
"U AD-A268 517
USA ISEC
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

SAMeDL:
What Is It?

Why Is It Important?
Who Can Help?

ASQB-GI-92-014

September 1992

AIRMICS
115 O'Keefe Building 93-19668
Georgia Institute of Technology
Atlanta, GA 30332-0800

93 .)0 4

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
REPORTDOCUMENTATIONPAGEExp. Date: Jun 30, 1986

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable) N/'A

6c. ADDRESS (City, State, and ZIp Code) 7b. ADDRESS (City, State, and ZIP Code)

N/A
8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Software Technology Branch, ARL AMSRL-CI-CD

80. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.
Atlanta, GA 30332-0800

11. TITLE (Include Security Classification)

SAMeDL: What Is It? Why Is It Important? Who Can Help?

12. PERSONAL AUTHOR(S)

MS. Deb Waterman

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month. Day4 15. PAGE COUNT

Technical Paper FROM Apr 91 TO Seapt 92 Sept 15, 1992I 15

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Ada Database Access, SAMeDL, Ada extension mod-
ule, SQL

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report details the research efforts into the SQL Ada Module Data-
base Description Language (SAMeDL). Four compilers are presented
(Oracle, Informix, XDB, and Sybase) that allow Ada application programs
to access database using a standard SQL query language. Copies of the
compiler can be obtained from the DoD. Ada Joint Program Office
703/614-0209.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIED/UNLIMITEDC] SAME AS RPT. Q DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

LTC David S. Stevens (404) 894-3110 AMSRL-CI-CD

DD FORM 147'1 0. 049 83 APR edition may be used until exhausted.
All other o..,cions are obsolete. SECURITY CLASSIF!CATION OF THIS PAGE

This research was performed by Statistica Inc., contract number DAKF11-91-
C-0035, for the Army Institute for Research in Managemexit Information,
Communications, and Computer Sciences (AIRMICS), the RDTE organization of
the U. S. Army Information Systems Engineering Command (USAISEC). This final
report discusses a set of SAMeDL compilers and work enviornment that were devel-
oped during the contract. Request for copies of the compiler can be obtained from
the DoD Ada Joint Program Office, 703/614/0209. This research report is not to
construed as an official Army or DoD Position, unless so designated by other
authorized documents. Material included herein is approved for public release,
distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn E. Racine, Chief ames D. Gantt, Ph.D.
Computer and Information Director
Systems Division AIRMICS N I• RA

I NTIS CRAMI
DTIC iAB

B y

,:•t L - ; ;.'., --, 3 Avalability CoCOs
Avail and / or

Di At Spcial

2 I

SAMeDL

What is it?
Why is it Important?

Who Can Help?

SAMeDL: What is it? Why is it important?
Who can help?

Background
In 1989, ANSI promulgated two Ada/SQL

As the Ada programming language becomes bindings that specify standard approaches for
more widely used for information systems devel- binding Ada applications to SQL databases.
opment, a viable interface between Ada and off- Unfortunately, the ANSI bindings do not support
the-shelf database management systems (DBMS) user-defined types and the safe handling of "null"
is a critical requirement for success. To ensure values in a database. Furthermore, the ANSI
longevity of the applications software, as well as standards do not enforce the extensive compile-
to enhance maintenance and reliability, most Ada time checks that Ada developers have come to rely
information systems developers prefer to use on, requiring instead the use of expensive run-time
established standards to support their development error traps.
activities. For information systems, this prefer-
ence for standards means using Structured Query Impact on Developers
Language (SQL) as a means of accessing commer-
cial DBMS products. The benefits normally associated with the

use of Ada (i.e., maintainability, reusability,
SQL and Ada are both ANSI (American portability, etc.) are primarily dependent on the

National Standards Institute) and DoD (Depart- application of sound software engineering prin-
ment of Defense) standards. Both standards are cpe.Ueo rvnsfwr niern

alsoreqiredforthedeveopmnt f Do inor- ciples. Use of proven software engineering
also required for the development of DoD infor concepts, such as information hiding, abstraction,
mation systems, and for other applications which mdlrteccnpyofi h omo oe

requre he ue o a DMS i~e. comandand modularity, etc., can pay off in the form of lower
contrequire sthemuse. UofratD te., comn tand ofmaintenance costs, and higher levels of portability
conterlcing sytes) UnfS isorua lyhex ask nof- and reuse. Ada readily supports the application of
interfacing Ada and SQL is complex and non-sonsftaengerigeciqsad

trivial in scope. The underlying computational methods, which is the dominant strength of the

models for the two languages are very different, language.

