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Abstract

Two high order vector filters (HOFs) are developed for estimation in non-

Gaussian noise. These filters are constructed using nonlinear functions of the in-

novations process. They are completely general in that the initial state covariance,

the measurement noise covariance, and the process noise covariance can all have

non-Gaussian distributions. The first filter is designed for systems with asymmetric

probability densities. The second is designed for systems with symmetric probabil-

ity densities. Experimental evaluation for estimation in non-Gaussian noise, formed

from Gaussian sum distributions, shows that these filters perform much better than

the standard Kalman filter, and close to the optimal Bayesian estimator.

The problem of high resolution parameter estimation of superimposed sinu-

soids is addressed using nonlinear filtering techniques. Six separate nonlinear filters

are evaluated for the estimation of the parameters of sinusoids in white and colored

Gaussian noise. Experimental evaluation demonstrates that the nonlinear filters

perform close to the Cramer-Rao bound for reasonable values of the initial estima-

tion error. The recursive technique developed here is well suited for time-varying

systems and for measurements with short data lengths.

A general approach to model order selection is presented based on joint de-

tection/estimation theory. The approach involves the simultaneous application of

maximum a posteriori (MAP) detection and nonlinear estimation using either the

extended Kalman filter when the noise is Gaussian, or the extended high order filter

(EHOF) when the noise is in non-Gaussian. The problem is formulated as a multi-

ple hypothesis testing problem with assumed known a priori probabilities for each

hypothesis. Experimental evaluation of the approach demonstrates excellent perfor-
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mance in selecting the correct model order and estimating the system parameters

for SNR's as low as -5 dB.

A nonlinear adaptive detector/estimator (NADE) is introduced for single and

multiple sensor data processing. The problem of target detection from returns of

monostatic sensor(s) is formulated as a nonlinear joint detection/estimation problem

on the unknown parameters in the signal return. The unknown parameters involve

the presence of the target, its range, azimuth, and Doppler velocity. The problems

of detecting the target and estimating its parameters are considered jointly. A

bank of spatially and temporally localized nonlinear filters is used to estimate the a

posteriori likelihood of the existence of the target in a given space-time resolution

cell. Within a given cell, the localized filters are used to produce refined spatial

estimates of the target parameters. Excellent performance is obtained using this

technique for single sensor processing and for centralized data fusion.
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Chapter 1

Introduction

In this thesis a new high order filter (HOF) is developed for estimation in non-

Gaussian noise. It is shown that this new filter yields improved performance over

the standard linear Kalman filter and is less computationally intensive than optimal

non-Gaussian filtering techniques such as Gaussian sum filters. This thesis also

addresses parameter estimation in the context of several signal processing problems.

These problems, which are formulated as nonlinear estimation problems, have been

traditionally addressed using other parametric and nonparametric techniques. It

is shown that nonlinear filtering techniques, including the nonlinear version of the

HOF, designated the extended high order filter (EHOF), can perform very well for

estimation of signal parameters in Gaussian and non-Gaussian noise.

1.1 Motivation for the Study

The standard Kalman filter does not use the higher moments of the density

functions and therefore cannot adequately deal with non-Gaussian distributions.

Many of the existing techniques for estimation in the presence of non-Gaussian noise

require accurate knowledge of the density functions. Given this knowledge, they at-

tempt to approximate these functions using Gaussian sums or other approximations

address the problem of nonlinear estimation in non-Gaussian noise. Other methods

make simplifying assumptions such as symmetrical distributions, small plant noise,

or small measurement noise in order to develop approximate filters. This motivated

a study of the filtering problem from a more general point of view. The goal of

this study is to develop filtering algorithms for systems in non-Gaussian noise that
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use knowledge of the moments of the a priori distributions. In these algorithms no

assumptions are made about the power of the noise or the shape of the probability

density function.

Several specific problems in the signal processing area are of interest in the

application of nonlinear parameter estimation techniques in the presence of Gaussian

and non-Gaussian noise. These problems are also associated with estimating the

parameters of sinusoids.

A problem that has attracted a large amount of research is that of harmonic

retrieval. This problem consists of estimating some or all of the frequencies, am-

plitudes, damping coefficients, and phases of superimposed sinusoids in white or

colored, Gaussian or non-Gaussian noise. Much of the work in the area of high

resolution spectral estimation or harmonic retrieval has been based on fitting an

autoregressive (AR) or autoregressive moving average (ARMA) model to the re-

ceived data. However, the performance of most modem high resolution estimation

techniques is severely degraded at low SNR's and/or short data lengths. This is

probably due to the fact that these techniques are heuristic least squares modifi-

cations of algorithms that yield exact results when there is no noise or when the

available data is infinite. Quite often the initial conditions on a problem can be

bounded so that fairly accurate a priori estimates can be obtained. The harmonic

retrieval problem is successfully addressed in this thesis with nonlinear estimation

techniques.

A separate but related problem is that of model order selection. The objec-

tive in model order selection is to determine the number of sinusoids embedded in

Gaussian and non-Gaussian noise. This problem is approached in this thesis with
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joint detection/estimation techniques.

The joint detection/estimation (JD/E) procedure is presented in Chapter

5. The procedure is structured mathematically so that it can be employed against

problems with model uncertainty, initial condition uncertainty, or both. The JD/E

technique can be applied to any type of noise, assuming the density function is

known. This technique is applied in subsequent chapters for selected sinusoidal

detection and parameter estimation problems.

Joint detection/estimation techniques can also be applied to the estimation

of Doppler shift and time delay from an echo of a transmitted signal. Traditional

solutions for this problem are based on Fourier transform implementations and gen-

erally have poor resolution in the presence of short data lengths. It is shown how

estimates from multiple sensors can be combined to form improved estimates of

target range, geometric angle, and velocity.

1.2 Scope of the Thesis

Chapter 2 discusses the fundamentals of estimation theory and presents the

primary techniques currently used to perform nonlinear estimation in Gaussian

noise, and linear estimation in non-Gaussian noise. This chapter is essentially com-

posed of background material that is needed for an understanding of the remainder

of the thesis.

Chapter 3 presents a general solution to the problem of estimation in the

presence of non-Gaussian noise. The solution is based on high order powers of

the innovations process. The solution is entirely general in that the plant noise,

the measurement noise, or the initial estimation error can be non-Gaussian with
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symmetrical or asymmetrical distributions. The performance of the filter for non-

Gaussian noise is compared to exact Bayesian filters. Non-Gaussian distributions are

created using a sum of Gaussian distributions. Bayesian filters can be constructed

to give optimal performance for Gaussian sum distributions. The intent of this

comparison is to numerically evaluate the performance of the non-Gaussian filters

and to determine where these filters provide improvement in state estimation over

the standard Kalman filter. It is shown that the high order filter (HOF) performs

better than the standard Kalman filter, but not quite as well as the optimal Gaussian

sum filter.

Chapter 4 shows that nonlinear filtering techniques can be used for high res-

olution harmonic retrieval. Traditional approaches in this area have been concerned

with Fourier transforms or techniques based on autorecursive (AR) or autorecursive

moving average (ARMA) estimation. Many of these approaches are batch estima-

tors and, as such, cannot adequately deal with time varying systems. In addition,

most of these techniques cannot take advantage of a priori estimates of the initial

system state. It is shown that nonlinear filtering methods can give highly accurate

estimates (approaching the CR bound) of the parameters of sinusoids in white and

colored Gaussian noise. A particularly attractive filter to use in the harmonic re-

trieval problem is the minimum variance filter. This filter requires exact expressions

for expected values of nonlinear functions of the state variables during each itera-

tion of the filter equations. Closed form expressions for these expected values are

developed for the specific nonlinear functions used in the harmonic retrieval prob-

lem. Using these expressions it is expected that the minimum variance filter should

give better state estimates than the extended Kalman filter (EKF) especially when

there are large errors in the initial estimates. In this chapter Monte Carlo simu-
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lations are used to compare the performance of several nonlinear filters to the CR

bound. Studies are performed to determine the effect of poor initial conditions on

the performance of these nonlinear filters.

The joint detection/estimation (JD/E) procedure is presented in Chapter

5. The procedure is structured mathematically so that it can be employed against

problems with model uncertainty, initial condition uncertainty, or both. The JD/E

technique can be applied to any type of noise, assuming the density function is

known. This technique is applied in subsequent chapters for selected sinusoidal

detection and parameter estimation problems.

The JD/E technique is used in Chapter 6 to perform model order selection.

A general approach is presented for determining the number of sinusoids present

in measurements corrupted by additive white Gaussian and non-Gaussian noise.

Experimental evaluation of this approach demonstrates excellent performance for

model order selection and system parameter estimation in both Gaussian and non-

Gaussian noise.

Chapter 7 uses the JD/E approach to estimate time delay and Doppler shift

from echos of a transmitted waveform. The problem of target detection from returns

of monostatic sensor(s) is formulated as a nonlinear joint detection/estimation prob-

lem on the unknown parameters in the signal return. In this chapter it is assumed

that the target has been detected. The JD/E procedure is applied by segmenting

a large initial estimation error into smaller regions of uncertainty and operating an

independent nonlinear filter to perform parameter estimation for each of these re-

gions. It is found that this approach can help solve the problem of convergence to

local minima, which is characteristic of estimators such as the EKF.
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In Chapter 8, the problems of detecting the target and estimating its param-

eters are considered jointly. The fusion of parameter estimates from two spatially

separated sensors is accomplished using the JD/E approach. Several hypotheses are

postulated for detection. Each hypothesis corresponds to the ability of each sensor

to detect the target in its area of coverage. The a priori probabilities of each decision

are based on the area of coverage of the two sensors. For each hypothesis, a nonlinear

filter recursively estimates target parameters. The maximum likelihood estimate for

a given hypothesis is then determined as a weighted sum of the estimates from each

of the local hypotheses, with the a posteriori probability being used as the weighting

function. It is shown experimentally that excellent performance can be obtained for

both target detection and target parameter estimation using this technique.
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Chapter 2

Optimal and Suboptimal Estimation

The purpose of this chapter is to briefly cover the fundamentals of estimation

theory and to discuss several techniques for nonlinear estimation found in existing

literature. Section 2.1 presents the basic concepts of estimation theory and some

of the properties of estimators. Section 2.2 presents optimal Bayesian estimation.

This section also presents the derivation of the linear Kalman filter, which is the

optimal estimator for linear systems in additive white Gaussian noise. In Section

2.3 Bayesian approximations are discussed. These approximations entail methods

for estimation of the a posteriori density function. Section 2.4 discusses nonlinear

filtering techniques for nonlinear systems in additive Gaussian noise. Section 2.5

presents techniques for linear filtering in non-Gaussian noise. The overall goal of

this chapter is to explain the basics of estimation theory and to show the evolution

of the optimal linear estimator, the Kalman Filter, into techniques for nonlinear

estimation. This will lay the groundwork for further discussions on new techniques

presented in this thesis for suboptimal estimation in non-Gaussian noise and for

applications of nonlinear filtering to specific signal processing problems. In this

thesis only discrete time (i.e. sampled data) estimation problems are addressed.

2.1 Fundamentals of Estimation Theory

Estimation theory addresses the process of determining the value of some

uncertain quantity based on available pertinent information. Consider the problem

of estimating the n-dimensional time invariant parameter vector x from observations

represented by the m-dimensional vector zk. The measurements are described by
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the nonlinear relation

Zk = h(x, k, vk).

where vk is random noise. The estimate x is given by

i = ek(Zk)

where Zk is the set of all measurements (zI, z2, -- " ,zk). The function ejk is called

the estimator of x. There are two basic models for the parameter x:

(1) Nonrandom, when x has an unknown deterministic value.

(2) Random, when the parameter x has a priori probability density function

(PDF) p(x).

For nonrandom parameters it is desired that the estimates converge to the

true value as k -+ oo. For random time invariant parameters, a realization of x

is drawn from a population with the assumed PDF. One would like each measure-

ment to yield an estimate that converges in some well-defined probabilistic sense

independent of the particular realization of x.

Optimal estimation defines the best estimate of a parameter based on some

well-chosen criteria of optimality. Since different criteria may lead to different op-

timal estimates for the same quantity, one may settle for feasible or acceptable

estimates according the following rules [1]:

(1) An estimate x is unbiased if it satisfies the relation

E[i] = E[x]
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(2) An estimate i is a consistent estimate if it converges in probability to x,

i.e.

lim prob[I I- xlI >_ c] = 0 for arbitrarily small c
k--oo

A consistent estimate is always unbiased.

(3) An efficient estimate * is the unbiased estimate of x with the minimum

variance, i.e.,
2 11 11 21

ai = E[ft - x~] < E[Ily- x 01i

for all other estimates y of x.

(4) An estimate * is called sufficient if it contains all of the information in

the set of observed values regarding the parameter x to be evaluated. Any statistic

related to a sufficient estimate is called a sufficient statistic.

Several estimation techniques have been used for the estimation of random

parameters. Many of these techniques are derived from or related to Bayesian

estimation.

The maximum a posteriori (MAP) estimate is obtained by maximizing the

conditional density

p(xlz) - p(zlx)p(x)
p(z)

with respect to the unknown parameter vector x. Since p(z) is not a function of x,

the MAP estimate may be obtained by maximizing the joint density

p(zx) p(x) = p(z,x)

with respect to x. This can be accomplished by maximizing the natural logarithm
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of this quantity so that the MAP estimate can be expressed by

0 Inp(z, x) Olnp(zlx) + Olnp(x) 1 0.
Sx=,(z) ax lx=,(Z) + ax ix=(z)

In the case where p(x) is unknown the best choice of x is made based on maximizing

the likelihood function p(zIx). The maximum likelihood (ML) estimate is given by

0Inp( Zlx) - 0.

& x=x(z)

It is clear that the ML estimate is inferior to the MAP estimate since it does not

consider prior information about the random vector x. However, the ML estimate

may be useful in situations where: (1) the parameter x is unknown but not random,

(2) the a priori density of x is unknown, or (3) the density functions p(xjz) or p(x, z)

are more difficult to compute than p(zIx).

Consider the problem of estimating a nonrandom parameter vector x from

a single linear measurement of this vector in Gaussian noise. In this case the mea-

surement model is given by

z = Hx + v

where v - N(0, R). The likelihood function is given by

p(Zlx) exp(-I(z - Hx))TR-I(z - Hx)),

and the maximum likelihood estimate of x is the root of the equation

-2(z - Hx)T R-1 H = 0
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leading to the ML estimate

* = (HT R- 1 H)-IHT R-1 z.

Least squares estimates are obtained by minimizing the sum of the squared

error between the measurements and the measurement model. It can be shown

[21 that if the noises are independent, identically distributed (i.i.d.), zero-mean,

Gaussian random variables the least squares estimate is the same as the ML estimate.

The minimum mean square error (MMSE) estimate, or minimum variance

estimate, is obtained by minimizing the expected value of the mean square error

E[(k - x) 2 1Zk] of the estimate based on the data up to and including time k.

The solution is the conditional mean expressed in terms of the conditional PDF

k = f xp(xIZ,)dx.

2.2 Optimal Bayesian Estimation

An optimal estimate is defined as the minimum variance estimate or the mean

of the conditional density function. It will be shown in this section that recursion

relations can be set up to determine the conditional density based on Bayes' rule.

Consider the problem of estimating a time varying n-dimensional state vector

Xk, where the state evolves according to the plant equation

xk+1 = f(xk,wk). (2.1)

The state xk is observed through the m-dimensional measurement vector zk given

by

Zk = h(xk,v&) (2.2)
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where Wk and vk are mutually independent white noise sequences. The problem

is to estimate the state xk from the measurements Zk, where Zk is the set of all

measurements (zI, Z2," -, zk). The objective of Bayesian parameter estimation is to

recursively calculate the a posteriori density of the state. This density, also referred

to as the filtering density, can be obtained [3] through the recursion relations

p(xklZk) = p(xklZk-1) p(zklxk) (2.3)
P(zkIlZk-1)

p(xkIZk-1) = J p(xk-l.Zk-I)p(xkljxi,-I)dxk-I (2.4)

where

p(z&lZk-1) = J p(xklZk-.)p(zklxk)dxk. (2.5)

The initial density p(xo0zo) is given by

xo Izo) = P(Zo IxO) p(xo)pxozj p(zo) (2.6)

The density p(zklxk) in equation (2.3) can be determined by the a priori

measurement noise density p(vk) and the measurement equation (2.2). Likewise,

p(xkIxk-1) in (2.4) is determined from p(wk-1) and equation (2.1). Knowledge of

these densities and p(xo) determines p(xklZk) for all k. However, the major difficulty

with recursive Bayesian estimation is the closed form solution of the integration in

(2.4). This integral can be solved only for linear state and measurement equations

with Gaussian statistics, and a limited set of nonlinear systems.

The advantage of using Bayesian estimation is that once the a posteriori

density is obtained one can compute estimates based on any estimation criteria.
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For example, the most probable estimate is found by maximizing thc probability

that (kklk = x), yielding the solution *klk = Mode {p(xkIZk)!. When the a priori

density is uniform, this estimate is identical to the ML estimate. If the criteria

is to minimize f Ilxk - xII2P(xkiZk), the solution is 4klk = E[xklZk]. This is the

conditional mean estimate. If the criteria is to minimize the maximum of Ixk -xiklk 1,

the solution is the minimax estimate defined by XkI, = Median{ p(xk IZk)}.

In the case of linear systems in Gaussian noise, equations (2.3 - 2.6) can be

evaluated and the a posteriori density is Gaussian for all k. The conditional mean

and covariances for this system are the Kalman filter equations, which were first

introduced by R. E. Kalman [4]. In the development to follow the Kalman filter

relations are derived from the Bayesian recursion formulas. This derivation is based

on a similar development by Ho and Lee [5]. The linear plant and measurement

models have the form
Xk = 'k-lXk-1 + rk-1wk-1

Zk = HkXk -- vk

where wk and vL are independent, white, Gaussian sequences with

E[vkl = E[wkl = o V k
(2.7)

E[vkvr] = Rkbkj; E[wkw7l = Qk6bj; E[vkw7] = 0 V j, k

Starting with the initial conditions that p(xolzo) is Gaussian and

E[(xolzo) = 1oj
(2.8)

Co,[xolzo] = P010.

From (2.7) it is noted that p(xklZk_1) is Gaussian and independent of vk so
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that

XikIk-I = E[xklZk.-11 = 'Ok-Ikk-Ijk-I

,tT T(2.9)
Pk~k-1 = COV[XklZk-..1] = Ok-14-1k-l k-Ik- + Pk-lQk-...lF~.

Similarly, p(z&IZ&.. 1) is Gaussian and

E[zklZk-.1I = Ht-i-j-

Cov'[ZkIZk-1] = HkPklklH[T + Rk (.0

Finally p(zkl.xk) is Gaussian with

E[zkIXkI = HkXk
(2.11)

COV[Zlzklxk = Rk.

Using (2.9 - 2.11) in (2.3) gives

= HkPIk~lkHkT + RkI11 2

p~x~~k) (27r)I 2 I RkIIIIPkjk-..I /2

xexp, 1- 2[(Xk - ikk-I kl)TP&-.I(Xk - klk-1)

+ (Zk - HkXk)TRTI (Zk - HkXk)

+ (Zk - Hkiklk..I )T(Hk Pklk...I-'k + Rk)'I(Zk -Hkiklk....)I}.

Completing the square in the exponent gives

P(XklZk) = IHkPklk...HkT + RkI' 12

x exp, -2IX - X^kI&)Tkik(Xk - :k)

where
*k~k = ikk-Ik.1 + Kkik

(2.13)
PkIk = (I, - KkHk)Pklk. 1
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Kk is called the Kalman gain and is given by

Kk = PkIk-IHkT(HkPkikI HT + Rk)-f, (2.14)

and the innovations ik are defined ly

ik = (zk -- HkfCklkl). (2.15)

The filter error covariance in (2.13) can also be expressed as

S= + HkRj'Hk (2.16)

where I. is the n-dimensional indentity matrix. Since the a posteriori density is

Gaussian, fklk is the most probable, the conditional mean, and the minimax esti-

mate.

Equations (2.9) and (2.13) constitute the Kalman filter equations. These

equations give the optimal, or minimum variance, estimator for linear systems in

additive white Gaussian noise. Equation (2.9) is used to extrapolate or predict the

estimate from time k - 1 to time k based on the plant characteristics. Equation

(2.13) updates or filters this estimate at time k based on the measurement. An

important note about the filter equation (2.13) is that the filtered estimate *klk is

a linear function of the innovations for the optimal linear filter. It will be shown

in Chapter 3 how higher order powers of the innovations can be used to develop

filters for linear systems in non-Gaussian noise with symmetrical and asymmetrical

probability density functions.

The Kalman filter equations can be derived in many ways. Gelb [6] uses

the matrix minimum principle on the a posteriori variance to obtain the Kalman
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filter relations. Kronhamn [7] derives the filter by geometrically demonstrating the

orthogonality of the estimation error to the measurement error. Chui and Chen [8]

use stochastic operator theory. Jazwinski [9] uses stochastic calculus to come up

with the relations for continuous-time systems. Kailath [16] derives the filter using

the innovations method. Using this technique the observed process is first converted

to a white noise process by means of a causal invertable linear transformation. The

problem then becomes one of parameter estimation in white noise. The solution to

this simplified problem can then be expressed in terms of the original observations

by means of the inverse of the original whitening filter.

Although the Kalman filter is an optimal estimator for linear systems in

Gaussian noise, its performance for nonlinear models and non-Gaussian noise is

highly dependent on the degree of nonlinearity or non-Gaussianity in the plant and

measurement equations. Nonlinear models are generally treated with the extended

Kalman filter in which the state and measurement models are linearized about the

most recent estimate. This method generally works well in low noise environments.

In large noise environments, where the estimation error is large, the Taylor series

expansions can be very inaccurate [6].

Filtering in non-Gaussian noise has generally been treated in the literature

using recursive Bayesian estimators which rely on an approximation of the a poste-

riori density of the state variables. These Bayesian approximations are discussed in

the next section.

2.3 Bayesian Approximations

Two problems are encountered when the the system is nonlinear or the a

priori density is non-Gaussian. First, the integration in equation (2.4) is difficult
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to carry out. Second, the moments are not easily obtained from equation (2.3). If

the conditional density function cannot be computed analytically then the next best

thing is to form accurate approximations of this density. Several numerical methods

have been developed for approximation of the a posteriori density function. Some

of these techniques are briefly discussed in this section.

Alspach and Sorenson [10,11] attempt to approximate the a priori density us-

ing a sum of Gaussian distributions. They apply their system to problems involving

nonlinear state and measurement systems in white Gaussian noise. The procedure

results in parallel operation of several Kalman filters. There are as many Kalman

filters as there are terms in the Gaussian sum. The convex combination of these

filters is formed to obtain the a posteriori density.

Sorenson and Stubberud [121 approximate the a posteriori density using an

Edgeworth expansion. Using perturbation techniques the plant and measurement

systems are described as quadratic equations with additive white Gaussian noise.

Recursion relations are derived for a finite number of the moments of the Edgeworth

expansions and these relations are assumed to describe the set of sufficient statistics

for the system.

Bucy and Senne [13] use a crude convolution summation involving an ellipsoid

tracking technique to determine the important points to include in the summation

for the conditional density. They assume that the conditional densities of interest

are sufficiently non-Gaussian so that a finite number of moments make for a poor

representation of them. They store the densities as a vector of point masses relative

to a rectangular grid which is free to be rotated and translated in the state space of

the dynamical system.
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Another method is to use spline filters [14,15] to construct the a posteriori

density. Masi et al. [171 studies nonlinear discrete time filtering problems using the

Bayesian approach. The solution to the filtering problem is given in terms of a gener-

alized finite-dimensional filter in a sense that the generalized a posteriori conditional

PDF is representable as a linear combination of distributions belonging to a given

parameterized family, where the number of terms in the combination may possibly

vary with time. Using this concept they are able to derive a technique to obtain

exact recursive solutions for various linear models with non-Gaussian disturbances,

as well as for one non-linear model with Gaussian disturbances.

All of these methods involve numerical approximations to the actual a pos-

teriori density. The major limitation to these approaches is the computation time

required for implementation.

2.4 Nonlinear Filtering in Gaussian Noise

This section presents a discussion of filtering methods for nonlinear systems

that are described by the equation

Xk = f-.l(Xk-1) + rk-lWk-1, (2.17)

with measurement model

Zk = hk(xk) + vk, (2.18)

where vk and wk- 1 are mutually independent white Gaussian noise sequences as

described by equation (2.7).

In general, optimal Bayesian solutions cannot be expressed in closed form for

this model, requiring methods for approximating optimal nonlinear filters. Several
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nonlinear filters have been used for nonlinear systems in Gaussian noise. All of these

filters are based on the model of the filtered state being a linear function of the in-

novations sequence as in equation (2.13). These suboptimal nonlinear filters include

the extended Kalman filter, the modified second order Gaussian filter, the locally

iterated Kalman filter, and the minimum variance filter. These filters are described

in sections (2.4.1 - 2.4.4) respectively. Jazwinski [9] points out that it is difficult to

assess a priori the effects of the approximations made by these nonlinear techniques,

and their value in a particular problem must be determined by simulations.

2.4.1 Extended Kalman Filter (EKF)

The extended Kalman filter is obtained by making Gaussian assumptions

about the a posteriori densities and by extending the plant and measurement non-

linearities in a Taylor series including first order terms.

The prediction error is defined as

xkklk-I = Xk - xkkk-I (2.19)

and the filter error as

ik-Ilk-I - Xk-I -- k.-Ilk-l. (2.20)

If fk-1 is expanded about the current estimate, *k-.ik-I, then the first order ap-

proximation is

fk-I(xk-1) - fk-I(xk-1jk-I) + Fk-.ixk-IIk-l, (2.21)

where

Fk-1= - f&-i(xk_-1) (2.22)axk- 1 Xk-f=-kk-1k1 *
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In this case fik-(xk-1) = fk-l(Xk-1jk-1) and the prediction error becomes

*kIk-1 = Fk-.lxk-ll-k1 + rk-lWk-1. (2.23)

This leads to the state prediction equations

iklk-I = fk-1(*k-1jk-1)

= E1 = E[xkklk-lX..lk-li (2.24)
T r T

= F,-1P.-lk-IF,- 1 + rk-lQ,-iL't- 1 .

The measurement equation is linearized in a similar manner. The nonlinear

function hk(Xk) is expanded about the predicted state Xktk.-1 to obtain

hk(Xk) ; hk(kikx.-1) + Hkkklk-1 (2.25)

where

Hk = 0 hk (xk) (2.26)
Oxk lxkfklkI

The innovations vector is given by

ik = Hk*kklk-I + vk. (2.27)

The filter and gain equations have the same form as the linear Kalman filter and

are given by
ikik = ikik-I + Kkik

Pkik = (In - KkHk)Pik-,I,- (2.28)

Kk = Pkjk-1 HkT(HUPklk-I H + Rk)-'.
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2.4.2 Gaussian Second Order (GSO) Filter

The Gaussian second order filter [6] is obtained by including the second order

terms in the Taylor series expansion. In this filter it is assumed that all errors are

Gaussian and therefore all odd moments are zero.

The expansions for fk-.(.) and hk(.) are given by

1 02 f _, - ~T
f-(xk-1) ;Z: fk-1(*k-1jk-1) + Fk-1..k-..k-1 + 2 (kk-(fk-I k-T1k-1)

hk(Xk) - hk(ikkk-1) + Hkkjk-k "+- 2+-'(hk,

(2.29)

where the operator 02(e, B) for any function e(x) and any matrix B is a vector

whose 0t1 element is defined by

12 (e, B) = trace{ [WO B}

for 1 < p 5 n, 1 <q q< n. From (2.29) the estimates fk-l(xk-1) and hik(xk) become

fk -1(xk -.1) = fk- &( k-iI k-1) + i O 2( k -1,P k...,& ..) I.-=-* -j 1 ( .02230
hk(xk) = hk(:kklk-l) + 2 02(hk,Pklk-l)lxk=)klklI(

The innovations vector is now

1 . (2.31)

" i = Ik - Ik^l -) -2 ' ( k, kk l lk * l
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The GSO filter relations are given by

:Xklk-1 = fk-1(:ik-l1k-1) + 2 a 2(fk- 1,Pk-lk- 1)x, j

PkIk-1 = Fk-IPk.- 1 k-IFk-iT + rk-_ik-1rTIT + Ak-1

ikik= kiklk-I + Kkik (2.32)

Pkjk = (I, - KkHk)Pkl--

Kk = Pklk,-1H•(HkPkik-lHkT + Rk + Bk)01 .

In general, the matrices Ak-1 and Bk contain fourth order moments. It is

assumed that the prediction and filter PDF's are Gaussian for the development of

the Gaussian second order filter. This assumption leads to the approximations

1 [ 0 2 fh-i, .0 2ft-1 ,

Ak-lij O-p-1q (cpmcqn + Cpncqm) ' -

S(2.33)

Bk.i = I[, J:' CX (dpmdqu + d m) ,
~p~qn. JXk=*klk-I

where fk-li denotes the i"h element of fk-.(.), hki denotes the Oth element of hk(.),

the c's are elements of Pkjk, and the d's are elements of Pkjk-j-

Another approximation which was developed by Jazwinski [18] and Bass et

al. [19] is the truncated second order filter. Third and higher order central moments

are assumed to be zero in this filter. This results in slightly different equations than

that shown above for the GSO filter. This filter is appropriate if the conditional

density is almost symmetrical and concentrated near its mean. Still another version

of second order filters is the modified Gaussian second order filter [20].

The appropriateness of the type of filter to use is dependent on the nonlinear-



23

ities in the system and can only be accurately determined by Monte Carlo simula-

tions. It is difficult to analytically determine the effects of nonlinearities. However,

Jazwinski [91 points out that, in general, nonlinear effects appear to be significant

when noise inputs are small and the estimation error variance is large. Large noise

inputs effectively mask nonlinearities. In addition he claims that measurement non-

linearities become significant whenever they are comparable to, or larger than, the

measurement noise. Thus, if the measurement noise is small, neglected measure-

ment nonlinearities tend to bias the estimate and result in incorrect weighting of

the observations.

2.4.3 Locally Iterated Kalman Filter (LIKF)

The locally iterated Kalman filter is an enhanced version of the extended

Kalman filter where, at each step of the iteration procedure, the measurement non-

linearity is linearized about the state estimate obtained from the EKF equations.

This filter was first introduced by Denham and Pines [21]. The procedure is to

repetitively calculate *klk, Kk, and Pk•k, each time linearizing about the most re-

cent estimate. To develop this algorithm, denote the 0ih estimate of Xkjk by iklk(i)

with kklk(0) -- kIkl-1 and expand hk(xk) from equation (2.25) in the form

hk(xk) = hk(*klk(i)) + Hkicklk(i)

where
- 0 h(x•)I

S= Xk
Oxk lxkfXklk(i)

Xklk(i) = Xk -- kjk(i)"
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The following recursion relations are developed [6]

XkIk(i + 1) = ik.k_1 + Kk(i)[zk - hk(kklk(i)) - Hk(x 1klk-I - xklk(i))

PkIk(i) = (I, - Kk(i)Hk)Pklk-I (2.34)

Kk(i) = Pklk-.lHT(HkPklH-l/' + Rk)-Y

where i = 0, 1, -... The number of repetitions of the calculations shown above can

be determined by requiring the magnitude of the difference between successive state

estimates to be less than some small number.

Jazwinski [9] gives the local iterated Kalman filter a probabilistic interpreta-

tion. Between observations, the conditional mean and covariance matrix propagate

according to first order, nonlinear theory. At an observation, assuming the a priori

density is Gaussian, the filter solves for the conditional mode of the posterior den-

sity. The conditional covariance matrix is then computed according to first order

theory. The conditional mode is then used for the conditional mean.

Some disadvantages of the LIKF are pointed out by Andrade Netto et al.

[22]:

(1) The iteration scheme may converge very slowly. This may occur where

the initial guess xkIk-1 lies near extrema of the function hk(.)

(2) The a posteriori density may be multimodal and the iteration procedure

may converge to local modes if it converges at all.

Another iteration scheme involves global iteration [9]. After processing the

data (zl,z2, ... , zk), starting with the initial values io, and Po, the filtering op-

eration is completed with estimates iklk and Pk-k. Then, assuming wk = 0 the
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backward filter is implemented with *kklk and Pkik as initial conditions. This gives

smoothed estimates '01k and P01-k The data is then processed with the forward filter

again starting with itOk and Po. This has the effect of changing the initial statistic

E[xol.

2.4.4 Minimum Variance Filter (MVF)

The nonlinear filtering techniques discussed thus far are all based on a Taylor

series expansion of the nonlinear equations about the most recent estimate. As

such, these filters are subject to the inherent problems of local linearizations and

may lead to poor performance. Liang and Christenson [231 developed filtering and

smoothing algorithms which give exact estimates at each iteration of the filter. They

have shown that for certain nonlinear functions such as polynomial nonlinearities,

exponential functions, and sinusoids, exact expressions for the state estimates can

be obtained and used in the filter relations in place of the usual approximations.

At each step in the operation they assume that the prediction and filter errors

are Gaussian. They have compared their filter to the EKF and other filters using

numerical examples and claim that their filter performs much better than the EKF

for large initial error variances.

The basic premise is that E[fk-.l(xk-. ] and E[hk(xk)] can be determined

analytically such that

fk&-(xk-l) = E[fk.I(Xkl)X&..)1x&k-1= kIk

lhk(xk)- E[hk(xk)]xkfiklkl.
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The innovations vector has the form

-k = Z k - hk(xk).

The filter equations have the general form

Plk-1 = E[fk-.l(xk-1)fk-1l(xk-) T ] + rk-lQk-lr T--1

=klk -kkk-1 + Kkik (2.35)

K = E[xklk-.lhk(xk) T ] (Rk + Efhk(xk)fik(xk )TI)T

Pkk = Pklk-j - Kk E[[k(xk)XIjk.11

where

iklk-1 = Xk - iklk-I

fik(xk) = hk(xk) - hk(xk) (2.36)

fk-l(xk-1) = fk-I(xk-1) - fk-1(xk-1).

