker and Susan Maurizi in preparing the report.

Comments on the report are welcome, as are suggestions for future topics on which
similar reports might help to provide useful cross-disciplinary bridges. All such remarks
should be directed to John Tucker at the Board on Mathematical Sciences, National
Research Council, Washington, D.C.
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1

OVERVIEW

INTRODUCTION

Purpose and Scope of This Report

Research in oceanography has historically been pursued to better understand the
oceans as, for example, avenues to exploration, routes for commerce, theaters for military
operations, and components in the weather system. Today this research is also done in
conjunction with studies on major issues such as global climate, environmental change, and
biodiversity, among many others. Statistical techniques have always been important in the
analysis of oceanographic data. With the recent introduction of oceanographic observational
mechanisms that yield much larger quantities of data than ever before, statistical
considerations have gained even more prominence in oceanographic research contexts. Yet
disciplinary distinctions have limited interactions across discipline boundaries in many
national and global research areas (NRC, 1987, 1990a); traditional statistics and
oceanography are not exceptions. To stimulate progress on important research questions
now arising at this interface, more cross-disciplinary efforts between statistics and
oceanography are needed. This report is thus presented to help encourage successful
collaborations between statistics and oceanography that are focused on potentially fruitful
cross-disciplinary research areas.

The report was prepared in response to a request from the Mathematical Sciences
Division of the Office of Naval Research for a cross-disciplinary report describing basic
research questions in statistics and applied probability motivated by oceanographic
applications. The request reflects ONR's desire to call such questions to the attention of
research statisticians and to develop stronger interactions between the statistics and
oceanography research communities. A panel of five oceanographers and five statisticians
was convened by the Committee on Applied and Theoretical Statistics of the National
Research Council to produce the report. The charge to the panel was to survey crossover
areas between statistics and oceanography of greatest potential value (with respect to
important oceanographic questions) and to recommend statistical research opportunities.
The panel met in April 1992 and again in August 1992. It quickly became apparent that a
comprehensive summary of statistical research opportunities addressing all disciplines of
oceanography would exceed the project time anti budget constraints. This report is
therefore limited to a discussion of statistical research opportunities arising in physical
oceanography.

Lest the limited scope of this report be misconstrued as a statement of the
unimportance of statistical analysis to biological, chemical, and geological oceanography, the
panel emphasizes that there are numerous opportunities for statisticians to work in those
disciplines as well. For example, recent interest in the carbon cycle has focused attention
on the spatial and seasonal distributions of phytoplankton pigment concentration in the
ocean. These data, obtained by satellite, exhibit all the challenges of sparsity and
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incompleteness shared by the other data sets discussed in this chapter, and furthermore
exhibit temporal and spatial correlation. An eventual question to address is the role of
phytoplankton distribution in climate change, but first a quantitative analysis of the
distribution itself is neces, .ry. Factors such as bathymetry, nutrients, eddy kinetic energy,
wind stress, cloud co -.., meltwater formation, and Ekman upwelling are believed to be
potential influences on the phytoplankton distribution, but the relationships are as yet
unknown. Cu-rrently available data on many of these factors are sparse, and a great deal of
spatial and temporal aggregation is necessary in order to assess such potential relationships.
Futu-,- satellite observations are expected to ameliorate the data issues basic to the study
of these important biological and chemical oceanographic processes, but the statistical
problems discussed in Chapters 2 through 8 will remain the same.

In physical oceanography, the development and application of statistical analysis
techniques are somewhat more advanced than in other disciplines of oceanography. In large
part, a greater need for sophisticated statistical techniques in physical oceanography has
been driven by rapid technological advances over the past 30 years or so that have resulted
in larger volumes of observational data spanning a broader range of space and time scales
than are available in the other oceanographic disciplines. There has also been intensive
development of a theoretical foundation to explain the observations. As a result of these
two parallel efforts and recognition of the importance of physical oceanographic processes
in many of today's important global issues, there are many significant opportunities for
applications of statistics, both where descriptive analyses of the observational data are
needed and where there is a need to relate observations to theory. Even the limited scope
of physical oceanography presents a rather daunting task for those who would explore it,
since the discipline encompasses a very broad range of topics. Input to the panel was sought
and was generously provided by several outside experts (see the preface) to broaden the
span of topics outlined in this report.

It should be emphasized at the outset that statistical analyses of physical
oceanographic data have not been developed in total isolation from developments in the
field of statistics. On the contrary, statistical techniques are already used to an unusual
degree of sophistication compared with their use in some other scientific disciplines, partly
because of the need to develop techniques to understand the almost overwhelming quantity
of observational data available. In this regard, physical oceanography has benefitted from
the parallel development of techniques of statistical analysis in the field of atmospheric
sciences, in which researchers also need to interpret the large volumes of atmospheric data
available. Physical oceanographers are generally well versed in traditional and many modem
statistical analysis techniques. In addition, several books and monographs have been written
specifically on applications of statistical techniques in the atmospheric sciences and physical
oceanography (e.g., Gandin, 1965; Thiebaux and Pedder, 1987; Preisendorfer, 1988; Daley,
1991; Ghil and Malanotte-Rizzoli, 1991; Bennett, 1992). Many statistical techniques tailored
to specific analyses of oceanographic data have also been published in journal articles.

This report consists of a collection of sections (Chapters 2 through 8) outlining
research problems that the panel believes could serve as fruitful areas for collaboration
between statisticians and oceanographers. In Chapter 9, the panel presents its conclusions,
observations, and suggestions on encouraging successful collaborations between statistics and
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oceanography. As noted above, physical oceanographic research encompasses a very broad
range of topics. Not all of these subdisciplines are represented by the five oceanographers
on the panel. This report should therefore be viewed as a compendium of research interests
reflecting the viewpoints of the oceanographers on the panel. This somewhat parochial bias
should be kept in mind when using this report to identify potential crossover areas between
statistics and physical oceanography; there are likely many statistical research opportunities
that have not been identified in the report. Notwithstanding these limitations, the panel
believes that the report represents a good first step toward encouraging interaction between
statisticians and physical oceanographers to the mutual benefit of both disciplines.

Oceanography - A Brief Sketch

The birth of oceanography as a science can be traced back to 1769, when Benjamin
Franklin contributed significantly to scientific knowledge of the oceans by charting sea
surface temperature in the North Atlantic and noting that the maximum flow of the Gulf
S'ieam (which had been known to exist and had been used for navigation for a long time)
occurred where surface temperatures began dropping rapidly for a ship traveling from the
New World to the Old World. Further scientific surveys of the ocean were conducted during
this same era by Captain James Cook, who set sail from England in 1772 with the primary
goal of making a detailed map of the Pacific Ocean and learning the natural history of the
Pacific region. Fontaine Maury is generally credited as the founding father of international
oceanographic science. As a U.S. Navy officer, Maury published an atlas (Maury, 1855)
based on a worldwide compilation of data taken from ship logbooks. The culmination of
this era of scientific exploration of the ocean was the historic voyage of the HMS Challenger
funded in 1873 by Great Britain to collect detailed measurements of the physical, biological,
and chemical characteristics of the world oceans. The 4-year expedition resulted in some
50 volumes of reports published between 1890 and 1895.

The 20th century has witnessed a dramatic expansion of oceanographic research. At
the beginning of the century, most of the deep ocean was thought to be relatively quiescent.
Except for moderate seasonal variability, it was generally believed that the circulation near
the surface of the oceans was relatively constant and large scale. Scripps Institution of
Oceanography was founded in 1903 and the Woods Hole Oceanographic Institution was
established in 1930. As a result of new technological developments, it became possible to
measure physical, chemical, and biological characteristics from the sea surface to the ocean
bottom. Dedicated research vessels set out to systematically map the three-dimensional
physical, chemical, and biological characteristics of the world ocean on a coarse spatial grid.
Although tremendous progress was made in the field of oceanography prior to World War
II, it was still possible to summarize existing knowledge in all three disciplines (physical,
biological, and chemical) in a single book (Sverdrup et al., 1942).

The general description of the steady component of ocean circulation (defined to be
the temporal mean) has changed surprisingly little since World War II. In contrast, the view
of temporal variability has undergone a major paradigm shift over the subsequent half
century. Although eddy-like characteristics of ocean currents were known to exist even by
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Maury (1855), it was difficult to distinguish unresolved variability from measurement errors.
Multiship surveys and repeated hydrographic surveys conducted beginning in the 1950s and
moored current meter and surface drifter measurements beginning in the 1960s revealed
considerable spatial structure and temporal variability that did not support the view of ocean
currents as simple and large scale. Much of modern oceanographic research has focused
on understanding the nature of the rich spatial and temporal variability through a
proliferation of new measuring and modeling techniques. There has been a growing
recognition of the importance of short space- and time-scale variability (turbulence) to the
large-scale circulation, momentum transport, and heat transport and to the distribution of
chemical and biological properties.

Along with the rapid technological and theoretical developments over the past half
century, oceanography has become progressively more specialized. It is no longer possible
to summarize adequately the status of all disciplines of oceanography in a single book.
Indeed, it is very difficult to summarize even a single discipline in one book. An excellent
perspective on the post-World War II evolution of physical oceanography has been published
by Warren and Wunsch (1981). A more popularized summary of several aspects of physical
oceanography can be found in the Summer 1992 issue of Oceanus (Vol. 35(2)), which is
dedicated to physical oceanography; dedicated issues on the other disciplines of
oceanography can be found in the other 1992 issues of the magazine. A precis of physical
oceanography is given in Chapter 1 of a National Research Council (NRC) report (NRC,
1988); also see NRC (1992b) for a state-of-the-science overview of all of oceanography.

In simple terms, physical oceanography can be defined as the study of the physics of
the circulation of the ocean on all space and time scales. Research in physical oceanography
includes studies of the details of turbulent mixing on scales of millimeters, the propagation
of surface and internal waves with scales of centimeters to hundreds of meters, the dynamics
of wind-forced and thermohaline-driven ocean currents (see, e.g., NRC, 1992b) on scales of
kilometers to thousands of kilometers, and the transfers of momentum, heat, and salt within
the ocean and across the air-sea interface. Because of the pressing importance of questions
about global warming, there has been an increasing emphasis in recent years on the role of
the ocean in the global climate. This has led to a quest for general understanding of the
dynamics and long-term evolution of the coupled ocean-atmosphere system (see, e.g., Gill,
1982) and its interactions with the land, cryosphere, and biosphere. The need to quantify
and forecast natural and anthropogenic changes in weather patterns and global climate, on
the one hand, and the emergence of more easily accessible supercomputing power, satellite
remote sensing, and other instrumentation technologies, on the other hand, are factors
determining the direction of present and near-future research in physical oceanography.

Computer models of large-scale ocean circulation and ocean-atmosphere coupling,
of biogeochemical cycles, and of the global budgets of carbon dioxide and other greenhouse
gases are becoming the desired results of much of present research. The input data for such
models have intrinsic shortcomings because of concerns about data quality and coverage (in
space and time). Much effort must therefore be devoted to improving the interpretation of
measured quantities and their subsequent use in computer models. The constraints may be
due to limited spatial and temporal resolution of the measurements of the observed fields,
limited accuracy of the measured quantities, gaps in the data records, short data records, or
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propagation of errors through different levels of data processing and analysis. As a result,
the technological innovations available do not guarantee success unless considerable progress
is made in utilizing the available data. This will necessarily involve the use of sophisticated
statistical techniques for a wide variety of purposes, as summarized in this report.
Collaborative research involving statisticians and physical oceanographers is desirable to fuel
such progress and improvements.

To provide statisticians with a brief sketch of the physical oceanographic community,
the panel includes a few demographic items. It is not aware of any detailed demographic
studies. The membership of the Ocean Sciences Section of the American Geophysical
Union probably provides a fair representation of the community. In 1991, the section's total
membership was 4791, 84 percent of whom were regular members and 16 percent of whom
were student members. About one-fourth of this membership was foreign. Of the
remaining members, it is not known what percentage are actively involved in research, but
the number is probably less than half. The total membership is certainly dominated by
physical oceanographers; it also includes a substantial number of chemical oceanographers
and smaller numbers of biological and geological oceanographers, most of whom are
members of other professional societies. About a dozen U.S. universities offer graduate
programs in physical oceanography. There are two civilian federal government
oceanographic laboratories and several U.S. Navy-supported research and development
laboratories involved in open-ocean physical oceanographic research. Private industry
employs a relatively small fraction of the physical oceanographic community.

Most physical oceanographic research is published in the six primary journals in the
field: Journal of Physical Oceanography, Journal of Geophysical Research-Oceans, Journal of
Marine Research, Deep-Sea Research, Progress in Oceanography, and Journal of Atmospheric
and Oceanic Technology. Fundamental results frequently appear in the Journal of Fluid
Mechanics. Significant advances in physical oceanographic research are occasionally
published in Science, Nature, and Geophysical Research Letters. Overviews of physical
oceanographic research written for less specialized audiences are often published in
Oceanography Magazine and Oceanus.

OCEANOGRAPHIC MODELING, DATA, AND NOISE

The Many Meanings of the Term "Model"

The term "model" has a variety of usages in oceanography, depending on the context.
It can refer to modeling of data by statistical methods (e.g., curve fitting of one-dimensional
data, surface fitting of multi-dimensional data, correlation and regression analysis, modeling
of probability distributions, and so on). More typically, however, the term "model" connotes
physical modeling on the basis of mathematical equations that govern fluid motion, mass
conservation, heat conservation, and conservation of salt or other chemical tracers. Physical
models range from purely analytical (i.e., explicitly solvable in closed form) to numerical (i.e.,
solvable on a computer), depending on the degree of approximation of the complete
mathematical equations adopted. An introduction to the equations of fluid motion in the
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rotating reference frame of Earth can be found in Pond and Pickard (1983); a more
advanced discussion can be found in Pedlosky (1987) or Stern (1975). A brief overview is
given here.

The vector equation for momentum conservation based on Newton's Second Law that
relates the acceleration of a fluid parcel to the forces acting on the parcel is

av +v-Vv.+2nxv =g- 1 Vp + vV 2v, (1.1)
at p

where v is the three-dimensional vector velocity, V is the vector gradient operator along the
x, y, and z coordinate axes with respective velocity components u, v, and w, ni is the angular
velocity vector of the rotation of Earth, g is the gravitational acceleration, p is the water
density, p is pressure, and v is the molecular viscosity. The three components of this vector
equation are referred to as the Navier-Stokes (N-S) equations, in honor of the physicist
Claude L M. H. Navier (1785-1836) and the mathematician Sir George Gabriel Stokes
(1819-1903), who first formulated the molecular friction force in terms of the second
derivatives of velocity along each of the three coordinate axes.

