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PREFACE
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Principal Investigator throughout the study. This research effort and
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requirements for a Master of Science degree in Engineering Mechanics
through the Department of Aerospace Engineering at Mississippi State
University at Starkville, MS.
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CHAPTER I

INTRODUCTION

Background and Objective

In the last few decades, the Department of Defense has developed a

keen interest in the measurement of explosive phenomena. With recent

advances in strain gage technology, signal recording, and other related

fields, it has become possible to measure the ioads and stresses

produced by a wide variety of weapons. Previously, it was known that

Bomb X produced a certain amount of damage to a particular target. If

any of the parameters were to change, however, such as using different

bombs or hardening the target, only an educated guess could be made

regarding the change in the vulnerability of the target. Obtaining a

better answer normally meant constructing more targets and conducting

more tests. Such a procedure is dangerously slow and painfully

expensive in this age of rapid technological advances. It was

eventually realized, and correctly so, that test results must be

analyzed sufficiently not only to indicate how much damage Bomb X

produces, but how and why it produced the damage that it did. With

this knowledge, better judgements can be made regarding the target's

vulnerability under different conditions, with fewer tests and less

risk required.

-- 4 • m m1
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Numerous examples of this approach can be given. Airblast

measurements are obtained at various distances from developmental

munitions to define their effectiveness in imparting blast pressure.

Hardened structures, such as fighting bunkers or missile silos, are

instrumented with blast pressure gages and motion transducers to

characterize their response when subjected to explosive loadings.

Specially-configured charges, referred to as high explosive simulators,

are used to subject such structures to loadings that are characteristic

of those produced by nuclear explosions. These simulators are heavily

instrumented with airblast, ground motion, and ground shock

transducers, to evaluate the simulator's performance against the

desired load conditions. The pressures and stresses that must be

measured from high explosive tests such as these are very severe. The

blast pressure wave form displayed in Figure 1 is a representative

example. The peak pressure is approximately 173 MPal, the specific

impulse is 0.57 MPa-sec, and the pressure has not completely returned

to zero at the end of the plot. The severity of the environment,

coupled with the transient nature of the measurement, places extremely

difficult demands on the instruments used to obtain these measurements.

One instrument often used for making high-pressure airblast

measurements is the strain-gaged Hopkinson bar, or bar gage. The bar

gage is a simple device, consisting of a strain-gaged, high-strength

steel bar surrounded by a protective PVC jacket. One end of the steel

bar is placed at the desired measurement location, where the pressure

'A table of factors for converting SI (metric) units of measurement to Non-
SI units is presented on page viii.
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pulse is applied. This pressure pulse propagates down the length of

the bar as a stress wave with very little change of form. Figure 2

describes the propagation of the stress wave and the corresponding

strain gage output. When the stress wave is at position "A" in Figure

2, there is no strain gage output, since the stress wave has yet to

reach the strain gages. Once the stress pulse reaches them, however,

the strain gages produce a voltage which is linearly related to the

pressure input through a calibration factor. Eventually, the stress

pulse reaches the opposite end of the bar, where most of the pulse is

reflected back into the bar as a tensile stress wave. If the duration

of the stress pulse is sufficiently short, the strain gages will

completely record it before the tensile reflection arrives at the

strain gage position. For most problems of interest however, the

duration of the stress wave is long enough that the tensile reflection

arrives before the strain gages have completely recorded the stress

pulse. Consequently, the tensile stress wave travels from the bottom

towards the top of the bar while the "tail" of the initial pressure

pulse is still propagating downward from the top of the bar (Position

"B", Figure 2).

When the tensile reflection reaches the strain gage location, it

masks the "tail" of the pressure wave form, effectively hiding the

useful data. Such is the situation when the reflected stress wave is

at Position "C", Figure 2. The reflected tensile stress wave will

propagate up to the top of the bar and reflect a second time, but now

as a compressive wave. When the compressive reflection reaches the

strain gages, two reflections are superposed upon the data, as evident
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at Position "D", Figure 2. Reflections will continue to propagate up

and down the bar long after the initial pressure pulse is over,

assuming the cables and strain gages remain undamaged. Due to the

limitations of current data reduction techniques, only the data prior

to the first tensile reflection is considered to be valid, and the

subsequent reflections are discarded.

A technique of numerically "unfolding" the reflections to extend

the valid record length was proposed by Welch in 1983 (Reference 1). A

computer routine, based upon the D'Alembert solution to the basic wave

equation governing wave propagation in a thin rod, was used by White

(1985) to unfold several bar gage records (Reference 2). While the

technique appeared promising, no opportunities for comparing unfolded

bar gage records of a known input wave form occurred to establish the

method's credibility. Meanwhile, critics pointed out potential flaws

in the unfolding technique. In this thesis, an error analysis is

performed on the D'Alembert unfolding technique. The objective is to

ascertain the overall credibility of D'Alembert unfolding as a data

reduction technique for bar gage measurements.

Brief Historical Account

Bar gages are not new arrivals to the field of dynamic

measurement. As early as 1914, Hopkinson (Reference 3) reported the

first use of a cylindrical bar to measure peak pressure, and hence,

many bar gages to this date are referred to as Hopkinson bar gages. In

Hopkinson's method, the pressure to be measured is applied to one end

of the bar, while the magnitude of that pressure is deduced from the
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measurement of the momentum of a detachable timepiece at the opposite

end of the bar. Pressure as a function of time is not obtainable with

this technique (Reference 4).

Later in the century, electrical methods of strain and

displacement measurement were applied to the Hopkinson bar gage to

obtain pressure measurements as a function of time. Condensers and

microphones were used in conjunction with analog recording devices to

measure the longitudinal strains in the bar resulting from a dynamic

pulse applied at the end. In some instances, the motion of one end of

the bar was monitored to deduce the characteristics of the pressure

pulse applied to the opposite end. The advent of small, wire strain

gages permitted even finer measurements of the strain pulse propagating

down the bar. Researchers such as Davies (Reference 4), Fox and Curtis

(Reference 5), and Miklowitz (Reference 6) employed condenser and

strain gage technology to study the detailed wave mechanics involved

with the propagation of pulses in thin cylindrical bars. Their

research revealed phenomena such as pulse distortion and vibrational

modes of the bar, both of which apply to the use of the bar gage as an

airblast measurement device.

Baum, of the University of New Mexico Engineering Research

Institute (NMERI), was one of the first to use strain-gaged bars to

measure explosion effects. Specifically, he used bar gages to evaluate

the performance of high explosive charges designed to simulate the

dynamic load environments produced by nuclear explosions. Baum used

foil strain gages attached to a high-strength steel bar, which was

surrounded completely by a steel sleeve and a short water jacket near
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the top of the bar (Reference 7). These added features were designed

to contend with the ground shock and high-speed detonation products

peculiar to high explosive simulators. Other groups, such as S-Cubed

(1a Jolla, CA) and the U.S. Army Engineer Waterways Experiment Station

(WES), have produced bar gages similar to those of NMERI with good

results. However, since some simulators and munitions have pulse

durations on the order of many milliseconds, it has been impractical to

design bar gages which measure for a sufficient length of time before

the measurement becomes complicated by the arrival of tensile

reflections from the bottom end of the bar gage.

Research is currently underway to measure the late-time airblast

histories which are masked by the reflections within the bar gage. One

approach taken by S-Cubed is to create an end condition for the bar

gage which will damp out all reflections (Reference 8). Another

approach is to develop other gage types which will capture the late-

time airblast data. The data from the bar gage could then be

considered in tandem with that of the late-time airblast gage to "piece

together" the airblast measurement. If numerical unfolding can be used

to remove the reflections from the bar gage record, a very simple and

direct remedy might be obtained for extending the bar gage record

length. Even unfolding just one tensile and compressive reflection

would more than double the record length, providing the analyst with

valuable data that was previously unavailable. However, the

practicality of such notions has been subject to debate, and hence, is

addressed in this thesis.
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Approach

In order to unfold a bar gage record, the low-frequency wave

speed, c., and the reflection coefficients for each end of the bar must

be identified. The author contends that errors in identifying these

parameters lead to considerable error in the unfolded result. Other

error sources exist, such as dispersion and material nonlinearities,

but these errors are thought to be less significant. Consequently, an

effort is made in this thesis to quantify the uncertainties due to

incorrect wave speed and reflection coefficients, while the other error

sources are merely mentioned. Classical uncertainty analysis, as

presented by Coleman and Steele (Reference 9), is adhered to as much as

possible throughout the thesis. For the case of c., classical

uncertainty analysis proves difficult, so a numerical approach is

employed to give insight into the errors resulting from incorrect wave

speed.

The WES bar gage is described in detail in Chapter 2. Its

installation and operation is discussed to aid the reader in

understanding how tensile reflections appear and disturb the

measurement. In Chapter 3, the mathematics and theory pertaining to

wave propagation in a bar gage, and the D'Alembert unfolding method, is

presented. The assumptions and limitations of D'Alembert unfolding are

also pointed out. An error analysis of the D'Alembert unfolding

technique is conducted in Chapter 4. A numerical approach is used to

determine the error due to the use of incorrect wave speed. An

analytical solution is developed to determine the error caused by the

use of incorrect reflection coefficients. These errors are then
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combined to give the uncertainty in the unfolded wave form. The error

analysis is demonstrated using actual field data in Chapter 5. Bar

gage records from an explosive test are analyzed and unfolded. The

resulting unfolded wave forms are compared to those acquired by other

gage types to draw conclusions about the performance of the bar gages.

Lastly, the conclusions and recommendations of the thesis are discussed

in Chapter 6.



CHAPTER II

BAR GAGE DESCRIPTION

A detailed cross-section of a typical WES bar gage is shown in

Figure 3. The heart of the instrument is a 1-in. diameter, high-

strength steel bar with four semiconductor strain gages installed in a

full bridge configuration at a prescribed location down the length of

the bar. The lengths of typical bar gages vary, depending on the

measurements to br obtained, but typical lengths might range from 2 to

7 meters. Correspondingly, strain gage locations typically range from

0.6 to 2 meters from the top end of the bar. The steel bar is placed

inside a 3-in. diameter PVC pipe. The pipe serves to temporarily

protect the bar from lateral loadings produced by the explosion,

whether through airblast or ground shock. Under harsh loadings, the

PVC pipe may fail, but generally not until after the measurement has

been obtained. Wooden spacers center the bar within The PVC pipe.

The bottom end (or dump end) of the bar gage rests on a stack of

alternating disks of styrofoam and wood. This arrangement was chosen

to simulate a free end condition at the dump end, causing almost all of

the pressure pulse to be reflected back into the bar. This was thought

to be the most advantageous situation for the subsequent unfolding of

the wave form. It has since been suggested that other dump end support

conditions would be better, and these are being considered for future

11
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testing. At the top end of the bar gage, the annulus between the steel

bar and the PVC pipe is left open, except for a small quantity of water

added shortly before conducting the test. This annular column of

water, extending from the top end of the bar to a short distance above

the strain gages, is called the water jacket.

The water jacket is an important part of the bar gage. Often, the

top end (or measurement end) of the bar gage is placed in contact with,

or very near, explosive charges. Detonation of the explosive produces

very high-pressure, high-temperature gases. Early bar gage designs

without water jackets suffered early failures from these high velocity

gases propagating along the bar gage, destroying the strain gages and

cables. To prevent this, the upper portion of the bar gage was

surrounded with water, creating the "water jacket". While the water

jacket has been very effective at increasing the survival times of bar

gage measurements, its effect on bar gage measurements has not been

quantified.

Instrument cables are routed through a hole in the PVC pipe and

back to a recording van, with care taken to ensure that they are not

damaged by the explosive test. The instrument cables are often buried

until they have extended a safe distance from the test area. Cable

protection, such as rubber hose or steel tubing, is an option with bar

gages, but has usually not been used because the length of the bar

allows the attached cable to be buried at a considerable distance from

the explosion, and thereby protected.



14

Installation

Bar gages can be installed in a number of ways to obtain a

meaningful measurement. However, the installation technique shown in

Figure 4 is used most often, and offers some unique advantages. With

this installation, the bar gage is buried in the soil test bed, with

just the measurement end exposed to the explosive charge. This

technique takes advantage of the differing wave speeds in the bar gage

materials and the surrounding media. The blast pressure wave strikes

the measurement end of the bar, the water jacket, and the surrounding

soil at essentially the same time. The wave travels rapidly down the

steel bar, since its low-frequency wave speed, c., is about 5090 m/s

(16700 ft/s). The pressure pulse travels more slowly through the water

jacket (about 1525 m/s), and slower yet through the soil.(305 m/s to

1525 m/s). As a result, any lateral inputs to the bar from the water

jacket or the ground shock are delayed until after the initial arrival

of the stress pulse at the strain gage position. If present, lateral

inputs from these sources might then be more noticeable because of

their delayed input into the bar. If the bar gage were simply placed

in the free air near the charge, the wave speeds in the highly

compressed air near the charge could be excessively high, destroying

the acoustic delay effect and putting large lateral loads on the steel

bar.

Physically, the installation of Figure 4 is usually achieved by

drilling a borehole or excavating a trench or pit and backfilling

around the bar gages. Cables are usually routed through intersecting

horizontal boreholes or cable trenches. This installation technique
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is tailored for those tests where high pressures and long durations are

expected. For other applications, simpler deployments may suffice.

