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Abstract
Heat transfer with change of phase (freezing or melting) is important in
numerous scientific and engineering applications. Since the pioneering works
of Lam6 and Clapeyron, Neumann and Stefan, a number of analytical and
numerical techniques have been developed to deal with freezing cnd melting
problems. One such analytical tool is the method of perturbation expansions,
which is the main focus of this work. The report begins with a review of the
perturbation theory and outlines the regular perturbation method, the method of
strained coordinates, the method of matched asymptotic expansions, and the
recently developed method of extended perturbation series. Next, the applications
of these techniques to phase change problems in Cartesian, cylindrical, and
spherical systems are discussed in detail. Although the bulk of the discussion
is confined to one-dimensional situations, the report also includes two- and
three-dimensional cases where admittedly the success of these techniques has
so far been limited. The presentation is sufficiently detailed that even the reader
who is unfamiliar with the perturbation theory can understand the material.
However, at the same time, the discussion covers the latest literature on the
subject and therefore should serve as a state-of-the-art review.

Cover: Perlurbotion solution for Stefon problem.

For conversion of SI metric units to U.S./British customary units of measurement
consult ASTM Standard E380-89a, Standard Practice for Use of the International
System of Units, published by the American Society for Testing and Materials,
1916 Race St., Philadelphia, Pa. 19103.
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NOMENCLATURE

a amplitude of temperature oscillation, °C ('F) or a constant
aij binomial coefficients
a, series coefficients
A amplitude of temperature oscillation, dimensionless or area of cross section,

m2 (ft2 ).
A0  constant
Am series coefficients

b a constant
b0  a function of Bi andNV
b, a function of Bi and V or a constant
b3  a function of rf
b, series coefficients
B1  a constant
Bi convective Biot number

Bir radiative Biot number
c specific heat, kJ/kg K (Btu/Ibm0 F) or a constant
c average specific heat, kJ/kg K (Btu/lbm*F)

Cf specific heat at temperature Tf, kI/kg K (Btu/lbm0 F)
ca series coefficients

C,C1,C2,C3  constants
e surface emissivity for radiation, dimensionless

el first Shanks transformation
E freezing front location, dimensionless
f function of e

fiB) function of 0
fj,( functions of xf

F temperature or overall radiation shape factor, dimensionless
Fn temperature series coefficients
F velocity of freezing front, dimensionless
gj coefficients of series for g
h convective heat transfer coefficient, Ws(m2 K) (Btu/ft2hrsF) or an integer

ij integers
k,k, thermal conductivity of solid phase, W/m K (Btu/ft hr°F)

kf thermal conductivity at temperature Tf
k, thermal conductivity of liquid phase, W/m K (Btulft hr0F)
k average thermal conductivity, W/m K (Btu/ft hr°F)
K ratio lthe or a constant

K r a constant
I slab thickness, m (ft)
L latent heat of fusion, U/kg (Btu/bm)

L l a constant
m1n integers

P perimeter of cross section, m (ft)
q heat flux, W/m2 (Btu/ft2hr)
Q heat flux, dimensionless
r radial coordinate, dimensionless

rf radial location of freezing front, dimensionless

v



R radial cwrdinate, m (ft)
Rf radial location of freezing front, m (ft)

Rw wall radius, m (ft)
s Laplace variable
S Stefan number, dimensionless

Sn-i,Sn.Sn+1  partial sums
t time, sec

T temperature, °C (CF)
Ta ambient temperature, *C (°F)
Tf freezing temperature, °C (OF)
Ti initial temperature, °C (OF)
T, coolant temperature or mean coolant temperature or wall temperature or fin base

temperature, °C (OF)
Tv vaporization temperature, °C (*F)
u temperature distribution in the solid phase, dimensionless

ui, un coefficients of series for u
v temperature distribution in the liquid phase or steady-state velocity of vaporizing

front, dimensionless
vn coefficients of series for v
x distance from wall, m (ft)

X* stretched distance, m (ft)
xf location of freezing front, m (ft)
xs reference of characteristic distance, m (ft)
Xv location of vaporizing front, m (ft)
X distance from wall, dimensionless

Xf location of freezing front, dimensionless
Xfn coefficients of series for Xf

z time, dimensionless

Greek
a thermal diffusivity, m2/s (ft2/s) or slope of the specific heat-temperature curve

divided by cf, *C-1 (OF-1) or ambient temperature, dimensionless or slope of
Domb-Sykes plot or a = T'o-s/_4

a. thermal diffusivity of solid phase, m2/s (ft2/s)

Ott thermal diffusivity of liquid phase, m2/s (ft2/s)
[ inverse of Stefan number S or the ratio of convective and radiative Biot numbers or

the slope of thermal conductivity-temperature curve divided by kf, (0C1I or
OF-1)

EXI'X2 perturbation parameters or coordinates
F- radius of convergence of series
e* Eulerized perturbation parameter
1I distance or similarity variable or inverse of rf or vaporization velocity, all dimen-

sionless
Tln coefficients of series for Ti
TI ji for inner expansion
in coefficients of series for "

Ill similarity variable based on the thermal diffusifity of liquid phase
TIs similarity variable based on the thermal diffusivity of solid phase
0 temperature, dimensionless

vi



0, ambient teperature, dimensionless
Of freezing temprature, dimensionless
Oi initial temperature, dimensionless
O0 temperature of the liquid phase, dimensionless
es temperature of the solid phase, dimensionless
V 0 for the inner expansion
O0 coefficients for series for 0*
X freezing or vaporizing front location, dimensionless

X•, eigenvalues
Xn coefficients of series for X

X_ location of stationary freezing front, dimensionless
X* X for inner expansion
9 fin parameter, m-1 (fr-)
p density, kg/Im3 (lbm/ft3)
a Stefan-Boltzmann constant or location of vaporization front, dimensionless
oi straining functions

oa, coefficients of series for a (the location of vaporization front)
or* inner expansion variable for a (the location of vaporization front)
an coefficient of series a*

Ir time, dimensionless
,rp preheating time, dimensionless
Tn coefficients of series for T
'v time to complete vaporization, dimensionless
It* r for inner expansion or c after Euler transformation
Q frequency of temperature oscillation, sec-
0) frequency of temperature oscillation, dimensionless
* strained variable, or temperature (outer expansion), dimensionless

*b* temperature (inner expansion), dimensionless

4n coefficients of series for *
V strained variable
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Perturbation Techniques in Conduction-Controlled
Freeze-Thaw Heat Transfer

VIRGIL J. LUNARDINI AND ABDUL AZIZ

1. INTRODUCTION

Heat transfer with freezing or melting occurs in a number of applications such as ice formation,
permafrost melting, metal casting, food preservation, storage of latent energy, automatic welding, etc.
The vast literature that exists on the subject has been codified recently into a monograph by Lunardini
(199 1). In the simplest models, the two phases in a typical freezing or melting problem are separated
either by a sharp boundary or a mushy zone that moves with time. Since the location of this moving
boundary or zone is not known a priori, the solution is difficult to achieve even when the heat transfer
process is assumed to be conduction controlled. Most exact solutions rely on similarity transforma-
tions, introduced by Land and Clapeyron (1831), or Neumann (1860), and have been examined in
some detail (Lunardini 1981, 199 1). It is only under highly idealized conditions that one can obtain
useful, exact, analytical solutions.

For more realistic situations, one must therefore think in terms of either an approximate analytical
technique or a fully numerical approach based on finite differences or finite elements. The former
strategy is particularly convenient for preliminary calculations. Over the years, several approximate
techniques have been devised to solve freezing and melting problems, including perturbation methods,
the heat balance integral technique, and variational methods.

This report is devoted to the application of perturbation techniques to freezing and melting
problems. The coverage begins with an overview of the perturbation theory and includes a brief
discussion of the basic concepts, regular perturbation method, singular perturbation techniques such
as the method of strained coordinates and the method of matched asymptotic expansions, and the
method of extended perturbation series. The applications of these methods will cover both one-
dimensional and two-dimensional phase change problems in Cartesian, cylindrical and spherical
systems. The accuracy of the perturbation solutions will be assessed in the light of other approximate
solutions and also of exact and numerical results.

Asymptotic methods are excellent for the study of freeze-thaw problems. Singular perturbation
techniques may be applied to treat the singularities that occur when phases appear or disappear. In
principle, multidimensional problems can be handled and perturbation methods are often superior for
dealing with nonlinear boundary conditions or convective effects. Perturbation also yields valuable
insights into the basic physics of the problems. The main disadvantage of the method is the increasing
difficulty of obtaining higher order terms.

2. REVIEW OF PERTURBATION THEORY

The method of perturbation expansion is a well established analytical tool that has found
applications in many areas of engineering. The subject is covered in detail in several currently



available books. Those dealing with engineering applications include Nayfeh (1981), Van Dyke
(1975) and Aziz and Na (1984). While the first two discuss applications in solid mechanics and fluid
dynamics, the !r-t one is exclusively devoted to problems in heat transfer.

In freezing and melting problems, the main difficulty is the presence of a moving boundary that
separates the solid and liquid phases, but several other difficulties can arise. These additional

difficulties may be due to nonlinear or time-dependent boundary conditions, finite phase-change
domain, an intermediate mushy zone, domain geometry, etc. Some of these difficulties can be handled
by the perturbation me," iod, as will be demonstrated later in the report.

Perturbation ',- iry is based on the concept of an asymptotic solution. If the basic equations
describing a phase-change problem can be expressed such that one of the parameters or variables is
small (or very large) then the full equations can be approximated by letting the perturbation quantity
approach its limit and an approximate solution can be found in terms of this perturbation quantity. Such
a solution approaches a limit as the perturbation quantity approaches zero (or infinity) and is thus an
asymptotic solution. The result can often be improved by expanding in a series of successive
approximations, the first term of which is the limiting solution. One then has an asymptotic series or
expansion. Thus we perturb the limiting solution by parameter or coordinates.

One is then concerned with the asymptotic expansion, generally for a small parameter such as the
Stefan number, of the solutions of the conduction equation with solidification.

The first step in a perturbation analysis is to identify the perturbation quantity. This is done by
expressing the mathematical model in a dimensionless form, assessing the order of magnitude of
different terms and identifying the term that is small compared to others. The coefficient of this term,
which could be a dimensionless parameter or a dimensionless variable, is then chosen as a perturbation

quantity and designated by the symbol e. Once F is identified, the solution is assumed as an asymptotic
series of F. Next, this series solution is substituted into the governing equations for the problem. By
equating the coefficients of each power ofe to zero, one can generate a sequence of subproblems. These
problems are solved in succession to obtain the unknown coefficients of the series solution.

The foregoing procedure is termed parameter perturbation or coordinate perturbation depending
on whethere is a parameteror a coordinate. In eithercase, a furtherdistinction is made between regular
perturbation if the expansion is uniformly valid and singular perturbation if the expansion fails in
certain regions of the domain. When a singular perturbation expansion is encountered, the usefulness
of the solution is limited unless it can berendered uniformly valid. Note thatthe terms in the expansion
need not be convergent for the results to be useful since its asymptotic nature assures that only a few
terms may yield adequate accuracy for small values of E.

The two main techniques for achieving uniform validity that have been used in freezing and melting
problems are the method of strained coordinates and the method of matched asymptotic expansions.
In the method of strained coordinates, both the dependent and the independent variables are expanded
in terms of e such that the coefficients of the two series are functions of new, unknown independent
variables. The assumed series expansions are substituted into the governing equations, and the
unknown coefficients are found by ensuring that higher approximations are no more singular than the
first one. The procedure leads to an implicit but uniformly valid solution.

The method of matched asymptotic expansions achieves uniform validity by supplementing the
regular perturbation expansion, which is now called the outer expansion, with an inner expansion in
which the independent variable is stretched out such that it describes the behavior in the region where
the outer expansion breaks down. A uniformly valid solution is finally derived by matching the outer
and the inner expansion according to Van Dyke's or some other matching principle.

In most instances the perturbation expansions are terminated at the second or the third term. There
are two reasons for such an early truncation. First, the values of e of interest are often small compared
to unity, and therefore the truncated expansion that converges rapidly for small values of C is
sufficiently accurate. The second reason is that the higher-order terms of the series are increasingly
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more difficult to calculate. Sometimes, however, it may be desirable to improve the solution so that
it can be used for values oft that are not too small. This can be achieved with the method of extended
perturbation series. The approach consists of three steps. The first step is to write a computer program
to solve the sequence of perturbation equations either in symbolic form or numerically and generate
a large number of terms. The second step is to examine the coefficients generated in the first step to
identify the singularities in the complex plane that restrict the convergence of the series. This
information about the analytic structure of the solution is finally used to transform the series using one
or a combination of techniques such as the Euler transformation, Padd approximants, Shanks
transformation, series reversion, etc. The three-step procedure results in a series solution that is
accurate over a wider range of E than the original series.

3. REGULAR PERTURBATION EXPANSIONS

The regular perturbation method has proved to be an effective tool to solve a variety of freezing and
meling. Most applications involve parameter perturbations but as shown later, the coordinate
perturbation approach is also feasible in some cases. The method will be illustrated with the help of
a number of examples.

3.1 The Stefan problem
The mathematical class of problems for which

a moving boundary exists are often called Stefan Solid Liquid
problems. The name derives from Stefan's (189 1)
early work on sea ice formation. In this section T

the Stefan problem will be limited to the follow-
ing case. The classical Stefan problem considers
the freezing of a saturated liquid of semi-infinite To ,

extent as shown in Figure 1. The liquid is as-
sumed to be initially at its freezing temperature
Tf. At the time t = 0+, the surface temperature at q
x = 0 is suddenly reduced to a subfreezing value
T, < Tf. The lowering of the surface temperature x f so x
causes the liquid to freeze. With time, the freez-
ing front progresses in the direction of increas- Figure 1. One-dimensional freezing of a semi-
ing x values. Let xf be the thickness of the solid infinite region.
phase at any instant of time. The unfrozen liquid
continues to remain at Tf throughout the solidification process. With appropriate thermal property
values, the Stefan problem can also describe the melting of a solid of semi-infinite extent initially at

its melting temperature and heated by a higher wall temperature.
The Stefan problem is a highly idealized model for the actual freezing or melting process. The

mathematical model to be described is based on the following assumptions:
1. Both solid and liquid phases are homogeneous and isotropic.
2. The phase change occurs at a discrete temperature and consequently there is no mushy zone

containing a mixture of two phases.
3. The two phases are separated by a sharply defined interface (front) instead of whisker-like

(dendritic) growth observed experimentally (Sparrow et al. 1979).
4. Conduction is the only heat transfer mode.
For the case of freezing, the temperature distribution in the solid phase is uescribed by the following

mathematical model:
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a2T aT (1)
ax 2  aat

T(o,t)= T., T(xft)=Tf (2)

k TrI =pL dXf (3)
ax X= Xf dt

where k, p and ct represent the thermal conductivity, density, and thermal diffusivity, respectively of
the solid phase. The quantity L is the latent heat of solidification.

To prepare the foregoing model for a perturbation analysis, we recognize that the Stefan number,
which signifies the importance of sensible heat to the latent heat, is small in some phase change
applications and therefore it can serve as a perturbation quantity. For example, water/ice systems or
soil systems typically have Stefan numbers less than 1/2, unless the boundary temperatures are very
high. With this in mind, we introduce the following dimensionless quantities:

"" = kt/pcxs2, E = c (Tf - To,)lL (4)

where c is the specific heat of the solid phase and xs is a reference distance. Using eq 4 to
nondimensionalize eq 1, 2, 3 we obtain

a20 _ ao
a, 2  aj (5)

O(O",)=1, O(X=Xf",)=O" Xx - d 1 0 (6)
ax e=f dtr

The perturbation quantity E which appears in the boundary condition at the interface can be brought
into the governing equation (eq 5) by noting that the transient storage term, a0g/a-, will be related to
the transient motion of the interface, dX1 /d¶. Thus we can think of 0 as a function of two new
independent variables, X, the nondimensional distance as before, and Xf, the instantaneous location of
solid/liquid interface. For the time derivative, then, we obtain

de _ )0 dXf (7)

DT aXf dt

From eq 6 we have

d~j C N(8)
dt ax I___

Using eq 8 in eq 7 and the result in eq 5, the transient heat conduction equation becomes

A20 -C N e (9)

ax 2  ax x= x

The first two boundary conditions (eq 6) can now be written in terms of X and Xf as

4



o(x=o, Xf)=I, 0(X=Xf, Xf)=O (10)

Let us derive a perturbation solution by assuming an asymptotic series solution of the form

0= n n (11)
n=O

Retaining only the first three-terms of the series (eq 11), we have

0 = 00 + E01 + C2 0 2  (12)

Substituting eq 12 into eq 9 and eq 10, we get

a200 + F a20 1 + 2E 2
2 _

ax 
2  ax 

2  ax 2

- C[ý00 + F -Lj +82i902 I 0o0 + 1' F +1 (13)

t af axf aXfJ a-",t=xf x=xf X X

00 (X =0, Xf) + F80 (X =0, Xf)+ E202 (X =0, Xf) = 1 (14)

00(X= xf,xf)'F E lOI (X= Xf, Xf)+ r:202 (X--Xf, Xf)=O (15)

By equating coefficients of like powers ofh in eq 13, 14 and 15 we obtain the following sub-problems.

