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Abstract

Two high order vector filters (HOFs) are developed for estimation in non-
Gaussian noise. These filters are constructed using nonlinear functions of the in-
novations process. They are completely general in that the initial state covariance,
the measurement noise covariance, and the process noise covariance can all have
non-Gaussian distributions. The first filter is designed for systems with asymmetric
probability densities. The second is designed for systems with symmetric probabil-
ity densities. Experimental evaluation for estimation in non-Gaussian noise, formed
from Gaussian sum distributions, shows that these filters perform much better than

the standard Kalman filter, and close to the optimal Bayesian estimator.

The problem of high resolution parameter estimation of superimposed sinu-
soids is addressed using nonlinear filtering techniques. Six separate nonlinear filters
are evaluated for the estimation of the parameters of sinusoids in white and colored
Gaussian noise. Experimental evaluation demonstrates that the nonlinear filters
perform close to the Cramer-Rao bound for reasonable values of the initial estima-
tion error. The recursive technique developed here is well suited for time-varying

systems and for measurements with short data lengths.

A general approach to model order selection is presented based on joint de-
tection/estimation theory. The approach involves the simultaneous application of
maximum a posteriori (MAP) detection and nonlinear estimation using either the
extended Kalman filter when the noise is Gaussian, or the extended high order filter
(EHOF) when the noise is in non-Gaussian. The problem is formulated as a multi-
ple hypothesis testing problem with assumed known a priori probabilities for each

hypothesis. Experimental evaluation of the approach demonstrates excellent perfor-
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mance in selecting the correct model order and estimating the system parameters

for SNR’.s as low as -5 dB.

A nonlinear adaptive detector/estimator (NADE) is introduced for single and
multiple sensor data processing. The problem of target detection from returns of
monostatic sensor(s) is formulated as a nonlinear joint detection/estimation problem
on the unknown parameters in the signal return. The unknown parameters involve
the presence of the target, its range, azimuth, and Doppler velocity. The problems
of detecting the target and estimating its parameters are considered jointly. A
bank of spatially and temporally localized nonlinear filters is used to estimate the a
posteriori likelihood of the existence of the target in a given space-time resolution
cell. Within a given cell, the localized filters are used to produce refined spatial
estimates of the target parameters. Excellent performance is obtained using this

technique for single sensor processing and for centralized data fusion.
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Chapter 1

Introduction

In this thesis a new high order filter (HOF) is developed for estimation in non-
Gaussian noise. It is shown that this new filter yields improved performance over
the standard linear Kalman filter and is less computationally intensive than optimal
non-Gaussian filtering techniques such as Gaussian sum filters. This thesis also
addresses parameter estimation in the context of several signal processing problems.
These problems, which are formulated as nonlinear estimation problems, have been
traditionally addressed using other parametric and nonparametric techniques. It
is shown that nonlinear filtering techniques, including the nonlinear version of the
HOF, designated the extended high order filter (EHOF), can perform very well for

estimation of signal parameters in Gaussian and non-Gaussian noise.
1.1 Motivation for the Study

The standard Kalman filter does not use the higher moments of the density
functions and therefore cannot adequately deal with non-Gaussian distributions.
Many of the existing techniques for estimation in the presence of non-Gaussian noise
require accurate knowledge of the density functions. Given this knowledge, they at-
tempt to approximate these functions using Gaussian sums or other approximations
address the problem of nonlinear estimation in non-Gaussian noise. Other methods
make simplifying assumptions such as symmetrical distributions, small plant noise,
or small measurement noise in order to develop approximate filters. This motivated
a study of the filtering problem from a more general point of view. The goal of

this study is to develop filtering algorithms for systems in non-Gaussian noise that

e ————————————————————
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use knowledge of the moments of the a priori distributions. In these algorithms no
assumptions are made about the power of the noise or the shape of the probability

density function.

Several specific problems in the signal processing area are of interest in the
application of nonlinear parameter estimation techniques in the presence of Gaussian
and non-Gaussian noise. These problems are also associated with estimating the

parameters of sinusoids.

A problem that has attracted a large amount of research is that of harmonic
retrieval. This problem consists of estimating some or all of the frequencies, am-
plitudes, damping coefficients, and phases of superimposed sinusoids in white or
colored, Gaussian or non-Gaussian noise. Much of the work in the area of high
resolution spectral estimation or harmonic retrieval has been based on fitting an
autoregressive (AR) or autoregressive moving average (ARMA) model to the re-
ceived data. However, the performance of most modern high resolution estimation
techniques is severely degraded at low SNR’s and/or short data lengths. This is
probably due to the fact that these techniques are heuristic least squares modifi-
cations of algorithms that yield exact results when there is no noise or when the
available data is infinite. Quite often the initial conditions on a problem can be
bounded so that fairly accurate a priori estimates can be obtained. The harmonic
retrieval problem is successfully addressed in this thesis with nonlinear estimation

techniques.

A separate but related problem is that of model order selection. The objec-
tive in model order selection is to determine the number of sinusoids embedded in

Gaussian and non-Gaussian noise. This problem is approached in this thesis with




joint detection/estimation techniques.

The joint detection/estimation (JD/E) procedure is presented in Chapter
5. The procedure is structured mathematically so that it can be employed against
problems with model uncertainty, initial condition uncertainty, or both. The JD/E
technique can be applied to any type of noise, assuming the density function is
known. This technique is applied in subsequent chapters for selected sinusoidal

detection and parameter estimation problems.

Joint detection/estimation techniques can also be applied to the estimation
of Doppler shift and time delay from an echo of a transmitted signal. Traditional
solutions for this problem are based on Fourier transform implementations and gen-
erally have poor resolution in the presence of short data lengths. It is shown how
estimates from multiple sensors can be combined to form improved estimates of

target range, geometric angle, and velocity.
1.2 Scope of the Thesis

Chapter 2 discusses the fundamentals of estimation theory and presents the
primary techniques currently used to perform nonlinear estimation in Gaussian
noise, and linear estimation in non-Gaussian noise. This chapter is essentially com-
posed of background material that is needed for an understanding of the remainder

of the thesis.

Chapter 3 presents a general solution to the problem of estimation in the
presence of non-Gaussian noise. The solution is based on high order powers of
the innovations process. The solution is entirely general in that the plant noise,

the measurement noise, or the initial estimation error can be non-Gaussian with
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symmetrical or asymmetrical distributions. The performance of the filter for non-
Gaussian noise is compared to exact Bayesian filters. Non-Gaussian distributions are
created using a sum of Gaussian distributions. Bayesian filters can be constructed
to give optimal performance for Gaussian sum distributions. The intent of this
comparison is to numerically evaluate the performance of the non-Gaussian filters
and to determine where these filters provide improvement in state estimation over
the standard Kalman filter. It is shown that the high order filter (HOF) performs
better than the standard Kalman filter, but not quite as well as the optimal Gaussian

sum filter.

Chapter 4 shows that nonlinear filtering techniques can be used for high res-
olution harmonic retrieval. Traditional approaches in this area have been concerned
with Fourier transforms or techniques based on autorecursive (AR) or autorecursive
moving average (ARMA) estimation. Many of these approaches are batch estima-
tors and, as such, cannot adequately deal with time varying systems. In addition,
most of these techniques cannot take advantage of a priori estimates of the initial
system state. It is shown that nonlinear filtering methods can give highly accurate
estimates (approaching the CR bound) of the parameters of sinusoids in white and
colored Gaussian noise. A particularly attractive filter to use in the harmonic re-
trieval problem is the minimum variance filter. This filter requires exact expressions
for expected values of nonlinear functions of the state variables during each itera-
tion of the filter equations. Closed form expressions for these expected values are
developed for the specific nonlinear functions used in the harmonic retrieval prob-
lem. Using these expressions it is expected that the minimum variance filter should
give better state estimates than the extended Kalman filter (EKF) especially when

there are large errors in the initial estimates. In this chapter Monte Carlo simu-
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lations are used to compare the performance of several nonlinear filters to the CR
bound. Studies are performed to determine the effect of poor initial conditions on

the performance of these nonlinear filters.