Design

The installation technique depicted in Figure 4 provides some

unique contributions toward good bar gage design. The length of the

bar gage has been determined by the length of measurement desired.

Often, the measurement desired is too long to obtain with a practical

length of bar gage, in which case the longest practical bar gage is

used (6 to 12 m). The pulse duration recorded prior to the arrival of

tensile reflections at the strain gage position is

2 (L -x) 2.1
Co

where L is the length of the bar

x is the distance between the top of the bar and the strain

gages

co is the wave speed in the bar.

As can be seen from Equation 2.1, the record length can be increased

only in a limited number of ways:

1. Increase the bar length, L.

2. Decrease the distance x.

3. Eliminate the occurrence of reflections.

4. Unfold the bar gage record, removing the reflections

numerically.
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As pointed out earlier, there are practical limits pertaining to the

length of bar gage that can be successfully constructed and installed.

Forty-foot long bar gages have been fielded, but only with limited

success. Decreasing the distance from the top of the bar to the strain

gages is limited due to the presence of the water jacket. Also, it is

undesirable to place the strain gages less than 10 to 20 bar diameters

from the measurement end (top) of the bar gage (Reference 5).

Unfolding the bar gage record also holds promise, and successful

unfolding could serve to relax some of the physical constraints on bar

gage design.

Choosing the position of the water jacket with respect to the

strain gages is somewhat judgmental. The effects of the water jacket

length depend upon the severity of the test and several other factors.

In some severe cases, the spalling of the water jacket might damage the

cables attached to the strain gages. Some bar gage designs have taken

this into account, and have dimensioned the water jacket in such a way

that spalled water cannot reach the strain gages until after the first

tensile reflection has arrived at the strain gage position. Then, if

the strain gages and cabling survive, the subsequent reflections can be

unfolded. If the strain gages and cabling do not survive, then at

least the portion of the record prior to the first tensile record will

be obtained.

Calibration and Recording

Semiconductor strain gages are used on the WES bar gages because

of their superior sensitivity, compared to foil strain gages. One
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drawback of the semiconductor strain gage is the variability of the

gage factors; i.e., manufacturer-stated values of the gage factors are

only approximate. This is in contrast to foil strain gages, whose gage

factors are known with confidence, permitting the sensitivity of the

bar gage to be calculated. WES bar gages are calibrated to overcome

this problem.

The preferred method of calibration is the ball-drop calibration

technique. A steel ball is dropped from a known height onto the end of

the steel bar. Its rebound height is recorded on video tape, and then

read from a scale in the field of view. Knowing the height of the ball

drop, its rebound height, and the ball's mass, the impulse imparted to

the bar can be obtained. The output from the bar gage is also

recorded, and then integrated to obtain the impulse seen by the bar

gage. When the electrical quantities (gains, excitation voltages,

etc.) and the cross-sectional area of the bar gage are properly

considered, the quotient of the two impulses defines the sensitivity

level of the bar gage. Impulse hammers have also been used in similar

fashion, and with good results, to input a known stress pulse to the

bar gage.

The electronics necessary to operate and record strain gage

readings will, in general, operate bar gages sufficiently well. WES

uses specially-designed amplifiers capable of balancing strain gage

bridges which, due to installation difficulties, may be considerably

out of balance. The amplifiers also allow easy implementation of shunt

calibration techniques. In the past, recording of the signals was done

with analog tape recorders. Tape recorders are still used, but digital
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recorders are now being used whenever possible. Frequency response

must be adequate throughout the signal conditioning and recording

system to capture the rise times and peak values of the blast pressures

anticipated.



CHAPTER III

THE D'ALEMBERT UNFOLDING TECHNIQUE

The D'Alembert Solution to the Wave Equation

Several simple solutions, approximate solutions, and algorithm-

based classical wave equations have been used to describe the

longitudinal propagation of stress pulses in thin rods. The more

complex approximate solutions and algorithms consider factors such as

lateral and rotary inertia, in an effort to predict the dispersion of

the stress pulse as it travels down the rod. One of the most simple

classical solutions is the D'Alembert solution, developed by D'Alembert

in 1748. In one dimension, this solution is expressed by the equation

u(z,0)=f(z-c"t) + g(z+cot) (3.1)

where u(z,t) is the displacement of a particle caused by the

propagating wave. The D'Alembert solution treats the stress pulse as a

harmonic wave propagating up and down the rod (or bar gage) without

change in shape. This allows for easy superposition of pulses as they

propagate, and hence is a good choice for an unfolding algorithm.

Choosing approximate solutions that attempt to account for dispersion

would become exceedingly complex for purposes of numerical unfolding.

Since the D'Alembert solution is the basis of the unfolding

routine, leading to the name "D'Alembert unfolding", a brief derivation

20
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is provided. The basic wave equation for longitudinal waves in a thin

bar is:

&U 1 CFu (3.2)
8z2  cO2 at 2

where

C0 =Of

Equation 3.2 is obtained by considering the dynamically varying forces

acting on an element of the bar. In these equations, z refers to a

cross-section of the rod, while the longitudinal displacement of that

cross-section is given by u. E is the modulus of elasticity of the bar

material, and p is the material's density.

Mathematically, Equation 3.1 is obtained by introducing the

following change of variables:

S= z-cot, 1 = Z#Cot (3.3)

So, rather than the particle displacement being a function of z and t,

u becomes a funtion of ý and n. The first step is to use chain-rule

differentiation to obtain second partial derivatives of u with respect

to both z and t. The first differentiation yields
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au au + au£ au +au

t -9E- WaE aa-at AT

And the second differentiation yields

aua2  u a&u a2u
az£ = a--t 2 atj + 2•--£ (3.4)

&2u c J-( a 2 a2u + U-)
a&CO 82 a~oqa n ~2

When substituting Equations 3.4 into the wave equation (3.2), many

terms cancel out, leaving

au(t_,_ ) = 0 (3.5)

Equation 3.5 must be integrated to obtain the expression for u(C,v).

First, the integration is performed with respect to n, and then with

respect to C. Realize that, since u is only a function of e and q, its

partial with respect to one of those variables is simply some function

of that variable (by the definition of partial differentiation). This

integration process is:

f au u f

f au d -L gu
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So, the most general expression satisfying Equation 3.5 is

u(z, t) = f(U+ gW

and by changing variables back according to Equation 3.3, the

D'Alembert solution to the wave equation is obtained (Reference 10).

Two characteristics of the D'Alembert solution are particularly

noteworthy. First, it is easy to see how the arbitrary functions f and

g represent propagating disturbances in the bar. In order for the

arguments of the functions to remain constant, z must increase as C

increases. This corresponds to a propagating wave. As the solution is

written in Equation 3.1, the function f represents a wave propagating

in the positive z direction, and the function g represents a wave

propagating in the negative z direction. Secondly, realize that there

is no mechanism in the D'Alembert solution for the shape of the

functions f and g to change as they propagate up and down the bar. The

functions will remain the same as they were initially, with only the

position of the waves changing as they are propagating up and down the

bar. These attributes prove useful in assembling the framework upon

which numerical unfolding can be based.

Derivation of Unfolding Equations

The D'Alembert solution illustrates how the general wave equation

allows for the propagation of a pulse up and down the length of a bar.

D'Alembert unfolding uses that concept to unravel the tensile and

compressive reflections that are superposed upon the airblast input to

the bar gage. For the sake of brevity, D'Alembert unfolding will be
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referred to simply as "unfolding" or "numerical unfolding" throughout

the remainder of this thesis.

To begin the derivation of the unfolding equations, it is prudent

to first discuss some of the basic phenomena taking place. After a

length of time, L/co, the stress wave has advanced to the dump end of

the bar gage. Because this end is in direct contact with some other

material (usually wood), some of the pulse is transmitted into the

contact material, and the remainder of the stress pulse is reflected

back into the bar. Since the acoustic impedance of the steel bar is

much greater than that of wood and other contact materials, the

majority of the stress pulse reflects as a tensile wave and travels

upward in the bar. The percentage of the incident stress wave

reflected back into the bar is called the reflection coefficient. For

the dump end of the bar, this coefficient is assigned the variable A.

The tensile wave continues to travel back up the bar and, as

mentioned earlier, when it reaches the strain gage position, begins to

mask the late time portion of the incoming airblast signal that is

still being applied to the top of the bar. The tensile wave reaches

the measurement end of the bar at time 2L/co. Here again, some of the

tensile wave transmits into the material in contact with the

measurement end of the bar (usually air or detonation products), and

some of the tensile wave reflects back into the bar as a compressive

wave. The percentage of the tensile wave reflecting back into the bar

as a compressive wave is defined as the reflection coefficient B. This

wave reflection process continues indefinitely at each end of the bar,
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with the reflection coefficients reducing the wave form at each

reflection by their prescribed percentages.

The actual values of the reflection coefficients for a particular

bar gage are determined empirically from the data record. Figure 5

describes this technique. The reflection coefficient, A, is the ratio

between the magnitude of the peak reflected stress and the magnitude of

the initial peak stress that strikes the end of the bar. Both

magnitudes are read from the data record, as shown in Figure 5. The

record shows the peak reflected stress riding upon the tail end of the

original incoming wave. The sharp rise times associated with the peak

stress and the peak reflected stress make it possible to judge when the

reflection begins and what its magnitude is. Attempting to judge

reflection coefficients at times other than initial arrivals of

reflections is not recommended, since a sharp, recognizable departure

from incoming data to a reflection is not assured. The same approach

is used in determining the reflection coefficient B. The reflection

coefficient B is the ratio of the magnitude of the reflected

compressive peak stress to the magnitude of the reflected tensile peak

stress. Since the measurement end of the bar is in contact with air or

detonation products (nearly a free-end condition), B usually has a

value of approximately one. These reflection coefficients are assumed

to be constant throughout the entire measurement.

In Figure 6, an example wave form is used to illustrate the

unfolding process. The input and output wave forms are shown for a bar

gage having a length of 6.1 m and a distance of 1.8 m between the

strain gages and the measurement end of the bar. The peak stress is
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Pressure

P

T
C

- - Time

T

P = peak input stress
T = peak stress of tensile reflection
C = peak stress of compressive reflection
A = reflection coefficient for dump end of bar

B = reflection coefficient for measurement
end of bar

Figure 5. Technique for determining reflection coefficients
from a bar gage record.



27

C?

0: Ix

00

I- I -

0

ca m

. . . . . . . \ . . . . .... 0

.0

0)

•C. "> . .

II . . ....

.1 (

S u

0 C,14
iWo -r

• .-- d-*- cCO

I- I
1111 LJd"NIO

i c C; -, >

00 -t/ . Q
4- .;C C

3snS38 /. 0



28

normalized to a value of one for this example. The input airblast wave

form applied to the measurement end of the bar gage is referred to as

F(t), while the actual output recorded from the bar gage is called

f(t). The arrival time and magnitude of reflections are correctly

computed by using the values for A, B, and c. shown on the figure. The

input wave form has been shifted in time, x/c 0 , to lie directly over

the bar gage output for comparison.

Markers A through F are placed on the wave form, labelling each

reflection. Let us begin at the front of the wave form and work

through to the end, stopping at each marker to account for all the

pulses (both incoming and reflected waves) that pass the strain gage

position (Note: Compressive stresses are positive and tensile stresses

are negative in sign). Figure 7 shows all of the waves at the instant

before they pass the strain gage position for Markers A through F.

After a time interval of 2(L-x)/co, measured from the arrival of the

stress pulse, the input and output wave forms are the same, since no

reflections have arrived at the strain gage position. Marker A,

however, denotes the arrival of the first tensile reflection. This

reflection is the original pressure pulse that arrived at a time 2(L-

x)/co earlier in the wave form, but after being influenced by

reflection coefficient A. Simply adding all of the stress waves shown

in Figure 7a yields the following equation for the output of the strain

gages.
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f(t) = F() -AF(t 2(L-x) (3.6)
Co

Marker B indicates the arrival of the first compressive pulse at

time 2L/c.. Hence, another compressive input is influencing the strain

gage output, as depicted in Figure 7b. Keep in mind that the stress

waves being measured by the strain gages are the original inputs to the

bar, F(t), but after being diminished successively by reflection

coefficients. Observing Figure 7b, three inputs are influencing the

strain gage output: the incoming data, F(t); incoming data from the

first tensile reflection, AF(t-2(L-x)/co); and the data from the first

compressive reflection. The first compressive reflection has been

influenced by both reflection coefficients A and B. The input wave

becomes a compressive reflection when it has traversed the distance:

(L-x)+(L-x)+x+x = 2L

The strain gage output for the first set of reflections (one tensile

and one compressive); i.e., n - 1, is the sum of these three waves, or

f(t) = F(t)-AF(t- 2(L-x) )+ABF(t-2LL) (3.7)

C0  Co

At Marker C, we have all of the inputs shown in Equation 3.7, but

also the arrival of the second tensile reflection. This second tensile

reflection has been influenced by three reflection coefficients; A

twice, and B once. The second tensile reflection is recorded by the

strain gages after the input wave has traversed the distance



31

(L-x) + (L-x) ÷x+x+ (L-x) + (L-x) - 4L-2x

after initial contact with the strain gages. So, observing Figure 7c,

the input waves are summed together to obtain the strain gage output:

f(t) = F(t) - AF(t- 2L-2x) + ABF(t-I2 -1 )
Co C0 (3.8)