The unknown quantities in the N-S equations are density, pressure, and the three
components of velocity. Two additional equations are thus necessary to solve for the five
unknowns. The first of these is the mass conservation equation,

ap v-(pv) 0, (1.2a)
at

also known as the continuity equation. Seawater can generally be considered to be
incompressible (i.e., the so-called total derivative ap/& + v.Vp, corresponding to the rate of
change of density following a fluid parcel, is zero), in which case the continuity equation
reduces to

V-v = 0. (1.2b)

The other equation necessary to solve for the five unknowns is the equation of state relating
density to temperature T, salinity S, and pressure,

p = p(T,S,p). (1.3)

This empirical relationship is based on laboratory studies of seawater. The dependence of
p on T and S requires the addition of two more equations governing the conservation of T
and S. These equations have the form

6



ac +v.VC =KcV2C +Qc, (1.4)
at

where C could be either temperature or salt concentration, rIc is the molecular diffusivity
for C (analogous to the molecular viscosity v in the N-S equations), and Qc is a source or
sink term to account for effects of heating and cooling. A source term is not necessary for
salinity since all processes affecting salinity occur at boundaries (surface evaporation and
precipitation, river runoff, freezing, and melting), and therefore enter the problem as
boundary conditions. Temperature is also usually treated as a boundary condition, although,
in a strict sense, the effects of solar heating can penetrate below the ocean surface.

In total, then, there are seven equations for the seven unknowns u, v, w, p, p, T, and
S. These equations must be solved subject to boundary conditions of no normal flow at
material surfaces (the ocean bottom and lateral boundaries), as well as boundary conditions
for the normal and tangential components of forces at the boundaries (e.g., surface wind
stress, bottom drag, lateral drag, and atmospheric pressure forcing) and buoyancy fluxes
(heat and salt) across the air-sea interface and at coastal boundaries. The equations
themselves are deterministic in the sense that a particular solution is obtained for a given
specification of the boundary and initial conditions. However, the boundary and initial
conditions have a random character, which imparts a randomness in the physical modeling.

It is noteworthy that many of the methods used to determine the ocean circulation
are based on measurements of various natural and anthropogenic chemical tracers.
Examples include oxygen, carbon dioxide, silicate, and tritium. The concentrations of these
tracers are coupled to the dynamic variables of the equations of motion (1.1) and (1.2a) (or
(1.2b)) through conservation equations with exactly the form (1.4), with the term Qc
corresponding to sources or sinks of the chemical tracer of interest. These tracers are used
to infer indirectly the direction and, to some extent, the speed of deep ocean circulation
where mean velocities are often too small to be measured directly.

The equations of motion apply to the instantaneous velocity of the fluid. However,
the nonlinear terms in the momentum equation (1.1) give rise to turbulent variability that
is characteristically irregular in space and time. Because of this nonlinearity and the large
range of spatial scales over which the ocean is energetic, it is not practical to solve the above
equations explicitly. In particular, it is not possible to measure, and hence specify, the
boundary and initial conditions at very fine spatial and temporal resolution. This, in effect,
introduces additional noise-like or random character to the physical equations. The usual
approach to addressing the turbulent character of oceanic variability is to parametrize the
effects of turbulence in terms of large-scale observable quantities (typically the mean flow
and its derivatives). As a consequence of the neglect of the detailed dynamics on small
scales, the parametrized physical equations pertain to averages of the random dynamic
variables. The simplest and most commonly used approach is to replace molecular viscosity
v and diffusivity rc with "eddy" or "turbulent" viscosity and diffusivity (also referred to as
effective diffusion or mixing coefficients), as first suggested by Taylor (1915). The turbulent
coefficients serve the same function as molecular coefficients but are much larger in
magnitude to account for the effects of eddies smaller than those explicitly represented
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within the model. These eddies transport momentum and chemical properties much more
rapidly than does molecular diffusion. Horizontal mixing is about 10 orders of magnitude
larger than molecular diffusion. Because vertical density stratification in the ocean inhibits
vertical mixing, vertical mixing is only about 2 orders of magnitude larger than diffusion.

The detailed specification of turbulent mixing is not well understood because, unlike
molecular diffusion, which is an intrinsic property of the fluid, turbulent mixing varies
spatially and temporally and depends on the flow itself. Moreover, the particular choice of
turbulent mixing coefficient depends critically on the spatial scales represented within the
model. From coarsely spaced observations, it is even possible for turbulent transport to be
counter-gradient (i.e., effectively a negative turbulent mixing coefficient, corresponding to
energy transfer from eddies to the mean flow; see Starr, 1968). Such a situation is clearly
nonphysical, and the turbulent mixing coefficient would presumably be non-negative with
sufficiently close sample spacing.

The equations of motion (1.1)-(1.4) (referred to as primitive equations) are very
complex and are therefore not solvable in exact form. Various simplifications of the
complete equations are employed in order to gain insight into the dynamics of fluid motion.
A brief overview is given here; a more detailed summary can be found in Holland (1977).
One class of simplifications concerns the treatment of vertical density stratification. The
simplest models, referred to as barotropic models, consider the fluid density to be
homogeneous. Next in complexity are layered models that divide the ocean into two or
more distinct layers, in each of which the fluid density is considered homogeneous. The
most complex models consider the fluid to be continuously stratified. Although a barotropic
approximation is clearly unrealistic, many circulation aspects can be successfully modeled
without the need for the more complex baroclinic layered or continuously stratified models.

For both barotropic and baroclinic models, various approximations are employed to
simplify the equations of motion. The simplest model is the geostrophic approximation,
which neglects the nonlinear and acceleration (i.e., time-dependent) terms. The resulting
steady-state, linearized equations can be solved analytically, and the geostrophic solution is
surprisingly successful at describing the large-scale aspects of the circulation. The next level
of complexity includes the acceleration term, which permits analytical wave solutions.
Depending on the scales of interest, these waves can range from short capillary waves
(wavelengths of millimeters) for which the restoring force is surface tension, to surface and
internal gravity waves (wavelengths of tens of centimeters to hundreds of meters) for which
the restoring force is gravity, to very long wavelength (tens to hundreds of kilometers) Kelvin
or quasi-geostrophic Rossby waves, which arise from the restoring force provided by the
latitudinal variation of the local vertical component of Earth's angular velocity vector or
horizontal gradients of bottom topography. The large-scale waves are the dynamical
mechanism by which the large-scale circulation adjusts to time-dependent forcing such as the
stress exerted by the wind blowing over the surface of the ocean.

Although very illuminating, linear models of ocean circulation are not capable of
producing accurate representations of detailed aspects of the circulation. In particular, the
short spatial scales of many of the interesting features of the circulation (e.g., jetlike currents
such as the Gulf Stream) result in strong gradients in the velocity field, which elevates the
magnitude of the nonlinear terms to a level comparable to that of other terms in the
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equations of motion. More complex classes of physical models thus include nonlinear
effects. Analytical solutions are still possible for weakly nonlinear approximations and for
a few special cases of strongly nonlinear approximations of the equations of motion.
Numerical methods using a computer are necessary for more general solutions.

Numerical models can be classified as either process-oriented (also referred to as
mechanistic) or simulation models. Process-oriented models simplify the ocean basin
geometry in order to focus on the physics of specific term balances in the mathematical
equations. Simulation models attempt to represent the basin geometry more accurately and
to reproduce or predict some aspects of the actual circulation for comparison with
observations. Numerical solutions to the equations of motion are obtained on a space-time
grid by approximating the derivatives in the equations by finite differences or by the use of
Fourier transform techniques. At each grid point, solutions are obtained by stepping
forward in time from the initial conditions according to the mathematical equations
governing the fluid motion (e.g., O'Brien, 1986; Haltiner and Williams, 1980; NRC, 1984).

Computational models of the climate, especially coupled ocean-atmosphere models,
are being used to produce estimates of the climate changes to be expected to result from
changes in radiative forcing. Although deterministic, these models are sufficiently chaotic to
show variability that is in many respects similar to that observed in the climate of the real
world. Thus, the analysis of model output and comparison with data (see Chapter 7),
especially to detect trends, raises serious statistical questions.

The accuracy of a numerical solution depends critically on the spatial resolution of
the grid and on the size of the time step, as well as on the particular parametrizations of the
turbulent viscosity and specifications of the boundary and initial conditions. There are thus
many ways in which the mathematical equations governing the physics of the ocean can be
solved numerically. In general, the most accurate simulations require very fine grid spacing
and short time steps. In practice, spatial and temporal resolutions are limited by available
computer time and memory allocation. Disk storage capacity can also present a problem
since the volume of model output can be very large. As discussed in Chapter 5, physical
oceanographic research would benefit greatly from improved methods of visualization to
examine the four-dimensional output of numerical models of ocean circulation.

Besides the difficulties associated with the subjective natures of the choice of grid
resolution, parametrization of turbulent viscosity, and the problem of availability of computer
resources, another major issue in physical modeling of the ocean is assessment of the
accuracy of the solution. Due to the underlying chaotic nature of ocean circulation (e.g.,
Ridderinkhof and Zimmerman, 1992), to numerical inaccuracies, and to inaccuracies in the
specifications of boundary and initial conditions, numerical simulations can be expected to
diverge fairly quickly from the actual circulation. One of the challenges of modern physical
oceanography is development of techniques for comparing simulations from different
numerical models with each other and with one or more independent observational data sets
in order to evaluate the relative accuracies of various model simulations. It is unlikely that
numerical simulations can ever be expected to exactly depict the actual circulation. There
is currently no general agreement about what aspect of model simulation is most important.
For example, one measure of the accuracy of a model is how well it represents the mean
circulation. Another measure of accuracy is how well higher-order statistics of the flow field
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are reproduced (e.g., the variance of a particular variable or the covariance between two
variables). As discussed in Chapter 7, data and model cross-comparison is another area in
which the field of statistics may be able to make important contributions.

It is noteworthy that, in contrast to physical modeling of atmospheric circulation, the
detailed evolution of the actual ocean circulation is very poorly known because of a lack of
observations. Global coverage of the ocean can be obtained only from satellite observations,
but these are nonsynoptic (i.e., not simultaneous at all locations over Earth) and sample only
surface conditions. Sparsely distributed in situ measurements or physical modeling (or both)
are necessary to extrapolate the surface measurements from satellites to infer the ocean
circulation at depth. Much of the present emphasis in physical modeling of the ocean is
directed at developing methods of assimilating available observations (especially satellite
observations) into the model solution at regularly or irregularly spaced time steps using
statistical estimation, Kalman filtering, and generalized inverse techniques. Such methods
have been in use in meteorology for some time. Recent reviews of oceanographic
applications of data assimilation can be found in Ghil and Malanotte-Rizzoli (1991) and
Bennett (1992). Successful assimilation of available data preserves some degree of similarity
between numerical solutions and the actual circulation.

Diverse Definitions of the Term "Data"

Clarification is in order regarding oceanographic usage of the term "data." In the
field of physical oceanography, the term is used more liberally than in some other fields of
science. The intent here is not to justify oceanographic use (or misuse) of the term, but
rather to clarify the standard oceanographic jargon and the usage elsewhere in this report.
Unlike measurements in some fields of science, few, if any, oceanographic measurements are
direct. The quantity of interest is typically sensed electronically as a voltage drop, the
number of frequency oscillations of a quartz crystal, the number of rotations of a rotor, or
a count of some other sort. These counts must be converted to the geophysical quantity that
is of interest by a hierarchy of transformations, some of which may be nonlinear or
irreversible. These transformations are often empirically based and could benefit from
improved statistical formulations.

At each level of transformation, the output of the previous transformation becomes
the input for analysis or for a higher level of transformation. This input is then generally
referred to as "data" and is typically treated as if all previous levels of transformation have
been done correctly. In this context, then, even the output of a numerical ocean model
forced by wind fields derived from in situ or satellite observations can be, and sometimes is,
referred to as "data" by an investigator interested in analyzing the model output to study
ocean dynamics. An important element of these multiple levels of transformation is that it
becomes progressively more difficult, and sometimes even impossible, to quantify
uncertainties in the output product.

Multiple levels of transformation are characteristic of all oceanographic data but are
especially pronounced for satellite data. In an effort to distinguish between different types
of "data," NASA defined a hierarchy of data levels in the early 1980s (see, e.g., Arvidson et
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al., 1986; Dutton, 1989). The same definitions have subsequently been used for in situ
observations, although some definitions of data level are not appropriate for some types of
in situ data. A summary of the data levels follows:

Level 0: Raw instrument data at original resolution, time ordered, with any duplicates
removed. For satellite observations, this level of data consists of the bits
(possibly compressed for transmission) telemetered from the satellite to a
ground receiving station, corrected for any telemetry errors. For in situ
observations, this level of data might consist of volts or counts of some other
type. Level-O data are sometimes referred to as experimental data.

Level 1A: Reformatted or reversibly transformed level-O data, located to a coordinate
system (e.g., time, latitude, longitude, depth) and packaged with needed
ancillary, engineering, and auxiliary data. Instrument counts from level-O data
have been converted to engineering units in level-lA data. In the case of in
situ data, level-0 and level-lA may be the same.

Level 1B: Irreversibly transformed values of the instrument measurements. For satellite
observations, this might consist of calibrated microwave antenna temperatures,
infrared or visible radiances, or microwave normalized radar cross sections.
For in situ observations, this level of data is typically the geophysical
parameter of interest. In some cases, the data might be resampled to a new
grid.

Level 2: Geophysical parameters at the measurement time and location. For satellite
observations, level-2 data are obtained from a model function (typically
derived empirically from some statistical analysis) applied to the level-lB data.
For in situ observations, level-2 data may be the level-lB geophysical
parameters corrected for any systematic errors or calibration adjustments
(typically determined empirically from some statistical analysis).

Level 3: Geophysical parameters resampled onto a regularly spaced spatial, temporal,
or space-time grid by some sort of averaging or interpolation.

Level 4 and above: No set definitions, but generally refer to higher-level processing. An
example would be a map of some statistical quantity such as the mean value
or standard deviation of a lower-level data quantity. Another example would
be higher-level wind fields derived from gridded fields of surface wind velocity
(e.g., wind stress or the curl of the wind stress, both of which are used for
studies of wind-forced ocean circulation). An extreme example is the output
of a numerical ocean circulation model forced by wind fields derived from a
level-3 wind product.
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Specific examples serve to clarify the need for multiple data-level definitions in
oceanography. Virtually any oceanographic measurement could serve as an adequate
example for this purpose. The following two examples (one a satellite measurement and the
other an in situ measurement) were chosen rather arbitrarily:

- Example 1: Near-surface vector winds estimated by a satellite radar scatterometer.
The basic quantity measured by the scatterometer is the power of the radar return. The
measured return power is digitized, compressed, and telemetered to a ground receiving
station along with a variety of necessary ancillary information (e.g., orbit altitude, satellite
attitude, temperatures of the electronic components, and so on). The telemetry "data" are
uncompressed and converted to engineering units "data" in ground-based processing. A
quantity referred to as the normalized radar cross section (NRCS) is derived from the
measured return power by normalizing by the power of the transmitted signal along with any
necessary calibration adjustments determined from prelaunch calibration or from the
ancillary information. Estimates of vector winds are constructed from NRCS "data" from
two or more antenna look angles, collocated at approximately the same location on the sea
surface. This requires both an empirically derived model function and a statistical method
for solving the overdetermined problem of inverting the model function in a manner that is
consistent with the noisy NRCS "data." The result at this stage is individual vector wind
"data" at the measurement locations. Most oceanographic applications of scatterometer
observaLions require gridded fields of vector winds or some higher-level wind product
derived from Earth-located individual vector wind "data." These fields are obtained by
space-time averaging or interpolation and are generally referred to as "data" by investigators
who analyze the wind fields or use them to force ocean circulation models.