The joint detection/estimation (JD/E) procedure is presented in Chapter
5. The procedure is structured mathematically so that it can be employed against
problems with model uncertainty, initial condition uncertainty, or both. The JD/E
technique can be applied to any type of noise, assuming the density function is
known. This technique is applied in subsequent chapters for selected sinusoidal

detection and parameter estimation problems.

The JD/E technique is used in Chapter 6 to perform model order selection.
A general approach is presented for determining the number of sinusoids present
in measurements corrupted by additive white Gaussian and non-Gaussian noise.
Experimental evaluation of this approach demonstrates excellent performance for
‘model order selection and system parameter estimation in both Gaussian and non-

Gaussian noise.

Chapter 7 uses the JD/E approach to estimate time delay and Doppler shift
from echos of a transmitted waveform. The problem of target detection from returns
of monostatic sensor(s) is formulated as a nonlinear joint detection/estimation prob-
lem on the unknown parameters in the signal return. In this chapter it is assumed
that the target has been detected. The JD/E procedure is applied by segmenting
a large initial estimation error into smaller regions of uncertainty and operating an
independent nonlinear filter to perform parameter estimation for each of these re-
gions. It is found that this approach can help solve the problem of convergence to

local minima, which is characteristic of estimators such as the EKF.
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In Chapter 8, the problems of detecting the target and estimating its param-
eters are considered jointly. The fusion of parameter estimates from two spatially
separated sensors is accomplished using the JD/E approach. Several hypotheses are
postulated for detection. Each hypothesis corresponds to the ability of each sensor
to detect the target in its area of coverage. The a priori probabilities of each decision
are based on the area of coverage of the two sensors. For each hypothesis, a nonlinear
filter recursively estimates target parameters. The maximum likelihood estimate for
a given hypothesis is then determined as a weighted sum of the estimates from each
of the local hypotheses, with the a posteriori probability being used as the weighting
function. It is shown experimentally that excellent performance can be obtained for

both target detection and target parameter estimation using this technique.




Chapter 2

Optimal and Suboptimal Estimation

The purpose of this chapter is to briefly cover the fnndamentals of estimation
theory and to discuss several techniques for nonlinear estimation found in existing
literature. Section 2.1 presents the basic concepts of estimation theory and some
of the properties of estimators. Section 2.2 presents optimal Bayesian estimation.
This section also presents the derivation of the linear Kalman filter, which is the
optimal estimator for linear systems in additive white Gaussian noise. In Section
2.3 Bayesian approximations are discussed. These approximations entail methods
for estimation of the a posteriori density function. Section 2.4 discusses nonlinear
filtering techniques for nonlinear systems in additive Gaussian noise. Section 2.5
presents techniques for linear filtering in non-Gaussian noise. The overall goal of
this chapter is to explain the basics of estimation theory and to show the evolution
of the optimal linear estimator, the Kalman Filter, into techniques for nonlinear
estimation. This will lay the groundwork for further discussions on new techniques
presented in this thesis for suboptimal estimation in non-Gaussian noise and for
applications of nonlinear filtering to specific signal processing problems. In this

thesis only discrete time (i.e. sampled data) estimation problems are addressed.
2.1 Fundamentals of Estimation Theory

Estimation theory addresses the process of determining the value of some
uncertain quantity based on available pertinent information. Consider the problem
of estimating the n-dimensional time invariant parameter vector x from observations

represented by the m-dimensional vector z;. The measurements are described by
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the nonlinear relation
z; = h(x, k,v;).
where v} is random noise. The estimate X is given by
X = ex(Zy)
where Z; is the set of all measurements (21,22, - - ,2;). The function ej is called

the estimator of x. There are two basic models for the parameter x:
(1) Nonrandom, when x has an unknown deterministic value.

(2) Random, when the parameter x has a priori probability density function
(PDF) p(x).

For nonrandom parameters it is desired that the estimates converge to the
true value as k — oco. For random time invariant parameters, a realization of x
is drawn from a population with the assumed PDF. One would like each measure-
ment to yield an estimate that converges in some well-defined probabilistic sense

independent of the particular realization of x.

Optimal estimation defines the best estimate of a parameter based on some
well-chosen criteria of optimality. Since different criteria may lead to different op-
timal estimates for the same quantity, one may settle for feasible or acceptable

estimates according the following rules [1]:

(1) An estimate X is unbiased if it satisfies the relation

E[#] = E[x]
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(2) An estimate X is a consistent estimate if it converges in probability to x,
i.e.

klim prob[||x — x|| > €] = 0 for arbitrarily small ¢
—00

A consistent estimate is always unbiased.

(3) An efficient estimate X is the unbiased estimate of x with the minimum
variance, 1.e.,

o} = E[lIx - x|I* < Ellly - x|*] = o}
for all other estimates y of x.

(4) An estimate X is called sufficient if it contains all of the information in
the set of observed values regarding the parameter x to be evaluated. Any statistic

related to a sufficient estimate is called a sufficient statistic.

Several estimation techniques have been used for the estimation of random
parameters. Many of these techniques are derived from or related to Bayesian

estimation.

The maximum a posteriori (MAP) estimate is obtained by maximizing the

conditional density
p(z|x) p(x)

plxlz) = 2221

with respect to the unknown parameter vector x. Since p(z) is not a fuuction of x,

the MAP estimate may be obtained by maximizing the joint density

p(z|x) p(x) = p(z,x)

with respect to x. This can be accomplished by maximizing the natural logarithm
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of this quantity so that the MAP estimate can be expressed by

0ln p(z,x) _ Olnp(z]x) + 91n p(x)

% ox ox =0.

x=x%(z) x=%(z) x=x(z)

In the case where p(x) is unknown the best choice of x is made based on maximizing

the likelihood function p(z}x). The maximum likelihood (ML) estimate is given by

0ln p(z|x)

B = 0.

x=%(z)

It is clear that the ML estimate is inferior to the MAP estimate since it does not
consider prior information about the random vector x. However, the ML estimate
may be useful in situations where: (1) the parameter x is unknown but not random,
(2) the a priori density of x is unknown, or (3) the density functions p(x|z) or p(x, z)

are more difficult to compute than p(z|x).

Consider the problem of estimating a nonrandom parameter vector x from
a single linear measurement of this vector in Gaussian noise. In this case the mea-
surement model is given by

z=Hx+v

where v ~ N(0, R). The likelihood function is given by

__l__Texp(_%(z — Hx))TR"(z - Hx)),

p(zlx) = 1
(20t |}

and the maximum likelihood estimate of x is the root of the equation

~2z—-Hx)TR'H=0
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leading to the ML estimate

%x=(HTR'H)"'HT R 2.

Least squares estimates are obtained by minimizing the sum of the squared
error between the measurements and the measurement model. It can be shown
[2] that if the noises are independent, identically distributed (i.i.d.), zero-mean,

Gaussian random variables the least squares estimate is the same as the ML estimate.

The minimum mean square error (MMSE) estimate, or minimum variance
estimate, is obtained by minimizing the expected value of the mean square error
E[(x — x)?|Z4) of the estimate based on the data up to and including time k.
The solution is the conditional mean expressed in terms of the conditional PDF

x = [ xp(x|Z)dx.
2.2 Optimal Bayesian Estimation

An optimal estimate is defined as the minimum variance estimate or the mean
of the conditional density function. It will be shown in this section that recursion

relations can be set up to determine the conditional density based on Bayes’ rule.