Analytical expressions for E[xkfk(xk)T], E[xkhk(xk) T I, E[fk(xk)fk(xk) T ],

and Elhk(xk)hk(xk)T] are required in order to form exact expressions for the filter

equations.

It is important to note that the filter equations developed by Liang and

Christenson [23] have been presented before (e.g. Jazwinski [91). However, their

contribution is the development of exact expressions for specific types of nonlin-

earities including polynomial, exponential, and sinusoid nonlinearities, assuming

Gaussian a posteriori density functions. Liang [24] gives general expressions for the



27

probability density functions for these types of nonlinearities. Liang [25] evaluates

several system models with the standard EKF and the MVF. He concludes that, in

general, the MVF performs much better than the EKF for large initial error vari-

ances and small noise variances. However, when the initial variances are small, and

the noise variances are not too small, the EKF can be expected to perform about

as well as any other filter. He also claims that when the level of noise inputs is

large enough to effectively cover the effects of nonlinearities, no particular filter can

be said to be consistently superior to any other filter. In most cases, however, the

MVF should outperforin all other nonlinear filters considered.

Kramer and SorensoL [3] compare the performance of the MVF to the optimal

Bayesian estimator for a specific bilinear model. They found that there is a wide

margin between the performance of the suboptimal filter (MVF) and the optimal

Bayesian filter. They generalize that when the level of noise inputs is large enough

to mask the effects of nonlinearities, point estimators such as the MVF and EKF

tend to perform close to the optimum. However, they may be quite sensitive to

initial conditions. However, the MVF still fails to capture important features of the

a posteriori densities.

2.5 Estimation in Non-Gaussian Noise

Most of the work done in filtering non-Gaussian Noise has been done from

the Bayesian point of view. These techniques are discussed in sections 2.2 and 2.3.

However, with a few notable exceptions there very little work has been done in the

area of linear filtering of systems with non-Gaussian plant noise, measurement noise,

or initial error variances. Some of the approximations found in the literature will

be discussed in this section.
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Masreliez [26] developed two methods for non-Gaussian filtering. One filter

is used for situations in which the observation prediction density is approximately

Gaussian at each stage, but the observations disturbances are non-Gaussian. He de-

velops the filter using a nonlinear ("score") function of the innovations vector. The

second filter applies to the systems with nGn-Gaussian plant noise but linear mea-

surement noise. They compared their filter to the exact Bayesian minimum variance

filter developed by Alspach and Sorenson [101 using a sum of two Gaussian distribu-

tions. Simulation runs indicated that the exact MV filter and the approximations

presented in this paper coincide and that these filters outperform the Kalman fil-

ter. However, the author notes that the score function is very sensitive to small

errors in the density approximations. They suggest that ad hoc type filters may be

constructed to approximate the densities.

Another approach is taken by Rao and Yar [27]. In their paper they developed

two filters for tracking nonlinear processes for scalar models. In the first technique,

called the polynomial filter, they used a general nth power of the innovations process

for symmetrical plant noise, measurement noise, and initial variance distributions

to develop relations that could be used to obtain the filter gain(s). However, they

consider only the scalar cases with symmetrical distributions. The second filter,

labeled the measurement noise dependent filter, is based on a general nonlinear

model of the innovations. This filter is constrained by the fact that one must have

exact knowledge of the measurement noise distribution.

Verriest [28] proposed a filter that would operate in multiplicative or non-

Gaussian noise. This filter was set up for symmetric distributions, and equations

were developed based on linear approximations. However, tLhse equations were not

verified with numerical results.
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An exact formula for computing the conditional mean has been derived by

Daum [29] for discrete time observations with non-Gaussian measurement noise. The

derivation of this formula is based on a certain homotopy function. He mentions that

in order to use his formula a conditional expectation must be computable, which is

not generally the case in nonlinear estimation problems.
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Chapter 3

High Order Filters for Estimation in Non-Gaussian Noise

In this chapter high order vector filter equations are developed for estimation

in non-Gaussian noise. The difference between the filters developed here and the

standard Kalman filter is that the filter equation contains nonlinear functions of the

innovations process. These filters are general in that the initial state covariance,

the measurement noise covariance, and the process noise covariance can all have

non-Gaussian distributions. Two filter structures are developed. The first filter is

designed for systems with asymmetric probability densities. The second is designed

for systems with symmetric probability densities. Experimental evaluation of these

filters for estimation in non-Gaussian noise, formed from Gaussian sum distributions,

shows that these filters perform much better than the standard Kalman filter, and

close to the optimal Bayesian estimator.

The new filters are referred to as high order filters (HOFs). For both of these

filters it is assumed that the 5th and higher order moments of all densities are neg-

ligible. As such, these filters are approximations of the optimal minimum variance

solution. However, it is shown through simulation experiments that these filters

can approach the performance of the optimal minimum variance filter under certain

conditions. The performance of the HOFs is compared to the standard Kalman

filter, which uses only first and second moments, and to the optimal Bayesian esti-

mator. The Gaussian sum distributions, for which the optimal Bayesian estimator

has been derived by Sorenson and Alspach 110], were used as the test-bed for com-

parison. Unlike the measurement noise dependent (MND) filter described in [261,

which requires complete knowledge of the entire a priori densities, the HOFs re-
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quire knowledge of only a finite number of moments of these densities. The optimal

Bayesian estimator of Sorenson and Alspach [10] also requires the accurate knowl-

edge of the a priori densities so that an approximation can be made using Gaussian

sums. All techniques previously developed for non-Gaussian filtering are computa-

tionally intensive. The HOFs developed here share that characteristic. However,

they are much less computationally intensive than the Gaussian sum filter.

3.1 System Model

Consider the problem of estimating the n-dimensional state vector xk from

K measurements of the m-dimensional vector Zk. The linear plant and measurement

equations have the form

Xk = *k-lXk-1 + Wk- 1

(3.1)
Zk = Hkxk+Vk

where wk-i and vk are mutually independent, white, zero-mean, possibly non-

Gaussian random sequences. The uncertainty in the initial estimate *0 may also

have a non-Gaussian distribution and is independent from wk- 1 and vk. It is also

assumed that the 2 "d through 4911 moments of the distributions of *o, wk-1 and vk

are known.

The Kronecker product operator ® [30] is implemented in order to use 2-

dimension matrix operations throughout this derivation. The Kronecker product of
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an m x n matrix A with a matrix B is defined by

ajiB a 12B ... ainB

a21B a 22B ... a2nB

AOB= (3.2)

amlB am2B ... amnB

where a,1 is the ijth element of the matrix A. The kronecker product has

higher algebraic order than multiplication.

For arbitrary matrices A and B and arbitrary column vectors a and b, the

kronecker product has the following properties:

(Aa) 0 (Bb) = (A 0 B) (a ® b)

(Aa) 0 b = (A 0 1m) (a ® b)

(3.3)
(A ® B)T = AT OBT

a 0bT = bT @a = abT

where b is an m-dimensional vector, and Im is the m x m-dimensional identity

matrix.

In the development to follow the column stack operator is also used. If an

n x n matrix A consists of columns al, a2,.. , a. then the column stack of A is

defined by

cst(A) = [aa2 ... a ]T(34)

cst(A) is dimensioned nn x 1. If A = E[xxT ] then cst(A) = E[x ® x], where E[.] is

the expectation operator.
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The semi-column stack is defined as follows: if the matrix A is dimensioned

nn x nn, consisting of columns al, a2,..., ann then the semi-column stack of A is

given by
"al an+, a(n1l),n+l

a2 an+2 a(nfl),n+2 (3)scst(A) - 35

an an+n "a(nl),n+n

scst(A) is dimensioned nnn x n. If A = E[x 0 x 0 xT 0 xT] then scst(A) =

Ejx®x®x®xT].

The 2 nd, 3"d, and 4th moments of the random vector wk are given as

E[wk 0 wr] = Q(2 )6k

E[wk 0 wT O wl] = Q k)ki

E~wk0 T 0 W, 0 WTI Q(4) bkjlm

Similarly, the 2nd, 3 rd, and 4 tA moments of the random vector vt are given

by R(2 )6kb, RS)b kji, and RI4)6kjlm. The moments of the initial estimation error are

given by Po2), P0 ), and Po().

Let the prediction error Xj, and the filtered error xtkt be defined as

x -Ik... = Xk - Xtkjk-I

(3.6)

where the hat indicates expected value. The innovations vector is given by

-k = Zk - HkXtkj-1

(3.7)
= Hk*Ik--l + Vk
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It can be shown [27] that E[(xk - :cklk-l)IZk] is a function of only ik so that

E[(xk- *klkl)Izk1 K " '_ k
i=O

where the superscript Di denotes the 01' kronecker product of the vector ik. Kk()k

denotes the ith order filter gain, which has dimension n x mi'. It follows that

lk-- =:klk-I- + " K(')-'®

Using (3.6) the expression for the filter error becomes

kkk = k Vki - 0,() (3.8)

By setting KkI) = 0, for i > 1, the standard linear Kalman filter results. In order

to bound the equations for the derivation of the high order filters it is assumed that

k'f is negligible or i > I The truncated relation now becomes

I

Xkkk= X=kkjkI - K(')-O)'" (3.9)

Equation (3.9) forms the basis for the development of the HOFs.

3.2 Non-Gaussian Filtering for Asymmetrical Distributions

The non-Gaussian filter for asymmetrical distributions is derived by letting

I = 2 in (3.9) and obtain the filter error

Xkjk = :Rlj_1 - K(°)- - K( 2)iO2 (3.10)

It is required that E[kklk-11 = E[vk1 = 0, since the estimator must be unbiased,
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and using (3.7) in (3.10)

EIk[*k-11 -] = 0 = - (2)E[i?21 (3.11)

where E[,2] ( cst(HkP .k 'Hf + R(2)). Substituting (3.11) into (3.10) yields

xkik = ikik-,I - -K (i)- k (3.12)

where Ck is defined for notational convenience as

Ck = (s _-E[ ((ik 0 Zi) - cst(HkP~ 1Hj + k42))) (3.13)

which is a second order function of the innovations with E[Ik] = 0. The correspond-

ing filter equation is

Xkik = Xklk-I + K(')ik + Kk2(Nk (3.14)

The formulas for the gains KO') and Kk(2) result from the requirement for

a minimum variance solution. Using (3.12) the equation for the variance of the a

posteriori density becomes

- E[ik_.i~ k_.] - E[-klk_.i~lKL)T -j

(3.15)
- K jk)Ef•kijk..l1 + Kkl)E[k1K-l)T +]K(Ef k Tk (2)T

K{2Er ]K.Tlv) T +,()t KTkr(2)T

-Kk(
2)E(Cki~k...1 + Kk(2)E(Ckif1Jl + Kk(2)E[k&Cf1A( 2) T*

The gains are then determined from the matrix minimum principal [23] by evaluating

______ trace t P~t)otracetPf )}I 0 = O, = 0. (3.16)

~M I M (2) lll
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Carrying out these operations on (3.15) yields

- Etk j..1jT (~2)ECIE~~] (3.17
K(1) = (E[iklk-l z]- K(')E[Ck•J])E[f'kJi-'-

Kk(') = (E[:Rkjk-1UTJ- Kk(')E~ikUNE[ýk•kT]-1. (.7

It is observed that E[ýk•T] is singular. This is a consequence of the fact that

Ck contains repeated terms. For example, if the dimensionality M of the innovations

vector Ck is 2, then the term (ik(1)ik(2)-E[•k(1)Wk( 2 )]), where i'k(j) is the j'k of ik,

appears twice in Ck. The number of repeated terms is a function of the dimensionality

M of the innovations vector. To avoid this singularity, define the collapsed vector

Ckc such that

4kc TMýk (3.18)

where TM is a matrix of 1's and O's designed to eliminate redundant columns or

rows from Ck. For example if M = 2

TM= 1 0 or 0 1 (3.19)

-00 0 1 0 0 01

Since ýk, does not contain repeated terms, [ýkk] is nonsingular. Let K(2) denote

the collapsed gain associated with replacing ýk with Ckc in (3.17). Solving for K(')

and K() yields

K(-) = (E[*klk 1 .IT] - E[i&.ik-l.k.c] E[(kcýc-' E[CkciT])

x (E[ikiT] - E[ikT] E[ýkck]-' E[ZkciT])-'
(3.20)

K-() = (E[RklkI k.Tj] - E[iklkkT]E-1 E[i.•T]-] Et•T])

x (E[[EckC] - E[cT ]E[iiTk]-' E[EiTkC])-'.
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Equation (3.14) requires that

(2) = K(2)- (3.21)

Using (3.18) in (3.21), K(2) is then obtained from

(2)= K(2)TU (3.22)

where
1 HT] p(2, HT (3.23)

E[:iklk- klk-1

E[5ckIk.lCT] (3 p)( T HT @ HT (3.24)

ElH,,T] - Hk Pk(2)-. H T + R(2) (3.25)

[C ET -T p( 3 ) yT HT®H, + R( 3)T (3.26)E[T] "-I E[CkiTT lk. klk_1 k (3l.26)

E[,T] = HU 0 H,, { -1 9 It (PPk))k )St(P(2) I)T } UT 4 HT

+ R(4) - cst(Rk2)) c kt(Rt2))r

+ H1®Im Pr_ R(2) HHTgIm "(3.27)

+-T T" Hk (9 In. E[iklk-I (9 vk (9 vTk O® xjkiI_ Im (9H

+ Im0HkR(2) P(2) II 0 HT
-T (T9 Hk k k].

" Im 0 Hk E[vk (&il 1,,... Ox, Ik-_ ®VrI 01m

It can easily be shown that if all 3Yd moments are zero then K(2) = 0 and Kk4)

reduces to the gain for the standard Kalman filter.

Using the state model (3.1) the prediction equation becomes

*kIk-I = &-li*&-Ill-1- (3.28)
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The corresponding prediction error from (3.6) is given by

Xk~kk-1 --= $-1Xk-1Ik-1 + Wk-"1  (3.29)

The prediction moments are then be evaluated as

kIk-i= E Xp1 kij + (2) (3.30)

'k-p(2)k tT'. + Q(2)..

p@2 -T
k(k- l ) - k _1 lk-1 (3.31)

= $k-1 0O'k-I k(Ilk-I k-1I + I

p(4I) - E[(:R02 -(@20 T

= ~~&p(40 @T- 0~~~- IOTk_ + Q(4)
+ bk-I 013 k-I k-11- k-Q1  ki I

+ Ok-I 0 1,k- cst(P(2_)lk_ ) cst(Qk-)T

C~t~p(2 ) C~(3.32))

+ *Ok-1 0 In E[i:k.lk-.l 0 w-I. ® Wk- 1 ® XR-1Ik-l] I _

In+O~k-I E[lk-1 (9)kk k-lEw. ®lk-1 0 Wk-11 kT-1 01I

+ cst(Q(l) cst(P(2) _)T OT_, ® ,T

+ In ® •k- k -i_-0, Ik2, _, n. 4_

where I. is an n-dimensional identity matrix. Similarly, the moments of the

filter error can be evaluated using equation (3.12). Let

Ak - (I4 - K(')Hk) (3.33)
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The filter variance becomes

(2) AT K)R (2)K(+ T

K (2)K Hk Hk p(3 4T- Ak •(3) T Hf OHf K( 2)T

+ K 2 ) R 3) K(1)T + K(1) R() T K(2)T
" K() k H fp(4) _ C~ ~(2) Ctp(2)_JT HT0kT K (2)T

+I 2) H Hk0 H& kL-1 -cst(Pk k)cst(PkL.-.)T} HT® H T

"+ K(2) {R(4) - cst(R(2))cst(R(2))T} K(2) T

"+ K(2) Hk 1,. P(2) 0 R (2) HT 0 1m K2)T
2 DV T - T K(2)T

K+(2) Ilk 0 Im E[iRk- 0 vk 0 vk 0 xk..-,] Im 0 Hf

"+ K2) 1.f0Hk R(2)j 0 •2)_ IM&HT K(2)T

"+ K(2) Im 0 Hk E[Vk 0 i:kk.-I 0 -TkT..l 0 vT] HT 0 Im (2) Tk X~k-10 V~ kT(0 I Kk(3.34)

It is observed that the equation for the n"' filter error moment requires the

availability of prediction and measurement error moments of order 2n. This is a

consequence of the fact that the fiter error given by (3.12) is a second order function

of the innovations. Since only the prediction order moments up to 4 th order are

propagated, the equations for the 3Yd and 41'" order filter moments are truncated so

that they contain only 3 rd and 41A order functions of the prediction and measurement

error moments. An alternative would be to completely expand the 3 rd and 41h

order filter moments in terms of all 2n prediction and measurement error moments

and approximate the higher moments using suitable functions of the 2 "d through

4th moments. The vector expansion becomes very unwieldy and is not included

here. However, Section 3.5 contains the scalar expansions. Simulation experiments

presented in Section 3.7 compare the truncated models to the nontruncated models

which use higher order moment approximation.
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With this restriction the 3 Td order filter moment becomes

Ak 0 Ak p(3) 0 AT - K 0 K) R(3)K(l) T=A Ak •ki-I k -- k =k k

SAk 0 (0)~ Hk 0 Hk) f SCSt(p(g ) _ 2) 0 t(p(2)} ATA (k()H /r){ stkit-l) ki-1 @ kik-d}A
jp(4) _ t~(2) Ctp(2) T} K(2)

-Ak 0 Ak k-1 -cst(P~ -1i)cst(Pki)T} HT 0 Hf 4 2T

- (K(2) Hk 0 Hk) 0 Ak {scst(P)_) cst(p(2 ) 0 p(2) ATk k ~-i sPki-1) k 1k-I"k

-K(1 0 K (2){scst(R( 4)) - R cst(R22))} K1) T

- K 0) 0 K(1) fR(4 ) - cst(4() )cst(R(2 ))T K(2) T

-- 09 K('){scst(R()) - cst(R1)) 0 R 2 ) Ki1)T

+ Ak 0 (K(2) Hk 0 Im) cst(p(2) 0 R( 2) KI)T

+ Ak 0(K(2) Im 0 Hk) E[Ik-1 0 v (0) Vk 0 *kIk-1 K1K')T

+ Ak 0 i ' 0 Rp2 ) H( T IM (42) T (3.35)

-T+1K1)0K(142) Hk 0 I.) E[+) 0 *k1k- 0 Xkt-. 0 "k1 AT

+141')0•(142) Im 0 Hk) ¢•t(Ri 2~)) 0P<2 AT
k T , i-

+ k(91) K Ak E[vk 0 -T k-1 0 Vk0 ] H 0 IT K4 2)T

kAk p(2 ) Im 0 Hk Xk()k

+ K(1)2) H(•K ® 0t(R(K) AT

+ (142) I 0 Ik)@ K0) E[vk 0 Xkk.-1 O 0 vklAT

+ (142) Hk OlIn) 0 Ak E[iV1- ® X 0 V® ® 0 kIHkT 9 1.K)T
+K(1i) A (2)®A0 R(2)- t (2) TK~

+ (K(2) Im 0 Hk) 9 K(1 p(2 ) 0 cst(P (2) ) A)T

The fourth order moment expansion is truncated so that it includes only
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functions of 49h order prediction and measurement error moments.

p(4 - ® E[i 2) (Xk0) T

= A kAk P(4) AT 0 AT

"+ Ak0 0 ()p( AR T 0K(1)T
k AtAt"•tk-1 k k

"+ Ak 09 Ak CSt(p( 2) cst(R (2))T K(1) T (9 K(I) T

"+ Ak 0 K(1 ) E[:iklk.1 0 OV0 0 ~-T Kl)rT &AT (3.36)

"+ K(1) ® Ak E[vk 0 Tk.I 0 *kT- 0 II AT K )Tk k-I k Okt1•v T•Kk(1)

+ 01) 1) cst(R2)) CSt(p(2) T AT OAT

+ K 1)Ak R (2) 0p2)_ K(1) T OAT

+ K(¶1) 0K(¶1 ) R(4 ) K (1) T 0 K1) T

The filter equations (3.14, 3.34-3.36), gain equations (3.20), and prediction

equations (3.28, 3.30-3.32) constitute the discrete filter relations for non-Gaussian

noise with arbitrary asymmetrical distributions. These relations are suboptimal in

that they do not completely characterize the noise distributions since they use only

the first four moments of the distributions.

3.3 Non-Gaussian Filtering for Symmetrical Distributions

The derivation for the non-Gaussian filter for symmetrical distributions fol-

lows the same general procedure as in the previous section. If the errors are assumed

to have only even moments, then it can be shown that K(i) = 0 for i = 0, 2,4, ---

[5]. The truncated non-Gaussian filter for symmetrical distributions is obtained by

letting I = 3 in equation (3.9) and obtain the filter error

*ktk = Xkkl-1 - K(1)k - K(3)(i?8). (3.37)
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with corresponding filter equation

xklk = xkI.K-1 + )z + Kg(3) 03" (3.38)

The estimator is required to be unbiased. By definition all odd moments of the

innovations are zero. Since Elkkklk-11 = 0, the expected value of the estimation

error given in (3.37) is zero. For notational convenience let

k = Zk (3.39)

with E&k] = 0.

The formulas for the gains K(1) and K(3) result from the requirement for

a minimum variance solution. The variance of the a posteriori density function is

given by

=- E[Rklk k l]1

-TT 1()T ]K(3)

K( 1)E[ •ik~Tk-11 + K(l )E]ik flK (1)T + KEg)E[ik&T]K(
3)T

- K 3)E[&k-kTl] + K(3)E[&kiT]K(I)T + K ()E[&k&TlK(3) T

From the matrix minimum principal [23]
efp_(2)_ Otrace {P }

Octracel) { = 0, = 0. (3.41)

Carrying out these operations on (3.40)

K(') = (E[ikklk-..T.] - K(3)E[&kiT]) x Ei~kiTf]-'
(3.42)

K( ) = (E[iklk&] -- KK) E& ) x E[&k&T]-.
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Similar to the E[Cký[T for the asymmetric filter, it is observed that E[&k&TI is

singular. A collapsed vector &kc is defined such that

&ký -UM&k (3.43)

where UM is a matrix of l's and O's designed to extract only one of each term from

&k. Since &k, does not contain repeated terms, [,kj is nonsingular. Let Kk3

denote the collapsed gain associated with replacing &k with &k, in (3.42). Solving

for K(') and K (3) yields

K(= (E[iklk _. /] - E[ ~kI &T I ~&&T -1 ')kE[ k]klac] Eackc] E[&kc k]

x T(Ef]ikI - Efk&Toj E[&kc&To' E[&kik T)D
(3.44)

K(k) = (E[ikjk..l&Tc - E[*Ik.lkliTj] E[ik.Tk]- 1 E[.k&Tc])

x (E[&kc&Tcl - E[&kci.]E[iki- 1 E[' &T])-1.

Equation (3.38) requires that

K( 3 )&K (,- (3.45)

-- " =kc akc

Using (3.43) in (3.45), K(3) is then obtained from

(3) - K (3) UM. (3.46)
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Define the parameters

Bkj = Hk (9Hk®Hk

Bk'2 =Hk®0Hk®Ivn

Bk3 =Hk (9Im®Hk

Bk4 = Hk®0IM IM
(3.47)

B k5 = Im®0Hk Hk

Bk6 = Im 0Hk ®Im

Bk7 =1m 01Im Hk

Bk8 =Im 0Im 0Im

The expectations given in equation (3.44) become

E[i=-ik k-Ip,2) H T (3.48)

=SCSt(p(4))TB T + p()0 cst(14(2 ))T BT

+ V -T T +va(R(2j 0 p()Okk....1 0 Xklkkl ® Vk ] Bk6 +i- Bk(R9T

(3.49)

E[i2ik4 = H, p(2 HT + R42) (.0

E[ik&Tk] = E&

= HkSs~t(p~l )T BT + p()® cst(R ( 2))T BT

+Hk E[VT kk.. O-T T..I vTk6 + cst(2))T 0 p(2)B

+ cst(P )k R142) B' + E[i*..l®vj T0XkT ~

+ 0 st(P.. 1  T + scst(144 ))T

(3.51)
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E[&k&Tk] = Bk_ Pk"' +B~cs(,j 4 .) k s(R 2~)B

+ Bk6 Ck1 B + Bk4SCSt(Rp 2 ) ®s 0cst(2)T1

+ k B&2 P- ®R R)B +Bk C 2

+ Bk Ckl BIT + B k7 ct(PR2 )T® -1 scst144 )