- Example 2: Measurements of temperature and salinity by a conductivity-tempera-
ture-depth (CTD) profiler. A CTD (e.g., see p. 389 in Dickey, 1991) is lowered through the
water column on a cable. Variations in voltage associated with changes in temperature and
conductivity are measured at a high frequency from two separate sensors (a thermistor and
a conductivity probe). These engineering unit "data" are converted to temperature and
conductivity "data" through simple algorithms. The conductivity of seawater is a function of
both temperature and salinity. Temperature effects are much greater than salinity effects
and must therefore be removed from the conductivity measurements in order to estimate
salinity. However, the response time of the thermistor measurements of temperature alone
is much longer than the response time of the conductivity probe because of thermal inertia
of the thermistor. This difference in response time must be accounted for when using the
thermistor measurements to remove the temperature component of conductivity variations.
Salinity "data" compatible with the thermistor measurements are usually obtained by applying
a low-pass filtering algorithm to effectively slow down the response of the conductivity probe.
The resulting temperature and salinity "data" at closely spaced vertical intervals usually are
then bin averaged and processed to reduce the data volume. It is also necessary to adjust
the salinity and, to a lesser extent, the temperature estimates to account for periodic
recalibrations of the two sensors. The resulting vertical profiles of temperature and salinity
"data" are useful for many oceanographic applications. Some applications require further
processing of the temperature and salinity "data" to derive density, thereby yielding a vertical
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profile of density. The density "data" may then be integrated vertically to estimate the
so-called steric height -. ' the sea surface (or any other isobaric surface) relative to an
arbitrary reference level. Density profiles, steric height, and other higher-level "data" derived
from the CTD temperature and salinity "data" are typically used to construct vertical sections
or horizontal maps of the quantity of interest. These sections or maps are often referred
to as "data" by investigators who analyze them or use them to force ocean circulation models
or to verify ocean model output.

Because of the multiple scales characteristic of both spatial and temporal variability
in the ocean as discussed in Chapter 2, oceanographic data are commonly undersampled in
several respects. One problem is aliasing that arises as a consequence of practical
considerations that often limit the sampling to spatial or temporal intervals that are longer
than the shortest energetic space and time scales of variability of the quantity being
measured. For example, time series constructed from satellite observations are limited by
the time interval between repeated satellite orbits over a given location. As another
example, temperature measurements from an instrument lowered through the water column
are sampled discretely at a fixed rate that often does not adequately resolve variations on
the vertical scales of millimeters to centimeters that are important to turbulent mixing. As
a third example, lines of vertical profiles of temperature and salinity along hydrographic
sections across an ocean basin are sometimes not sampled sufficiently often along the ship
track to resolve the energetic 10- to 50-kmn mesoscale variability that is superimposed on the
larger-scale 100- to 1000-km variability that may be the primary signal of interest. The
degree to which aliasing affects oceanographic data depends on the energy of the unresolved
variability, be it of high frequency or short spatial scale, compared with the energy of the
oceanographic signal of interest for the particular application of the data.

Another common problem is the limited spatial or temporal resolution inherent in
many oceanographic measurements because of limitations of the measurement process. For
example, satellite data generally consist of instantaneous measurements effectively averaged
over a relatively large spatial "footprint." As another example, current meter measurements
often consist of a time series of successive time averages at a fixed location. In some cases,
the spatial or temporal averaging obscures signals in the quantity being measured that might
be of interest for some studies. In others, time series may be uncomfortably short, important
concomitant variables may not have been measured, and other factors may be contaminating
the records. For example, a change in instrumentation or recording sites can limit the
amount of useful information contained in a data set. There may be gaps in the records and
the raw (level-0) data may not be readily accessible.

Such processes often generate measurements that violate the assumptions of the
simplest statistical theory; i.e., the data are typically not independent, are not identically
distributed, are not stationary, are non-Gaussian, or some combination. Especially
problematic in this regard is serial dependence, which occurs at least to some extent in
nearly all temporal oceanographic data.

Collected data can involve a sampling problem because of the fundamentally "red"
spectral characteristics of ocean variability (i.e., the predominance of energy at the lowest
frequencies). Most oceanographic data records are not long enough to resolve all of the
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time scales of variability of the quantity of interest. This limits the frequency and
wavenumber resolution of the measurements and the number of independent realizations
of the physical process of interest. For example, the El Nifio phenomenon that affects much
of the ocean and the overlying atmosphere has a time scale of 3 to 5 years (cf., Ropelewski,
1992). Even a 30-year record (which is unusually long for physical oceanographic data) only
resolves 6 to 10 realizations of this process, resulting in limited degrees of freedom for
inferences about cause and effect (see, e.g., Davis, 1977; Chelton, 1983; Thiebaux and
Zwiers, 1984; Barnett and Hasselman, 1979).

An important example of unresolved variability is the secular trend of sea level rise
(see, for instance, NRC, 1990b) associated with global warming (see also, Baggeroer and
Munk, 1992). The study of oceanic sea levels is further complicated by there being very few
long data records, and by the existence of other poorly understood signals in the data (for
example, glacial rebound effects). The data also include long-period signals, such as the
18.6-year lunar tide. The processes responsible for changes in sea level need to be
understood, and especially in their relation to possible global warming. If the oceans were
to warm, thermal expansion of seawater would be reflected in increased sea levels, with
obvious effects on human activity.

Coupled with the problem of limited record length is the problem that many
oceanographic signals of interest are intermittent (i.e., non-stationary or non-homogeneous).
For example, turbulent mixing in the ocean generally occurs in sudden bursts and spatially
irregular patches. Another example is the energetic wind events such as storms that
vigorously force the ocean but occur only intermittently at a given location. As a
consequence, it is difficult to characterize the statistics of ocean variability. For some
purposes, it is the intermittent events that are of interest. In other applications, energetic
intermittent events might be considered nuisances that can skew the sample statistics (e.g.,
the mean value or variance) that may be of interest. Techniques for analysis of
non-Gaussian data (see Chapter 8) or estimation of robust statistics are therefore needed
for many analyses of oceanographic data.

These data provide the statistician and data analyst with many challenges. For
example, work needs to be done on multivariate transfer functions, particularly with mixed
spectra. Data such as these often contain both large deterministic effects and periodic terms
plus a non-deterministic part. This can cause serious problems of estimation. Short
multivariate series for which the number of series is greater than the number of temporal
observations provide a particular challenge because any standard estimate of the spectral
matrix is singular. An example of this type of problem is spatial temperature series for
which the assumption of spatial homogeneity is obviously not appropriate, but, at least in
some regions, spatial continuity might be reasonable. In many of these instances, estimates
of uncertainty are inadequate or are completely lacking.

Low Noise Is Good Noise

Oceanographic measurements often suffer from low signal-to-noise ratio, in some
cases because the signal of interest has much smaller energy than other geophysical signals
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in the data. For example, the sea level rise from global warming is much smaller than the
energetic sea level variations of other oceanographic and non-oceanographic origin (see
Chelton and Enfield, 1986). As another example, the visible radiances measured from a
satellite for estimation of ocean chlorophyll concentration and investigation of the role of
the ocean in the global carbon budget are dominated by atmospheric contamination from
the scattering of sunlight from aerosol particles and atmospheric molecules; only about 20
percent of the measured radiances originate from the ocean (Gordon and Castano, 1987).
A low signal-to-noise ratio may also arise because of the short record lengths typical of
oceanographic data compared with the time scales of the signal of interest. Quantifying the
signal-o-noise ratio and the auto- and cross-covariance functions of the signal and noise are
important challenges in physical oceanography. A particularly difficult problem arises
because of the fact that low-frequency calibration drifts in the measuring devices are often
as large in magnitude as the low-frequency signal of interest. For example, estimation of sea
level rise from global warming is complicated by vertical crustal motion in the vicinity of
many ocean tide gauges. As another example, estimation of low-frequency variations in
bottom pressure is complicated by electronic drifts in the pressure gauge measurements.

Because of the variety of sampling problems inherent in oceanographic data, the term
"noise" is often used to refer to more than just the measurement error associated with
inaccuracies in the observations. Inadequately resolved contributions to a measurement
from geophysical variability of the quantity of interest are generally referred to as
"geophysical noise." As discussed above, such unresolved geophysical variability can arise
from use of a discrete sample interval (aliasing), from inherent spatial or temporal
smoothing in the measurement (limited resolution), from finite record length (limited
frequency or wavenumber resolution), from intermittency of energetic signals other than
those of primary interest, or from low signal energy compared with the geophysical noise of
other processes affecting the measured quantity. Although such geophysical noise is
fundamentally different from that due to measurement errors, it has exactly the same effect
as measurement errors from the point of view of data analyses. When there is a low
signal-to-noise ratio, extraction of the signal of interest is especially difficult because typically
the measurement noise and geophysical noise in the data are serially correlated.
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2
STATISTICAL ISSUES IN THE MULTIPLE-SCALE VARIABILITY OF

OCEANOGRAPHIC FIELDS

OCEANOGRAPHIC VARIABILITY

Oceanographic fields and processes possess certain features that are not commonly
encountered in some other areas of science and engineering. One of these is a wide range
of scales (wavenumbers and frequencies) in which observed fields exhibit spatial and
temporal variation. In other words, a "typical" time (space) scale is absent, and there exists
a broad band of frequencies (wavenumbers) of roughly equal importance. This is the reason
for the term "multiple-scale variability." Oceanographic processes include coupling across
a large range of scales (i.e., nonlocal interactions) and linkage between a number of factors
of different nature. In Figure 2.1 (from Dickey, 1990, 1991), typical spatial and temporal
scales of some oceanographic processes are sketched.
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FIGURE 2.1 A schematic diagram illustrating the relevant time and space scales of several physical and
biological processes important to the physics and ecosystem of the upper ocean. Reprinted from Dickey (1990,
1991) with permission.
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From the statistical standpoint, a random field is a stochastic process with
multidimensional parameters (e.g., time and position) or a more complicated parameter such
as a function. The fields of primary interest have four parameters: one dimension of time
and three dimensions of space. Examples of such time-varying fields include fluid velocity,
pressure, water density, temperature, and salinity. Fields with only two spatial dimensions
include sea surface height (sea level), wind velocity and wind stress at the surface, sea
surface temperature (SST), ocean color, and sea ice. Wavenumber spectra of these fields
are usually very broad, covering several decades of wavenumbers (e.g., Fu, 1983; Freilich
and Chelton, 1986), and the spectral density function can be approximated by a power law.
Characteristic values of exponents in the power laws indicate a fractal regime in the
geometry of the fields. For instance, the sea surface elevation field, for scales related to
wind-generated surface gravity waves (from a decimeter to several hundred meters), is
characterized by a two-dimensional wavenumber spectrum that falls off roughly as k"M2 . This
corresponds to a cascade pattern in surface topography (a hierarchy of randomly
superimposed waves with decreasing amplitude and wavelength). A characteristic property
of this field is its statistical self-affinity (Glazman and Weichman, 1989). The corresponding
Hausdorff dimension, for an assumed Gaussian distribution, is 2.25.

The fluid velocity field, whose kinetic energy spectrum is characterized by k513,
exhibits a Hausdorff dimension of 2.666. A typical geometrical feature of such fields is a
hierarchy of eddies. Such cascade patterns in a field's geometry are related to the cascade
nature of the energy transfer along the spectrum through nonlinear interactions among
different scales of fluid motion. Other physical quantities, e.g., momentum, enstrophy (i.e.,
half the square of vorticity), and wave action, may also be transferred either up or down the
spectrum. The spectral cascades of these quantities are not necessarily conservative:
interactions between different oceanographic fields (occurring within certain limited ranges
of scales - the "generation and dissipation subranges" - and resulting in energy and
momentum exchange) provide energy sources or sinks in various spectral bands. For
instance, at meter scales wind provides the energy input into surface gravity waves that in
turn exchange momentum and energy with larger-scale motions (e.g., mesoscale eddies,
Langmuir circulations, internal waves). Mesoscale oceanic eddies are caused by the
barotropic instability of basin-scale currents. Seasonal heating and cooling of the ocean
surface causes convection and vertical mixing, while differential (across the oceanic basins)
heating, evaporation, precipitation, and ice melting cause density-driven currents. Ocean
circulation on basin scales is caused by large-scale curl of the wind stress. This multiplicity
of the energy sources and sinks and the interactions between different scales and individual
components of ocean dynamics are responsible for the extreme complexity of patterns of
ocean circulation, sea surface temperature, sea level, and so on as observed both in satellite
images and in highly complicated trajectories of free-drifting floats. Apparently, the
interaction of motions with different scales implies statistical dependence between
corresponding Fourier components or between corresponding eigenvectors in the empirical
orthogonal functions (EOF) series (Karhunen-Loeve expansion; see, e.g., Lorenz, 1956;
Davis, 1976; Preisendorfer, 1988). Identifying and accounting for such correlations in
statistical models are important problems of oceanographic data analysis.
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The difficulties mentioned above need not defeat efforts to understand ocean
dynamics. In contrast to economics, demography, biology, and many other fields, physical
oceanography is based on the comparatively reliable and universal quantitative physical
models summarized in Chapter 1.

Initial and boundary conditions complete the formulation of specific oceanographic
problems. Since the boundary conditions (e.g., the distribution of wind stress over the sea
surface) and the coefficients in the equations (e.g., ocean current velocities in the heat-
transfer equations) are intrinsically random, oceanographic problems are actually those for
stochastic partial differential equations (SPDEs). Many of the issues related to SPDEs are
also encountered in analysis of oceanographic observations. These include, for instance, the
impact of subscale (microscopic) motions on the (macroscopic) behavior of the mean fields
(analogous to the dependence of measured quantities on the spatial, temporal, or spatio-
temporal resolution of a measuring technique). On a more fundamental level, the
justification of the "macroscopic" equations remains a difficult problem.

These problems that present opportunities for statisticians are also central to
eventually understanding the structure of turbulent flow. Turbulent fields of fluid velocity,
pressure, and temperature are highly inhomogeneous and include compact regions where
these fields or their spatial derivatives attain extreme values. Regions with large fluid
velocity gradients are particularly important, because most dissipation of the mechanical
energy into heat occurs in these localized regions. Due to an irregular spatial and temporal
distribution of such regions, the occurrences of extreme events are often referred to as
intermittency. Intermittency becomes pronounced at high Reynolds numbers associated
with the onset of turbulence. The Reynolds number is a measure of the relative importance
of inertial forces in the fluid as compared to viscous forces (viz., it is the ratio of the inertia
of fluid particles to the fluid's viscous friction). At high Reynolds numbers, when the inertia
of fluid particles is no longer balanced by friction forces, particle trajectories become
tremendously complicated. This results from the frictionless fluid particles having an
unrestrained ability to continue their motion in whatever may be the direction they were
launched (by some initial disturbance) or deflected (by interactions with neighboring
particles). No matter how small the differences in initial directions and velocities between
individual particles, their trajectories quickly diverge. An observer sees a highly chaotic
pattern of flow, including intermittent events with particularly large velocity gradients. What
is the probability structure of the dissipation field and related field gradients in a turbulent
flow? No rigorous deductions based on the governing N-S equations have been reported,
although a number of heuristic models have been proposed (e.g., Novikov and Stewart, 1964;
Novikov, 1966; Yaglom, 1966; Mandelbrot, 1974).