Consider the problem of estimating a time varying n-dimensional state vector

Xx, where the state evolves according to the plant equation

Xk41 = f(Xk, Wi). (21)

The state x; is observed through the m-dimensional measurement vector z; given
by
zp = h(xi, Vi) (2:2)




12
where w; and v; are mutually independent white noise sequences. The problem
is to estimate the state x; from the measurements Z;, where Z; is the set of all
measurements (21,22, -+, Zk). The objective of Bayesian parameter estimation is to
recursively calculate the a posteriori density of the state. This density, also referred

to as the filtering density, can be obtained [3] through the recursion relations

p(xi|Zi_1) p(zi|x1)

p(xk|Z) = (el Zes) (2.3)
pOxk|Ze-1) = [ pOxk_1|Zko1) plxeIx1-1) X2y (2.4)
where
PzelZe1) = [ p(x|Ze-1) plaeixe)dxe. (25)
The initial density p(xo|zo) is given by
plxolao) = EEELALRES) (26)

The density p(zx|xi) in equation (2.3) can be determined by the a priori
measurement noise density p(v;) and the measurement equation (2.2). Likewise,
P(xk|xx~1) in (2.4) is determined from p(w;_;) and equation (2.1). Knowledge of
these densities and p(xp) determines p(x;|Z;) for all k. However, the major difficulty
with recursive Bayesian estimation is the closed form solution of the integration in
(2.4). This integral can be solved only for linear state and measurement equations

with Gaussian statistics, and a limited set of nonlinear systems.

The advantage of using Bayesian estimation is that once the a posteriori

density is obtained one can compute estimates based on any estimation criteria.
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For example, the most probable estimate is found by maximizing thc probability
that (Xg; = x), yielding the solution %Xz = Mode {p(xk|Zi)}. When the a priori
density is uniform, this estimate is identical to the ML estimate. If the criteria
is to minimize [ |[xi — x||2p(xx|Z1), the solution is Zx = E[xyZ;). This is the
conditional mean estimate. If the criteria is to minimize the maximum of |x; —Xg|,

the solution is the minimax estimate defined by xz; = Median{ p(xi|Z;)}.

In the case of linear systems in Gaussian noise, equations (2.3 - 2.6) can be
evaluated and the a posteriori density is Gaussian for all k. The conditional mean
and covariances for this system are the Kalman filter equations, which were first
introduced by R. E. Kalman [4). In the development to follow the Kalman filter
relations are derived from the Bayesian recursion formulas. This derivation is based
on a similar development by Ho and Lee [5]. The linear plant and measurement

models have the form
X = O X1 + Trawi

2z = Hixp - v

where w; and v; are independent, white, Gaussian sequences with

E[vi) = E[wi]=0 VEk

(2.7)
E(viv]] = Ribyji Elwiw]] = Qubij Elviwj]=0 Vjpk
Starting with the initial conditions that p(xp|2o) is Gaussian and
E[(xolzo) = Xo)0
(2.8)

Cov(xo|zo] = Pyo-

From (2.7) it is noted that p(xx|Zj_,) is Gaussian and independent of v; so
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that

Kije-1 = EXp|Zg-1] = Qr—1¥p_1pp1
(2.9)
Pije_y = Cov[xe|Zg_1] = ®x_1 Py_1p-1®5_; + Teo1Qe1Ti_;.

Similarly, p(zx|Zg-;) is Gaussian and
Ez}\Z¢-1]) = Hi @1 X111
(2.10)
Cov(zi|Zi—1] = HePyp—1 Hi + Ri
Finally p(zi|x;) is Gaussian with
Elzi|xi] = Hix
(2.11)
Cov[zi|x;) = Ri.

Using (2.9 - 2.11) in (2.3) gives

|Hy Pe—y HY + R'/?
(27)"/2| R |1/2| Py |1/2

p(xx|Z:) =

X exp {-%[(xk - *k|k—l)TPk—|:_1(xk — Xpjk—1)

+ (21 — Hexi) TR (22 — Hyxx)

+ (zk — Hikigpo1) T (He Pupr B + Ri) ™ (22 — Hikggp—1)]}-
Completing the square in the exponent gives

|Hi Pug—y HY + R'/?
(27)™/2| Ry |\/2| Py |2

p(xx|Z;) =
(2.12)

1 " _ N
x exp { -5[("1: - xklk)TPkp: (xx — Xz2)}

where
Xk = Xpje-1 + KeZa
(2.13)
Py = (In — K Hy) Pi. o
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K} is called the Kalman gain and is given by
= T T -1
Ki = Py Hy (HePop Hi + Ri)™, (2.14)
and the innovations Z; are defined by
Zr = (21 — HiXye-)- (2.15)
The filter error covariance in (2.13) can alsc be expressed as
P,J: = Pou_y + Hi Ry Hy (2.16)

where I, is the n-dimensional indentity matrix. Since the a posteriori density is
Gaussian, X3 is the most probable, the conditional mean, and the minimax esti-

mate.

Equations (2.9) and (2.13) constitute the Kalman filter equations. These
equations give the optimal, or minimum variance, estimator for linear systems in
additive white Gaussian noise. Equation (2.9) is used to extrapolate or predict the
estimate from time k — 1 to time k based on the plant characteristics. Equation
(2.13) updates or filters this estimate at time k based on the measurement. An
important note about the filter equation (2.13) is that the filtered estimate X is
a linear function of the innovations for the optimal linear filter. It will be shown
in Chapter 3 how higher order powers of the innovations can be used to develop
filters for linear systems in non-Gaussian noise with symmetrical and asymmetrical

probability density functions.

The Kalman filter equations can be derived in many ways. Gelb [6] uses

the matrix minimum principle on the a posteriori variance to obtain the Kalman
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filter relations. Kronhamn [7] derives the filter by geometrically demonstrating the
orthogonality of the estimation error to the measurement error. Chui and Chen [§]
use stochastic operator theory. Jazwinski [9] uses stochastic calculus to come up
with the relations for continuous-time systems. Kailath [16] derives the filter using
the innovations method. Using this technique the observed process is first converted
to a white noise process by means of a causal invertable linear transformation. The
problem then becomes one of parameter estimation in white noise. The solution to
this simplified problem can then be expressed in terms of the original observations

by means of the inverse of the original whitening filter.

Although the Kalman filter is an optimal estimator for linear systems in
Gaussian noise, its performance for nonlinear models and non-Gaussian noise is
highly dependent on the degree of nonlinearity or non-Gaussianity in the plant and
measurement equations. Nonlinear models are generally treated with the extended
Kalman filter in which the state and measurement models are linearized about the
most recent estimate. This method generally works well in low noise environments.
In large noise environments, where the estimation error is large, the Taylor series

expansions can be very inaccurate [6].

Filtering in non-Gaussian noise has generally been treated in the literature
using recursive Bayesian estimators which rely on an approximation of the a poste-
riori density of the state variables. These Bayesian approximations are discussed in

the next section.
2.3 Bayesian Approximations

Two problems are encountered when the the system is nonlinear or the a

priori density is non-Gaussian. First, the integration in equation (2.4) is difficult
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to carry out. Second, the moments are not easily obtained from equation (2.3). If
the conditional density function cannot be computed analytically then the next best
thing is to form accurate approximations of this density. Several numerical methods
have been developed for approximation of the a posteriori density function. Some

of these techniques are briefly discussed in this section.

Alspach and Sorenson [10,11] attempt to approximate the a priori density us-
ing a sum of Gaussian distributions. They apply their system to problems involving
nonlinear state and measurement systems in white Gaussian noise. The procedure
results in parallel operation of several Kalman filters. There are as many Kalman
filters as there are terms in the Gaussian sum. The convex combination of these

filters is formed to obtain the a posteriori density.

Sorenson and Stubberud [12] approximate the a posteriori density using an
Edgeworth expansion. Using perturbation techniques the plant and measurement
systems are described as quadratic equations with additive white Gaussian noise.
Recursion relations are derived for a finite number of the moments of the Edgeworth
expansions and these relations are assumed to describe the set of sufficient statistics

for the system.

Bucy and Senne [13] use a crude convolution summation involving an ellipsoid
tracking technique to determine the important points to include in the summation
for the conditional density. They assume that the conditional densities of interest
are sufficiently non-Gaussian so that a finite number of moments make for a poor
representation of them. They store the densities as a vector of point masses relative
to a rectangular grid which is free to be rotated and translated in the state space of

the dynamical system.
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Another method is to use spline filters [14,15] to construct the a posteriori
density. Masi et al. [17] studies nonlinear discrete time filtering problems using the
Bayesian approach. The solution to the filtering problem is given in terms of a gener-
alized finite-dimensional filter in a sense that the generalized a posteriori conditional
PDF is representable as a linear combination of distributions belonging to a given
parameterized family, where the number of terms in the combination may possibly
vary with time. Using this concept they are able to derive a technique to obtain
exact recursive solutions for various linear models with non-Gaussian disturbances,

as well as for one non-linear model with Gaussian disturbances.