+Bk2 CkB + Bk 25 B + Bk 5Ck 6 B B 5 CkB

~~~2+ Bk~ss(g ..1)0cst(p4 2) )TB (& Bcs P,¶(4).. 1

+ Bk5RC23 0lk PkB +2~ss(4))0~(~)

+ Bk2Ck 2Bk + Bk 4 CkB 3B~+Bk 6 Ck 4Bk + Bk 7 Ck7 k3

+ ~ps(4~)) 0 Cst(P~k2 )TBk (2 1k (& Rk6 B Bk

+ k6Ck8 BkT + B k 7 Rk9kT +0 kCI~5+B3klk

+Bk5ctP ~) 0 Bkcsst(RR))T4) + BB 1 B

"+ Bk5 cst(R~k2))T ® Scst(pk(4.)B +T k ~~ 6 B

The ~ ~ IkI)k pamtrCkar odrfntosoexcTainoftemaue
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ment and prediction errors. They are defined by

E~ijk.. 0 & Xikl -T -T

Ck, = [Vk 0:1k-I kk-I (9Xk~k- 0 XkIk-1(9l k

-T -T
Ck2 = E[vkkl- 0 Vkk10 (Dkk-Ik 09 Xkjk-I ®9 Xk~k- 0 V~k]

Ck = E[V *kjk-.10£~..I ®Dkl- ® ®T -T 0 V T-I
k3 ~XkIk- OXkk- k T

T-T TT

Cs= E[Vkki- 0 Vkk.l 0 Xkjk-I 0S XkIk-l 0 Vk 0 X'kk-1]

-TT 
T

C6= ElVk & 1- Oil- 0 XkIk.... 0 Vk 0 XkIk.4 0v1

C7= EI[Vk 0 Vk 09V Xkjk-1 0 T ~ -

OkIjT 0 VT0 VTj

(3.53)

Cko= E[*jklk- 0 &:kl 0 V 0 0 0kk- kik-1I

CkI, = E[*Rkik- 0 Vk 0ij- v&V 0 0 -l- 0 XkT] 1

= E~& 0*~p~0 v 0 vj 0 T 0 vTl

Ck1 2 = Efvkkk 9fkj- 0 v ~ kk- ®9 Vkp 0j- vT ®*kT

Gig16 = E(*RkIgig.. 09 Vi 0 Vig 09 0k kv 0 V

Gig7 =E~ig0~j1 o~oT ®D:T T*jii

Gig14 = E[iVik 0 vkkIg 0 icVig 0 Vkj ko- 0 Vk'

The~~~~~~~ reann okivle vlainof thepeito ro oetn



47

the filter error moments. The prediction error, ik.-.1 is given by (3.29). The 2 "d and

4 th prediction moments are generated from the prediction errors. These moments
are expressed as p E kI l (354)

- ~k-1 P l- -Tk kI +
= E[(p(2) T Q34(2)

- ~-i ~k1 P~I~ 1 -Ij- 0 k-1 + -
p(4)-02 -(:R2 T

" * -_ 0 1 p(2 ) Q(Q 2t ) 4t (Q -) )T

""t 2 ) O -T k(3 .5 5 )

"+ Ok-i 0 (S In E[ik._..lk1 0 wT_1 0 Wk_ .( -ltk-.] I,) k-_

I 0 •tk-1 E[Wk-. 0 Xk-.Ik-1 0 xk-.4 1-ki 0 wk-] 0T 01 k

"+ cst(Q(2) cst(Pk(2) k)T OTI 0,@T

+ s ~-1Q(2) ® p(2) I O

Similarly, using equation (3.37) the moments of the filter error can be eval-

uated. Let

Ak - (I. - K1)H4) (3.56)
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Then the filter variance becomes
p2) = E(ik Ikx•jT

_ k p(2 AT + ,(')R(2)K-l) T

((4) )TBTK (3) T - KK) 3)B&1SCSt(p(4))ATAkscst(P k~ k-I KkiB• k34 T ~-

A p 1(2) ( cst(Rk2))TBTK (3) T - K (3)Bk4cst(R (2)) p(2) AT_ j- _ k4 kr 4 k lk-, •k
[:T (:T DT /,(3)

AkE(*cj,, 1 0 vk ® v T 0 Vk klO&1 B6K)kT
3 T

K~3)Bk6E[*Rklk,1 0 Vk 0 vT ® ikik-I]ATk
(2 D (2) T g,(3) T _(3)B p(2) s(P(2)AT

- Akcst(R(2) k)T j® k-IB -k )Bk7 P 1 0 cst(Rk- k

+ ( K 1)CSt(p(2) )T R (2)BT K•-( 3) T + K 3)B. R(2) 0 cstrP(2) )K(1) TS•k "••kit-l) @ k k2 Xk k t2 k kit-l/ k

+ K()E[T0 :X -1, ®-T DlKT(3)T
(3-T ) ] Tkl

+KO)B 3E[vk 0 X&klk- 1 ®0 Xk4k-l ®V

"+K(1)(2) _0 cst(2) )TBT K-(3) T + K(3)B 5 cst(p(2) R R(2)K(1) T+ k "k @ Ak~k-) •ks5k +a k 5 k kit-l) k -k

", K-()scst(Rj4))TK,(3) T + K (3)Sst t(4))K(l) Tk k kk k k(3.57)

Equation (3.37) dictates that the filter variance should include 6 'h order func-

tions of the prediction and measurement error moments. These higher order terms

are not included in the filter variance expression, just as all 51h and higher order

terms are disregarded in the development of the asymmetrical filter. By doing so

it is implicitly assumed that the contributions from these higher order terms are

negligible. As noted previously, if these terms were included in the derivation of the

filter moments it would necessitate some approximation procedure for these high

order prediction and measurement moments, since only 2`1 and 4th order prediction

moments are propagated. Similarly the 4"' order filter moment requires the avail-

ability of 6'h, 8'h, 10"%, and 12 th order prediction and measurement error moments.

Again the 41h order expansion is truncated to include only 4th order functions of the
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prediction and measurement errors. The resulting moment equation becomes

p(4) [(-k 2 -02 T
k - E[(*k) MID IT

Ak 0 Akp(4) AT9AT

+ Ak0I4 1 k-P1 kR 4k l)" Ajt K(1 p(2) R(2)AT ( K (1) T

"+ Ak 0 Ak cst(P,(g) cst(R(2))T K(1) T K (,) T

+ Ak 0 Ki1) E[ikIk.._ 0 vTo 0 Vk 0 X ll'T K(I)T® Ak (3.58)

-TT TK(+ ) 0 Ak E[Vk 00 k ®K()
kXkjk-1 0 Xklk-1 (9 vTk]AT E1Y

"+ K 01) K(1) cst(R(2) ) cst(P(2) T T 0T

"+ K(')0Ak R(2 ) 0g p(2 K(1) T 4
+ KI1 ) 0 K(') R (4) K~)T0 K(J1)T

The filter equations (3.38, 3.57, 3.58), gain equations (3.44), and prediction

equations (3.28, 3.54, 3.55) constitute the discrete filter relations for non-Gaussian

noise with arbitrary symmetrical distributions. Similar to the asymmetrical filter,

these relations are suboptimal in that they do not completely characterize the noise

distributions since they make use of only the first four moments of the distributions.

3.4 Nonlinear Non-Gaussian Filtering

It is straightforward to extend the high order filters that have been derived for

linear plant and measurement models to nonlinear plant and nonlinear measurement

equations in non-Gaussian noise. Using linearized models based on 1" order Taylor

series expansions, replace Ok-1 and Hk in the linear model non-Gaussian filters with

ok = '(x I

F t= k 1xk=fk-1k-1

Hk = Ohk--(xk .~i,_
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where fk(Xk) and hk(xk) are the system and measurement nonlinearities. The equa-

tions for the nonlinear non-Gaussian filter have the same form as those for the linear

non-Gaussian filter. However the nonlinear filter requires the computation of Fk and

Hk at every iteration.

Likewise, the locally iterated Kalman filter, which is discussed in Section

2.4.3, can be obtained from the non-Gaussian filter equations. The locally iterated

non-Gaussian filter requires the computation of all the filtered estimates, all the

gains, and all the moments of the a posteriori density function on every iteration in

each step in the filtering process.

3.5 Non-Gaussian Filters for Scalar Models

In this section the scalar equations for the symmetrical and asymmetrical

filters are presented. It is shown that these fiters reduce to the Kalman filter

equations for the special case of Gaussian noise. In contrast to the development of

the vector-based filter equations in which the equations are truncated in order to

reduce the filter complexity, the filter equations for the scalar models are derived

without truncation.

The scalar state and measurement equations are given by

Zk = Ok-lXkI 1 + Wk_1

(3.59)
Zk = hkXk + Vk

The predicted estimate is ikik-1 = Ok-1zk - -Ik1 and the prediction error

Xkik-I = Xk - iklk-I is given by

41kk-1 = Ok-lik-lik-1 + wk- 1 (3.60)
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3.5.1 Scalar Asymmetrical Filter

The scalar equations for the asymmetrical filter are presented in this section.

These equations have the same form as the vector equations given previously with

the exception that the moment equations are not truncated. When the measurement

noise, process noise, or initial estimation error has asymmetrical distributions the

filter equation for the scalar model is obtained from (3.14)

4kgk = Xk4k-1 + k(1).k + k(2)C, (3.61)

where

= - hkP•)_1 - r2) (3.62)

The filter error 41k = X- hkk becomes

Xklk = Z•k (1) - k~klk - &(2) (3.63)

The scalar filter gains (3.20) become

k(1) E[•klk-l~k]E[ai] - E[klk-.Iak]E[ikCtk]
=E1]EIa] J2

k] - E[kak ] (3.64)
k(2) E[•klk-IIaE[Z-k2] - E[•k-k]iE[k2 f]=k E[a2]E[:-2] - Ell'kay]2

S.. .. |k



52

where

h (2)

E[akik] = h3k-i + r "-(3) (3.65)

( al 4) () 4 (4) 2 (2) (2) (2) 4)

k -1-k kk-1 + i kPkik_1 + •+k .lk-1 - (3.68)

The scalar versions of the prediction moments obtained from (3.30- 3.32) aLe

e given by

k(2) -2(2) - k (2) (3.66)Pkik- I -- Ik- -

p(3) = -03~ k- (3 .(3) (.7
kikk-1 -+ -lk-1 (3.7)

((4) = i4 2(4) 2 (2) (2) (
Pl-1 = *k-I k-Ik-1 + 60k-l -l a k-plk-1 + q-i (3.68)

The 2nd oment p(2) prd

The nd omet •klk = EX~k] can be partitioned into 2"",3r• and 4th'

order components of the measurement and prediction moments. Let

p(2) ..(2) ,(2) ,(2) (3.69)Pklk = Pkjk2 -+ pklk3 +b Pkk4

whrep(2) consists of Ohk order moments of the measurement and prediction error.weeklki

The ().aegvnby

p(2) 2- a(2_) -+-rk(1)12r (2) (3.70)
Pklk2 = kjj- k Jk

(k2) = 2k(')k (2)r (3) -"2ak k(2) h2-(3) (3.71)
Pik3 k k k - kk kPilk-1
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(2 [kk(2)] (h 4 (4) 1  [P( 2 ) ]2) + 4h 2p(2 r (2 ) - [r (2)]2 + r ()) (3.72)

where ak = 1 - hkk(1).

The 3rd moment p(3) ph

The 3rd moment l -- E[i]Ik] can be partitioned into P, 4h, 5th, and W

order components of the measurement and prediction moments. Let

(3) ,(3) _(3) .(3) (30) .3
Plk = Pk3 + Pijk4 + Pjlk5 + PkIk6 (3.73)

where (3k) consists of ilk order components of the measurement and prediction

moments. The P() are given by

(3) 3 (3) k(1)3(3)

pkjk 3  = -kPkI 1 - tk irk 
(. )

Pi4= alk•2)hi (3[p~t 2)_] - 3p~ •)_ + tk~kI)]2k( 2)(3[r(2)]2 - 3r(4))
(3.75)

+ 1 2 a -k ( ')k (2 ) h p-(2 ) r(2 )
+ k k kt'klk--1 k

(3) -ak[k(
2)12 (h4(3pS) - (2) 6 (3) 2•12_(3) (.2)Pilk5 =a[k k ((3klk_l -6 opiklIkjlk-1)l + l1,,k~illk-r

+ 12h-() r( + k(3 )r)( 2)N+ 12h)-2) 3 (2) (3.76)

,• _(2) .(3) ag(2)r(3) _3(5))
12h ) 1 r(3 + 642) ,43 - 3r~)-- LkPikl~k - •k

Pkk 6  k k kk) [(2)3 (2)1 + 3 (2) ,,(4) (6). (

+ h4(12[p(2)_]22r (2) - 12p (4,)_,r(2)) - 20hp3 _() (3) (3.77)
k k~k-I k k~k-I kkilk-Irk (.7h2(1) (2)212r) (2[r)13 r(2)r(4) r(6))

+hkPlk- 1 (12[rk 12( - )) - 2[r + 3r )rk --

The 4thmoment(4) =Ei

The 4th moment p, = E[{ 1k] can be partitioned into 4th, 5 th, .-- , 8 th order

components of the measurements and prediction moments. Let

(4) (4) (4) (4) (4) (4)
Pkgk = N& + PAlA5 + Pkjk6 + Pikj7 +Pl8(3.78)
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where p,(4) consists of it" order components of the measurement and prediction

(4). aegvnbmoments. The Pkare given by

(4) 4a4(4) 2 1)2p(2) (2) + (1)]4rr(4) (3.79)

pk5k4 = 4ka'lk-1 "+- 6- [k( lp-r + [k )

p(4) 4 3k(2)h2 (2) (3) (2(5) %klts5 k'a k k kjtk-lrkjk-I -- klk-11

"_12a2)k( 2) (2hp (3) _(2) +(2) r((3))+xtk k "k • Pilk--lri "Pilk-I k (380

"12ark~]2k(2) (-h 2-(3) r)()-(2) r(3))k•at k k--t'lk-Ir t - tPilk-I

"+ 4[k(1)13k(
2)r()k k r(2)k ()

(4) a 2) 2 (6h4 ([P(2) 13 - 12p(2) P(4) + (6)Pitk6 - akk• k (6 kPlk-1] - klk-l klk-1 -i-plk 1)

h 2_(4) r (2) + 24h-.(3) r.(3 ) + 6p (2) (r 4) - [r(2)12 ))
+ [k •")Ek2 Pil2-( +pt.-I 2 + 2 L kjlk- 3

2() (2)j2 ( (2) (2) ]2 _ (4) 7 2 _()) (6)
+ k 24 hk k k..lr k + i klk- k )(3.81)- -( 2 ) ( r( ) 2 -r 4 )+4" t hkpik -1kk

+ rk(1)12[k (2)12 (6h 4 ((4) r (2) _ r,(2) 12 r(2)) + ,'4h 3 (3) r(3)
+tk Jtk k kPilk-I k L-klk-lJ k k+•t/klk-1 k

24h 2 (2) r (4 + 6[r (2)]3-_ 12r (2)r(4)k + 6r (6))
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p(4) (2)3 h 6 (r 2) 8p2 r (3) 12 (2) (8) --4 -(7)klk7 -- ak k ] (hk(-2[k-1] Pkl-I ÷ Ptij-IPklk-I Pik t1)

4 _(2) (3 ) ((2) . (5+ r(2)(4 3 (2) 2 (3) 2,4. ) (
"k,°l-klk- l" - 48k ) r + h r(48 r -8 •V(4) _(3)

_Irk4)1 ~ 2 48kjk..I Pk k Irkk- k ki
(--(2)2-6(4 h- (2) (48r (2)r(3) - 24r (5)))

+ p 4_(60[r(2)]24 3 60r p.. 11i{)) + .rl_1 , (O~ 4f4)k(1)rk(2)]3(h5 (4_(5) r(2) -4 (2) (3) (2))

+k k k Plk-1  k -Plk-r lk-1 k

(60p,,(4) r.(3) - , 6[(2)_] r2,(3)) + h3_(3) (80r.(4,) -48[,r(2)12)
k "k•""k-I k -- k °lt k-l k "k~k-

+ -2(2) (48rk (5 48r(2) (3) + 12[(2)]2r (3)1 (2)r(S)+ 4r(7))

(3.82)

p(4) k(2 )14 (h8( [,,(2) ],4 + 6[P(2) 12P(4) -4 4( (6) .(8) +klAks - k .k k, : k-aLAI-J+ wkj-lJ til-1 -'ilk-lAlk-1 +I ekl-11

+h (2)( ,]3r(•2)_48(2) -(4) ,(2) ,,(6) ,(2))
+ h-(241P' 1I k - 48 -•l- + 24pklr...-42 )

+ h5(5-(5) r(3) _ 8Op(2) _(3) r(3)k •Pilk-1 k Pk~k-lpklk1k Ik

+h([(2) 2(54[ 2)12 _ 54 4)) + P4)(70r(4 ) - 54[r( 2)]2))
k] k~lkk-lJ kLk ri -- Tkjk-I t-

+ h3,.) 1.(6r(5) - 80r(2)r(3)) + h2p2 (24[r(2) 3 - 48r(2)r(4) + 24r6))krilk-•• - k k k k+"k'tk-I•' 2rt)

3[r(2)14 + 6[rr2)]2r4) - (2)r (6) + (8))
-- -- rk k t

(3.83)

3.5.1.1 Special Case - Symmetrical Distributions

In the case where the initial estimation error, the measurement noise, and the
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process noise all have symmetrical distributions the expectations in (3.59) reduce to
h (2)

E[ikjk-Iik] = hkPklk-I

E[akIklk-1] = 0

E[Ckik] = 0 (3.84)

S= + (2)

E[tj= - M,_(2) L12 + h4_() + 4h2r(2) (2) - [r(2)12 + r(4)"k -tlklkk-J k "k~kl-1 k k t klk-1 k k

Substituting into (3.58) the filter gains become

kW)~ E(ifk-ik)..1k E[Z-k]
(3.85)

(2) 0

It is observed that kV) is now the standard Kalman filter gain. With k(2) = 0 the

3 rd and 4 th order components of the 2"d filter moment (3.69) axe zero. Thus there

is no need to compute 3 'd and higher order filter moments. The resulting equations

axe the standard Kalman filter equations for linear systems.

3.5.2 Scalar Symmetrical Filter

The scalar filter equations for the symmetrical non-Gaussian are obtained

in the same manner as the vector equations with the exception that the moment

equations are not truncated. From (3.38) the filter equation becomes

4~k = :ikl-Ik + k k+ k ( 3)'z3 (3.86)

The filter error 41k = Xk - !klk becomes

4k1k = Z!kk-1 - - k ()(i3) (3.87)



57

The scalar filter gains are obtained from (3.44). They are given by

= E[kjk-iikE[-]E[k - E[ikjkAi E[Z4
W) =

k E[~k ik~IE(ik~ - E1~ lkI 1 (3.88)
(3S) E[ijk-li•]Epz2]- E~zkjk-1ik]E[ik]

= E[-iE[]- E[i4] 2

where
h (2)

E~xklk-1z4] = hk~klk-1

Ep~] = h 2p(2) + r (2)

3hP-lk r( +-( (3.89)

E[4] = h4 (4) +6h2(2)(2) r(4)"k 'kilk-I "krk eklk-I k

iE [:6 6 ( )4 _(2) ,(4) , .2 _(4) .(2) (•6)
k[~ = h lI+ 15hkrk 2 p Pkk + 15hkrk4 Pk~k- + r

The prediction moments are scalar versions of (3.54) and (3.55)

(2) 2 ( + (2)
Pilk-I =-- 01•-lP(-,k-i -+- q(I (3.90)

(4) 44 P(4) +() (2)(39

Pklk-I k-I k-Ilk-1 -" 6k-1ik-IlPk-Ilk-1 + q(- (3.91)

The filter variance (k2 = E[= k] can he partitioned into 2"d, 4V, and 6 jI

order components of the measurement and prediction moments. Let

(2) =(2) (2) +(2) (-2Pik=Pj2+ (3.92) k~k

where (2) consists of Oth order components of the measurement and prediction

moments. The p(ji. are given by
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(2) = 2(2) + [012 (2) (393)Pklk2 (I 2r2

(2) _ L_(3) (-2h3 (4) 6k (2) (2) k(1)k (3) 26h2_(2) r(2) (4)

klk 4 - ak~k k k -lk-1 kPk6h k-1 rk kk( 6 /zkpk- 17k + 2 rk ))

(3.94)

(2)1h4(4) (2) + 1) 2 (2) .(4) + r(6)) (3.95)
kI(26  [kk)(hepk_1 + k, I k l l 2-I k + •h"kgklr-Ik k

where ak 1 - hkk()k.

The 4th moment p() = Et JkI can be partitioned into 4 'h, 6 th,.-. , 12"h order

components of the measurements and prediction moments. Let

p(4) .(4) __(4) .(4) .(4) +(4) (.6
Pi = Pilk4 + Pilka + rtlk8 + PkIklo + 2 (3.96)

where P (4) consists of it' order components of the measurement and prediction
moments. The p()i are given by

P =j)4 = akPi-1 + 6aI[k(l)]2P ..- lrj2 ) + [k(l)r (3.97)

pl6-kk k~l- l-(4) _ a k(3) (-4h3_(6) - 12h--(4) r (2))il6= tk'4 t--( 4htPklt-I glkk-

+a al1)k() (36h 2 (_4)r()+ 12p(2) r_(4))
+ k k) +- k Pk( 3 .9 8 )

ak-k(l)12 k(3) ( 12 3 (4) r(2) - _(2) (4))

k k k- kI-1 k -- °ktk 1k.t-1 t

+k(1)13k()(2h2 (2) r(4) (6))
++ k P +4r)

k akk kkk(4) 2 (3)]2 (6hp()r (2) + 9 2(4) r9(4) + (2) r6(6))

+ akk(k)[k(I3)12(--72hp (6)Ir (2) - 240h3(4L)_r (4) - 72hp (2i)( 6))

[k( )12k(3)12(6h6_(6) r(2) + 90h4 P.(4) _.r(4) +. 0 h 2k2) (6) 6r(8))

+tk tk k-I k -k-tt -- ,tPtkjk-I t

(3.99)
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p (4 ) _ rk (3 )]3 t ( - 4 9 _(10 ) 1 A /7 _(8 ) .(2 )

kkj0 " akk k kkk( J-IPk1 - "44•1•pklkt'.klrk

- 50(6) (") r (4) - h ) r(") -3h (2) (8)
- kPlkl -k 3 kPlk-1 k -- hkPkk 1 (1k 0

+ k)rk(3)13(36h8 (8) r(2) 36h6( 6) r(4) + A5 4_(4) (6)
+k A k j •o k•kklk-I k + kp3lk-I k +t-O*I'kPklk- Ik

S(8) (10o))
+144h 2j (2) 1r(' + 4 r(kOSllkPklkl- k kJr

(4) .(3)14 12_(12) ,hO_(+) (2) (4)k~k12 =tk J•' k-1- k Pklk-l k k] "•'k~kl-k

+ 2h6_(6) r(6) 4950h_(4) r(8) + 2(2) + (12)) (3.101)
+24h k-'pklj-1 -- +k Pk66h -1p k +r)k

3.5.2.1 Special Case - Gaussian Noise

In the case where the process noise, the measurement noise, and the initial

conditions have a Gaussian distribution, the symmetrical filter equations reduce to

the standard Kalman filter equations.

If the prediction error ikjk-I is Gaussian, the central moments of the error

can be expressed in terms of the variance ) as

E [in (1 x 3 X .- (n - 1))P-l, _i/2 n even
E[kI1 =0 n odd (3.102)
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The expectations in (3.89) now become
h (2)

E[iklk-l=k]= Plk-I

E2] =h7 2 + -(2)

E[klk-Z_31= 3h 3_(2) 2 + r(2) (2)"-- °kPilk-1 • n k Piklk-1

= 3Ef~kjk..1ik]E kp2

Ep4] = 3htp(2 _ 2 + 6h2r(2) (2) + 3r(2) 2
k 1k-1 k Pkjk-1 k

=-3E[kp21

E[p] = 15hp6()_ 3 + 45h~r(2)p(2)_ 2 + 45h2 (2) 2p(2) +51 (2)2

- 15E[ k 3

(3.103)

Substituting these expressions into (3.88) the gains become

W4)= E[ik 1k..IkJ E[p]

(3.104)
k(3) =0

k1) is now the gain for the standard Kalman Filter. It is observed that 401 and

higher order moments are no longer required for the gain equations. Thus it is not

necessary to propagate 4 th order prediction and filter moments. In addition, since

k(3) = 0, the 49" and higher order moment terms in the 2 "d moment equation (3.92)

vanish and this equation reduces to the filter moment equation for the standard

Kalman filter.

3.6 Approximation of Prediction Moments

Since the filter equation (3.61) contains quadratic terms involving the in-

novations, the nth order filter moment is a function of prediction moments up to
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order 2n. Similarly, since the filter equation (3.86) contains 3rd order functions of

the innovations, filter moments of order n are functions of prediction moments up

to order 3n. This problem cannot be solved by simply computing the high order

prediction moments needed in the filter moment equations, since these high order

prediction moments require the availability of filter moments of the same order.

One method to deal with this problem is to truncate the filter moment equa-

tions, including only 4Vh and lower order prediction moments. This was done in the

derivation of the vector-based non-Gaussian filter equations. Another approach is

to approximate the higher order prediction moments. Using this approach 5"' and

higher order moments are approximated as functions of the 2 nd, 3 rd, and 4'k order

prediction moments.

Two approximations are considered. The first approximation was stated by

Rao and Yar [27]. For symmetrical distributions they approximate higher than 4 "h

order moments of a random variable vk using the relation

r (n - 1) E[v2] E[v*- 2] n even
E[v"] = (3.105)

I.0 n odd

This formul is exact if vk has a Gaussian distribution.

Another approximation is described in [74], pp. 246-258. This expansion,

called the Gram-Charlier series, approximates the density of a non-Gaussian dis-

tribution in terms of a Gaussian function, its derivatives, and the moments of the

original density function.

Let x be a random variable with mean p and variance a, and arbitrary density

function w(z). Let y be the normalized random variable with nth moment v. defined
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by

, or 
(3.106)

If W(y) represents a Gaussian density function, the Gram-Charlier series approxi-

mation for the density function w(y) is given by

to(y) = w(y) (1 - a3H3(Y) + a4H4(Y) - aSH5(Y) + .. + (-1)"H,(Y) +"")

where H. (y) are the Hermite polynomials expressed as

Hn+,(y) = yHg(y) - nH,-l(y) (3.107)

with Ho(y) = 1, HI(y) = y. The coefficients a. are computed from the Hermite

polynomials and the density w(y) using

a. = 00 w(y)H,,(y)dy (3.108)

It is pointed out in [74] that when a limited number of coefficients are available

specific groupings of coefficients are appropriate. In particular, the Edgeworth series

involves the groupings
0, 3

0, 3, 4, 6
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The coefficients corresponding to terms 0, 3, 4, and 6 are

ao= 1

a3 = -V3/3!

a4 = (4- 3)/4!

a6 = (v6 - 15v4 + 30)/6!

The central moments of the random variable z are then evaluated using

E[(x - p)"] = f0 y)"w(y)dy (3.109)

3.7 Experimental Evaluation of the Non-Gaussian Filters

The objective of this section is to determine the performance of the approxi-

mate filters described in this chapter. In order to measure performance it is desirable

to compare these filters to optimal estimators in non-Gaussian noise. Unfortunately,

optimal estimators do not exist for arbitrary probability distributions. However, an

optimal estimator is available for distributions consisting of Gaussian sums. Let the

measurement noise, process noise, and initial estimation error be represented as a

sum of I Gaussian distributions with aggregate density function

I
p(z) = i eN(z - ai, B,) (3.110)

where

Lei = 1, Ci >_ 0 V i. (3.111)
i=I

Given a priori densities of this form, the a posteriori densities of the state given the

data are determined by direct application of Bayes' rule. The resulting estimator is

denoted the Gaussian sum filter. The Gaussian sum filter relations are given in [10].
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The operation of the Gaussian sum filter can be very computationally in-

tensive. For L densities used to describe the initial state, N densities for the mea-

surement noise, and M densities for the process noise; the state prediction at the

first stage requires the propagation of L * M separate estimates. The filtered es-

timate for the first stage requires L * M * N estimates. In general, the number of

separate prediction estimates that must be computed for the kVh stage is given by

L * Mk * Nk-1, and the number of separate filtered estimates is L * Mk * Nk. The

Gaussian sum representation essentially results in several Kalman filters operating

in parallel. A weighted sum of these fiters is used to form the a posteriori density.

The conditional mean is formed as the convex combination of the mean values of

the individual terms, or Kalman filters, of the Gaussian sum. It is important to

note that the weighting function used to form this convex combination is dependent

on the measurement data causing the conditional mean to be a nonlinear function

of the data. In contrast to the linear Kalman filter, the conditional variance of the

Gaussian sum filter is a function of the measurement data. Thus the conditional

varian.t is not expected to converge smoothly as it does with the linear Kalman

filter. Additionally, it cannot be computed off line as can be done with the Kalman

filter for linear systems.

The primary advantage of the Gaussian sum approach is that it forms an

explicit representation of the a posteriori density. This representation is optimal

if the errors are truly made up of a sum of Gaussian distributions. The major

disadvantage of the Gaussian sum filter is the geometric progression of the number

of separate Kalman filters that are required to implement the estimator. However,

the number of filters can be limited by disregarding those terms in the Gaussian

sum that have very small weights.
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Our interest in experimental evaluation of the approximate filters is to de-

termine what degree of improvement these filters offer over the standard Kalman

filter and to determine how close these approximate filters match the performance

of the optimal estimator using Gaussian sums. Also of interest is to determine if the

truncated forms of the asymmetrical and symmetrical filter approximations given

in Sections 3.2 and 3.3 give similar performance to the nontruncated expressions of

Sections 3.5.1 and 3.5.2.

A scalar model is used to evaluate the performance of the filters. The plant

and measurement equations for this model have the form

Ok 0.Szk-i + Wk-1

(3.112)
Zk Zk + Vk

where Wk and vk are mutually independent, zero mean possibly non-Gaussian ran-

dom processes, and the initial estimation error for zo may also be non-Gaussian.

The non-Gaussian distributions are modeled as the sum of two Gaussian distribu-

tions with unit variance. In general the non-Gaussian distribution for a random

variable y is given by
I

P(Y) = ciN(pi,1) (3.113)

where E/=l ej = 1. For the special case of two distributions (I = 2) the parameter

D is defined as the separation between the means of the distributions. In this case

for p(y) to have zero mean pl = -- 2 * D, and P2 = e1 * D. If C1 = I2, P(Y) is

symmetric. If D = 0, p(y) is Gaussian.



66

In general the density p(y) has zero mean and the next three moments are

I
Ely2] -- L'Ci(1 +{ P?)

i=1

Efy'] = E i(p4 + 3pi) (3.114)

E[y4 ] = Z ei(3 + 6p? + P4)

3.7.1 Asymmetrical Filter Results

An asymmetrical distribution with f1 = 0.2, C2 = 0.8, and I 2 in equation

(3.113). The system represented by equations (3.112) is used to evaluate the different

filters for various combinations of non-Gaussian process noise vk, measurement noise

wk, and initial estimation error io. The three noise models are given in Table 3.1

below.

Table 3.1. Noise Models for Non-Gaussian Filter Evaluation

Model Vk wk io

1 = N 1) N(0, 1) N(50 , 1)

2 N(0, 1) Ef= jN(p,, 1) N(ho, 1)

3 N(0, 1) N(0, 1) Ell qN(pi + ol, 1)

The asymmetrical filter of Section 3.5.1 is evaluated in three different con-

figurations. In the first configuration, denoted Asym/T1, the asymmetrical filter

equations of Section 3.5.1 are modified so that the 3"d order filter moment contains

only functions of Yd order prediction moments and 3"d order measurement error,

and the 4*h order filter moment contains only functions of 4 "' order prediction mo-
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ments and 4th order measurement error. Thus, the terms (3) (3) A and arePL~lk4, pklkl a,' ykk6ar

set to zero in equation (3.73), and (4) ,(4) (4) and (4)PkksI Pkjk6 ,PklkT, a klk8 are set to zero in

equation (3.78). The second asymmetrical filter configuration, denoted Asym/T2,

is similar to Asym/T1 with the exception that the 4th moment term (3)4 is retained

(3.73). The vector formulation for this truncated filter configuration is developed in

Section 3.2. The last asymmetrical filter configuration, denoted Asym/Edge, uses

the complete filter configuration of Section 3.5.1 with 51" and higher order moments

being approximated by the Edgeworth expansion using coefficients ao and a3. The

second Edgeworth expansion, which uses the terms a0 , a3, a4, and a6, cannot be used

because the a6 coefficient requires the availability of the 6 th order moment. These

three asymmetrical filters are compared to the performance of the standard Kalman

filter and to the Gaussian sum filter.

Figure 3.1 displays the non-Gaussian noise distribution, the state estimation
error 4k, an h(2) for a typical simulation of the system inerrr •lkand the ifilter variance Pklk

equation (3.112) for Model 1. The separation between the distributions for the

non-Gaussian noise was D = 10. Figure 3.1 illustrates that the asymmetrical filter

performance is significantly better than the standard Kalman filter, but not as good

as the Gaussian sum filter. The three asymmetrical filter configurations perform

about equally. It is observed that since Model 1 is indeed a Gaussian sum model,

the Gaussian sum filter produces an optimal estimate. The primary purpose of this

test is to compare the standard Kalman filter to the HOF, since both filters use

only the error moments and not the density function to perform estimation. The

Gaussian sum filter performance is included only as a reference.

A Monte-Carlo analysis was performed to determine the sample variance of

the estimation error. Fifty separate simulation runs of the system were made for
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each model. The estimation error was accumulated over the last five samples of each

run resulting in a total of 250 samples of the estimation error. The sample variances

of the filter error (2) and the prediction error ()are presented in Table 3.2 for

every estimator for each model.

Table 3.2. Sample Variances for the Asymmetrical Filter - D = 10

Filter Model 1 Model 2 Model 3
Type )(2) 1(2) j,(2) P'(2) •(l)
"Type Pk kik-1 kjk kIk-1 klk kk-_

Kalman 1.25 1.35 0.983 18.4 0.575 1.20

Asym/TI 0.952 1.29 0.828 18.5 0.575 1.20

Asym/T2 0.954 1.29 0.828 18.5 0.575 1.20

Asym/Edge 0.944 1.29 0.828 18.5 0.575 1.20

Gaus Sum 0.575 1.20 0.575 18.5 0.575 1.20

The Monte Carlo results are consistent with the observations made from the

single run results in that the asymmetrical filter performed very well in relation to

the standard Kalman filter. The fact that the Asym/Edge model gives the same

performance as any of the truncated forms suggests that the truncated filters are

sufficient to characterize the asymmetrical filter. Although there may be other

approximations for higher moments that give better results than the Edgeworth

series, this suggests that there is no need to go through the lengthy and cumbersome

vector expansion for 5th and higher order comlponents for the 3Wd and 4'h filter

moments.

A similar study was done on the asymmetrical filters for distribution D = 5.

The Monte Carlo results for this configuration are given in Table 3.3.
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Table 3.3 Sample Variances for the Asymmetrical Filter - D = 5

Filter Model 1 Model 2 Model 3

Type P2) 1((k) p()(2)k~~~k k•- kkl~i I kk klk-1

Kalman 1.08 1.34 0.910 5.50 0.575 1.20

Asym/Tl 0.923 1.32 0.823 5.49 0.575 1.20

Asym/T2 0.923 1.32 0.823 5.49 0.575 1.20

Asym/Edge 0.922 1.32 0.823 5.49 0.575 1.20

Gaus Sum 0.742 1.28 0.752 5.49 0.575 1.20

As expected the sample variances of the estimation error are closer together

than they were in Table 3.2 where D = 10. As the distribution separation D

approaches 0 all of the results would be the same and all of the estimators would

be optimal.

3.7.2 Symmetrical Filter Results

A symmetrical non-Gaussian distribution is generated with parameter values

C = 0.5, C2 = 0.5, and I = 2 in equation (3.112). The system represented by

equation (3.113) was evaluated for various combinations of non-Gaussian process

noise vk, measurement noise wk, and initial estimation error i0 as expressed in

Table 3.1.

The symmetrical filter was evaluated in three different configurations. In

the first configuration, denoted Sym/T, the symmetrical filter equations of Section

3.5.2 were modified so that the second order filter moment contains only functions

of 2 "d and 4th order prediction moments and measurement moments, and the 4 th

order filter moment contains only functions of 4th order functions of the prediction
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and measurement errors. Thus terms Pijk44 and were set to zero in equation

(3.92), and p ,(4) (4) (4) and p1(4) were set to zero in equation (3.96). The
Pk~k6 lPkjk8 IPkjkj 0 I Pkk 12

second symmetrical filter configuration, denoted Sym/Rao used the complete filter

configuration of Section 3.5.2. Moments of order higher that 4 th were approximated

using the formula described in equation (3.105), which was obtained from Rao and

Yar [27]. The last symmetrical filter configuration, denoted Sym/Edge, used the

complete filter configuration of Section 3.5.2 with moments of order higher than 4th

were approximated by the Edgeworth expansion using coefficients ao and a3. It is

noted that E[4j in equation (3.89) requires the availability of the 6tA moment of the

prediction error, and the 6th moment of the measurement error. For the truncated

model Sym/T the Rao approximation was used for these moments.

The Monte Carlo results for 250 samples are given in Table 3.4. This ta-

ble shows that the symmetrical HOF performs better than the standard Kalman

filter, but not quite as good as the optimal Gaussian sum filter. Among the three

asymmetrical filter configurations, the truncated form and the form that uses the

Rao approximation perform the same. However, the Sym/Edge filter performance is

somewhat poorer than the other non-Gaussian filters. This discrepancy is probably

due to the fact that the Edgeworth expansion is based on a Gaussian kernel and

this approximation degrades as the separation D increases. A similar study was

performed for symmetrical distributions with D = 5. The Monte Carlo results are

given in Table 3.5.
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Table 3.4. Sample Variances for the Symmetrical Filter - D = 10

Filter Model 1 Model 2 Model 3

Tyej'2 P(2 P'( 2) j'(2 ) j2) P2)
Tyeklk klk-i kfk klk-I kfk klk-i

Kalman 1.33 1.35 0.947 25.7 0.575 1.20

Sym/T 1.22 1.32 0.908 25.7 0.575 1.20

Sym/Rao 1.22 1.32 0.908 25.7 0.575 1.20

Sym/Edge 1.29 1.34 0.933 25.7 0.575 1.20

Gaus Sum 0.575 1.20 0.575 25.6 0.575 1.20

Table 3.5. Sample Variances for the Symmetrical Filter - D = 5

Filter Model 1 Model 2 Model 3
Type jb(2) jb,(2) i(2) )(2) jP()2

_________ klk klk-I klk k k-1 kik k k-i

Kalman 1.20 1.35 0.876 7.20 0.575 1.20

Sym/T 1.10 1.32 0.838 7.21 0.575 1.20

Sym/Rao 1.10 1.32 0.838 7.21 0.575 1.20

Sym/Fdge 1.15 1.33 0.856 7.20 0.575 1.20

Gaus Sum 0.914 1.26 0.782 7.21 0.575 1.20

As with the asymmetrical filter, as the separation D becomes smaller, the

sample variances of the estimation error are clustered closer together for all models

since as D approaches 0 the mixture distribution becomes "more" Gaussian. For

this case the sample variance for the Sym/Edge model is now about halfway between

the sample variance for the standard Kalman filter and the Sym/T model, whereas

the sample variance for Sym/Edge for D = 10 was closer to the Kalman sample

variance. This is expected since the non-Gaussian distribution is "more" Gaussian
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as D becomes smaller and thus the Edgeworth approximation is more valid.

Better results may be obtained for the symmetrical filter by propagating

6 'h order filter and prediction moments. The 6" order prediction moment can be

obtained directly from the prediction error equation iklk-1 = Obk-1k-1Ik-1 + wk- 1.

The 6th moment is given by

p(6) -6 .(6) 1504 (4) q(2) 1.52 .(2) q(4) 1+q( (3.115)kik-I =•k-I•'k-Ijk-I +- ,k _)Ik-Ij~ lk_1 "-I + k_lpk-Ilk-lqk _- k- 31 5

If the 3rd power of the innovations in equation (3.87) are disregarded, the 6h order

filter moment can be expressed in terms of only 6 *h order functions of the prediction

and measurement errors. This truncation equation lead to

(6) = 6 -(6) 1ml4k() 2 (4) (2) + 15a2k~l) 4,(2) (4) +(1) 6r(6) (3.116)
kkkk kpklk k k PkIkrk k Ik(lrk + k r

where ak = 1 - k(')hk.

te (2) ar eandi 39) nI,(4)

In addition the 6hs order terms pl6are retained in (3.92), and in (3.96).

With this configuration the 6 th order symmetrical filters was tested for D =

5, 10, and 15 for a bimodal measurement and process noise distributions. An example

simulation run for bimodal measurement noise (Model 1) is shown in Figure 3.2.

Table 3.6 compares the results of the linear Kalman filter, the 4hI and 6 "' order

symmetrical filters, and the Gaussian sum filter for Model 1. Included in this figure

are the values of the bimodal noise variance E[vk]. Define a coefficient of exce~s Iz

for a random variable z as

E[X4] (3.117)

rz represents the deviation of the actual fourth moment from the Gaussian fourth

moment. This value is also included in the Table 3.6.
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Table 3.6. Comparison of Sample Filter Variances for 4'h and 6 th Order Filters

Bimodal Measurement Noise Distribution

D E[v2] I' Filter Sample Filter Variances

Order Kalman Sym/T Sym/Rao Sym/Edge Gaus Sum

5 7.25 1.98 4 th 1.20 1.10 1.10 1.15 0.914

6h 1.01 1.01 1.01

10 26 2.61 4 'h 1.33 1.22 1.22 1.29 0.575

6th 0.773 0.824 0.897

15 101 2.89 4th 1.34 1.28 1.28 1.32 0.575

6th 0.673 0.773 0.880

Table 3.6 shows that as the separation D increases the 6"% order filters per-

form significantly better than the 4 th order filters. The truncated filter, 'Sym/T',

gives the best overall performance. In fact, for D = 15 the sample variance of

'Sym/T' (0.673) is very close to that of the Gaussian sum filter (0.575). It is ob-

served that as D increases from 5 to 10, r',k increases from 1.98 to 2.89. Thus,

as the bimodal distribution becomes "more" non-Gaussian, the 6t" order filter per-

forms much better relative to the linear Kalman filter. It is important to note that

the high order filters may become unstable under certain conditions. This is evident

in Figure 3.2(c), in which the Sym/Edge configuration behaves erratically. However,

unlike the Gaussian sum filter, the error variance Pklj for the non-Gaussian filters

can be evaluated off-line without any measurement data if the system is linear, so

stablity can be determined before the filter is implemented on actual data.

Table 3.7 gives the results for Model 2, bimodal process noise. The results