SATELLITE OBSERVATIONS

Satellite instruments measure at different incidence angles the electromagnetic
characteristics of the emitted radiation (passive instruments working in visible, infrared, and
microwave ranges of the electromagnetic spectrum) and backscattered radar pulses (active
instruments working in the microwave range) that come from the ocean surface. These
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characteristics (e.g., the intensity of visible and infrared radiation at various wavelengths,
radio brightness temperature, radar cross section, round-trip travel time of a reflected pulse,
the shape of the pulse distorted by a random sea surface, and so on) are interpreted in
terms of oceanographic parameters (pigment and chlorophyll-A concentrations, sea surface
temperature, wind speed and direction at the surface, sea level height, and others). The
interpretations are typically obtained from empirical algorithms based on incomplete or
approximate physical models. For instance, empirical relationships based on a limited set
of coincidental radar and buoy observations are routinely employed to derive wind speed
from altimeter and scatterometer radar cross sections. Such relationships are called
geophysical model functions (GMFs). The available GMFs are based on rather simple linear
or nonlinear regression models, and considerable improvement might be possible in this area
with the use of more advanced statistical methods.

Instrument footprint sizes, swath widths, and other characteristics of typical satellite
instruments are summarized in Table 2.1. The footprint is a spot on the surface from which
reflected or emitted radiation is collected by satellite antenna to produce the observed radar
cross section, brightness temperature, and so on. Spatial coverage (which depends on swath
width, footprint size, sampling rate, and satellite orbit geometry) varies from one instrument
to another. The spatial sampling rate, i.e., the distance between individual satellite
footprints, may cause aliasing of the data. Other factors leading to aliasing are the spatial
separation of satellite orbits and the specific time interval between repeat tracks (see Figure
6.1 in Chapter 6). All these factors raise issues regarding correct interpretation of satellite
measurements and their use in numerical models of ocean circulation. Spatial
inhomogeneity of surface properties on scales within and beyond the footprint size, and
these properties varying nonlinearly along any direction within a footprint, produce an
appreciable dependence of satellite measurements upon the instrument employed. The case
of wind speed measurements is most instructive. Wind speed maps for the same period of
time but based on measurements by different satellite techniques exhibit appreciable
differences - regardless of the fact that the root-mean-square measurement errors
characterizing individual instruments are very similar. Pandey (1987) compared wind fields
based on satellite scatterometer, altimeter, and microwave radiometer data and found that
the discrepancy locally may exceed 2 m/s. Statistical distributions of wind velocities derived
from different instruments can also differ.

Statistical models of oceanographic fields with prescribed statistical properties might
prove useful for analysis of satellite and other measurements (e.g., Ropelewski, 1992). In
Chapter 6, additional problems arising in connection with the spatial inhomogeneity,
statistical anisotropy and intermittency observed in oceanographic fields are reviewed. Those
include transferring (binning) the satellite-produced data onto geographic grids, filling gaps
in the data, and interpolating, extrapolating, smoothing, and filtering the data.

ISSUES FOR STATISTICAL RESEARCH

There are important open questions associated with sampling at different rates: how
does sampling at different rates relate to aliasing, and to interaction of processes occurring
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TABLE 2.1 Characteristics of Satellite Microwave Instruments for Ocean Studies

Instrument and Its Measured Electro- Inferred Ocean Swath Additional
Main Features magnetic Parameters Parameters Footprint Width Information

Altimeter: sends Travel time of a Sea level Circular, One- Along-track
short pulses at nadir return pulse, height 5- to 12-km pixel pixel
incidence (13-GHz radar cross diameter, diam. spacing: -7
carrier frequency; section, shape of a Wind speed depending = 10 km. Distance
TOPEX altimeter will return pulse on surface km between
also have a 5-GHz Significant roughness tracks at
channel) wave height equator:

-150 km.
10 to 20
days exact
repetition
of all
orbits

Scatterometer: sends A set of radar Wind speed Aspect Two Global
short pulses in a cross sections for ratio -1:4. swaths coverage
range of incidence each surface bin, Wind direction Major axis: 600 to every 2 days
angles from 20 to 60 at several 30 to 90 km 700 km
degrees, using both azimuthal angles depending each
strictly horizontal and polariza-tions on position
(HH) and strictly within the
vertical (VV) polar- swath, etc.
izations; 14-GHz
carrier frequency

Synthetic aperture Analog and/or Length and 10- to Hun- Usually only
radar: high-spatial- digital matrices of direction, or 100-m dreds regional
resolution radar radar cross section surface gravity linear of coverage for
images of sea surface showing spatial and internal size, kilo- selected
roughness distribu- varia-tion of waves, wave depending meters locations
tion for C, L, and X surface roughness number spectra on the mode
bands. Other bands of surface frequency
have also been roughness electromag-
employed spatial varia- netic band,

tion, surface etc.
signatures of
mesoscale
eddies, fronts,
current
boundaries, sea
ice, bathymetry

Special Sensor Radio brightness Characteristics Len- Width 1300 Almost total
Microwave/Imager temperature of atmosphere gth km global
(SSM/I) with (e.g., water (km) coverage
channels (GMz): content); 70 45 obtained
19.4 surface wind 60 40 every day
22.2 speed, sea ice 38 30
37.0 16 14
85.5

Scanning Multichannel Radio brightness Characteristics Len- Width 780 km Almost total
Microwave Radiometer temperature of atmosphere gth global
(SMMR) with channels (e.g., water (km) coverage
(MHz): content); 22 14 every 2 days
37.0 surface wind 28 25
21.0 speed, sea 43 28
18.0 surface temper- 74 49
10.7 ature, sea ice 120 79
6.5

SOURCE: Courtesy of Roman Glazman, Jet Propulsion Laboratory, California Institute of Technology.
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at different scales? What can and cannot be inferred about the continuous process within
which sampling is done? These concerns also involve different types of estimates such as
second- and higher-order spectral estimates, probability density estimates, and regression
estimates. Such questions should be considered under the assumptions of both stationary
and nonstationary processes. These problems are connected with those involving
non-Gaussian observations (see Chapter 8). Suitably selected and designed multiscale
wavelets may be helpful in this situation.

There are statistical research opportunities in modeling a random field given:

1. observational data representing averages over regions (pixels) of a given size (as
determined, e.g., by a satellite footprint), and

2. observational data obtained by irregular sampling (spatial and temporal data gaps,
etc.) of a random field.

An analysis of extrema of non-Gaussian fields is needed. It will depend partly on
what one can say in the stationary case about the tails of the instantaneous distributions.
Such an analysis will have both a probabilistic and a statistical aspect; i.e., given a nice
probabilistic characterization, can some aspect of it be effectively estimated from data?
Progress on these questions may also carry over to notions of intermittency. Specific issues
for focus include:

1. analysis of asymptotics of extrema of a non-Gaussian field,
2. analysis of behavior of outlying observations in a case of non-Gaussian data, and
3. modeling of a random field with given statistics of extrema.

Additional issues and problems concerning non-Gaussian random fields and processes
are listed at the end of Chapter 8.
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3
LAGRANGIAN AND EULERIAN DATA AND MODELS

In the last two decades the use of Lagrangian (i.e., current-following) devices has
become very popular in oceanography (for a review, see Davis, 1991a). Drifting buoys have
been developed that can follow the ocean currents with good accuracy, moving either at the
surface of the ocean or in the interior on surfaces of equal pressure or density. These
drifting buoys are tracked acoustically or via satellite for extensive time after deployment (up
to a year or more). They report their position at discrete times, with an interval that can
vary from hours to days depending on the specific purpose of the measurements made.
From these positions, an estimate of the horizontal velocity along the buoy trajectory can
be made. In addition to their position, drifting buoys are often equipped to measure other
physical quantities, such as temperature or pressure.

Data from drifting buoys are used both for understanding the dynamics of ocean
circulation (e.g., Price and Rossby, 1982; Bower and Rossby, 1989) and for describing its
statistical properties (e.g., Kraus and Boning, 1987; Figueroa and Olson, 1989). This chapter
focuses on this second aspect. An appropriate statistical description of ocean circulation
includes two main parts. One is the statistics of the velocity field, and the other is the
statistical description of the transport mechanisms. The ocean plays a fundamental role in
the transport of such quantities as heat, salinity, or chemical substances (both natural and
anthropogenic) that are fundamental for environmental and climatic studies. Before going
into the details of how the Lagrangian data are actually utilized to obtain the statistical
information, it is useful to point out that there is a direct connection between Lagrangian
trajectories and transport properties in a flow (e.g., Davis, 1983). This can be seen by
considering the equation for the evolution of the concentration of a substance released and
transported in an incompressible fluid: (V, u) = 0 (see, e.g., Pedlosky 1987). Assuming that
the substance concentration is a scalar function c(t, r), and that the substance does not
interact with the flow while it is advected (i.e., it is a passive scalar, or "tracer"), the equation
is

aOc + (u,V)c = 0, c(O,x) = cO. (3.1)

Note that equation (3.1) is the same as equation (1.4) of Chapter 1, except that the
molecular diffusivity is neglected because here the concern is large-scale flows, and for
simplicity no sources or sinks are considered. The solution of equation (3.1) by the method
of characteristics takes the form

c(t,r) = c0(X-1(t,r)), (3.2)

where X - is the inverse of the function r -- X(t, r) that represents the position reached at
time t by a particle that was at r at t = 0.

From (3.2) one can calculate statistical moments of the concentration c(tr) by the
formula
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where P is the probability density of a random vector k',-..,'p, representing the

probability distribution of Lagrangian trajectories in the fluid.
In oceanography, most of the work performed to date has focused on the first

moment of c (i.e., on the mean concentration (c)) and on the related probability density
function for a single particle P E* A few studies have considered the statistics of particle

pairs (e.g., Bennett, 1984; Davis, 1985). Even in the simplest case of a single particle,
though, the data are not sufficient to compute P%, so that (3.3) cannot be used directly.

Information on 0c) can, in principle, be retrieved by combining the data with the equation
for (c) obtained by averaging (3.1). The trouble with this approach is that the resulting
equation for (c) involves terms such as (u Vc); the equation for these terms in turn involves
still higher order statistical terms, and so on in an unending hierarchy. This is the "closure"
problem, one of the central problems in fluid dynamics. In practice, what is usually done
is to "close" the equations for (c) at a chosen level using some kind of assumptions. The
issue then becomes identifying the closed equations' appropriate form for the specific context
under examination (e.g., see Molchanov and Piterbarg, 1992). As discussed in Chapter 1,
the simplest form of closure is given by the advection and diffusion equation (1.4) where
molecular diffusivity is replaced with turbulent ("eddy") diffusivity. An estimate of diffusivity
can be obtained from the data, as a function of the velocity autocorrelation measured by
buoys (e.g., Kraus and Boning, 1987). This form of closure is, strictly speaking, valid only
if the flow is homogeneous in space and stationary in time, and if the time scales considered
are longer than the time scales of the turbulence. Other more general and more widely
valid equations have also been used in the literature. Examples are the elaborated form of
the advection and diffusion equation proposed by Davis (1987) and stochastic models used
to describe the motion of single particles (Thomson, 1986; Dutkiewicz et al., 1992).

One of the difficulties in using data from drifting buoys is that, whereas the data are
inherently Lagrangian, the information oceanographers are interested in is often Eulerian
(i.e., associated with a fixed point). Typically, oceanographers seek maps of simple statistics
of the velocity, such as the mean flow and the variance, and of some turbulent transport
quantities, such as the diffusivity. The knowledge of diffusivity as a function of space is of
great importance for a number or reasons. First, it provides a direct picture of the nature
of ocean turbulence, which is still not well understood (as discussed in Chapter 1). In
particular, comparing diffusivity maps and maps of mean flow or velocity variance provides
a way to test simple theories of turbulence, and eventually indicates how to improve them.
Secondly, one must know diffusivity as a function of space, because it is an input of key
importance for numerical models that simulate oceanic processes using equations (1.1)-(1.4)
in Chapter 1.
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The theoretical problem of determining Eulerian statistics from Lagrangian statistics
is quite difficult, and it is still open (e.g., Li and Meroney, 1985; Babiano et al., 1985).
Oceanographers take the simplest possible approach. They consider a set of measurements
taken in a certain geographical region and assume that the region can be divided into
smaller subregions (boxes) characterized by a space scale L, where the statistics are
approximately homogeneous and stationary. All the data present in each box at all times
can then be considered as representative of the same spatial point, and can be used to
compute averages of the quantities of interest. In this way, the Eulerian statistics are
computed from a combination of space and time averaging. The important question is,
What happens when the hypotheses of homogeneity and stationarity inside the boxes are
relaxed, as is expected to occur in a realistic situation? An extensive analysis regarding this
problem has recently been done by Davis (1991b) in the context of the elaborated advection
and diffusion equation. The following paragraph briefly summarizes some important points.

Stationarity can be relaxed fairly realistically provided the ocean is characterized by
slowly varying fluctuations so that time averages, even though not constant, are
representative of the particular ocean climate present during the measurements.
Inhomogeneity could in principle be reduced inside each box by increasing the resolution,
i.e., by decreasing L, the scale of the boxes. In practice, though, the uncertainty in the
estimate of the statistical quantities also depends on L, so that a trade-off must be found
between resolution and accuracy. The scale L must be large enough to give a reasonable
uncertainty and small enough so that the statistical quantities computed in the box are
meaningful.

It is important to note that biases can occur in estimating the statistical quantities as
a consequence of both inhomogeneity in the sampling (array bias) and in the turbulent
velocity (diffusion bias). This last type of bias reflects the observed tendency of drifting
buoys deployed at a point to migrate toward regions of high turbulent energy. As shown by
Davis (1991b), the size of these biases can be identified for mean velocity, but it appears to
be much harder to identify for diffusivity. The use of other model equations for transport
(or equivalently for particle motion) may help in identifying this bias or possibly suggest
better estimators for the quantities of interest.