All of these methods involve numerical approximations to the actual a pos-
teriori density. The major limitation to these approaches is the computation time

required for implementation.
2.4 Nonlinear Filtering in Gaussian Noise

This section presents a discussion of filtering methods for nonlinear systems

that are described by the equation

Xk = fr_1(Xk-1) + Ticywi—g, (2.17)

with measurement model

z = hg(x) + v, (2.18)

where v; and w;_; are mutually independent white Gaussian noise sequences as

described by equation (2.7).

In general, optimal Bayesian solutions cannot be expressed in closed form for

this model, requiring methods for approximating optimal nonlinear filters. Several
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nonlinear filters have been used for nonlinear systems in Gaussian noise. All of these
filters are based on the model of the filtered state being a linear function of the in-
novations sequence as in equation (2.13). These suboptimal nonlinear filters include
the extended Kalmar filter, the modified second order Gaussian filter, the locally
iterated Kalman filter, and the minimum variance filter. These filters are described
in sections (2.4.1 — 2.4.4) respectively. Jazwinski [9] points out that it is difficult to
assess a priori the effects of the approximations made by these nonlinear techniques,

and their value in a particular problem must be determined by simulations.
2.4.1 Extended Kalman Filter (EKF)

- The extended Kalman filter is obtained by making Gaussian assumptions
about the a posteriori densities and by extending the plant and measurement non-

linearities in a Taylor series including first order terms.

The prediction error is defined as
Xik—1 = Xg — Xppp_y (2.19)

and the filter error as

ik-uk—l = Xk—-1— ik—llkq- (2.20)

If fi_; is expanded about the current estimate, X;_j)i_, then the first order ap-

proximation is

fi—1(3a-1) = fia(Xeogr—-1) + Fr-1Xp-2k-1, (2.21)
where
_ 0fj_1(xk-1)
Fioy= =5t . (2.22)

Xgp—1=Kg_1|k-1
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In this case fx_, (xk-1) = fe—1(Xx—1je—1) and the prediction error becomes
Xkk—1 = Fr-1Xp_1jk—1 + Th_1wi—s. (2.23)

This leads to the state prediction equations
Xepk—1 = fro1(Xe—1)e-1)
Pyi—1 = E[fip—1%p11] (2.24)

= Fk—lPk—llk-lFE—l + Tc1Qi1TT_;.

The measurement equation is linearized in a similar manner. The nonlinear

function hi(x;) is expanded about the predicted state Xy;_, to obtain

hi(xp) ~ hi(Xgje—1) + HeXgpe—g (2.25)
where
H = a_t:;gk_) : (2.26)
Xk lxp=spp_y

The innovations vector is given by
Zy = HiXpp—y + Vi (2.27)

The filter and gain equations have the same form as the linear Kalman filter and

are given by
Xk = Xpjp-1 + KiZi

Py = (In — Ky Hy) Py (2.28)

Ky = Py HY (Hy Py HY + Ry) 7L
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2.4.2 Gaussian Second Order (GSO) Filter

The Gaussian second order filter [6] is obtained by including the second order
terms in the Taylor series expansion. In this filter it is assumed that all errors are

Gaussian and therefore all odd moments are zero.
The expansions for f;_;(.) and hy(.) are given by

. . 1 . -
fe—1(xk-1) = foo1 (Rg—p-1) + Fe-1Xx—qpp—1 + Eaz(fk—l,xk-—1|k—1x{—llk—l)

. . 1 . .
hi(xz) = hg(Xge—1) + HeXpp—r + 532(hk,xk|k-1xﬂk-1)
(2.29)

where the operator §%(e, B) for any function e(x) and any matrix B is a vector

whose i** element is defined by

sem-um[i25]

for 1 < p<n, 1< ¢< n. From (2.29) the estimates i',,_l(xk_l) and flk(xk) become

-~ 1
fi1(%k-1) = fic1(Ke_q1e—1) + = *(Ex—1, P11k .
k-1(Xx-1) = fio1 (Re—1 i 1)+2 (fe—1, Prapx l)lxk—l="k-—llk-l

) (2.30)
hi(xe) = ha(Rep-1) + 5 32(hk,Pk|k-1)Lk=im_l :
The innovations vector is now
- N 1
2 = 2 — hi(Ryp-1) ~ 5 & (hk,Pk|k—l)Lk=ik|k_l - (2.31)
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The GSO filter relations are given by

Xkjk-1 = feo1(Xe—1j6-1) + % 8 (fi-1, Pk—llk—l)lxk_l=ik_l|k_l
Py = Fiot Pecapema Py + Tec1Quo1Ty + Axg
Xk = Xppe—1 + KiZi (2.32)
Py = (In — K Hg) Poj—y

Ki = Pup HE (He Pup— HY + Ri + By) ™.
In general, the matrices A;_; and B; contain fourth order moments. It is

assumed that the prediction and filter PDF’s are Gaussian for the development of

the Gaussian second order filter. This assumption leads to the approximations

1 { 2fk— 1; sz—
Ay © 4 Z,,, n 0290z, (cpmCqn + CpnCqm) Oz, 3:1:,, .
LA Xg—1=%g_1jk—1 (2.33)
B~ Oy dpmdgn + dpnd Ok, |
T | p.g,m,n 32:,,6 5zp 07 e + qm)a m Oz Xp=Xpik—1

where fi_); denotes the i*h element of fz_;(.), hi, denotes the ith element of hy(.),

the c’s are elements of Py, and the d’s are elements of Py;_;.

Another approximation which was developed by Jazwinski [18] and Bass et
al. [19] is the truncated second order filter. Third and higher order central moments
are assumed to be zero in this filter. This results in slightly different equations than
that shown above for the GSO filter. This filter is appropriate if the conditional
density is almost symmetrical and concentrated near its mean. Still another version

of second order filters is the modified Gaussian second order filter [20].

The appropriateness of the type of filter to use is dependent on the nonlinear-




23

ities in the system and can only be accurately determined by Monte Carlo simula-
tions. It is difficult to analytically determine the effects of nonlinearities. However,
Jazwinski [9] points out that, in general, nonlinear effects appear to be significant
when noise inputs are small and the estimation error variance is large. Large noise
inputs effectively mask nonlinearities. In addition he claims that measurement non-
linearities become significant whenever they are comparable to, or larger than, the
measurement noise. Thus, if the measurement noise is small, neglected measure-
ment nonlinearities tend to bias the estimate and result in incorrect weighting of

the observations.
2.4.3 Locally Iterated Kalman Filter (LIKF)

The locally iterated Kalman filter is an enhanced version of the extended
Kalman filter where, at each step of the iteration procedure, the measurement non-
linearity is linearized about the state estimate obtained from the EKF equations.
This filter was first introduced by Denham and Pines [21]. The procedure is to
repetitively calculate Xii, Kk, and Py, each time linearizing about the most re-
cent estimate. To develop this algorithm, denote the i** estimate of Xgx by X (s)

with %4, (0) = Xzjx_; and expand hi(x;) from equation (2.25) in the form

hi(xi) = he (ke (?)) + HaZgpa (i)

where

_ Ohg(xy)

Hi=
3Xk xk-—.iklk(i)

Xpe(1) = X — Xpa(3)-
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The following recursion relations are developed [6]
Xik(2 + 1) = Xy + Ki ()26 — hae(Rige(?)) — He(Xigr—1 — Xepa(?))
P (1) = (In — Ki(3) Hi) Prji—1 (2.34)

Ki(i) = Py HY (He Py HY + Ri)™?

where ¢ = 0,1, ---. The number of repetitions of the calculations shown above can
be determined by requiring the magnitude of the difference between successive state

estimates to be less than some small number.