are consistent with those in Table 3.6.



76

Table 3.7. Comparison of Sample Filter Variances for 41h and 6th Order Filters

Bimodal Process Noise Distribution

D E[w2] rwk Filter Sample Filter Variances

Order Kalman Sym/T Sym/Rao Sym/Edge Gaus Sum

5 7.25 1.98 4h 0.876 0.837 0.837 0.856 0.782

6 th 0.789 0.791 0.794

10 26 2.61 4 th 0.947 0.908 0.908 0.933 0.575

6th 0.684 0.718 0.798

15 101 2.89 4 th 0.964 0.939 0.939 0.956 0.575

6th 0.643 0.739 0.790

A commonly encountered non-Gaussian distribution is the so-called heavy-

tailed Gaussian distribution. This distribution is composed of a large central lobe

and two smaller lobes separated by an equal distance on each side of the main lobe.

To generate this distribution I = 3, fI = E3 = 0.2, f2 = 0.6, p1& = -D/2,11 2 =

0, p3 = D/2 were used in equation (3.113). Figure 3.3 displays the non-Gaussian
,(2) for a typical

noise distribution, the estimation error Xklk, and the filter variance r alt

simulation of the system in equation (3.112) for model 1. The separation between

the distributions for the non-Gaussian noise was D = 10. Tables 3.8 and 3.9 compare

the performance of the non-Gaussian filters to the Kalman and Gaussian sum filters

for Models 1 and 2 respectively.

Tables 3.8 and 3.9 show that the Gaussian sum filters do not offer any sig-

nificant improvement over the Kalman filter for the heavy-tailed distributions used

for these examples. For the heavy-tailed distributions r'k and Irwk are approxi-

mately equal to 1. This again demonstrates that the relative performance of the
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Table 3.8. Comparison of Sample Filter Variances for 4 "h and 6Wh Order Filters

Heavy-Tailed Measurement Noise Distribution

D E[v2] rI Filter Sample Filter Variances

Order Kalman Sym/T Sym/Rao Sym/Edge Gaus Sum

5 3.5 1.10 4t' 0.964 0.966 0.967 0.966 0.989

6th 0.967 0.967 0.967

10 11 1.16 4 'h 1.20 1.20 1.20 1.20 0.918

6th 1.21 1.21 1.21

15 23.5 1.18 4'k 1.27 1.27 1.27 1.27 0.603

6t 1.28 1.28 1.28

Table 3.9. Compison of Sample Filter Variances for 4 th and 6"' Order Filters

Heavy-Tailed Process Noise Distribution

D E[wk1] rwk Filter Sample Filter Variances

Order Kalman Sym/T Sym/Rao Sym/Edge Gaus Sum

5 3.5 1.10 4th 0.853 0.854 0.854 0.854 0.849

6'h 0.854 0.854 0.854

10 11 1.16 4'h 0.957 0.955 0.955 0.956 0.849

6' 0.954 0.954 0.954

15 23.5 1.18 4"' 0.980 0.978 0.978 0.978 0.639

6th 0.972 0.972 0.972
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non-Gaussian filters can be assessed by comparing the fourth moment to that of a

Gaussian distribution. If the coefficient of excess is close to 1, then the standard

Kalman filter gives similar performance to the symmetrical high order filter.

The last non-Gaussian distribution considered is the uniform distribution.

Figure 3.4 displays the noise distribution, the estimation error ik~k, and the filter

variance for a typical simulation of the system in equation (3.112) for uniform

measurement noise with variance equal to 10. Tables 3.10 and 3.11 compare the

performance of the non-Gaussian filters to the Kalman and filters for uniformly

distributed measurement noise (Gaussian process noise and initial estimation error

with unit variance), and uniformly distributed process noise (Gaussian measurement

noise and initial estimation error with unit variance), respectively.

Table 3.10. Comparison of Sample Filter Variances for 4 *h and 6th Order Filters

Uniform Measurement Noise Distribution

E[v21 rok Filter Sample Filter Variances

Order Kalman Sym/T Sym/Rao Sym/Edge

5 1.67 4th 0.944 0.868 0.868 0.893

6th 0.825 0.825 0.824

10 1.67 4th 1.04 0.984 0.984 1.01

6th 0.912 0.912 0.911

15 1.67 4th 1.08 1.03 1.03 1.06

6"s 0.963 0.963 0.962
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Table 3.11. Comparison of Sample Filter Variances for 4'h and 6th Order Filters

Uniform Process Noise Distribution

E[w2] k Wk Filter Sample Filter Variances

Order Kalman Sym/T Sym/Rao Sym/Edge

5 1.67 4th 0.866 0.838 0.838 0.848

6th 0.815 0.815 0.816

10 1.67 4th 0.932 0.910 0.910 0.919

6 th 0.876 0.876 0.876

15 1.67 4th 0.955 0.937 0.937 0.945

6th 0.902 0.902 0.903

The non-Gaussian filters give better performance than the Kalman filter

for uniformly distributed noise. Again the relative performance is related to the

difference between the fourth moment E[vj] and the fourth moment of the Gaussian

distribution 3E[vkI2 .

3.8 Conclusion

Two approximate methods for filtering have been presented for estimation

in the presence of asymmetric and symmetric distributions of non-Gaussian noise.

Simulation studies have shown that the HOFs can perform very well for estimation

in non-Gaussian noise. The real utility of the filters developed in this chapter comes

when either the noise cannot be adequately represented as Gaussian sums, or when

only the moments of the noise are known, and not the actual density functions.

Although these filters are more complicated to implement than the standard Kalman

filter, they are not nearly as computationally intensive as the Gaussian sum filter
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in which the number of parallel filters grows geometrically as the number of stages

increase.

An obvious method to improve the performance of the non-Gaussian filters

developed here is to use higher powers of the innovations in developing the filter

equations. That is, let I be greater than 3 in

:cklk = Xiklk-. -- k• K •
i=O

However, this would make the vector derivation of the filter equations very unwieldy.

In addition this derivation would require the availability of still higher order terms

in the solution of the filter variance equations. That is for I = 4 the filter variance

equation would require up to 8th order prediction moments. The 41" order moment of

the variance would require up to 16'h order prediction moments. In general, when

I > 1 it is necessary to either truncate the expressions for the filter moments so

that only those powers of prediction and measurement error moments are included

for which similar powers of the filter moments exist, or the higher powers of the

prediction and measurement error moments must be approximated.

For non-Gaussian distributions made up of known Gaussian sums, the non-

Gaussian filters presented here give a reasonable compromise between the optimal

but very computationally intensive Gaussian sum filter, and the suboptimal but

easily implemented standard Kalman filter. In addition, when only the moments

of the distributions are known and a Gaussian sum filter cannot be used, the non-

Gaussian filters offer a means to obtain improved performance over the standard

Kalman filter.
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Chapter 4

Nonlinear Filtering Methods for Harmonic Retrieval

This chapter addresses the problem of high resolution parameter estimation

of superimposed sinusoids using nonlinear filtering techniques. Six separate nonlin-

ear filters are evaluated for the estimation of the parameters of sinusoids in white and

colored Gaussian noise. Experimental evaluation demonstrates that the nonlinear

filters perform very satisfactorily (close to the Cramer-Rao bound) for reasonable

values of the initial estimation error. A major advantage of using nonlinear filtering

methods for harmonic retrieval is that the filters can be applied to time varying

process models as well.

Some of the more recent work done in parametric methods for harmonic

superesolution includes modified singular value deconrpostion techniques [31], and

cumulant based techniques [32]. Generally these approaches perform well at high

SNR's, with close correspondence to the CR bound. However, the performance is

severely degraded at low SNR's.

Solution of the harmonic retrieval problem is approached using 3 nonlinear

filters including the extended Kalman filter, the Gaussian second order filter, and

the minimum variance filter. Three iterated forms of the extended Kalman filter

are also applied to this problem. The main advantage of using recursive filtering

techniques over more traditional batch-type estimators is that time varying system

parameters can be modeled. The nonlinear filters are applied to data consisting of

two exponentially damped sinusoids in white noise. The results are compared to the

Cramer-Rao (CR) bound and to results obtained by other authors using singular
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value decomposition (SVD) techniques. The performance of the nonlinear estimators

is also evaluated in colored noise with known and unknown noise filter coefficients.

In addition, a technique is presented to perform estimation when the noise statistics

are unknown. In this case the noise statistics are estimated along with the state

estimates. Overall it is found that the nonlinear filters give performance very close

to the CR bound whenever the initial state covariancc is small. The techniques are

found to be very effective in colored noise with known and unknown coefflcients,

and when the noise statistics are unknown.

The problem of high resolution frequency estimation has received a consid-

erable amount of attention in recent years. The classical method for frequency

estimation is based on nonpar;-netric periodogram estimates and their variations

[31]. The frequency estimates are formed from the power spectral density estimates

obtained from the Fourier transform of the data or from the Fourier transform of the

autocorrelation sequence. The frequency resolution of these techniques is directly

related to the number of data sarriples in the received time series, so the periodogramn

method is generally not considered a high resolution frequency estimator. In a re-

lated technique developed by Capon [32], called maximum likelihood (ML) spectral

estimation, the PSD is estimated by effectively measuring the power cut of a set

of narrowband filters. Foias et al. [33] have demonstrated that the ML estimate

converges monotonically to the point power spectrum associated with the sinusoids

as the number of correlation lags approaches infinity. They further show how this

convergence property can be used to determine whether a strong spetral peak cor-

responds to a sinusoid. A ,'omplete review of a,' of the basic spectrum estimation

techniques is presented by Kay and Marple [34].

Parametric methods attempt to fit some assumed model to the data. Using
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parametric methods, the problem becomes one of choosing a proper model and esti-

mating the parameters of the assumed model. Most of these models can be classified

into autoregressive (AR) or autoregressive moving average (ARMA) models. Some

of the early work on these models was done by Ulrych and Clayton [35] for the (AR)

model, and Cadzow [36] for the ARMA model. Ulrych and Clayton use a modified

covariance technique in which the sum of the squared forward and backward resid-

uals is minimized. Lang and McClellan [37] have shown that the variance of the

spectral estimate obtained using this approach is smaller than that of the covariance

method. Citron et al. [38] compare Ulrych and Clayton's method with Cadzow's

method and find that Ulrych and Clayton's technique appears to perform better.

Tufts and Kumaresan [39 - 43] and Hua [44] have enhanced the performance of AR

models by using singular value decomposition (SVD) and a reduced rank approxi-

mation. They show that this technique has close correspondence to the CR bound

at high SNR's. However, Bresler and Macovski [451 point out that the performance

of most modem high resolution spectral estimation methods is severely degraded at

low SNR's and/or short data lengths. They postulate that this is due to the fact that

these techniques are heuristic least squares modifications of algorithms that yield

exact results when there is no noise or when the available data is infinite (known

covariance case). Other methods include adaptive notch filtering [46], adaptive line

enhancement [47], and pencil of function methods [48 - 50].

A relatively new method used for harmonic retrieval involves the use of higher

order statistics [51,52]. For non-Gaussian signal components and Gaussian noise the

third order moment and fourth order cumulant of the measurements will theoreti-

cally only contain signal components and accurate estimates for the signal frequency

components can be obtained. Papadopoulos and Nikias [52] show that by using these
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methods they can match the performance of the Kumaresan and Tufts methods in

white Gaussian noise and perform better in colored Gaussian noise. However, the

high order statistics methods show severely degraded performance at low SNR's.

Arun and Aung [57] have proposed a SVD based approach for tracking the param-

eters of sinusoids with time varying parameters.

Other algorithms have been shown to give good performance at low SNR's.

Chan et al. [531 developed recursive expressions for the estimation of m sinusoids

in white noise using 2m coefficients of an ARMA model. Friedlander [54] developed

a recursive algorithm for maximum likelihood ARMA spectral estimation. The

iterative inverse filtering method [55] is shown to produce accurate estimates of

unknown frequencies at low SNR's and a small number of points.

Stankovic et al. [561 uses the extended Kalman filter for the estimation of the

frequencies of sinusoids in white and colored noise. They use an ARMA model for

the signal and the noise. Thus, they need to estimate 2 variables for each frequency.

For good initial parameter estimates, the EKF method outperforms the maximum

likelihood method.

In this chapter nonlinear filtering techniques are employed to estimate the

parameters of exponentially damped sinusoids in colored noise. A direct model is

used. This model requires one state variable for each parameter to be estimated.

That is, the state variables are the frequencies, phases, damping coefficients, and

amplitudes of the sinusoids. Using this model time varying characteristics of the

state can be explicitly evaluated. A comparison is made among the EKF, the it-

erated filters, and the minimum variance filter for this problem. Various filters are

evaluated in order to determine the estimator that is least susceptible to the impact
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of the initial state covariance on the performance of the algorithms. The results are

compared to the CR bound and to the SVD methods of Kumaresan and Tufts.

This chapter is organized as follows: Section 4.1 describes the general system

model used for all of the filters for estimating time varying amplitudes, frequencies,

damping coefficients, and phases for a known number of sinusoids in additive white

Gaussian noise. Section 4.2 presents the nonlinear filtering equations for the general

system model and the details of the implementation for the specific model involving

the two exponentially damped sinusoids in white noise. This section discusses the

extended Kalman filter, the Gaussian second order filuer, the minimum variance

filter, and three iterated forms of the extended Kalman filter. Experimental results

obtained from Monte Carlo simulations demonstrate the performance of these fil-

ters. Section 4.3 presents the extended Kalman filter expressions and simulation

results for harmonic retrieval in colored noise with known and unknown noise filter

coefficients. A technique for estimation of the measurement covariance is described

and experimentally analyzed in section 4.4.

4.1 General System Model

Consider the problem of estimating the parameters of P sinusoids from K

measurements. The complex scalar measurement model is given by

P
zk ck, exp (-akpk + j(w&kpk + Ok,)) + vk (4.1)

p=1

for k = 0,1,..., K - 1. vk is assumed to be complex white Gaussian noise

with mutually independent real and imaginary components each with variance a2.

It is assumed that the frequencies wk. are normalized so that the effective sampling

interval is one second. The 2-element measurement model zk from (4.1) can be
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written as
zk = hk(xk) + vk

_- _ ck,, expV:,k) sn(wk k +0kp) (4.2)
=E--Ck, exp (-akk)cos(wkk + Okp)] + vk

for k = 0,1,-.-, K - 1. The real and imaginary parts of the measurement are

treated as separate measurements. Vk is a two element column vector containing

the real and imaginary parts of the complex noise in (4.1) with vk '" N(0, Rk) where

Rk = 002 (4-3)

The elements of the state variable vector xk can be defined as

Xk4(p.l)+l = Wkp

Zk4(p.l)+2 = ckp

(4.4)
lk4(p-l)+s = Okp

Xk40,_:)+4 = akp.

The state variables obey the nonlinear plant equation

Xk+l = fk(xk) + Wk (4.5)

where Wk - N(O, Qk).

It is convenient and straightforward to treat the amplitudes (ck,), damping

coefficients (ak.), frequencies (wk.), and phases (O,) as state variables. This permits

the time dependence of the signal parameters to be directly modeled through the

process equation (4.5). An alternative approach is to model the differential equation

for the measurements through the process equation. For the case of continuous time
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real sinusoids let

y(t) = c(t)exp (-a(t)t) sin(w(t)t + 0(t))

then

W) = -a(t)exp(-a(t)t)sin(w(t)t + 0(t)) + w(t)exp(-a(t)t)cos(w(t)t + e(t))

( (a 2(t) - w2(t))exp(-a(t)t)sin(w(t)t + 0(t))

- 2a(t)w(t)exp(-a(t)t)cos(w(t)t + 0(t))

and the process equation can be expressed as

0 =. i(t)]= t) Y(t)] qt

where q(t) is the process noise. The advantage of this formulation is that the mea-

surement equation z(t) = y(t) + v(t), where v(t) is the process noise, is a linear

function of the state. However, there are several disadvantages. The primary disad-

vantage is determining the initial conditions. Since the process equation may contain

unknown parameters c(t), a(t), w(t), and 0(t), reasonably small error in the initial

estimates of these parameters may lead to very poor initial estimates for ji(O) and

P(O) causing the solution to converge to harmonics of the actual frequency or other

poor filter performance. In addition, to express time dependence and initial uncer-

tainty of the unknown parameters these parameters must also be modeled as state

variables, thus further complicating the process equation. Even in the case where

the unknown parameters are constant, the process equation is nonlinear. With these

considerations it was decided that the models given by (4.5) and (4.2) were more

appropriate and convenient for the harmonic retrieval problem.
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4.1.1 Estimating the Parameters of 2 Sinusoids

A particular measurement model of interest consists of two exponentially

damped sinusoids in white noise. This model has been analyzed by Kumaresan and

Tufts [41] using reduced rank SVD techniques, and by Papadopoulos and Nikias [521

using cumulants.

For this model the measurement equation (4.2) becomes

zk hk(xk) + vk

lexp(-ctkk)sin(wpk) 1 (4.6)= + vk.
2 1 exp (-crkpk) cos(wkk)

The associated state variables are defined as

41 = WI

Xk 2 = CI

(4.7)
Zk 3 = W2

Xk 4 = ak2

Assuming constant frequencies and damping coefficients, the plant equation that

describes the evolution of the states (4.7) is given by

xk+lp = Xkp. (4.8)

4.2 Nonlinear Filters for Harmonic Retrieval

This section presents the equations used for the extended Kalman filter

(EKF), the Gaussian second order(GSO) filter, the minimum variance filter (MVF),

and three iterated forms of the extended Kalman filter for the harmonic retrieval
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problem. The EKF and GSO equations are approximate solutions to the nonlinear

estimation problem. The EKF requires the first order Taylor series expansion of the

measurement about the latest estimate, and the GSO filter requires second order

expansions. The MVF equations are exact expressions of the mear squared error

state estimates for exponential nonlinearities in Gaussian noise. The three iterated

filters are extensions of the EKF equations. The process model presented in (4.5)

is appropriate for the general case of time varying parameters. However, in this

chapter the state variables are restricted to be time invariant.

4.2.1 Extended Kalman Filter

The EKF is obtained by making Gaussian assumptions about the a posteriori

densities and by extending the plant and measurement nonlinearities in a Taylor

series including first order terms. The extended Kalman filter equations for time

invariant states [6] (p. 195) are given by

= Pk-.ll.-.lHk (HkPk--llk-lHk + Rk)- 1

PkIk = (In - k )P-k-
(4.9)

Xklk = Xck-.Ik-I + Kk ik

ik= Zk - h(kk1

where xklk-I is predicted estimate, Pkik-1 is the one-step prediction covariance,

Kk is the filter gain, :kkk is the filtered estimate, and Pklk is the filter covariance.

I. is the n-dimensional identity matrix. The filter requires the initial conditions

E[xo] = *o and E[(xo - *o) (xc _ *O)T] = PO.
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For the measurement equation in (4.4) the Jacobian of hkxk) is given by

Hk = 0hk(xk)axk lxk=*klk_1

e-zk2 kCOS(Xkl k) -C-JZ 2 k sin(xkl k) T

-e-Jk2 ksin(xkl k) -ez2 coskl k) (4.10)

e- 4 kcoszk3 k) -e-'k4 k sin(xk k)

-e-xk4 k sin(Xk3 k) --e-k 4 kcos(Xk3 k) Xk=k- IlkI

4.2.2 Gaussian Second Order Filter

The Gaussian second order (GSO) filter relations [6] are obtained by including

second order terms in the Taylor series expansions of the plant and measurement

equations. The constant state model of (4.4) leads to the GSO fiter equations

14 = Pk-Ilk-lIHk(HkPk.-I..-IHkT + Rk + Bk)-

Xklk = iklk-I + K&.k (4.11)

Pklk = (In - KkHk)Pk-I1k-I

where

ik = Zk - h~k-kk.. 1) - 1 O.hk, Pk-.xk ... l)I (4.12)

and

a2(hk, Pk-1lk_1) = trace -[ ki Pk-Ilk-I }- (4.13)

The bracketed quantity in (4.13) is a matrix whose pqtA element is the quantity
82 hk.

The matrix and Bk is approximated by

4 C9X 892hk ax&.1
Bk, 9 - ( + dda)-,j k=kjk(4.14)
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where hki denotes the iOh element of hk(.), and the d's are elements of Pk-1ll-1.

For the model (4.8)

a2 hk1 (xk) =k2[-zk2D kDkI Jz04  ]

&Xk&T 1 z4 k

a 2 hk2(Xk) k [ zk 2 E 0 (4.15)

0 e-z4 Ek 3

where

Dk [ -Sin(xkik) -cOS(xkik)]
I -cos(xkik) sin(Xkik) (4.16)

= [-cos(zkik) sin(z&ik) 1
E,=[sin(Xkik) cos(z&,k)J

ikik-1 = fk-&(kk-Ilk-1) + 1• 2(fk-l,Pk-ilk-i)l1

PkIk-1 = F-.Pk.-11k-IF T -I + rk-lQk-.rT I + Ak-I

XkkI = Xklk-I +Kkit (4.17)

kik = (In - KkHk)Pklk-I

Kk = PkIk..HT(HkPkltk.IHk + Rk + Bk)- 1.

4.2.3 Minimum Variance Filter

The EKF and the GSO filters are based on a Taylor series expansion of

the nonlinear equations about the most recent estimate. As such the EKF and

GSO filters are subject to the inherent problems of local linearizations and may

lead to poor performance. Liang [23] developed a minimum variance filter (MVF)

which gives exact estimates at each iteration of the filter based on the assumption
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that the estimation errors are Gaussian. He has shown that for certain nonlinear

functions such as polynomial nonlinearities, exponential functions, and sinusoids,

exact expressions for the state estimates can be obtained and used in the filter

relations in place of the usual approximations. At each step in the operation they

assume that the prediction and filter errors are Gaussian. They have compared their

filter to the EKF and other filters using numerical examples and claim that their

filter performs much better than the EKF for large initial error variances. Using

the plant and measurement models in (4.5) and (4.6) the minimum variance filter

relations are given by

Kk = Efklikf._fik(xk) T I (Rk + Effih(Xk)fik(Xk)T")-J

Xklk = *.k-.lk-. + Kk.k = Zk - fik(Xk) (4.18)

PkIk - Pk-ljk-l - Kk Elhk(xi)*k.._.

where
XRkIk-.I = Xk - ikk-I&.1

hik(xk) = hk(xk) - ihk(xk) (4.19)

S= fk-l(xk-l) - ik-1(Xk-l).

The MVF requires exact analytical expressions for E[hk(xk)], E[xkhk(xk)T], and

E[hk(xk)hk(xk)T].

The general system model (4.2) requires closed form relations for functions

of the form E[exp(yk)], E[zkiexp(Yk)], and E[zXk xkj exp(yk)], where yk is defined

by the inner product

Y =- UkTXk

and where uk is a vector of deterministic coefficients. Note that if xk is a vector

of jointly Gaussian variables, then Yk is also Gaussian. Liang [24] derives relations



for expectations of this form. The following relations can be used to evaluate these

expectations for t'..; general system model given in (4.2):

E[exp(yk)] = exp(uT*kl_ k +Uk)

E[xkiexp(yk)] = (1klk-li + uT Pklk-lei)
T ~1 UT

x exp (u'k~klIkl + juk Pklk-luk)

E[x•k xkj exp(yk)] = (eTPkIk.lej + Xkikj.lkikkl.j (4.20)

T eT T

+ u Pklk- k 1.u~Pkj. -ei)

x exp(uT c:kklkl + •uTPkl..lu&)

where ei is the i"h unit vector. This vector is zero except for the ith element.

For the measurement equation in (4.6), in which the amplitudes of the sinu-

soids ck, are known, only the first two expressions in (4.20) are necessary.

4.2.3.1 Evaluation of E[hk]

Let the measurement nonlinearity from (4.6) be expressed as

= [Im (exp(ufxk) + exp(uRxk) 1 (4.21)
Re (exp(ulxk) + exp(u2 xk)

where

UT = [jk -k 0 0I 0 j(4.22)uT = [0 0 j k -k

• ,, II I I U I
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Define the quantities
-TI T T

=exp(uTk~.. +luT
hk2 = exp(ujXkIk..I + 2ukPklk-1uk) (4.23)
hk2 -exp(uT2:xk[/k_ + 2uk2J-klk-luk2)

Using (4.23) and (4.20) the expression for the expected value of the measurements

fr the model in (4.6) is obtained as

E[hkl = [Ie(hli Z:-] (4.24)

4.2.3.2 Evaluation of E[xk hkIT

For the model in (4.6), E[xkhT] can be found from (4.20) using

Ck = Etxk (exp(u T xk) + exp(unTxk)I

(4.25)
= (x .T- + uT1 TPk1t1)hk1 + (Xk.-1 + k-,)h

which gives

E[xkhT] = [Im(Cbk) : Re(•k)] (4.26)

4.2.3.3 Evaluation of E[hk hkIT

E[hk hT] for the model in (4.6) is evaluated using the first equation in (4.20).

E[h hT]= [ZT n h 12] (4.27)hk12 h k22

where
hk11  =Re{[1 -1 2 -2 1 1]Ek!2}

h12 = Im{ 10 1 0 2 0 1]Ek/2} (4.28)

h k22 =Re{[l 1 2 2 1 l]Ek/2}
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The i•h element of the column vector Ek is defined as

Eki E[exp(Ukiik]

(4.29)
exp(Ukiikklk_1 + UkiPklk-I kU/2)

and where Uki is the Oth of the matrix U&, which is given by

0 -2 0 0

2j -2 0 0

3 -1 -j -1
Uk =k (4.30)

j -1 j -1

0 0 0 -2

0 0 2j -2

The quantities E[hi], E~x& hT], and E[hk hT], found from (4.24), (4.26),

and (4.27), respectively, are used in (4.18) to form the minimum variance filter

expressions.

4.2.4 Iterated Filters

Three iterated forms of the extended Kalman filter are also used for param-

eter estimation. The iterated filters can be categorized into two classes. Locally

iterated filters are implemented by continuously processing the data for a given

measurement (i.e. for a given value of k) until the error between iterations is mini-

mized or until a maximum iteration count is exceeded. Globally iterated filters are

implemented by processing the entire data set more than once essentially recycling

the data set through the filter.



98

4.2.4.1 Locally Iterated Extended Kalman Filter

The locally iterated Kalman filter (LIKF) is an enhanced version of the ex-

tended Kalman filter where, at each step of the iteration procedure, the measurement

nonlinearity is linearized about the state estimate obtained from the EKF equations.

This filter was first introduced by Denham and Pines [21]. The procedure is to repet-

itively calculate kIk,' Kk, and PkIL, each time by linearizing about the most recent

estimate. The recursion relations for the LIKF are given by [6] (p. 190)

:Xkk(i + 1) = iklk1 + Kk(i)[Zk - hk(*klk(i)) - Hk(klk-I1 -- kkk(i))]

Pklk(i) = (In - Kk(i)Hk)Pljk-1 (4.31)

Kk(O) = P•k_1HkT(HkPkjk_1HT + Rk)- 1

where i = 0,1, -. -. The number of repetitions of the calculations shown above can

be determined by requiring the magnitude of the difference between successive state

estimates to be less than some small number.

4.2.4.2 Globally Iterated Extended Kalman Filter

Another form of the iterated Kalman filter, designated the globally iterated

extended Kalman filter (GIKF) [6], involves restarting the filter after each com-

plete pass through the data. After filtering the K measurements with the extended

Kalman filter the covariance is reset back to its initial value and the filter is restarted

with the first measurement but using the final estimate from the previous iteration

as the new initial estimate. This technique can be repeated until the difference in

the final estimates from successive iterations converges to some small value. By re-

setting the covariance the system is essentially re-excited thereby allowing the state

estimates to be perturbed. The premise for this technique is that good estimates
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will not be made worse, but poor estimates may be forced to better values.

4.2.4.3 Covariance Resetting

A similar procedure can be applied within a single pass of the data. For

example whenever the state covariance converges rapidly to a relatively small steady

state value, resetting of the covariance to a point between its present value and the

initial value takes place. The effect of resetting is to re-excite the system after

steady state is reached, so that early saturation of the filter gain to a small value

that would prevent changes in the estimates is avoided. The disadvantage of this

technique is that the variance of the final estimates could not be as good as it would

if no resetting took place. The advantage is that poor estimates may be forced to

better values. This technique could also be done through multiple passes of the same

data. During the final pass the covariance would not be reset within the single pass,

thus allowing the estimates to converge to the best possible values. This filtering

technique will be referred to as the extended Kalman filter with resetting (EKFR).

4.2.5 Experimental Results for Estimation in White Noise

A well documented problem that has been traditionally approached using

AR-based techniques is the estimation of the damping coefficients and frequencies

of two sinusoids [41, 52]. Referring to equation (4.4) damping coefficient values were

a =, = 0.2 and ak2 = 0.1 with normalized frequencies of wk, = 0.42 * 2r radians and

wk 2 = 0.52 * 2xr radians for 0 < k < 24.

The six nonlinear filters discussed previously are applied to this problem.

These filters will be designated as: EKF - extended Kalman filter, GSO - Gaussian

second order filter, MVF - minimum variance filter, LIKF - locally iterated extended
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Kalman filter, GIKF - globally iterated extended Kalman filter, and EKFR - ex-

tended Kalman filter with covariance resetting. In the implementation of the LIKF,

using (4.31) the repetition cycle for a given sample was terminated whenever either

the magnitude of the difference between successive state estimates was less that

0.0001 or whenever a total of 9 repetitions were completed. The GIKF was imple-

mented by processing the entire set of measurements five times. The EKFR was

implemented by resetting the covariance every three measurements. The covariance

was reset according to the formula

2Pref + Pk-ilk- k = 2,5,8, --- (4.32)

where initially Pref = P0 . After Pklk(-) is computed the new reference becomes

Pref = Pklk(-)- Using the EKFR the covariance was reset during the first two

passes using (4.32). On the third and final pass the covariance was not reset. At

the beginning of eich of the second and third passes initial condition on the state

was set to the final state estimate from the previous pass.

The filter performance was evaluated as a function of signal-to-noise ratio

(SNR) for a range of 0 dB to 30 dB. SNR is defined as 10log--1 , where a2 is the

variance of each of the real and imaginary components of the i.i.d. complex noise.

Note that this definition gives the peak SNR. Performance was evaluated at each

SNR by forming the sample variance of the estimation error over 500 independent

noise runs. In each run the signal was kept the same while the noise was modified

using different random number seeds.

Figure 4.1 illustrates the estimation error as a function of sample number for

a representative run at 20 dB SNR. This figure compares the relative performance of

the non-iterated filters (the EKF, GSO, MVF) and the locally iterated LIKF. The
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diagonal elements of the initial covariance were set to a value of 0.04 and the initial

errors were randomly chosen based on this value. Overall this figure shows that

the LIKF outperforms any of the noniterated filters. The MVF and the GSO give

about the same results, and the EKF gives the worst performance. In this example

the filters perform about the same in estimating the other state variables. Figure

4.2 shows the diagonal elements of the filter covariance Ptkk for the same example.

This graph shows that the covariance elements for the LIKF converge more rapidly

than those for the other filters. It can be seen from this example that at 20 dB

SNR the filter converges to its final state estimate within about 10 samples. Figures

4.3 and 4.4 show the estimation error and sample covariances, respectively, at 0 dB

SNR. These figures again demonstrate that LIKF generally outperforms the other

estimators, and that the EKF performs the worst. At 0 dB SNR the estimates

stabilize in about 12 - 15 samples for P0 = 0.04. This illustrates the suitability of

using these nonlinear filtering techniques for short data lengths.

Figure 4.5 presents the performance results of the three noniterative fiters as

a function of SNR for P0 = 0.01. Each point on graph represents the sample variance

of the estimation error over 500 simulation runs. The results of the Kumaresan-

Tufts (KT) method and fourth order cumulant (FOC) method obtained from [52]

are also shown. The Cramer-Rao bound is also shown. This bound is derived in

the Appendix. Figure 4.5 illustrates that all of the noniterative filters give similar

performance for PA = 0.01. The performance is very close to the CR bound, partic-

ularly at high SNR's. The results for the first sinusoid (wk, = 0.42 * 2r, akl - 0.2)

are slightly worse than those for the second sinusoid (W&2 = 0.52 * 21r, a• 2 = 0.1).

This is probably because the first signal has been damped significantly before the

filter has converged. The nonlinear filter results are significantly better than the KT
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and FOC results. However the KT method makes no assumptions about the noise

statistics and does not require initial estimates. The nonlinear filtering techniques

assume that the noise statistics are known a priori. Section 4.4 presents a technique

to estimate the noise statistics on line.

The results of the iterative techniques (LIKF, GIKF, EKFR) are given in

Figure 4.6. These results are slightly better than those for the noniterative filters

for SNR's above 10 dB, but slightly inferior for SNR's below 10 dB. Of course the

price paid for better performance is higher computational requirements. Among

the three noniterative filters the LIKF performs slightly better than the other two,

particularly at low SNR's.

As the initial covariance increases the filter performance degrades. This is

illustrated in Figures 4.7 and 4.8, where the mean squared estimation error as a

function of SNR is shown for the iterative and noniterative filters, respectively,

for P0 = 0.04. The higher order forms of the noniterative filters, the GSO and

the MVF, perform better than the EKF especially at high SNR's. This satisfies

intuition in that the second order approximations for the GSO and the assumptions

of Gaussian error distribution for the MVF should be more valid at high SNR's than

at low SNR's. Results for all filters are still better than the KT and FOC methods.

However again it must be emphasized that the KT method makes no assumptions

about the noise statistics or the initial estimation error.

Least squares-based techniques such as the KT method generally fall apart

at around 15 dB SNR due to the so-called threshold effect. A threshold occurs