Finally, in some special cases the inhomogeneity of the statistical quantities can likely
be solved explicitly. This can happen when general information is available on the spatial
structure of the quantities, so that they can be approximated by space-functions dependent
on a discrete number of parameters. An approach of this type has thus far only been
applied to simple linear flows (e.g., Davis, 1985), but it is likely to also be useful for more
complex flows, such as strong vortices or meandering currents, which play an important role
in oceanography. The technique consists of estimating the parameters by using the data in
conjunction with a model equation, such as some form of the advection and diffusion
equation or a stochastic model for particle motion. The use of a stochastic model also
provides a natural and straightforward way to filter the data.
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PROSPECTIVE DIRECTIONS FOR RESEARCH

As is apparent from the preceding discussion, a number of key problems (e.g., the
"closure" problem, determining Eulerian statistics from Lagrangian statistics, dealing with
array bias and diffusion bias) are still open that relate to the use of Lagrangian data in the
description of the ocean circulation. They suggest a variety of directions for statistical
research, ranging from statistical analysis for oceanographic data to probabilistic modeling
for processes in the ocean. Some specific considerations are the following:

1. Statistical methods for irregular and sparse observations, with emphasis on
estimation of spectral and correlation characteristics (see Chapters 6 and 8);

2. Filtering and parameter estimation for random fields governed by randomly
perturbed ordinary and partial differential equations, with emphasis on numerical
methods for nonlinear filtering, spectral methods, and others;

3. The study of single-particle statistics in inhomogeneous and nonstationary

turbulent flows;

4. The study of multiparticle statistics;

5. The Lagrangian approach to turbulence;

6. The derivation of closed-form equations for moments of passive scalars; and

7. The exploration of the time evolution of distributions of passive scalars, with
emphasis on intermittence ("patchiness").
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4
FEATURE IDENTIFICATION

A fundamental problem in oceanographic data analysis is the identification of features
in image data: their shape, size, and motion. The data used in identification are typically
satellite images, e.g., infrared or visible images from the NOAA polar-orbiting satellites or
from synthetic aperture radar (SAR). Features are identified in order to quantify their
statistics (e.g., ring size and frequency, front locations), to understand the evolution of the
fields (e.g., ice leads and floes), and in successive images to infer motion in the field (e.g.,
sea surface temperature (SST)). Statistics of the features can be used to determine the
accuracy of numerical models that describe the physics of the process. Feature identification
can also be used to generate realistic fields from data with numerous gaps for assimilation
into numerical models for prediction. Feature identification is usually complicated by the
presence of instrument noise or geophysical (e.g., clouds) noise. Automation of feature
identification using statistical measures is a primary issue; to date, few automated techniques
have matched the success of a skilled analyst.

TRACKING OF FRONTS AND RINGS

The locations of major current systems and the location, tracks, diameters, and
lifetimes of rings have been studied using infrared images from the Advanced Very High
Resolution Radiometer (AVHRR) sensor on the NOAA polar-orbiting satellites. Brown et
al. (1986) characterized the warm-core rings in the Gulf Stream system using 10 years of
AVHRR data; a histogram of ring lifetimes showed two distinct peaks at 54 days and 229
days. Auer (1987) analyzed rings as well as the "north wall" of the Gulf Stream, defined
subjectively as the location of the maximum SST gradient, using analysis charts derived from
AVHRR images. Among other findings, Auer found that the position of the north wall had
an annual signal, and that its interannual variability in position was comparable to its annual
variability. Cornillon (1986) examined variations in the Gulf Stream position upstream and
downstream of the New England Seamounts, again locating the north wall subjectively, and
found that the meander envelope did not increase due to the seamounts, but that the mean
path length did increase. Cornillon and Watts (1987) found that subjective identification of
the north wall was more accurate than that enabled by any "conventional algorithm," such
as the location of the maximum SST gradient, and found that the root-mean-square
difference between the AVHRR-derived location and a traditional definition based on in situ
temperature measurements was less than 15 km.

Ring motion is generally determined by the ring displacement over periods of tens
of days, but there may be substantial changes in ring structure and motion over these time
periods. Cornillon et al. (1989), in an attempt to determine the motion of warm-core rings
relative to the motion of the Gulf Stream slope water, confined their analyses to pairs of
observations separated by 36 hours or less. The ring outline was determined from AVHRR
images, again by subjective methods, and the ring center was found by the best fit to an
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ellipse. This fit to the ellipses was found to be better than both a center-of-mass estimate
or the intersection of perpendicular bisectors from the ring edge. Absolute velocity
estimates were derived from adjacent pairs of ring centers. The velocity of the slope water
was determined by a subjective tracking of small SST features in pairs of images (horizontal
velocity estimation is discussed in more detail below), and the difference between the
velocity estimates was the desired result. The uncertainties in all of the motion estimates
were quite large. A related problem is the determination of the ring characteristics and
frequency of occurrence based on a series of line samples (as from a radar altimeter
subtrack), where the spacing between tracks is as large as a ring diameter and the time
between successive tracks is comparable to the time required to move to another track (an
"aliasing" problem).

Mariano (1990) developed a method for combining different types of data to produce
a map of a field that preserves typical feature shapes, rather than smearing them out as in
an optimal estimate. Optimal estimates (generally known as "objective" maps in
oceanography) minimize the expected squared error of the field value; Mariano's contour
analysis produces instead an optimal estimate of the location of each contour of the field
values. Thus it preserves the typical magnitudes of the field gradients; i.e., it preserves the
shapes and sizes of rings and ocean fronts. Because the gradients affect the dynamics of the
field in the simulation, the analyzed contour fields give more realistic input for assimilation
into numerical simulation models. Mariano's method requires a pattern recognition
algorithm to first delineate the contours in each type of data, before the optimal estimate
of the final contour location can be made.

All of these statistical characterizations using images have in common the problem
of detecting features in the presence of extensive cloud contamination or instrument noise;
subjective methods have probably been most successful because the human eye can
compensate for slight changes in the values of the field and locate a feature by its shape.
The problem with subjective methods is that they tend to be labor intensive. A successful
automated technique is highly desirable, especially for the case of analyzing large quantities
of data (e.g., satellite observations or numerical model output). Ring studies have the
additional problem of isolating an elliptically shaped feature that has numerous streamers
and smaller eddies attached to it. The delineation of fronts is similar to a contouring
problem: a single line must be designated in a noisy field, and the presence of closed
contours must be determined to distinguish a ring from the front.

SEA ICE TRACKING

There are several problems in feature identification in sea ice for which good
statistical estimators are needed. Some examples are given here. The motion of pack ice,
using a feature-tracking method to determine velocities from a sequence of images, is similar
to that of cloud motion or movement of water parcels (e.g., Ninnis et al., 1986). This
problem is closely related to ocean velocity estimation, which is discussed below. Feature
identification algorithms are needed to characterize ice floes (Banfield and Raftery, 1991;
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see also Chapter 3 of NRC, 1991b) and leads (the open water between the ice floes): floe
size distribution, and lead direction, spacing, and width distributions.

If one considers a set of markers on sea ice, their subsequent changes in position can
be decomposed into four components: a translation, a rotation, an isotropic scaling, and a
change in shape. An alternative decomposition would be into rigid body motion and
deformation, and the deformation may be further decomposed into affine and nonaffine
components. Shape statistics, concerned with the analysis of shapes such as these, includes
the examination of a series of shapes evolving over time. In the context of polar
oceanography, the emphasis is not so much on the shape itself- as it might be in biology
where much of shape statistics originates - but rather on the motion and deformation of the
shapes. The deformations and motions of various shapes must be reconciled with each other
to establish the evolution of the entire field, and to infer something about the field dynamics.

A combination of feature identification and feature tracking is used to estimate the
opening and closing of sea ice leads, which is necessary for models that estimate sea ice
thickness (e.g., Fily and Rothrock, 1990). The object of this analysis is to produce an
estimate of the fractional increase or decrease in size of sea ice leads from a pair of
sequential SAR images. The first step in the estimation requires the designation of tie
points between the same features in sequential images, which are determined by
cross-correlations between subsets of the images. This procedure is quite similar to that
required for estimation of ice motion. The next step requires the classification of the entire
image into ice or lead, which is a statistical problem by itself, similar to that of flagging
AVHRR images for cloud cover, or classifying AVHRR images by cloud type. The net
.llcrease or decrease in the area covered by the leads based on a comparison of the two
classified images gives the required estimate.

ESTIMATION OF HORIZONTAL VELOCITIES FROM IMAGE SEQUENCES

Another oceanographic problem that might benefit from the application of advanced
statistical methods is the estimation of horizontal ocean velocities using pairs of satellite
images. One method of estimating these velocities is to track identifiable features in a tracer
field, usually the sea surface temperature (SST; Emery et al., 1986). Other methods use the
heat advection equation (1.4) (Kelly, 1989) or an assumption of geostrophic balance (Kouzai
and Tsuchiya, 1990) to relate observed SST to the velocity field. SST images from the
AVHRR have a horizontal resolution of approximately 1.1 km, with temporal separations
of 4 to 8 hours. While clouds often obscure much of the ocean, there are occasionally
periods of 1 to 3 days with relatively few clouds during which 4 to 12 images can be
collected. Most of the velocity estimates assume that changes in SST are due to horizontal
advection; however, other processes also change the SST seen by AVHRR: contamination
by undetected clouds and fog, heating and cooling by the sun and air, vertical mixing and
vertical motion, and changes in the top "skin" of the ocean (less than 1 mm thick). In the
absence of these complications, the problem of estimating velocities would be one of
mapping the location of all pixels in the first image onto the second image. It has been
suggested that other statistical methods, such as simulated annealing (see, e.g., Chapter 2 in
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NRC, 1992c), might produce such a mapping of individual pixels, but this has not been
attempted to date.

The feature tracking method has been automated using a maximum cross-correlation
(MCC) method, first applied by Emery et al. (1986) and derived from the methods used to
track the motion of pack ice. The procedure is to cross-correlate a subregion of an initial
image with the same-sized subregion in a subsequent image, searching for the location in the
second image that gives the maximum cross-correlation coefficient. The size of the region
searched in the second image depends on the maximum displacement that could be caused
by reasonable velocities in the surface ocean. There is a trade-off between the spatial
resolution of the velocity estimates and the statistical reliability of the cross-correlation. The
small-scale features can be enhanced by the calculation of gradients or by high-pass filtering.
It has been suggested that wavelet transforms might provide another way of first correlating
larger-scale features and then smaller-scale features, but this has not been tried. Further
references to the MCC method include Collins and Emery (1988), Kamachi (1989), Garcia
and Robinson (1989), Tokmakian et al. (1990), and Emery et al. (1992).

Identifying features in consecutive images is not the most difficult problem in velocity
estimation, although there is room for improvement here. Two related unresolved issues are
ring motion (or rotation) and inferring velocity along isolines of the tracer field or in regions
of small gradients. These flows produce only small changes in the tracer field, but the
magnitudes of the velocities may be larger than those of the velocities that produce large
changes in the tracer field. The MCC method can be modified to accommodate rotation
of the features. Besides simply displacing the initial search region and calculating
displacement, the initial region can be rotated through a reasonable range of angles
(Kamachi, 1989; Tokmakian et al., 1990). However, the additional searches increase the
chance of random high correlations, and the benefit is questionable. Emery et al. (1992)
have investigated an alternate method of following rotation in closed rings and eddies, also
noting that the basic method, without rotation, produces similar results.

Another method, which addresses the latter problem, solves the heat advection
equation using inverse methods to find the velocity field most consistent with the change in
SST fields observed in the two images (Kelly, 1989). The heat equation used, based on
equation (1.4), is

T, +uTx + vT -m(x,y) = S(xy), (4.1)

where u, v are the horizontal velocity components, T, TY are the horizontal derivatives of
SST, T, is the temporal derivative of SST, S(x, y) is a term that describes SST fluctuations
with relatively large spatial scales (which are not due to advection), and mr(x, y) is the misfit.
As in the MCC method, there is an optimal temporal lag 6 between images for the
inversion: approximately 12 hours, compared to values of 4 to 6 hours preferred for the
MCC method. Velocity fields that include the along-isoline velocity component can be
obtained by adding constraints on the velocity solution, notably the minimization of
horizontal divergence, with a weighting factor a relative to the heat equation (4.1), that is,
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cz(uý v+ = 0). (4.2)

Two-dimensional biharmonic splines were used as basis functions for the velocity fields in
the inversion to give a continuous solution, unlike the feature-tracking methods, which give
estimates at discrete grid points (Kelly and Strub, 1992). The spatial resolution of the
solution depends on a parameter that sets the number of data per knot in the spline, and
on the size of the subregion used to compute the SST gradients. A statistical challenge in
this inverse problem is determining the best solution as a trade-off between the fit to the
heat advection equation and the constraints. Although inverse theory methods exist to solve
this problem more rigorously, it has not yet been done.

The horizontal velocity problem has been examined by many scientists and engineers.
Other methods include the use of a single image in conjunction with the thermal wind
equation, which relates horizontal SST gradients to vertical velocity shear (Kouzai and
Tsuchiya, 1990). This method neglects salinity effects and requires an empirical relation
between SST gradients and velocity from field data. Wahl and Simpson (1991) explored a
variety of artificial intelligence methods for modifying the basic feature-tracking method and
improving the cross-isoline solution. These methods have not been evaluated using field
measurements.

The MCC and heat advection inverse methods have been compared by Kelly and
Strub (1992) to in situ velocities from surface drifters and acoustic Doppler current profilers
(ADCP), and to geostrophic velocities from the Geosat altimeter. They found that both
methods produce velocity fields that captured the main features of the horizontal velocity
field in a region of the coastal ocean approximately 500 km square. Both methods also
underestimated the maximum velocities in the most energetic jets (velocities over 1 ms 1).
Detailed examination of the SST fields showed that in some cases the MCC method was not
underestimating the displacements of identifiable features within the jet. Rather, drifters at
15-m depth within the jet were moving to locations beyond the SST feature in the second
image. Thus, substantial errors in both methods occur because some of the largest velocities
in the ocean do not produce observable SST changes. Although further modifications of
these two methods or entirely new techniques might improve the estimates, these errors
suggest that even a perfect mapping of SST fields would not give an accurate velocity field
in regions with energetic jets. One promising approach is to incorporate independent
velocity measurements into the estimate, either from radar altimeters or from drifters.

PROSPECTIVE DIRECTIONS FOR RESEARCH

Identifying features through the analysis of oceanographic data presents many
opportunities for statistical research to contribute to progress on important physical
oceanographic issues. The following particular issues exemplify some of the challenges for
which statistical advances that improve on current approaches would be valuable:
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1. Detection of SST fronts and rings (maximum gradients) in the presence of noise
with a variety of spatial scales;

2. Characterization of rings or eddies by shape, frequency, and motion in a series
of images or from a series of line samples, which may lead to aliasing of the
feature motion;

3. Characterization of the evolution of ice floes and leads, using a time series of
images. The emphasis is on inference of the dynamics of the field from the
feature evolution and statistics; and

4. Estimation of oceanic velocity using a time series of tracer fields, where the
relationship between the velocity field and the tracer is not unique and the
velocity field is subject to some dynamical constraints.
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5
VISUALIZATION

Scientific visualization has nearly become a clich6 in recent years, as researchers apply
increasingly sophisticated hardware and software tools to the task of data analysis.
Techniques ranging from video animations of three-dimensional fields to simple
two-dimensional line plots are often lumped under the term "visualization." In a sense, any
visual representation of data may be considered visualization. However, a more useful
definition would be more restrictive; visualization is the representation of data as a picture.
This picture could consist of either static or evolving fields (animations).