Jazwinski [9] gives the local iterated Kalman filter a probabilistic interpreta-
tion. Between observations, the conditional mean and covariance matrix propagate
according to first order, nonlinear theory. At an observation, assuming the a priori
density is Gaussian, the filter solves for the conditional mode of the posterior den-
sity. The conditional covariance matrix is then computed according to first order

theory. The conditional mode is then used for the conditional mean.

Some disadvantages of the LIKF are pointed out by Andrade Netto et al.
[22]:

(1) The iteration scheme may converge very slowly. This may occur where

the initial guess Xyx— lies near extrema of the function hy(.)

(2) The a posteriori density may be multimodal and the iteration procedure

may converge to local modes if it converges at all.

Another iteration scheme involves global iteration [9]. After processing the
data (z1,2, - -, Zi), starting with the initial values X9, and Py, the filtering op-

eration is completed with estimates Xi; and Py. Then, assuming w; = 0 the
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backward filter is implemented with Xy and Py as initial conditions. This gives
smoothed estimates Xqjx and Pyjx. The data is then processed with the forward filter
again starting with Xo;x and Pp. This has the effect of changing the initial statistic
E(xo].

2.4.4 Minimum Variance Filter (MVF)

The nonlinear filtering techniques discussed thus far are all based on a Taylor
series expansion of the nonlinear equations about the most recent estimate. As
such, these filters are subject to the inherent problems of local linearizations and
may lead to poor performance. Liang and Christenson [23] developed filtering and
smoothing algorithms which give exact estimates at each iteration of the filter. They
have shown that for certain nonlinear functions such as polynomial nonlinearities,
exponential functions, and sinusoids, exact expressions for the state estimates can
be obtained and used in the filter relations in place of the usual approximations.
At each step in the operation they assume that the prediction and filter errors
are Gaussian. They have compared their filter to the EKF and other filters using
numerical examples and claim that their filter performs much better than the EKF

for large initial error variances.

The basic premise is that E[fy_;(x;_;)) and Efhi(x;)] can be determined
analytically such that

fk—l(xk—l) = E[fk-l(xk—l)]xk—l--ik—llk—l

hi(xi) = Elhi(xi)lx=syy ;-
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The innovations vector has the form
g = 23 — hy(xi).
The filter equations have the general form
Xaje—1 = fr_1(Xe—1)
Py = Elfi—1(xi—1)fi-1(xk-1)7] + Teca Qi1 T,
Xk = Xpje—1 + KiZy (2.35)
Ky = Elxys—1he(xx)T] (Ri + E[bg (xe)hg(xx)T))7
Py = Py — K Elhy(xe)XE_4]
where
Xkjk—1 = Xk — Xgjk-1
hi(xi) = hg(xe) — he(xs) (2.36)

fim1 (k1) = foma(Xi-1) — feo1(Xi-1).

Analytical expressions for E[xifi(xx)T], Efxrhi(xx)T], Elfi(xs)fi(x2)7],
and Efhg(xi)hg(xz)T] are required in order to form exact expressions for the filter

equations.

It is important to note that the filter equations developed by Liang and
Christenson [23] have been presented before (e.g. Jazwinski [9]). However, their
contribution is the development of exact expressions for specific types of nonlin-
earities including polynomial, exponential, and sinusoid nonlinearities, assuming

Gaussian a posteriori density functions. Liang [24] gives general expressions for the
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probability density functions for these types of nonlinearities. Liang [25] evaluates
several system models with the standard EKF and the MVF. He concludes that, in
general, the MVF performs much better than the EKF for large initial error vari-
ances and small noise variances. However, when the initial variances are small, and
the noise variances are not too small, the EKF can be expected to perform about
as well as any other filter. He also claims that when the level of noise inputs is
large enough to effectively cover the effects of nonlinearities, no particular filter can
be said to be consistently superior to any other filter. In most cases, however, the

MVF should outperforin all other nonlinear filters considered.

Kramer and Sorensor. [3] compare the performance of the MVF to the optimal
Bayesian estimator for a specific bilinear model. They found that there is a wide
margin between the performance of the suboptimal filter (MVF) and the optimal
Bayesian filter. They generalize that when the level of noise inputs is large enough
to mask the effects of nonlinearities, point estimators such as the MVF and EKF
tend to perform close to the optimum. However, they may be quite sensitive to
initial conditions. However, the MVF still fails to capture important features of the

a posteriori densities.
2.5 Estimation in Non-Gaussian Noise

Most of the work done in filtering non-Gaussian Noise has been done from
the Bayesian point of view. These techniques are discussed in sections 2.2 and 2.3.
However, with a few notable exceptions there very little work has been done in the
area of linear filtering of systems with non-Gaussian plant noise, measurement noise,

or initial error variances. Some of the approximations found in the literature will

be discussed in this section.
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Masreliez [26] developed two methods for non-Gaussian filtering. One filter
is used for situations in which the observation prediction density is approximately
Gaussian at each stage, but the observations disturbances are non-Gaussian. He de-
velops the filter using a nonlinear (“score”) function of the innovations vector. The
second filter applies to the systems with ncn-Gaussian plant noise but linear mea-
surement noise. They compared their filter to the exact Bayesian minimum variance
filter developed by Alspach and Sorenson [10] using a sum of two Gaussian distribu-
tions. Simulation runs indicated that the exact MV filter and the approximations
presented in this paper coincide and that these filters outperform the Kalman fil-
ter. However, the author nctes that the score function is very sensitive to small
errors in the density approximations. They suggest that ad hoc type filters may be

constructed to approximate the densities.

Another approach is taken by Rao and Yar [27]. In their paper they developed
two filters for tracking nonlinear processes for scalar models. In the first technique,
called the polynomial filter, they used a general n** power of the innovations process
for symmetrical plant noise, measurement noise, and initial variance distributions
to develop relations that could be used to obtain the filter gain(s). However, they
consider only the scalar cases with symmetrical distributions. The second filter,
labeled the measurement noise dependent filter, is based on a general nonlinear
model of the innovations. This filter is constrained by the fact that one must have

exact knowledge of the measurement noise distribution.

Verriest [28] proposed a filter that would operate in multiplicative or non-
Gaussian noise. This filter was set up for symmetric distributions, and equations
were developed based on linear approximations. However, tLcse equations were not

verified with numerical results.
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An exact formula for computing the conditional mean has been derived by

Daum [29] for discrete time observations with non-Gaussian measurement noise. The
derivation of this formula is based on a certain homotopy function. He mentions that
in order to use his formula a conditional expectation must be computable, which is

not generally the case in nonlinear estimation problems.
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Chapter 3

High Order Filters for Estimation in Non-Gaussian Noise

In this chapter high order vector filter equations are developed for estimation
in non-Gaussian noise. The difference between the filters developed here and the
standard Kalman filter is that the filter equation contains nonlinear functions of the
innovations process. These filters are general in that the initial state covariance,
the measurement noise covariance, and the process noise covariance can all have
non-Gaussian distributions. Two filter structures are developed. The first filter is
designed for systems with asymmetric probability densities. The second is designed
for systems with symmetric probability densities. Experimental evaluation of these
filters for estimation in non-Gaussian noise, formed from Gaussian sum distributions,
shows that these filters perform much better than the standard Kalman filter, and

close to the optimal Bayesian estimator.