- A 2BF(t- 4L-2x)
Co

At Marker D, all of the inputs from Equation 3.8 are present,

plus the second compressive reflection. The second compressive

reflection has been influenced by four reflection coefficients; A

twice, and B twice. The second compressive reflection is recorded when

the input wave has traversed the distance

(L-x) + (L-x) ÷x+x+ (L-x) + (L-x) +x+x = 4L

after initial contact with the strain gages. Accordingly, the inputs

shown on Figure 7d can be summed as before to obtain the strain gage

output through the second set of reflections; i.e., n - 2:

f(t) = F(t) - AF(t- 2L-2x .) ABF(tl-2L-)Co CO (3.9)
- A2BF(t- 4L-2 ) + A2B2F(t_ -LL)

CO Co

At Marker E, all of the inputs of Equation 3.9 are present, but

the third tensile reflection also comes into play. This reflection has

been influenced by five reflection coefficients; A three times, and B
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twice. The third tensile reflection is recorded when the input wave

has traveled

(L-x)+(L-X)+X+x+(L-x)+(L-x)+x+x

+(L-x)+(L-x) = 6L-2x

after initial contact with the strain gages. Summing all of the stress

wave inputs indicated by Figure 7e gives the strain gage output:

f(t) = F(t) - AF(t- 2L-2x) + ABF(t-2LL)

CO CO

- A2BF(t- 4L-2x) +A2B2F(t_ LL) (3.10)
CO Co

- A 3B 2
(t- 6L-2x)

CO

At Marker F, the third compressive reflection is added to the

inputs of Equation 3.10 are present. This reflection has been

influenced by six reflection coefficients; A three times, and B three

times. The third compressive reflection is recorded when the input

wave has traveled

(L-x)+(L-x)+x+x+(L-x)+(L-x)+x+x

+(L-x) + (L-x) +x+x = 6L

after initial contact with the strain gages. As before, summing all of

the stress wave inputs displayed on Figure 7f yields the strain gage

output for the third set of reflections, i.e.,

n - 3:
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f(t) = F(t) - AF(t- 2L-2X) + ABF(t- 21 )

Co C0

- A2BF(C- 4 L-2X) + A 2B 2 F(t-_L-) (3.11)
Co Co

- A 3 B 2 F(t- 6L-2X) + A 3B 3 F(t- L-)
Co Co

After this laborious exercise, a pattern becomes obvious. Observe

Equation 3.7 for the case of n - 1, Equation 3.9 for the case of n - 2,

and Equation 3.11 for the case of n - 3. Several of the terms are

similar, and can be simplified into the series expression shown below

f(t) = F(t) - tA AnB"n'F(t- 2(zL-x)

C-1 c, (3.12)

+ tA2B F(t- 2n1)
J2-1 Co

This shows that the total strain gage output is the original

input to the bar, F(t), with tensile and compressive reflections

superposed on F(t). However, in the practical situation, the data

analyst has the bar gage record, f(t), and desires to know the true

input to the bar gage, F(t). This is accomplished by rearranging

Equation 3.12 to solve for F(t).

F(t) = f(t) + A12BA"'F(t- 2(nL-x)
i Co (3.13)

- FA-B"F(t- 2nL)

n-1 Co

Equation 3.13 is referred to as the general unfolding equation.

Notice that the series terms in Equation 3.13 always operate upon data

that has already been recorded by the strain gages, facilitating
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reconstruction of the original input wave form by working from the

beginning to the end of the bar gage record.

The Unfolding Computer Program

Equation 3.13 lends itself well to implementation in a computer

program. Welch (1983) wrote an initial computer program to run on a

Tektronics 4051 computer. Since the limited memory of these early

computers did not allow processing of many data points, the unfolding

computer program was rewritten in FORTRAN to run on a VAX 11/750

computer. The program was named UNFOLD, and is used when unfolding

wave forms with a large number of data points (more than 16,000). The

unfolding program has been updated to run on IBM personal computers (or

other compatible PC's) as part of this thesis. The PC-based unfolding

program, still written in FORTRAN code, works well for wave forms

having less than 16,000 points. This size of data file allows for

acceptable speed and memory size, and also permits the use of several

off-of-the-shelf plotting programs to display the results.

Since the unfolding program is used (and modified) so often in

this thesis, a brief explanation of its operation is given in this

section. A flow chart of the unfolding program is shown in Figure 8

and a program listing is given in the Appendix. The analyst must input

the bar gage dimensions and wave speed, time of arrival, reflection

coefficients, and file names for the input bar gage record and the

unfolded output. The input file must be of a certain format, namely,
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LINE 1: TIME VALUE OF FIRST POINT

LINE 2: TIME INCREMENT

LINE 3: NUMBER OF DATA POINTS

LINE 4: X(l), Y(l)

LINE 5: X(2), Y(2)

ETC.

Two arrays are established; A(I) is the input bar gage data, and

F(I) is the unfolded output of the program. The calculational kernel

begins by reading the first data points from the input file and

deciding if they occur before the arrival of the first tensile

reflection. If they do, the data points are simply copied to the

output file because no unfolding is necessary. Once beyond the first

tensile reflection, the program determines which set of reflections

contains the point "I". This is analogous to the index n in Equation

3.13 and also sets the counter on the first DO loop. Once within the

inner DO loop, the summing operation is performed. The calculational

kernel determines if point "I" lies within a tensile or compressive

reflection and applies the summation process indicated in the second

and third terms of Equation 3.13. The summations indicated in the

second term of Equation 3.13 are the variable Gl, and the summations

indicated in the third term of Equation 3.13 are the variable G2. When

the summation has been performed "n" times, the inner loop is exited.

The value of the unfolded wave form at point "I" is then:
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F (I) = A (1) + G1 - G2 (3.14)

The value of the time interval at point "I" and F(I) are written to the

output file and the whole process is continued for the next point "I".

When "I" has reached the last point in the file, as specified in line 3

of the input file, execution is terminated.

The output of the program is a two-column ASCII file. This file

can be plotted using various plotting routines. Such routines are not

included in the unfolding program. Since the data files are written in

an ASCII format, the files can become quite large.

Demonstration of the Unfolding Technique

To illustrate the effect of the unfolding computer program, a

wave form from a high explosive test will be unfolded. The bar gage

record and its integrated impulse are shown in Figure 9a. The low-

frequency wave speed, c., is customarily determined by measuring the

time between the arrival of the initial pressure pulse and the first

tensile reflection. The wave speed is then obtained by

= 2(L-x)

The reflection coefficients are determined using the procedure

indicated earlier in this section. The time of arrival of the initial

pressure pulse is obtained by observation. The bar dimensions are, of

course, known prior to the test. Besides specifying file names, this
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Figure 9. Demonstration of the unfolding technique on a
typical bar gage wave form.
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constitutes all of the information needed to unfold the wave form of

Figure 9a. The values used for this particular wave form were:

co- 5089 m/s TOA - 0.00323 s A - 0.92

x -0.86 m L - 2.25 m B -0.97

The result of the unfolding procedure is shown in Figure 9b. As

expected, the reflections have been removed from the record, producing

a reasonable restoration of the original pressure pulse entering the

bar. The drastic fluctuations in the impulse wave form have also been

removed, resulting in an impulse wave form of classical appearance.

The process did not provide a perfect unfolding of the high-amplitude

portions of the wave form (peak values of the input waveform and also

the reflections), as evidenced by the spikes occurring at positions

where reflections had previously existed. This produces corresponding

anomalies in the impulse wave form, although not severely so. If the

spiky behavior is ignored, the unfolded result is a reasonable pressure

wave form.

Criticism of the Unfolding Technique

From a mathematical prospective, the D'Alembert unfolding method

is difficult to refute. If indeed the pulse is not changing shape

significantly as it propagates down the bar, then the unfolding

technique should accurately remove the reflections. However, potential

shortcomings do exist. The shortcomings arise primarily from the

inability of the analyst to provide exactly correct input to the

unfolding routine.
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Consider the spiky behavior present on the unfolded wave form of

Figure 9b. The spikes result from using a slightly incorrect value of

wave speed, c.. If the analyst specifies a value of c. that is too

large, the unfolding routine will anticipate the arrival of the first

tensile reflection Loo soon. While the routine should be summing the

high-amplitude portion of the initial pulse with the high-amplitude,

negative portions of the first tensile reflection, it actually is

adding a high-amplitude positive value to a low-amplitude positive

value. A high-frequency spike results from this sort of superposition.

Since the unfolding routine uses these values over again later in the

wave form, the error repeats itself, sometimes even growing with

additional recurrences. While it is felt that this behavior will not

cause large errors in the impulse measurement, the propagation of this

error through the unfolded wave form has not been sufficiently studied.

Another concern lies with the choice of values for the reflection

coefficients. Theory suggests that there is one precise reflection

coefficient for each end of the bar gage, and the method described

earlier in this section should reveal the value of these coefficients.

However, observation of subsequent reflections often shows a change in

the value of the reflection coefficients. Figure 10 illustrates such a

bar gage record, recorded on a high explosive test. Notice how the

reflection coefficients change throughout the record. This forces the

analyst to make a judgement regarding which value of the reflection

coefficient to use for unfolding purposes. Inspection of the unfolding

equation (Equation 3.13) indicates that the reflection coefficients A

and B influence the value of each point after the first tensile
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reflection. The net effect that varying values of reflection

coefficients may have on the unfolded pressure and impulse wave form

has not been studied.

In summary, while the unfolding technique will indeed remove

reflections from the bar gage wave form, the significance of errors

induced by the technique are subject to question. The value of

unfolding is substantial, for if even one set of reflections are

unfolded, the length of the measurement is more than doubled. But

questions surrounding the errors induced by the use incorrect wave

speeds and reflection coefficients lead to controversy in using the

unfolding technique. Accordingly, this thesis seeks to quantify the

errors inherent to the D'Alembert unfolding method, defining situations

where unfolding is appropriate.



CHAPTER IV

ERROR ANALYSIS OF THE UNFOLDING TECHNIQUE

Bar gage records from high explosive tests can be influenced by

phenomena that is not fully understood. For instance, ground shock may

put lateral loads on the bar through the water jacket. If so, then

that part of the wave form we observe, and treat as data, may in fact

be a measure of lateral loading. The reflection coefficient at the

dump end of the bar can change during the high explosive test because

of bar translation, which causes the bar to push into the material at

the end of the bar. This "rigid-body" motion of the bar can occur

after two wave transit times. Also dispersion of the stress pulse may

complicate the analyst's selection of reflection coefficients.

When unfolding bar gage records from high explosive tests, it may

be difficult to sort out which discrepancies are do to the numerical

aspects of unfolding and which are due to the "limitations" of bar

gages as currently designed. With this in mind, the next study will

investigate the merits of bar gage unfolding through the use of

analytical and numerical means. This will minimize the confusion

imparted by the response of the bar gage to high-frequency inputs from

explosive tests, and permit us to concentrate on the errors strictly

due to the unfolding process.

43
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In this section three sources of error in the D'Alembert unfolding

techniqueare identified and analyzed. The three error sources

addressed are:

1. Errors due to using an incorrect, low-frequency wave speed.

2. Errors due to specifying incorrect reflection coefficients, or

assigning constant values to reflection coefficients that, in

reality, are changing.

3. Other errors, such as ilcorrect bar gage dimensions and

dispersion. Errors which apply to bar gages, though not

necessarily numerical unfolding errors, are also included in

this section.

The first error is addressed by modifying the unfolding computer

program in such a way that it calculates not only the unfolded wave

form based upon the best estimate of the wave speed, c,, but also based

upon user-specified upper and lower bounds of c.. The second error

source is addressed by applying classical uncertainty analysis to the

unfolding equation presented in Chapter 3. An analytical expression is

obtained which relates the uncertainty of an unfolded wave form to an

uncertainty in the reflection coefficients. The errors due to both of

these primary sources are then combined in a manner consistent with

uncertainty analysis, to arrive at upper and lower bounds of where the

"true" unfolded wave form must lie.

The last error source is addressed only qualitatively, as no

analytical or concise experimental technique couid be devised to

isolate those unfolding errors that are due to subtleties such as
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dispersion. The manner in which such errors manifest themselves on

typical wave forms is discussed, and shown to be relatively

insignificant when impulse is the desired quantity.

Errors Due To Incorrect Wave Speed

The low-frequency wave speed, c., must be known accurately in

order for the timing to be correct during the unfolding process. If

the wave speed is incorrect, the unfolding routine will sum incorrect

terms while reconstructing the wave form. For instance, summing terms

from the high-amplitude front end of the wave form with those

representing low-amplitude parts of the wave form (rather than the

high-amplitude portions which are opposite in sign), will result in

noise-like or spiky output from the unfolding routine. This procedure

is illustrated in Figure 11.

The analyst must measure the time between reflections, and

calculate the wave speed based upon the known dimensions of the bar

gage. Choosing places to measure the time between reflections is

somewhat judgmental, resulting in slightly different values of wave

speed. Since we tend to measure the time differences between peaks or

arrival times (i.e., high-frequency content), dispersion can cause the

analyst to choose an incorrect value of wave speed. As will be

discussed later, dispersion itself results from the wave speed changing

as a function of the frequency of the input. Consequently, high-

frequency portions of the wave form are prone to being unfolded

incorrectly. Such shortcomings make it almost impossible to perfectly

unfold a wave form. The wave form of Figure 12a was unfolded using
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A. Suppose that c. is too small. Then the computer

routine begins unfolding the first tensile
reflection too late, leaving a negative spike.
When the computer routine does begin unfolding
the first reflection, it adds the high amplitude
initial peak (times reflection coefficient A) to
negative values which are too small. This
results in a positive Orecovery" spike.