The motivation for scientific visualization is the increasing availability and complexity
of enormous observational data sets and numerical model output. Traditional line plots,
tables of data, and other methods are inadequate to cope with the volume and complexity
of these "data." Suitable visualization, by presenting the data as a picture, can allow the
researcher to detect relationships and patterns much more quickly. This "illustrative"
approach conveys information about relationships between components of the image
simultaneously, rather than relying on a "discursive" or sequential approach using tables of
numbers, sentences, and so on. The truism about a picture being worth a thousand words
is applicable for many studies. In an effort to deduce the underlying processes responsible
for the relationships between various physical phenomena, visualization tools will play an
important role as scientists examine multidimensional data sets.

USES OF VISUALIZATION

The volume of data that can be collected by oceanographers has increased
dramatically over the past 10 years. Although satellite sensors are the usual example, data
rates from in situ instrumentation have also increased. For example, data storage technology
now allows moorings to collect samples more frequently and for a longer time period. New
instrumentation, such as spectroradiometers, are being deployed on moorings to measure
upwards of 50 variables. Typical data sets now range from hundreds of megabytes to a few
gigabytes or more.

Although the sheer volume of data may require visualization tools, an equally
compelling need for improved visualization tools is the multitude of variables that are now
being measured. Advances in ocean instrumentation have greatly increased the variety of
processes that may be measured. For example, probes can now measure oxygen nearly
continuously, rather than relying on bottle samples at a few discrete depths. High-resolution
spectrometers measure phytoplankton fluorescence with much greater accuracy, resolving
many pigments rather than just chlorophyll. The search for relationships becomes
increasingly difficult as more data sets are added, and so analysis tools that simplify this
process are essential. The need to examine complex relationships is not driven simply by
our ability to measure numerous variables; rather, the importance of understanding the

33



interplay between biology, physics, and chemistry has driven the need for an interdisciplinary
approach to data analysis.

Numerical models can now provide detailed three-dimensional views of the oý'ean.
Such volumetric data are nearly impossible to analyze using traditional two-dimensional
graphic techniques (see, e.g., Pool, 1992). The addition of the temporal dimension also
requires animation tools to allow researchers to study model dynamics and evolution.
Visualization tools play an important role in assessing model performance as well. For
example, most model output has traditionally been discarded in an attempt to limit data
volumes to manageable levels. However, specific events in model simulations often appear
in just a few time steps, so that the ability to retain model output at every time step is useful
for model diagnostics. The resulting large quantities of model output place a greater
demand for sophisticated visualization techniques to search through the large volumes of
data in an efficient manner that enables easy identification of the events.

CHALLENGES FOR VISUALIZATION

Visualization will continue to be important for oceanographic research as the ability
to measure and model the ocean improves. Existing visualization tools, however, are
inadequate for these tasks. Many deficiencies revolve around implementation problems and
have been described in numerous NASA and other federal government reports (Botts, 1992;
McCormick et al., 1987). For example, existing visualization packages are generally
expensive and difficult to learn. Packages are usually not extensible, so that custom features
cannot be added easily. Some tools cannot handle three-dimensional data sets or
animations. One of the more difficult challenges is the ability to visualize evolving
volumetric data, such as that produced by an ocean circulation model. It is very difficult to
"11see" into the interior of such volumes using present technology. Most commercially
available packages that are designed for such volumetric data are capable of handling static
images, such as automobiles. For many packages, visualizing three-dimensional systems that
evolve over time is a difficult task. Such implementation deficiencies are slowly being
addressed by the software vendors and developers.

The most troublesome aspect of existing visualization tools is that most of them break
the link between the underlying data and the image on the screen. Although a researcher
may be able to produce a sophisticated animation of the evolution of an ocean eddy, it is
generally not easy to go from the animation on the computer screen back to the numbers
that the various colors represent. As visualization is a tool to allow the detection of
previously unknown relationships, it is still necessary to obtain quantitative information about
the nature of the relationships. For example, if one notes a possible relationship between
phytoplankton concentration and the strength of a density front in an eddy, it is desirable
to examine the quantitative aspects of this relationship. Thus there must be techniques for
excising subsets of the actual data for use in other analysis packages, such as statistical and
plotting tools. Present visualization packages do not have probes or cursors that allow the
user to examine the quantitative values of a three-dimensional image at specific locations,
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nor do they have tools for graphically selecting subsets of visualized data (the equivalent of
the "lasso" tool on the Macintosh).

Most earth science data are referenced to some system of Earth coordinates. As
there is no standard way to carry such information along with the data, existing visualization
packages either define their own format for such ancillary information or else discard it. It
is vital that researchers be able to overlay different data sets on a geographic basis. A
common example is the comparison of satellite maps of sea surface temperature and ship
observations along a transect across the map. Again, most visualization tools do not retain
this link to the underlying data. Visualization must include a link between the tools and an
underlying database. This link must operate in both directions. That is, the visualization
tool should be able to query databases to locate the raw data of interest for analysis, as well
as maintain a database of the various visualization operations that were used to create a
new, analyzed product. For example, an animation of vector winds and sea surface
temperature might be created by querying a database. The steps used to create this
animation would be stored along with the animation. Visualization tools can create large
amounts of analyzed data that may be difficult to recreate without some type of audit-trail
mechanism.

Currently, visualization tools are used largely in an exploratory manner, rather than
for presentation to the research community. The high cost of color printing often prohibits
the use of color imagery, and there is no established method for distribution of video
animations. Occasionally, special sessions are held at scientific meetings for presentations
of videos, but this approach reaches only a small fraction of the community. New methods
for dissemination of visualizations must be established, as the existing print medium is not
adequate. One approach would be to develop animation servers that are capable of storing
and retrieving hundreds of video animations and other visualizations. For example, a
research article might reference a video loop that is stored on the server, much as on-line
library catalogs are stored now. With the planned increases in network capabilities, it would
be possible to retrieve and view the animation on a local workstation. Such an animation
could be an integral part of the paper and thus subject to peer review. If scientific
visualization is made part of the publication process, it will no longer be just a tool for
exploring data sets but a key component of scientific research and communication.

Lastly, color is often used in visualization to represent the underlying data. Most
computer manufacturers have not invested in retaining color fidelity from device to device.
For simple business graphics, variations in the shades of red from computer display to video
tape to hard-copy printer may not be a serious concern. However, when this color
represents specific data values in scientific applications, maintaining an exact shade of color
across the breadth of output devices is essential for scientific research. This link to the data
must also be maintained.

Visualization tools will likely increase in importance for oceanographic research as
the volumes and complexity of data continue to increase. However, more attention must be
paid to using these tools for their quantitative value, and not just for their ability to present
complex relationships. This requires that these tools retain the links to the data that are
used in the visualization process.
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OUTSTANDING STATISTICAL ISSUES

One issue that could benefit from input from the field of statistics is the question of
what method to use to interpolate irregularly spaced data to a regular grid in a manner that
preserves the statistics of the field of interest (cf., NRC, 1991b). For example, satellite data
generally consist of high-resolution data within measurement swaths, separated by hundreds
or thousands of kilometers for which there are no data between swaths. Most interpolation
methods smooth the data and minimize spatial gradients. It is desirable to retain as much
of the full range of spatial scales as possible in the gridded fields.

Another issue that oceanographers are concerned with and that statisticians could
contribute to is determining a method of identifying "interesting" events in the data that
warrant a more detailed analysis. With small data sets, this can be accomplished by simply
examining all of the data by various graphical techniques. For large satellite data sets or
numerical model output, it is highly desirable to develop automated methods of locating such
features. This can be done (with some success) for specific events with easily characterized
features, but it is difficult when features are difficult to characterize concisely or do not
possess simple characterizations.
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6
INTERPOLATION, NONLINEAR SMOOTHING, FILTERING, AND

PREDICTION

The topics of smoothing and filtering, commonly referred to as "data assimilation" in
the oceanographic and meteorological literature, have attracted a great deal of attention of
late. This emphasis on the combination of statistical with dynamical methods, relatively new
to oceanography, arises as a natural consequence of the increasing sophistication of models,
the rapid increase in available computing power, and the availability of new extensive data
sets.

The most extensive of these newly available and soon to be available data sets are
remotely sensed from space. Active and passive instruments operating in the microwave,
infrared, and visible portions of the electromagnetic spectrum provide spatial and temporal
coverage of the ocean unavailable from any other source, but present new challenges in
interpretation. In particular, problems of filling in temporal and spatial gaps in the data,
interpolating satellite data sets to model grids, and selecting a limited number of points from
very large data sets in order to formulate tractable computational problems must be
considered.

INTERPOLATION OF SATELLITE DATA SETS

Characteristics of Satellite Data

Different satellite instruments pose different problems, depending on spatial and
temporal coverage, effects of clouds and rain cells, and viewing geometries.
Characteristically, satellite data are sampled very rapidly (on the order of seconds or
minutes). Data are acquired as areal averages along the satellite ground track, as in the case
of the altimeter, which samples a region 10 km wide, or as areal averages of patches 5 to
50 km in diameter in swaths 1000 km wide in the cross-track direction, as in the case of the
scatterometer or AVHRR. Spatially overlapping samples are taken on the order of 10 days
later in the case of line samples, or on the order of 1 day later in the case of swaths.

The satellite altimeter, as indicated in Table 2.1 of Chapter 2, takes measurements
roughly every 7 km along the track. Employing active microwave radar, the altimeter
functions in both day and night hours, in the presence of clouds, or in clear weather. Two
sets of satellite tracks, corresponding to ascending and descending orbits (i.e., orbits that
cross the equator moving northward or southward, respectively) form a nonrectangular
network that is oriented at an angle with respect to the parallels and meridians of latitude
and longitude. The angles change as functions of the distance from the equator, as do the
separations between adjacent tracks in the same direction (Figure 6.1). The irregular
space-time sampling inherent in satellite measurements over an ocean basin raises important
questions about aliasing and the range in wavenumber-frequency space that can be resolved
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by the data. The problem is very difficult, and only a few attempts have thus far been made
to address the issue (Wunsch, 1989; Schlax and Chelton, 1992).

Satellite instruments, such as AVHRR, that work in the visible and infrared range of
the electromagnetic spectrum provide ocean observations only in the absence of clouds.
Hence, maps based on these observations have gaps. One way of achieving full coverage
of a specific ocean area is by creating composite images that combine data from different
time periods (cf., NRC, 1992a). However, since the fields (for example, sea surface
temperature) are time dependent, the composite images represent only some average picture
of sea surface temperature distribution for the perioc, covered. Therefore, it is important
to know how this picture and its statistical properties are connected with the statistical
properties of cloud fields, and how representative the composite image is with respect to the
ensemble average of the temperature field (see, e.g., Chelton and Schlax, 1991).

Mapping Satellite Data: Motivation and Methods

For most applications, satellite data must be represented on a regular grid. The most
common method of mapping satellite observations onto a geographic grid is by interpolating
the data from nearby points at the satellite measurement locations. Given the complicated
statistical geometry of oceanographic fields (see Chapter 2), such gridding may lead to
considerable distortion. Therefore, it is important to study effects of intermittent and rare
events, as well as effects of statistical anisotropy and inhomogeneity of oceanographic fields,
on the gridding process.

Each interpolated value is typically computed from the 10 to 1000 closest data points,
selected from the millions of points typically found in satellite data sets. Common non-trivial
methods of interpolating include natural or smoothing spline fits, successive corrections,
statistical interpolation, and fitting analytical basis functions such as spherical harmonics. In
all cases the interpolated values are linear functions of some judiciously chosen subset of the
data.

Applications of natural splines and smoothing splines to interpolate irregularly spaced
data are as common in oceanography as they are in most other fields of science and
engineering. The methods have been well documented in the literature (e.g., Press et al.,
1986; Silverman, 1985).

Successive corrections (Bratseth, 1986; Tripoli and Krishnamurti, 1975) is an iterative
scheme, with one iteration per spatial and temporal scale starting with the larger ones. The
interpolating weights are a function only of the scale and an associated quantity, the search
radius (e.g., Gaussian of given width arbitrarily set to zero for distances greater than the
search radius). This scheme is computationally very fast and adapts reasonably well to
irregular data distributions, but does not usually provide a formal error estimate of the
interpolated field, although it is straightforward to add one. Somewhat related is an iterative
scheme that solves the differential equation for minimum curvature (Swain, 1976) of the
interpolated surfaces with predetermined stiffness parameter, akin to cubic splines; however,
the extension to three-dimensional data is not commonly available.
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FIGURE 6.1 Example pattern of satellite ground tracks for the Geosat altimeter (see Douglas and Cheney,
1990, and Vol. 95, Nos. C3 and CIO of J. Geophys. Res.) with a 17-day exact repeat orbit configuration. Upper
panel shows the ground tracks traced out during days 1 to 3 (solid lines), days 4 to 6 (dashed lines), and days
7 to 9 (dotted lines) of each 17-day repeat cycle. Note the eastward shift of a coarse-resolution ground track
pattern at 3-day intervals. Lower panel shows the complete grid of ground tracks sampled during each 17-day
cycle. SOURCE: Courtesy of Dudley Chelton, Oregon State University.
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Statistical interpolation (Gandin, 1965; Alaka and Elvander, 1972; Bretherton et al.,
1976), also referred to as optimal interpolation and most generally referred to as objective
mapping (despite the fact that all of the techniques described here are objective), consists
of least-squares fitting between interpolated and data fields. It assumes that estimates are
known and available of the covariance matrix of the data with errors, and of the field to be
interpolated. This is formally identical to ordinary least squares regression, in which the
value of the interpolated field at a given point is assumed to be a linear function of the data
at nearby points, and the moment and cross-product matrices are determined by assumptions
about the spatial and temporal covariance of the underlying field. The formulas for the
coefficients are derived simply by taking the expected values of the matrices in the ordinary
least squares regression formula. Because matrix inversions are required for each set of
estimates, the computational requirement is typically an order of magnitude larger than with
the successive correction scheme. Formal error estimates are always given. Kriging (Journel
and Huijbregts, 1978; NRC, 1992a) is a similar method in which the structure function rather
than covariance is used to describe the data and desired field, with somewhat better
adaptability to inhomogeneous statistics. The equivalence of objective analysis and spline
interpolation was presented by McIntosh (1990).

Projecting the data on a space spanned by a convenient set of nonlocal basis functions
is simple and well known, but there is no obvious choice of an efficient set of basis functions.
The spherical harmonics commonly used for this purpose in meteorology do not form an
efficient basis over the oceanic domain alone, requiring high-degree terms just to adapt to
the domain. Recent efforts to define an equivalent set only over the oceans (Hwang, 1991)
appear to have been successful.

The disadvantage of using L2 norm minimizations is their relatively high computer
resource requirement. An insidious consequence of this high resource demand is that in
order to limit the problem to a size manageable with available computer resources, some
researchers use too few data values or too small a region to achieve proper isolation of the
length scales of signal and error. The disadvantage of schemes with fixed weights is clear:
they are unable to adapt to data of varying accuracy, even though they do a decent job at
adapting to inhomogeneous data distributions. The practical disadvantage for both objective
mapping and successive corrections is that spatially inhomogeneous scales and anisotropy
are not easily treated, and require breaking up the problem into several regional ones. This
can lead to inconsistencies or other undesirable problems along the boundaries of adjacent
regions. In the case of basis functions, most natural choices prove to be very inefficient in
representing small-scale features; e.g., many higher-degree terms may be required to define
a narrow jet such as the Gulf Stream.