and they were not explicitly designed to work with

each other. By comparison, SQL was developed to
support the definition, manipulation, and control

ABMSimplthough tios an AS standard, mosr of data in a relational database. As a special-DBMS implementations of the standard offerpupslaggeordtbeoeainSQ

".extensions" which provide more power to DBMS purpose language for database operations. SQL
"users.xtenseion-s"twaicproidfeares provder twas not designed to be used in conjunction with ausers. These non-standard features provide powerful programming language such as Ada.

pragmatic real-world capabilities to users, while at Unlike Ada, SQL does not provide support for

the same time significantly complicating the task applying the principles of software engineering.

of information systems developers. If a developer The requirement for using SQL in combination

makes extensive use of non-standard SQL fea- with Ada applications code can cause major

tures, the portability of the application can be polm in accacionperformance por

severely degraded. problems in accuracy, performance portability,
and reuse.

Embedded Versus Module SQL
Approach Although the ANSI Ada/SQL bindings

include both an embedded standard and a module
standard, vendors are not required to provide both

Historically, vendors of SQL products forms of the bindings to be ANSI compliant. Most
almost always provide access to a DBMS by DBMS vendors offer an embedded Ada/SQL
allowing users to "embed" SQL statements in their capability, and the embedded form is expected to
application software. In the "embedded" ap- be the predominant product offering in the future.
proach, the developer places DBMS manipulation Even though the module form of the ANSI binding
(SQL) statements at the appropriate points in the helps in developing more portable applications, it
application code, intermixed with the code written does not support user-defined types and the safe
in the application's programming language. A handling of "null" values in a DBMS.

pre-processor then takes out the SQL instructions

and replaces them with the DBMS-specific calls. The Importance of Handling

A "module" approach, by comparison, "Null" Values
encapsulates all of the SQL statements in separate
modules. The application program then makes The safe handling of "null" values in a
calls to the SQL modules, rather than having the database is of special concern to information
SQL statements intermixed with applications code systems developers. Null values are peculiar to
throughout the software system. For the ANSI relational database processing, as they indicate
Ada/SQL bindings, both an embedded and a missing or unknown information. The Ada
procedural or module form are included. In the language itself does not have a means of identify-
procedural form, access to the DBMS is through ing or handling unknown data. By comparison,
Ada procedure calls to the SQL procedures SQL provides a set of operators which handle
contained in the SQL module. incomplete information. These operators are used

by SQL for its own processing, but the operators
The embedded SQL approach results in are not "exported" to the application programming

applications code that contains SQL statements language.
throughout the entire program. Given the propen-
sity of DBMS vendors to provide "extended" SQL In SQL, data objects in an application
features in their products, the result of an embed- program have two parts: a variable which holds
ded SQL approach is an application that is inextri- the value of the item; and an "indicator" which
cably tied to a particular DBMS. An information indicates whether or not the value is null. In other
system developer sacrifices virtually all portability words, the "indicator" shows whether the value is
and future reuse when using an embedded SQL meaningful for the operation being performed.
approach. Improper handling of these indicators can lead to

subtle software errors, where seemingly valid
In the module approach, the ability to results are wrong.

encapsulate the SQL statements in a single module
provides an opportunity for increased portability A good real world example of the impact of
and independence from product-specific features. a null value would be the instance in which a
The module approach is more in line with the database concerning personnel information is
application of sound software engineering prin- polled to calculate the average age of employees.
ciples, and it allows the information systems Since an employee is not required to disclose his/
developer to more thoroughly exploit the power her age, the age field in the database may be
and features of the Ada language. missing, or "null." In this example, if the null

SA D:Wa tIWyI Ir orat hoCnHl

value is included in the calculation (no value for - The concrete interface is a set of Ada
the age, but the employee is included in the divisor specifications that define the SQL
for the average), the result is not accurate. procedures needed by the abstract

module.