UNFOLDS TO

B. Suppose that c is too large. Then the computer
routine begins unfolding the first tensile
reflection too soon, leaving a positive spike.
When the unfolding process reaches the true time
of the first reflection, it adds the lower amplitude
positive values (times reflection coefficient A) to
larger negative values. This results in a negative
"recovery" spike.

UNFOLDS TO

C. This unfolding program propagates these spikes
throughout the rest of the waveform.

Figure 11. Mechanism by which the unfolding method produces
spikes in unfolded wave forms.
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common textbook value for the wave speed of steel (5030 m/s), and the

output displayed in Figure 12b. The input wave form to the bar gage in

Figure 12a was a 100-ps pulse, with no subsequent inputs to the bar.

Consequently, all of the noise-like inputs later in the wave form are

due to the data reduction process and the incorrect wave speed used in

the unfolding routine. This illustrates the necessity of choosing an

accurate value of c. for the steel bar.

The proper wave speed value to choose is the low-frequency wave

speed, c.. Wave speeds determined from the time differences between

peak values, or between times-of-arrival of reflections, tend to be

different than the true low-frequency wave speed. This is because

these features of the wave form are comprised of wave speed high-

frequency content, which is being dispersed, or distorted, as it

propagates down the bar. Choosing a wave speed based upon unfolding

high-frequency data with the best performance might cause substantial

errors in the unfolding of low-frequency data. Errors in unfolding

low-frequency data might lead to large errors in impulse, which is

particularly undesirable for many applications.

Two recommendations are given to minimize the error imparted by

use of an incorrect wave speed. First, whenever possible, choose the

wave speed for a particular bar gage from the gage calibration record,

rather than the actual data record. A ball drop calibration, for

instance, generates frequencies up to roughly 7000 Hz. This frequency

content is too low for dispersion to be prevalent, so the wave speed is

more easily discerned. Secondly, measure the time required to shift

the wave form 2L/co by determining the time shift which causes
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O.Os 2.5os 5.Oms

TIME

a. Precision bar gage wave form prior to unfolding.

2.0 - NOISE-LIKE BEHAVIOR DUE TO UNFOLDING
WITH INCORRECT WAVE SPEED. USED
c-= 5030 m/s RATHER THAN
co= 5089 m/s

1.0

0.0 '1

0.Os 2.5ms SAMs
TIME

b. Unfolded wave form using incorrect wave speed.

Figure 12. Typical results produced by the unfolding technique
when incorrect values of wave speed are used.
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subsequent compressive (or tensile) pulses to best over-lay each other.

This technique measures the time expired between low-frequency events

in the wave form (i.e., the whole compressive pulse rather than just

peaks) and produces more consistent results.

Since we wish to combine two or more errors (wave speed and

reflection coefficients) to arrive at the total error present in an

unfolded wave form, classical uncertainty analysis will be used.

Classical uncertainty analysis provides an accepted and concise

technique for calculating uncertainties and combining them to give the

total uncertainty in an experimental or numerical result. The general

expression for the uncertainty in the unfolded wave form, U 1Ft), is

r2t)ýap(t) 12 ar t 1,2 1Ft U.2(41
") +"" + .1 8) aa (.

where

F(t) - the unfolded wave form at any time t

a *,2,.,n - variable upon which F(t) depends and which contains

uncertainty

U. - uncertainty associated with each variable

UF_) -- total uncertainty in the unfolded wave form due to all

of the variable uncertainties

Recall the analytical expression for the unfolded wave form from

Chapter 3:

FWt -f~t W EA--- ~- (nLX -B-~--
nCl 0o 1 CO
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It is not practical to utilize uncertainty analysis directly to

arrive at a general expression for UE1t) as a function of the

uncertainty in co. This requires taking the partial derivative of F(t)

with respect to c., which in turn requires F(t) to be a differentiable

(in closed-form) function of its argument.

Accordingly, an indirect method will be devised for obtaining UFMt)

as a function of specified uncertainty in co. The unfolding computer

program will be adjusted to so calculate F(t) for an upper and lower

bound of co. The uncertainty in c, will be specified, i.e., Uo, and

the computer program will be used to unfold the wave forms for the

additional cases where:

C = CO + U"C.
C = C c -  U co

In this way, the error present in F(t) due to the uncertainty in c.

will be obtained for a particular wave form by comparing the resultant

wave forms. UFL2 will thus be the difference of the two wave forms at

each point, or

UF(t) Ic.= F(co, t) - F(c,+Uo, t)

The above mathematical nomenclature is used frequently in this chapter.

The vertical bar following UFLL indicates the variables contributing to

the uncertainty of F(r). It is read, "The uncertainty of F(t) due to

uncertainty in co, is equal to...". The values in the arguments of F

are those which are being considered in the particular equation. The

nomenclature identifies the value of the function, F, when the specific
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arguments are used. It does not imply that the function F is only a

function of the arguments listed; obviously the unfolded bar gage

record, F(t), is a function of many variables. Only those variables

being changed in the particular equation are listed, along with C, to

indicate the dynamic nature of these equations.

The unfolding computer program was modified to incorporate these

changes and named "UNFOLD1". A program listing is included in the

Appendix. UNFOLDI computes three unfolded wave forms, one each for co,

c.+ Uo, and c0 - U,.. This computer program was applied to two wave

forms; one from a ball drop calibration on a precision bar gage (i.e.,

a bar gage where the dimensions were precisely known), and a pressure

record denoted a high explosive experiment. After careful study of

many bar gage records, the uncertainty associated with c. was chosen to

be plus or minus 15 m/sec, i.e., the three wave speeds used were 5074,

5088, and 5104 m/sec.

In Figure 13a, each of the three unfolded wave forms from the ball

drop calibration of the precision bar gage are plotted on the same

plot. The records from the precision bar gage were used because the

bar length and strain gage positions were known to within 0.03 inches.

The ball drop calibration also produces wave forms which consist of

low-frequency content, therefore minimizing the effects of dispersion.

The impulse records from the wave forms were obtained by integrating

the pressure records, and are plotted in Figure 13b. Consider the

pressure wave forms. The errors in c, produced spikes at the times

where reflections occur in the wave form. This is reasonable, since

high-amplitude values are being summed upon one another at these points
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in the wave form. The error in c. causes the unfolding routine to sum

the wrong values, and high-amplitude spikes result. Note that these

spikes grow with time as the errors accumulate. The wave forms are

nearly identical except for these spikes, regardless of the wave speed

used. This is evident from the impulse wave forms. Since no other

data is being recorded by the bar gage in the ball drop calibration,

the spikes produce large fluctuations in impulse. But the periodic

nature of the spikes cause the impulse to return to the mean value,

regardless of the wave speed used.

The unfolded pressure wave forms for the WLBI record are given in

Figure 14a and the corresponding impulse wave forms in Figure 14b. The

same trends are noted on these records as were noted on the unfolded

precision bar gage records. The pressure plots show that the only

significant errors produced by the uncertainty in wave speed are the

spikes occurring at the times when reflections had occurred. Since

this is a record from a high explosive test, the frequency content is

much higher than that of the ball drop calibration test on the

precision bar gage. The unfolded wave forms exhibit erratic, spiky

behavior in the region where reflections occurred. Because the

reflections are characterized by high-frequency content, it is believed

that the poor performance of the unfolding routine in these regions is

due to dispersion. If dispersion is indeed the cause of the spikes, no

value of wave speed will eliminate them.

The unfolded wave forms using the higher and lower wave speeds do

not exhibit clear, symmetric trends as was the case with the precision

bar gage example. In general, such trends should not be expected from
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explosive test records that contain a considerable amount of high

frequency content. Once again, however, it is clear from the impulse

wave forms that the error in wave speed causes very little error in

impulse.

Two conclusions are drawn from these examples of the use of an

incorrect wave speed when unfolding bar gage records. First, spikes

are to be expected in the portions of the wave form where reflections

had previously occurred. Although spikes are likely to occur even when

the correct value of c. is used, they will be even more prevalent and

erratic when incorrect values of co are used. Also, spikes become more

obvious (and unavoidable) as the frequency content of the wave form

increases. Wave forms containing only low-frequency data can be

unfolded with little or no high-amplitude spikes, provided the correct

value of co is chosen.

Secondly, it can be concluded that errors in wave speed tend to

produce little change in the mean value of the impulse wave form.

Consequently, if impulse is the parameter to be derived, errors due to

wave speed may be insignificant. However, the uncertainty in wave

speed in our examples was small (15 m/sec). If a reckless choice of

wave speed were made, resulting in a large value of Uo, then impulse

might be affected substantially. In general, the errors produced by

incorrect wave speed are easily discerned by the experienced analyst,

and can be easily ignored, or even removed, if the need exists.
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Errors Due To Incorrect Reflection Coefficients

Errors due to incorrect reflection coefficients can be quantified

more precisely than errors due to incorrect wave speeds. This is

accomplished by exploiting classical uncertainty analysis, as presented

by Coleman and Steele (Reference 9). The analytical expression for

the unfolded wave form is (Equation 3.13):

n-2 CO n-1 CO

The classical uncertainty equations are well suited for such an

equation. Applying Equation 4.1 and limiting our uncertainty analysis

to errors in the reflection coefficients, A and B, the uncertainty of

the unfolded wave form, F(t), is

UFM IAB aF[t) UA] 2 + [8F(t) j1]
2  (4.2)

where UA and UB are the uncertainties of the reflection coefficients A

and B.

A technique is not obvious for taking partial derivatives with

respect to A and B when these reflection coefficients are preceded by

the summation signs. This difficulty was overcome by taking the

partial derivative for successive values of "n" until a pattern became

obvious. To illustrate, consider the root of the first term under the

radical of Equation 4.2:

aF(t)
aA UA
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This term is written out below for n-i, n-2, and n-3 below:

for n-i:

[F(t - 2 &-) _ BF(t - -_LL-)I [UA]
Co Co Co

for n-2:

[Ft I- + Ix- BF(t-

C0  C0  Co

+ 2ABEF(t - -LL + 2__xx)_ BF(t- )[U,]
CO C, C IJ

for n-3:

(t - -LL + I2X) - BF(t-

CO CO CO

+ 2AB[F(t - -- L + x)_- BF(t- -L]
Co C, Co

+ 3A 2 B2 [F(t - 6L + 2X-) - BF(t - -- L)] [UA]
Co Co Co

The series thus becomes:

UP(t)I, = X 2nL)j}[U]c (4.3)

The second term is derived similarly. The complete solution for the

uncertainty in the unfolded wave form due to the uncertainty in the

reflection coefficients is:

UF(t) IAB = _nA- -)-BFt- I I UA]
I-t Co Co cc

+ A .B .[l( n-1 )F( t- 2n___L + __x-) _-nB F lt- 2n _L ) ] UB]1211/2

-CCo Co J Co
(4.4)
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A computer routine, called UNFOLD2 (see Appendix), was developed to

solve Equation 4.4 and assemble the plus and minus uncertainties of the

unfolded wave form. The portion of the code which considered the

effect of incorrect wave speed is not included in UNFOLD2; hence, it

looks at errors due to reflection coefficients alone. This useful

modification to the unfolding routine generates the error bounds for a

specific wave form with specific uncertainties in reflection

coefficients.

The same two wave forms studied earlier are used here again as

examples. The output from the ball drop calibration test of the

precision bar gage is unfolded using UNFOLD2 to comprise the first

example. The uncertainties in the reflection coefficients (UA and UB)

were each taken to be plus or minus two percent for this case. The

unfolded wave form, and the plus and minus uncertainties, are displayed

in Figure 15. The errors in the unfolded wave form tend to increase

with time. This is reasonable since the errors are raised to higher

powers with increasing "n". Substantial uncertainty occurs only when

the high-amplitude portions of the wave form are being operated upon by

the unfolding routine. The features between the spikes of the

uncertainty wave forms are essentially identical to comparable features

of the unfolded wave form. Some insight into this behavior can be

obtained by observing Equation 3.13. The uncertainty at each point is

comprised of the sum of reflection coefficients raised to powers,

multiplied by the amplitude of the reflecting pulse at the particular

time. If the amplitude of the reflecting pulse at the particular time

is very low, the uncertainty must also be low. If the amplitude of the
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reflecting pulse is high, the uncertainty can be more obvious, as

demonstrated by this example. It can be concluded from this

observation that the uncertainty of an unfolded wave form is dependent

upon the character of the input wave form.

The WLB-1 record was unfolded using the program UNFOLD2. The

reflection coefficients for this wave form were more difficult to

choose than those of the ball drop calibration record. The uncertainty

values for the dump end and input end coefficients were taken to be ±5%

and ±3%, respectively. The unfolding routine calculated the plus and

minus extremes of the unfolded wave form due to these uncertainties in

reflection coefficients. These bounds are plotted on Figure 16a, along

with the unfolded wave form. The three wave forms are barely

distinguishable, requiring careful inspection of the spikes to tell

them apart. While the bounds on the pressure record are quite tight,

the errors become much more prominent on the impulse wave forms. Even

though the uncertainties in the pressure records may be slighL the

errors become significant when integrated over several reflections.