DATA ASSIMILATION: USE OF DYNAMICAL MODELS FOR
SMOOTHING AND FILTERING

As discussed in Chapter 1, it is not possible even with satellite data sets to provide
complete initial and boundary conditions for the models in use today. This is partly due to
physical considerations, such as the unknown details of air-sea exchanges, but the greatest
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limitation on modeling studies today remains the sparsity of data, especially subsurface data
that are inaccessible via satellites. It is therefore necessary to extract all available
information from the data while, simultaneously, understanding the limitations on the
applicability of any given data set.

Most data assimilation work to date has been based on least-squares formulations and
the resulting linearized mathematical formalism. This can be justified rigorously for linear
systems under fairly general conditions, assuming the initial error distributions are Gaussian.
Within their realm of applicability, linearized methods have been quite successful. The
ocean modeling community has a fair amount of experience with filtering and smoothing of
linear models. The major remaining issues involve validation of statistical error models.
These issues are most fruitfully considered in the contexts of specific problems. A review
of data assimilation in oceanography can be found in Ghil and Malanotte-Rizzoli (1991).
For a general overview, see NRC (1991a).

The use of ocean circulation models in smoothing and filtering of observational data
has a relatively short history. Still, there have been a number of successful attempts (e.g.,
Thacker and Long, 1988; Gaspar and Wunsch, 1989; Miller and Cane, 1989). A recent
excellent study is that of Fukumori et al. (1992). There has been, however, little systematic
study of nonlinear smoothing and filtering in the context of ocean modeling. The ocean
modeling literature naturally overlaps with the numerical weather prediction literature on
this subject, and the two fields share a common interest in qualitative results, but systematic
studies are few, and those that exist are elementary.

Direct approaches to applying statistically based data assimilation methods to
nonlinear problems have so far been based on generalizations of linear methods.
Variational methods used to date (e.g., Tziperman and Thacker, 1989; Bennett and
Thorburn, 1992; Miller et al., 1992; Moore, 1991) have been derived from quadratic cost
functions; i.e., the optimized solution is the one that minimizes some combination of
covariances. This presupposes the notion that minimizing quadratic moments is the right
thing to do in this context, even though the underlying distribution may not be unimodal.
As one might expect, these methods work well in problems in which the nonlinearity is weak,
or at least does not result in qualitatively nonlinear behavior such as bifurcation or chaos.
Model studies have been performed on the Lorenz equations (Gauthier, 1992; Miller et al.,
1992), which, for the most part, used covariance statistics and linearized methods. (An
application in which third and fourth moments were calculated explicitly was presented by
Miller et al. (1993), but it is unlikely that this method has any wider applicability). Gauthier
(1992) and Miller et al. (1993) discuss in detail the pitfalls in filtering and smoothing of
highly nonlinear problems. In those cases, the implementation of variational methods results
in extreme computational difficulty.

The solution to the nonlinear filtering problem for randomly perturbed dynamical
systems is well understood theoretically (see Rozovskii, 1990). It can be reduced to a
solution of the so-called Zakai equation, a second-order stochastic parabolic equation. It
describes the evolution of the non-normalized density of the state vector conditioned upon
observations. Smoothing and prediction are technically based on the Zakai equation and
the so-called backward filtering equation (see Rozovskii, 1990). In the last decade
substantial progress has also been made in numerical studies of the Zakai equation (see, e.g.,
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Florchinger and LeGland, 1990). However, this theoretically perfect approach has some
practical limitations. In particular, the dimension of the spatial variable for the Zakai
equation is equal to the dimension of the state vector. This is clearly impractical for modern
dynamical ocean models that have thousands, if not hundreds of thousands, of state
variables.

It appears that the most promising approach to this problem is development of
hierarchical methods that would involve Kalman-type filtering where possible and refinement
of the first-level coarse filtering by application of intrinsically nonlinear procedures when
necessary. These require further research on numerical approximation for Zakai-type
stochastic partial differential equations, including development of stochastic versions for
multigrid methods, wavelets, and so on.

While true nonlinear filtering will not find direct application to practical ocean models
in the near future, guidance from solutions of simplified problems can be expected. Further,
there may be approximations to the Zakai equation in terms of parametric representations
to solutions that are more versatile than those derived from methods explored earlier.

Overall, it appears that numerical methods for stochastic systems are developing into
an exciting area of science that is of importance to oceanographic data assimilation.

INVERSE METHODS

Some oceanographers consider that, in some larger sense, all of physical
oceanography can be described in terms of an inverse problem: given data, describe the
ocean from which the data were sampled. Obviously direct inversion of the sampling
process is impossible, but the smoothing process is occasionally viewed as some generalized
inverse of the sampling process, with the laws of ocean physics used as constraints (see, e.g.,
Wunsch, 1978, 1988; Bennett, 1992).

It has become common in oceanography and dynamic meteorology to solve the
smoothing problem by assuming that the system in question is governed exactly by a given
dynamical model. Since the output of many dynamical models is determined uniquely by the
initial condition, the problem becomes one of finding the initial conditions that result in
model output that is closest to the observed data in some sense; the metric most commonly
used has been least squares. These problems are usually solved by a conjugate gradient
method, and the gradient of the mean square data error with respect to the initial values can
be calculated conveniently by solving an adjoint equation. For that reason, this procedure
is often referred to as the adjoint method. (see, e.g., Tziperman and Thacker, 1989). This
is formally an inverse problem, i.e.: when given the outputs in the form of the data, find the
inputs in the form of the initial conditions.

There are many significant problems in physical oceanography that bear specific
resemblance to what is formally called inverse theory in other fields such as geophysics.
These include estimation of empirical parameters (e.g., diffusion coefficients) and the design
of sampling arrays to yield the most detailed picture of the property being sampled.
Problems such as these, along with others that fall within the strict category of smoothing
and filtering, are described in detail in the volume by Bennett (1992).
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PROSPECTIVE DIRECTIONS FOR RESEARCH

There are many opportunities for statistical and probabilistic research regarding
interpolation, smoothing, filtering, and prediction associated with oceanographic data. The
following are some of the contexts that present challenges:

1. Filtering and smoothing for the systems in which the dynamics are given by

discontinuous functions of the state variables;

2. Parameter estimation for randomly perturbed equations of physical oceanography;

3. Alternative numerical and analytical approaches to the least-squares approach for
nonlinear systems;

4. Hierarchical methods of filtering, prediction, and smoothing;

5. Spectral methods for nonlinear filtering (separation of observations and
parameters);

6. Multigrid and decomposition of the domain for Zakai's equation; and

7. Application of inverse methods for (a) data interpolation, (b) estimation of
empirical and/or phenomenological parameters, and (c) design of sampling arrays.

In particular, progress in answering the following questions would certainly be
beneficial:

1. What is the best way to solve the smoothing problem in cases where the dynamics
are given by discontinuous functions of the state variable? Such examples are common in
models of the upper ocean in which convection takes place. Possibly the best ocean model
known, that of Bryan (1969) and Cox (1984), deals with this problem by assuming that the
heat conductivity becomes infinite if the temperature at a given level is colder than it is
below that level. The result is instantaneous mixing of the water, to simulate the rapid time
scale of convection in nature. This can be viewed as an inequality constraint on the state
vector; i.e., some regions of state space are deemed to be inadmissible solutions of the
problem. Such problems are treated in the control theory literature (see, e.g., Bryson and
Ho, 1975), but the engineering methods are not conveniently applicable to high-dimensional
state spaces.

2. If the least-squares approach is inadequate for highly nonlinear systems, what
would be better?

3. What is the best way to apply solutions of the nonlinear filtering problem to more
complex systems? Might it be possible to implement the extended Kalman filter for a
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relatively simple system and use the resulting covariance statistics in a suboptimal data
assimilation scheme for a more detailed model? In general, how might the hierarchical
approach suggested in the section above on data assimilation (also cf., NRC 1992a) be
implemented?

4. When should one statistical method be applied as opposed to another? What
diagnostics are there to help make decisions on suitable methods? Answers to such
questions could be compiled in a handbook on statistical analysis of oceanographic and
atmospheric data, could include such things as definitions and methods of statistical
parameter estimation, and could discuss such questions as, e.g., What do these parameters
convey?

5. What statistical methods can be used for cross-validating data that take inherent
averaging errors into account, and that provide estimates of their magnitude? With the
advent of remote sensing, data comparison (Chapter 7) is not limited merely to
measurements and model verification, but involves cross-validation of different sensors or
assimilation of data into models for quality assessment (see NRC, 1991a). In such analyses,
each data set contains errors that are inherent to the averaging process. As Dickey (1991,
p. 410) has noted:

One of the major challenges from both the atmospheric and ocean sciences is to merge and
integrate in situ and remotely sensed interdisciplinary data sets which have differing spatial
and temporal resolution and encompass differing scale ranges .... Interdisciplinary data
assimilation models, which require subgrid parametrizations based on higher resolution data,
will need to utilize these data sets for applications such as predicting trends in the global
climate.
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7
MODEL AND DATA COMPARISONS

Oceanographers often have available multiple independent estimates of the various
geophysical quantities of interest (e.g., sea surface temperature, surface winds, surface
humidity, sea level, velocity, etc.). The sources of such estimates might be in situ
observations, satellite-based observations, numerical model simulations, or so-called analyzed
fields. The latter may consist of regularly gridded estimates constructed by subjective (i.e.,
hand-drawn) or objective (i.e., computer generated by some objectively prescribed
interpolation algorithm) analysis of irregularly spaced observations. Alternatively, analyzed
fields may be constructed from a numerical model forecast, adjusted to be consistent in some
least-squares sense with all available observations acquired since the previous "analysis time."
Independent estimates of the same quantity are never precisely the same, and small
differences can sometimes have a profound influence on the scientific interpretation or
application of the geophysical field. An important statistical problem in oceanography is
therefore development of techniques for quantitatively evaluating the degree of similarity or
difference between independent estimates of a multidimensional field. This includes cross-
comparisons between different observational data sets (e.g., in situ vs. satellite), comparisons
of model simulations with observations, and comparisons between different model
simulations.

An example of a geophysical quantity that illustrates the kind of problems that can
be encountered in comparisons of different observational data sets is sea surface
temperature (SST). Temporal variations of SST are generally dominated by the seasonal
cycle, which may have an annual range of 5* to 100 C or more at any particular geographical
location. Interannual deviations from the local seasonal cycle typically have magnitudes of
only about 0.5* C. Such small anomalies in SST can have a significant effect on climate.
Even the El Nifio phenomenon that affects weather patterns on a global scale can be
initiated by an SST anomaly in the eastern tropical Pacific of only a degree or two. It is very
difficult to estimate SST to an accuracy of 0.5* C by any of the means currently available.
Since the actual SST is not known on ocean-basin scales, it is difficult to assess the accuracy
of the several different estimates available. Attempts to determine the accuracy of satellite
estimates of the SST field are often made by comparisons with in situ observations from
ships and buoys or with other satellite-based estimates (e.g., Bernstein and Chelton, 1985).
In the case of in situ observations, comparisons are complicated by the sample size and
distribution. The data are not uniformly distributed geographically or temporally.
Observations tend to be concentrated along standard shipping routes and are generally more
sparse during severe wintertime weather conditions. Moreover, in situ observations can
differ from satellite estimates because of measurement errors and because of smaller-scale
variations that are spatially averaged in satellite measurements. Comparisons between two
different satellite estimates of SST are complicated by a common source of error,
atmospheric effects on the radiance emitted from the sea surface, which obscures the errors
in both data sets.
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Systematic errors, particularly in satellite data, create biases in the simplest statistical
measures, be they spatial or temporal averages. In addition to the problem of limited
sample size discussed above (see also Preisendorfer and Barnett, 1983), such gross statistics
can obscure important characteristics of the differences such as geographical or temporal
biases (see, e.g., Barnett and Jones, 1992). For the SST example above, such biases may
arise from systematic errors in the algorithms applied to correct for atmospheric effects on
satellite estimates of SST. As an example, volcanic aerosols injected into the atmosphere
by the El Chichon volcano in 1982 contaminated infrared-based satellite estimates of SST
within about 30" of the equator for a period of about 9 months. As another example,
microwave-based satellite estimates 'SST have been found to be biased upward in regions
of high surface winds because of in, )rmplete corrections for the effects of wind speed on
ocean surface emissivity.

Evaluation of numerical model simulations, either through comparisons with
observations or by comparisons with other model simulations, presents additional problems.
Models produce a large number of output variables on a dense space-time grid. An ocean
circulation model, for example, typically outputs current velocities, temperatures, and
salinities at a number of different depths, as well as the sea surface elevation. It is not
reasonable to expect present models to reproduce the details of the actual circulation, but
one hopes that basic statistics such as the mean or variance of some characteristics of the
actual circulation are well represented by the model. Assessing the strengths and
weaknesses of a model is thus complicated by the large number of possible variables that
can be considered. For example, present global ocean circulation models can reproduce the
statistics of sea level variability with some accuracy but generally underestimate the surface
eddy kinetic energy computed from surface velocities (e.g., see Morrow et a]., 1992). A
model that successfully represents the statistics of some geophysical quantity at one level
may misrepresent the statistics of the same quantity at a different level. An even more
stringent assessment of the performance of a model is how accurately it represents cross-
covariances between different variables (which can be shown to be related to eddy fluxes of
quantities such as heat, salt, or momentum). Some of these issues are discussed by Semtner
and Chervin (1992) with regard to comparisons of numerical model output to satellite
altimeter estimates of sea level variance and eddy kinetic energy. The overall goal of such
comparisons is to guide further research in an effort to develop more accurate numerical
models.

The types of questions that need to be addressed by techniques for comparing two
different geophysical fields, whether they consist of observations or model simulations, are
indicated by the following:

1. How, where, and when do the two independent estimates of a field differ?

2. Are the differences statistically significant? Addressing this question may lead to
development of appropriate bootstrap techniques for estimating probability
distributions.

3. What statistical comparisons are most appropriate for evaluating a model?
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8
NON-GAUSSIAN RANDOM FIELDS

For purposes of statistical analyses, oceanographic fields are usually assumed to be
Gaussian, stationary, and spatially homogeneous, and their statistical description is limited
to the calculation of wavenumber spectra. However, since oceanographic stochastic partial
differential equations (see Chapter 2) are nonlinear or bilinear, the statistics of the fields
depart from such simple models. The nonlinearity is due mainly to advective terms such as
(u -V)u where u is the velocity vector for water motion. In some cases, specifically for surface
gravity waves, the nonlinear nature of the fluid motion is due to nonlinear boundary
conditions: water motion is described by a function and is governed by the Laplace
equation, while the (kinematic) boundary condition expressing the continuity of the free
surface is nonlinear. As a result, closed equations for various statistical moments of the
fields cannot be rigorously derived. Pertinent definitions and statistical problems are
reviewed in two comprehensive volumes on statistical fluid dynamics by Monin and Yaglom
(1971, 1975). A review of statistical geometry and kinematics of turbulent flows is given by
Corrsin (1975). Walsh (1986) and Rozovskii (1990) provide introductions to stochastic
partial differential equations.