whenever there are more than P zeros outside the unit circle in the singular value

decomposition process. One of the advantages of using filtering methods is that
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performance smoothly degrades as the SNR is decreased. That is, there is no sharp

dropoff in performance around the 15 dB point as there is with the least squares

approaches. However, there is evidence that there is some kind of threshold effect

in the filter performance. In Figure 4.7 the curves representing the estimation error

for the two damping coefficients (Figures 4.7(b) and 4.7(d)) change slope between

10 dB and 20 dB SNR. At 10 dB the slope changes back to be roughly parallel

to the CR-bound curve. As shown in the Appendix, the performance of the filters

has a lower bound represented by the statistics of the initial estimation error. That

is, the sample variance of the estimation error cannot be any worse than the ini-

tial covariance Po. This constrains the worst case performance of these nonlinear

estimators.

EKF-type algorithms have been known to diverge for poor initial estimates.

In some cases these poor estimates lead to poor filter performance due to the ap-

proximations made by 1' and 2 "d order Taylor series expansions. A test was devised

to detect situations with poor final state estimates based on the sample variance of

the time series generated by subtracting the estimated measurement, formed from

the final state estimates, from the actual measurements. This test is described in

Section 4.4. The test works best at high SNR's where the variance of the signal

plus noise is significantly better than the variance of the noise alone. The results

in Figures 4.7 and 4.8 are those which have passed this test. Figure 4.9 shows the

number of runs which passed the test as a function of SNR for each of the six fil-

ters for PO = 0.04. In general, more runs were discarded by the noniterated filters

than by the iterated filters. Among the iterated filters there is no consistent better

performer. The EKF discarded many more runs than any other filter. The MVF

and the GSO performed about the same - significantly better than the EKF, but
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worse in general than the iterated filters. The iterated filters not only discarded less

runs due to poor performance, but among those runs that were considered valid,

the iterated filters gave better overall sample variance.

4.3 Harmonic Retrieval in Colored Noise

Consider the case where the measurement noise is colored by the single pole

filter model
Uk = 7/k-luk-1 + vk-. (4.33)

where Uk is the measurement noise, and Vk is a zero mean white Gaussian noise

sequence with vk - N(O, Rk). The parameter -/k-1 is the filter coefficient. To

accommodate the colored noise state augmentation or measurement differencing

can be applied when 7-k-. is known. The complete derivation of the filter equations

in colored noise is given in [65]. The plant and measurement models for the colored

noise model are given by
Xk+l = Xk

(4.34)
Zk = hk(xk) + Uk

Here, xO, vo, and uk are mutually independent and Gaussian. We have xO

N(*ko, Po), and uo " N(O, Uo).

4.3.1 Colored Noise - Known Filter Coefficient

When the filter coefficient "k-j is known, a set of equivalent "derived" mea-

surements is obtained by subtracting -yk-1 z.-1 from (4.34) to obtain

ik = zk - "tk-lZk-I = hk(xk.l) - 7tk-lhk-l(xk-1) + vk (4.35)

where xk = Xk.-. The augmented measurement h is a nonlinear function of the

state with additive white noise.
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By applying the usual extended Kalman filter linearization of the measure-

ment equation, the filter equation

1kkik = *k-ijk_1 + K [izk - Hkxk-.lk-11 (4.36)

is obtained, where ilk = Hk - 7k- IlHk- and both Hk and Hk-. are evaluated at

xkk-llk-1. The filter gain and covariance propagation equations are now given by

= Pkl -lHiT(H!IkPk-Iklk + Rk)- 1

(4.37)
PkIk = (In - KkIIk)Pklk-I.

The initial conditions for this estimator are given by

E[xol = 0o + Var[xo]HOT[HoVar[xoJHWT + Rol-'[zo - Ho o1
(4.38)

Po = Vartxo] - VarfxojHoY[HoVarfxoIHoT + Ro]-HoVar[xo]

4.3.2 Colored Noise - Unknown Filter Coefficient

If the filter coefficient yf is unknown, the state vector can be augmented to

include the unknown parameter 7k. The augmented state vector is defined as

rXk
• -.(4.39)

Hk is then defined by

S= O&(x&)" °LkX k• (4.40)
Let ).k)(k=k-=ck-t

Let gk(kk) = -ykhk(xk), such that
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G Ogk(xk) (4.41)

Xk=XkI 1k-l

If 1k = Hk - Gk-1 then the filter equations are given by

Xklk = Xk-ilk-i + Kk[ik - -IkXkk-llk.-1

Pkjk = (I, - KkHk)PklkI (4.42)
K "Pi-I -T - - -r

Kk=P,,I- 1Hk,(HkPkk,1 AHk -+ Rk)- 1 .

4.3.3 Experimental Results for Estimation in Colored Noise

The EKF was used to estimate the model parameters of (4.6) with colored

noise given by model (4.33). The simulation results from 500 Monte Carlo trials

are rresented in Figure 4.10 for initial uncertainty Po = 0.041. The filter coefficient

is 7k-i = 0.8. Results are shown in this figure for case of known and unknown

7k. The solid lines in the four plots show the white noise CR bound, which is not

applicable in this case, but is included as a reference. Figure 4.10(d) shows the

EKF performance when the filter coefficient is unknown and estimated along with

the model parameters. Due to the frequency response of the colored noise filter

one would expect the estimates for the first sinusoid to be slightly worse relative

to the white noise CR bound than for the second sinusoid. That is, the gain due

to the colored noise filter at the frequency of the first sinusoid is higher than that

at the second sinusoid. This is verified by Figure 4.10. This figure also shows that

the estimation results of the model parameters when the coefficient 7k-i is unknown

and is estimated on-line, are only slightly inferior to the results when tk-.I is known.
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4.4 Estimation of the Measurement Covariance

In many situations of practical interest, the measurement noise R is un-

known. In the following development it is assumed that the measurement noise is

stationary over all of the measurements and that the states are constant. An initial

estimate of the noise JO is used to initialize the filter. Given the measurements

Zk = (zI;z2; ... ;zk), Rk can be estimated by taking the sample variance of the

innovations error at each iteration of the filter. Let S& be defined by

Sk = E[ikiT]
(4.43)

= HkPklkI&.HT + Rk.

Given Hk and Pklk-1 an estimate of Sk is required in order to obtain an estimate

for the measurement noise Rk. Let Ok be the matrix of estimates

Ok = [hl(xl)1xI=*kkt 1 ;h 2 (x2)Ix2='kl-1p ; ... , ; hk(x&)Ixk=klp,_] • (4.44)

()k and Zk are m by K matrices where m is the number of elements in the

measurement vector, and K represents the total number of time intervals. Let the

innovations error matrix be defined by

Ek = Zk - eO, (4.45)

and let eki be the Oh row of Ek. Assuming that the innovations are zero mean, an

estimate of the ijt' element of Stk can be obtained using the sample variance

1 T
Khi = _-eri (4.46)
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The measurement variance can then be estimated using

Rk = St,- HPt, k -1 (4.47)

In the situation where the Pklk-1 is equal to zero, that is when the estimates

are perfect, the parameter sii gives the sample variance of the measurement noise.

The statistic (K - 1)&,ij is chi-square distributed with K degrees of freedom. The

chi-square distribution, represented by the sample variance statistic, has a 99.9%

probability of being less than or equal to 2oa2 for K = 50, where a2 is the variance of

the measurement noise. The statistic ýkij can be used as a way to detect poor state

estimates. A reasonable criterion is to reject the estimate as probably bad if ýkij is

greater than 2o"2. This criterion works very well at high SNR's where the variance of

signal plus noise is significantly different from the variance of noise alone. However,

at low SNR's the variance of signal plus noise can be close to the variance of the

noise alone and this test does not work as well.

4.4.1 Experimental Results - Unknown Noise Statistics

Experimental results of the extended Kalman filter with unknown noise co-

variance are shown in Figure 4.11. This figure gives two sets of curves. One set

shows the filter performance with one pass through the data. During this pass the

noise statistics are estimated at each iteration using equation (4.35). The initial

noise covariance was estimated &2 = 0.05, corresponding to 10 dB SNR, for all

points on this curve. The second curve shows the results of processing the data

with two passes. During the first pass the noise is estimated as in the first case.

During the secon i pass the noise covariance estimate is held constant at the final

value from the first pass and the data is filtered using the normal extended Kalman



119

filter relations. For this second pass the initial state covariance is reset to 0.04.

The initial state estimate for the second pass was equal to the final state estimate

from the first pass. The results show that the two-pass filter performs significantly

better than the single-pass filter, particularly at high SNR's. At low SNR's the two

filters result in about the same performance. Comparing Figure 4.11 to Figure 4.7

the two-pass filter with initially unknown noise statistics results in about the same

performance as the (single-pass) extended Kalman filter with known noise statistics.

4.4.2 Experimental Results - Single Sinusoid

A study was also performed on a single sinusoid model. This model was

formed by letting P = 1,ck& -= 1, ak, = 0. 12 ,wk, = 0.22*2w, and 0k, = 0 in equation

(4.6). The unknown random parameters in this system were akl and wkl. The

sample variances for all six of the filters is given in Figure 4.12 for initial estimation

error variance PO = 0.09 for both state variables. Figure 4.13 presents the sample

variance for the model with initial estimation error uniformly distributed between 0

and 2w for the frequency, corresponding to no a priori information, and with initial

estimation error uniformly distributed between 0 and 1 for the damping coefficient.

The results are similar to those in Figure (4.12) for high SNR, especially for the

LIKF. However, for low SNR the performance is significantly worst in (4.13) than

in (4.12). These results satisfy intuition in that whenever there are less parameters

to be estimated the filter can sustain larger initial estimation error.

4.5 Conclusion

Methods based on nonlinear recursive filters for estimating the parameters

of exponentially damped sinusoids in white and colored noise have been described.

Filter equations have been developed for time varying systems in white and colored
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noise with known and unknown noise covariances. Simulation results for the prob-

lem of estimating the parameters of two exponentially damped sinusoids show that

the nonlinear filtering techniques described perform very close to the Cramer-Rao

bound, even at low SNR's, for relatively small initial estimation errors. For larger

values of the initial uncertainty on the model parameters the iterated forms of the

extended Kalman filter give better performance than the noniterated forms. Among

the noniterated forms the Gaussian second order filter and the minimum variance

filter give comparable performance, and both perform better than the extended

Kalman filter, particularly at high SNR's. In addition these two high order filters

are generally more stable as evidenced by the number of final state estimates that

passed the noise discriminator test. The extended Kalman filter has been shown to

give good results in colored noise with known and unknown noise filter parameter.

A technique has also been developed for on-line estimation of the measurement noise

covariance.

In summary the following general observations can be drawn about the per-

formance of nonlinear filters for harmonic retrieval:

* The nonlinear filters incorporate a priori knowledge about the state. The

KT method has no inherent capability to use a priori knowledge.

* As with the KT method the nonlinear fiter method approaches the CR bound

at high SNR's. However, the performance of the nonlinear filters does not

degrade sharply in the range of 10 to 15 dB as the performance of the KT

method does. Worst case performance of the nonlinear filters is bounded by

the initial error covariance.

* The nonlinear filters can estimate parameters in colored noise. The KT



124

method is not designed to operate in colored noise.

* The filters converge relatively fast, making the nonlinear filters suitable for

short data lengths.

* The nonlinear filters are recursive in nature, thereby providing adaptability

to time varying parameters.

* The primary disadvantage of the nonlinear filter methods is that they may

require good initial estimates to converge to a valid solution. The KT method

does not share this problem. However, the multi-filter resolution approach,

which is defined in Chapter 5 and implemented in Chapter 7 for time delay

estimation, can be used to accommodate poor initial conditions by parti-

tioning them into smaller intervals of uncertainty and applying joint detec-

tion/estimation techniques for resolving ambiguity.

* Another interesting approach to performing harmonic retrieval in with large

initial estimation error would be to use the KT method to initialize the

nonlinear filter. The nonlinear filter would then be to refine the estimates.
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Chapter 5

Joint Detection/Estimation

This chapter presents a procedure for combining detection and estimation

theory. This procedure is used in subsequent chapters for selected signal process-

ing problems. Two general applications of joint detection/estimation theory are

addressed. In the first application the nonlinear measurement model is constant,

but the initial estimation error is large enough such that the approximations made

by nonlinear estimators such as the extended Kalman filter may lead to very poor

performance. In this case the a priori pdf can be partitioned into M smaller subre-

gions. Each subregion is associated with a hypothesis and the problem is treated as

an M-ary hypothesis joint detection/estimation problem. In the second application

the measurement model is unknown. Again, several hypotheses are proposed. Each

hypothesis is associated with a different model. For each model the state variables

are estimated on line. This operation is performed concurrent with estimation the

a posteriori probability of each hypothesis. The states are not constrained to be

common among the models. A third application involves a combination of the other

two applications. This chapter presents the general technique for applying joint

detection/estimation theory to these applications.

The traditional estimation theory approach to solving parameter estimation

problems involves starting with initial estimates of the state variables and refining

these estimates by filtering the measurement data. The performance of the filter is

governed by the statistics of the process and measurement noises, and by the process

and measurement models. Filters such as the Kalman filters may exhibit unstable

behavior. For nonlinear process or measurement models the approximations result-
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ing from truncated Taylor series expansions used in the implementation of the EKF

may also lead to poor performance. It is well known that under certain conditions

the extended Kalman filter may give poor results due to the approximation made

with the first order Taylor series expansion. This is particularly evident when the

initial estimation error is large. This problem is discussed in the context of the

harmonic retrieval problem in Chapter 4.

M-ary detection is used in a number of practical signal processing prob-

lems. One example of this type of detection is ambiguity function processing for

radar/sonar signal processing. This process involves the convolution or matched

filtering of a received signal with a number of signal replicas. Each replica has a

different estimate of the unknown states (e.g. amplitude, delay, Doppler shift). The

replica that results in the largest value of the ambiguity function is chosen is used

to determine the state estimates. Autoregressive model order selection may also be

treated usiig M-ary detection theory where the M hypotheses correspond to all of

the combinations of a discrete set of frequencies. These two problems are addressed

in Chapters 6-8 of this thesis using the joint detection/estimation approach which

is presented in this chapter.

The joint detection/estimation (JD/E) approach combines M-ary detection

with estimation. The distinction of JD/E over pure M-ary detection is that the

estimates are refined for each hypothesis. JD/E may permit the use of a smaller

number of hypotheses than detection only since the hypotheses are continuously

refined through estimation, which is performed concurrently with the hypothesis

testing. Alternatively, one may use the same number of hypotheses as the detection

only problem, but by refining the estimates through filtering, better estimates may

result. A major reason for using JD/E in nonlinear filtering problems is to reduce
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the effects of large initial estimation error on the truncated Taylor series expansion

used in the EKF.

In this chapter a recursive technique for joint detection/estimation is de-

veloped based on nonlinear state and measurement models. The objective is to

develop a procedure that results in an optimal minimum variance estimate for the

state variables for each hypothesis and, given this optimal estimate, to select the

proper hypothesis which most closely matches the measurement data.

The development of the joint detection/estimation is based on the segmen-

tation of the unknowns into a state vector xk and a parameter vector 0. Let 0 E e
designate the parameter vector that describes the different models that may have

generated the measurements. Each model is identified with a specific hypothesis,

and corresponds to a unique 9, 0 E E. The set 0 is assumed to be countable (in

our application also finite). In addition, the parameter vector 0 is assumed time

invariant. The development of the joint detection/estimation presented here follows

a similar procedure to that presented by Fredriksen et a& [58]. However, these au-

thors combined the state vector xk and the parameter vector 0 together into one

state vector that was used in the estimation process. In addition, it was required

that all of the variables in the augmented state vector be energy variables. In the

development that follows a distinction is made between the state vector Xk and the

parameters 0. The state variables are the same for each hypothesis, while the vector

0 is used to distinguish between the various hypotheses. There is no restriction on

the state vector xk. The parameter vector 9 is assumed to be time invariant. Under

hypothesis HO the discrete time measurements are modeled according to

H :Zk = hk(xk,0) +vk,, (5.1)
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where the state xk is common for all 0 E e, and satisfies the discrete time process

equation

Xk = fk-1(xk-1,8) + wk-l,e (5.2)

with initial state estimate *010,o, and initial state covariance P010,. The initial

state estimate, the measurement noise, and the process noise are uncorrelated up

to the moment order required by the implemented filter (e.g EKF or EHOF). The

process and measurement noise are zero mean and distributed with covariances

E[wk,ewTe] = Qk,e, and E[vkevk',O] = Rk,.

The model structure in (5.1) and (5.2) is similar to the traditional state and

observation models with the exception that an unknown time invariant parameter

vector 0 is used to distinguish between the various hypotheses. This model structure

is designed to accomodate a large class of process and measurement models. The

only restriction is that the state vector is the same for each hypothesis. Note,

however, that not all of the elements of the state vector xk are required to be

estimated under each hypothesis.

It is assumed that 0 has known probability density function p(9). The vector

0 is required to contain coefficients of a sufficient set of energy parameters (e.g.

amplitude, time duration) such that the null hypothesis is indicated whenever this

set of parameters is equal to zero. Although it is not mandatory that all of the

parameters in 9 be zero to indicate the null hypothesis, it simplifies the discussion

of the method. Thus, under Ho, So = 0, and h&(xk, 00) = hk(Xk, 0) = 0.

5.1 A Bayes Test for Joint Detection/Estimation

The Bayesian approach for optimum detection involves the minimization of
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the average decision cost over all possible decisions under all possible hypotheses.

Let Zk =- {zl, Z2, -.. z-1}, be the collection of measurements that are functions of the

time varying state variables Xk, and the unknown time invariant parameter vector

0. The total average cost, or Bayes Risk for joint detection/estimation, of making

the decisions Dj associated with hypotheses Hj, j = 0,-.-, M can be expresses as

RD&E = E JR. J C,(xk)p(zk, Xk, OlZkl)dOdxkdz_ (5.3)

where Cj(xk) is the cost of making decision j, and p(zk,xk,0lZk-1) is the

density function of all of the random parameters in the system, given the measure-

ments up to k - 1. The goal is to find the estimate iklt that minimizes the total

average cost. By conditioning the decision probability on the past measurements a

recursive technique for joint detection estimation can be developed.

If the cost Ci(.) is not a function of the state xk (i.e, the detection only case

[751), then Cj can be moved outside of the integral and the risk becomes

M
R E CjP(DjIZ4-i) (5.4)

j=0

where P(DiAZk-I) is given by

P(D, IZ-.. =. JR JJ P(Zk., Xk, OlZk-_)dOdxkdzk (5.5)

By applying Bayes rule to the joint density function in (5.3), the Bayes risk for joint

detection/estimation can be expressed as

M

R*D&EV = JR LJJf Ci(x& )p(zk IXk, O)p(X& IZk-1, O)P(PJZk-.I )d~dXkdZk (5.6)w e-O

where p(Zk Jxk, 0) = p(Zk I iZk 1, Xjk, 9) because of the Markov noise process in (5. 1).
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That is, it is easily seen from (5.1) that if the Xk, and 0 are known, then the density

function for Zk is a function of the measurement noise vk only. Let the parameter

space spanned by 0 be discrete such that it can be characterized by a finite number of

quantized points. Then the a priori probability density of 0 given the measurements

Z•-I can be expressed as

M M
p(•IZk_1) E P(OIZk-)P,(IZkl) E PAP(iZk.)56(O - 8i) (5.7)

i=fi i=O

where P(0i]Z I_.l) is the a priori probability of hypothesis Hi given the measurements

Zk-1. Thus, P(0iZk-I) can be used in place of the more conventional P(HijZk-1)

to demonstrate the explicit dependence of each hypothesis on the parameter Vi. The

hypothesis Hi then corresponds to

Hi : Zk = hk(Xk, O9) + Vk,Oi (5.8)

Given the measurements Zk- 1 , the cost associated with hypothesis j [75, pp.

140-1411 can be expressed as

M P( OijZk.._l)pi(BOZk..1)

C,(Xk) E Cii(ikjk, Xk) - 9Z&s=0 poz-i-_O (5.9)
M P(OilZk-1)6( - 00)

= tCji (iklk, Xk) (Il
i=0 (14 1

where Ci(.) is the cost of deciding Hi given Hi is true. Substituting (5.9) into (5.6),

the Bayes risk becomes

M M
RD&E = E~ J P(OiIZk.-.). i(•klk,xk)p(zkIXk, Oi)p(xklZk-1, Oi)dXkdzk

triO iffi

(5.10)

The risk associated with deciding hypothesis Ho, the null hypothesis, is found by
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evaluating (5.10) for j = 0. Noting that if the decision regions are disjoint, then

Ro = R - 14=1 Rj, and this risk becomes

M
Co(xk)P(DoiZk.-) = , J ] P(OiiZk- 1 )Coi(Xk)p(ZkLxk, Oi)p(XlZk-h,)ildxkdzk

i=0 R

M

- IJR J P(Oi]Zk-I)COi(Xk)p(zklxk, Oi)p(xklZk- 1 , 0i)dxkdzk

-- EiO•Mf -1YRj /P(OdlZk-1)Coi(Xk)

x p(zklxk, O)p(xklz4-1, Oi)dxkdzk
(5.11)

where the explicit dependence of Coi(xk) on x*kik has been removed because

an estimate is not required whenever hypothesis Ho is decided. Using the result

(5.11) in (5.10) the total risk now becomes

M

RM&E = 2, J J P(O9 I4-1)Co(X)p(z& Ixk, ei)p(xkZA-1, 0i)dxkdzk

+ E fR J P(IlZ.-1) [Cu,(*klk, xk) - CO,(x&)(

jfil i=fi

x p(zklxk, Oi)p(xkIZk-_1, Oi)dxkdzk

Under the null hypothesis Ho, the cost is not a function of xk. Thus,
Cjo(*klk, Xk) = Cjo(kllk). In addition, Coo is neither a function of kklk nor of

Xk. Furthermore, under the null hypothesis, p(zklxk, 0) = p(z&• 0o). That is, the

density function for the measurements is not a function of the state variables. This
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leads to
P(OolZk-I) ICjo(:klk) - Coo] p(zklxk, 00)P(XklZk-l, 00)dx& -

P(9oIZ4-1) [Cu(iklk) - CooiP(zk1Oo)

(5.13)

By defining the likelihood ratio

L,,(Zk) - P(i Z14- 1) f[Coi(xk) - Ci(*klk, Xk)1 P(zk jxk, e,)P(xk 1Z-1,, i)dXk
P(0oZ&4-1) [C.o(x:ki) - COO] p(zk10o)

(5.14)

the Bayesian risk can now be expressed as
M

RD&E = E JR J P(OilZk-_)Co,(xk)P(ZklXk, O,)p(xklZk-1 , O0)dxkdzk
i=0 ..

"+ filj P(0o4Zk-1) [Cjo(*klk) - Coo]P(ZkIOo) [1--__Lji() dzk

(5.15)

The first term on the RHS of (5.15) is constant. Hence, it does not contribute

to the selection of the decision boundaries. It is assumed that the cost making a

wrong decision Cji(ikXk,Xk), j 3 i, is greater than the cost of making a correct

decision Ci(*klk, xk). Since all probabilities and density functions are positive or

zero, P(OoIZk.-.) [Cjo(kkl,) - Coo]p(zkI1o) >_ 0. Thus, the decision is made in favor

of hypothesis Hj based on the selection

j= argminj {[CjO(ilk) - Coo] [1 - Y iiL(z,)]} (5.16)

This decision rule is based on the fact that the estimate kkik is optimum.

The second part of the joint detection/estimation procedure is to find the

optimum estimate. The optimum estimator, given that decision Di was decided
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after the first stage, will be denoted :k* and is determined by finding the value that

minimizes the total average cost in decision region Rj. That is, k*l is determined

from the condition

minxklk J P(OoIZk-1) [Cjo(*klk) - CoolP(z&kIo) I - Lji(zk) dzk. (5.17)

The exact form of the optimum estimator is a function of the type of cost function

Ci,(5 klk, xk).

5.1.1 Quadratic Cost Function

Consider the case where the cost is a quadratic function of the estimation

error. The quadratic cost is expressed as

Cji(*kjk, Xk) = bji + Cii [xik - Ikjk ]Tlxk -41k] (5.18)

The cost includes the term bji which represents the conventional cost associated with

the problem of detection only, and the cost cji which accounts for the estimation

error. The cost of deciding hypothesis Dj given hypothesis Ho is related to the

estimate only and

Coo = coo

Co,(Xk) = bOi + COixjxk i #0

Cjo(•*&l) = bNO + CjoXkltk-kl j (. 0

Cji(4jj;, Xk) = bip + cii [xk - Xkikl][xk - iktk] 3 # Oi # 0

Using the cost function (5.18), the integral in (5.17) can now be expressed as
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Ij = P(OO IZk-1) p(zk 10o) G(zk, iklk)dzk (5.20)

where

M
G(Zk,xkkk) = Y P(0ulZk-1) f[b1 , - boilp(zklxk,Oi)p(xklZk-l,0i)dxk

i-_o

+ E P(OIZk-l) J[cii - Coil [Xk - *kikrT[xk - Xiklk(5.21)

/=0

X P(Zk 1Xk, 0i)P(Xk 14-1, 0iddxk

The first term on the right hand side of the above equation is independent of :kklk and

can be excluded from consideration in determining the optimum estimator. Since

it is assumed that the cost of making a wrong decision is greater than the cost of

making a correct decision (cji >_ cis), G(zk, kklk) is always positive or zero. So if the

integrand is minimized then the integral will also be minimized and the optimum

value of *kl* is found by differentiating the integrand with respect to the estimate

and equating it to zero.
OG(z& ^ 1" ) = 0 (5.22)

akik XI kl!~k=kk

Carrying out this minimization the optimum value of the state given hypothesis Hi

is determined from

M•[cji - coi] P(O9iZk-l) f[xk - 4iklP(Zklxk,Oi)p(xklZk-1,0s)dxk = 0 (5.23)
i=O

which gives

io= o[ci, - coi] P(OilZk-) f x, p(zk lx, Oi)p(xk lZk-, Oi)dxk (5.24)

xkk = E I fo [Cji - COi] P (OilZ k- 1) f p(z k 1x k, Oi)p(x k IZ k-1, Oi)dx '

It is observed that no estimation is performed under hypothesis Ho. Thus, the
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density function P(XkIZk-.1, Go) is equal to zero, and

[Ci- coiI P(OoIZk....) J XkP(ZklXk,0o)P(XktZk...l~9o)dXk = 0. (5.25)

Using this result in (5.24) yiclds

M
Xk~k i (ZL'(k)*klik,Oi (5.26)

where

riZk [Ci, - co,1P(9,tZk....) f p(zk IXk, Oi)P(Xk IZk..., Oi)dXk (.7
r,(z&)j~ - C~m]P(Gmn) f P(Zk tXk-,Gm)P(Xk 14-1, Om)dXk (.7

and

Xkkk,Oi - f XP(ZkIXj, G,)P(XkIZk...., 9)dXk (5.28)

From Bayes rule

P(Zk IXk, Oi)P(XklZk..1, 9,) = P(XkIZk, G,)P(ZkIZk.-l, 00), (5.29)

and :klko becomes

Xkklk,Oi f XkP(Xk Pk, Oi)dXk (5.30)
f P(XklZk,Oi)dXk

This is the mean of the a posteriori density function Of Xk given the measurements

Zk and hypothesis H,. If it is now assumed that

[Cii - COi, [Cki - CO,1 0 < i,j,k <M (5.31)
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that is, the cost of all errors is the same, then (5.27) becomes

=ik P(OIlZk-_) f p(xk IZk, 0,)p(zk IZk-1, Oi)dxk
,(z&) I-oEM P(OGmZk-1) f p(xkIZk, Om)p(zklZk1l, Oe)dxk (5.32)

P( OilZk--l) p(zk 1Z4-1, 00)
= •=o P(0.1A-A P(z~Zk 1-1,On)

The denominator is the marginal density of zk given the measurements Zk-1, and it

can be shown ([77], p.85 ) that ri(zk) = P(MiZk), the a posteriori probability of 0i

given the measurements Zk. This gives the recursion for the a posteriori probability

of hypothesis Hi as

P(VIZk) = P(OiIZk.-.)p(ZkIZk-1,0i) (5.33)

P(zklZk...-1)

Substituting the likelihood ratio

Ai~zk) =p(zk IZk...1, 0,) (-4
A,(Zk)_ =o,)(5.34)

P(ZklZk-1,0o)

into (5.33), the a posteriori probability becomes

P(OiZ&) = P(ouIZ.-,_) Ai(zk) (5.35)P(01Zk =E L=P(OnjZk-1) Am(Zk)

Under the conditions (5.31) the optimal estimate becomes

M
1k~l = • P(,IlZj) ctlt,e,. (5.36)

i--

So the optimal estimate is the sum of all of the conditional means weighted by the

a posteriori probability of each hypothesis.

Equations (5.35) and (5.36) are verified by Lainiotis [59] for Gaussian dis-

tributions. The implementation of the above procedure involves the operation of
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several extended Kalman filters in parallel - one filter for each possible value of the

parameter Oi. In addition to estimating the state :klkOi at each iteration of the

Kalman filter, the a posteriori probability of O, P(MilZk), is also propagated. The

optimal mean square estimate Xklk of xk is the integral over all values of Oi of the

estimates from each of the filters weighted by the a posteriori probability of each

value of Oi.

The error covariance Pkjk is given by

/kik = E {[Xk - iklk][Xk- xkkl]rIZk} (5.37)

which can be determined from the relation

Akk = I E {[xk - kkI k][Xk - *klkITlZk,,0} p(OlZk)dO. (5.38)

Substituting (5.7) gives

M
Pklk = 7 E {[xk - *kit][xk - Ik]TIzko,} P(OIZk)

i=1

M
S [E {[Xk- xklk,Oi[Xk - Xklk,,i]Tzk, O}

=15.39)

+ [Xkik - Xkkk,Oi]IXkkk - Xkk,OiT]J P(0,IZO)

M

iEil [PkAe + APkikej P(eaZ)

where it is noted that Pkjk is not defined under hypothesis Oo. PklkOi is the usual

variance which is recursively computed by the Kalman filter under hypothesis Hi.

APkjk,9, represents the price of model uncertainty. It represents the performance

degradation, or additional error, due to the fact that the model, characterized by

0, may not match the actual system that produced the measurements.
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The estimator in (5.36) is the weighted sum of least squares estimators with

the weights being the a posteriori probabilities of the various hypotheses. Becaus-

the cost of incorrect decisions is the same regardless of the decision, this estimator

is independent of the decision.

5.2 JD/E for Systems in Gaussian Noise

For the measurement model (5.1), if the process and measurement noise are

assumed to be Gaussian, the density function p(zk 1O0, Zk-1) used in (5.33) can be

expressed as

p(zklZk I, ,) = ISklk-I,9 1 -i1 exp {--12 ikjkl-,OSklk-I, ,, 1 -Tl (5.40)

where

iklk-I,Oi = zk - hk(:ikIl*.,Oi, di) (5.41)

and

Sklk-IOi = Hk(kklk-l,ei, Oi)PklIkl,eiHk(*klk.l,,,,e0,)T + RkD, (5.42)

with
Hk (*k•lk.l,e, 08) = Oh•(xk, f ,) (5.43)

"OXk Ixk='kjk..-I,#

The a posteriori probability (5.35) now becomes

=(Oilzk P(0iZk.-.)ISklk-I,, il-exp I- 2Zkik- -.,OiSkl I-.,I klk-9,4i}-½ 1 - -1 -TST

EM=o P(OeIZk-1)ISkIjk-1,0. exp {-2ikl,_ kSkkl mkl Gus}

(5.44)
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5.3 JD/E in Non-Gaussian Noise

Two non-Ga.,ssian distributions that are be of interest in subsequent chapters

are the Weibull and lognormal. The high order filter, developed in Chapter 3, is

used to perform parameter estimation in non-Gaussian noise. In the case of Weibull

measurement noise, the a posteriori pdf, given the estimate *kjk_1,Oi, can be updated

as follows for a scalar measurement model zk

1~~~ Ikk..19 +kk-, +u _________

PN(4klZk4-,1) = a-- exp{- (5.45)

The parameter a is a known constant that controls the skewness of the distribution.

When a = 2 the Rayleigh distribution results. pw is the mean of the noncentral

Weibull distribution. The nil noncentral moment of the Weibull distribution is

given by

E[ZkkIO_+w" (a + n)w (5.46)
a

where r(.) is the Gamma function. Since E[zkjk-.1,O] = 0,

pw = r aW (5.47)

The variance of ikjk-1,Oi is given by

Sklk-1,Oi = E[k•k-1,0j]

=d2 +2 ,(!_+1\ 2 ] (5.48)[( a

Given the the parameter a and the variance ISklk-1,ei, oa can be found from (5.48),

and pw can subsequently be found from (5.47).

If a scalar error ikkj-1,*, is centrally distributed according to the lognormal
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distribution, its density function is updated by

-I- Il(kkle + _,)- )2
PI(ZklZk-1, 9 i) = - + {-¾(xn(pklk.1 + -)

(5.49)

The mean and variance of the lognormal distribution are

piP(.50 + P
(5.50)

exp(-y + o1/2)

and
Sklk-1,Oj = E (5.51)

= exp(2,y + 2oa?) - exp(27 + od)

Thus, given the variance Sklk_],Oj and the parameter -f for the lognormal distribution,

al can be obtained from (5.51), and pi can be subsequently obtained from (5.50).

5.4 JD/E with Model Uncertainty

Consider the situation in which several different hypotheses are to be eval-

uated where the measurement model for each hypothesis may not be a function of

all the elements of the state vector xk. For example, let xk consist of two subvec-

tors Xlk and X2; , such that x -- [xT : xT IT. Furthermore, let the measurement

equation as a function of ,i = [il (ti,]T be given by

Hi zk = hk(xk,08i) + vk
(5.52)

= t0ihlh(X1k) + t0i2h 2k(x2k) + Vk

Thus hk is segmented into two separate models, hlk and hil. Each model is a

function of a subset of the state xk. Let us consider four hypotheses. Under hy-

pothesis H0 no signal is present. Under hypotheses HI and H2 , signals hik and

h2k are present, respectively. Hypothesis H 3 represents the situation where both
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signals are present. The possible values of the parameter vector 0 corresponding to

the four different hypotheses are given by Po - [00]T, 81 = [101T, 02 - [011T, and

00 = [1 1 ]T. The goal is to find the model that best fits the received data Zk. For this

situation it is not proper to use the optimal estimate represented by equation (5.36)

since all state variables cannot be estimated by each model. Under these conditions

the maximum a posteriori (MAP) decision rule is used. The model Oi is chosen

such that P(AIZO) = max{P(0j; j = 0, ... , M}, where M + 1 is the number of

hypotheses, including the null hypothesis. Note that for the example given above,

if HO is chosen no estimate is required. If H1 is chosen, then Xlk can be estimated.

If H2 is chosen, then X2k can be estimated, and if H3 is chosen,the full state vector

Xk is estimated. Chapter 6 uses MAP estimation to perform model order selection

for a system of sinusoids in Gaussian and non-Gaussian noise.