Zero-order, Eo

a200 -- 0ax2 (16)

00(X =0, Xf)= I, O0(X= Xf, Xf)=O (17)

First-order, el

al2e1 =_ OO a(008
ax 2  axf a x=x (18)

OI(x=O, Xf)=O, 6O(X=Xf, Xf)=O (19)

Second-order, e2

a202 =_ + O x-
Wx +IOA (20)x2 axf ax x=xf axl=x f

02 (X=O, Xf)=O, 02 (X=Xf,Xf)=O (21)

5



It may be noted that the zeroth-order problem represents the quasi-steady approximation to the
problem which was used by Stefan (Lunardini 1981).

Integrating eq 16 twice and applying the boundary conditions (eq 17), the solution for 0, is found
to be

6f=l- X (22)

Using eq 22 on the right-hand side of eq 18 gives

A)]1 _ X
aXX2 X? (23)

whose solution, subject to eq 19, is

1i XX2

Now we use eq 22 and eq 2 4 on the right hand-side of eq 20 to obtain

a(2 = (25

which can be integrated twice using eq 21 to give

Using eq 22, 24, and 26 in eq 12, the three-term perturbation solution takes the form

o )-( 2] 19o19 (27)-• -• •360 _S~ -ý1 ý; X_ý f)41

The equation for Xf can now be derived by evaluating A from eq 27 and substituting the
ax X=Xt

result on the fight-hand side of eq 8. The resulting equation is

= ,_ =_ _ ( - _ E2 + -7 E3 o + 0 (F4)
dr Xf 3 45 (28)

Integrating eq 28 subject to the initial condition, r = 0, Xf = 0, we get

XJ =2T (E_ E-+ _-_ E3) (29)

3 45

If we wish to express r as a function of Xf, we write eq 29 as

r I =!XC-'I I- IC + I-E2-1 (30a)2 • 3 45

• • .I I I I I | i6



Using binomial expansion

(I- Le ,_ + 2 ,2 +0o (0)
3 45 3 45

leads to

= 1 -1 X + lXj E- _.LE X +0(F2) (30b)
2 6 45

By using the similarity technique, the exact analytical solution of eq 5, 6 can be obtained as
[Lunardini 1991, Ozisik 1980]

0 = 1 erf(LX/Xf) (31)
ert(

where X = Xf/2V'i is the root of the equation

-& XeX2 erfr. = (32)

It is interesting to demonstrate that the perturbation solution eq 29 reproduces the exact solution (eq
32) for sufficiently small values of X. Consider the series expansions for ek and erf X valid for small
values of X:

e)2=1 + X.2+ L4 + X6 +... (33)
2 6

er =-I- X--+ -- +.. (34)
erf -1 = 3 10 42

Substituting eq 33 and eq 34 into eq 32 and simplifying, we obtain

(2 X2+ I4 4+ ._L6+ 1_L_6 8 + .. E (35)
3 15 105

A general series , a. (X2)n = E can be reversed and written as
n=!

)2 = bn En (36)
p3=1

where the first three coefficients b., for example, are

2

b, =-•, b2 =- a2, b 3 = 2 a 2 -aja3 (37)
a,3 a,

Noting from eq 3 5 that a, = 2, a 2 = 4/3, a 3 = 8/15, we find from eq 37 that b, = 1/2, b2 =-1/6, and b 3

= 7/90. Using these values in eq 36, we find

7



X2= _ 1_ 1- F2+ 7_L 3 (38) loo
2 6 90

0 Exact Solution

Now X2 = XI4'r and hence eq 38 can be 80 -I
written as

_. =! _ -- E-- I2+ -7 C3 60-E - 0.2

4T 2 6 90
or 40•

0.4'~
3 3) (39) 20- ." 810 11

which matches exactly with the perturbation 0_---'-_$___,_"_-____
solution eq 29. 0 1 2 3 4

In Figure 2, the three-term perturbation xf

solution for the freezing time r, eq 30 is
compared with the exact analytical solution Figure 2. Perturbation solutionforStefanproblem.
eq 32 for e = 0.2, 0.4 and 0.6. The agreement
is excellent even at E = 0.6.

3.2. Planar freezing of a saturated liquid Solid Liuid

with convective cooling
The problem to be considered here is a e Tf

variation of the Stefan problem of the pre- T (0, t) (X,

vious section. The constant temperature Freezing Front
boundary condition at x = 0 is now replaced Coolant

with a convective boundary condition as h, To

shown in Figure 3. Thecoolant temperature is No
To and the convective heat transfer coefficient x = x-
is h. The problem is described by eq 1, 2, 3
except that the first boundary condition in eq Figure 3. Freezing of semi-infinite saturated
2 now becomes medium with surface convection.

k LTZ (0,t)= h[T(O,t)- TJ (40)
ax

In this case, it is more convenient to introduce the following dimensionless quantities:

0-= Tf - T , X= hr., , =h2___, gc(Tf- To) (41)

Tf- TO k pck L

The resulting dimensionless model is

a2e) (42)l

aX2 axr x=xf (42)

0 "0 (0, Xf) = e(o, xf) -I , e (X= Xf, Xf) = 0. (43)

ax
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Assuming a three-term solution of the form of eq 12, and following the procedure of section 3.1,
we find that the governing equations for 00, 01, and 02 are still given by eq 16-21 except that the wall
boundary conditions are now given by

2o___• (Qxf) = Oo( X) -1 (44)
ax

ao- (0, xf) = IN (Q xf) (45)
ax
-0-2 (0, Xf) = 02 (0, Xf) (46)

i)X

The solution ofeq 16 subject to eq 44 and eq 17 is

00= 1 (Xf- X) (47)1+-e Xf

Similarly, the solution of eq 18 subject to eq 45 and eq 19b is

0 1 1 [(1 +Xf)X3 +3(1+Xf)X2-(3+Xf)XfX-(3+xXf)Xf (48)
6 (1 + Xf)4

Finally the solution for 02 subject to eq 46 and eq 21b can be obtained as

02- 1 (19X6+lI4Xf+225 X+360 X)(I+X)
360(1 +Xf)7

- 10 Xf (I + Xf) (Xfg + 3 Xf + 12) (3 + X)X2

-9 (1 + Xf) 2 (5+ X)X 4 ] (49)

Following the procedure of section 3.1, the solution for freezing time T can be obtained as

T=I -L- [(l+ Xf)2 -1] + I [(I+ X&-3-(1+ xf)+2
2 6(l + Xf)

- _e I [(l+Xf)6_5(l+Xf)3+9(l+Xf)_5] (50)
45 (1 +Xf) 4

The perturbation analysis presented in this section was first discussed by Pedroso and Domoto
(1973a) who presented a scheme for programming the perturbation calculations so that a digital
computer can be used to generate as many terms as desirable. The scheme circumvents the mounting
algebraic labor entailed in manual calculations as one goes to higher order terms. They present their
results for 't as

E' = T Ch 0. (51)
n=O

where the coefficients c. are functions of Xf.
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Table 1. Numerical values of cQ.

Xff 1 2 3 4 5 6 7 8 9

0.2 0.2200 0.01778 -0.001564 0.0003945 -0.0001383 0.00005842 -0.00002P793 0.00001462 -0.000008213
0.4 0.4800 0.06476 -0.008154 0.002846 -0.001335 0.0007332 -0.0004438 0.0002869 -0.0001940
0.6 0.7800 0.1350 -0.01932 0.00748 -0.003804 0.002211 -0.001389 0.0009138 0.0006180
0.8 1.120 0.2252 -0.03398 0.01368 -0.007083 0.004134 -0.002573 0.001661 -0.001096
1 1.500 0.3333 -0.05139 0.02092 -0.01083 0.006253 -0.003828 0.002422 -0.001576
1.4 2.380 0.5980 -0.09282 0.02768 -0.01918 0.01082 -0.006461 0.004001 -0.002643
1.8 3.420 0.9257 -0.1418 0.05692 -0.02852 0.01585 -0.009353 0.005750 -0.004005
2.2 4.620 1.311 -0.1979 0.07854 -0.03893 0.02145 -0.01259 0.007719 -0.005770
2.6 5.980 1.753 -0.2608 0.1025 -0.05048 0.02767 -0.01620 0.009923 -0.007997
3.0 7.500 2.250 -0.3305 0.1292 -0.06323 0.03456 -0.02021 0.01237 -0.01071
4 12.00 3.733 -0.5347 0.2068 -0.1006 0.05479 -0.03199 0.01956 -0.01963
5 17.50 5.555 -0.7823 0.3008 -0.1459 0.07939 -0.04632 0.02832 -0.03153

Table I gives the first nine values of c, for a range of values of Xf. The first three values agree with

those given by eq 50.

The present problem was also solved by Huang and Shih (1975) by first immobilizing the interface

position using the Landau transformation and then using a regular perturbation analysis. Their three-

term solutions for the temperature distribution and freezing time match exactly with the present results.

The use of the Landau transformation makes the nonlinearity due to the moving interface explicit and

facilitates the subsequent use of the perturbation method. However, the approach adopted here

achieves the same simplicity without a formal introduction of the Landau transformation.

The present problem is a special case of a more general problem treated by Westphal (1967) who

considered the freezing of a semi-infinite medium cooled by the coolant having a time-dependent

temperature, To(t). Westphal's exact solution is in the form of integrals and infinite series, which make

it extremely awkward for numerical computations. Another exact solution has been presented by

Lozano and Reemsten (198 1), but again the solution is tedious if numerical information is to be derived

from it. In view of the complexity of these exact solutions, the perturbation solution is best compared

with the heat balance integral solution of Goodman (1958), analog solution of Krieth and Romie

(1955), and the local similarity solution of Aziz and Lunardini (1991). The comparison shown in

o Perturbation
o HBI (Goodman, 1958)
A Analog (Kreith and Romie, 1955)
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Figure 4 demonstrates that the prediction of the perturbation solution is consistent with the other
approximate solutions.

3.3 Planar freezing of a saturated liquid due to
sinusoidal surface temperature variation

This problem is of considerable importance in modeling the cyclical behavior of the active layer
in permafrost regions because the actual annual ground surface temperature variation often approxi-
mates asinecurve (Kane etal. 1991, Aziz and Lunardini 1992). The problem is a variation of the Stefan
problem; the mathematical description is given by eq 1-3 except that the constant temperature
boundary condition T(O, t) = To is now replaced by the following sinusoidal condition

T(O, t) = T, + a sin Kt < Tf (52)

Introducing the following dimensionless quantities,

0 =(T-To)I(Tf -To), X = x(Q c/)"12 , r = 0 t (53)

A =aI(Tf-To), E=c(Tf -T) IL

into eq 1, 2, 3, 52 leads to

S(54)
ax2 ,Xf aX X=x!

0(X=0, Xf)=Asinr, 0(X=Xf, Xf)=1 (55)

Assuming a perturbation expansion in the form of eq 12 and considering the first two terms only, we
find that 0, is governed by eq 16 while 01 is governed by eq 18 without the negative sign on the right-
hand side. However, the boundary conditions change to

0)(X=0, Xf)=Asin1, 00(X=Xf, Xf)=l (56)

0I(X=0, Xf) =0, ( 1(X=Xf, Xf)= 0 (57)

The solution of eq 16 subject to eq 56 is

0O Lx-f + ( •I- ) A sin r (58)

Similarly, the solution of eq 18 subject to eq 57 is

01  0( -- A sin 0 )2 (5926 .X I -(59)

Thus the two-term perturbation solution becomes

o=--+ (I - xf) A sin T + I , (I-A sinr)2  -[1-
6(60)

Xf Xf6 X!1



Using eq 60 to evaluate, substituting it in eq 6, and noting that the negative sign on the right-hand

side is to be ignored, we obtain the differential equation for Xf as follows:

de xf 3 (61)

Integrating eq 61 subject to the initial condition, t = 0, Xf = 0, we obtain

X? =2E ((r + Acos T-A) - -I e[(, +2Acos_-2A) +2I-A1 2 - I sin 2,)] (62)3 2 2 M

If A = 0, the present problem reduces to the Stefan problem discussed in section 3.1. The
perturbation approach adopted for this problem was first introduced by Lock et al. (1969) and Lock
(1969, 1971), and they reported that the agreement between the perturbation and finite difference
solutions was excellent.

3.4. Variable-property Stefan problem
The variable-property Stefan problem in which the thermal conductivity and specific heat of the

solid phase are temperature-dependent has been studied by Aziz (1978) and Pedroso and Domoto
(1973b) using a regular perturbation method. While Pedroso and Domoto use the Stefan number Sas
a perturbation parameter, Aziz identifies a new perturbation parameter that is a measure of the
variation of a thermal property with temperature which makes the solution valid for all values of S.
Both approaches will be illustrated here.

3.4.1. Pedroso and Domoto 's solution
Consider a semi-infinite region of liquid initially at its freezing temperature Tf. At time t > 0 the

face at x = 0 is maintained at constant temperature T, < Tf. The analysis takes into consideration the
property variation in the solid phase, the unfrozen liquid being assumed to remain at the freezing
temperature. The governing equations are

pC(T)_T= a [k(T)aTl (63)

at -ax -ax I

T (0,t)= To, T (xf, t) =Tf, kT PL = xf (64

By introducing the following quantities:

T-_ Tro ,

rf - TO Tf - TO

f k (Tldt -

k(Tf- To) L

12



k (Trf- To)t ,(e)= (o)/I, f=- (65)
pL k(O)/k Xf

it can be shown that eq 63, 64 reduce to the following boundary-value problem:

A2 dylfI d (66)

0(0)=0, 0(1)1=1, xF=2T!Lo1 (67)
Al )I = I

We solve eq 66 and 67 assuming f(O) = a + bO, where a and b are constants. For a three-term
expansion of the form 0 = 0, + E0I + E202, the governing equations for 0., 01 and 02 are

£0: d200 =0 (68)dT2

0o(0) = 0, 0o(1) = I (68a)

El : !e-O- + i. (a + boo() 40 -- 409 (69)

el(e) = o, 01(l) = 0 (69a)

,m2 A "d - n-=1= d-"n A )=

+ be1 dOo dOo (70)

02(0) = 0, 02(0) = O. (71)

The above sequence of equations can be integrated successively to give

00 = 71 (72)

01=6 I-n[(a+I b) -a2-l2 Ibn]3] (73)

02 = - I (2394a2 + 765 b2 + 2772 ab) T
45,360

+ I a(a+ b)TI3 + I b2rj4 + -L a2T,5

36 144 40

+ -L abn6 + 5 b2 T17 (74)
30 504

13



Thus the complete three-term perturbation solution is

e=11 + I ETll [(a+Lb)-al2 -- 1 b3

_ E2 [4I (2394a2 + 765 b2 + 2772abh
45,360

+ -L- a(a+ b)I 3 + -I- b2Wn4 + -L a2Tq5
36 144 40

+ - 1_ ab-6 + 5 b2 n7] (75)
30 504

Utilizing eq 75 in eq 67, the freezing front location is given by

x?=2 -EI3a+ 3-b) -E2( 774 a 2 + 345 b2+3 217-ab)] (76)
1 ( 2 - 235 3024 630

The accuracy of eq 75 and 76 has been checked against the direct numerical solution ofeq 66 and
67 by Pedroso and Domoto (1973b) and found to be good. Furthermore, these authors give the
solutions for any arbitrary form of the functionf(0).