The new filters are referred to as high order filters (HOFs). For both of these
filters it is assumed that the 5'* and higher order moments of all densities are neg-
ligible. As such, these filters are approximations of the optimal minimum variance
solution. However, it is shown through simulation experiments that these filters
can approach the performance of the optimal minimum variance filter under certain
conditions. The performance of the HOFs is compared to the standard Kalman
filter, which uses only first and second moments, and to the optimal Bayesian esti-
mator. The Gaussian sum distributions, for which the optimal Bayesian estimator
has been derived by Sorenson and Alspach [10], were used as the test-bed for com-
parison. Unlike the measurement noise dependent (MND) filter described in [26],

which requires complete knowledge of the entire a priori densities, the HOFs re-
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quire knowledge of only a finite number of moments of these densities. The optimal
Bayesian estimator of Sorenson and Alspach [10] also requires the accurate knowl-
edge of the a priori densities so that an approximation can be made using Gaussian
sums. All techniques previously developed for non-Gaussian filtering are computa-
tionally intensive. The HOFs developed here share that characteristic. However,

they are much less computationally intensive than the Gaussian sum filter.
3.1 System Model

Consider the problem of estimating the n-dimensional state vector x; from
K measurements of the m-dimensional vector z;. The linear plant and measurement

equations have the form

Xp = O %1 + Wi
(3.1)
z; = Hixp + v

where wi_; and v; are mutually independent, white, zero-mean, possibly non-
Gaussian random sequences. The uncertainty in the initial estimate Xp may also
have a non-Gaussian distribution and is independent from wi_; and v;. It is also
assumed that the 274 through 4** moments of the distributions of %9, w;_; and v;

are known.

The Kronecker product operator ® [30] is implemented in order to use 2-

dimension matrix operations throughout this derivation. The Kronecker product of
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an m x n matrix A with a matrix B is defined by
[anB  a12B -+ amB]
anB anpB -+ amB
A®B= ) . . ) (3.2)
|am1B @m2B -+ amnB|

where a;; is the ¢ 74 element of the matrix A. The kronecker product has

higher algebraic order than multiplication.

For arbitrary matrices A and B and arbitrary column vectors a and b, the

kronecker product has the following properties:
(Aa) ® (Bb) = (A® B)(a®Db)

(A2)®b = (A® I;)(a®b)
(3.3)
(A® B)T = AT @ BT

a®bl =bl ®@a=ab?

where b is an m-dimensional vector, and I,, is the m x m-dimensional identity

matrix.

In the development to follow the column stack operator is also used. If an

n X n matrix A consists of columns aj;,az,---,a, then the column stack of A is

defined by
cst(A) = [aTa] --- a ] (3.4)

cst(A) is dimensioned nn x 1. If A = E[xxT] then cst(A) = E[x ® x|, where E[.] is
the expectation operator.
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The semi-column stack is defined as follows: if the matrix A is dimensioned

nn X nn, consisting of columns a;, az,- -, an, then the semi-column stack of A is

given by
(a1 an41 - &(n-1)en+1
82 &n42 °°° Bn-1)en42
scst(A) = | L ( .)m (3.5)
|8n  @n4n °** A(n-1)en4n]

scst(A) is dimensioned nnn x n. If A = E[x ® x ® xT ® xT] then scst(A) =

Efx®x®x®xT).

The 2"4,3", and 4** moments of the random vector w;, are given as
E[Wk ® W;r] = Qg)&kj
Ewi®@w] @wj| = Q?’&,-z
Elwr @ w @ w; @ Wh] = QW61 1m
Similarly, the 2°¢,37¢ and 4** moments of the random vector Vi are given

by R{.z) Orj, Rf’) Oxj1, and R?) Oijim- The moments of the initial estimation error are
given by Péz) ) 0(3) , and P(f‘) .

Let the prediction error Xkjx—1 and the filtered error X1 be defined as

Xkjk-1 = Xk — Xgjp_1

(3.6)
Xk = Xk — X
where the hat indicates expected value. The innovations vector is given by
% = 21 — il
(3.7

= HiXpp—y + Vi
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It can be shown [27] that E[(x; — Xzjx—1)|zk] is a function of only % so that

A S~ ()0
E[(xg — %gpp—1)lze] = Y Ky 28"

=0

where the superscript ®i denotes the i** kronecker product of the vector Zz. K L(.i)

denotes the i*% order filter gain, which has dimension n x m’. It follows that
5~ ()30
Rk = Repe—y + 2 Ky 2"
i=1
Using (3.6) the expression for the filter error becomes
S~ )z
X = Kap—1 — Y, K55 (3.8)
=1

By setting K f) = 0, for ¢ > 1, the standard linear Kalman filter results. In order

to bound the equations for the derivation of the high order filters it is assumed that

ifi is negligible for ¢ > I. The truncated relation now becomes
~ (500
K = K — 2 Ky 25" (3.9)
=0

Equation (3.9) forms the basis for the development of the HOFs.
3.2 Non-Gaussian Filtering for Asymmetrical Distributions

The non-Gaussian filter for asymmetrical distributions is derived by letting

I =2 in (3.9) and obtain the filter error
fup = Xapy — KV — kN5, — kD5 (3.10)

It is required that E[&y_;] = E[vi] = 0, since the estimator must be unbiased,
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and using (3.7) in (3.10)
Effp-1] = 0= - K{” - K{ E[58?] (3.11)
where E[z?] = cst(HkP,Slzz_lHE + Rf)). Substituting (3.11) into (3.10) yields
Kugp = Tapor — KV — KPG (3.12)
where {; is defined for notational convenience as
b = (2% - E5§7) = (2 ® %) — cst(He PY)_ HY + B{)) (3.13)

which is a second order function of the innovations with E[(x] = 0. The correspond-
ing filter equation is

Xk = Xgpe—1 + K,(gl) Z + K,(,z) G (3.14)

The formulas for the gains K ,(:l) and K, ,(‘2) result from the requirement for
a minimum variance solution. Using (3.12) the equation for the variance of the a
posteriori density becomes
P(z) = El% T
bk = ElRepXip]
= Effup—rXfs] — a3 1K T — Bl 1K T o)
3.15
- K{VElaify ) + KV EGREDIKN T + KV Btk DT
- KPEQ ] + KO EGIKD T + KPEGINKDT.

The gains are then determined from the matrix minimum principal [23] by evaluating

ot p? &t p?
— {(1),: o i {(2)" oo (36)
9K{ K¢




36

Carrying out these operations on (3.15) yields

= (Efip-12F] — K E[GaT ) Elaazl) ™!
(3.17)

(2) (E[Xklk—lc ]—K )E[ZkC NE[GCI.

It is observed that E[(3(7] is singular. This is a consequence of the fact that
Ek contains repeated terms. For example, if the dimensionality M of the innovations
vector (j, is 2, then the term (31(1)%:(2) — E[2:(1)%(2)]), where x(j) is the j** of Z,
appears twice in Ci. The number of repeated terms is a function of the dimensionality
M of the innovations vector. To avoid this singularity, define the collapsed vector

(i, such that
(ke = Tuli (3.18)

where Ty is a matrix of 1’s and 0’s designed to eliminate redundant columns or

rows from (;. For example if M = 2

1 000 1 000
Ty=10 1 0 0fj or |0 0 1 O (3.19)
0 0 01 0 0 01

Since Ekc does not contain repeated terms, [chz,:";] is nonsingular. Let K ,(‘? denote
the collapsed gain associated with replacing & with Z),c in (3.17). Solving for K ,?)
and K ﬁ) yields
K = (Elfup12) — BlFup-108) BlGee (L] Ele1))
x (Elzszy) — Elzll) ElGa (L) ElG 28)) ™"
(3.20)
= (Elfup—1CE,) — Elkep-121) E[aazi] " E[zll,))

x (E[6 (L) — E(Ci 27 |Elzazl )™ E[zalL)) "
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Equation (3.14) requires that
KP4 = kPG, (3:21)
Using (3.18) in (3.21), K| ,(f) is then obtained from
K® = KTy (3.22)
where
Elfap157] = P, HE (3.23)
EBapiF) =P, T Hf ® H (3.24)
Elas]] = Hy PO, H + RY (3.25)
T - .
Eicr] = BlGal\T = i PO, THf o H + RPT  (3.26)
E[Glf) = He ® Hy (P{)_, ~ cst (P{)_)est(PE)_)") HE ® HE
+ RY — cst(RP) est(RP)T
+ Hy®In P)_, ® R HY ® In
(3.27)

+ Hy ® Im Elftyi-1® Vi ® Vi 8 Xip_y] Im ® H
+ In® Hy RO ® PJ)_, In® HY

+ Im ® Hy, E[vi ® Xyt ® Xjjp—1 ® vi)| Hf ® I

It can easily be shown that if all 3¢ moments are zero then K {2) = 0 and K ,(‘l)

reduces to the gain for the standard Kalman filter.