If the dimensionality of the state vector is different between models, or if

state variable assignments are different between the various hypotheses, or if some

of the state variables are unobservable between models, then the optimal estimate,

represented by equation (5.36) no longer applies. That is, if not all variables can be

estimated under each hypothesis (i.e. under each model), then it is not proper to

form a combined estimate by summing the estimates from each model weighted by

the a posteriori probability of each hypothesis.

5.5 JD/E with Uncertain Initial Conditions

Joint detection/estimation theory may also be applied to systems in which

the measurement model is the same among all of the hypotheses but in which the

different hypotheses are used to distinguish different sets of initial conditions. This

can be very useful for nonlinear estimation problems since it is well known that
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the performance of approximate estimators such as the extended Kalman filter is

susceptable to errors in the initial estimates. This is due primarily to the first order

Taylor series expansion used in the filter.

Consider the scalar case in which the initial estimation error on the state

variable is uniformly distributed in [-w/2, w/2] with mean i0-o. Let the width of

the uniform distribution be w. The initial variance is p010 = w2 /12. Now consider

the situation in which two models are used for the initial conditions, with each model

accounting for one half of the uncertainty in the original model. In the first model,

represented by 01, the initial estimate has mean zOO,&I = :010 - w/4. This mean is

in the center of the left half of the original distribution for ^010. The width of the

uniform distribution for model 1 is w/2, and the initial estimation error variance is

P010,0 1 =- w2/48. Similarly the mean and variance of the initial estimation error for

model 2 are X010,02 = i01o + w/4, and Polo,02  w2/48.

For this example let 01 = -1, and 02 = 1. The two hypotheses can then be

represented as
Hi ,z = hk(Zk) + Vk

X0ol,6i = i.Olo + Ojw/4 (5.53)

Polo,.i = w2/48

With this model the performance of the extended Kalman filter is likely to

be significantly more stable, as the initial estimation error variance is reduced by a

factor of 4 compared to the original model. Since the state variables are the same

for each model the optimal estimate described by (5.36) can be implemented. The a

priori probabilities P(Oi) are obtained by integrating the original initial density func-

tion over the limits used to partition the initial error into the separate hypotheses.
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For the example given above P(01) = P(0 2) = 0.5.

This procedure could be particularly useful whenever the density function

for the initial estimation error is multimodal. A filter could be constructed for each

mode of the density function thereby greatly reducing the initial error variance.

As the number of partitions increases the joint detection/estimation problem

becomes one of detection only. That is, the initial estimation error becomes so small

that the implementation of the filter does not improve the estimate. Thus there is

a tradeoff between estimation accuracy and the computational burden imposed by

the implementation of several extended Kalman filters in parallel.

Chapter 7 uses joint detection/estimation for estimation of radar/sonar signal

parameters in which the measurement model is the same for each hypothesis, but

the initial estimates of the time delay and Doppler shift distinguish the hypotheses.

5.6 JD/E with Model Uncertainty and Uncertain Initial Conditions

The two estimation procedures discussed in the previous two sections can

be used together to perform multiple hypothesis testing and for each hypothesis to

have several sets of initial estimates. An application of this is given in Chapter 8

where radar/signal parameters are estimated from multiple sensor measurements.

5.7 Summary

A general procedure for joint detection/estimation has been presented. It is

shown that this procedure may be used to segment the initial conditions of a estima-

tion problem effectively controlling unstable behavior that characterizes nonlinear

filtering techniques such as the extended Kalman filter in the presence of large initial
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uncertainty. It is also shown that the joint detection/estimation procedure can be

used for estimation problems with model uncertainty. In the following chapters this

procedure is applied to specific signal processing problems.
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Chapter 6

Joint Detection/Estimation for Model Order Selection

This chapter presents a general approach to determining the number of si-

nusoids present in measurements corrupted by additive white Gaussian and non-

Gaussian noise. The approach involves the simultaneous application of maximum

a posteriori (MAP) detection and nonlinear estimation using either the extended

Kalmnan filter when the noise is Gaussian, or the extended high order filter (EHOF)

when the noise is in non-Gaussian. The problem is formulated as a multiple hypoth-

esis testing problem with assumed known a priori probabilities for each hypothesis.

Each hypothesis represents a different measurement model. The unknown parame-

ters for each model are estimated recursively along with the a posteriori probability

of the hypothesis. The general technique for joint detection/estimation is presented

in Chapter 5.

Other order selection methods [60 - 62] take the form of a function of the

hypothesized number of parameters which penalizes over-estimation of the actual

number of parameters when added to the log-likelihood function. A technique de-

scribed Fuchs [63] uses eigenvector decomposition of the estimated autocorrelation

matrix and is based on matrix perturbation analysis. In all of the autocorrelation

techniques the additive noise is assumed to be Gaussian. Rao and Vaidyanathan

[641 use cumulant based approach to estimate model order in non-Gaussian noise.

In contrast to these methods, the technique used in this chapter is based on Bayes'

theorem. The advantage of this technique is that it can be used in both Gaussian

and non-Gaussian noise. It is completely general in that it applies to arbitrary

density functions.
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A typical method for determining the number of sinusoids present in a re-

ceived signal is to form a model using all of the bins in the FFT as the maximum

number of sinusoids present in the signal. If it is assumed that there is one sinusoid

present in the measurement, then the number of hypotheses to be tested is N (the

number of bins in the FFT). If there are two sinusoids present, then N!/(2(N - 2)!)

hypotheses must be tested. If it is unknown whether one or two sinusoids are present,

then N + N!/(2(N - 2)!) hypotheses must be tested. The obvious disadvantage of

this approach is the exponential computational complexity in testing all hypotheses.

In addition, the resolution of the frequencies is limited by the bin size of the FFT.

The method used in this chapter assumes that, if one sinusoid is present,

then the estimates of the amplitude and frequency are known within some known

mean and variance, that is, the distribution of the initial estimation error is assumed

to be known. The procedure also allows for time varying variables (not allowed in

the FFT method).

Simulation results are presented for the estimation of up to four sinusoids

in white Gaussian, and non-Gaussian noise, when the actual number is two. In

Gaussian noise the extended Kalman filter is used to perform estimation. In non-

Gaussian noise the high order filter (EHOF) developed in Chapter 3 is used to

perform estimation.

6.1 Joint Detection/Estimation Applied to Model Order Selection

The problem of model order selection can be cast into the framework of

joint detection/estimation with model uncertainty. Section 5.4 describes the gen-

eral solution for joint detection/estimation problems with model uncertainty. Con-

sider the situation in which several different hypotheses are to be evaluated where
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the measurement model for each hypothesis may not be a function of all of the

state variables in the vector xk. For example, let xk consist of P subvectors

such that xk - [xT :xT. ... XTPk] Define the binary-element parameter vec-

tor 0i - [O,' 192 ... tgIpT, with 0ip- 0or 1. The measurement model is given

by
Hi zk =gk(xk, 8i) + vk

P (6.1)
= 0iPgPk(XPk) + Vk

with plant equation

xk = fk-1 (Xk-1, 8) + Wk-l0, (6.2)

with initial state estimate *olo,d, and initial state covariance P010,#. The initial

state estimate, the measurement noise, and the process noise are uncorrelated. The

process and measurement noise are zero mean and distributed with covariances

E[wk,8wT',] = Qk,e, and E[vk,eOv4,] = Rk,*.

Hence, t9, = 1 indicates the presence of the pil term in the ith model; and

thp = 0 indicates its absence from the model. gk is segmented into P separate

models, with each model being a function of some subset of the state xk. Under

hypothesis Ho no signal is present and Oo = [0 0 ... 01T. There are P different

possible combinations of one model only. The number of different combinations for

more than one model is obtained from the binomial expansion. The total number

of different models that can be accommodated by the measurement equation (6.1)

is

Np~l+•ffil PI(P - P)y

The goal is to find the model that best fits the received data zk, i.e. to select

the parameter vector that gives the best fit. Given the measurements modeled as
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(6.1), for model order selection it is not proper to use the MMSE estimate rep-

resented by equation (5.36), since all state variables cannot be estimated by each

model. Under these conditions the maximum a posteriori decision rule should be

used for model selection according to:

Choose Hi : Oi=argmaxm9oeP(OmIZk) m =0, ... , M (6.3)

where M + 1 is the total number of hypotheses tested. The recursion for P(0mIZk)

from Chapter 5 is

P(840 P(OiZk.-1) Aj(zk) (6.4)
Z=-o P(OmIJZk-1) Am(Zk)

where Ai(zk) is the likelihood ratio

A(z) = k-,00(6.5)

and where Zk-1 = {z1, z2, ... zk-1}. The initial condition for (6.4) is the a priori

probability density function p(O) - p(0]Z 0), which is assumed to be known. The

conditional probabilities p(z[IZk- 1, 0) are updated using the EKF or the EHOF as

described below.

6.2 General System Model for Model Order Selection

Consider the problem of estimating the parameters of P unknown sinusoids

from K measurements. The scalar measurement model for hypothesis Hi is given

by
P

Zk = 1 9jp exp (-apk k) sin(wpk k + •kp) + vk (6.6)
P=1

for k = 0,1,..., K- 1. It is assumed that the frequencies wpk are normalized
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so that the effective sampling interval is one second. vk is assumed to be a white

noise sequences each with variance 02. The objective is to estimate some or all of

the 4P possibly time varying parameters in this system based on the measurements.

Define the elements of the state variable subvector xPk as

pTk (1) = Wpk

XPz,(2) = cp,

(6.7)
zTPk(3) = Oft

XPk(4) = apk.

6.3 Model Order Selection Experimental Evaluation

In this section the performance of the joint detection/estimation method is

evaluated experimentally. The number of sinusoids is unknown except for an upper

bound. Furthermore, it is assumed that the damping coefficients and phases are all

equal to zero. The amplitudes and frequencies are assumed to be either known or

unknown. When they are unknown, estimates of them are obtained along with the

model order selection. Assuming the unknown number of sinusoids to be four, the

measurement equation becomes

Zk= gk(xk, 60) + vk

(6.8)
= >.,tOigk(xk) + vkp11

where

gpk(xpA) = Ch sin(wpA; k) (6.9)
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The state variables are defined as

xPk (1) =Wpk (6.10)

X3pk( 2 ) = CPk

The states are assumed to be constant with random initial values so that the

plant equation becomes

xk+1ik = Xk. (6.11)

Since Pklk-I,Oi = Pk-llk-l, the extrapolation equation is redundant and the EKF

equations (section 2.4.1) simplify to

iklk.lSi = Hkiklk_.1,ei + VL

iklk,8i = iXk-,Ik_1,9i + Kkik

Skk•i-, = GkPk.jlkl,fid.G + Rk (6.12)

Kk -Pk-llk-ISidk Sil1-1,.i

Pkl,.# = (In, - KkGk)Pk-llk-i.#i

where the first partial derivative of the measurement nonlinearity (6.8, 6.9) under

hypothesis Hi is given by

F 0lk. &92k O'sX_0gk &A 04kG' [Ogik. - a-2•:O" g3~. 8 Xk 8 X4,] (6.13)

where
09,pk = & (2) k coe(xp (1) k) 1 T (6.14)

OXPk -[ snz~1kOx,,, L sn(XPk (1) k) JxPkffiPk-Ijk-i,#j

For estimation in Gaussian noise iklk..,Si and Sklk.I,9i from (6.12) are used in (5.44)

for computation of the a posteriori probability (6.4).

If the noise is non-Gaussian, the EHOF equations from Chapter 3 are used for

M
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estimation. For the EHOF the innovations vector iklk_1,Oi and its variance Sklk-1,Oi

are obtained in the same manner as they are in the EKF (6.12). However, in the

EHOF the update equations for the filter variance Pklk-l,oi (3.30 or 3.54) are much

more complicated than they are for the EKF. In the experimental analysis that

follows the measurement noise was distributed according to Weibull and lognormal

distributions. The form of the density functions p(zk IZk.-1, 6,), which is required in

(6.5), is given in section 5.3 for these distributions.

Five separate models are considered in the experimental evaluation. In the

first model it is assumed that no signal is present, and Oo = [0 0 0 0], corresponding

to the null hypothesis. The other four models correspond to the hypotheses that

one, two, three or four different sinusoids are present in the measurements. The

parameter vectors for these models are given by

8 -[1000]

02 [110 01
(6.15)

03 [1110]

04 [11111

The a priori probability is chosen to be the same for each model, i.e. P(9,I0) =

1/5, i = 0, --. , 5. The measurements (6.9) are modeled using four sinusoids with

amplitudes ,-k = 1, for p = 1, ..- 4, and normalized frequencies wlk = 0.12 * 2r,

w =k = 0.22 * 2r, W -= 0.32 * 2w, and w4k = 0.42 * 21. In the actual data only the

first two sinusoids are present, namely the ones with frequencies wlk and w2,. The

hypotheses are indexed according to the number of sinusoids assumed present in the

data. The actual model corresponds to hypothesis /2.

Three separate scenarios are evaluated. In the first scenario it is assumed that
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there is no initial estimation error in the state variables, and therefore, estimation

is not required. This corresponds to the detection-only case. In the second scenario

only the frequencies are estimated. For this scenario equation (6.9) is modified ac-

cordingly to include only frequency variables. In the third scenario, both frequencies

and amplitudes are estimated. Performance of the technique is evaluated via Monte

Carlo simulations for vk having Gaussian, Rayleigh, and lognormal measurement

noise. The parameter a = 2 is used for the Rayleigh distribution (equation (5.45)),

and -- = 0 is used for the lognormal distribution (equation (5.49)). In the scenar-

ios in which the EHOF is employed, the 2 "d, 3rd, and 4 th order statistics of the

measurement noise are used in the filter implementation.

The detection results for scenario 1, the detection-only case, are presented in

Tables 6.1, 6.2, and 6.3 for detection in Gaussian, Rayleigh, and lognormal noise,

respectively. These tables contain the number of detection decisions for each model.

The column iabeled P(021Zk) gives the average a posteriori probability of the hy-

pothesis H2 for those simulation runs which chose H2 as having the highest a poste-

riori probability. The results are shown as a function of signal to noise ratio (SNR)

and the probability density function (pdf) type used in computing the likelihood

ratio in equation (6.0). The SNR is defined as 101og(c9k/(2o,.)), where a.2 is the

measurement noise variance. Since the amplitude is equal to one for all sinusoids,

the SNR is 10log(1/(2o2)). In Table 6.1 only the measurement noise is Gaussian

and only the Gaussian pdf is used to propagate the a posteziori probability. In Table

6.2 the noise is Rayleigh, and the a posteriori probability is computed using both

the Rayleigh and Gaussian densities. Table 6.3 shows the results in lognormal noise.

Tables 6.2 and 6.3 illustrate the importance of choosing the proper density function

to make the detection decision.
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Table 6.1. MAP Decisions as a Function of SNR

Gaussian Noise - Detection Only

SNR(dB) pdf Type Ho H1  H 2  H3  H4  P(02 1ZL)

-5 Gaussian 3 15 171 10 1 0.865

0 Gaussian 0 2 196 2 0 0.991

5 Gaussian 0 0 200 0 0 1.0

Table 6.2. MAP Decisions as a Function of SNR

Rayleigh Noise - Detection Only

SNR(dB) Pdf Type j Ho HI H2 H3 114 P(02IZk)

-5 Gaussian 2 16 169 12 1 0.872

Rayleigh 3 8 180 8 1 0.925

0 Gaussian 0 3 197 0 0 0.991

_ Rayleigh 0 0 199 1 0 0.999

5 Gaussian 0 0 200 0 0 1.0

Rayleigh 0 0 200 0 0 1.0
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Table 6.3. MAP Decisions as a Function of SNR

Lognormal Noise - Detection Only

SNR(dB) Pdf Type Ho H1 H H2 113 H4  P(02 14Z)

-5 Gaussian 2 15 174 8 1 0.885

Lognormal 0 0 200 0 0 0.999

0 Gaussian 0 2 197 1 0 0.992

Lognormal 0 0 200 0 0 1.0

5 Gaussian 0 0 200 0 0 1.0

Lognormal 0 0 200 0 0 1.0

For scenario 2 it is assumed that the signal amplitudes apk are known. The

frequencies wpk are estimated for each model. The standard deviation of the initial

estimation error for the frequency in each model is o- = 0.1. Table 6.4 shows the

number of times each hypothesis is chosen as a function of signal to noise ratio

(dB) when the measurement noise is Gaussian and the measurements are processed

with the EKF. The EHOF gives the same results as the EKF whenever the noise

is Gaussian. Tables 6.5 and 6.6 show the results whenever the measurement noise

is Rayleigh and lognormal, respectively. The development of the EKF is based on

the fact that the filter error is a first order function of the innovations process.

Thus, only first and second order statistics are necessary for EKF implementation.

Therefore the EKF provides an optimal solution in Gaussian noise (providing the

Taylor series approximation is valid). Although the EKF does not give optimal

performance in non-Gaussian noise, it is evaluated in Tables 6.5 and 6.6 in order to

compare its performance to the EHOF in non-Gaussian noise. The EKF is evaluated
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in two configurations in these tables. The rows in these tables labeled 'EKFg' denote

the performance of the EKF in which density function in (6.5) is evaluated using a

Gaussian density. 'EKF,' and 'EKFI' correspond to the performance of the EKF

in which the Rayleigh and lognormal density functions are used for computation of

the likelihood ratio. The EHOF employs the appropriate pdf associated with the

measurement noise.

This data demonstrates that the nonlinear filtering techniques can give ex-

cellent performance for model order selection. Tables 6.5 and 6.6 demonstrate that

the detection error probability for the EHOF is lower than that for the EKF in non-

Gaussian noise, especially when the EKF is used in conjunction with the Gaussian

density function. The EKF performs much better whenever the proper (Rayleigh of

lognormal) density function is used. Furthermore, the EHOF decides with a higher

confidence than the EKF, as demonstrated by the a posteriori probability P(02IZk).

This difference occurs primarily at low values of the SNR.

The EHOF performs better relative to the EKF in lognormal noise than it

does in Rayleigh. This is due to the fact that the lognormal noise has a higher

degree of skewness than does the Rayleigh noise. That is, the EHOF has more of

an advantage whenever the higher order statistics are large relative to what they

would be in Gaussian noise.
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Table 6.4. MAP Decisions as a Function of SNR

Gaussian Noise - Frequencies Estimated

SNR(dB) Filter Ho HI H2  113 114 P(0 21Zk)

-5 EKF 46 45 107 2 0 0.852

0 EKF 4 15 180 1 0 0.980

5 EKF 0 0 200 0 0 1.0

Table 6.5. MAP Decisions as a Function of SNR

Rayleigh Noise - Frequencies Estimated

SNR(dB) Filter HO HI H/2 H3  H4  P(02IZk)

-5 EKFO 44 46 108 2 0 0.844

EKF, 23 28 135 6 8 0.924

EHOF 23 27 137 7 6 0.926

0 EKFV 5 13 181 1 0 0.975

EKFr 2 16 174 8 0 0.996

EHOF 1 11 182 6 0 0.995

5 EKFO 0 0 200 0 0 1.0

EKF, 0 0 200 0 0 1.0

EHOF 0 0 200 0 0 1.0
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Table 6.6. MAP Decisions as a Function of SNR

Lognormal Noise - Frequencies Estimated

SNR(dB) Filter HO H 1  H2 H3 H4 P(O2IZk)

-5 EKFg 41 47 104 1 7 0.801

EKFI 27 30 129 11 3 0.934

EHOF 24 20 146 5 5 0.954

0 EKF9  3 13 183 1 0 0.979

EKFI 1 12 181 6 0 0.993

EHOF 3 7 188 2 0 0.993

5 EKFg 0 1 199 0 0 0.998

EKFI 0 1 198 1 0 0.999

EHOF 0 0 200 0 0 1.0

Figures 6.1, 6.2, and 6.3 display the sample variance of the estimation error

of the two estimated amplitudes as a function of SNR for estimation in Gaussian,

Rayleigh, and lognormal noise. For Figure 6.1, the sample variance is computed

only from those trials in the Monte Carlo simulation which resulted in the EKF

choosing the correct hypothesis. Figures 6.2 and 6.3 display the sample variance

for those trials which resulted in both the EKF and the EHOF choosing the correct

hypothesis. The CR bound on the estimation error is also shown in these figures.

A noise discrimination test is used in an attempt to detect poor estimates. This

test involves discarding any estimate for which the sample variance of the residual

zk-k..,#9, computed over k = 0, -.. 24, is greater than twice the noise variance a.

The results of using this test are also shown on Figures 6.1 - 6.3. The MSE of the
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EHOF is slightly lower than the EKF, with both filters producing results that are

close to the Cramer Rao bound.

In scenario 3 both the signal amplitudes C~k and frequencies WPk are estimated

for each model. The standard deviation of the initial estimation is a' = 0.1 for both

frequency and amplitude. Table 6.7 shows results for Gaussian noise, and Tables

6.8 and 6.9 display the results for Rayleigh and lognormal noise, respectively. These

results are consistent with those in Tables 6.4 - 6.6 in that the EHOF makes better

detection decisions than the EKF in non-Gaussian noise. However, as it can be

expected, the probability of detection error increases whenever both frequency and

amplitude are being estimated as compared to when only the frequency is estimated.

The estimation results for scenario 3 are given in Figures 6.4, 6.5, and 6.6

for estimation in Gaussian, Rayleigh, and lognormal measurement noises. Again it

is shown that both the EKF and the EHOF perform close to the CR bound, with

the EHOF giving better results than the EKF after the noise discrimination test is

applied.

Table 6.7. MAP Decisions as a Function of SNR

Gaussian Noise - Amplitudes and Frequencies Estimated

SNR(dB) Filter Ho H1  H2  H3  H 4  P(024Zk)

-5 EKF 49 51 95 5 0 0.792

0 EKF 1 25 174 0 0 0.971

5 EKF 0 0 200 0 0 1.0
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Table 6.8. MAP Decisions as a Function of SNR

Rayleigh Noise - Amplitudes and Frequencies Estimated

SNR(dB) Filter HO H1  H2  H3  H4  P(021Zk)

-5 EKF, 48 56 88 8 0 0.824

EKFr 20 31 125 19 5 0.880

EHOF 20 34 124 20 2 0.885

0 EKFg 1 25 174 0 0 0.973

EKFr 2 11 178 7 2 0.992

EHOF 0 11 182 5 2 0.989

5 EKFg 0 0 200 0 0 1.0

EKFr 0 0 200 0 0 1.0

EHOF 0 0 200 0 0 1.0
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Table 6.9. MAP Decisions as a Function of SNR

Lognormal Noise - Amplitudes and Frequencies Estimated

SNR(dB) Filter Ho HI H2 H3  H4 P(02IZk)

-5 EKF 9  44 52 98 6 0 0.783

EKFI 28 46 111 11 4 0.933

EHOF 21 33 132 10 4 0.936

0 EKF, 3 18 178 1 0 0.968

EKFI 1 14 179 6 0 0.995

EHOF 0 7 184 8 1 0.995

5 EKF, 0 0 200 0 0 1.0

EKFI 0 0 198 2 0 1.0

EHOF 0 0 200 0 0 1.0

6.4 Conclusion

A general approach to model order selection has been presented based on joint

detection/estimation theory. The approach involves the simultaneous application of

maximum a posteriori detection theory and nonlinear estimation. The approach

requires only an upper limit on the model order and is applicable to data that are

being corrupted by additive Gaussian and non-Gaussian noise. The advantage of

the approach lies in the potential to accommodate time varying as well as time

invariant parameters in the measurement model. Experimental evaluation of the

approach demonstrates excellent performance in selecting the correct model order

and estimating the system parameters even in SNR's as low as -5 dB.
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Chapter 7

JD/E Applied to Estimation of Time Delay and Doppler Shift

A nonlinear adaptive detector/estimator (NADE) is introduced for single and

multiple sensor data processing. The problem of target detection from returns of

monostatic sensor(s) is formulated as a nonlinear joint detection/estimation problem

on the unknown parameters in the signal return. The unknown parameters involve

the presence of the target, its range, azimuth, and Doppler velocity. The problems

of detecting the target and estimating its parameters are considered jointly. A

bank of spatially and temporally localized nonlinear filters is used to estimate the a

posteriori likelihood of the existence of the target in a given space-time resolution

cell. Within a given cell, the localized filters are used to produce refined spatial

estimates of the target parameters. A decision logic is used to decide on the existence

of a target within any given resolution cell based on the a posteriori estimates

reduced from the likelihood functions. The inherent spatial and temporal referencing

in this approach is used for automatic referencing required when multiple sensor

data is fused together. Thus, the approach is naturally extendable to centralized

multisensor data fusion.

This chapter addresses the joint estimation of time delay and Doppler shift

from measurements of a received signal. Knapp and Carter [66] showed that the

ML estimator of time delay can be represented by a pair of prefilters followed by

a matched filter. Stuller [67] generalized these results to obtain ML estimates of

time varying delay, nonstationary signals, and arbitrary observation interval. An

extension of the ML methods is given by Abatzoglou [68] in which local maximization
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of the cross-correlation function results in fast ML estimation. An optimum time

delay tracker based on a first order markov model is given in [69]. In [701 the same

model is used for optimum time delay detection and tracking. These studies assume

linear plant and measurement equations so that an optimal solution can be obtained

using the Bayesian approach.

A general overview of techniques employed for time delay estimation in sonar

signal processing is given by Carter [711. Stein [72] describes how the complex

ambiguity function can be used for joint estimation of time delay and Doppler shift.

The ambiguity function approach is one of the most widely accepted methods for

joint estimation of time delay and Doppler shift. The major disadvantage of this

approach is that its implementation requires t. uw •i ..he Fourier transform. Thus

the resolution is limited, especially for short data !engths. Time delay estimation

has also been approached using higher order statistics. Nikias and Pan [73] and

Chiang and Nikias [741 make use of the fact that Gaussian noise is suppressed in

the third order cumulant domain to form estimates of time varying delay.

This chapter considers the problem of localizing a target in a range-Doppler

space. The range-Doppler space is partitioned into a number of resolution cells.

Each cell is identified with a hypothesis that the signal is present in it. A joint de-

tection/estimation scheme is then used to localize the target and refine its parameter

estimates (i.e. time delay and Doppler shift). The measurements that are used to

localize the target consist of signal returns corrupted by additive white Gaussian

and non-Gaussian noise.

The problem is formulated using the joint detection/estimation procedure

developed in Chapter 5 adapted to problems with uncertain initial conditions. The
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approach involves the operation of several nonlinear independent filters in parallel.

In the case of Gaussian measurement noise the extended Kalman filter is used for

estimation. The extended high order filter (EHOF), developed in Chapter 3, is used

in non-Gaussian noise. The parallel filters are distinguished by the initial conditions

used to set up the problem. Along with the state estimate the a posteriori probability

of each hypothesis is computed recursively.

Two different implementations are evaluated. In the first implementation, the

model parameters for each resolution cell are kept fixed at their a priori estimates.

The fixed estimates are then used to update the a posteriori probability of each cell.

In the second implementation, the model parameters for each resolution cell are

estimated on-line and used to update the a posteriori probability for each resolution

cell. After all data is processed, the a posteriori probabilities and the initial estimates

are used to produce a minimum mean square error (MMSE) estimate of the time

delay and Doppler shift.

7.1 Problem Statement

Consider the problem of signal detection and parameter estimation in the

context of the reception of an active echo return from a object that has been il-

luminated by a monostatic source. The situation is considered in which there are

P collocated sources that illuminate the target simultaneously, but with different

carrier frequencies designated wp. The received signal at each sensor is frequency-

translated by mixing it with a signal at frequency wt.. The resulting signal is

low-pass filtered, and digitized at a rate f., which is at least twice the highest fre-

quency in the data. The time between samples is denoted t,. It is assumed that all

sensors have the same digitization rate, and that all clocks are synchronized. The
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general expression for the received signal at the p11 sensor can be written

zkP = ak (Trk)pk,(Qrk, vk)rk,(T(k,vk) + vk, (7.1)

where akp(Trk) is the received signal amplitude, pk,(rk, vk) is the pulse shaping func-

tion, and

rA,(1-,vA) = cos ((VA(wc,(kts - TO)))- wtpkisJ (7.2)

vk, is white noise with E[vkp] = 0, E[vk&vip] = orlr$(k - j). and TA is the time delay

between signal transmission and reception. 7k is a function of the range Dk between

the receiver and the object, and is given by

=rk = Dk (7.3)
C

The Doppler shift parameter Vk is given [76] by

Uk = + 2Vdk (7.4)

where Vdk is the Doppler velocity obtained by projecting the velocity vectors of

the target and receiver along the line of sight between them, and c is the speed

of electromagnetic propagation. vk is bounded by the perceived maximum speed

of the object and exact knowledge of the receiver platform speed. Based on these

capabilities one could postulate fairly accurate representations for the moments of

the probability density functions for vk. For unambiguous range estimation the

uncertainty in TA, denoted Ark is bounded by Am < 2r/(vkjw,). This is due to

the fact that the cos(.) function is not monotonic (i.e. rk,(,r, VP) = r, (n2, VP), if

,r2 -,r = xlVcp)

PkA,(Tk, vk) is the pulse shaping function, which has average energy EF. The
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signal amplitude is attenuated due to spherical spreading loss by a factor of l/D2.

With known transmitted amplitude At., the received amplitude as a function of

time delay is given by

ak,(k) 4Atp (7.5)akp~ ~( k C k)2

Note that the effects of filtering, amplification, and digitization on the re-

ceived signal amplitude are not considered. These effects are generally known and

can be accounted for in the amplitude function (7.5).

7.2 Joint Detection/Estimation

The joint detection/estimation procedure for problems with uncertain ini-

tial conditions is followed in this chapter for optimal estimation of time delay and

Doppler shift. This procedure is described in Section 5.5. The hypotheses are dis-

tinguished from each other by the initial conditions on the initial state estimates

, k010,g,, and initial state covariances P010,*,. The measurement and process mod-

els are the same for each hypothesis. Let 9, E e designate the parameter vector

that describes the different initial conditions on the states. The parameter vector

9, is also assumed to be time invariant. Under hypothesis Hei the discrete time

measurements are modeled according to

H9, Zk = gk(xk) +
(7.6)

with i.c.'s x010,0i, P010,0i

The measurement vector zk is composed of the scalar measurements of the

P individual sensors such that

zk = [zkl Zk2 ... ZkpIT (7.7)
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The state xk is common for all 0i E 0, and satisfies the discrete time process

equation

xk == f(xk-1) + wk-. (7.8)

The initial state estimate, the measurement noise, and the process noise are uncor-

related. The process and measurement noise are zero mean and distributed with

covariances E[wkwT] = Qk, and E[vkv] = ak.

For each 0i E 0 (each assumed model), a minimum variance estimate of the

model parameters is obtained recursively using the joint detection/estimation tech-

nique. Using this technique a minimum variance estimate of the model parameters

is obtained for every assumed model. These estimates are subsequently used to es-

timate the likelihood of each model being the correct one. Based on these likelihood

estimates, a maximum a posteriori (MAP) decision criteria or a minimum mean

square error (MMSE) decision criteria can be used to select the proper model.

Using Bayes' rule, the a posteriori probability of the parameter vector 0 is

updated recursively by [67, 68]

P(OiZk._1) p(zk IZk-1, 9,)P(OilZk) = ELI =P(O..IZk-I) P(zkJZk-I,Om (7.9

where Zk-.i iz, z2, ... z&.k-1}. The initial condition for (7.9) is the a priori

probability density function p(O) =_ p(Zo), which is assumed to be known. The

densities p(zk JZk,-, 9,) are updated using the EKF or the EHOF.

The update procedure for measurements in Gaussian, Rayleigh, and lognor-

mal noise is described in Chapter 5, sections 5.2 and 5.3.

Since the state vector xk is common to all models, the minimum mean
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squared error (MMSE) estimate can be used. The MMSE estimate is expressed

as a weighted average of the conditional state estmatesxklk,8i over all #j as follows:

M
k= P(OeiZk)*•k),,i- (7.10)

7.3 Specification of Initial Conditions

The localized initial conditions for each resolution cell are defined as follows:

Let the time delay have mean %0 and density function pro (To). The distribution of To

is segmented into N nonoverlapping segments such that the segment around some

localized initial estimate i& is defined by

pr 0o(rnO)-=pro(TO) an _ 7 _5 a.+l 1 <n_<_N (7.11)

We have
N a%+1 00

L pr.o (")dat -- pro (r)dr 1

Define the scaling parameters C3 such that

4fan p~n0 (")da = 1 < n < N

Then the mean and variance of the initial conditions of the segmented model are

given by

"ro = E[rlo] = Cs fa+' rpr.o0(r)dr"

var[-r.o1 = C. aj r2po+ ()d7. - 7;02

Similarly, the ,:"jtial estimate of Doppler shift have mean £'O and density function

p,,(vo). Now let the distribution for vo be segmented into M nonoverlapping seg-



174

ments such that the segment corresponding to initial estimate Vm0 is defined by

P"m(vm0) PY0(VO) ym < vO < Y+1 I < m < M (7.12)

We have

F, PjM0(v)dv = p,,o(v)dv = 1

Define the scaling parameters rem such that