This may be observed in Figure 16b, a plot showing the impulse wave

form of the unfolded data and its plus and minus uncertainties. It can

be seen that the unfolded impulse wave form is only accurate within

about ±10.8 percent during the second reflection due to the uncertainty

in reflection coefficients.

This ability to calculate the uncertainty of a wave form due to

reflection coefficients comprises a useful tool for determining the

length of record that can be unfolded without incurring too much error.

In other words, if an error greater than ±10% is unacceptable, the
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analyst can choose to only consider the first one or two reflections of

a specific wave form.

Combining Errors Due To Wave Speed and Reflection Coefficients

The error due to uncertainty in the values of reflection

coefficients must be combined with the error due to using an incorrect

wave speed to determine the total uncertainty in the unfolded result.

The proper method of combining these errors is subject to debate, but

the most widely accepted method of combining uncertainties is the Root-

Sum-Square (RSS) method, as illustrated earlier in Equation 4.1. The

RSS method is ordinarily preferred over a linear combination of the

errors (adding them all together) since the probability is low that the

most extreme values of all the uncertainties will occur in a given

event. Furthermore, it is even less likely that all of the variables

will suffer errors in the same direction (or same sign). It is much

more likely that some variables will be subject to error near their

largest uncertainty, while some variables will be subject to less

error. In turn, some variables will be higher than their mean value,

and some lower, for a particular experiment. The RSS method removes

the sign dependency and gives an overall uncertainty that is somewhat

less than the most extreme values would suggest with a linear

combination, thus providing a more statistically valid combination of

errors.

The RSS method is used here to combine the error due to wave speed

with the errors due to incorrect reflection coefficients. The computer

program was modified to square the error due to uncertainty in c., and
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add it to the square of the error due to incorrect reflection

coefficients, and then take the square root of the sum. This simple

calculation was performed at each point to obtain the plus and minus

bounds of the unfolded wave form. This computer program is called

UNFOLD3.

Before applying this program to an example, consider what the

output should look like. The differences in the pressure wave forms

should be slight, since neither error source produced noticeable

changes in the pressure values. The impulse was largely unaffected by

the error in co, but errors due to reflection coefficients generated

substantial errors in the impulses of the unfolded wave forms.

Consequently, the combined error should be similar to that caused by

the error due to reflection coefficients, being only slightly larger.

Now consider the result of this combination of errors for the

example of the WLB-l wave form, shown in Figure 17. Notice that the

combination of errors produces plus and minus uncertainties much larger

than those produced by erroneous reflection coefficients, which seems

contrary to logic. Simple inspection of the wave forms did not help to

explain this phenomena. Numerous checks were made on the modified

computer program, no errors were found in the coding. The anomaly is

attributed to the RSS method as applied to wave forms such as these.

In the general case, it is considered advantageous to square the

errors, because the true signs of the errors are not known. With the

error analysis method used here, however, the signs for the errors in

wave speed are known precisely. After all, they were calculated at

each point for both upper and lower bounds of the unfolded result. By
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squaring the errors due to c., and then taking the square root of the

sum of the errors, all of the errors due to co are forced to be

positive, even when some were actually calculated to be negative. To

see the resulting error, consider the expanded plot in Figure 18. The

unfolding routine was modified to calculate the unfolded wave form and

the plus and minus values of uncertainty due to an error in c, only (as

in UNFOLD1). This removed the added complexity of the uncertainty due

to errors in reflection coefficients. This modified unfolding program

outputted:

1. The unfolded wave form, F(I).

2. The plus uncertainty, short-dashed trace, via:

up = F(c,) + (F(c,) - F(c. + U.))

3. The minus uncertainty, long-dashed trace, via:

U,m F(co) - (F(co) - F(co - U,.))

4. The minus uncertainty, dotted trace, via:

U, = F(C°) - V (F(c 0 ) - F(c, - U,.))2

Figure 18 is plotted to an expanded time scale to show the

specific differences between the RSS method and direct linear

combination, with proper signs associated with the errors. The dashed

traces represent uncertainty calculated with linear combination of the

error due to incorrect co. The dashed traces are identical to the

output from UNFOLDl, the program used earlier to calculate the

uncertainty due to incorrect c.. Notice that these traces tend to
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Figure 18. Expanded time plot of the WLB1 wave form

showing the effect of the RSS method of
combination.
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exhibit more error in "phase" than error in amplitude, which is

consistent with the earlier findings. Errors in phase produce little

error in impulse, which was one of the conclusions regarding

uncertainty due to incorrect c,. The RSS method however, as shown in

the dotted trace, produces error in amplitude and is in phase with

F(I). The second term in the equations above represent the error due

to the incorrect co. While the unfolding routine may accurately

calculate its direction to be negative, the squaring/square root

process forces it to be positive. Hence, a positive error is always

subtracted from the unfolded wave form to generate the minus

uncertainty. Accordingly, the minus uncertainty depicted by the dotted

trace (RSS method) is always lower than the unfolded wave form. This

causes the gross error in impulse with the RSS technique.

For combining errors due to uncertainty in wave speed and

reflection coefficients while unfolding bar gage records, the author

suggests using linear combination for the errors due to wave speed and

RSS combination for the errors due to the reflection coefficients.

With this approach, the technique can no longer be labeled "classical"

uncertainty analysis, as it has become specialized for this

application. Mathematically, the plus and minus uncertainties would be

expressed as:

UPIC.A.8 = U,(d lIc,,.u 4' V'Ur(C) JA]2 _ U~t

Ufflc.AB = UFVOICc - 4'UPet 1A]' + [UPMT) ii

This technique of combining errors was incorporated into the unfolding

routine and labeled UNFOLD4 (see Appendix). It is considered to be the
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best of the unfolding routines, since it combines the errors in the

most reasonable manner. UNFOLD4 was used to unfold the wave forms

studied earlier in this section. Figure 19 shows the unfolded pressure

wave forms for the WLBI record. The only significant difference

between the combination of both error types and that including error

only due to reflection coefficients is a slight increase in the impulse

uncertainties. This is as expected since the uncertainty in impulse

due to incorrect c. was slight.

Dispersion and Other Errors

While errors due to uncertainty in low-frequency wave speed and

reflection coefficients can be addressed analytically or numerically,

errors due to dispersion and other more subtle sources are difficult to

quantify. Dispersion leads to errors in an unfolded wave form in a

manner similar to that of unfolding with an incorrect wave speed.

Dispersion in the bar gage causes the high-frequency portion of the

stress pulse to change shape as it propagates down the bar gage.

Specifically, the high frequency content propagates more slowly down

the bar than the low frequency content. As a result, the rise to peak

is "rolled off", as the low-frequency components outrun the high

frequency peak information and superimpose themselves upon the high

frequency data. As the stress wave travels up and down the bar, the

peak continues to roll off.

To include uncertainty due to dispersion in the unfolding

technique, the variance of wave speed with frequency would have to be

defined and incorporated into the calculational portion of the
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unfolding routine. In turn, the unfolding routine would have to keep

track of the frequency of data which was being handled at each point in

time. This would be a difficult task and is beyond the scope of this

thesis.

If the wave form contains limited high frequency data, dispersion

will not cause significant errors. Also, errors due to dispersion will

manifest themselves much the same way as errors due to incorrect co.

When the routine unfolds the high frequency data, which in most all

cases is limited to the high amplitude initial peak and the subsequent

reflections, it will sum together improper portions of the wave form.

As a result, a noise-like or spiky character would be expected at those

places in the wave form where high amplitude reflections were present.

Such errors are not expezted to produce much error in impulse. In the

unusual case where a bar gage was used to measure a pulse which

contains a great deal of high frequency content, more error may be

inherent to the unfolded wave form. However, the use of a bar gage for

such a high frequency measurement is questionable, even before

considering the validity of unfolded data obtained by the bar gage.

Sometimes the analyst does not know the length of the bar and

position of the strain gages along the bar with precision. Such

precision is unnecessary if the bar gage records are not to be

unfolded, and consequently such precision has often not been applied to

the manufacture of bar gages. The only time that the unfolding routine

uses the bar gage dimensions is in the argument of the functions, just

as was the case with c0 . Consequently, errors due to incorrect bar

gage dimensions lead to the same sort of errors as co, causing the
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unfolding routine to sum the improper sequence of amplitudes. Gross

errors in bar gage dimensions can be troublesome. For instance, a 6-mm

discrepancy in bar length has the same effect as a 10 m/s error in wave

speed.

The most correct way of handling errors due to bar gage dimensions

would be to perform a separate uncertainty analysis on the arguments of

the functions before using the unfolding program. With the arguments

being composed of simple expressions, this uncertainty analysis would

be easy compared to the analysis performed in this chapter. The

resulting uncertainty for the whole argument, due to the uncertainty in

c., x, and L, could be input to the unfolding program as the

uncertainty in co. Even this thorough of approach has problems though.

Uncertainties in c., L, and x are not independent of one another, i.e.,

x and L are used to determine co. This makes for a more complex and

judgmental uncertainty analysis, and hence it is only mentioned here.

Generally though, if care has been taken in the manufacture of the bar

gages, errors due to incorrect bar gage dimensions should be relatively

insignificant.

Other error sources can be conceived that would effect the

accuracy of the unfolding process. Things such as material variations

throughout the length of the bar gage, material nonlinearities, etc.,

cannot be considered by the unfolding technique, and hence lead to

errors. Such errors are thought to be quite small. Accordingly, they

are not considered in this thesis.

The intent of this chapter is not to suggest that the error

sources discussed here are the only sources of error associated with
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measurements made by bar gages. Indeed, calibration errors, ground

shock effects, frequency response limitations, etc., lead to errors in

bar gage measurements. Some of these errors will be evident in the

next chapter, where actual field data is examined. However, these

errors are not caused by the numerical unfolding process, which is the

concern of this thesis.



CHAPTER V

APPLICATION OF BAR GAGE UNFOLDING TO

FIELD DATA

Test Description

The uncertainty analysis will be applied to an actual high

explosive test in this chapter. In this experiment, bar gage data was

obtained at regions where other types of blast pressure gages made

measurements as well. This is an unui, :i -A sation because bar gages

are typically used in regions where very few types of airblast gages

can function reliably, due to the high peak pressure levels. On this

test, however, bar gages were intentionally placed at pressure levels

low enough to compare to other airblast gages. The other airblast

gages in this case were Kulite HKS series airblast gages (Reference

11). HKS airblast gages are quite reputable in the peak pressure range

from 3.45 to 345 MPa (500 to 5,000 psi) and, being a diaphragm-type

gage, yield a long term pressure measurement with no interruption from

tensile reflections. Hence, with the Kulite airblast gages being

placed at the same distance as the bar gages from an axisymmetric

charge, the Kulite gage records can be compared to the unfolded bar

gage records.

The experiment of interest involved the detonation of an explosive

charge that was suspended at a certain height above the ground surface.

73
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Airblast gages were placed on the ground surface to measure the blast

pressure on the ground surface at different radial posiZ.i-s.

Figure 20 is a plan view of the instrument layout. The explosive

charge is suspended above the origin depicted on this plan view. The

bar gages are denoted by Bl, B2, etc., at the pressure ranges close to

the charge. The Kulite pressure gages are denoted by AB15, AB16, etc.

They are located at the same radial distance, and also close to the bar

gages. Bar gage B3 was located at the center of the instrument array.

Bar gages B2, B4, and B6 were located at the same radial distance from

the charge center, arbitrarily referred to as radial "A". Bar gages Bl

and B5 were placed at another radial distance arbitrarily referred to

as radial "B". It is the data from these instruments that is of

interest to us in this thesis. Comparisons will be made between these

bar gages and their corresponding Kulite airblast gages. The

appropriate gage comparisons and their radial positions are presented

in Table 1.

In this chapter, we will compare the records frora those

combinations listed in the previous table. The bar gage records will

be unfolded to the best capability and the uncertainties calculated

using the UNFOLD4 program explained in Chapter 4. The impulses from

the unfolded bar gage records will then be plotted on the same scales

as the Kulite airblast gage impulses. If the gage performance were

similar, then the Kulite airblast impulses would lie within the upper

and lower bounds of the unfolded bar gage impulses. If the Kulite

airblast gage impulses lie outside of these bounds, it means that

either the gages are performing (or measuring) differently, or else
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TABLE 1

BAR GAGES AND KULITE AIRBLAST GAGES AT
COMPARABLE TEST BED POSITIONS.

KULITE
COMPARISON RADIAL BAR GAGE AIRBIAST GAGE

NO. POSITION DESIGNATION DESIGNATION

1 CENTER B3 AB15

2 RADIAL A B2 AB29

3 RADIAL A B4 AB16

4 RADIAL A B6 AB28

5 RADIAL B BI AB31

6 RADIAL B B5 AB19

the charge is not producing a uniformly axisymmetric airblast

environment. An analysis will be performed along these lines to see if

any interesting conclusion can be drawn about the accuracy or utility

of bar gage unfolding.

Analysis

The bar gages used on this test were 5.8 m lcng with the strain

gages placed 1.83 m from the top of the bar. This is a standard bar

gage design used on high explosive tests which have no special

measurement requirements, e.g., spatial constraints, long measurement

times, etc. The bar gage records were unfolded using the computer

program UNFOLD4 to calculate both the unfolded wave form, and the

uncertainties due to incorrect wave speed and reflection coefficients.