3.4.2 Aziz's Solution
Aziz (1978) considered the solution of eq 6 3 and 64 for two cases of thermal property variation:

I) a linear specific heat-temperature variation with constant thermal conductivity; 2) a linear thermal
conductivity-temperature variation with constant specific heat. Mathematically these variations are
expressed as

C =Cf[1 + a (Tf- T)] (77)

k = kf[l + P(Tf- T)] (78)

Introducing eq 7 7 and 78 into eq 6 3 and 64 and using the well known similarity transformation, the
governing equations in dimensionless form become

F"-+ 2TI( I + eF)F'= 0 (79)

for the temperature-dependent specific heat and

(I + eF)F-+ E(F*Y+2rnF'= 0 (80)

for the temperature-dependent thermal conductivity. The boundary conditions common to eq 79 and
80 are

F(o)= 1. F(X)=o, F(X)=- 21/S (81)

where

F = (Tf - T)/I(Tf- To), q1 =_.x_, X=- xf , af=-f S =--f-(Tf- TO), E = (Tf - TO)

2 xa'ft 2 Ta-t PC L

14
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for eq 79, e = P(Tf- To) for eq 80. The primes denote differentiation with respect to 71.

Since e is small for most applications (Aziz and Benzies 1976), F and X are expanded in the form

F en F, (82)
n=O

Fn = • nXn (83)
n=O

Substituting eq 82 and 83 into eq 79 and 80 and equating coefficients of like powers of E, a set of
equations for Fo, F, etc. can be generated. The condition F(0) = I in eq 81 becomes

Fo(0) = 1 Fi(0)=0 i=],2,...,n (84)

However, the freezing front conditions in eq 81 contain E implicitly. To remove the implicitness, we
expand Fn(k) and F'n(X) in a Taylor's series about 1, to recast these in explicit form as

(oo= I d'F0 ( .X,) = 0 (85)

n=O i=O i! dri

F- n ISE X J=1  di'flVF('o) _ 2_ En . (86)

n=O i=O i! dri S n=O

Since, as shown later, the two-term perturbation expansion gives accurate results for a wide range of
parameters, we formulate only the zero- and first-order problems and present their solutions.

Temperature-dependent specific heat. The zero-order problem, which is the classical Neumann
problem, has the solution

F, = 1 - erfri/erfk., (87)

and

F X0 exp(XO2) erfX0 = S (88)

The first-order problem is

F,.+ 2 71 Fl'= - 2r1Fo Ft" (89)

F1(0) = 0

F,(X,) =- X IVo(Xo)

Vo()o) = - X o F o(.)- 2 XIIS (90)

Using the method of variation of parameters, the solution of eq 89 and 90 is finally obtained as

15



21 2F, X0 l°exp(2 1)- }+ 2 S•' erf i

S2 erf .0

ilexp(-TI2)/_ rr•o 1--"oerf• i- It (er o21 I -exp(_2T12)) (91)

and
S=x30(S + l-exp (2X2))

S(S+2(1+ S)A)(9

Temperature-dependent thermal conductivity. The solution of the zero-order problem is given by
eq 87 and 88. The first-order problem is

F•1+ 2rF1' =-FoFo-- (FO)2  (93)

with boundary conditions given by eq 90. The method of variation of parameters gives the solution
as

X2l-exp(2.)) + 2S.X 1 + _, S 2

F,= S2 erf) 2 erfTi + 71exp-)(1 - erfn i
S 2 erf ;Lo -/Ferr Xo err X !

+ I -l exp(_ 2 112))}! erff 12 (94)

nt (erf ,o) 2  2 effoX0

and

X =xS 2 - 2s +2S {exp(2X2)-I ] (95)

2S +2 (1 + S) X2)

Aziz evaluated the above perturbation series for S = 0.0822, 0.3564, 0.9205, 1.9956, 4.0601 and

8.1720 (k = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, respectively) with E ranging in each case from-3 to +3.

First we discuss the results for a temperature-dependent specific heat. For-I 5e< I the perturbation
solutions agree to within 0.5% with the numerical solutions. Indeed, the convergence is so rapid that
even when E is as large as ±3 the error does not exceed 1.7%. A sample perturbation temperature

distribution is given in Table 2. The results for the freezing front location appear in Table 3. These

Table 2. Temperature distribution for S = 4.0601 (• = 1): effect of a

temperature-dependent specific heat.

?I E= 1.0 0- 0 -0.5 -1.0

0 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 0.7038 0.7198 0.7357 0.7517 0.7677
0.4 0.4436 0.4676 0.4916 0.5157 0.5397
0.6 0.2374 0.2604 0.2934 0.3064 0.3295
0.8 0.0858 0.1026 0.1194 0.1362 0.1529
0.9595 0
0.9798 0
1 0
1.0202 0
1.0404 0
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Table 3. Interface location parameter X at different S: effect of a

temperature-dependent specific heat.

E S = 0.0822 0.3564 0.9205 1.9956 4.0601 8.1720

-1.0 0,1993 0.3953 0.5853 0.7735 0.9595 1.1472
-0.5 0,1997 0.3976 0.5932 0.7868 0.9798 1.1736
-0.0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000
-0.5 0.2003 0.4023 0.6068 0.8132 1.0202 1.2264
-1.0 0.2006 0.4047 0.6136 0.8264 1.0404 1.2528

results indicate that at low values of S the effect of a Table 4. Temperature distribution for
variation of specific heat on temperature and freez- S = 4.0601 (ke = 1): effect of a temperature-

ing front location is small but becomes progressively dependent thermal conductivity.

significant as S increases. The same conclusion holds q r = 0.5 0 -0.5
for other types of boundary conditions, such as a wall
heat flux varying linearly or exponentially with time 0 1.0000 1.0000 1.0000

0.2 0.8096 0.7357 0.6618
(Chung and Yeh 1976) or the wall being cooled by 0.4 0.5960 0.4916 0.3872
combined convection and radiation (Yeh and Chung 0.6 0.3824 0.2834 0.1843
1977). 0.8 0.1935 0.1194 0.0453

0,9082 0
In the case of a temperature-dependent thermal 0 0

1.0 0
conductivity, the temperature series agree to within 1.0918 0

2.2% with the numerical solutions in the range -0.5
_< c < 0.5. The maximum error of 2.2% occurs in the

neighborhood of the interface for S = 8.1720. Although not reported here, a second-order correction
extends the range of validity of the solution to higher values of E. Fortunately, the more important
freezing front series converges rapidly and with first-order correction gives results within 1.8% in the
range -2• < •2. Sample results for temperature distribution and freezing front location are given in
Tables 4 and 5, respectively. Compared with a variable specific heat, the effect of a variation in thermal

conductivity is much more pronounced on both the temperature and the freezing front location at all
values of S. This relatively strong effect of variable thermal conductivity is also evident in the results

of Chung and Yeh (1976) who analyzed the case of a time-dependent (linear and exponential) wall heat
flux using a heat balance integral. It can also be seen in anotherpaper (Yeh and Chung 1977) in which
they study the case of combined convective-radiative cooling of the wail using Biot's variational

principle.

Table 5. Interface location parameter X at different S: effect of a
temperature-dependent thermal conductivity.

. S = 0.0822 0.3564 0.9205 1.9956 4.0601 8.1720

1.0 0.2493 0.4949 0.7335 0.9634 1.1836 1.3946
0.5 0.2247 0.4474 0.6668 0.8817 1.0918 1.2973
0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000
0.5 0.1753 0.3526 0.5332 0.7183 0.9082 1.1027
1.0 0.1507 0.3051 0.4665 0.6366 0.8164 1.0054

3.5. Planar freezing with sinusoidal variation of coolant temperature
This problem is also a variation of the Stefan problem of section 3. 1. The constant temperature

boundary condition at x = 0 is now replaced by a boundary condition characterizing the sinusoidal
variation of coolant temperature which can be expressed as

17



Ta = To+ asinflt (96)

where Ta is the coolant temperature fluctuating around a mean value of To, with an amplitude a and
frequency Q2. The convective boundary condition is written as

k KT (0,I) =, h [ T(0,t) - Ta(t)] (97)
ax

Equation 3 and the second condition of eq 2 also apply here.
The problem will be solved using a double series expansion involving two perturbation parameters,

el and E2.As defined below, et represents the classical Stefan number, while e2 is a measure of coolant
temperature fluctuations. The problem is recast into dimensionless form by defining the following
quantities:

0 =(Tf-T)/(Tf-To), X= hx, E,=c(Tf- T)/L
k

£2= a/(Tf- To), oa = pLkf2/h 2 (Tf- To) (98)

- = h 2 (Tf - To) t/pLk

which give

a20 - e (99)

0 =0(0,T)-l+ C2 sin or (100)
"a X=O

o(Xf, r) =0 (101)

dXf _ 1 (102)
dr ax X=xj

To solve eq 99-102, a double series expansion for 0 and Xf is assumed. Retaining only the first
three terms of the series, we have

o = 0.(X,'t)+ F 101 (X,) )+ E2 02(X,r) (103)

X rf= Xfo()+ 1XfrI(T)+ E2Xr2(T) (104)

Substituting eq 103 and 104 into eq 99-102 and removing the implicitness of E, and E2 in Xr by
Taylor series expansions about Xfo, the following system of equations for O, 01, 02, Xfo, Xf, and Xf2
is obtained:

2  = 0 (105)

axx2
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00o =o(0,¢) -1 Ieo ,(Xfo, 0c)=; dxfo 06

a~x x=o dr ~ax x=Xf

aX
2  &C(

aoe 91 (o,T); e1 (Xfo, r))= -Xr %(Xfo,? );
ax-Ix=°

X0ofolXS)X•f I - ý0_1 XI f- XflX IX=X! (08

W 0 (109)

aO2  = 02(0,T) +sin 0)'r; 02(Xfo, T)= -Xf2 0(Xfo, T);

ax Ix=O=

!2Kf2 a2I Xf2 ý-2z- (110)

dr ax X=Xfo a•X=xf

where primes denote differentiation with respect to X.

The solutions of eq 105-110 are found to be as follows:

00 = (xfo- x) if. (1ll)

Xfo =(I +2r)'/2-1 (112)

=-,(if. )( + +Xf +XfoxrfX 2 - .'WfoX 3  (113)

3 / 2 6

XI=- 2I( if, I (.+ 2) (114)x, -2 (1 + Xf,o) L3

2=X + 1-(l1+2'1r)t2] (Il+X)
0 s1+2,01/2 in o)?- 0)(I+2")1/2 (I-cos W) (115)

Xf2 = -(I-cos ct)fcO( l+2T)I/2 (116)

"The solutions given by eq 111-116 stem from the work of Gutman (1986) and have been correct-
ed to account for the second term in both of the equations for Xf I and Xf 2. These terms were missed
by Gutman.
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3.6. Freezing of a semi-infinite region with
convective and radiative cooling

Another variation of the Stefan problem arises when the boundary condition at x = 0 is that of
simultaneous convection and radiation. A particular case was considered by Yan and Huang (1979)
for a finite phase change region when the other end was insulated. Since the presence of radiation
introduces a nonlinear boundary condition, they linearized it by using the approximation
T 4 = 4T,3 T- 3 T,4 where Ta is the common ambient temperature for both convection and radiation.
With this approximation, the problem was reduced to that of pure convective cooling, the case
discussed in section 3.2. Yan and Huang developed three-term perturbation solutions for the
temperature distribution and the freezing front location and found that the perturbation solutions
agreed quite well with variational solutions.

Here we approach the semi-infinite region case using the double series expansion method of the
previous section. Equations 1-3 apply except that the first condition in eq 2 is replaced by a convective-
radiative condition

X =0, k - h (T- Ta) + JF(T 4 -Ta) (117)

ax

To normalize the equations, we introduce the following dimensionless quantities:

0 T/(Tf- Ta), X=x/Xs, t=k(Tf- Ta)tIpLX2,

e= c(Tf - Ta)IL, e 2 =oF(Tf - Ta)3 xs/k,Bi= hxs/k (118)

into eq 1-3 and 117 and obtain

a 2 e ae aE (119)ax2 axf ax X=Xf

No = (04 +4)

ax

X=Xf, 0 =0 f (120)

Xgf _ 00 (121)d* ax X=Xt

Assuming an expansion for e in the form of eq 103 and carrying out the procedure outlined there,
we obtain

02  =0 (122)

ax
2

X=0, . Bi(Oo-Oa); X Xf, 0_ =O (123)

ax

a2_ = . (124)
ax2 aX ax X= Xf
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X= 0, Bi01; X=Xf, O0 =0 (125)
ax

2 -0 (126)
ax

2

X=0 .2 = Bi 2 +0o-0o;X=Xf,02=0 (127)

ax

The solutions for 00, 01 and 02 are as follows:

eo=Oa+(Of_-e) ( X+Bi-l) (128)
ýXf+ Bi-l ý

01 = fB la I++BifBiX )X(x3 + 3Bi-i X) - (X3 + 3Bi-! X2)] (129)

6') = [Oa+ (Of-Oa)Bi -l14_ 041 *X-Xf1

-2 Xf+Ba~i- \ (130)

IL Xf+Bi'J - 1I+BiXfI

Utilizing eq 128-130 to evaluate in eq 12 1, the differential equation for Xf is obtained as

dXf - Of-a +-0 _ +. E - Bi (X3+3Bi-!X2)_(3X2 +6Bi-!X

-• Xf + Bi-I 6 (Xf + Bi-1) 3 I 1 + Bixf+"xfxf f

+ + (O f i -O' ] (131)
[L Xf+Bi-i I +BiXf

For specified values of Of, 0 a, Bi, el, and e2 , eq 131 can be integrated numerically with the initial

condition r = 0, Xf= 0 to give Xfas a function ofT. Figure 5 shows the variation of the freezing front

1.0 F

- Equation (131)
0.8- 13 Chung and Yeh (1975)

0 Yan and Huang (1979)

0.6 = 1.0 0.25 0.025

Xf of ,, 4.0

0.4- 0=.3.0

81 1.0

0.2 20.016 -

0.001 0.01 0.1 1 10 100
"T', - T/E

Figure 5. Perturbatio,; solution forfreezing with surface convection and radiation.
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Xf with 'r'= c/Ei = a t/X2 for Or = 4, 0a = 3, Bi = 1, F-2 = 0.016 and e1 = 0.025,0.25 and 1.0. These
values were chosen so that the present solution can be compared with the variational results of Chung
and Yeh (1975) and a different perturbation solution reported by Yan and Huang (1979). The
predictions of the present perturbation solution are quite close to the other reported solutions.

4. REGULAR COORDINATE PERTURBATION EXPANSIONS

Compared with the parameter perturbation expansion, the use of a coordinate perturbation
approach to freezing and melting problem has been very limited. Two examples will be considered,
one that has been developed by the present authors and is being reported for the first time, and a second
one that has been presented by Rathjen and Jiji (1970).

4.1. Planar freezing of a saturated liquid with convective cooling
We revisit the problem of section 3.2 and develop a coordinate perturbation solution valid for short

times when convection is strong or for long times when convection is weak. To solve the problem
which is defined by eq 1, 3 and 40 and the second condition of eq 2, we introduce the similarity
transformation as follows:

F=(Tf-T)/(Tf -To), rl=x/(2fa[-t) (132)

and define a dimensionless coordinate e = kI/(2h wI). It can be shown that the similarity transfor-
mation (eq 132) reduces eq 1 to an ordinary differential equation in F as

F"+ 2rn F'=0. (133)

The boundary conditions at x = 0 and x = xf reduce to

T1=0, eFý_F-l; ij=X.=xf1(2f-•7), F=O;

i)=k, F'= -2XS (134)

where S = c(Tf- To)IL. Note that the quantity e = k/(2h-_tJ) being a function oft rather than rl, is
the source of nonsimilarity. As h -- o-, e -- 0, and T(0, t) --- To, and the problem is reduced to the
classical Stefan solution discussed in section 3.1, also called the single-phase Neumann solution. To
solve the nonsimilar eq 133, 134, two-term perturbation expansions are assumed for F and X as

F = F, = eF- +0 (E2 ) (135)

X = X,,o = FX1 +0 (F2) (136)

Substituting eq 135 and 136 into 133 and 134, removing the implicitness due to X by a Taylor series
expansion about X, and equating the coefficients of e and E, we get

Fo+2TI Fo=O (137)

1l=0, F0 =l; T"=X0, Fo=0 (138)

F, + 211 F1 = 0 (139)
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0 ==O, F1=fý; T F1 =-X.Fo(ko) (140)

The solution of eq 137 and 138 is well known and can be written as

F, = 1 -o(eri1yerf ) (141)

where A. is given by the transcendental equation

Xo erf 1. exp (X2)= S/X (142)

The solution for F, can be obtained as

F1= 2[(+0iA ) erf 1 - 11(143)
fn- o, erf ) 0

where X, is given by the following equation:

4S (144)

2e'ýx erf ;O)2 +4S (LO in-erf X. -e

In order to compare the present solution with the solutions shown in Figure 4, we calculated Ve =

hXptk as a function of 1/4e 2 = h2t/(kpc) for S = 0.1, 0.2,0.5, 1.0, 2.0 and 3.0. These values, shown in
Figure 4, compare welt with other approximate solutions.