One of the most important and least understood features of oceanographic processes
is the intermittent (rare) occurrence of special or catastrophic events. These include (in
order of increasing scale) appearance of white caps at the crests of exceedingly steep and
breaking surface gravity waves, patches of small-scale turbulence left by breaking internal
waves, the shedding of mesoscale rings and eddies by large-scale currents (such as the Gulf
Stream or the Agulhas current), and the occurrence of localized anomalies in SST including
El Nifio events with a time interval on the order of years. Such events play a very important
role in the overall dissipation of kinetic energy, and in the transport of heat, salt, and other
quantities by ocean currents, as well as in the exchange of energy, momentum, and chemical
quantities across the air-sea interface. In terms of the primitive equations describing
individual realizations of oceanographic fields, such events may often be viewed as
singularities developing in the process of a field's evolution. Statistical analysis and modeling
of such events are highly desirable. The use of quantile estimates might be investigated,
especially for information in the tail of the distribution. The statistical geometry of these
intermittent events is poorly understood, and improved understanding can be achieved by
accounting more fully for the non-Gaussian nature of oceanographic fields.

Considerable progress in statistical modeling of geophysical "turbulent" fields has been
achieved using ideas of multifractal processes (e.g., Schmitt et a]., 1992). However, most of
this work is related to atmospheric phenomena (Lovejoy and Schertzer, 1986; Schertzer and
Lovejoy, 1987). A review of various problems arising in remote sensing, geophysical fluid
dynamics, solid earth geophysics, and ocean, atmosphere, and climate studies can be found
in Schertzer and Lovejoy (1991).

The special case of weak turbulence (when the nonlinear terms are of second order
with respect to the linear terms in the governing equations) deserves particular attention, for
it is encountered in many oceanographic problems and can be treated by small-perturbation
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techniques. Examples of weak turbulence include two-dimensional and geostrophic
turbulence and surface gravity waves. Weak turbulence theory in its present form (Zakharov
et al., 1992) permits derivation of kinetic equations describing energy exchanges (and
exchanges of other quantities) among Fourier components, as well as derivation of
higher-order spectra (bispectra, etc.) representing Fourier transforms of various statistical
moments. Initially, this theory was developed for surface gravity and capillary waves
(Hasselmann, 1962; Zakharov, 1984). However, statistical phenomena in waves (e.g., the
existence of Kolmogorov-type spectra, the intermittency of breaking waves, and so on) have
analogies in other oceanographic fields. The elegant Hamiltonian formulation of nonlinear
wave dynamics (Zakharov, 1984; Zakharov et al., 1992) is a powerful tool for studies of
fundamental statistical properties of turbulent fields.

To better characterize the scope of statistical issues that the weak turbulence theory
or alternative statistical approaches could address, a brief review of some issues related to
wind-generated surface gravity waves is in order. Until recently, statistical studies of field
geometry were dominated by the work on Gaussian fields. Longuet-Higgins (1957, 1962,
1984) studied a large variety of geometrical properties of such fields with application to sea
surface waves. Among other problems, he considered statistics of specular points (the points
at which the gradient of the field is either zero or is specified depending on a viewing angle)
and of the wave envelope, which play an important role in wave dynamics and analysis of
sun glitter and radar backscatter from a wind-disturbed sea surface. A rigorous mathematical
analysis of envelope statistics, high-level excursions, field maxima, and other geometrical
properties of random two- and multi-dimensional Gaussian fields is presented by Adler
(1981). Some of these results have been successfully employed in sea wave studies.
Specifically, the theory of level crossings by two- and three-dimensional Gaussian- and
Rayleigh-distributed fields was employed to estimate statistics of whitecaps (breaking waves)
and of wave trains (Glazman, 1986; Glazrnan and Weichman, 1989; Glazman, 1991).
Observations indicate that whitecaps occur in clusters. Hence, the use of a simple Poisson
distribution (Glazrnan, 1991) for whitecap occurrence, which is known from the theory of
high-level excursions by the (Gaussian) wave slope field, may be insufficient. The statistical
theory of cluster point processes may be of great help here.

Linear methods are intrinsic for Gaussian stationary processes, and Fourier analysis
is a natural tool to use in the resolution of stationary random fields. These yield a global
resolution. However, in many situations, a resolution that is better adapted to local behavior
would be more appropriate and interesting. This could be local behavior in time or local
spatial behavior. One attempt in this direction makes use of wavelet transforms, which are
in effect local filters of the field (Farge, 1992). Such a method amounts to a linear analysis
of the field, although it could presumably be adapted to types of nonlinearity.

In the last few years, significant research effort in probability and statistics has been
directed toward the development of models of non-Gaussian and time-varying random fields.
Examples include stable fields; functionals of Gaussian, stable, and other fields represented
via multiple integrals; density processes and measure-valued diffusions; and fields described
by nonlinear stochastic differential equations. Applications of this research to oceanographic
phenomena would be of interest to oceanographers since the fields they study are frequently
non-Gaussian and time-varying random fields.
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One of the questions that arises in ocean remote sensing concerns the probability
density function (pdf) for the heights of specular points and for the slopes and curvature
radii of the surface. These pdfs are essentially non-Gaussian. A particularly interesting
problem is statistically characterizing the asymmetry of the sea surface shape about the
horizontal plane coincident with the mean sea level. This asymmetry is responsible for the
deviation of the mean height of the specular points from the mean (zero-valued) height of
the surface itself. As a result, an error bias (known as the sea-state bias) appears in
altimeter measurements of the sea level. Mathematical analysis of such non-Gaussian
surface properties is based on approximate joint pdfs for surface height and slopes.
Following the work by Longuet-Higgins (1963) in which a truncated Gram-Charlier series
expansion for the joint pdf was derived, the sea-state bias has been related to various
spectral moments (Jackson, 1979; Srokosz, 1986) and ultimately expressed in terms of
wind-wave generation conditions. While a simplified case of a one-dimensional surface has
been studied, a two-dimensional case needs additional effort. The estimation of joint pdfs
for dependent random sequences is reviewed, e.g., by Rosenblatt (1991). Further statistical
effort in this direction could greatly facilitate analysis of biological and other oceanographic
multidimensional processes.

The arrival of supercomputers opens new avenues for numerical modeling of complex
processes. Now, for instance, numerical simulation of electromagnetic scattering by
individual realizations of the random sea surface has become feasible. In this regard,
simulated non-Gaussian random fields that satisfy basic conservation laws of fluid dynamics
represent a great interest. A possible way of constructing individual realizations of a random
field might be via the use of Wiener-Hermite polynomials (i.e., the Wiener-Ito expansion
(Major, 1980)) in which the functional coefficients are determined on the requirement that
the field yields the correct cumulants up to a certain order. Although bispectra (in the
frequency domain) for surface gravity waves have been known since the work by Hasselmann
et al. (1963), cumulants above second order for the surface's spatial variation have not been
studied. In the literature on large-scale ocean dynamics (two-dimensional and geostrophic
turbulence), the Wiener-Ito expansion has never been used, although it appears to be most
relevant. Estimation of the cumulant spectra is discussed in the pioneering work of
Brillinger and Rosenblatt (1967). See also Rosenblatt (1985) and more recent material in
Lii and Rosenblatt (1990).

STATISTICAL RESEARCH OPPORTUNITIES

There are many statistical research opportunities in the realm of non-Gaussian
physical oceanographic random fields on which progress would be desirable. Some specific
topics worthy of investigation are the following (also see related issues in Chapter 2):

1. Models of non-Gaussian and time-varying random fields: (a) probabilistic analysis
of different models of non-Gaussian or nonstationary or time-varying random
processes and fields (e.g., stable fields, measure-valued diffusions, density
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processes, non-Gaussian generalized fields, and so on), (b) structure of random
fields with long-range dependence, and (c) non-Gaussian time series;

2. Theoretical models and techniques of simulation of non-Gaussian random fields
with prescribed statistical properties, for example, (a) known moments up to some
order, (b) known tail behavior of multivariate probability density functions, and
(c) known statistics of extremes;

3. Extrema, sample path behavior, and geometry for non-Gaussian random

processes and fields;

4. Inference and analysis of point processes with applications to oceanographic data;

5. Analysis of the Navier-Stokes system driven by Gaussian and non-Gaussian white
noise;

6. Analysis of random fields that appear as solutions of stochastic partial differential
equations (of special interest are equations driven by non-Gaussian noise or
noises over a product of time-space and location-space);

7. Wavelet analysis of random fields with application to oceanographic problems;
and

8. Statistical problems for non-Gaussian data (see models of particular interest in
2. above): (a) modeling (model identification, parameter estimation, and so on),
(b) data analysis of irregularly sampled points on a field, (c) quantile estimation
from dependent stationary processes and fields, (d) estimation problems for
random fields given the types of sampling or observational layouts that are typical
in oceanography, and (e) estimation problems for samples from non-Gaussian
random fields.
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9
ENCOURAGING COLLABORATION BETWEEN

STATISTICIANS AND OCEANOGRAPHERS

Offered for the purpose of encouraging successful collaborations between statisticians
and oceanographers, the following conclusions, observations, and suggestions are based on
information that the Panel on Statistics and Oceanography gathered in this study, on the
panel discussions that took place in preparing this report, and on the panelists' own
experience and knowledge concerning cross-disciplinary research and collaborative efforts.
The panel believes understanding and appreciating these matters are as important to the
encouragement and accomplishment of statistical research in physical oceanography as are
the descriptions of statistical research opportunities discussed in Chapters 2 through 8.

CONCLUSIONS

1. There are many opportunities for statistical research in biological, chemical,
geological, and physical oceanography, far more than this report can address (owing to
constraints of time and resources). This report thus represents a first step, focusing on
challenging statistical issues in physical oceanography. However, the statistical problems it
describes are universal, and progress on them would benefit the other oceanographic
disciplines and also contribute to a better understanding of the coupled ocean-atmosphere
system, weather patterns, and global climate change.

2. Many sophisticated statistical techniques are used routinely in physical
oceanography. Nevertheless, in numerous general areas collaboration between
oceanographers and statisticians could contribute to improving currently used models,
analysis techniques, data assimilation methods, visualization methods, and so on. Examples
of such areas identified in this report include multiple-scale variability of oceanographic
fields; use of Lagrangian data in descriptions of ocean circulation; ocean feature
identification; pictorial representation of oceanographic data; interpolation, smoothing,
filtering, and prediction in the context of oceanographic data; comparison of oceanographic
models and data; and non-Gaussian, nonstationary random fields.

3. Identifying research areas of mutual interest and need is basic to achieving results
of genuine value to all participants in cross-disciplinary projects; another crucial requirement
is providing an environment that encourages and sustains individuals who embark on
collaborative research. Although exploring this second issue was beyond the scope of this
study, the panel became increasingly aware during its deliberations of just how difficult it can
be to engage in truly collaborative, cross-disciplinary work. There are many possible reasons
for such difficulties (see, e.g., NRC 1990a): different parties in a cross-disciplinary
collaboration may have different motivations or different disciplinary imperatives; there may
be institutional impediments due to the traditional organization of separate disciplines within
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an institution; there may be inherent obstructions to peer-reviewed funding or publishing of
cross-disciplinary research (for instance, in defining what constitutes a peer); and there may
be contextual scientific obstacles (since the multifaceted system under study may not fit into
traditional categories for scientific investigation).

Without attempting to specify particular remedies, the panel includes below a few
generic observations and outlines some possible initial approaches to encouraging
collaborative research, especially between statisticians and oceanographers. The recent
publication of several excellent studies and reports addressing cross-disciplinary research in
various contexts (e.g., NRC, 1987; Institute of Mathematical Statistics, 1988; NRC, 1990a;
see also Goel et al., 1990; Gnanadesikan, 1990; Hoadley and Kettenring, 1990), together with
heartening signs of an improving environment for such activities (Crank, 1993; Harris, 1993),
suggests that attention to the value of collaborative research is increasing and that work
toward facilitating it will be ongoing.

OBSERVATIONS AND SUGGESTIONS

1. The need for clear communication and substantive interaction among collaborating
researchers from different disciplines suggests the desirability of their working together at
the same physical location for a significant period of time on specific problems to which both
parties can contribute needed expertise. Funding agencies and research institutions could
stimulate such interactions (a) by sponsoring workshops on well-delineated topics - drawn,
for example, from the research areas discussed in this report -that are best addressed by
a collaborative effort; (b) by providing for postdoctoral fellowships, senior research
sabbaticals, and graduate student residencies that would enable statisticians to work with
oceanographers at oceanographic research institutions; and (c) by sponsoring a series of one-
or two-week short courses on oceanography for statisticians in which specialists would review
selected topics and indicate open areas of research. It is much more likely that statistical
research on one of the physical oceanographic challenges described in this report will
produce valuable results if that research involves continuous interaction with an
oceanographer who is versed both in the nuances of that challenge and in the practical
oceanographic realities surrounding it.

In all such considerations, the panel encourages active cooperation between
statisticians and oceanographers at agencies that fund research in these disciplines.

2. Effectively communicating the results of successful collaborative research -and

thereby increasing understanding of its value in addressing complex problems -includes
having the results published in journals that are well regarded in the relevant disciplines.
The panel suggests that, as an initial step, one or more of the major statistical journals could
publish a special section or issue on statistics and oceanography designed to increase
awareness of the research opportunities in that area. This would encourage interaction
between statisticians and physical oceanographers, increase the visibility of the results of
successful collaboration, and set a precedent that could stimulate other highly regarded
disciplinary journals to publish statistics and oceanography cross-disciplinary papers.
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3. Promoting and nurturing cross-disciplinary research in statistics and physical
oceanography, which will likely involve broadening the educational base of prospective
researchers as well as the criteria by which their later efforts are rewarded, can be fostered
now (a) by university statistics departments that stimulate cross-disciplinary interactions and
learning and encourage statistics undergraduate and graduate students to obtain an "applied"
minor in some other area, with oceanography being but one possibility (others being physics,
engineering, geology, and so on), and (b) by funding agencies that promote a broader
orientation in graduate and undergraduate statistics education.

It is likely that many people will be encouraged to undertake the significant efforts
interdisciplinary statistics and oceanography research requires if funding agencies offer
prospective cross-disciplinary collaborators some likelihood of obtaining research support,
if recognized journals in an individual's discipline offer sufficient flexibility in publishing such
cross-disciplinary research papers, and if research institutions accord cross-disciplinary
research the same level of professional recognition (in promotion and tenure considerations)
as is currently given to research in the individual disciplines.

Many major national and global concerns involve scientific research challenges that
are cross-disciplinary in nature, with weather prediction and global climate change being but
two examples related to the focus of this report. Encouraging the pursuit of such cross-
disciplinary research opportunities can benefit both science and society by focusing scientific
attention on research issues relevant to societal concerns. Encouraging the pursuit of cross-
disciplinary research opportunities in statistics and oceanography will certainly benefit both
disciplines: application of sophisticated statistics techniques will lead to better descriptions
and improved dynamical understanding of oceanographic phenomena, and the statistics
research challenges presented by oceanographic issues will inspire the development of new
statistical techniques.
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