A low frequency wave speed of 5089 m/sec was found to be the best

choice for these bar gage records (as it was for the other bar gage

types investigated). This value of low-frequency wave speed will
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likely apply to all bar gages made from the same lot of high-strength

steel. Reflection coefficients and all of the uncertainties were

chosen in a manner consistent with that described earlier.

The results of the unfolding are given in Figures 21 through 26.

The unfolded pressure wave forms, with the plus and minus

uncertainties, are shown in the left-hand plot, while the corresponding

integrated impulses are displayed in the right-hand plot. Two points

are noteworthy from these plots. First, Bl and B5 are peculiar looking

unfolded pressure wave forms when compared to the other unfolded wave

forms. B1 has a repeating pulse, which judging from the timing, is

propagating up and down the bar. This record was unfolded several

times with carefully chosen parameters. The same results were always

achieved. Therefore, it is presumed that Bl was unfolded correctly,

and the oscillations represent a mechanical pulse not due to the

pressure applied to the measurement end of the bar gage.

B5 displays late-time pulses different than that of Bl. The late-

time inputs evident on B5 are not as periodic in nature. These are

above the baselikLe indicating positive pressure. B5 may be responding

to a mechanical input, perhaps from the explosive or some anomalous

behavior in the bar. The other unfolded bar gage records appear to be

reasonable. The uncertainties in the pressure wave form reveal

themselves in the high-frequency spikes at times when the reflections

are being unfolded, as was observed in the previous chapter.

Note that had the records not been unfolded, it is possible that

BI and B5 would not have been singled out as suspect. Since their

initial pulses looked reasonable, and the rest of the records looked
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"bar gage-like", it would be easy to conclude that records were valid.

By unfolding the records, the differences became obvious. With regard

to this example, it is concluded that unfolding the bar gage records

can be useful in evaluating the quality of the bar gage measurement.

The uncertainties due to the reflection coefficients yield large

uncertainties in the unfolded impulses. This is a second noteworthy

point regarding the unfolding of these bar gage records. Even the most

careful examination of the bar gage records could not yield a constant

reflection coefficient. The reflection coefficient varied as much as

eight percent, requiring that amount of uncertainty to be input to the

unfolding program. As can be seen in Figure 23, these sorts of

uncertainties in reflection coefficients cause gross errors in the

unfolded impulse. An analyst could only use one or two reflections of

an unfolded impulse wave form with uncertainties that large. Some of

the records had less uncertainty in their reflection coefficients and

the unfolded impulse waveforms are more reasonable. B5 and B6 in

Figures 25 and 26 are good examples of this.

Each unfolded bar gage record is plotted along with its

corresponding Kulite airblast gage record in Figures 27 through 32. As

before, the pressure wave forms are grouped together on one plot and

the integrated impulses on another. The plus and minus uncertainties

of the unfolded pressure wave form are left off of these plots for

clarity. The airblast data from the Kulite airblast gages required

little or no data manipulation. Prior to making these plots, 100-ms

plots of the Kulite airblast data were studied to determine the maximum
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pulse lengths. It was determined that 16-ms plots would be adequate to

display all of the useful data. Since the Kulite airblast gage trace

returns to the baseline (zero pressure) and stays there, the dashed

trace is difficult to see on the pressure plots.

Impulses from the unfolded bar gage records range from 40 to 100

percent higher than the impulses measured by the Kulite airblast gages.

With differences this extreme, the impulses measured by the Kulite

airblast gages remain well below the minus uncertainty in the unfolded

wave forms. Recall that numerical unfolding leaves the portion of the

wave form prior to the first tensile reflection untouched. In each of

Figures 27 through 32 the impulse measured by the bar gage exceeds the

impulse measured by the Kulite airblast gage well before the first

reflection is unfolded. Hence, the discrepancy between the two gage

types is established before numerical unfolding can contribute. For

these reasons, numerical unfolding could not have caused the

discrepancies between the two gage types.

Because the bar gages were located close to their companion Kulite

airblast gage, it is highly unlikely that the pressure field generated

by the symmetric charge caused the systematic differences observed by

the two gage types. These differences appear to fall well outside of

data scatter (see, for example the Kulite and bar gage measurements

along Radial A). Therefore, one can conclude that the discrepancies

between gage types are not due to position in the test bed, or just

excessive scatter in the data.

The likely cause for differences between gage types is some

fundamental difference in the measurement techniques. Observe the
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pressure plots. The bar gage recoreds indicate a second pressure pulse

arriving about 0.5 to 1.2-msec after the arrival of the primary

pressure pulse. This second pulse is not evident on the wave forms

measured by the Kulite airblast gages. Since this second pulse on the

bar gage records has substantial amplitude and duration, it affects the

impulse significantly. This second pulse accounts for the difference

in impulse measured by the two gage types.

Recent analysis of the data indicate that the bar gages are in

error, i.e., the second pulse is not representative of the actual

pressure environment at the end of the bar gage (Reference 12). It has

been hypothesized that ground shock loadings, water jacket effects, or

shear loads induced by relative motion between the bar and the

surrounding jacket, might cause the peculiar bar gage output.

For completeness, it should be pointed out that there is no

guarantee that the unfolding routine will correctly unfold data that is

input to the lateral surfaces of the bar gage. Hence, from a purist

point of view, errors due to poor bar gage performance can also be

unfolded incorrectly and contribute to further unfolding errors.

Future research and development will likely lead to bar gage designs

which minimize influences from lateral loadings. In the absence of

lateral loading induced errors, the uncertainties due to wave speed and

reflection coefficients are the primary sources of error in the

unfolding routine.

While the numerical unfolding of the these bar gage records was

not necessary to reveal the differences between the two types of

airblast gages, this application demonstrates how numerical unfolding
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can be used during data analysis. Had there been no grievous

differences between the gage types, more profound conclusions might

have been made. In general, numerical unfolding with the calculated

uncertainties can be used for the following purposes during data

analysis:

1. Determine for each individual wave form the length of unfolded

bar gage record that can be used without incurring too much

error.

2. Gain insight into the quality of the bar gage record. Bar

gage records of good quality tend to produce predictable wave

shapes when unfolded.

3. Allow comparisons with other airblast gages having longer

duration records. If other wave forms lie outside of the

error bounds of the numerical unfolding, the discrepancy is

due to some source other than the numerical unfolding. If the

wave forms lie inside the error bounds of the numerical

unfolding, then it is possible that discrepancies are due to

the unfolding and further explanations for the discrepancies

must be presented carefully, or withheld all together.



CHAPTER VI

CONCLUSIONS

Review

Bar gages are frequently used to measure airblast on explosive

tests. The unique design and configuration of a bar gage allows it to

measure high peak pressure and impulse close to an explosive charge.

Unfortunately, the arrival of reflections from the ends of the bar gage

limit the length of time that the primary pressure pulse can be

measured. In this thesis we investigated the errors associated with

the use of D'Alembert unfolding to numerically remove the reflections

from the bar gage record, thereby restoring the original pressure

pulse.

D'Alembert unfolding is a numerical technique by which the tensile

reflections from the bottom of the bar gage, and the compressive

reflections from the top of the bar gage, are added and subtracted from

the measured wave form in such a way as to restore the original

pressure pulse. The numerical technique makes the same assumptions as

D'Alembert did in formulating his classical wave propagation equation.

The most notable assumption being that the pulse propagates up and down

the bar at a constant wave speed without changing shape. By further

assuming that accurate and constant reflection coefficients can be

identified for the ends of the bar gage while it makes the measurement,

94
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the reflections can be subtracted from the measured wave form. In

1983, computer programs were written to perform this numerical

technique on actual bar gage records.

Although D'Alembert unfolding often yielded reasonable results,

critics pointed out potential flaws in the technique. Dispersion in

high-frequency data is contrary to the principle assumptions on

D'Alembert unfolding; namely, the wave speed varies with frequency

content, and hence the pulse changes shape as it propagates down the

bar. Also, reflection coefficients seem to vary thioughout the record

slightly. By assuming a constant reflection coefficient for each end

of the bar, considerable error could be introduced into the numerical

result. It was argued that this error could cause large errors in

specific impulse (first integral of pressure), a very important

quantity for explosive testing. Alternatively, proponents of unfolding

indicated that if even one reflection could be unfolded with acceptable

error, it would greatly increase the value of the bar gage measurement.

This thesis sought to quantify the errors inherent to D'Alembert

unfolding, permitting a sound judgement to be made regarding the

credibility of the numerical technique.

The governing equation for D'Alembert unLolding was examined and

three error sources were chosen for study. These error sources (listed

below) comprise most of the error in the unfolding technique:

1. Specifying incorrect low frequency wave speed, co.
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2. Choosing incorrect reflection coefficients, or assuming

constant reflection coefficients when in reality, reflection

coefficients were changing.

3. Dispersion and incorrect bar gage dimensions.

The first two errors were addressed analytically and numerically

to arrive at the uncertainty in the unfolded wave form. The last

errors were merely discussed to qualitatively assess their

significance.

Recent experiments, suggest that bar gage output may be influenced

by lateral loading during high expl sive tests. The purpose of the bar

gage and the unfolding routine are to deduce the pressure loading at

the end of the bar. Lateral loads originate at places other than the

end of the bar and propagate away hence forth. The unfolding routine

is not designed to correct for these sorts of input. It is conceivable

that the unfolding routine could generate further errors when used on

bar gage records generated by multiple loading sites. Determination or

treatment of errors induced by lateral loading are beyond the scope of

this thesis. In, the absence of such lateral loading errors, the

uncertainty analysis presented in this thesis has addressed the primary

error sources.

Errors in the unfolded wave form due to uncertainty in the wave

speed were identified numerically. Upper and lower bounds were placed

on the wave speed, and the wave form unfolded for each case. The

uncertainty in the unfolded wave form due to uncertainty in wave speed

was then simply the difference between the wave forms.
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Errors in the unfolded wave form due to uncertainty in the

reflection coefficients were determined analytically by applying

classical uncertainty analysis to the mathematical expression for the

unfolded wave form. This yielded exact expressions for the uncertainty

due to reflection coefficients, which could then be applied to specific

wave forms.

The effect of tne,7c errors was then examined by unfolding

candidate wave Forms and calculating the uncertainty due to both error

sources individually. Two types of wave forms were used. The first

type, was a zecord from a ball drop calibzation on a specially made bar

gage where all of the dimensions were precisely known. The ball drop

calibration is a controlled laboratory test. The input to the bar gage

from a ball drop calibration is well known and is complete before the

first tensile reflection arrives. Consequently, it was a good choice

for evaluating the effect of unfolding errors. Ball drop calibrations

also have lower frequency content, so dispersion is not prevalent.

The second type of wave form was a typical high explosive test

record, specifically the WLB-I record. Unfolding this wave form

revealed the effect of the individual uncertainties on a wave form

which contained considerable high frequency content. The wave form

from the high explosive test also had larger uncertainties in

reflection coefficients, which is typical of most explosive test data.

Therefore, this wave form was representative of practical applications.

The proper method for combining these two errors; i.e., that due

to uncertainty in wave speed, and that due to uncertainty in reflection

coefficierg.s, was then studied. It was determined that adding the
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uncertainty due to incorrect wave speed to the RSS combination (square

root of the sum of the squares) of the uncertainties due to the

reflection coefficients was the best method of arriving at the total

uncertainty of the unfolded wave form. This was incorporated into a

computer program that calculated the uncertainties for the specific

wave form of interest. In this way, upper and lower bounds on the true

unfolded wave form could be established for the data analyst.

This error analysis was applied to airblast data from a candidate

high explosive test. This test allowed for the comparison of unfolded

bar gage records with another reputable type of airblast gage, the

Kulite HKS airblast gage. All of the bar gage records were unfolded

and then compared to their Kulite airblast gage counterpart. This

analysis demonstrated the D'Alembert unfolding technique upon actual

field test data and revealed systematic differences between bar gage

measurements and the Kulite HKS airblast gage.

Conclusions

Several conclusions are drawn from this study. They are:

1. An uncertainty analysis method was developed which

treats the uncertainties inherent in the

D'Alembert unfolding technique as applied to

strain-gaged Hopkinson bar gage records. A

modified unfolding program was written which

provides the analyst with the useful upper and

lower bounds of uncertainty for a particular wave
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form. The magnitude of the uncertainty is wave

form specific, i.e., dependent on the character of

the particular wave form being analyzed.

2. Errors in the reflection coefficients may yield

large errors in unfolded impulse. These errors

are the primary factor limiting the usefulness of

D'Alembert unfolding. With the unfolding of

subsequent reflections, the error in impulse from

these sources increases geometrically.

3. Errors in wave speed produce spikes on the

unfolded pressure wave form, but do not yield

large errors in impulse. In general, with higher

frequency content airblast data, and with larger

uncertainty in wave speed, the spiky, noise-like

behavior will be more prevalent.

4. Dispersion, uncertainties in bar Saie dimensions,

and other errors are less significant, and

manifest themselves in a manner similar to errors

in wave speed.

5. The differences between the unfolded bar gage

measurements and Kulite airblast measurements are

not due to errors in the D'Alembert unfolding

technique. Evidence suggests that bar gage

measurements were influenced by phenomena other

than airblast (e.g., lateral loading), and that
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the Kulite airblast gages were not affected by

these phenomena.