SAMeDL-ts origins, implemen- -tThe concrete module is a set of SQL

tation, and benefits procedures that implement the con-

crete interface.
The challenges pertaining to the use of Ada

and SQL in a well-engineered information system To implement the SAME methodology,
led to the formation of the SQL Ada Module SAMeDL provides the language constructs from
Extension Design Committee (SAME-DC) at the which three types of modules are written: the
Software Engineering Institute (SEI). The com- definition module, the schema module, and the
mittee developed the SQL Ada Module Extension abstract module. The three modules together
(SAME) methodology to support and extend the comprise a compilation unit for the SAMeDL
modular approach to using Ada and SQL in compiler. The definition module contains the
database applications. The language which is used declarations of domains, constants, records,
to implement SAME is the SQL Ada Module enumerations, exceptions, and status maps. The
Description Language, or SAMeDL. schema module contains the declaration of tables,

views, and privileges. The abstract moduleUsing the SAME methodology requires that contains procedure and cursor declarations.

SQL statements be separated from the Ada appli-

cation code, and encapsulated in separate modules. The SAME methodology uses Ada features
The SQL statements are not embedded in the Ada to provide the following services to Ada/SQL
packages, thus isolating the Ada application from applications:
the DBMS design and implementation.

Safe treatment of SQL data that may
SAMeDL is designed to facilitate the contain null values. SAMeDL pro-

construction of Ada database applications that use vides robust treatment of SQL data

the SAME methodology. The SAME method within application programs which

involves the use of an abstract interface, an effectively prevents use of null values

abstract module, a concrete interface, and a aseth hey were ot null Thue
concrte moule.as though they were not null. The

concrete module. SAMeDL treatment requires no run-

time conversion of non-null data.
- The abstract interface is a set of Ada

package specifications containing the Flexible handling of DBMS errors and
type and procedure declarations to be exceptional conditions. This feature
used by the Ada application program. allows application designers to decide

which conditions are expected and
- The abstract module is a set of bodies which are irrecoverable. However, it

for the abstract interface. These prevents any such DBMS conditions
bodies are responsible for invoking from being "missed" by the applica-
the routines of the concrete interface, tion.
and converting between the Ada and
the SQL data and error representa- * Enforcement of a strong typing
tions. discipline to SQL statements and user-

defined types. This service provides

I1•[=rv e

I -"5: Lr ha - s, lh I's important, Who Can Help

an extended database description concentrate on the design and development of the
using abstract, application-oriented Ada application code. The simplicity of working
types as well as the strong typing in a single language pays off significantly in the
discipline for the SQL statements. form of increased productivity, higher quality,

fewer errors, more straightforward project track-
Applying the SAME methodology enhances ing, and higher team morale.

the following attributes of an Ada information
system: Real World Experience with

Conceptual Clarity It is good design SAM DL
practice to separate the database
statements in an application from the In September 1991, Statistica. Inc., in

application logic. This allows the Reston, Virginia, was awarded an Ada Technology

application's information needs to be Insertion Program (ATIP) contract to explore the

captured during the design. merits of SAME on a real information system
application. The project used SAMeDL to rede-

"Portability The great bulk of the code sign the SQL interface of an existing application.

of any database application lies in the in this case the U.S. Army's Standard Installation

application's logic, as distinct from Division Personnel System (SIDPERS-3).

the database logic. Since SAME Ada SIDPERS-3 was originally designed using another

applications contain no SQL state- Ada/SQL binding.

ments, they port from one DBMS to
another without modification. Statistica approached the project in two

phases. The first phase involved the replacement
" Simplicity Given the differences of the SIDPERS-3 SQL binding layer with a

between Ada and SQL (i.e., the syntax duplicate layer implemented in SAMeDL. The
and semantics of the two languages), Ada application design and code remained un-
coding in both languages simulta- changed. The purpose of the first phase was to
neously is very confusing. determine the ease of converting an existing Ada/

SQL application to SAMeDL. In the second

These attributes have significant payoffs for phase, Statistica redesigned and re-implemented
the developer. The SAME methodology, by virtue the SQL binding, to demonstrate the benefits of an

of its enforced modularity and encapsulation, up-front SAME design approach.