1Cmj pvmo (v)dv = 1 < m < M
J'YM

Then the mean and variance of the initial conditions of the segmented model for vo

are given by

Pimo =~m = #cm 7 1 ppm0o (v)dzi" /171nml

Varfrm0 j = cm JYn ,,V2Opm (i)dv - m2o
Writ'017=t-n

With N different initial condition., on rO, and M different initial conditions

on vO there are NM different resolution cells for referencing the measurements.

A different filter is initialized in each resolution cell. The total number of cells,

MN, in the resolution space can be large, depending on the desired accuracy in the

parameter resolution. However, the filters can be run in parallel, and independent

of each other, thus reducing the execution time to that of a single filter.

The parameter vector 08, i = (n - 1) * M + m, 1 : n < N, 1 <m < M, is

defined to be the (n, m)ih' resolution cell and is used to define NM initial conditions

on the state variables r and v. The a priori probabilities of each hypothesis are

determined by integrating the density functions p,,(7b) and pv(vo) over the limits
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defined for each hypothesis. They art given by

P(OO )=i n+lpro(T)dr jtfl+lp0 (v)dv (7.13)

7.4 Joint Detection/Estimation of Delay and Doppler

The model is now considered in which both vk and 7k are unknown, with both

state variables to be estimated. The parameter vector 0i = [n m]T, 1 < i < NM is

used to define NM different initial conditions on the state variables r and v. The

hypothesis Hi that corresponds to 0i for sensor p is given by

I vk kt 8 < fk

Hi zkP={ g•P•, Pk) + vk fk :_ki < Tk + tw (7.14)

S Vk k is >- fk + tw

where ti is the pulse width. The initial conditions are given by

101Oei = [1" 0' pmO]T

[VarT,,o] 0r ] (7.15)
Pl, =Va[,ol

where

gk ,( P, Pk) = ak,(fk)pk,(h, , )rk (if, ik ) (7.16)
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4Atp%(÷k) =(cf~k)2

pkp(+k,P•k) = 0.5 (1 - co(2w, k(kt, - +k)/t,.)) (7.17)

"Tk,(Tk, Pk) = cos [(••(wc, (kt. - ik,)))-.wt,,kts]

The Hanning window is used as the pulse shaping function pk,().

With the state variable vector as xk = [Trk Vk]T, the Jacobian of the measure-

ment model is given by

Gk = [G.. G (7.18)

where the Jacobian Gk, for the ith sensor , that is used in both the EKF and the

EHOF, is given by

= Ogkp(xk, 60

axk + ___k1 . &1, -T (7.19)

-[iwkr& :6,8 ~~rkp + akpk,,jiit¶1]

3.- • Tp a l +l I
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The partial derivatives within the brackets are given by

Oakp -8AtP

oxI(1) Oh(1)3

-OPkp = k(2) sin(2r ik(2)(k t - k(1))/tW))o&Xk(1) tw
Ork
OXk(1) = hk(2)wc,, sin [&k(2)(wcp(kt/-•k(1)))-wtkt

1 ]
5Xk~l)(7.20)

OPkp =r (k ts - lk(1)) sin(2,x k(2)(k t, - !(1))/tw))
Oxk(2) t

ork) = wp, (k . - Xk(1))

Olxk(2)

x sin [h(2)(wc,(k t - h(1))- wks)]

The detection procedure consists of computing g (xk, O6) and Gk(xk, 8,) for

each value of kt, and for each model 9i. For each model 9,, if Zk(l) _5 ki, <

zk(1) + -t then gk(xk, 6,) and Gk(xk, 06) must be computed. The equations for the

innovations iklk-x,e, and covariance Skik_,eO are given in [5.41, 5.42] for both the

EKF and for the EHOF. Whenever the signal is assumed absent (•k(1) < ki., or

kt, Ž hk(1) + tw), the innovations become

kikj IOi "-Zk

SkiIk.,S, =Rk

With kik_-.,Oi and Skik-I,Oi, P(0iiZk) is computed using (7.9). The final state

estimate is then computed using (7.10).

7.5 Joint Detection/Estimation of Time Delay

Under some conditions in which v, and rk are unknown it may be possible to

obtain improved estimated of only one of these these state variables. For example,
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if the pulse width is very short the minimum variance estimate of vk, which can

be obtained from any unbiased estimator, may be larger than the initial Doppler

variance. In this case Doppler estimation is redundant. This section addresses the

model in which vk and rk are unknown, but only the time delay is to be estimated.

Estimation of Doppler alone is addressed in the next section. The parameter vector

0i is defined as before. To define hypothesis Hi, Pk is replaced by P. 0 , that is, the

Doppler parameter does not change from its initial estimate. Hypothesis Hi is now

given by

Vk vkts k <

Hi Zkp {kP(hV, Po)+Vk tkkit.< k+t. (7.21)

k k i. _ Tk + tw

with initial conditions

4olo,0e = [P-O, Pn 0 ] T

(7.22)

where

g&,(i&, Pi 0 ) = ak,(f&)p&,(i4, ijn 0 )rkp(i&, Pn0) (7.23)

4A,
ak, (hk) =c.1

pkp( T, mn0) = 0.5(1 - cos(2v Pn0(kt. - fk)/t.)) (7.24)

k V o) = [(wcp (k . - Tk))) -wPk t.]

The state variable is zk = [(rk], and the Jacobian equations (7.19, 7.20)

now contain only those terms that include partial derivatives of zk(l). The detec-

tion/estimation procedure is then the same as that described previously.
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7.6 Joint Detection/Estimation of Doppler Shift

Consider the model in which vk and Tk are unknown, but only the Doppler

shift parameter is to be estimated. The parameter vector 0i is defined as before. To

define hypothesis Hi 5'k is replaced by ý.O, that is, the time delay does not change

from its initial estimate. Hypothesis Hi is now expressed as

SVk kt, < ÷"o

Hi : zk-, 9= (NO, ,k) + vk• !5 kt, < <no + tw (7.25)

Vl, k t, >_ f.o + tw

with initial conditions
,010' ,i - [fno, pvMO]T

(7.26)
oo.,= [var[T.oI]]

where

gkp (fno, Pk ) = ak,(7 0o)pk, (fso, Pik)rk, (%o, Pk) (7.27)

4Atp

pkp (+o, Pk) = 0.5(1 - cos(21r ^k(kt. - ÷.o)/It)) (7.28)

7,,,(fno, Pk) = COS [(,,k(w,, (ki. - %))) -,,,tpk .]

The state variable is Xk = [vk], and the Jacobian equations (7.19, 7.20)

now contain only those terms that include partial derivatives of Zk(2). The detec-

tion/estimation procedure is described in section 7.4.
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7.7 Detection Without Estimation

For the detection-only problem we use the initial estimates i'.0 and P in

the measurement equation. The state estimates remain invariant. The hypothesis

Hi that corresponds to parameter 8i is defined as

i Vi, k t4 < f, o

Hi : A = i(•o, MO) + vk ýso _< kts < ino +tw (7.29)

vk k ts ý' %0 + tw

where

g9(', •'mo) = ak( u0 )pk(%w0 )rk(iu, ( ,0, ) (7.30)

The procedure for determining the a posteriori probability is the same as

that described in the previous section with the exception that the state variables

are held constant at their initial estimates -0 and f'.O-

7.8 Experimental Evaluation

As a prelude to the experimental evaluation it is useful to discuss the min-

imum variance that can be obtained through the estimation of time delay and

Doppler shift. Consider the measurement model for a single-frequency pulse in

a rectangular window of size K, where K is the number of samples per pulse. This

signal is expressed by

hk = sin(vwc(kt. -Tr)) 0 < k < K

If the signal hk is received in additive white Gaussian noise with variance ar2, the
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Cramer Rao bound (Appendix A) is given by

___ __ ___ __ a2 1 1
VaK T] _)2 SNR V2W24K (7.31)

k2  
_1 1

VaK-IŽ~ { (k )21- SNR Wct2(EKi0 ' k2) (7.32)

where SNR is the mean square signal amplitude divided by the white noise variance,

i.e. SNR = A2 /(2, 2 ). The delay variance is reduced by increasing the carrier

frequency wc or by increasing the number of samples. Doppler variance is reduced by

increasing the carrier frequency or by increasing the pulse width (i.e. by integrating

over a longer time). The bound for time delay is achievable only if the initial

uncertainty AT0 < 1/(2fc). Measurement of time delay is actually accomplished by

measuring the phase of the received signal. Since the phase is periodic at a rate fc,

two time delay estimates separated by 1/f, will give the same phase measurement

for a single-frequency rectangular pulse. That is, an initial estimate • >_ 7 + 1/(2f,)

is more likely to converge to r + 1/fc than it is to r. The situation can be improved

somewhat by employing amplitude modulation or angle modulation. However, as

shown in the following section, window functions such as the Hanning window do

not help appreciably. Thus the variance of time delay error may be more accurately

bounded by

I1 Aro < 1/(2f,)

Var[r] OR fS F7N T (7.33)
Var[,r0] A7ro ý! I/(2fc)

If the initial estimation error for time delay is not known to within Ar =

1/(2f,) then parameter estimators will not do any better than the initial estimates.
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This is especially true whenever the SNR is large enough to nullify the effects of any

pulse shaping. This limitation drives the requirement for the number of different

filters needed for accurate delay estimation. If 0o = LATO is the total width of the

uniform distribution of the initial delay error, then the number of required filters is

L = 2 fefo (7.34)

For example assume a typical radar operating frequency of 10 GHz. For unambigu-

ous range resolution the associated initial time delay uncertainty must be less than

1 x 10-10 seconds, corresponding to a range uncertainty, computed from equation

(7.3), of 0.05 feet. It may be more appropriate to discuss time delay estimation

in the context of communications signals where the operating frequencies are much

lower and the pulse widths larger.

One method for dealing with this problem is to ensure that an initial es-

timate is within ±1/(2f,) of the actual time delay r. This can be accomplished

by segmenting the initial conditions and operating several estimators in parallel as

described in Sections 7.2 - 7.6. This procedure is evaluated experimentally in the

next section.

Another technique for time delay estimation discussed in the radar literature

[78, pp.167-169] involves leading- and trailing-edge detection of the envelope of the

received signal. The rise time tR of the pulse is lower-bounded by the bandwidth

fB of the received signal with tR t 1/fB. The receiver includes a bandpass filter

of width fB, an envelope detector, and a threshold stage. For this type of receiver,

the variance of the time delay estimate error is lower-bounded by [79, p. 299], [80,
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pp. 400-404]
[2E 71-' 1Var[r] _ -'oJ 4rf (7.35)

where No/2 is the noise power spectral intensity, and E, is the received signal energy.

The variance of the frequency estimation error, obtained from coherently processing

the received signal, is bounded by

Va2[wc] [r -1 (7.36)
S> LNo t2

Noting that Var[v] = Var[wc]/w2, (7.36) is the continuous-time equivalent of (7.32).

The variance in estimating Doppler shift is reduced by increasing the signal pulse

width or by employing a larger carrier frequency. For envelope detection the variance

in estimating time delay is reduced by increasing the signal bandwidth fE. The ideal

situation is to design the signal to obtain good estimation of both delay and Doppler.

This is generally accomplished by employing amplitude and/or angle modulation

on the pulse. The modulation is designed to produce large bandwidth (low Var[r]),

while a large t, produces low Var[wc].

Delay and Doppler estimation are addressed separately in the following ex-

perimental evaluation of the JD/E technique. Delay estimation is evaluated in sec-

tion 7.7.1 for a signal with relatively small pulse width (large bandwidth). Doppler

estimation is performed in section 7.7.2 for a signal with large pulse width.

7.8.1 Time Delay Estimation

Both single and double sensor models (P = 1, and P = 2) in (7.7) were

selected for experimental evaluation. For this evaluation the sampling frequency was

f. = 100 x 106 Hz, the pulse width was set to 12 ti and c, the speed of propagation,

was 186000 miles/sec. For all tests, the nominal time delay and Doppler were



184

T'nom = 0.000324 and (vnom - 1) = 8.96 x 10-7 respectively, corresponding to a

target at a nominal range of 10 miles, traveling at 300 mph Doppler velocity.

It was assumed that the error in the time delay estimate was uniformly dis-

tributed at ±3.5 t. about the nominal delay. The corresponding variance is then

(7t)2/12. The error in the Doppler estimate was assumed to be uniformly dis-

tributed at ±7.47 x 10-7 about the nominal Doppler. This corresponds to an error

in the Doppler velocity of ±250 mph. The corresponding variance is 1.85 x 10-13.

7.8.1.1 Single Sensor Evaluation

It is noted that the model in (7.14) does not change appreciably for the

range of values for vk specified in Section 7.8.1. That is, the magnitude of the

partial derivatives with respect to xk( 2 ) (Doppler shift) in (7.19) are much lower

than those with respect to Xk(1) (time delay). In fact it was found experimentally

that the filter gain corresponding to the Doppler shift parameter was very small

resulting in negligible change in this parameter from its initial estimate. For this

reason the results presented for joint detection/estimation (JD/E) are shown for

time delay estimation only. In this case the measurement model (7.14) becomes

Zk, = gkp(hk, vnom) + Vk, for k t. ki < k + t., with x010,#, = 7,0, and Polo,i=

Var(T3 0 ). Thus, for the JD/E technique, Pk is held constant at its initial estimate

vnom. For the single sensor evaluation the carrier frequency was w, = 27r * 10 x 106.

The translation frequency was "t 0. Since the signal is oversarnpled (f. = 10f,),

it is not necessary to translate the signal.

The single sensor model was used to compare the use of multiple filters (N =

7) to a single filter (N = 1) for joint detection/estimation. With only one filter,

X010,e0 = fnom, P010,#, = (7 t)2/12, as described previously. The initial estimates
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of time delay for the multiple filter implementation are given by ÷n0 = (n - 4) * ts +

'nom, n = 1,2, -.. 7. Thus, the initial delay estimates were separated by t., with

Var(r, 0 ) = t2/12, Vn. The a priori probabilities are given by P(OnIZO) = 1/N, 1 <

n<_N.

Figure 7.1 illustrates typical simulation results for the JD/E performance

with a bank of seven filters (N = 7). This figure displays the received signal zk, the

estimation error fklk,Oi, the error covariance PklkOi, and the a posteriori probability

p(OiIZO) for all models Oi, i = 1,---, 7. The SNR was 10dB for this example. This

figure shows that although the covariance converges, the estimation error does not

converge to zero for all models. However, the weighting provided by a posteriori

probability allows the proper model selection.

The Monte Carlo simulation results for JD/E with a single filter (N = 1) and

a bank of seven filters (N = 7) are shown in Figure 7.2(a). In this figure the mean

square error (MSE) of the estimation error in Tk is shown as a function of SNR,

where SNR - 10 log(E./ci.), for rk 5 kt, < rk + t., and E, is the average received

signal energy per sample. Each point on the graph represents the results of 500

simulation runs. Both the MAP and MMSE estimates are shown in Figure 7.2(a).

The MAP and MMSE estimates are the same for N = 1. Also shown on this graph

are the results for the detection-only (D-O) technique. The noise is Gaussian, and

the EKF is used to perform estimation in the JD/E method. The JD/E (N = 7)

implementation gives better results than the D-O method, particularly at higher

SNR. This is expected since the filter in the JD/E method allows a considerable

refinement estimates at higher SNR as compared to low SNR where the larger noise

covariance restricts the filter gain. At -5 dB SNR the JD/E and P 0 implementa-

tions perform identically. In general, the MMSE estimates are better than the MAP
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estimates, particularly at low SNR's. The JD/E (N = 1) implementation gives the

worst overall performance. The filter used in this implementation often converges

to poor final estimates due to the tendency, mentioned previously, of time delay to

converge to values that are separated from the actual time delay by multiples of

±1 /fc,

The importance of selecting an initial estimate within ±1/(2fc) is illustrated

in Figure 7.3. This figure compares the JD/E MMSE (eqn 7.10) error distribution for

N = 1 to that for N = 7. The distributions are formed from the results of 500 trials

at each of the 6 SNR values -5dB, OdB,-. , 20dB, giving 3000 total observations

of the time delay estimation error. For the JD/E N = 1 case, where the initial

estimation error is allowed to range between -3.5ts (±0.35/fc) for a single filter,

a significant portion of the error distribution is centered around 1 x 107 , of 11fe.

However, for the N = 7 case, in which the initial error distribution is segmented

among the 7 filters, the entire distribution is centered around 0 error. In addition,

the distribution around 0 error for N = 7 is tighter than the distribution around 0

for N = 1. This suggests that if the number of filters is chosen such that the initial

estimation error of at least one of the filters is small in terms of 1/(2fc), then the

JD/E procedure can overcome the restriction on the initial estimation error imposed

by (7.33).

The JD/E (N = 7) technique is evaluated in lognormal noise in Figure 7.2(b)

for the single sensor model. The MMSE estimates of ik are shown in this figure for

the EKF and for the EHOF. The EKF is evaluated in two configurations. In the first

configuration, the Gaussian pdf is used to evaluate the detection statistic given by

equation (7.9). In the second configuration, the loguormal pdf is used. The EHOF

is evaluated using the lognormal pdf only. The EKF in the second configuration and
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the EHOF give very similar results at low SNR. However, at high SNR the EhOF

outperforms the EKF. When the Gaussian pdf is used in conjunction with the EKF

to perform detection, the results are much worse than when the proper lognormal

pdf is used. This advantage is particularly evident at low SNR's.

7.8.1.2 Double Sensor Evaluation

In the multiple sensor case (P > 1), the sensors may have different carrier

frequencies (wp), and different translation frequencies (Wip). A two-sensor (P = 2)

model was evaluated in which w 1 = 2z * 10 x 106, WC2 = 2z * 30 x 106, and

w't 1 = Wt2 = 0. The MMSE results of this evaluation for JD/E (N = 7) are given

in Figure 7.2(c). The single-sensor (P = 1) MMSE results are also shown in this

figure. This figure illustrates the distinct advantage of centralized fusion for JD/E.

7.8.1.3 Multiple Pulse Processing

The results of processing two pulses are given in Figure 7.2(d). The EKF and

EHOF are configured such that the initial error covariance is reset at the beginning

of each pulse. The rationale for this, as discussed in Chapter 4, is to re-excite

the system. This helps to allow poor estimates to possibly converge to smaller

errors, and as shown in Chapter 4 it does not significantly effect those estimates

that have already converged close to the actual state value. Figure 7.1(d) shows an

improvement of about 3 dB for the two pulse estimate over the single pulse estimate.

This improvement is supported by (7.31).

7.8.2 Doppler Estimation

Both single and double sensor models (P = 1, and P = 2) in (7.7) were

selected for experimental evaluation for Doppler shift estimation. For this evalua-
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tion, the pulse width was set to 24 t, and, c, the speed of propagation, was 186000

miles/sec. For all tests, the nominal time delay and Doppler were mnom = 0.000324

and (Vnom - 1) = 8.96 x 10-7 respectively, corresponding to a target at a nominal

range of 10 miles, traveling at 300 mph Doppler velocity. The sampling frequency

was set to f, = 4 x 103 Hz. The error in the Doppler estimate was assumed to

be uniformly distributed at ±7.47 x 10-7 about the nominal Doppler. This corre-

sponds to an error in the Doppler velocity of ±250 mph. The corresponding variance

is 1.85 x 10-13. It is observed from (7.32) that the Doppler error variance can be

decreased by increasing the 1pilse width or by increasing the carrier frequency w,.

This is the reason for the large pulse width (6 msec) for Doppler estimation versus

the relatively small pulse width (0.12psec) used for time delay estimation.

7.8.2.1 Single Sensor Evaluation

For Doppler-only estimation the measurement model (7.14) becomes zkP =

gkP( 'nom, vk) + vk, for -nom _ k t. < +nom + tw,, with 4010,#, = ,mo, and P010,8, =

Var(vm0 ). Thus, for the JD/E technique, ik is held constant at its initial estimate

Tnom. For the single sensor case the carrier and translation frequencies were w, =

2vr * 100 x 106, and wt = 2xr * 99.9975 x 106.

The single sensor model was used to compare the use of seven Doppler filters

(M = 7) to a single filter (M = 1) for joint detection/estimation. With only

one filter, ¾iol0,# = inom, P010,#, = (2vmaz) 2/12, where vm._ is the maximum

initial Doppler shift excursion due to the maximum Doppler velocity of 250 mph.

Vmaz = (2 * 250)/(3600 * c) = 7.46 x 10-7. The initial estimates of Doppler for

the multiple filter implementation are given by P,n0 = (m - 4) * Av + ',nom, m =

1,2, .-. 7, where Atv = 2vrn.z/7. The initial variance for each of the 7 filters is
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Var(vm0 ) = (Av) 2/12, Vm. The a priori probabilities are given by P(OmIZ 0) =

1/M, 1 < m < N. The Monte Carlo simulation results for JD/E for M = 1 and

M = 7 a. e shown in Figure 7.4(a). In this figure the mean square error (MSE)

of the estimation error in vk is shown as a function of SNR. Both the MAP and

MMSE estimates are shown in Figure 7.4(a). The MAP and MMSE estimates are

the same for M = 1. Also shown on this graph are the resiilts for the detection-only

(D-O) technique. The JD/E (M = 7) results are essentially the same as the JD/E

(M = 1) results. Thus, in this case there is no advantage in using more than one

filter to estimate the Doppler shift. (This is in contrast to the time delay estimation

results shown in Figure 7.2(a), in which the JD/E N = 7 performance was much

better than that for JD/E N = 1.) The JD/E (M = 7) implementation gives better

results than the D-O method, particularly at higher SNR. This is expected since

the filter in the JD/E method allows a considerable refinement estimates at higher

SNR as compared to low SNR where the larger noise covariance restricts the filter

gain. At -5 dB SNR the JD/E and D-O implementations perform identically. In

general, the MMSE estimates are better than the MAP estimates, particularly at

low SNR's.

The JD/E (M = 7) technique is evaluated in lognormal noise in Figure 7.4(b)

for the single sensor model. The MMSE estimates of vk are shown in this figure

for the AKF and for the EHOF. The EKF is evaluated in two configurations. In

the first configuration the Gaussian pdf is used to evaluate the detection statistic

given by equation (7.9). In the second configuration the lognormal pdf is used. The

EHOF is evaluated using the lognormal pdf only.
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7.8.2.2 Double Sensor Evaluation

In the multiple sensor case (P > 1) the sensors may have different carrier

frequencies (wp), and different translation frequencies (wtp). A two-sensor (P = 2)

model was evaluated in which wci = 21r * 100 x 106, wt1 = 27r * 99.9975 x 106,

W'2 = 21r * 200 x 106, and wt 2 = 2w * 199.9975 x 106. The MMSE results of this

evaluation for JD/E (M = 7) are given in Figure 7.4(c). The single-sensor (P = 1)

MMSE results are also shown in this figure. This figure illustrates the distinct

advantage of centralized fusion for JD/E.

7.8.2.3 Multiple Pulse Processing

The double pulse model is compared to the single pulse model in Figure

7.4(d). Recall from (7.36) that the variance in frequency (and Doppler) estimates is

a function of the inverse pulse width squared. However, processing two pulses does

not give the same advantage as processing an equivalent pulse of size 2t.. As shown

in Figure 7.4(d) the advantage is approximately 3 dB - the same as for time delay

estimation (Figure 7.2(d)).

7.9 Conclusion

The space-time modeling of the signal returns as described in (7.14) has been

used in conjunction with nonlinear filters to design a new adaptive sensor processor.

Simulation results show excellent detection capabilities and excellent resolution in

target parameter estimation for both single and multiple sensor data. With the

excellent detectability, fine parameter resolution, and automatic data referencing,

this approach presents a very competitive design for target detection and parameter

estimation.
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The most significant result from the implementation of the JD/E technique

for time delay estimation is that the requirement that the initial estimation error

AT < 1/(2f,) can be relaxed by implementing several parallel filters.
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Chapter 8

Multisensor Detection and Signal Parameter Estimation

This chapter addresses the problem of multi sensor detection and high reso-

lution signal parameter estimation using joint maximum a posteriori detection and

high order nonlinear filtering techniques. The specific problem addressed is that

of two spatially separated sensors that employ active echo processing to estimate

the parameters of a target. The geometric area of coverage of the two sensors is

permitted to overlap. In the overlap region the estimates from the two sensors are

combined to produce improved estimates over the single sensor estimates.

The problem is approached using joint detection/estimation techniques. Sev-

eral hypotheses are postulated for detection. Each hypothesis corresponds to the

ability of each sensor to detect the target in its area of coverage. The a priori prob-

abilities of each decision are based on the area of coverage of the two sensors. For

each hypothesis, a high order filter recursively estimates time delay, Doppler shift

and geometric angle to the target from processing the returns of the transmitted

signal from each sensor. These estimates are in turn used to estimate target position

and velocity. For each of these hypotheses, another set of parallel filters is used to

obtain more accurate estimates of signal parameters and to account for the stability

problems that result from the first order Taylor series expansion used in the nonlin-

ear filtering algorithms. This is accomplished by operating a separate filter for each

of several different initial time delay estimates of the return signal. The maximum

likelihood estimate for a given hypothesis is then determined as a weighted sum of

the estimates from each of the local hypotheses, with the a posteriori probability

being used as the weighting function. It is assumed that the signals are imbedded
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in Gaussian noise, and clutter. The clutter is treated as non-Gaussian noise with a

lognormal or Weibull distribution.

Consider the situation of two spatially separated sensors, s1 and s2. Each of

the two sensors attempts to detect and track objects coming into its respective area

of coverage. For a valid data fusion scenario, the coverage of the two sensors is as-

sumed to overlap in space, but not entirely. The sensor geometry is shown in Figure

8.1. In the overlap region the data received by the two sensors can be combined to

get a more accurate estimate of target parameters or to estimate parameters that

cannot be estimated with one sensor alone. In the overlap region the estimates from

the individual sensors are combined to form improved target parameter estimates.

We consider the case where each of the sensors may have different types of tracking

devices such as optical trackers, various types of radars, etc. It is assumed that

these sensors transmit a signal and process the echo returned from that signal. It

is assumed that the signals are corrupted by additive Gaussian noise due to ther-

mal effects within the receiver, and by clutter which may be due to non-Gaussian

distortion such as sea clutter or other multipath spreading. The amplitude of sea

clutter is characterized by statistical fluctuations which may be described in terms

of a probability density function. Typical distributions used to model this distor-

tion include the Rayleigh, Weibull or lognormal distributions [81, pp. 478-4791. In

general, the Gaussian noise introduced into the receiver is uncorrelated between the

two sensors.

8.1 System Model

Assume that each sensor consists of a phased array or other sensing device

that can produce target angle estimates along with estimates of time delay and
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Doppler shift. It is assumed that there are two separate measurements taken at

each sensor - one measurement at each of the offset phase centers. The received

signal at the ith sensor may be described by

Zik = hik + uik + vik (8.1)

where hik represents the received signal, uik is the clutter, and Vik is the Gaussian

noise at the kth sampling interval. Since there are two measurements, the received

signal can be more explicitly stated as

Zilk [h hilk [U~il 1 [vi1l 1 (8.2)

Li~ h ik J Ui2k Vi L
The received signal vector hik at sensor i can be described by the following model.

[~ 1 = [a(kt, -T,ri + rj2 /2)p(kt, -T,r 1 + Ti2/2)sin(vdili(Ak,t - Tij +74,/2))) 1
h Jk I J La(kt - ril - r2/2)p(kts - rl - rl22)sin(vi(w•(kt. - il - ri2/2)))J

(8.3)

where a(.) is the amplitude, p(.) is the pulse shaping function, and t, is the

sample time (t, = I/f.). The delay ril is the round-trip propagation time from the

center of the sensor to the target and back to the sensor. Referring to Figure 8.2,

this is the time for the signal to travel from point PA to 0 and back to point Pi.

From Til the range to the target can be determined using the relationship

Ri _1 (8.4)
2c

where c is the speed of propagation. The delay Ti2 is the difference in time for

the signal to reach from point Pil to point PA2. The difference in the propagation

distance is given by cri2. The differential angle A4, to the target from sensor i,

which represents the difference between the sensor pointing angle Oi0 and the actual
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target angle Oi, is then

AoS =Sin- (CD i) (8.5)

Oi = 0io + Aoi

where Di is the distance between the two offset phase centers in the phased array for

sensor i. The initial estimates of Ti2 are based on the geometric relationship shown

in Figure 8.2. This figure shows that the geometric angle Aoi is given by

sin(Aoi) Ari c cri2 (8.6)R:i- D,

The function p(.) in (8.3) represents the pulse shaping function and is gen-

erally designed to limit the signal bandwidth at the expense of widening the main

lobe of the function in the frequency domain. Several possible pulse shapes and

their spectral characteristics are given by Harris [82]. It is assumed that the signal

is attenuated by spherical spreading loss such that the received amplitude a(.) is

related to the transmitted amplitude A through the relation

4A
a(kt. - ( +,1 ±,2/2)) = 4A (8.7)

For constant receiver noise power a;, the signal to white noise ratio at the receiver

is given by

SNRi - Epa(kto - (rii ± Tri2/2)) 2  8EpA2

2c 2  = C2 (T,1 ±ri2/2)20! (8.8)

where Ep is the average pulse energy per sample. Given that the transmitted ampli-

tude A and the carrier frequency wi are known, then the unknown delays ril and Ti2,

and the Doppler shift parameter Vi must be estimated. The Doppler velocity Vdi,

which is the projection of the target velocity along the line of sight from sensor i to

the target and is given by Vdi = IVIcos('y,), where V is the target velocity vector.
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Vdi is related to vi through the relation

Vi - 1 (8.9)
2c

The estimation accuracy and the number of target motion parameters that

can be estimated are a function of the position of the target within the coverage area

of each sensor. If the target is located in a region covered only by a single sensor

then estimates of the Doppler shift and the two time delays from this single sensor

can be used to estimate only the target position and Doppler velocity Vdi for that

sensor. If the target is in the overlap region then estimates of the Doppler shift and

the two delays from each sensor can be used to obtain a more accurate estimate of

target position in addition to estimating the complete target velocity vector. The

models for these two situations are developed next.

8.1.1 Single Observer Model

Using estimates of ril, ri2 and vi from one sensor the target position and

Doppler velocity can be estimated through the relations (8.4, 8.5, and 8.9). Define

the state variable vector for sensor i as

x,,= [,ilk Ti,2k 1, ]T

It is assumed that the state does not change while the pulse is being reflected from

it. Therefore the process equation is not necessary; that is, the state transition

matrix is unity and there is no process noise. In terms of the state variables the

received signal at transmitter i is

hik = [ailk (Xik)Pilk (Xik)rhlk(xik) (8.10)
L ai2k (xik)P2k (x k)rik (xik) J
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where

-ikXk 
4A

-(c(Xik(1) + x1ik(2)I2))2

ai2k(Xik) = 4Ax~(1

pilk(Xik) = 0.5 * (1 - cos(2 7rxik (3)(kt, - Xik(1) + Xik (2)/2)/t ,,)) (8.11)

Pi2k(Xik) = 0.5 * (1 - cos(27rxik(3)(kt, - Xik (1) - Xik (2)12)/tw.i))

rik= COS(Xik(3)(wj(kts Xik(1) + Xik(2)12)))

ri2k = CoS(xik(3)(wdlcts - Xik(1) - i()2)

The definition Of Psilk (xik) given above represents the Han ning pulse type with pulse

width i,,,,. The filter equations require the derivative of the signal model with respect

to the state. This derivative is given by

40 46Lil il ailki&ý.kriIk + akp,1k.~4

hik - ls~ikik +ks (8.12)
'Xik LI~P2& + P2k + ai2kPi2kiZk0 ik i~k -k
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where

o9aijk -8A

axk(1) c2 ((Xik (1) - '

______ - c,4A

19 % k(2) -C
2 ((Xik(1) - Xik(2/2)

Oxijk( = -(7r ~(3)/tiw)sin(2vrz (3 )(kt, - x(1+ xk(2)/2)Itti)

_______ = 0 5cj~rzik(3)/tiwsin(27rX'k(3)(kt, - zik (1) + #cjxik(2)/2)It ~,)
Ozk(2)

. pj.= (7r(kt8 , (1 + , (2)/2)/tw,) (.3

sin(2lrXsk(3)(kt, - z'k(l) + icjXik(2)/2)/tw,)

9r'jk = +X'k(3)wssin(X'k( 3 )(woi(kt, - Xik(1) + icjzk(2)/2)))

. &,j( = - .5Kxjxk(3)wisin(xik(3)(wi(kt, - xik(1) + Icjx'k(2) 1 2)))

. ~ik= -wi(kt, -Z(1+ x,(2)/2)
f9xik (3) -Xkl ji

sin(xik(3)(w,(kt, - Xik(1) + icjzk(2)/2)))

for j =1, 2. xj = +l1whenever j =1. x 1= -l1whenever j =2.

It is assumed that the error in the initial conditions is not correlated with the

measurement noise and that the Gaussian noise is not correlated with the clutter.

Thus the measurement noise covariance is given by

-k E[uik + vik)(uik + vik)

=EfuikuT~k] + EfvikV'k )TI (8.14)
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where it is assumed that the Gaussian measurement noise and the clutter are un-

correlated, and that the clutter has correlation coefficient pi between the two offset

phase center beams. The third moment of the measurement noise is

S= E[(u,k u,k)u I (8.15)

which contains components only due to the clutter since the Gaussian noise has a

symmetrical density function. The fourth moment of the measurement noise is

R() = EI(uik 0 Uik)(Uik 0 Uik)T + E[(vik (&vk)(vik 0 vik)T] (8.16)

8.1.2 Double Observer Model

When information is available from two sensors, that is, whenever the target

is in the overlap region, and the target is illuminated simultaneously by the two

radars, the Doppler and time delay estimates from each sensor can be combined to

obtain a better estimate of target position and velocity.

Let X' and Y' denote the directions of a local coordinate system as shown in

the insert in Figure 8.1. Let 01(0 and 020, the pointing angles of the two sensors, be

chosen such that 20 - 010 = 90 deg. In this -,ase the direction X' points directly

along the line of sight (LOS) of 82, and perpendicular to the LOS of s8. Likewise,

Y1 points directly along the LOS of si and perpendicular to the LOS of 82. X' is

the in-track direction for sl and the cross-track direction for 82. Y' is it in-track

direction for S2 and the cross-track direction for .1. For small angles Adi such that



206

sin(Aoi ; 0), the position estimates in the X', Y' coordinate system are given by

Oxt = -(Cý21/2 - R 2 0 )

-- RI10c11/D1

(8.17)
Oi = cfii/2 -R 1 0

= R2od+22/D2