4.2. Freezing of a semi-infinite strip (fin) of
liquid not initially at freezing temperature

Figure 6 shows a semi-infinite strip of liquid in the form of a fin with cross-sectional area A and
perimeter P. The liquid is initially at temperature Ti. At time t k 0 the base at x = 0 is brought and
maintained at a constant temperature To that is lower than the freezing temperature Tf. Both the solid

0 h, Ta

To Solid TU iquid --

X -Perimeter, P

SX Freezing Front Crosssectional
X-O *h, Ta Area, A

Figure 6. Geometry for the freezing of a liquid fin.

and the liquid phases convect heat to the surroundings held at temperature T, the heat transfer
coefficient being h. If we allow for the surface convective heat transfer, the transient heat conduction
equations for the solid and liquid phases can be written in partially dimensionless form as

ý' - h P (e, - O)=--l-s o< x<X, t>0 (145)
ax 2  kA Es a3t

O2e- hP ()I-k-,-1 =L• -L k < Xx<o< , t>0 (146)
ax 2  k1A k, aCt at
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where 0. = (T,- Tf)/(Tf- To), 0e =-kj (T- Tr)/(k (Tf- To)), 0,= (T,- Tf)I(Trf- To)

The initial and boundary conditions are

xf(O)=0, O (x.O)=Oi = kI (Ti- Tf)A(k,{Tf- To)) (

O J o ., ) -=- Il .0 , (x ,t) -- . f• ( .,t) -- (14 7 )
2os(kt)_ ( -,t) pL __

ax ax (Tf-To)ks dt

Introducing the similarity variables ils and 1i* as

TIs = x/f-4i6t , ile = x K-4C-t (148)

and defining a dimensionless coordinate (time) £ = 4h Pot, tI(kA), we seek two-term perturbation
solutions for 0s., 0 1, and X as

Os(xt) = U.o(Tls)+£uI (ds)+ O(62) (149)

0t(xt)= VO(11 1)+ V1 (n1 )+0(62) (150)

Substituting eq 149 into 145 and eq 150 into 146 and removing the implicitness in the interface
boundary conditions by Taylor expansion about A,, we obtain the following equations for uo, vo

uo'+ 2T% uo = 0 (152)

uo(0) =-1, uo(Xo) 0 (153)

v, + 21t vo = 0 (154)

vo(axo) =0, V.o() H Oi (155)

uo'(;o)- avo(a•A•) = 2 Oko (156)

where a = (Cs/t5 )" 2 and j3 =L/(cs(Tf-To)). Similarly the equations forum and v! take the form

U1 + 21sul'-4u, = uo -a (157)

u, (0) =0 , ,(Xo) + X, u,'(o) = 0 (158)

v I+ 2TI, vI'- 4vl v-yvo- Oa/a 2  (159)

v! (--)is finite, v 1(ak+a•vo(aQ)=o (160)
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iuI. oo) + uI'(xo)-, cc2 XI v o (0tX,)= 6 PI, (161)

where y = ct/cs.

Equations 152-156 constitute the classical two-region Neumann problem whose solution is

Uo = erfr s 1  (162)
erf )Lo

vo__0i_0i erfc il (63)

erfc (c )o)

where X, is given by the transcendental equation

2 2 2
e-o/eff Xo- -i oa e-a o/erfc (aX•o = DA .3 (164)

Churchill and Evans (197 1) give the solution of eq 164 for a range of the parameters involved.

The solutions for u1 and v1 appear in the form of repeated integrals of the error function and are

u, = B,12 (11)-(l + a i 2 erfc~iij,-I erfcl,)/4erfXc (165)

Vi=1i 2 erfc Ti +Oa/(4ok2)- , it - erfr1"/erfc(ao)]/4 (166)

where

/n(Tis)= inerfc(-iis)+(-l)+' in erfcrils,

B, I(i+6ji2 erfc=i-2toX,-Oa/4]/I 2(Xo),

C, = [-2(Ao-PXo) X..-,a/(4c.2)]/i2erfc (ao.)

The solution for X1 takes the form

= ([(I + Oa)Ao]/[l + 2ko(X 0o+ Ao)]

-Oa[Ji, +Ki,/c2]14+ j (Ao-Axo)/2-AoI2}/L, (167)

where

A0 = e7ý/F erf X.), J.=It( 0 /1( 0

K, = Oci erfc (OEXj/i 2 erfc (a 0 o)

LI =6I+4(l-a2)XoAo +2Ao(J,+K,)+2(2a2Xo-K,)PXo
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It is interesting to note that unlike the Neumann problem, the freezing front can become stationary
if T. > Tf. This would occur when the convective heat transport from the surroundings to the fin from
the top and bottom faces matches the heat extracted through the base of the fin. Under the condition
of a stationary freezing front, the temperature distributions through the solid and the liquid phases are
given by

0S-= Oa-(l + ea cosl4x+[(I +OQcoshgX_-Oa](sinhpx)/(sinhiA) (168)

0= [1- eIKQ1-(r-x)] ea1K 2  (169)

where g = (hPIksA )f2, K = ks/Ikl and X- (the stationary location of the freezing front) is given by

the explicit relation

X- .= (1i)ln[c+ (c2 _- b)1/ (170)

where b = (K-i )/(K+1) and c = K(l+0a)/((l+K)0a).

Figure 7 shows a typical result for the progress of the freezing front for a = 0.71, 1 = 2.5 (Stefan
number = 0.4), K= 0.71,0i = 1, and 0a = 0.5. This case corresponds to a solder fin for which To= 82TC,
Tf = 183TC, and Ti = Ta = 233.5°C. Examination of Figure 7 reveals that the two-term perturbation
solution virtually coincides with the finite difference solution up to e = 4. However, as e increases
further, the perturbation solution begins to deviate significantly from the finite difference solution. At
, = 10, the error is about 13%. The zero-order solution (Neumann) is also shown for comparison and
it is evident that the first-order correction improves the accuracy considerably. Figure 8 shows the
corresponding temperature profiles. Again the perturbation solution is quite accurate, up to E = 3, but
the accuracy deteriorates considerably at c = 10, particularly in the liquid region. Figures 7 and 8 have
been adapted from Rathjen and Jiji (1970), who also provide a graph of base heat flux vs. F.

1.0 1 1 1 1 1 1 I I I I 1 .
Zero Order

cE - 0.71 (Neumann's)7 /

0.8 3-2.5 Finite /

K = 0.71 Difference / -

0.6 0i =1.0

0.4 First Order

0.2

0 1 I i 1 a lil I I I ,I I lI1

0.2 0.4 0.6 0.81 2 4 6 8 10

4h Pa. t

ksA

Figure 7. Comparison of perturbation and numerical solu-
tionforfinfreezing.
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0.8 I e -. 0.71 /
0- =2.5

0.4 K- 0.71 ,' -1.0

0-0.4!

e-- 10 (fiit difeece)
-0.4 - 10 (flirt order) -

--3 (firs dfeec)
-- 3 (frst order

-0.8 0 (zero order, Neumann's)

0 0.4 0.8 1.2 1.6 Figure 8. Temperature profiles during

% ~- x/(4a, t)112 freezing offins.

5. SINGULAR PERTURBATION EXPANSIONS

The term singular perturbation expansion is used to describe expansions that lack the feature of
uniform validity that characterizes the regularperturbation expansion. In sections 3 and 4, the solutions
obtained were valid throughout the domain of the independent variable. Now we study problems for
which the expansion fails in certain regions, called "regions of nonuniformity" or "boundary layers."

The nonuniformity exhibits itself in several forms: 1) the solution becomes infinite at some value
of the independent variable, 2) the solution has a discontinuity within the domain of interest, 3) the
solution fails to satisfy some boundary condition, and 4) the solution contains an essential singularity.
Two examples of nonuniformities arising in freezing problems are discussed below. Other examples
will be discussed when the various techniques of handling singular expansions are presented.

5.1. Solidification of a saturated liquid in a spherical domain
Consider a saturated liquid of infinite extent outside a sphere of radius Rw as shown in Figure 9.

At t > 0 the surface at Rw is suddenly lowered to a subfreezing temperature To. For the solid phase,
we have

I &)(TR) 1 aT (171)
R aR 2  a at

To// • R Uquid at Tf

R

linterface or

Freezing Front

Figure 9. Freezing exterior to afinite sphere.
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T(R,t)= To, T(Rf)= Tf, k aT = pL a-L (172)
dRlR=Rf d

Introducing the following dimensionless quantities

u = (T-To)/(Tf-To), r= R/Rw, c = k (Tf-To) tlpLRW (173)

into eq 171 and 172 and replacing the variable t by the variable Rf, we get

1 €}2(ur) =•u" au}
I a,(U r - a" au(174)

r ar2  af ar rr=rf

u(r=l,rf)=O, u(r=rf,rf)=1, =(175)d r ir!
d r r =rf

Assuming a two-term perturbation expansion of the form

u= Uo+ £UI + F2u2  (176)

and substituting into eq 174, 175, the governing equations for uo, u1 and M2 , can be obtained as

1 2(Uor) -o (177)

r ar2

Uo(r= l, rf)=0, uo(r= q, rf) =1 (178)

Sý(u,,) = uO . IU (179)
r ar2 rar rr =rf

ul(r= I, rf)=0, ul(r= rf, rf) =0 (180)

-1 ( r) = au I + (181)
r ar2 arf arIr frf arf r rfr

u2(r= I, rf)=0, u2(r= rf, rf)=O (182)

Solving eq 177-182, the solution for u is obtained as

f + ,-0 -e_(r2u.f)i _}L (183)Uo 6 r2 L rJ 4136 L rf .J 120 [ rf4 . 1

where uo= 1- 1

Using eq 183 to evaluate and then integrating eq 175, the solution forr can be obtained as
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2r?2 - 3 ,-? + I + _L F( r • 1 • ( r )2T -- ',r _l1()2 E2(IY -1 (184)
6 6 45 Ft

where the initial condition rf = I, , = 0 has been utilized.

The solutions represented by eq 183 and 184 were first reported by Pedroso and Domoto (1 973c).
They are uniformly valid for outward spherical solidification. However, for inward spherical
solidification, the second term in eq 183 becomes singular as the freezing front approaches the center,
that is, as rf-->O. The divergence of the solution as rf--- 0 is shown in Figure 10. This singularity grows
further in the third term because of the presence of the term rfin the denominator. Examination of eq
184, however, shows that the freezing time solution is uniformly valid up to 0(e) and the singularity
first appears in the third term. Both eq 183 and 184 must be rendered uniformly valid if they are to be
used for complete inward freezing. This will be achieved later using the method of strained
coordinates.

0.25 1 I

0.20 - E 1.0

0.5
0.1

0.15

0.10

0.05

0 0.2 0.4 0.6 0.8 1.0

rf

Figure 10. Freezing radius vs timeforinwardspherical
freezing.

5.2. Solidification of a saturated liquid in cylindrical domain
The problem of section 5.1 is now considered forcylindrical geometry. The temperature distribu-

tion in the solid phase is governed by

R aR (R _= a3-'

with boundary conditions dictated by eq 172. Using the dimensionless quantities eq 173, the problem
is reduced to

1 a r-u C au au (186)
r ar 3r1/ 3,y iirr

with boundary conditions established by eq 175. Repeating the procedure of the previous section, the
two-term perturbation solution for u is obtained as
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u= - r +E 1 + rJ~(lnrr - 1)1 r I +r2 (Inr- 1)l (187)
lnrf (I 4rj?(lnrf)4  4 4r2(lnrf) 3 3

If we use eq 187 to calculate Lu and then integrate eq 175, the solution for T subject to the ini-
ar~
•r = rf

tial condition, rf = 1, , =0, is obtained as

T=_1 rtý inrf + 1(I - rf) + I e (1- rt?) (1+ r) (188)
2 4 4inr

Equations 187 and 188 are uniformly valid for outward cylindrical solidification. These same
equations are valid for the inward cylindrical solidification but they break down near the end of the
solidification process because if rf -- 0, the second term in eq 187 becomes singular. If one calculates
the third term of the expansion, singular behavior as rf--* 0 worsens because of the appearance of the
higher powers ofrf in the denominator. The situation parallels the one discussed in the previous section
for the inward spherical solidification. The two-term solution for T given by eq 188, however, retains
its validity for complete inward cylindrical solidification, although if the third term is added to eq 188,
it exhibits singular behavior near the end of the solidification process. We will return to the present
problem in the section on the method of strained coordinates where uniformly valid solutions are
developed for the inward case.

6. MISCELLANEOUS EXAMPLES OF
PERTURBATION EXPANSIONS

Besides the problems discussed so far, perturbation methods have also been used for other phase
change problems. This section is a review of such studies with details in many cases left to the
appropriate references. However, some of the problems will be examined in detail in the sections that
follow.

For one-dimensional freezing in planar geometry, Huang and Shih (1975) developed a three-term
perturbation solution for the freezing of a warm fluid over a flat plate cooled from below, and found
that the growth of the solid phase predicted by the perturbation analysis agrees with the experimental
results of Siegel and Savino (1966) for time t > 100 seconds, but for t < 100 seconds the perturbation
solution overestimates the growth. A variation of the problem discussed in section 3.5 is the subject
of a paper by Gutman (1986). He considered the freezing of a finite slab cooled on both sides by a
coolant whose temperature changes sinusoidally with time. Because he assumed that the freezing is
independent on each side of the slab, he was able to demonstrate that his solution for the case when
the far end of the slab is insulated matches with the two-term expansion of the exact Stefan solution
(section 3.1). Gutman also considered the case of a finite slab with constant heat flux at one face while
the other face is insulated. The perturbation approach used in section 3.3 can also be used for other
surface temperature-time variations. For example, Lock (1969) gives a three-term solution for the
power law variation, T(O,t) = Ctn, where C and n are constants. Indeed, he showed in another paper
that his method holds for arbitrary variations of the surface temperature (Lock 1971).

The analysis for spherical and cylindrical solidification with constant surface temperature,
presented in sections 5.1 and 5.2, has been extended to the case of convective cooling of the wall by
Huang and Shih (1975). They found that for outward growth of the solid phase, the solutions are
uniformly valid but the same solutions when applied to the inward freezing situation begin to diverge
towards the end of the freezing process. The case of a more general boundary condition involving
simultaneous convective and radiative cooling (or heating) has been considered by Seeniraj and Bose
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(1982). However, the solutions forboth cylindrical and spherical geometries are restricted toonly two
terms.

The difficulty associated with the singular behaviorofthe regular perturbation solutions for inward
phase change problems has been addressed by several authors. For example, the singularity of eq 183
and 184 for inward spherical freezing has been remedied by Pedroso and Domoto (1973d) with the aid
of the method of strained coordinates. The same method was used by Milanez and Boldrini (1988) to
obtain a uniformly valid solution for inward freezing of a sphere with convective wall cooling. For
inward cylindrical freezing with constant temperature, the singular solution given by eq 187 was
rendered uniformly valid by Afsar et al. (1979) who developed an appropriate strained coordinates
solution. In a more recent paper, Parang et al. (1990) have reported strained coordinate solutions for
both inward cylindrical and spherical solidification when the freezing at the wall is accomplished by
simultaneous convection and radiation. A unified approach for inward solidification that allows
simultaneous treatment of the problem in plane, cylindrical, and spherical geometries with boundary
conditions of constant temperature, constant heat flux, or pure convection was developed by
Prud'homme et al. (1989). Again, the tool used to derive uniformly valid solutions was the method of
strained coordinates.