supports the use of object-oriented software
development for Ada-based information systems. Phase 1 Approach
The conceptual clarity of the approach contributes
to the early detection of errors in the development In the first phase of the project, Statistica
cycle, which helps to lower the cost of finding and identified two Computer Software Units (CSUs)
fixing software problems during development, from the SIDPERS-3 application for re-implemen-

tation using SAMeDL. These CSUs, listed in
The modular, encapsulated nature of SAME Table 1, were selected on the basis of the function-

also facilitates the management of the develop- ality and services required of the database. To
ment team, and aids in the assignment of discrete facilitate the analysis and measurement of perfor-
tasks to staff members with particular levels of mance, each CSU in the application layer repre-
expertise. For example, SQL experts can focus on sents a complete thread of control.
the statements required to operate the DBMS
being used, while the Ada software engineers can

II r. -I *] -*qilil~ lII[]j-tlj[l-

CSU T* DnmDabs _mx. packages. These packages declare subtypes which
Sem-s sLoc" correspond to each column in the database.

SgssgP MoA Ths CSUniraiycaluatesa Sued 2.86 The SIDPERS-3 team also developed a
and ineres CNmOn pMAnt UIndsa Man-Machine Interface (MMI) to handle all user
and penalssl PCN AAA,-20g, lns4wI

DAFom 33SS-E, Promtoon NO interfaces, including reports. Data is passed
Pa•,W•t Sht between the MMI and the Ada application code as

ranw Standing List ThsCSUrefmasoktlia Selec 2,150 string objects. The Types packages mentioned in
Removal Acam Irm d ES-,E6 Ptnow DeletStrrdnV List and geoneras the previous paragraph also serve the MMI by

PCN AM.034, a Ra moa eliminating a conversion layer between the
Fromi LocM Rftwawndedelmntglar
t mema application and the MMI.

Sowceurnes ot Code

Table 1: CSUs in the Ada Application Layer

The original SIDPERS-3 implemen-
tation used a commercial database product. Mo
XDB, which includes an SQL module
compiler that provides the binding between men""
the Ada application code and the XDB
relational database product. Using the c,::::
XDB binding, the programmer declares the S stn
SQL types and statements required by the Ad I..

application in the SQL Module. As shown A•,•t.

in Figure 1, the SQL Module Compiler caft
processes the SQL Module to generate Ada
package specifications and bodies. Ssua,

With the XDB binding, the Ada
packages are dependent upon the Wr
SQLStandard, SQL_Definitions, and
DynamicSQL packages supplied by
XDB. At this point in the process, the
SQL interface is compiled with the appli- X ,
cation coded and linked into the Ada me,,,

executable.

Figure 2 (next page) shows the
design strategy used by the SIDPERS-3 " I t,

developm ent team . Early design decisions

were predicated on the use of XDB data- Mc, m

base product. with its product-specific I...........................
Ada/SQL binding. Since neither the
binding nor the database product itself
support strong typing, the SIDPERS-3
design team created a layer of Type Figure 1. SQL Module Poes(xOS).

, SAVeL Wha It Is Wh Itsln#S~tWoCnHl

MI

,u Iaf PIi P., ILeen
C Re• Geneatree

Modue ompie

Databas Fiel
so Pon Legendmco

- ~lndm conrmol flow

FIgure 2. The SIDPERS-3 Prototype Design Strategy

To avoid the bulky processing required to The next step in the first phase of the project
test the "nuFness" of data values, the SIDPERS-3 was the modification of the Database Support

design team created the database with NOT NULL packages. Minor changes were made to these
columns. In the Database Support Layer, data packages, to remove CommitWork and Rollback
retrieved from the database is explicitly converted procedures. Since those procedures are provided
to SIDPERS-3 types before processing by the as standard constructs by SAMeDL, they were
application layer. The Database Support layer declared in the SAMeDL abstract modules.
isolates the SIDPERS-3 application code from Procedures or functios were added to the Data-
changes that may occur to the database. base Support packages to convert the SAMeDL

types to SIDPERS-3 data types, to minimize
In the first phase of the SAMeDL project, changes to the application layer. Finally, the

the SQL Module files (written in SQL module exception handlers were removed and replaced by
language) were replaced with SAMeDL modules. the SAMeDL error handling routines.
This step was completed quickly, since only
certain tables and columns were required for the First Phase Results and Analysis
selected CSUs. The SAMeDL Modules were then
submitted to the the SAMeDL compiler for The cost of converting to SAMeDL on the
generation of the Ada packages. The generated SIDPERS-3 project was low. The ease of conver-
Ada packages replaced the Database Access files sion can be attributed to the Module binding
from the original SIDPERS-3 model (refer to provided by XDB and the layering approach used
Figure 2). to isolate the database from the applications code.