Using the state model (3.1) the prediction equation becomes

Xejk-1 = Pr—1Xa_1)k-1- (3.28)
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The corresponding prediction error from (3.6) is given by
Xkjk—1 = Pr—1Xk-1jk—1 + Wi-1. (3.29)
The prediction moments are then be evaluated as
2 - ~
P ,fp? y = Elfup 1%y (330
=& P2y, 90 + Q)
3 o .
P IEUZ 1= E[(xﬁi 1)"{“: 1] (331)
=918, P ;E )llk-l o, + Q?.’,
4 < T
Pi1 = BIEE ) G _)T)
=01 @ P P)E 1jk-1 Qk-—l ® Qk—l + Q“)
+ &1 01 POy, 0Q0, 81 01
+ B3 © By cst(Py ) est(Q4,)T
k-1{k-1 k-1 (3.32)

+ 1@ In E[Xp_1pp—1 ® wk_l OWik1 ®Xp_ji—1] In ® ‘1’{-1
+ In® Py E[wi1 ® i{-uk-x ® Xg—1)k-1 ® Wi-1] ®18 1
+ est(Q,) est(PP, )T @I @ o],

+ Le®, QP 0P,  Leol,

where I, is an n-dimensional identity matrix. Similarly, the moments of the

filter error can be evaluated using equation (3.12). Let

A = (In — KO Hy) (3.33)
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The filter variance becomes

P l£|22 = Ef&pXi]

= A P{)_, AT + KPROKPT

- kP m @ B, P, AT - AP() T HY @ HY KT

+ K’(‘2) RE’) K£1)T + K,(:) RE’) T K’(‘2) T

+ K Hy ® He {P{})_, ~ cst(P{R)_ )est(P§)_)TY HY ® HY K(PT

+ K (R — cst(RP)est(RP)T} KT

+ K Hy® In P()_, ® RO Hf ® I KT

+ K Hy ® I Elfip—1 ® Vi ® VE @ Xhp_1) Im ® Hf KD T

+ K In® Hy B) @ P)_, In® H KT

+ K{? In ® Hy E[vi ® %4y ® X}y ® Vi| HY ® Inm KT (3.34)

It is observed that the equation for the n*® filter error moment requires the

availability of prediction and measurement error moments of order 2n. This is a
consequence of the fact that the filter error given by (3.12) is a second order function
of the innovations. Since only the prediction order moments up to 4** order are
propagated, the equations for the 3" and 4* order filter moments are truncated so
that they contain only 3" and 4*» order functions of the prediction and measurement
error moments. An alternative would be to completely expand the 3% and 4**
order filter moments in terms of all 2n prediction and measurement error moments
and approximate the higher moments using suitable functions of the 2" through
4*® moments. The vector expansion becomes very unwieldy and is not included
here. However, Section 3.5 contains the scalar expansions. Simulation experiments
presented in Section 3.7 compare the truncated models to the nontruncated models

which use higher order moment approximation.
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With this restriction the 37 order filter moment becomes
P) = B((x83)5E]
= a0 A P, ® AT KD o k(¥ ROK{T
- Ay ® (K Hy ® Hy) {scst(P)_)) — P, ® cst(P{)_,)} AT
— AL ® Ag {Pff:?-l - CSt(PIErk)-l)CSt(ng)—l)T} H{ ® Hy Kl(:z) T
— (K& Hy ® Hy) ® Ak {sest(P{)_)) — est(PG)_) @ PO)_ 1} AT
- K @ KP {sest(R{") ~ R{Y @ cst(RP)} KT
- K" @ K {RY — cst(RD)est(R)TY KD T
- kP @ K {sest(R{Y) ~ ost(R{) @ RV} KD T
+ Ay ® (K Hy ® In) cst(P)_,) ® R KT
+ A1 ® (KP In ® Hi) Elfp—1 ® Vi ® Vi ® Xgji1] KT
+ A @ K P{)_ @ B{) HY @ In K{P'T
+ A ® K" By @ v @ %L1 ® vil In ® Hf KT
+ K © (K Hi ® Im) E[vi ® X{jp_; @ Xaja-1 ® Vi) A]
+ KV ® (K? In® Hy) cst(R) @ P)_, AT
+ K" ® Ay Elvi ® 5, ® v @ Zapua) HY @ Im KO T
+K" @4 RP @ P{)_| In® HT KT
+ (K Hi ® In) © K{V P) | @ cst(RY) AT
+ (K In ® Hy) ® K E[vi ® %xjum1 ® %jpp_y ® vi] AT
+(KP Hy ® In) ® A Elfge—1 ® Vi ® Vi ® Kappa] (DT
+ (K2 In ® Hy) ® Ay RO @ cst(P)_)) K{D T

(3.35)

The fourth order moment expansion is truncated so that it includes only
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functions of 4*# order prediction and measurement error moments.
P{) = E((382) (x82)7)
= Av® A P, AT ® AT
+ Aok () @ RO AT @ kT
+ Ac® Ap cst(P)_,) est(RO)T k(DT @ KD T
+ A @ K Efyp-1 ® vi @ v @ xf_y) KT © AT (3.36)
+ K{) ® Ay Elvi ® &, @ %1 ® V] AT @ KV T
+ K @ K est(RY) st(P{)_,)T AT © AT
+ Ko R Pl KT e A
+ KD g kM BY kOT o k1T

The filter equations (3.14, 3.34-3.36), gain equations (3.20), and prediction
equations (3.28, 3.30-3.32) constitute the discrete filter relations for non-Gaussian
noise with arbitrary asymmetrical distributions. These relations are suboptimal in
that they do not completely characterize the noise distributions since they use only

the first four moments of the distributions.
3.3 Non-Gaussian Filtering for Symmetrical Distributions

The derivation for the non-Gaussian filter for symmetrical distributions fol-
lows the same general procedure as in the previous section. If the errors are assumed
to have only even moments, then it can be shown that K ,(‘i) =0fori=0,2/4,---
[5). The truncated non-Gaussian filter for symmetrical distributions is obtained by

letting I = 3 in equation (3.9) and obtain the filter error

Xkjk = Xgjk~1 — Mz, - kP(E8). (3.37)
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with corresponding filter equation
Xipe = Xgjp—1 + KMz, + K 58°. (3.38)

The estimator is required to be unbiased. By definition all odd moments of the
innovations are zero. Since E[Xji_;] = 0, the expected value of the estimation

error given in (3.37) is zero. For notational convenience let
& = 2° (3.39)
with E[é;] = 0.

The formulas for the gains K ,gl) and K ,(‘3) result from the requirement for
a minimum variance solution. The variance of the a posteriori density function is
given by
2 . =
Péuz = E[fyuXi]
= E[fgp-1%Xijp—1) — E[iku-li{]Kl(;l) T _ Bl KT
(3.40)
- KBy + KVEmsl k(T + KV Ema] KO T
- KO Elaxdy_) + KPE@f KO T + kP Eaa] k7.