Another technique that has been employed to treat singular perturbation expansions is the method
of matched asymptotic expansions. Weinbaum and Jiji (1977) used this technique to study the freezing
of a finite slab not initially at the freezing temperature. The boundary conditions chosen were those
of a constant subfreezing temperature at one face while the other face was either insulated or kept at
the initial temperature. Since even the first-order term of Weinbaum and Jiji's solution was
complicated, Charach and Zoglin (1985) approached the same problem by first developing the heat
balance integral formulation and then constructing a perturbation expansion. With this strategy they
were able to determine higher-order terms more easily. Gutman (1987) attacked the same problem
using the classical Neumann solution for the two-region problem as the inner solution, and a modified
solution as the outer solution. The modification to the Stefan solution involved the replacement of the
time variable t by (t - C) where the constant C accounted for the additional time needed for complete
freezing because of initial superheating of the liquid, that is, Ti > Tf. By matching the inner and the
outer solutions using the overall energy balance as a criterion, Gutman was able to find the constant
C. In anotherstudy, Jiji and Weinbaum (1978) also used the methodofmatched asymptotic expansions
for freezing in an annular region with liquid not initially at the freezing temperature. A constant
temperature was imposed at the outer surface while the inner surface was assumed to be either
isothermal or adiabatic. However, unlike their earlier analysis for the plane geometry, the method
failed to give a uniformly valid solution for the annular geometry. The solution behaved well initially
but as the freezing front approached the inner surface, that is, as the last bit of liquid froze, a singularity
appeared. Such behavior is to be anticipated because the liquid phase degenerates at this point.

The method of matched asymptotic expansions has also proved effective in dealing with the
singular nature of the perturbation solution for inward spherical solidification. For example, Riley et
al. (1974) corrected eq 183 and 184in a multi-region structure using this method. However, Stewartson
and Waechter(1976) later found thatthe inner expansion developedby Riley etal Aso fails in a minute
region just before the center freezes and must be supplemented by an additional expansion in that
region. Thus a completely valid solution consists of three expansions rather than two. A similar
approach, but unified for both spheres and cylinders, has also been presented by Soward (1980).
Howarth (1987) adopted the Riley et al. (1974) method to study inward spherical freezing under the
condition of constant heat flux and reached the conclusion that the breakdown of the outer solution for
the constant heat flux condition occurs at 0 (e1/4) rather than 0 (el') as is the case for the constant
temperature condition.

Another class of phase change problems where the perturbation techniques have proved effective
is the two-dimensional Stefan problems. The basic idea is to develop a two-dimensional solution as
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a perturbation of a one-dimensional case. For example, Schulze et al. (1983) have shown how the two-
region planar freezing of a liquid with slightly varying wall temperature or heat flux can be treated as
a perturbation of the Neumann solution. Similarly, Howarth (1990) considered freezing on a slightly
wavy wall as a linearized perturbation of the Neumann solution. The problem of two-dimensional
solidification in a corner can also be analyzed as a perturbation of the Neumann solution (Howarth
1985).

When the liquid flows over the cold surface, the phase change process is controlled simultaneously
by conduction and convection. Despite the complexity, Lock and Nyren (1971) found that a regular
perturbation approach is still useful. In particular, they considered the fully developed flow of a
freezing liquid in a long circular tube cooled by external convection. The perturbation parameter
was chosen as e = SBU/( +B), where S is the Stefan number and Bi is the Biot number representing
the external convection. Closed form solutions are given for the zero-order and the first-order
problems. The growth of solid phase due to sudden lowering of the wall temperature in fully developed
laminar flow of a liquid in a circular tube has been studied by Cervantes et al. (1990) using
ks/lk (Ti- Tw)/(To - Tw) as a perturbation parameter, where T, represents the initial temperature of
the liquid and the other symbols have their usual meaning. They generated a two-term solution which
is valid when the thickness of the frozen layer is small compared to the tube radius.

To conclude this section, we finally refer to the applications of perturbation methods to soldering
and welding problems. Andrews and Atthey (1975) model the process of hole formation by a laser or
an electron beam as a planar evaporating boundary heated by a constant power density source. The
model was solved as a two-term perturbation expansion in which the ratio of sensible heat to raise the
material to the evaporation temperature and the latent heat is taken as a perturbation parameter. The
method of matched asymptotic expansion was used to obtain a uniformly valid solution for the velocity
of the evaporation front. A similar technique has been used by Antaki (1990) to predict the laser-
induced sublimation of a finite layer of solid material.

7. METHOD OF STRAINED COORDINATES

The basic idea underlying the technique is to expand both the independent and dependent variables
in terms of e with coefficients expressed as functions of a new independent variable. The coefficients
of the independent variable series are called the straining functions. The expansions are next
substituted into the original equations to generate the usual sequence of perturbation equations. It is
at this stage that the choice of the straining functions is made such that higher approximations are no
more singular than the first. This principle is often referred to as Lighthill's rule, and its application
is the crucial step of the whole analysis. If successful, the result is an implicit but uniformly valid
solution. Because of its first appearance in Lighthill's paper (1949), the method is also called
Lighthill's technique.

The spirit of Lighthill's technique is also reflected in earlier works ofLindstedt (1882) and Poincard
(1892) where, instead of a coordinate, a parameter is strained to achieve uniform validity. When a
parameter is strained, the technique may be appropriately termed the method of strained parameters.
Giving credit to the contributions ofPoincard, Lighthill, and later works of Kuo (1953, 1956), the name
PLK method was coined by Tsien (1956).

We illustrate the application of the technique to several problems. The first problem is discussed
in full detail but, for the remaining ones, the essential steps are indicated with discussion of results.

7.1. Inward spherical solidification with
constant wall temperature

In section 5. 1, a regular perturbation solution was developed for outward spherical solidification,
and it was noted that the same solution applies to inward solidification, but the solution becomes
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singular as the center freezes. This deficiency can be remedied by straining the coordinates r and rf,
together with the dependent variable u. Following Pedroso and Domoto (1973d), we introduce two
new variables 4 and W, and expand u, r, and rf as follows:

U= Uo ('•,I)+ +U, £2u2(4,) (189)

r= * + eCI (WV)+ C202(*,NV) (190)

rf= V + eoI (W, VI)+ -2 02((iV,iW) (191)

where the straining functions a,(O,y) and 02(04,4) will be chosen to ensure uniform validity of the
solution. Note that as r --) rf, ý -4 4. Since the regular perturbation solution is satisfactory near the
spherical boundary, we choose to make the straining vanish at the boundary so that

lim oi{,) =0 (r-4l,•b - 1) (192)

*-4-1

lim o(Yj 0 (rf -l 1 l) (193)
W-4•1-

Also note that r is a function of both ý and W but rf is a function of W alone.
To change the variables from (r, rf) to (•', W) in eq 174 and 175 we proceed as follows. For any

functionflr, rf) where r =fl(0, W) and rf =f2(Ni), we have

& fr + Df arf (194)

af afr a arf

_ L (195)

JaIw ar Ni) arf aw

Since rf =f2(xV), rf/4 = 0; hence

f q)I ar (196)
a, r ao

From eq 196 and 195 we have

ar D_ (197)

or

f - arf ar] ( (198)
aqf aN aý aý awi aw

Since we need the second derivative with respect to r, we differentiate eq 197 to get
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a2f [a!f _Lfaýr (jr-'1(r] Vr (-9
Tr2 a42a a4ý •aý j a$

For eq 174 the quantities required are au/ar, aularf, and o(ur)/ar 2 .Based on eq 197-199, we can write

au=- aZ arl-' (200'ar-5 \a~la

a au ](fa ,1 (201)
arf T a o To a a -V al
e (ru)- [a2 (ru)_ a (ru) a2r (ar)-'] Ir1i - 2  (202)

a,= L a o2  a d a02  \a.

Using eq 189-191, we derive the following derivatives

au = Uo*+ EuIO+ C2u4 (203)
ao

au- = Uo+ Euly+ S2U2W (204)
aw

_a" = 1 + eolo + p2020 (205)
ao

- Ea 10 + F2020 (206)

_r = •°14 + 6202t1 (207)

arf I 1 + +E 2 V2 (208)

where the subscripts 0 and V are used from now on to indicate partial derivatives, and

(3"1 = (lV)

02= 02(0,,W)
(209)

01 = ad (1,11)

02 02(1,1)

Additionally, we need the derivatives a(ru)/lo and a2(ru)/14 2 . From eq 189 and 190, we have
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r s= + p.0 + 2;)(O+eUI+ e2U2)

or

ru= uO-I+ e(Uoai+ *,ul)+ e2(UcjG + UI1 Gj+ *U2)

Thus

(*Uo)# + p (uo(;i + Oud.4 + E2(uooy2 + UICO1 + *u2). 20

and

(quo) U~y + 8(1400 + e 2(Uooy2+ UICO1 + *U2)#O (211)

Returning to eq 200, we have

au = (MO + Cut + e2 U2#) (I + CUI# +C20#

or

iu = 00+ e (UIO- U~O G*) (212)
aJr

where we have retained only terms up to 0(e). Sincee appears on the right-hand side of eq 174, we need
to retain only two terms in eq 212 to obtain the solution up to 0(E2).

We now work out the expansion for aularf. Using eq 201, and retaining terms only up to 0(e-), we
get

.C'-- [(UOW+ Eu1I,)- (uOO+ EUI#) (I - EC*EOW (I - G)

or

rfuOW+ F-U 0-4b0+0w-v OeIV (213)

Finally, coming to eq 202, we have

i)211U= (ýUOO+ (140I + ýU,)#+ E2(14002+ U 01 + 0u2)"

-[(ýUO)O+ E(14001 + Oud)#+ E2(14002+ U161j + 0u2),j

x (Egl##+ C202##)[ - eoj+ E2 (o~j,- 02#)])
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or

Ar)-(4uo),,+ e[(Ouj + uOcri),- ao1.(Ouo),- 2OIO(OuO),,]
ar'2

+ E2 [(Ou2 + uIGI + uOO2),- oij"(Ou1 + U0000

-2CYIf(Oui + uo0,)..- (2,a2*-3 oi*#)(Ouo),

- (a*- 3 01i. oTI4)(Ouo).] (213a)

The right-hand side of eq 174. when multiplied by r, can now be written as

X UI + C "j# oý(0 lW- uoyaj,)]

= e {*uO~,i,=, O+ £[-uo0,0*0=w(uIw- UoO*Gl,- U04PIW)

+ u Y(G1 uW)I=,V+ (UiO- UooiY1) I,='O)] (214)

We now use eq 21 3a and 214 to write the sequence of perturbation equations as follows:

C0: (OU0)0 = 0 (215)

&9: (4Oul + U00FI) 4 - oYI#(Ouo= OuOO-VO (217)

E2: (u2 + ulI0, + uOoY2),- a0i4(ouI + uoail),- 2ojo (Ouj + o;*

-(c;2#0 -3cjcj)OO = uolo (ul,- u04O 1c~,

- uOI) UOW[FI UOOIO,#p+ O(ut,-u0.~OI),.=,] (219)

u2(NJ, O=I)=0 u2(WdtO= W)=0 (220)

Zero-order solution. Since eq 215 and 216 have the same form as eq 177 and 178, the solution is

U= -/ (221)
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First-order solution. From eq 221 we have

(222)

Using eq 221 and 222, eq 217 can be simplified to

(ual = 1 IL- ) (223)

Integrating eq 223, we have

Let ul be identically zero. Then, imposing the condition l gives

2-441 - / =

Integrating once again, we have

W/ eI= p(3- ¢P) +. • + f2(Vl)
I- • 6W(I-Vy3 2J1-V)3

Using the condition in eq 192 gives

f2 (W) = - 1
6W•1- W?3

Hence the solution for Oi becomes

O l # (224)

6v?(I - V

Second-order solution. By making u2 identically zero, eq 219 reduces to

(uo02)- 01*0( UO0 , - 2o1O( uOO1 ),,- (020 - 3,aj O*o)( uO),

= - ,•O,.=.,(uO.lW,+ UO,•3,w)+ uiOW[o uo lu=I,

- 0l l (225)
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We now evaluate the various quantities appearing in eq 225. From eq 224, we have

0_40-0'(4-0. 01#=(-*)(1-2*)
6V2(i-,)2 Vl2(I-_ 2

From eq 221 and 224 it follows that

U 0 0Y z = - ( I -• ) 4

and

(UO)=2(1-b)3 (u0Ol) __-6 (1 -*

(°l-3,q(I - )3 V(l-W)3'

Also, from eq 224 we obtain

6W

_,(I -,)3(I -2V)

3V•3 (1 -_,) 3

and a,.#

Using the foregoing information we can evaluate the various terms appearing in eq 225 as follows

, , ,0 ( u • o i ) -- 2 ( 1 -2 ý ) ( 1 -_ ) 4
3V3 (I _V)5

2ojý(uoo, )** _24-•(-)
3,4d(I'_ V)5

3oaý 0 •ouO)o = (80
2 -60 + 1)(1 _ ý)3

2W3 (1 -V)
5

)0 =(uO"0l, + uoý-J)l _/ (2 -4W) (I _ q))3 l-_)

O U O ý = W a ( 2 6 V 3 ( l -V 63 (I _- V )

6 W,3(1- 4, 5  6 W,3(l-W) 3

UOW (1 uoý=W-OU00 ý4 =6W 3 (1 _ W)5 +6W 3(1 _ 4f)3

Making use of the foregoing information and simplifying, eq 225 now appears as
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l 0 (4+4V-15fX1- + 2(1-*) (226)
V- 614(1-a3+(

Integrating eq 226, we get

•r ( I2 = + of (12* -4 W-I)÷ + (2-#) + M10 .

244P( 1-Wr)5  3V 2(1 - P)3

Imposing the condition, I im (2A/)* = 0, gives
.-+I

34(2- VP)3

Integrating once again, we get

V a=-(l-#b)(1-4W+10•b) + 2(3-) +f,00

1 -V 0 1204P(1- I-v)5 9V2(1- VI)3  3V 2 (1- -V)3

Using the condition eq 192 gives

fw 1

Thus the solution for 02 becomes

C2 01-0 _1-(1-F(l-4'#+ 10*). (227)
4001- VY1)29 1lE044l- 4w)I2

From eq 227 it follows immediately that

=' ,= (22,-3)(I - V)
T2 02N1p, 4q= 360'V

Also, for subsequent use, we deduce

-224 2 + 10V-3 - 22x -50,q+9

36W60

Having determined the straining functions, we can now write the final, formal solution from eq
189-191 as

u = 1 ++ 0 (F3) (228)

1 - 1/4

r eE+-39fi-•64ý(!_ -1 )2+ 40(l_- Wy[ 9 120,#( 1 - •• 29
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rf= V- C 'W+ E2 (22V-3)(1 - V) (230)
6W 360w'

Freezing time. To obtain the freezing time r as a function of W, we consider the third condition in
eq 175. Since

dit dif (dr)-l

we have

dy a r r=rf!- d (3

To obtain the expansion for (Ou/Ir= rd) up to 0(e2), we return to eq 200. Noting that uI and u2 are
identically zero, we have

au= U+0(I+ C0+ E2 032) -1

= 100- E0101400 E2[((a20-. OJOJUO4ý +0 (0) (232)

Hence

Z~r au UOO"O - e*7Oiuo.)0=W- E2[(020..- uorjOOOO=+ 0(E) (233)

Substituting eq 233 into eq 231 we have

dl 000_ -E (F1UOO*=V 2[ (a,20- Ujo)u],) (i0 + Eý01ly+ E2 a2 W)

which can be expanded and simplified to give

+ E20 20 + oG1I10=Io'91+ G2,l=P)] (234)

Utilizing the appropriate expressions for quantities appearing in eq 234, it is found that

1(1 1I (235)
d/ 3 90 Xg3 W2'

Integrating eq 235 and imposing the condition y = 1, T = 0, the final result is

'r = 2W3 _ 3W 2 +1 +E1( 1 4)2-e2(1 _W)2 (236)
6 3 180N1 2
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1.0 I I I

-Perturbation

0.8 0 Numerical (Tao, 1967)

0.6

U ,.