With the exception of some error handling, the

S

conversion did not derive any benefits from the SIDPERS-3 SQL interface to the SAME
converting to SAME. The strong typing was lost architecture. To realize the extensive benefits of
when the data moved into the application layer. SAME, the SIDPERS-3 application would have to
Also, since the database was created with NOT be redesigned and re-implemented using
NULL columns, the application did no' take SAMeDL-an effort which was the impetus for
advantage of SAMeDL's handling of null fields. the second phase of the project.

The single SAME-related benefit on the Phase 2-Redesign and
SIDPERS-3 conversion was-a further isolation of Re-implement with SAMeDL
the application software from a change to another
DBMS. That benefit would be negated, however,
if the new DBMS did not support the SAME The second phase of the SAMeDL project

architecture. involved the redesign and re-implemeniation of
the same SIDPERS-3 CSUs that were converted in

Several issues should be addressed when the first phase. Instead of a simple conversion,

considering the adoption of SAME for Ada and rather than starting with a new application, the

database applications. This is especially true for project tea.i redesigned and re-implemented the

an application where the preliminary design has same CSUs that were listed in Table 1. This

already been completed. Some of the more approach was taken to ensure an accurate baseline

important issues include the following: for comparisons between the design methodolo-
gies, with both methods being used on the same

" How is the MMI designed? Can the functional application.

MMI be easily altered to use
SAMeDL types? The MM1 developed The second phase was implemented using

for SIDPERS-3 was designed to meet five steps:

the specific requirements of
SIDPERS-3. The MMI, therefore, 1. Analyze the data reouirements of

directly controlled the design of the the CSU to identify obiects or
application. The original SIDPERS-3 sgeciric data grouns. For example,

implementation was designed with data identifying a soldier, such as
weaker user-defined types throughout social security number (SSN) and

the application layer to meet the name, comprise a Soldier object. The
interface requirements of the MMI. data identifying a Unit (i.e., Unit
Converting to SAMeDL would Identification Code (UIC) and name)
require major modifications to the are attributes of the Unit object.
application layer. 2. Build SAMeDL domains and

"* What is the current database interface? sugnort packages around each
Does the current design isolate the Weidct. For each object. a SAMeDL
database? Does the application definition module was written to
directly reference the SQL types? declare the attribute domain of the

* What is the size of the system? The object. A corresponding SAMeDL
number of changes and level of effort abstract module was writ en to
for a SAMeDL conversion increase provide all of the datah'.se operations
proportionately with the size of the required to use thc object.
system. 3. Modify the database schema to

rearesent the real world. Where

The "bottom line" result of the first phase appropriate, the project team changed
effort was that no value was added by converting

M W tI y - o -t I'a W n

database columns to allow null values, implement the database calls in the
The project team then created a abstract module. This third set of
SAMeDL schema module to match packages becomes the concrete
the new database schema. interface in the SAME architectire.

4. Comrile SAMeDL modules. For 5. Redesign and modify the aaolica-
each definition module, the SAMeDL tionJlavr, The project team identi-
compiler generates an Ada specifica- fled several goals in redesigning the
tion packaL.c n .-hich derived types application layer:
are declrae for each domain. Addi-
tionall•. :he SA\,IeDL compiler a. Replace the weaker subtypes in the
creates a set of Ada packages for each Types package with SAMeDL derived
abstract module. This set of Ada types. The objective of this goal was
packages is the abstract interface to remove the redundant type declara-
defined in the SAME architecture. In tions and enf,'rce compile-time checks
the XDB version of the SAMeDL through derived limited private types.
compiler. a third set of packages
(actually generated by the XDB b. Hide implementation details of the
module compiler) is required to Data Stores by encapsulating Data

Stores within the support packages.