where Ro0 is the nominal range from sensor i to the center of the insert in Figure

8.1. The associated position error variances are given by

2 =n2 rir201 =R1.°c2Var[rl2]l/D1

0=2 c2 Var[r211/4
12 =(8 .1 8 )

2 I = c2 Var[rll]/4

='2 2 1 0 C2 Var[r 22]/D22

If it is assumed that the time delay estimation errors have Gaussian distributions

then the maximum likelihood estimate of the target position in the overlap region

R2 is given by
or , RI OC• 2 /Dl - o,2, (cf2 i/2 - R20)

O-X2 (8.19)

a2_ (c,112 - Rio) + 2 R2Oe722Di= 2 10 R2"/ (8.20)

From Figure 8.1 it is seen that the target position (O, 0,) can be found

from the time delays at either sensor. The position coordinates are determined from

0) =
(8.21)

= R12COe(a) + 2COS(q 2 )
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6, = kRsin(#I) (8.22)
= R12sin(a) + k2 sin(ý2 )

where -i and 4' are obtained from (8.4, 8.5). Define the position error variances

0"21 = Var[4icos(ý1)]

a'Z2 -2 Var[R12cos(Ck) + R2cos(4' 2 )j
(8.23)

,2 1 = Var[kjsin(ýI)]

212 = Var[R 12sin(a) + R2 sin(0,2 )]

For small angles Aoi these error variances can be expressed in terms of the time

delay variances through the use of (8.5) and (8.4). This yields

47 2 = 12o sin 2 (4'lo)(c/Dl) 2Var[n2] + (c/2)2 COS2 01oVar[ru]

Xz2 = P20sin 2 (4 o)(c/Di) 2Var[7-] + (c/2)2CoS2 2oVar[r 21]

(8.24)
o.1 -R 2 cOs2 (01'o)(c/Dl )2 Var[r 12] + (c/2)2sin2 O1Var[-11 ]

oi2 = R 0 o es2 ( (2 0)(c/Dl )2Var[7z2] + (c/2)2 sin24'0 Varn17v]

In the overlap region the estimates can be combined to form the weighted estimate

£T2 (Ricos(4Oi)) + a722(R12COS(Ct) + R2COS(4'2 )) (.5
2 2 u 2 (8.25)

0,,2, (R, sin(4,)) + 2 (R12sin(a) + &2sin(2))Oy a;, (8.26)
O,11 ,122

The Doppler velocity estimate * and Doppler angle estimates ji and j2 can

also be estimated in the overlap region. With the estimates ýj and ^02 in hand, the
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angle ý is found from

C 2 - ý

Using the Doppler velocity equation

=d I V^lcos(i5'), (8.27)

and ii = 7^2 + C, the ratio of Doppler velocities gives

Vd _cos('2 + C)

Vd2  coS(%2)

Solving for 72

i2 = tan-I[O(1 - d/r2

With the estimate 72, the magnitude of the Doppler velocity I can be found from

(8.27), and the target heading is •' = -j2 + 42 - ir.

8.2 Joint Detection/Estimation

The target search region has been localized to the rectangular box shown in

Figure 8.1. This box is subdivided into several resolution cells as shown in this figure.

The beam pattern from sensor sl allows this sensor to detect a target and estimate

its parameters if the target is located in resolution cells 1 through 21. Sensor S2

can detect the target if it is in cells 11 through 15, 22 through 25, or 26 through

31. If the target is not located in any of these cells then the target is declared

not present (or more precisely, not detectable) . This situation is represented by

the null hypothesis HO. The resolution cells are grouped into regions which will

be used for minimum mean square error estimation. If the target is located in

regions RI (resolution cells 1 through 9) or R3 (resolution cells 16 through 21) only
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sensor sl can detect the target. Regions R4 (resolution cells 22 through 25) and R5

(resolution cells 26 through 31) correspond to the coverage area of sensor s2 only. If

the target is located in region R2 (resolution cells 10 through 15) both sensors can

detect the target and perform parameter estimation. In this case the estimates can

be combined as described in section 8.1.2. The remaining area in the rectangle in

Figure 8.1 is designated as region R0 , where neither sensor can detect the target.

The joint detection/estimation (JD/E) procedure applied to this problem

involves both model uncertainty and uncertain initial conditions. JD/E for this

situation is discussed in Chapter 5. Let 9i E e designate the parameter vector

that describes the different combination of model uncertainty and initial condition

uncertainty. The parameter vector 9i is assumed to be time invariant. The param-

eter vector 6,, j = (n - 1) * M + m, 1 < n < N, 1 _5 m < M, is defined to be

the (n, m)th delay/Doppler resolution cell and is used to define NM + 1 different

combinations initial conditions and models. n corresponds to the range resolution

cell number determined from the initial conditions on the two time delays from each

sensor, and m corresponds to the velocity resolution cell number determined from

the initial conditions on the Doppler shift from each sensor. Since the model uncer-

tainty is associated with the spatial coverage of each sensor, Doppler shift estimation

is not considered in the experimental evaluation. The signal carrier frequency W,

and pulse width t. will be assigned values that lead to good delay estimation, but

poor Doppler estimation. This is done so that large Doppler uncertainty has limited

effect on the model used in each spatial resolution cell, and the focus can be directed

primarily on range and azimuth resolution.

The number of Doppler resolution cells is set to M = 1 in order to simplify

the discussion to follow. For the case M > 1 the initial conditions on Doppler shift
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would be different for each hypothesis. This situation is discussed in Chapter 7. For

M = 1 the parameter e, is directly associated with the range resolution cell number.

Hypothesis H#j, redesignated Hi, corresponds to the hypothesis that the target is

present in range resolution cell j.

In region Ro, from which neither sensor can detect the target, hypothesis H0

is defined by

HO : zik = uik + vik Vk, i = 1,2 (8.28)

For those resolution cells in regions R1 and R3 , the hypothesis corresponding

to cell j,j - 1,2,-.. ,9 (Region R1),j = 16,17,.-.,21 (Region R3 ) is given by

S Ulmk + tlmk kts < i"lmjk

zlmk = hlmk + Ulmk + Vlm k lmjk - mi 1

Hi: Umk + Vlmk kts _> Pimjk + ta, (8.29)

Z2k = U2k + V2k V/k

for m = 1,2. The delay ^'3k is given by

3k•ik I A + r 3-kmf (8.30)

where ICm = +1 whenever m = 1, and ixm = -1 whenever m = 2. The initial

conditions are given by

• 0o1o,1j [(8.jo,312jO)

P '010,s = D iag ]Var I-,zjo l, V ar[* 12j 01,V ar[l o]] (8.31)

F1010,9,

The initial estimates filj0, 7j^40 , i = 1,2 are chosen such that the position of the

target for a signal received ate sensor i is at the center of resolution cell j. The
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variances Var[Ii1j0J and Var[Rj2.j] are determined based on a uniform distribution

of the error within the cell.

In region R2 both signals are assumed to be present. In this region the

hypothesis associated with cell j, j = 12,13,- --,15 is given by

F Ulmk + Vlnk k to < lmjjk

zlmk = hlmk + Ulmk• vlimk hlmjk < k t i < P"mjk + twl

u1Lmk + Vlmk kta _ lm jk + tiw1

H,: (8.32)

[ U2mk + V2m& k ti < hm j
Z2mk = h2mt + U2mk + V2mk f2mik :5 k to < 2mik + tw2

U2mk + V2m kkts 2! •2mjk + tw2

for m = 1,2. The initial conditions are given by

21ot,10 = [i i 7 vio

/010,,i = Diag [Var[filj 0 1, Var[÷i2,0 1, Var[Pi] (8.33)

i= 1,2

For those resolution cells in regions R4 and Rs, where only sensor 2 can detect

the target, the hypothesis corresponding to cell j, j = 22, 23,.. , 25(Region R4),j =

26,27,..-,31(Region Rs) is given by

Zlk = ulk + V~k V k

H:f U2mk + V2wk k to < fim. (8.34)

Z2mk= h2mk + U2mk + V2mk 2mik :- k to < 7"2m.k + tw2

U2mk + mk k to> f2mjk + tw2
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for m = 1,2. The initial conditions are given by

X2010,ej - [21 0 , J22.1,0

P2010 9, Diag [Var[f2ij0], Var[ 2j0], Var[L2 0]] (8.35)

A maximum a posteriori detection criterion can be used to determine the

most likely range resolution cell. This criterion requires the availability of apriori

probabilities of each hypothesis, and it requires the probability density functions for

the measurements. Define Zk = [ZI,Z 2 ,... z4], where zk = [zf,,zlkT, as the set

of all measurements up to time k, and let p(z41Z.-1, 9j) be the probability density

function of zk given the measurements Zk- 1 and hypothesis Hi. The a posteriori

probability of hypothesis Hi is given by

P(IZk) = P(0,JZk.J) Ai(zk) (8.36)
EN=o P(0mIZk-1) Am(zk)

where Aj(zk) is the likelihood ratio defined by

Ak(zk) = p(zZ-.1,0k) (8.37)
p(z4IZ4-1,00)

In general the distribution function p(zkIZk-1, 9i) is non-Gaussian. Since the mea-

surement noise consists of a sum of Gaussian noise and non-Gaussian clutter, the

joint density function consists of a convolution of the Gaussian and non-Gaussian

density functions. In general it is not possible to compute this joint density analyti-

cally and must be done numerically for each iteration of the filter, since the density

function changes as the estimate *k,O, changes.

Maximum a posteriori (MAP) detection can be used to decide the most likely
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hypothesis according to:

Choose Hj : 0-=argmax8mro8P(8vnIZk) (8.38)

The MAP estimate from sensor si is then the estimate associated with cell j if cell

j is in the spatial area of coverage of that sensor.

The minimum mean square error estimate can be found be combining the

estimates from all of the cells with a particular region. If the state vector xk is

common to all models the minimum mean squared error (MMSE) estimate can be

used. The MMSE estimate for sensor i in region Rp can be expressed by

**ý = , P(OuIZk)*ikl ,.. (8.39)celljERp

The most likely region is selected using the MAP criterion. Define as the hypothesis

that the target is located in region RV as I., p = 0,1, --- , 5. The a posteriori

probability associated with region R. is the sum of the a posteriori probabilities of

all of the cells in that region. This region-level probability is given by

P(IpZk) = E P(ejlZk) (8.40)
celljERp

The most likely region is chosen such that

Choose Ip : p = argmaxf,...,SJeE P(IpIZk) (8.41)

8.2.1 Definition of Priors

The a priori probabilities of each hypothesis are based on the area coverage

of the sensors. The total number of resolution cells shown in Figure 8.1 is 56. Of
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these, 25 are located in region RO. All cells are assumed to have an equal probability

containing the target. The a priori probabilities are given by

P(Oo) = 25/56
(8.42)

P(Oi) = 1/56, j = 1,2,-.. 31

The probabilities associated with regions Ri, j - 0,1, ... , 5 are given by

P(Io) = 25/56

P(1) = 9/56

P(1 2 ) = 6/56
(8.43)

P(13 ) = 6/56

P(1 4) = 4/56

P(Is) = 6/56

8.3 Simulation Experiments

An experimental study was conducted to evaluate the performance of the

multisensor fusion technique. In this evaluation the measurement noise consisted of

50% Lognormal Noise and 50% Gaussian noise. The nominal angles from sensors

sl and 32 to the target were =10 = 45 deg and 40 = 135 deg, respectively. The

nominal range from al to the target was 10 miles. The nominal range from sensor

82 to the target was chosen such that the received signal at 92 was 5 dB higher than

at sl for the same transmitted signal level and target strength.

The carrier frequencies used by the two sensors were the same at fc = 10x 106.

This is not practical situation since two cooperating sensors would not transmit at
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the same frequency, unless they use the same signal generator and transmissions

from the two sensors are offset in time. However, it is desired to show the effect of

only one variable, the relative SNR at each sensor, on the estimation error. Since the

operating frequency affects the variance of the estimates as described by (7.31), the

operating frequencies are kept the same. Both sensors illuminate the target simulta-

neously. They both sample the signal at a rate f. - 100 X 106, and both signals have

the same pulse width twi = 12/f,, i = 1,2. The resolution cell width is 1/f. sec-

onds. The associated initial error variance on time delays -r1j0 and r210 is t2/12. The

corresponding range resolution cell width is Ari = c/(2f.). Thus, the initial variance

for the angle-measurement delays is (8.6) Var[T120] = ((Djc)/(2f.Ri)) 2/12, i = 1,2.

Di, the separation between phase centers at the sensor was chosen to be 3 feet for

each sensor.

The carrier frequencies, pulse widths, and sampling frequencies chosen for

this evaluation are the same as that chosen for the time delay estimation experi-

ment in Chapter 7. It was observed in Chapter 7 that the values chosen for these

parameters are not conducive to estimation of Doppler shift. Since the primary

goal of the evaluation in this chapter is to properly locate the correct region and

resolution cell number, the estimation of Doppler shift plays a secondary role. Ac-

cordingly, Doppler shift is not estimated in this evaluation. Target positions are

selected randomly with a uniform distribution in the spatial area designated by the

large box in Figure 8.1.

Simulations were performed for SNR's (at sensor s1) ranging from -10dB to

10dB. 500 random target positions were chosen at each SNR. Of these 500 trials,

228 target positions randomly chosen in region Ro, 91 in R1 , 54 in R2, 44 in R3 , 40

in PR4, and 40 in R5.
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Table 8.1 shows the detection results for the EKF using the Gaussian pdf

to evaluate the a posteriori density function in (8.37). The average a posteriori

probability for correct decisions at the region level is given by P(IplZk). This is

computed as the arithmetic mean of the a posteriori probabilities (8.40) for those

trials in which the correct region was chosen using (8.41). This value gives may be

used as a measure of the level of confidence that the proper region was chosen. At

the resolution cell level the average probability is denoted P(ejlZk). A target was

declared present if the a posteriori probability P(IplZk) for any region p,p = 1,..., 5

was greater than P(IOIZk). The probability of detection is labeled P(IpIIq), p, q 0.

This quantity was determined by dividing the total number of declared detections,

or the number of trials in which a target was declared present in any of the regions

RI through Rs, by the total number of trials in which the target was actually located

in one of the regions Rx through R5. The probability of false alarm, P(IplIo), was

determined by dividing the total number of trials in which a target was declared

present when it was actually in Ro, by the number of trials in which the target was

actually in RO.

Table 8.1. Multisensor Fusion Detection and False Alarm Probabilities

SNR(dB) P(0IZk) IlZ&) P(Ip[Iq), p,q # 0 P(Ip[Io)

-10 0.61 0.74 0.74 0.18

-5 0.77 0.93 0.91 0.059

0 0.83 1.0 0.99 0.0044

5 0.84 1.0 1.0 0.0

10 0.84 1.0 1.0 0.0
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The JD/E technique performs very well in terms of locating the proper region.

However, the performance is not as good in finding the correct cell. This is due to the

fact that the initial variance in angle delay is so small that the filter cannot properly

decide the correct cell number. The probabilities of missed detection P(IolIp) and

correct classification (i.e. not only detection of the target but correct localization at

the region level) P(IplIp) , p = 1,... , 5 are displayed in Table 8.2. The probability

of misclassification, which is not shown in this table, is given by P(1q9 j,) = 1 -

P(IplI,) -P(IojI,), q # p. Sensor 82 outperforms sensor 81, which is to be expected

since the SNR at al is 5 dB higher than the SNR at sensor 82. In the overlap region,

R2, the classification performance is much better than it is for any other region,

with an 85% probability of correct classification.

Table 8.2. Probabilities of Missed Detection and Correct Classification - Region Level

SNR(dB) Probability

p=1 p=2 p=3 p=4 p_=_5

-10 P(lo0 I,) 0.35 0.074 0.50 0.15 0.16

P(III,) 0.57 0.85 0.45 0.78 0.79

-5 P(Io II,) 0.13 0.019 0.23 0.025 0.023

P(I, I,) 0.87 0.96 0.77 0.98 0.98

0 P(IoIl,) 0.022 0.0 0.023 0.0 0.0

P(I, II,) 0.98 1.0 0.98 1.0 1.0

5 P(I oII,) 0.0 0.0 0.0 0.0 0.0

P(III,) 1.0 1.0 1.0 1.0 1.0

10 P(IoI1,) 0.0 0.0 0.0 0.0 0.0

P(III,) 1.0 1.0 1.0 1.0 1.0
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The missed detection and correct classification probabilities at the cell level

are shown in Table 8.3. The results are averaged over all of the cells in each region.

Again the performance for those cells in region R2 was much better than for any

other region. The classification results for regions RI, R3, R4 . and R5 were poor

even at high SNR's. The results in this table reflect the inability of the sensors

to detect the proper cell number in the cross-range direction. Figure 8.1 shows

that there are three cells in the cross range direction for sensor s1, and two cells for

sensor 82. Thus assuming that the cell number cannot be resolved in the cross-range

direction, the expected cross-range uncertainty for regions Ri and R 3 is 1/3, and the

cross-range uncertainty for R4 and R5 is 1/2. This is verified by the experimental

results in Table 8.3 at 10 dB SNR.

Table 8.3. Probabilities of Missed Detection and Correct Classification - Cell Level

SNR(dB) Probability

R1  R 2  R 3  R4 R 5

-10 P(O0Iej) 0.85 0.20 0.86 0.28 0.33

P(8ij8,) 0.022 0.52 0.046 0.23 0.21

-5 P(OO10e) 0.29 0.019 0.39 0.025 0.023

P(Oj6I0) 0.16 0.76 0.20 0.33 0.44

0 P(Ooe0 i) 0.033 0.0 0.046 0.0 0.0

_ P(OeIO0) 0.33 0.94 0.27 0.43 0.51

5 P(OolO•) 0.0 0.0 0.0 0.0 0.0

P(Oj I) 0.39 0.94 0.27 0.45 0.53

10 P(o010o) 0.0 0.0 0.0 0.0 0.0

P(OI10) 0.36 0.96 0.32 0.45 0.56
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The estimation results are shown in Figure 8.3. All results shown in this

figure are in reference to the (X', Y') coordinate system. Figure 8.3(a) shows the

average mean squared error for those detections in regions R1 and R3 , in which only

sl has coverage. The results in this figure are consistent with those in Table 8.3

in that the estimates in the cross-track direction X' never improve over the initial

estimates regardless of the SNR. Figure 8.3(c) shows similar results for regions R4

and Rs, which are covered by sensor .2. Figure 8.3(c) also illustrates the 5 dB

performance for sensor 82 over that for si. Figure 8.3(b) shows the results for both

sensors in region R2. In this region, as shown in Table 8.3 the proper cell is almost

always found. Thus the cross-range estimation error variance should improve by

about 6 dB (20log(2)) for sensor 82, since the cross-range error for s2 has been

localized from 2 cells down to 1. Similarly, the cross-range error variance for sensor

sl in Region R2 is reduced by about 10 dB (20log(3)) since the target has been

localized from 3 cells down to 1. This improvement is evident in Figure 8.3(b).

Figure 8.3(d) shows the estimation results using the combined measurents obtained

from (8.19and 8.20). Because of the larger variance in the cross-range error for each

sensor and the fact that the intersection of the LOS's between the two sensors are

perpendicular, the combined estimate consists of the X' estimate from sensor 82 and

the Y' estimate from sensor al.

The mean squared errors in the (X, Y) coordinate system are shown in Figure

8.4. Each curve in this figure represents the combined X and Y position errors,

since the geometry dictates that the error variance should be the same in each

direction. The (X, Y) positions are obtained using (8.21) and (8.22). This figure

again illustrates the approximate 5 dB improvement in the estimates from sensor 82

over that of sensor s9 in the nonoverlapped regions, and the significant performance
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improvement in region R2 . It is observed that the (X, Y) position errors for the

overlap region shown in Figure 8.4 are significantly worse than those shown in Figure

8.3(d) for the (X', Y') coordinate system. This is particularly evident at high SNR's.

This is due to the fact that the cross-track errors are included in the computation

of the combined estimate O and 0, determined by (8.21) and (8.22). The choice

of the proper coordinate system can make a large impact on the performance of the

estimator.

8.4 Conclusion

A technique has been presented for multisensor fusion based on joint detec-

tion/estimation procedure. It is shown that excellent performance can be obtained

for both target detection and target parameter estimation using this technique. A

significant advantage of this technique is that each sensor can perform detection and

parameter estimation in a decentralized mode. The final estimates and a posteriori

probabilities from each sensor are processed by a centralized processor to derive the

optimum estimate.

The method provides an automatic referencing mechanism of the data from

the different sensors (automatic data alignment) as long as the geometry and timing

of the sweeping beams are known. For optimal target resolution performance, it is

found that the lines of sight of the two sensors should be perpendicular to each

other at any given time, requiring special synchronization. This implies that if the

sweeping angle of one of the sensors, e.q. al as a function of time is # 10(t), the

corresponding sweeping angle of sensor 82 must be 020 (t) = r/2 + 010 (t), a goal

that is easily accomplished with an efficient model reference (adaptive) controller.
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Chapter 9

Summary and Areas for Further Study

Two high order filters (HOFs) have been presented for estimation in non-

Gaussian noise. The first filter is designed for systems with asymmetric probability

densities. The asymmetrical filter is developed by using the first and second pow-

ers of the innovations in the derivation of the filter equations. The second filter is

designed for systems with symmetric probability densities. It is developed based on

first and third powers of the innovations. These filters are evaluated experimentally

in non-Gaussian noise formed from Gaussian sum distributions. Under these con-

ditions the HOFs perform much better than the standard Kalman filter, and close

to the optimal Bayesian estimator, the Gaussian sum filter. However, the primary

advantage of using the HOFs occurs either when the noise cannot be adequately

represented as Gaussian sums, or when only the moments of the noise are known,

and not the actual density functions. Although these filters are more complicated to

implement than the standard Kalman filter, they are not nearly as computationally

intensive as the Gaussian sum fiter for which the number of parallel fiters grows

geometrically as the number of stages increase.

For HOFs designed for Pth order filter moments, their implementation re-

quires the availability of prediction error moments of order up to 21. In general,

when I > 1 it is necessary to either truncate the expressions for the filter moments

so that only those powers of prediction and measurement error moments are in-

cluded for which similar powers of the filter moments exist, or the higher powers of

the prediction and measurement error moments must be approximated. This leads

to either the truncation of the filter error moment expressions or the estimation of
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prediction error moments of order I + 1 through 21. It is shown that the truncated

filter expressions give comparable performance to those with estimated higher order

moments.

For non-Gaussian distributions made up of known Gaussian sums, the non-

Gaussian filters presented here give a reasonable compromise between the optimal

but very computationally intensive Gaussian sum filter, and the suboptimal but

easily implemented standard Kalman filter. In addition, when only the moments

of the distributions are known and a Gaussian sum filter cannot be used, the non-

Gaussian filters offer a means to obtain improved performance over the standard

Kalman filter. One method to improve the performance of the non-Gaussian filters

is to use higher powers of the innovations in developing the filter equations. However,

the resulting filter expressions would be extremely complicated and it is anticipated

that the expected performance improvement over the HOFs presented here may be

marginal.

A more general fiter can be developed by including the first, second, and

third order powers of the innovations in developing the filter equations. This can be

useful, for example, in a situation in which the measurement noise has an asymmet-

rical distribution and the process noise has a symmetrical non-Gaussian distribution.

The derivation of this filter will follow the same procedure as shown in Chapter 3.

Three separate gain matrices will be required in this case.

From the implementation standpoint a significant reduction in the computa-

tional burden imposed by the HOFs can be accomplished by exploiting the redun-

dancy in the high order filter moment matrices. For example the error covariance

matrix can be represented by either the upper or lower triangular matrix. Similarly,
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matrices for the 3 ,d and 4'h order expansions also contain a significant amount

of redundancy, and efficient algorithms may be developed for including only the

necessary terms in these matrices.

This thesis also addresses several signal processing estimation problems with

a model-based formalism. These problems are all treated as nonlinear estimation

problems in Gaussian and non-Gaussian noise. A direct model is used in which the

frequencies, amplitudes, damping coefficients and phases of the sinusoids are defined

as state variables. This model has the advantage that the time varying behavior

of these parameters can be directly described through the process equation. The

harmonic retrieval problem is solved using three separate nonlinear filters and three

iterated forms of the extended Kalman filter. The nonlinear filters offer a significant

advantage over batch-type estimators in that time varying system parameters can

be modeled. A problem that has been studied by other authors is addressed and it

is found that the nonlinear filters offer a significant advantage over other techniques

such as modified singular value decomposition and cumulant-based techniques when-

ever the initial estimation error is constrained. It is shown that the nonlinear filters

can be used effectively in colored Gaussian noise with known or unknown coeffi-

cients, and in measurement noise with known and unknown covariances. Another

advantage of the nonlinear filter approach is that these filters converge relatively

fast, making them well-suited for short data lengths.

A joint detection/estimation (JD/E) procedure is presented and applied to

problems with model uncertainty and/or uncertain initial conditions. The imple-

mentation of this procedure consists of several filters operating in parallel. Each

filter hypothesizes a different measurement or process model, different initial condi-

tions, or both. The estimators act independently of the detection mechanism. The
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link between the two is provided by the a posteriori probability, which is evaluated

for any arbitrary density function. These estimators can include any recursive filter

such as the linear Kalman filter, nonlinear filters, or the HOFs.

The JD/E approach is applied to model order selection. A general approach

is presented for determining the number of sinusoids present in measurements cor-

rupted by additive white Gaussian and non-Gaussian noise. The approach involves

the simultaneous application of maximum a posteriori (MAP) detection and nonlin-

ear estimation of the state variables, which consist of the amplitudes and frequencies

of sinusoids in each model. Estimation is performed using the extended Kalman fil-

ter when the noise is Gaussian, and the extended high order filter (EHOF) when the

noise is in non-Gaussian. The initial state estimates are constrained to be within an

initial variance. The problem is formulated as a multiple hypothesis testing problem

with assumed known a priori probabilities for each hypothesis. Each hypothesis rep-

resents a different model. Experimental evaluation of this approach demonstrates

excellent performance for model order selection and system parameter estimation in

both Gaussian and non-Gaussian noise.

The JD/E approach for problems with uncertain initial conditions is applied

to the estimation of the time delay and Doppler shift from the active echo returns

of monostatic sensor(s). The problem becomes one of localizing a target in range-

Doppler space. The range-Doppler space is partitioned into a number of resolution

cells. Each cell is identified with a hypothesis that the signal is present in it. The

joint detection/estimation scheme is then used to localize the target and refine its

parameter estimates (i.e. time delay and Doppler shift). The measurements that

are used to localize the target consist of signal returns corrupted by additive white

Gaussian and non-Gaussian noise. It is found that the initial estimation error for
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time delay must be within 1/2f, for any given estimator to form an accurate estimate

of target position. This requirement can be relaxed with the JD/E scheme, since a

very large initial estimation error can be segmented into a number of filters, each

with a much smaller error. The MAP estimate gives very good results under these

conditions.

The JD/E approach for the combination of model uncertainty and uncertain

initial conditions is applied to the problem of data fusion from two cooperating, non-

collocated sensors that are attempting to detect a target and estimate its position.

The geometric areas of coverage of the two sensors partially overlap. Thus, the

model is general enough to include sensor misalignment. In the overlap region the

estimates from the two sensors are combined to produce improved estimates over

the single sensor estimates.

Several hypotheses are postulated for detection. Each hypothesis corresponds

to the ability of each sensor to detect the target in its area of coverage. The a

priori probabilities of each decision is based on the area of coverage of the two

sensors. For each hypothesis, a high order filter recursively estimates time delay,

Doppler shift and geometric angle to the target from processing the returns of the

transmitted signal from each sensor. These estimates are in turn used to estimate

target position and velocity. For each of these hypotheses, another set of parallel

filters is used to obtain more accurate estimates of signal parameters and to account

for the stability problems that result from the first order Taylor series expansion

used in the nonlinear filtering algorithms. This is accomplished by operating a

separate filter for each of several different initial time delay estimates of the return

signal. The maximum likelihood estimate for a given hypothesis is then determined

as a weighted sum of the estimates from each of the local hypotheses, with the a
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posteriori probability being used as the weighting function. It is assumed that the

signals are imbedded in Gaussian noise and clutter. The clutter is treated as non-

Gaussian noise with a lognormal or Weibull distribution. Excellent performance is

obtained using the JD/E approach with high detection probability and very good

target position estimates.

The restriction of small initial estimation error, made for the harmonic re-

trieval and model order selection problems can be relaxed, if the JD/E approach

is used for estimation (the model with uncertain initial conditions). The model or-

der selection initial conditions can also be relaxed if the JD/E approach for model

uncertainty and uncertain initial conditions is used.

Since the estimation for each of the hypotheses in the JD/E approach is

performed independently, this scheme is a natural application for parallel processing.

The model selection or detection decision can be made by a centralized processor

after all of the data is processed. Thus, the JD/E approach is very well suited for

real-time implementation using advanced massively parallel computer architectures.
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Appendix

Cramer-Rao Bound for the Harmonic Retrieval Problem

This appendix presents the derivation of the Cramer-Rao bound for P ex-

ponentially damped sinusoids in white gaussian noise. Consider the measurement

model given by the formula

P

Zk = ck exp(-akpk+j(wkpk+Ok,)) + Vkp ffil(A .1 )

= hk(xk) + vk

for k = 0, 1,---, K - 1. Vk is assumed to be complex white Gaussian noise

with mutually independent real and imaginary components each with variance o2.

The elements of the state variable vector xk are defined as

k4(p-l).1 -= Wkp

Xk 4(p-l)+2 = CkP

(A.2)
k4(p-l)+3 -= Okp

lk40p-l)+4 = (kp.

The objective is to estimate some or all of the 4P possibly time-varying

parameters in this system based on the measurements. The probability density

function of the set of measurments z = [zO, zl, ... , ZK-]T conditioned on the

unknown parameters xk is given by
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p(zIxk) = (2,ro)K exp. K- Izk - hk(xk)12 (A.3)

The Cramer-Rao bound [73] (pp. 66, 84) gives the minimum possible vari-

ance of any unbiased estimate kk(z) of the state xk. In the presence of no prior

information about the state this bound is given by

Var[kk(z) - xk] = jl (A.4)

where JD is the Fisher information matrix given by

JD = -E I lft(XTk]

Applying this to (A.3) yields

JD K1E{ aX2T(zkZ* - zth (xL.)*-zh(xt) + hk(xk)hk(xk)*)J=y2a k=0 "kT

which reduces to

1 i £ { I__Xk) Ohk(xk)* + Ohk(Xk)* •hk(xk) }JD = l'2•2 E rioTkax (A-5)

Noting that = - (.ak.2) T, (A.5) can be evaluated by finding expres-

sions for a and a .Let

P
hk(xk) = , hk,(xk)

p-Ail
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where the measurement component hk, (xk) represents the contribution from the pth

sinusoid and is given by

hkP(xk) = ckP exp (-ak&,k + j(wkpk + Okp))

The two partial derivative vectors can then be expressed as

jk

Ohk(xk)=P 11% hPl(xk)
fxk P=I

-jk

ahk(xk)* P= 11% hk,(xk)*
P=1

-k

A.1 Case 1 :Estimation of two FR-equencies and Damping Coefficients

For estimation of the parameters of two exponentially damped sinusoids the

measurement equation becomes

P

zk L hk,(xk) + Vk
P=

p ---

where

hk,(xk) = exp (-ac k + jwkpk) (A.7)
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The elements of the state variable vector Xk are defined as

Xk 1 = WI

Xk2 = al

(A.8)
Xk3 = -2

Xk4 = a2.

and the partial derivatives in (A.5) become

j hk,(xk) "-j hkj(xk)*

oxt= k hk(Xk) -j hk2(xk)* (A.9)

- hk2(Xk) -- hk 2 (x))*

The Fisher information matrix for this system becomes

"aOcO"

1 Oa O c
-- (A.10)

JD 0 c ObO

-0 c 0 b]

where
K-1a-- E 2 e-2&1 k

k=0

K-ib = E L.2 le-2 a2 k

k=o

K-1
C= E k2 e-(al+2)kcOs((w1 -- ) k)

k=0
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Inverting this analytically the CR bound becomes

"a' 0 & 0

0 a' 0 c'
Var[*k(z) - xkl = 2 c' 0 b' 0

0 c 0 b'

where
ab 2  bc2

a2 b2 _ 2abc2

a2 b - ac 2
a2b2 _ 2abc2

c(ab - c2 )
a~b2 - 2abc2

From this the following observations are made:

1 For a given sinusoid, the CR bound for the frequency estimate is the same

as that for the damping coefficient estimate.

2 A higher damping coefficient gives a larger CR bound.

3 The bound is dependent on the difference between the two frequencies and

not their individual values.

A.2 Case 2 : CR Bound with a priori Information

In the case where the statistics of the initial estimation error are known and

are given by the initial covariance Po the CR bound (A.4) becomes

Var[^k(z) - xk] = [JD + JpJ1 . (A.11)

where Jp = 1/Po.
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If JD is small relative to Jp then the bound will be controlled by the initial

covariance. From equation (A.5) it can be seen that as the noise variance o,2 increases

JD decreases. However, even though the increased noise increases the CR bound,

there will be a point when the Jp dominates implying that the optimal unbiased

estimate is always at least as good as the initial estimate. Thus Jp sets an upper

limit on the variance in the estimate.