0.4

00.

0.2 -

0 0.2 0.4 0.6 0.8 1.0 Figure 1. Temperature distribution
r for inward spherical solidification.

0.301 1 1 1 1

0.25 C'-• 1.0

0.20

* 0.5

0.15 -

0.1

0.10

0.05 - Series (eq 236)

*Numerical (Tao, 1967)

0 0.2 0.4 0.6 0.8 1.0 Figure 12. Freezing radius vs time for
inward spherical solidification.

Equations 228-230, and 236 constitute the complete uniformly valid solution. Since the solution is
implicit, the computation proceeds as follows. First, values of E and rfare fixed. Next, eq 230 is solved
by iteration to obtain the value of W. Choosing values of€ in the range V to 1, eq 229 and 228 are used
to calculate the temperature distribution u as a function of r. The freezing time is calculated using eq 236.

Comparison with numerical solution. Sample results forthe temperature at the instant of complete
freezing are shown in Figure I I for e = 0. 1 and 0.5. For comparison, the corresponding numerical
results of Tao (1967) are indicated by crosses. Even ate = 0.1, there exists some discrepancy between
the perturbation and the numerical solutions. As discussed by Pedroso and Domoto (1973d), and
Stephan and Holzknecht (1974), the error most probably lies in the numerical solution itself because
for F = 0. 1, one would expect the perturbation solution to be accurate.

"The results for freezing time appear in Figure 12, and compare well with the numerical predictions
of Tao (1967). It must be kept in mind that Tao's freezing time results are believed to be more accurate
than his temperature results.
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Pritulo's method. Since its original exposition in 1949, the spirit of Lighthill's technique has
remained unchanged, but several approaches have been developed to simplify the procedure. One such
simplification was introduced by Pritulo (1962). He proved that the straining expansion can be
substituted directly into the ill-behaved perturbation expansion and straining functions can then be
chosen in accordance with Lighthill's condition. In this way, one solves algebraic rather than
differential equations to determine the straining functions. We illustrate the procedure by considering
the inward spherical solidification example again.

From eq 183, the two-term perturbation solution for u is

U I- / [rf 2 -3r + 2 (1_L) r2-3r +2 rf+1(237)
1 /rf 6(1 _ rf)4 Ir( _ rf)3]

To render eq 237 uniformly valid, let us introduce the expansions, eq 190 and 191, directly into eq 237
and retain terms up to 0(c). To this end, we need expansions for 1/r and l/rf. These can be obtained
using eq 190 and 191 and carrying out the binomial expansions. Thus

e4'2 _= - , +0 W)
r 02 rf V/ V 2

Consider now the zero-order term in eq 237. It can be written as

_l-1/0, [ CF, •{- f-+ 0 :)+- 1/+ ____-___ 1Vj

For the first-order term in eq 237, we simply need to replace r by 0 and rf by W/. Thus the two-term
solution for u is

U= [:1/, + I-II4 V2-3W+2 (I-
I-I/W •2(1-1) 2(I-I/v2+ 6 (l-xVY)

+ 2-3++2 +O(12)
6W(l - WY J (238)

To determine a1 we set the term in square brackets in eq 238 to zero, giving

-~~~ W23F2( I 2-3_0+2.=
02 ll-l/•) + I _1 I =0 (239)_2I-/W) W2(I-I/v)2 6(I- Wf 0) 6W(l - )-y

which can be rearranged as
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_ _(-2_ ]-2-3'q+2 _•! (240)

where it is noted that the right-hand side of eq 240 is a function of y alone.
Differentiating eq 240 with respect to ý, the differential equation for cy is

al= 2ý(ý-l (241)

Integrating eq 241 we have

I((- Y + 6C2__-

Imposing the condition, 1im (oa/0)) = 0, makes C vanish. Thus

00 OP -((242)

which agrees with eq 224.
In an analogous manner, it is possible to derive the solution for o 2 but the algebra becomes lengthy.

The reader who is not overwhelmed by the algebra can verify that the sol ution for 02 is in full agreement
with eq 227.

7.2 Inward cylindrical solidification with constant wall temperature
As a second example, we consider the cylindrical solidification problem of section 5.2. Following

the procedure of the previous section, we obtain the following results, which are taken from Asfar et
al. (1979).

Zero-order

,---M uo =O, uO(V,*=l)=O, uo(WO=W)=l (243)

with the solution

uo= In (244)
lnW

First-order
Using the zero-order solution and making ul identically zero, the first-order problem reduces to

In n4 (245)
AV2 I n2 W'
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lim ra =0One condition on aI is provided by eq (192), that is,, ' 1 . We impose the other condition by
putting 1m i urn ( =0. The latter permits the simplest solution for o]. The solution is

C = [( 2)(I+2 n (246)
4V2 ln 2 V

Second-order
Using eq 244 and 246 and making u2 identically zero, the second-order problem, after considerable

manipulation, finally leads to

C' (I). 1 (G(14)2)(1 -94') +2()+ 2 ln4)

1ý4 22 n4 V~__

-3604 ]no + 124)2 In 2 + 40 n4 )j 1 (I+,In4
2N In 4Il

+,3(in_ I))+ 1 ,in,(1_12_2X12O(nWI_)inM1). (247)
2W/41n5 w

Imposing, as for the first-order problem, the conditions lia 2  o and lim (V 0o= the
simplest solution for 02 is obtained as

F2= 15 ( 4(1I_ ) 1,2+ )(I+ n} {)(I-*2 + +2 *22( -IlnV)ln W)
8W41n N

31 (3 (1 -I)4) +2, (,4 +4)2 + I)In4))

64,q 4 ln •N

+ 1 I ((21,5_24,3+ 34)
128AV41n n4

-(38,)4+8 )2_ 10)4)In4+(20,4+2442 +4), In24)). (248)

The equation for the freezing time up to 0(e2) is

____ =__+___(,W a, (0 v,0 ) j a(.N)
+ E2 (dCY2(W,/ W)÷ + 0D2 W* •)=, + do I (W1. W1) d /)O I* W)/ =)}. (249)

+ ~ a~ 29
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Substituting eq 244,246 and 248 into eq (249) and using the initial condition, V = 1, T = 0, the solution
for T is obtained as

4 2 ~ 2lnW~

+ 9 2 (I5(l1_,,2)2+21(1_•4)In V
96N,21n4 v/,

+ 12(1 + u4)ln2WV+ 3(1 -,#4)In3 AV (250)

Sample results for the temperature distribution at the instant of complete freezing (rf=0) are shown
in Figure 13. Figure 14 shows the results for freezing time. For comparison the corresponding results
of Tao (1967) are also shown. In Figure 13 even at e = 0.01 there exists some discrepancy between the
perturbation and numerical temperature distributions. However, the freezing time solutions are in
good agreement. As discussed by Pedroso and Domoto (1973d) and Stephan and Holzknecht (1974)
the error in the temperature distribution lies most probably in the numerical solution itself because for
F = 0.0 1, one would expect the perturbation solution to be accurate. Computational experiments with
the perturbation solution show that a valid solution is obtained up to about c = 0.8. Beyond this value,
the values of ig and • obtained gave an unrealistic solution for u.

1.0

-Strained Coordinates Solution
0.4 ______ 1 1 Numerical Solution (Tao, 1967)0"4II I I I I 0.8

- Strained Coordinates
Solution0.

0.3 0Numerical Solution 1
0 (Tao, 1967) 0.6-0 0 0.1

* ~ *~ * 0.01

0.2 - 0.4

e=0.5--

0.1 0.1 0.2-0.01.0

0 I I 0 o"
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

rf r

Figure 13. Temperature distribution for inward Figure 14. Inwardfreezing radiusforcylindrical
cylindrical solidification. system.

7.3. Inward spherical solidification with convective cooling
The problem is described by eq 174 and 175 except that the convective boundary condition is

u(r=-I , rf)=- Bi-' - (251)
lr= 1
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where Bi = hRIk and To, in the definitions of u, t, and F, is to be interpreted as the coolant temperature
and not the wall temperature.

For the solution of this problem, Milanez and Boldrini (1988) followed the procedure detailed in
section 7.1 and found the zero-order and the first-order problems and their solutions to be as follows:

Zero order

6N2(qu°) -0 (252)

uo(,=)= Bi-' u uo(ý =W,W) =l(253)

uo1 [I - Bi) + BiN1 (254)

Bi+(- Bi)+ (254

First order

l 82 (Oul) 2_c auo 2 auo -'1 2'1 2 2uo

au0 a2y _ 3u0 au0  (255)
a0 a•0 2 -C 1 I .]• =

Ui(V, =l) Bi-'(aul - DaO ; UI(O='l',VU)= 0 (256)(, (O .=l)=-

By choosing o] such that u1 M 0, the equations for a, and its boundary conditions are

aU0 a2(y1 _u aU0 U 02 a2CI -2 0 ýq1 + 2a1 =_ Bi[(! - Bi )04 + nio3] (27
ao ao 2 =- -- 1- =,Y a02 --o W2[w i Bi)+ Bi] 2(2 7

(Y(~ '0 0 3au (0=1, 0=0 (258)
da

and the solution for 01 is

[-- 1i([- + Bi)o +/(I+ Bi)¢2 I- (i3 I I-Bi)o (59

V 2[(l- f)Bi+ Bi]2  62 2 6(

Note that as Bi -- oo, eq 254 and 259 reduce to 221 and 224, respectively.

The solution for the freezing time 'r is given by

S= bo(Bi,,W) + , b, (Bi, V) + 0( 2) (260)

where
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bo(1,W•)=--2-(1-*2); bl(1. •)=1-2V+ V2 (261)

2

and when Bi * 1,

bo(Bi,1p)= 1 (1 -W2)+ 1-Bi(1-,#3 ) (262)
2 3Bi

Bi 2-3 + 2Bi + 2 W2 (263)3(1_- Bi 3(1- Bi) 9(I- Bi)2[W(I- Bi)+ Bi]

Now thatthe solutions forr and rf are known, the speed ofthe freezing front, drf/dr = drf/adi (dr/di)-I
can be evaluated.

Figure 15 shows aplotof( 1- rf) versus 'r fore=0.5 and for Bi = 1, 2, 5,,.7 The dashed lines represent
the two-term perturbation solution while the solid lines give the numerical solution of Milanez and
Ismail (1984). The accuracy of the perturbation solution is excellent. Figure 16 show the results for
e = 2 and the comparison with the numerical solution indicates that the perturbation analysis predicts
a slower growth of the solid phase. Figures 17 and 18 show the temperature profiles at various interface
positions. Once again the agreement between the perturbation and numerical solutions is better ate
=0.5 than at = 1.0.

1.0

0.8- i=o

0.6--/

-f0.4 - .

0and Isma il, 1984)1

0 0.2 0.4 0.6

Figure 15. Freezing time for inward spherical system with surface
convection, e = 0.5.

1.0

1 rf c=2

0.4 - Perturbaton
/ - Numerical (Mlanez

0.2 and Ismail, 1984)

0 0.2 0.4 0.6 0.8

Figure 16. Freezing time for inward spherical system with surface
convection, e = 2.0.
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0.8
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0.4

0.2 - - Perturbation

1 Numerical (Milaanez
and Ismail, 1984)

0 0.2 Figure 17. Temperature distribution,
0 0.2 0.4 0.6 0.8 1.0 inward sphericalsolidification with con-

1 -r vection, e= 0.5, Bi =

1.0

0.8 -

0.6-. 01,.

U -

0.4 BI - 2i=2

--- Perturbation
0.2 - Numerical (Milanez -

and Ismail, 1984)

0 1 I I
0 0.2 0.4 0.6 0.8 1.0 Figure 18. Temperature distribution, inwardspheri-

1 - r cal solidification with convection, e = 1.0, Bi = 2.0.

7.4. Inward spherical and cylindrical freezing
with combined convective and radiative cooling

Parang et al. (1990) have considered the general problem of inward freezing of spheres and
cylinders due to combined convective and radiative cooling. They have shown that the governing
equations for this problem are

Ia (au~ +j au au .aul 0 O(cylinder)(24
r ar r ar r ar arf ar f I (sphere)

r=-I, 1_~ ~= p(u-csj+(u4-cz4); u(r= rt,rt)=l1 (265)
Bir ar

dr =au (266)
dT an r=rf
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where u = TITf
r = RJRW
rf = RfIRw
x = TITf

Bi = hRw/k

S= cTfjL
3Bir = creTf 1R4k

S= BiUi = hI(ueTf).

Note that a common ambient at Ta has been assumed for both convection and radiation. The symbol
e represents the emissivity of the surface. The perturbation parameter c is equivalent to the Stefan
number based on the absolute freezing temperature.

Following the procedure of section 7.1, the zero and the first-orderproblems and their solutions are
obtained as

Zero-order

a (. aU)+ j a = _0 (267)

-= 1, = u p(uO_oC)+ (Uo4_ic4 ); uo(O = , q)= 1 (268)
Bir ao

For the sphere

u0 = C 1 + C2 1i (269)

where Ci and C2 are given by

C 14+ 4,y C,3+ 6W2  C 1
2+ 4W3+ P+ W C1(I- V) (I- _ WL (Il _ W)3 MAI - v)4

+ W4 - a 4 + I3(W- a)-( v/Bir)= 0  (270)

(0- -r

C2 = W(! - C) (271)

For the cylinder

u0 = C, In ý + C2  (272)

where C, and C2 are given by

CI4-4Cl+ 6C1
2  CI(4+p) +(l-i4+ (1-a)+CiIBir)= 0  (273)

aV (inaW)2 (ina)3 (Ina4)4
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C2 = I - C, In q (274)

Equations 270 and 273 are polynomials for the constant C, and in general have to be solved

numerically.

First-order

-2,__u2 + -1 +):!30 _ 113o• 1•u+ 3! 3ou
0 C (I ' o a*2 01 - (l+ j)-U=0 auO auO (275)

42 ao a a02 ao CW o 2A

0=1, uj=-.aO / (276)

Bir(,4u0
3+ )

Choosing oF such that u1 is identically zero, the equation for a, with its boundary conditions
becomes

02ý201""'2 + --•t (lj)* , ,30 + (I +j)ol =_ 03 C(lj 'n +Vl jo dC' +d dC2]ag 27

a0 ILJ.~i dj( -)I ot-Y] (277)

1(0= 1,v�l)O0: kL(O= 1  )=0  (278)
d4

The solution for aI for the sphere is

46=-±-t6 I dV 2 (V2 i+ d qf a, 0 ] (279)

and for the cylinder is

1[dC2-dC- + 2 dC2 - )ln]0 0+dC--d2-dC- ln )o3 (280)4 =-V• dv d v dV dv dv

1.0 I I I i I

Bir =1 -- Perturbation
0.8 2 - Numerical

C 5
0.6 -,---100

a.i~ .

0.4 Sphere

" 8 = -0.5-

0.2 1--1
a-=0

0 Figure 19. Freezing radius vs
0 0.2 0.4 0.6 0.8 1.0 time for sphere with convec-

r, Time tion and radiation.
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Sample results for the progress of the freezing front are shown in Figure 19 for the sphere and in
Figure 20 for the cylinder. The dimensionless ambient temperature, a, is zero in both figures and c is
0.5. The parameter 0 is taken as unity, indicating equal convective and radiative contributions to
cooling. The perturbation results match closely with the numerical results derived using the enthalpy
method. However, some divergence (about 7%) is noticeable near the end of the freezing process.
Although not shown here, the discrepancy between the perturbation and the numerical predictions
increases as F- increases.

Figure 21 shows how the time for complete freezing is affected by the increase in the ambient
temperature. This figure is for the sphere and for e = 0.5 and I0 = 1. As expected, the total freezing time
increases as a increases. Furthermore, the stronger the convective-radiative cooling, that is, the higher
the value of Bir (= Bz), the lesser the freezing time. As Bir is decreases, the difference between the
perturbation an the numerical solutions increases.

Finally, Figure 22 shows the temperature profiles at the instant of complete freeze for e = 0.5, 1.0,
and 2.0. These curves pertain to spherical freezing and correspond to a = 0, and Bi = Bir = 1. The
maximum error between the perturbation and numerical solutions, which occurs in the vicinity of the
center, is about 8%.