M.•.• l iLegendlDaab s Fil.u p r

SupportGe..ra.ted by the
MoOuue Compiler

I A* GeneratedJ by the

SSAMeDO. Comple;~

Showr dependencies

aIndicates control flow..

Figure ~~~ ~ SAD 3.ThoSmpLReeiglAcitctr

....,ho d p nd nce

. Wha_ It I, I v i IW

The objective for this step was to requires modifications to, and recompilation of,
utilize information hiding and to give the application layer.
the design a more "object-oriented"
flavor. To maintain strong typing, either a conver-

sion layer must be inserted between the applica-
c. Retain strong data typing up to the tion and the MMI (see Figure 4). or the MMI must
point where the MMI controls the be designed to reference the SAMeDL types
data. The objective here was to directly.
process the data using the operations
defined for each data type and take Conclusions
advantage of compile time, rather that
run time, error detection. SAMeDL is another programming language

that can be as complex to use as is Ada. It is a
The resulting SAMeDL Redesign Architec- hybrid of both Ada and SQL, offering the best

ture is shown in Figure 3. features of Ada, and allowing the user to specify

database services in SQL-like statements. The
Phase 2 Analysis user must therefore be proficient in both Ada and

SQL, while learning a third programming medium.

To take full advantage of the many benefits Program managers must consider the impact of

offered by the SAME architecture, SAMeDL must training and learning curve delays on SAMeDL

be the basis for the design of an Ada/SQL data- application develop nent schedules.
base application. Once the database design "as
become stable, the SAMeDL modules can be The SAME methodology provides a mecha-

designed and written. Database stability is the key nism for enforcing good software engineering

to success in implementing SAMeDL-since the during the development of new information

application layer is built on top of the SAMeDL systems. However, the gains in quality are not

data types, any change in the database schema free. Database stability, user interface design, and
resulting in a change to the SAMeDL types user training are factors that must be considered by

any project developing a new application with

1SAMeDL.MMII
MMI_ _SAMeDL Tools

r" -4[SAMeDL Conversion "-i As a part of the SAMeDL project on the
Ia~ SIDPERS-3 application, a SAMeDL toolset was

Aplcao developed for four commercial database manage-

ment products (Informix, Oracle, Sybase. and

I XDB). Intermetrics, Inc.. developed the SAMeDL

I_ "-j Abstract Concrete Interface ' tools that were used during the project.

1 The toolset includes a SAMeDL compiler

DBMS and Module Manager. The Module Manager is a
library manager that maintains source code control
and performs consistency checks on SAMeDL

Figure 4: The SAMeDL Conversion Layers source code and its corresponding Ada/SQL
interface.

.0- *F

This document is a publication of the U.S. Government,
produced for the Ada Joint Program Office.

It is approved for public release.
Distribution unlimited.

Points of Contact for More Information

Ada Joint Program Office (AJPO) Ada Information Clearinghouse (AdaIC)
Room 3E118 c/o lIT Research Institute
The Pentagon 4600 Forbes Boulevard
Washington, DC 20301-3081 Lanham, MD 20706-4320
703-614-0208 800-232-4211 or 703-685-1477

Statistica, Inc. Intermetrics, Inc.
Ms. Deb Waterman Gary Tominovich
12200 Sunrise Valley Drive 7918 Jones Branch Drive
Suite 300 Suite 710
Reston, VA 22091 McLean, VA 22102

703-758-2533 703-827-2606
FAX: 703-758-0641

AD NUMBER DATE

DTIC ACCESSION

NOTICE

1. REPORT IDENTIFYING INFORMATION REQUESTER:

A. ORIGINATING AGENCY
1, Put your mailing address on

0- .41 A,41,1/' Ks /S reverse of form.
B. REPORT TITLE AND/OR NUMBER 2. Complete items land 2.

3. Attach form to reports

~ ~h~/~ ftmailed to DTIC.
C. MONITOR REPORT NUMBER 4. Use unclassified information

only.

D. PREPARED UNDER CONTRACT NUMBER DTIC:

d, 1, Assign AD Number.

2. DISTRIBUTION STATEMENT 2. Return to requester.

DTIC FORM 50 PREVIOUS EDiTIONS ARE OBSOLETE
DEC 80