6. Unfolding bar gage records can aid the data

analyst in assessing the quality of the bar gage

measurement. Peculiar behavior that is "hidden"

in the reflections sometimes is revealed by

D'Alembert unfolding.

These conclusions assume that the analyst has made reasonable

choices of wave speed and reflection coefficients, and the

uncertainties associated with these parameters. Performing D'Alembert

unfolding with grossly incorrect parameters or very large uncertainties

can lead to results which are contrary to the above conclusions.

Recommendations

The objective of this thesis was to ascertain the credibility of

D'Alembert unfolding as a data reduction technique for bar gage

records. The error analysis of the D'Alembert unfolding method

accomplished that objective by quantifying the errors due to unfolding

a particular wave form. This error analysis included only the effects

of uncertainty in wave speed, reflection coefficients, and dispersion.

If other significant sources of error are found, effort should be made

to incorporate these errors into the uncertainty calculations.

The most important recommendation from this work is to apply the

modified D'Alembert unfolding program to more field data. As was

eluded to in earlier chapters, bar gages exhibit phenomena which are

not fully understood. By unfolding the bar gage records and comparing
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them to other airblast measurements, bar gage performance might be

better understood. Having the upper and lower bounds on the numerical

unfolding errors, the analyst can confidently choose the length of

unfolded record to use and assess the validity of its comparison to

other measurements or predictions.



APPENDIX

This appendix contains the computer program listings for the

unfolding programs used in this thesis. Refer to Chapter 3 for a

description of the basic organization of these codes. A flow chart of

the basic workings of these programs is shown in Figure 8 of Chapter 3.

The computer program UNFOLD is essentially the same program

developed by Welch and White for operation on Tektronics and VAX

computer systems. This program was modified to run on IBM personal

computers and compatibles for this thesis, and named UNFOLD. UNFOLD1

uses the first program as its core, but also calculates a plus and

minus uncertainty in the unfolded wave form due to uncertainty in wave

speed. UNFOLD2 uses the first program as its core, but calculates plus

and minus uncertainty in the unfolded wave form due uncertainties in

both reflection coefficients. UNFOLD4 is the final program developed

for this thesis. UNFOLD4 combines the uncertainties in the unfolded

wave form due to wave speed and reflection coefficients.

The computer program UNFOLD3 is conspicuously missing from this

appendix. UNFOLD3 was written to identify the differences between two

different schemes of combining the uncertainties in the unfolded wave

form due to both wave speed and reflection coefficients. UNFOLD3 was

subsequently used to generate the data for Figure 18 (Chapter 4). One

of those schemes was deemed inappropriate. Accordingly, the listing of

102
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UNFOLD3 is not included in this thesis to avoid confusion.

The listings of UNFOLD, UNFOLD1, UNFOLD2, and UNFOLD4 follow this

narrative in their respective order.
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PROGRAM UNFOLD

C*****REVISED ON 10-13-90 TO MAKE THE PROGRAM MORE EFFICIENT***

C*****ROUTINE NOW DISCERNS WHICH REFLECTION POINT "1" IS IN****

C*****AND ONLY RUNS LOOP THAT MANY TIMES. OTHER THINGS ARE****

C*****TO MAKE PROGRAM M )RE LOGICAL AND EFFICIENT. MORE********

C*****COMMENTS STATEMENTS ARE ADDED FOR CLARITY****************

C*****INITIAUZE AND DEFINE SOME VARIABLES AND ARRAYS**********

CHARACTER*30 BARFILE1,BARUNFOLD

PARAMETER (NN =17000)

DIMENSION A(NN), F(NN)

NFIRST=4.

C*****INPUT BAR GAGE PARAMETERS AND OTHER INFORMATION**********

PRINT*,'INPUT WAVE SPEED OF BAR (FT/S)

READ(*,*) C

PRINT*,'INPUT LENGTH OF BAR (FT)

READ(*,*) BARLEN

PRINT*,'INPUT DISTANCE BETWEEN TOP OF BAR AND GAGE (FT)

READ(*,*) X

PRINT*,'iNPUT REFLECTION COEFFICIENT FOR DUMP END OF BAR

READ(*,*) GAMMA1

PRINT*,'INPUT REFLECTION COEFFICIENT FOR INPUT END OF BAR

READ(*,*) GAMMA2
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PRINT*,'INPUT TIME OF ARRIVAL (SEC)

READ(*,*) TOA

PRINT*,'WHAT IS NAME OF BAR GAGE DATA FILE TO UNFOLD?

READ(*,1000) BARFILE1

PRINT*,'WHAT IS NAME OF FILE FOR UNFOLDED DATA?

READ(*,1000) BARUNFOLD

PRINT*,'HOW MANY TENSILE REFLECTIONS ARE THERE?

READ(*,*) NREFL

C*****OPEN FILES, READ HEADER INFORMATION***********************

OPEN(1 5,FILE = BARFILE1 ,STATUS ='OLD',FORM = 'FORMATTED')

OPEN(1 6,FILE = BARUNFOLD,FORM ='FORMATTED')

READ(15,2000) TFIRST,TINC,FKOUNT

WRITE(16,2000) TFIRST,TINC,FKOUNT

KOUNT=-IFIX(FKOUNT)

C*****UNFOLD WAVEFORM*******************************************

TWOC=2./C

DO 100 I=NFIRST,KOUNT

G2=0.0

G2=0.0
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DO 200 N =1 ,NREFL

TEMP =TWOC*(FLOAT(N)*BARLEN-X)

VALl = TIME-TEMP-TOA

IF(VAL1 .GT.O) THEN

J = IFIX(TEMP[TINC)

J=-IJ

IF(J.GT.0) THEN

IF(J.GE.NFIRST) THEN

Gi = Gi +(GAMMAl **N)*(GAMMA2**(N-1 ))*F(J)

TEMP =TWOC*FLOAT(N)*BARLEN

VAL2 =TIME-TEMP-TOA

IF(VAL2.GT.0) THEN

J =IFIX(rEMP/TINC)

J =I-J

IF(J.GT.0) THEN

IF(J.GE.NFIRST) THEN

G2=G2+ (GAMMA1**N)*(GAMMA2**N)*F(J)

END IF

END IF

END IF

END IF

END IF

END IF

200 CONTINUE
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READ(15,*) TIME, A(I)

F(I) =A(I)+G1-G2

WRITE(16,4000) TIME, F(I)

100 CONTINUE

50 CLOSE (UNIT= 15)

CLOSE (UNIT= 16)

C*****FORMAT STATEMENTS*****************************************

1000 FORMAT(A30)

2000 FORMAT(E12.4,/,E12.4,/,E12.4)

3000 FORMAT(E12.4)

4000 FORMAT(F10.8,IX,F12.5)

END
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PROGRAM UNFOLD1

C*****THIS PROGRAM CALCULATES UPPER AND LOWER BOUND *

C*****UNFOLDED WAVEFORMS FOR SPECIFIED CHANGES IN WAVE *******

C*****SPEED. THREE WAVEFORMS ARE OUTPUT, UNFOLDED *

C*****WAVEFORM, PLUS AND MINUS UNCERTAINTY*********************

C*****REVISED ON 11-26-90 TO MAKE THE PROGRAM MORE EFFICIENT***

C*****ROUTINE NOW DISCERNS WHICH REFLECTION POINT I" IS IN****

C*****AND ONLY RUNS LOOP THAT MANY TIMES. OTHER THINGS ARE****

C*****TO MAKE PROGRAM MORE LOGICAL AND EFFICIENT. MORE********

C*****COMMENTS STATEMENTS ARE ADDED FOR CLARITY****************

C*****INITIAUZE AND DEFINE SOME VARIABLES AND ARRAYS**********

CHARACTER*30 BARFILE1 ,BARUNFOLD,MINUSUNC,PLUSUNC

PARAMETER (NN= 16000)

DIMENSION A(NN), F(NN)

DIMENSION G1(3), G2(3)

NFIRST=4.

C*****INPUT BAR GAGE PARAMETERS*********************************

PRINT*,'INPUT WAVE SPEED OF BAR (FT/S)

READ(*,*) C

PRINT*,'INPUT UNCERTAINTY OF WAVE SPEED (+ /- X" FT/S)

READ(*,*) UC
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PRINT*,'INPUT LENGTH OF BAR (FT)

READ(*,*) BARLEN

PRINT*,'INPUT DISTANCE BETWEEN TOP OF BAR AND GAGE (FT)

READ(*,*) X

PRINT*,'INPUT REFLECTION COEFFICIENT FOR DUMP END OF BAR

READ(*,*) GAMMAl

PRINT*,'INPUT REFLECTION COEFFICIENT FOR INPUT END OF BAR'

READ(*,*) GAMMA2

PRINT*,'INPUT TIME OF ARRIVAL (SEC)

READ(*,*) TOA

PRINT*,'WHAT IS NAME OF BAR GAGE DATA FILE TO UNFOLD?

READ(*,1000) BARFILE1

PRINT*,'WHAT IS NAME OF FILE FOR UNFOLDED DATA?

READ(*,1000) BARUNFOLD

PRIN'T*,'WHAT IS NAME OF FILE FOR MINUS UNCERTAINTY?

READ(*,1000) MINUSUNC

PRINT*,'WHAT IS NAME OF FILE FOR PLUS UNCERTAINTY?

READ(*,1000) PLUSUNC

C*****OPEN FILES, READ HEADER INFORMATION***********************

OPEN(1 5,FILE = BARFILE 1,STATUS = 'OLD',FORM = 'FORMATTED')

OPEN (1 6,FILE = BARUNFOLD,FORM = 'FORMATTED')

OPEN(17,FILE = MINUSUNC, FORM ='FORMATTED')

OPEN(18,FILE = PLUSUNC, FORM = 'FORMATTED')
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READ(15.2000) TFIRSTTINC,FKOUNT

WRITE(1 6,2000) TFIRST,TINC,FKOUNT

KOUNT= IFIX(FKOUNT)

C*****UNFOLD WAVEFORM*******************************************

DO 100 I= NFIRST,KOUNT

READ(15,*,END=50) TIME, A(I)

DO 125 L=1,3

Gi (L)=zO.o

G2(L) =0.0

125 CONTINUE

DO 150 K = 1,3

IF (K1.EQ.1) THEN

Cl =C-UC

ELSE IF (KI.EO.2) THEN

Cl =C

ELSE IF (Ki .EO.3) THEN

Cl =C+UC

ENDIF

C*****IF 1" LIES PRIOR TO FIRST TENSILE REFLECTION, WRITE******

C***** POINT DIRECTLY TO OUTPUTFIE***********



TWOC=2./CI

IF (TiME.LT.(TOA +TWOC*(BARLEN-X))) THEN

GO TO 5

ELSE

C*****IF "I" LIES AFTER FIRST TENSILE REFLECTION, FIND**********

C*****OUT WHICH REFLECTION IT UIES IN, AND SET VARIABLE *N"*****

C*****TO THAT NME**********************

DIF =(TIME-(TOA +TWOC* (BARLEN.X)))/(TWOC*BARLEN)

WNUM =AINT(DIF)

DEC =DIF-WNUM

IF (DEC.LT.O.50) THEN

DIF=DIF+O.50

ENDIF

N =NINT(DIF)

ENDIF

C*****PERFORM SUMMATIONS OF SECOND TERM*************************

DO 200 K= 1.N

TEMP = (2./Cl )*(FLOAT(K)*BARLEN-X)

J = IFIX(TEMP/TINC)

J =I-J

Gi (Ki) = Gi (KI) + (GAMMA1 **K)*(GAMMA2** (K-l ))*F(J)
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C*****DETERMINE IF SUMMATIONS OF THIRD TERM ARE NECESSARY, *

C*****AND IF SO, PERFORM TE***********************************

TEMP = (2./Cl)*FLOAT(K)*BARLEN

VAL2 =TIME-TEMP-TOA

IF(VAL2.GT.0) THEN

J = IFIX(TEMP/TINC)

J=I-J

G2(Kl) = G2(K1) + (GAMMAI **K) *(GAMMA2**K) *F(J)

END IF

200 CONTINUE

150 CONTINUE

C*****COMPUTE AMPUTUDE OF UNFOLDED VALUE OF POINT a"" AND *****

C*****WRITE IT TO THE OUTPUT ********************************

5 F(I) =A(I) +Gl (2)-G2(2)

FMINUS=A(I) +G1 (l)-G2(1)

FPLUS =A(I) + Gi (3)-G2(3)

WRITE(16,4000) TIME, F(I)

WRITE(17,4000) TIME, FMINUS

WRITE(18,4000) TIME, FPLUS

100 CONTINUE
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50 CLOSE (UNIT=15)

CLOSE (UNIT= 16)

CLOSE (UNIT= 17)

CLOSE (UNIT= 18)

C*****FORMAT STATEMENTS*****************************************

1000 FORMAT(A30)

2000 FORMAT(E12.4,/,E12.4,/,E12.4)

3000 FORMAT(E12.4)

4000 FORMAT(F10.8,1X,F12.5)

END
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PROGRAM UNFOLD2

C*****PROGRAM IS THE SAME AS UNFOLD EXCEPT THAT IT ALSO*****

C*****CALCULATES THE UNCERTAINTY IN THE UNFOLDED WAVEFORM***

C*****DUE TO THE UNCERTAINTY IN THE REFLECTION COEFFICIENTS*

C*****REVISED ON 11-12-90 TO INCORPORATE CHANGES WHICH MAKE*

C*****PROGRAM MORE LOGICAL AND EFFICIENT."""**********'*****

C*****INITIALIZE AND DEFINE SOME VARIABLES

CHARACTER*30 BARFILE1,BARUNFOLD,UNCFILEP,UNCFILEM

PARAMETER (NN = 17000)

DIMENSION A(NN), F(NN)

NFIRST=4.