1.0 1 I I 1 I I I

- -- Perturbation Cylinder

0.8 - Numerical C = 0.5

C =1.0

B 
0.6

0
Z0.6

C 0.4

0.2
Bir= 10 5 2 1

00 0 Figure 20. Freezing radius
0 0.2 0.4 0.6 0.8 1.0 vs time for cylinder with

Tr, Time convection and radiation.
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0 0 Figure 21. Final freezing
0 0.2 0.4 0.6 0.8 1.0 time for sphere with con-
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8. METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

The most widely used singular perturbation technique is the method of matched asymptotic
expansions. In this method the outer expansion, which is the regular perturbation expansion, is
supplemented by an inner expansion in terms of a stretched variable, which then describes the behavior
of the function in the region where the outer expansion breaks down. Finally the outer and the inner
expansions are matched to derive a uniformly valid solution. A criterion which is commonly used is
Van Dyke's matching principle. The method will be illustrated with the help of two examples.

8.1 Vaporization of a semi-infinite solid due to constant heat flux
The use of high power lasers and electron beams to induce evaporation (sublimation) of solid

materials has become important in many materials processing applications. By ignoring the interme-
diate melting, the complexity of the problem is considerably reduced.

Consider a planar solid of semi-infinite extent heated by a constant heat flux q, applied at x = 0. In
the simplest case one can envision that all the energy absorbed at the surface is used to vaporize the
material and none is conducted into the solid. Ibis vaporization-controlled limit can arise if the heat
is applied too rapidly for conduction to occur. If the temperature distribution ahead of the vaporizing
boundary approaches a steady state, the velocity will also attain a constant value. In this situation, the
velocity of the vaporizing front v can be found as

V = q (281)
PHcT" - TO

where the extraction of the sensible heat has been accounted for.
However, a more realistic model must include the effect of transient heat conduction into the solid

ahead of the vaporizing boundary. It is this model that is developed here and analyzed using the method
of matched asymptotic expansions. The one-dimensional transient heat conduction equation and the
associated conditions are

a2 T_ I a)T (282)
a)x2 a• at

52



T(xv,t)=Tv; k =pL!!EL- q (283)

T(x,O)= Ti, T(-, t)= Ti

where xv denotes the location of the vaporizing boundary and T, is the vaporization temperature of the
solid. It is assumed that the solid is initially at temperature Ti, and that at large distances, the
temperature of the solid remains unaffected.

Introducing the following dimensionless quantities:

0=(T-Tj)I(T,-Tr), X=xvlot, X=xv vl (284)

"= v2t/Oa, e = c(Tv-Tj)/L

into eq 282 and 283 gives

0 _0 (285)
aX2 aOr

O(x,+)=I; (d--1)- e( =+1)=0 (286)

O(XO)=O; 0(-o,t)=O

Let us assume a regular perturbation solution for 0, a and A = as follows:
dr

0 = 0 o +e 01 + 0 (C2 ) (287)

X = X• + E X1 + 0 (e 2 ) (288)

T1 = TIO+ ElI +0(0 2 ) (289)

Substituting eq 287-289 into eq 285 and 286, we obtain the following equations for 0o and 1i,:

*00 -/ 0-0 (290)
DX 2  

aT

Io= I or A0 = 1 (291)

dt

XX= o, 0o= 1. (292)

Ignoring the preheating effects while the boundary is being raised to its evaporation temperature,
since such effects are important only for r = 0(e2) as seen later, we can integrate eq 291 with the initial
condition r = 0, X• = 0 to give

Xo ='T. (293)
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To solve eq 290, we first make the transformation from the fixed coordinate system (X,'t) to the
moving coordinate system (k, c) and rewrite eq 290 in moving coordinates (see Carslaw and Jaeger
1959, p. 13)

a2o0 + 0a*0 = aeo (294)

aX2  a) aT

Taking the Laplace transform of eq 294 and noting that 0(Q,0) = 0, we get

d2 0(S)) + do(s) .... 9O(s)=0 (295)

where 0,(s) is the Laplace transform of 0 and s is the Laplace variable. The boundary conditions for
eq 295 are

X = 0, 0o = l or 0o(s)=i; X =oo, 0 = 0 or (s) = 0 . (296)
S

The solution of eq 295 subject to eq 296 is

60(s) = e -)n e -Ws +.1/4 (297)
S

From Carslaw and Jaeger (1959), p. 495, the inverse of eq 297 is obtained as

00 (;,r) = Ierfc (IX±1 +'A1 e -Lerfc (Ik±..4 (298)
22 2 2f-

Since the solution for k to 0(e) is given by eq 293, we can write . = X- "r, giving

0o (X,z) = I erfc ( - +ie-(X-)effc 2 (299)
2 U2"- 2 , 2fc- I

We now consider the first-order problem for ý, which follows as

I dI -k-l -- +l (300)
ak ax x=A

Differentiating eq 299, we have

It-O~ 2-7eX214~ _,C)2A

ax 2 -2•i) 2¥ 2ý X k

-erfc 2  . e-X-) (301)
5 2
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Evaluating eq 301 atX= A0 = T and simplifying, we obtain

-0-- =-erfc e--T4 (301a)
axlx=Xo 2 2

Further noting that erfc (-X) = 2- erfc X, eq 301a can be expressed as

0 * =-1I + 1 erfc (I -C /2)- (,,)-1/2 , -V4 (302)

ax=o 2

Using eq 302 in 300, the two-term solution for Tj becomes

Equation 303 is a good approximation forr > I but for'L = 0(e-2), the term --e (n) - / e -e becomes
0(0) rather than 0(e) which is an indication of eq 303 breaking down when r = 0(E2), that is, for small
times. Thus the solution, eq 303, constitutes an outer solution valid for long times. For short times, an
inner solution must be constructed.

Inner Solution
The preheating effect, which was ignored in developing the outer solution, becomes important in

determining the motion of the vaporizing boundary for small times, r= 0(E2 ). During the preheating
time, the heat conduction (eq 285) is subject to the following boundary and initial conditions:

S=1 £;0(-, T)=0 (304)

O(X,O) = 0

where the first condition in eq 304 is obtained from the constant heat flux condition at X = 0, that is,

kaTI
- k a--X = q.

The solution to this problem can be adapted from Carslaw and Jaeger (1959) and expressed as

0+ (+ £][2('c Ix)'/2 exp -XL _- Xerfc (Al . (305)

The preheating time can be obtained by using 0 - I and X = 0 and is

"rp = -L E241 + E)2  (306)
4

Equation 306 shows thatrp =0(E2) and substantiates ourearlier assumption about the preheating time.
If we substitute eq 306 into eq 305, we obtain the temperature distribution in the solid at the end of the
preheating period as
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o(X, 'r,)--- exp [-{X (I + _:/,'- •} IX_ (1-,- +)/F) e,'fc(X (l +, ,)/()tl/ F-)) (307)
Examination of eq 306 and 307 shows that the appropriate stretching of the variables for small times

is

X*=X*C, * - 2 *= ' 0"=0, ""=i (308)

Substituting the transformation, eq 308, into eq 285 and 286, the equations for the inner region become

a20"* 0,9" (309)
aX *2  ar*

At X* = &= W*, 0*=1, 1=+ 0*1 + +E (310)E aX*

At X*=oo, 0"=0 (311)

At *=0 O*=exp[-(X*(l+e)/I72)2]-lX*(1+e))erfcIX*(l+E). (312)

Again we seek a perturbation solution of eq 309-312 in the form

0*= 0;+ C0 (313)

"Tl* = r+ CTIT (314)

The zero-order problem is governed by

2 - a (315)
aX *

2  aT*

At X*=0, 0;=1 l e0_ (316)O*0 ax(36

X*=o-, 00=0 (317)

"T*=0, 0;=exp(-X*2 /It)- X*erfc(X*Ihf) (318)

Since the times involved are 0(E-2), the motion of the vaporizing boundary during this time would
be very slight. Thus one can ignore the last condition in eq 316 and treat the problem as a no-phase-
change heat conduction problem. Taking the Laplace transform of eq 315 we get

2*d e O(S) Do(s) + exp(-X*2/,r)-X* erfc (X*/f7-) = 0 (319)

dX*
2
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where O* (s) is the Laplace transform of 0 and s is the Laplace variable. The boundary conditions, eq
316 and 317, transform to

X* =o, 0•(s)=L; X*= 00, 13G(s)=o (320)
S

The solution of eq 319 and 320 using the variation of parameters method can be obtained as

O(s)=Iexp (lics)[ 2exp(-slnx*)ierff(s.rLS)12

+ exp(s112X*)erfc (X*IntII2+ I(S~R)Ifl
2

+ exp (-X*2,7r)_(X*,S) erfc(X*ln 12) (321)

The Laplace transform of the last condition in eq 316 is

rl(S) =I+ d ) (322)
S d* X=dX x* =o

Using eq 321 to evaluate and substituting in eq 322, the solution for '10(s) is given by

i .*s)-Lexp Q- Irs)erfc~ist'2 (323)

The inverse of eq 323 is given by

il*=-Zarcsin[(i+ Ini,*) Y Jr (324)

Matching
Expressing the outer solution, eq 303, in terms of the inner variable r*, and expanding it to two terms

and keeping r* constant, we find that this expansion matches with the one obtained by expressing the
inner solution eq 3 2 4 in terms of the outer variable t and expanding it in two terms keeping T constant.
Thus the matching condition is automatically satisfied.

Following van Dyke (1975) we may now construct a uniformly valid solution by adding the outer
expansion and the inner expansion and subtracting the solution in the domain of overlap. Thus

71=1+ E L(erfc(-,rI'/2)- (nr)-P2 e-1/4T
(2 2

+ -Z arcsin[ 1 + If (nr)I2-- 2, ' (325)

Equation 325 is a uniformly valid solution having an error of 0(E) when x = 0(e 2) and of 0(e2)when
,= 0(1). Table 6 and Figure 23 compare the perturbation solutions to a heat balance integral solution
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Table 6. Comparison perturbation, heat balance integral, and
numerical solution, constant wall heat flux, e = 0.2257.

=1- !xV t
v dt

Heat balance
Perturbation Numerical integral

Uniformly Landau Goodman
"T -V-t Inner Outer valid (1950) (1958)

a

0.0269 0.05183 0.3316 0.1090 0.0805 0.01423
0.02782 0.1076 0.3441 0.2162 0.1768 0.0584
0.03634 0.2913 0.4388 0.3981 0.4015 0.3178
0.0656 0.4959 0.6075 0.6005 0.6288 0.6129
0.20 0.7149 0.8135 0.8132 0.8357 0.8582
1.0 0.8727 0.9549 0.9549 0.9564 0.9845
9.0 0.9576 0.9994 0.9995 0.9995 -
100.0 0.9873 1.000 1.000 1.000 -

1.0

0.8 -

x1:6 0.6 !

->
;r 0.4 - P erturbation CAT = 0.2257

, -Outer L
0.2 I Uniform * Numerical (Landau, 1950)

* Inner o Heat Balance Integral (Goodman, 1958)

8.01 0.1 1 10 100
v 2 t
a

Figure 23. Melt velocity vs time for semi-infinite solid with constant surface heat fiux.

and a numerical solution. The numerical results of Landau (1950) for E = 0.225 are shown as circles
for comparison. Figure 24 shows a plot of ¶i versus T obtained from eq 325 for E = 0 (vaporization-
controlled limit), 0.05 (graphite), 0.15 (tungsten) and0.25 (lead). The horizontal intercepts correspond
to the preheating time 'p, eq 306. The integration (trapezoidal rule) of these curves gives the location
of the vaporizing boundary as a function of T and is shown in Figure 25. The curve marked E = 0 is the
linar relationship represented by eq 293. The agreement with the present results is good, and confirms
the validity of eq 325.

8.2 Vaporization (sublimation) of a finite solid due to constant heat flux
Here we consider the problem of section 8.1 but now the solid has a finite thickness t as shown in

Figure 26. The face at x = 0 is assumed to be insulated. Let us first consider the preheating when the
surface temperature is elevated from Ti to Tv. For this no-phase-change problem we have

27T I _T (326)

)X2 a at
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I I I I

1.0 - Vapoazaton-conforled Limit

0.8

0.05
0.6 0.15
0.4 •0.25

0.4

0.2

o
0 0.1 0.2 0.3 0.4 0.5 Figure 24. Melt velocity vs. time,

matched asymptotic solution.

0.5

Vaporization-controlled

Umit(k -'r
0.4•

0.05

0.3- 0.15
0.25

0.2-

0.1

0
0 0.1 0.2 0.3 0.4 0.5 Figure 25. Melt position vs. time,

matched asymptotic solution.

q

Vapor p Tv

,px v 
xv (vaporizing

boundary)

Solid

Insulated

Figure 26. Vaporization offinite solid due to constant surface
heat flux.
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x=O, L?=O; x=t, kaL=q; t=o, T=Ti. (327)
ax ax

The solution of eq 326 and 327 is given by Carslaw and Jaeger (1959) as

e=Qx+Q 2 L'l cos(hX)expnn22) (328)
6 X2 = n2

where 0 =(T-Ti)/(Tv-Ti), x = xli, c = cct/ 2 , and Q = The preheating timecp when
k (T - Tr)

0 = 1, X = 1, is given by the following implicit relationship

+, 2x- (329)
CP -exp(-n212rp)=i QS3 x =1 n2

Next, consider the phase change problem. The heat conduction into the solid is still governed by
-q 326 but the conditions to be satisfied are

x= -, aT=o; x=x,, T=T,;
ax

(330)

x = xv, q- aT= pL dv

Dx dt

The initial condition is given by eq 328 with t = "p.
Introducing the following dimensionless variable . =(Tv - T)I(T - Ti), il = xx,, (T =x/t, c = c(T,

- T2)/L, z = ET = lat/i2 into eq 326 and 330, we obtain

a E(2[az j(dAL 4j (331)0-1 2 [ Oq dz OI

11=--1, 0=0; 11=0, LO=O (332)

z=O, 0 =AT)

whereftil) is given by

f(T) TP Q371 - _2Y -' cos(nn1)exp(-,2 2 ,rtP) (33

noting thatt = p, =,= i, rj = X, and 0 = I -0.

The energy balance at the interface transforms to

Qog+ LO (1,,r)= --Load = -oa (334)
C dt dz
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Outer solution

The long time or the outer solution is assumed as

ý = ý0 + E•t (335)

a = Go + ,o, (336)

Substituting eq 335 into eq 331 and 332 and equating coefficients of FO, we have

a2 .o =0 (337)

11=0, *O=O; 1=1, ý0=0 (338)

The solution of eq 337 and 338 is

ýO = 0 (339)

Equation 339 shows that after a long time, the solid is at a uniform temperature T, throughout. Since
0= 0, it is easy to see that ýj = ý2 .... ýn = 0.

Substituting eq 336 into eq 334 and equating coefficients of F°, the equation for 00 is obtained as

do 0  Q (340)

dz

Integrating eq 340 we have

CFO = - Qz + CI (341)

where the constant C, would be determined by matching the outer and the inner solutions.
Equating coefficients of e, gives the following equation for 0y:

0dO1 +O0 k•° =- Qo0! (342)

dz dz

Using eq 341 for o0 in eq 342, it can be seen that

o-l =0 Or o 1 =C2 (343)

dz

where C2 is a constant which would be determined by matching.

Inner solution
Examination of eq 331 reveals that for the inner solution, the appropriate time variable is r = z/s.

Thus the inner expansion is written as

0 + (344)

O=O•+ C £0 (345)
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where * a *i and 0* o.

Substituting eq 344 and 345 into eq 331 and 332 and equating coefficients of e°, we obtain

_ a_ . • (346)anl2 drg d-ý

71=1, *O =0, 3)=O; "r=0, *=f(rI) (347)

Similarly, substituting eq 34 5 into 334 and equating coefficients of C-1, we get

o;d° = or dYO= 0  (348)

dr dr

Since at r = 0, Y = 1, the initial condition on ao is T = 0, oY = 1. Thus the solution ofeq 348 is

O* = 1 (349)

In view of eq 348 and 349, eq 346 reduces to

a2  .- (350)

The solution of eq 350 subject to eq 347 can be obtained using the method of separation of variables
as

= Amcos(Xmri)exp(- X2,) (351)
m=O

where ,m= (m+ 1)n and

+ 2Q (-In|)n sin(n-_m)n_ + sin(n+t+Xm) ) exp(-n 2 n2 ,rp)

To obtain the equation for oF, we substitute eq 344 and 345 into eq 334 and equate coefficients of
•0 to give

Qa;+a( i.x) = aii~d-i+ *d--l- (352)
Q'; 1"= -• d't dt (352)

which, in view of eq 348 and 349, reduces to
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Q + L4( 1 ,~ dda (353)

Using eq 351 to evaluate ao (I, r)and substituting the result into eq 353, the solution for C7, subject

to the initial condition, T = 0, al = 0, is finally obtained as

a, =-QT¢+ (-1)m Am[1-exp(-.mC) (354)

m=O A-m

Matching
Writing the outer solution a =- Qz + C1 + e C2 in terms of the inner variable 'rand matching it with

the inner solution

expressed in terms of the outer variable z, we find that

C1 =1 and C2 = y -~a~/,

m=O

The outer and the inner expansions agree in the intermediate time zones. Eliminating the common
parts of the two expansions, a uniformly valid solution is obtained as

A AmCOS (A.mi)eXp(-•X2mr)+O(E) (355)
m=O

G=I +E, (-l)AmA[-exp(-Xrn'r)1-Q'} +2( 2) (356)

•M=O X.m

Equation 355 shows that for long times, ý approaches zero, which in turn implies that Tapproaches
T,. For large times, eq 356 shows that a -+ (I -Qt). For complete vaporization, a = 0 and assuming
that at that time, the exponential term becomes negligible, the total time for complete vaporization, 'r
is given by

S(-)Am(357)'E Q I ,,,- -0 -1m
m=O Xm)

where the second term in eq 357 represents the effect of transient heat conduction on the vaporization
time. The first term, l/(eQ), represents the vaporization-controlled limit. The effect of transient
conduction is to increase the time tocomplete vaporization because some of the energy supplied is used
to heat the solid rather than being used for the vaporization of the solid.
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9. EXTENDED PERTURBATION SERIES METHOD

The perturbation expansions that we have discussed so far were all terminated at the second or third
term. Such a truncated expansion is valid for a limited range of values of c. If used beyond the rarge
of applicability, the approximation fails to converge and gives erroneous answers. The method of
extended perturbation series attempts to remove this limitation by combining analysis and numerical
computation.

The method follows three steps. First, the set of perturbation equations is programmed for solution
on a digital computer so that a large number of terms can be generated. Second, the coefficients of the
series are utilized to identify the location and nature of singularities limiting the range of applicability
of the series. With this knowledge, the final step is to recast the series using one or a combination of
devices such as the Euler transformation, Shanks transformation, Padd approximants, extraction of
singularities, and series reversion. The improved series generally has betteraccuracy anda widerrange
of applicability than the original series.

9.1 Extension of series
For simple problems, the addition of a few extra terms to a two- or three-term expansion can be

achieved with hand computation. However, complex problems require the use of a digital computer.
Depending upon the problem, there are two possible approaches. First, if the problem is such that a
pattern can be established for the sequence of solutions, then one can write a program incorporating
this pattern and calculating the terms in sequence. However, to establish the solution pattern it is
essential to calculate the first few terms by hand. These hand computations also assist in debugging
the program. Second, if the solution pattern is not discernible, one must adopt a fully numerical
procedure to solve the sequence of perturbation equations.

An example of the former approach in phase change heat transfer is provided by Pedroso and
Domoto (1973a), who give the details of how the terms of the perturbation series for eq 42 and 43 can
be generated automatically. Using their nomenclature, these equations are written as

32u ilu au 

(_8

ax--1 x •)l~•(358)
lX2  

FlX f Flx x=xf

u(x=Xf, xf)=l, u(x=,xf)= axu dxf axu (359)

where u = (T- To)/(Tf - TO), x = hX/k, xf = hX1/k, T = h2 (Tf - To)tlpLk, F = c(Tf- To)/L and X denotes
the dimensional distance.

The solution of eq 358 is assumed to have the form

U(X, Xf, 6)= Ui(X, Xf)E i-, i= 1, 2, ... , Nt (360)

where the summation convention over repeated indices is used in eq 360 and Nt is the numberof terms
in the perturbation series. Substituting eq 360 into eq 358 and 359 and equating coefficients of equal
powers of c, one obtains

a2u--i=0 for i=l
axx

2
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= .- J, j=,, ... ,i-1 for i>2

7X Ix=xf axf

I o i=I u (361)I Ofori> 2 ax Ix=O

The solution to the differential equations in eq 361 can be obtained as

Ui= xij,l xi-I (362)

where i = 1, 2, ... Nt,j = 1, 2, ... 2i, and ý Id are functions ofxf to be calculated from the boundary
conditions ineq 361. Pedroso and Domoto(1973a) show that •j, can be evaluated from the following
relationships.

)-Ijl= -2,1 (363a)
1 + xf

(m-1)(m2).. (363b)

(I +X)m

where

m = 2,3,..., Nt, no sum on m.

XL+I -1 ) , k2 (363c)

where

i = 2,3,..... Nt; 1 = 1,2,...,.2(i - 1)

j= 1,2"'"'-j-[l+ 1+ (-1•+1] k=2,3, ''2i2

no sum on L

,idax-I

Xi.1.1 = xi.2l1 -- X1 , Xf (363d)
1+ Xf

where

i=2,3,...,Nt; j= 3,4 ,...,2i

i+2,m = amm-n+j an,-h+l Xj*k.hfk.n-h+2 X.i-j.I.m-n+2 (363e)
1(1+1)

where
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m=2,3,...,Nc-i+1; n=I,2...,m

h = 1,2, ... ,n, no sum on m

Xi..n- m - = -a am-in,-n+ I an,-h + I ij.hfjn-h+ I )-..,-, + I (363f)

where

i=2,3,.-.,Nt-l ; j=3,4,...,2i

m=2,3,...,Nl-i+l ; n=1,2,...,m

h=U1,2 ... ,n, no suM On m.

The quantities a andfare defined as follows

ik1 =qi= I for i=2,3,... no sumon i

q4=q-Lj- *+q-jfbri=3,4 ", j=2,3, ... ,i-I (364)

j -= - (365)

and the (m-l)th derivative of the functionfis given by

1(-) (j-2) ... (h -m + 1)xj -'"for m= 2,3,..-.,jl

film = f(366)
(m 0 for m 2j+ I nosumonjorm. 3

Combining eq 359c and 360, the equation for dtldxf can be obtained as

dc = Ai Fi-i, i = IZ,...,Nvf
drf drf

_for i =I91-E12 for i =2

(367)

drf g+g~ dlijfr i3 ..)

wherej- = I2, ... i-2

where i = 1,2,... NI, j = 2.3....,2i.
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For a given value ofxf, eq 367 can be evaluated once the values of Xj,l are known. By integrating
the terms dri/drf, one can obtain the coefficients Ti. In section 3.2, the coefficients Ti were denoted
by cn and Table I contains the first nine values for a range of xf values.

An example of the extension of the perturbation series using a fully numerical procedure is given
by Beckett (1981). He considered the inward freezing of a cylinder and extended the series for the
freezing front location E, in time 8, to 31 terms. For P = 0.1 (Stefan number 10) his result is

E = 2.5139 F, 12 + 0.5130 , + 0.6540 03/2 + 1.2779 F2 + 2.2475 E5/2

+4.8757 E3+ 11.183 e782+26.677 E4+65.528 012 + 164.64 E5
(368)

+421.22 -11/2+1093.6 86+2874.5 8|3/+7643.2 E7+

+ 8.651 x 06 21/2 +... + 2.759 x l0ll831/2.

9.2 Analysis of series
Once the extension of the series has I

been accomplished, the next step is to 8 EV= 8.77
explore the analytic structure of the
solution identifying the location and

nature of singularities, if any exist.
The final pattern of the sign prevailing 6

in the series determines the location of I %

the dominant singularity. If the signs Cn-1
are fixed as in eq 368, the singularity 4

lies on the positive axis, but if the signs
alternate, it lies on the negative axis.
With random signs, the most likely
possibility is that singularities occur as 2 2

complex conjugate pairs. I
When the nearest singularity lies 0 0.1 0.2 0.3 0.4 0.5

on the negative axis, it usually carries 1/n
no physical significance. On the other Figure 27. Extended perturbation series, Domb-Sykes
hand, a singularity appearing on the plot.
positive axis can often be interpreted
physically. Forexample, the positive axis singularity associated with the series in eq 368 indicates the
completion of the freezing process. In some cases, the positive axis singularity points to the limit of
validity of the mathematical model itself. Another possibility with the positive axis singularity is that
it is not real but simply an indication that the function is double valued.

To establish the location and nature of singularities, the best approach is to calculate the ratio

ICnlcnc I for the series • cn8n and plot it against Iln, giving what is called a Domb-Sykes plot. For
n=0

large n, the ratio c Ic,-! often becomes linear in lln and is of the form

cS- +0(- (369)

where (I + a) is the slope and F is the radius of convergence of the series. By extrapolating the graph
to IIn = 0, one can obtain the intercept 1/80. Figure 27 shows the Domb-Sykes plot for the series eq
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368 from which a = 3/2 and eo-4 = 8.77. Thus one can estimate the dimensionless time for complete

freezing as co = 0.1140.

9.3 Improvement of series
As the final step, our knowledge about the leading singularity is used to improve the series. A

number of improvement devices are available. The choice of a particular method depends on the
direction, distance, and nature of the singularity as revealed by the Domb-Sykes plot. Often the
problem is such that more than one device is applicable, and it is always enlightening to try different
possibilities. Also, ifa single technique is not adequate, one should consider using two or more of them
in combination.

Euler transformation. When a perturbation series contains alternating signs, the singularity lies on
the negative axis and carries no physical significance. In this case, the simplest device to use is an Euler
transformation based on the estimate of c. With this transformation the singularity is mapped away
to infinity. The advantage of this device is that the exact nature of the singularity need not be known.

Let the perturbation series be

f= E a. (370)
n=O

and the nearest singularity be located at e = e0 (estimated from a Domb-Sykes plot). The transforma-
tion envisages using a new variable e* such that

t•*= - 8(371)
E+ CO

which gives the Eulerized series as

f= b, eb*n (372)
n=0

where the coefficients bn are

b0 = a0  (373)

"bn= I (n ! aj (374)j=, (n-j)!6- 1)! 0

Although the Euler transformation eq 371 has been written for the power series in F- one can also
use it for a power series in a variable. Consider, for example, the series in eq 183 which, for inward
freezing, breaks down as rf -+ 0. Rewrite it as

A- =1 +1  _)32 aj (375)

where

(376a)
6rf rf U
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a3 =-6 )2,2 4 rfII F (_L)4oi,4 (376b)
36 r f 120

The series in eq 375 can now be regarded as a series in 1/rf. Note that as rf -- 0, aIu0 and a3u0 remain
finite. For convenience, we can express eq 375 as

U =I+ C 1 11+ C 3r] 3  (377)

where C1 = sal and C3 = c2a3 are functions of r, rf, and E. Applying the Euler transformation

I,* =1- (378)Tj+K

to eq 377, we have the following Eulerized series:

_ = 1 + Kai S(1 + T*)T1* + KE(al + K2 a3E)Ti*3 (379)
U0

The series in eq 379 remains valid as rf ý 0 or -T- because as il -- oo,,1*r* 1.

If one constructs a regular perturbation series for g = drf, then it is found that
dx

g= 1 + Lb 1 _+ 62 b3 1 (380)
go rf rf3

where

bl=--l, b3 = l+ 6'r (381)
3 45

If the transformation eq 378 is now applied to eq 380, we obtain

g--= 1 + Kb1 (I + + KE(b, + K2 63 F)11*3 (382)
go

If eq 379 and 382 are used in the overall energy balance for the entire duration of the freezing
process, one can obtain an equation for K= K(e). It has been shown by Pedroso and Domoto (I 973c)
that if only terms in the first power ofr* are retained in eq 379 and 382, then the overall energy balance
gives the followirng transcendental equation for K:

6- (3+2E In + 3K I+= 1 __7 JK 2  (383)

6K "K) 40 (3- EK)

The solution of eq 383 for a range of values of E is given below:

C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3
K 14.96 9.099 6.699 5.350 4.474 3.854 3.391 3.030 2.791 2.503 1.351 0.9287

Integrating eq 382 to obtain the freezing time as a function of rf, the solution becomes
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r*(Euler)=JK-[3+(3-P)K] [l-rf- 3-eK In 3+(3-e)K 1
9K 3K 3+(3rf-E)KI

+ 3-e (l-rf2)-l(l-r:) (384)
6 3

The results from eq 384 are compared with the numerical results of Tao (1967) in Figure 28 fore =
0.1,0.5 and 1.0. While the regular series diverged as rf- 0 (see Fig. 10), the Eulerized series in eq
384 agrees quite well the numerical results.

0.4I

Shank transformations. Shanks (1955) - Numerical Results (Tao, 1967)
introduced a family of four nonlinear trans- 0.3 * Eulerized Series (384)
formations to accelerate the convergence of *.
slowly convergentanddivergentseries.The T * 10.5
merit of these transformations is that they 0.2- C="0.5

do not require any information about the [ =0.1

analytic structure of the solution. The appli-
cation is therefore rather blind, so the result 0.1
should be viewed with skepticism. How-
ever, the pattern of convergence is often
manifested so convincingly that it speaks 00 0.2 0.4 0.6 0.8 1.0
for the accuracy of the final results.

Considerthee, transformation, which is
the simplest one. If three partial sums Sn-1, Figure 28. Eulerized series for inward spherical
Sn, and Sn,2 of a series are known, then solidification.

el-(SO= Sn+I Sn-1- Sn2 (385)
Sn+lI + Sn- 2Sn

The success of the ei transformation in improving the convergence results because it yields the exact
sum if applied to a geometric series. Therefore, it works best on series with nearly geometric
coefficients.

To illustrate the application of Shanks transformation, we consider the three-term strained
coordinate solution for r, eq 250. Rewrite eq 250 as

"* = To0+ £C T,+ E2 T2  (386)

where

TO =_ ( 1 _V2) + _L W21 nV

4 2

T1= (I-Wj2 )+ (1 + Vi2 )ln ln

21 nVI

'C2 = 15(l- 2) + 21 (1 - W4)1nV+ 12(1 + V4)ln + 3 ( )-
96V2 ln 4 W
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0 .6 k I I I I
0.6

- Shanks Trans-

0.5 eformed Solution
s Numerical Sol-

ution (Tao, 1967)

0.4 • e = 3.0
" ¶'\ 2.0

% .. 1.0

"0.3 , \ -- 0.5
. ,., \ 0.1

0 0.2 0.4 0.6 0.8 i.0 Figure 29. Shanks-transformed solution for
rf inward cylindrical solidification.

If we note that Sn_1 = To, S, = To + eT1 and S,+ = To + ETI+ E2, the application of Shanks
transformation (eq 385) to eq 386 gives

el = -* (Shanks)- 'TO"' _-(T 0i2-T) (387)

Figure 29 compares the Shanks transformed solution given by eq 387 with the numerical results of
Tao (1967). The agreement is exceptionally good even at E = 3. This is a big improvement over the
predictions of eq 386 which gives valid results only up to e = 0.8 (Asfar et al. 1979).

10. CONCLUDING REMARKS

This review has demonstrated the usefulness of perturbation techniques to analyze heat transfer
problems involving freezing and melting. The perturbation approach has proved effective and
convenient in one-dimensional situations, and thus the discussion was mostly confined to these
situations. However, the method has also enjoyed limited success with two-dimensional cases; such
studies have been briefly mentioned here but furtherdetails can be found in the appropriate references.
Despite their limited success in more complex problems, perturbation methods often prove invaluable
in illuminating the physics of the problem.

This monograph has been written to serve two purpoaes. The first purpose is to assist the unfamiliar
reader in understanding the perturbation techniques and seeing, with the help of detailed mathematics,
how these techniques are applied to specific problems. The second purpose is to bring together in a
single publication the essence of a large body of literature on the subject so that it can serve as a
reference for future studies.
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