C*****INPUT BAR GAGE PARAMETERS*********************************

PRINT*,'INPUT WAVE SPEED OF BAR (FT/S)

READ(*,*) C

PRINT*,'INPUT LENGTH OF BAR (FT)

READ(*,*) BARLEN

PRINT*,'INPUT DISTANCE BETWEEN TOP OF BAR AND GAGE (FT)

READ(*.*) X

PRINT*,'INPUT REFLECTION COEFFICIENT FOR DUMP END OF BAR

READ(*,*) GAMMA1
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PRINT*,'UNCERTAINTY OF THE DUMP END REFL. COEFFICIENT

READ(*,*) UA

PRINT*,'INPUT REFLECTION COEFFICIENT FOR INPUT END OF BAR' READ(*,*)

GAMMA2

PRINT*,'UNCERTAINTY OF THE INPUT END REFL COEFFICIENT

READ(*,*) UB

PRINT*,'INPUT TIME OF ARRIVAL (SEC)

READ(*,*) TOA

PRINT*,'WHAT IS NAME OF BAR GAGE DATA FILE TO UNFOLD?

READ(*,1000) BARFILE1

PRINT*,'WHAT IS NAME OF FILE FOR UNFOLDED DATA?

READ(*, 1000) BARUNFOLD

PRINT*,'GIVE A FILENAME FOR THE PLUS UNCERTAINTY VALUES

READ(*,1000) UNCFILEP

PRINT*,'GIVE A FILENAME FOR THE MINUS UNCERTAINTY VALUES

READ(*,1000) UNCFILEM

C*****OPEN FILES, READ HEADER INFORMATION***********************

OPEN(1 5,FILE= BARFILE1,STATUS ='OLD',FORM ='FORMATTED')

OPEN(16,FILE = BARUNFOLD,FORM = 'FORMATTED')

OPEN(1 7,FILE = UNCFILEP,FORM = 'FORMATTED')

OPEN(1 8,FILE = UNCFILEM,FORM = 'FORMATTED')



116

READ(1 5,2000) TFIRSTTINC,FKOUNT

WRlTE(l 6,2000) TFIRST.TINC,FKOUNT

WFRITE(l 7,2000) TFIRSTTINC,FKOUNT

WRITE(1 8,2000) TFIRST,TINC,FKOUNT

KOUNT= IFIX(FKOUNT)

C*****UNFOLO WAVEFORM*******~************************************

TWOC=2./C

D0 100 I=NFIRST,KOUNT

READ(15,*,END=50) TIME, A(I)

G1 =0.0

G2=0.0

Al =0.0

A2 =0.0

61 =0.0

B2 = 0.0

C*****IF 01" LIES PRIOR TO FIRST TENSILE REFLECTION, WRITE******

C*** POINT DIRECTLY TO OUTPUT FL**************

IF (TIME.LT. (TOA +TWOC*(BARLEN-X))) THEN

GO TO 5
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ELSE

C*****IF "I" UIES AFTER FIRST TENSILE REFLECTION, FIND**********

C*****OUT WHICH REFLECTION IT UIES IN, AND SET VARIABLE "N******

C*****TO THATNU ER*********************

DIF= (TIME-(TOA+ TWOC*(BARLEN-X)))/(TWOC*BARLEN)

WNUM =AINT(DIF)

DEC =DIF-WNUM

IF (DEC.L.T.O.5O) THEN

DIF=DIF+O.50

ENDIF

N =NINT(DIF)

ENDIF

C*****PERFORM SUMMATIONS OF SECOND TERM*************************

DO 200 K=l1,N

TEMP =TWOC*(FLOAT(K)*BARLEN-X)

J =IFIX(TEMP/TINC)

J =I-J

Gi =Gl + (GAMMAl**K)*(GAMMA2**(K-l))*F(J)

Al = Al + K*(GAMMAI **(K-l)) *(GAMMA2**(K-1))*F(J)

Bi =61 + (K-l)*(GAMMAl**K)*(GAMMA2**(K-2))*F(J)
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C*****DETERMINE IF SUMMATIONS OF THIRD TERM ARE NECESSARY,

C*****AND IF SO, PERFORMTHM*****************

TEMP =1WOC*FLOAT(K)*BARLEN

VAL2 =TIME-TEMP-TOA

IF(VAL.2.GT.O) THEN

J =IFIX(TEMP/TINC)

J =I-J

G2 =G2 +(GAMMAl **Kq*(GAMMA2**K)*F(J)

A2 =A2 +K*(GAMMA1 **(Kl ))*(GAMMA2**K)*F(J)

82 =B2 +K*(GAMMA1 **Kq*(GAMMA2**(K-i1))*F(J)

END IF

200 CONTINUE

C*****COMPUTE AMPLITUDE OF UNFOLDED VALUE OF POINT *I' AND

C*****WRITE IT TO THE OUTPUT FL***************

5 F(I)=A(I)+Gl-G2

UNCA= ((Al .A2)/F(I))*UA

UNCB = ((81 -B2)/F(i))*UB

U = ((UNCA**2) + (UNCB**2))**0.5

UP = F(t) + (U*ABS(F(I)))

UM = F(i)-(U*ABS(F(I)))
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WRITE(16,4000) TIME, F(I)

WRITE(1 7,4000) TIME, UP

WRITE(18,4000) TIME, UM

100 CONTINUE

50 CLOSE (UNIT= 15)

CLOSE (UNIT= 16)

CLOSE (UNIT= 17)

CLOSE (UNIT= 18)

C*****FORMAT STATEMENTS*****************************************

1000 FORMAT(A30)

2000 FORMAT(E12.4,/,E12.4,/,E12.4)

3000 FORMAT(11X,E12.4)

4000 FORMAT(F1O.8,1X,F12.5)

END
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PROGRAM UNFOLD4

C*****THIS PROGRAM CALCULATES UNCERTAINTY DUE TO C, A, AND B,****

C*****AND WRITES THE PLUS AND MINUS UNCERTAINTIES TO A FILE.*****

C*****REVISED ON 11-26-90 TO MAKE THE PROGRAM MORE EFFICIENT***

C*****ROUTINE NOW DISCERNS WHICH REFLECTION POINT -I- IS IN****

C*****AND ONLY RUNS LOOP THAT MANY TIMES. OTHER THINGS ARE****

C*****TO MAKE PROGRAM MORE LOGICAL AND EFFICIENT. MORE********

C*****COMMENTS STATEMENTS ARE ADDED FOR CLARITY****************

C*****INITIALIZE AND DEFINE SOME VARIABLES AND ARRAYS**********

CHARACTER*30 BARFILE1 ,BARUNFOLD,MINUSUNC,PLUSUNC

PARAMETER (NN= 16000)

DIMENSION A(NN), F(NN)

DIMENSION G1(3), G2(3)

NFIRST=4.

C*****INPUT BAR GAGE PARAMETERS*********************************

PRINT*,'INPUT WAVE SPEED OF BAR (FT/S)

READ(*,*) C

PRINT*,'INPUT UNCERTAINTY OF WAVE SPEED (+ /- "X" FT/S)

READ(*,*) UC

PRINT*,'INPUT LENGTH OF BAR (FT)
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READ(*,*) BARLEN

PRINT*,'INPUT DISTANCE BETWEEN TOP OF BAR AND GAGE (FT)

READ(*,*) X

PRINT*,'INPUT REFLECTION COEFFICIENT FOR DUMP END OF BAR'

READ(*,*) GAMMA1

PRINT*,'UNCERTAINTY OF THE DUMP END REFL COEFFICIENT

READ(*,*) UA

PRINT*,'INPUT REFLECTION COEFFICIENT FOR INPUT END OF BAR'

READ(*,*) GAMMA2

PRINT*,'UNCERTAINTY OF THE INPUT END REFL. COEFFICIENT

READ(*,*) UB

PRINT*,'INPUT TIME OF ARRIVAL (SEC)

READ(*,*) TOA

PRINT*,'WHAT IS NAME OF BAR GAGE DATA FILE TO UNFOLD?

READ(*,1000) BARFILE1

PRINT*,'WHAT IS NAME OF FILE FOR UNFOLDED DATA?

READ(*.1000) BARUNFOLD

PRINT*,PWHAT IS NAME OF FILE FOR MINUS UNCERTAINTY?

READ(*,1000) MINUSUNC

PRINT*,WHAT IS NAME OF FILE FOR PLUS UNCERTAINTY?

READ(*,1000) PLUSUNC

C*****OPEN FILES, READ HEADER INFORMATION***********************



122

OPEN(l 5,FILE = BARFILEl ,STATUS ='OLD',FORM ='FORMATTED')

OPEN(16,FILE=BARUNFOLDFORM ='FORMATTED')

OPEN (1 7,FILE= MINUSUNO, FORM = 'FORMATTED')

OPEN(1 8,FILE=PLUSUNO, FORM ='FORMATTED')

READ(1 5,2000) TFIRST,TINC,FKOUNT

WRITE(1 6,2000) TFIRST,TINC,FKOUNT

KOUNT=IFIX(FKOU NT)

C*****UNFOLD WAVEFORM****************************************~**

DO 100 I= NFIRST,KOUNT

READ(15,*,END=50) TIME, A(I)

Al =0.0

A2 =0.0

Bl =0.0

B2=0.0

DO 125 L =1,3

Gi (L) =0.0

G2(L) = 0.0

125 CONTINUE
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DO 150 K1 = 1,3

IF (Kl.EQ.1) THEN

Cl =C-UC

ELSE IF (K1.EQ.2) THEN

Cl =C

ELSE IF (KI.EQ.3) THEN

C1 =C+UC

ENDIF

C*****IF "1" LIES PRIOR TO FIRST TENSILE REFLECTION, WRITE******

C***** POINT DIRECTLY TO OUTPUT F****************************

TWOC=2./Cl

IF (TIME.LT.(TOA+TWOC*(BARLEN-X))) THEN

GO TO 5

ELSE

C*****IF "1" LIES AFTER FIRST TENSILE REFLECTION, FIND**********

C*****OUT WHICH REFLECTION IT UES IN, AND SET VARIABLE "N*****

C*****TO THAT NUMBER*******************************************

DIF= (TIME-(TOA+TWOC*(BARLEN-X)))/(TWOC*BARLEN)

WNUM =AINT(DIF)

DEC= DIF-WNUM

IF (DEC.LT.0.50) THEN
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DIF= DIF+ 0.50

ENDIF

N==NINT(DIF)

ENDIF

C*****PERFORM SUMMATIONS OF SECOND TERM*************************

DO 200 K=l,N

TEMP =(2./Cl )*(FLOAT(K)*BARLEN-X)

J -IFIX(TEMP/TI NC)

J=I-J

G I (Ki) =Gi (Kl) + (GAMMAl **K) *(GAMMA2**(K-1l))*F(J)

IF(Kl .EQ.2) THEN

Al = Al + K*(GAMMAI **(K-1)) *(GAMMA2**(K-1))*F(J)

Bl =Bl + (K-l)*(GAMMAl**K)*(GAMMA2**(K-2))*F(J)

ENDIF

C*****DETERMINE IF SUMMATIONS OF THIRD TERM ARE NECESSARY,

C.*****AND IF SO, PERFORM TE*****************

TEMP = (2./C1)*FLOAT(K)*BARLEN

VAL2 =TIME-TEMP-TOA

IF(VAL2.GT.0) THEN

J =IFIX(TEMP/TINC)

J =I-J

G2(Kl) = G2(Kl) + (GAMMAl **K)*(GAMMA2**K)*F(J)
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IF(K1.EQ.2) THEN

A2 =A2 +K*(GAMMA1 **(K.1 ))*(GAMMA2**K)*F(J)

B2= 62 +K*(GAMMA1 **K)*(GAMMA2**(K.1 ))*F(J)

END IF

END IF

200 CONTINUE

150 CONTINUE

C*****COMPUTE AMPUITUDE OF UNFOLDED VALUE OF POINT 1" AND

C*****WRITE IT TO THE OUTPUTFLE***************

5 F(I) =A(I) + Gi (2)-G2(2)

FMINUS =F(I)-(A(I) + GI (1 )-G2(1))

FPLUS = F(I)-(A(I) + Gi (3)-G2(3))

UNCA= (Al .A2)*UA

UNCB= (B1-B2)*UB

UP = F(I)-FPLUS + ((UNCA**2) + (UNCB**2))**0.5

UM = F(i)-FMINUS.((UNCA**2) + (UNCB**2))**0.5

WRITE(16,4000) TIME, F(I)

WRITE(17,4000) TIME, UIM

WRITE(18,4000) TIME, UP

100 CONTINUE

50 CLOSE (UNIT= 15)

CLOSE (UNIT= 16)

CLOSE (UNIT= 17)
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CLOSE (UNIT= 18)

C*****FORMAT STATEMENTS*****************************************

1000 FORMAT(A30)

2000 FORMAT(E12.4,/,E12.4,/,E12.4)

3000 FORMAT(E12.4)

4000 FORMAT(F1O.8,1X,F12.5)

END
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