From the matrix minimum principal (23]

Otrace (P} _  Otrace{Fyp} _ (541
ok © o ak® '

Carrying out these operations on (3.40)

K" = (Elfyp_12]) - KD Elaai])) x Efas) ™! .42
K{Y = (Bfxye1&]) - K" Blzaaf)) x Elaa]] ™.
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Similar to the E[(3(T) for the asymmetric filter, it is observed that E[a;a]] is

singular. A collapsed vector &;, is defined such that
o, = Upmég (3.43)

where Uy is a matrix of 1’s and 0’s designed to extract only one of each term from
&i. Since aj, does not contain repeated terms, [a,,ca{c] is nonsingular. Let K ,(:':)
denote the collapsed gain associated with replacing &; with &g, in (3.42). Solving
for K ,(:l) and K E’) yields

KV = (Efgp-12]) - El%ys-168,] Elar. a1, Elag 2] 1)

x (El#2})] — El#:61,) Elés a1, Elén 23 )™

(3.44)
K = (Elup16%,) — Elfup-i3]) Bl ) Elnral)
x (Elarcak,) — Elon 2| Elna]™" Blasd,])™"
Equation (3.38) requires that
K& = K&, (3.45)
Using (3.43) in (3.45), K ,(:3) is then obtained from
KP = kP vy (3.46)




44
Define the parameters

By, = Hr @ H; ® H;
By, = Hy @ Hy ® Iy
Bk3=Hk®Im®Hk

Bk4=Hk®Im®Im

(3.47)
By, = Im @ Hi @ H;
By = Im @ Hi ® I
By, = Im @ Im @ Hy
By =Im®In®Im
The expectations given in equation (3.44) become
Effap1%] = PG}y HY (3.48)

Elsa—1af] = scst(P)_)T B, + P, ® cst(R()T B,

+ EvE ® Sy @ %fpy @ vE1 B, + st(B) @ PY)_, BE,
(3.49)

Efai]) = He P§)_, HT + R{) (3.50)
E[z:47) = Elaazi|"
= Hysest(P)_)T BY, + P§j)_, ® cst(R()T BY,
+ Hy EvE @ ki1 ® iﬂk—z ®vi) BZ; + est(RY' @ P,S,’,Z_, Bz;
+cst(P{)_)7 @ B BT, + Elif,_, ® v ® v} ® %, 1] BE,

+ R @ cst(P)_ )T B, + scst(R{Y)T
(3.51)
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Elaaf) = By P BY, + Byysest(Pg)_,)" ® est(R) B,

+ ByCi, B, + Brycst(B”) @ scst(P{{)_,)" B,

+ Bknglz—l ® Rﬁz)BZ; + By, Cy, B,

+ By Ciy BY, + Bryest(P{j)_1)T @ sest(BY)T B,

+ Bl:zCk.iBl{; + Bksc"sBZ;; + B"SC"GBZ; t B"SC""BZ‘;'

+ By sest(P{)_,) ® cst(R{)TBY, + By, P_, ® RV B],

+ By Ciy 3{4 + B*'IC*sBZ; + BszkloBZ; + BksckuBZ; (3.52)

+ By, B © Plj)_ BY, + Bryscst(R") ® est(Pj)_,)" B,

+ By, CknBZ; + Bk4Ck13BZ; + BkkauBZ; + Bk'zc"lsBz;

+ By, cst(R{Y)T @ scst(P, §f2-1)BkT7 + By, Cuy BE,

+ By Cuyy B, + By, B{Y @ P{)_ BT,

+ Byycst(P, lfflz-l) ® SCSt(Rg))TBEs + Bi; Cyy By

+ Bygsest(R{)T @ est(P)_,)BY, + Byy RY) B,

The parameters Cj, are 6** order functions of expectations of the measure-
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ment and prediction errors. They are defined by
Cr, = E[vi®@ X1 ® J'c{,k_l ® 5‘{]&—1 ® 5‘{]1:-1 ® Vi)
Chy = Effkje—1 ® Vi ® Xiji—1 @ Xk @ Xipp_; ® vi]
Ci; = E[VE ® Xpjt—1 ® Xiji—1 ® Xhjp_y ® Xijp_1 ® V|
Ck, = E[&pr—1 ® Xpp—1 ® Vi @ Xjjp_1 ® vi ® %)
Cig = E[Xpp_1 @ Vi ® Xpp—1 ® ifpg-l Vi ® i{ik—l]
Cig = E[Vi ® Xgjp—1 ® Xrp—1 ® Ky ® Vi ® X je1]
Ci, = E[vi ® Vi ® Vi ® Xfjp_y ® Vi @ X1y
Crg = E[vi ® Rijr—1 ® Vi ® Xfj_1 ® Vi @ Vi
Ciy = E[vi ® Vi @ Xpjp_1 ® Xjjp_y ® Vi @ Vi|
(3.53)
Chyp = ElRajt—1 ® Xyi—1 ® Vi ® Vi ® Xty ® Xjp_i]
Chyy = Effyp—1 ® Vi ® Xpp_1 ® Vi ® Xj_; ® K]
Ciyp = Elfapi-1 ® Xajp—1 @ Rijp—1 ® Vi ® Xy O Vi ]
Cry3 = EXpp-1® vk @ v ® Vi ® igik-l ® Vi
Ciyy = E[VE @ Kiio1 ® Vi ® Vi @ Kjpe_y ® Vi ]
Chys = E[vi ® Vi ® Xpjt_1 ® Vi ® Xijpy ® Vi ]
Chis = ElXii-1® Vi ® Vi ® Vi ® Vi ® Xjp_y]
Chyr = E[vi ® &1 ® Vi ® Vi ® Vi @ Xi_y]

Cryg = ElXigr-1 ® Vi @ Xgje1 ® vi ® v} ®Vi]

The remaining work involves evaluation of the prediction error moments and
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the filter error moments. The prediction error, Xy;_, is given by (3.29). The 27d and
4t prediction moments are generated from the prediction errors. These moments

are expressed as
2 < +T
P, l£|k)—1 = E[Xgg—1Xk_1]

(3.54)
=®p1 P l@ﬂh-l@{—l + Q{‘?l
Pid_y = EIGE ) (58 _)")
=01 @ P P;f )1,;,_ o, 0%, + Q“)
+ & 0L PP, 0Q2 ol 0l
+ 91 QD cstP_ _ cst(Q_ T
1® ®p1 cst(PZ, ) i-1) (3.55)

+ 4y @ In E[Rp_1jt—1 ® Wi_; ® We_3 @ Xi—1jp—1] In ® B]_,
+ In ® Dp—y E[Wr_) @ Xj_yjp—1 ® Kp—yjic1 ® Wi1] 811 ® I
+ ost(QP) cst(P,?),,,:_l)T o i@,
+ Loty QR 0P, Lol

Similarly, using equation (3.37) the moments of the filter error can be eval-
uated. Let
Ap = (In - KV Hy) (3.56)
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Then the filter variance becomes
P = By
= A P)_, AT + K{VRPKT
— Agscst(P, (?k) l)TBT Ky AT _ K; 3) By, scst(P,sz I)AT
— A péfk) | ® cst(RD)T B, KOT _ k® By, cst(RP) @ P, (fk) AT
— AyEfXf)_, ® Vi ® Vi ® xk|k-1]Bk.~,Kl(=3) d
(3)BkGE[ik|k—1 Vi Vi ® ik|k-l]A{
- Arest(RO)T @ PO)_ BL KT - KBy, Pfj)_; ® cst(R{Y) AT
+ KPcst(PA_ ) @ RO BT KT + KOBy, B  cst(P_)KDT
+ KBV @ Kek—1 ® X1 ® Vi |BL, K} KT
(3)Bk3E[Vk ® Xijk-1 ® xk|k-—1 Q@ Vil K} nr
D o ] LT K0 DT

+ KDscst(RETEO T + KPscst (RO KD T (3.57)

Equation (3.37) dictates that the filter variance should include 6** order func-
tions of the prediction and measurement error moments. These higher order terms
are not included in the filter variance expression, just as all 5'® and higher order
terms are disregarded in the development of the asymmetrical filter. By doing so
it is implicitly assumed that the contributions from these higher order terms are
negligible. As noted previously, if these terms were included in the derivation of the
filter moments it would necessitate some approximation procedure for these high
order prediction and measurement moments, since only 2™ and 4** order prediction
moments are propagated. Similarly the 4** order filter moment requires the avail-
ability of 6*», 8t 10t* and 12'» order prediction and measurement error moments.

Again the 4*® order expansion is truncated to include only 4** order functions of the
8 P
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prediction and measurement errors. The resulting moment equation becomes

4
Pl =

=E [(xkp;) (xku;)T]

= Ar® A P{}) | AT @ AT

+ A KD PR @ B AT @ KT

+ Ar® A est(P)_)) est(RPYT KD T @ k(N T

+ A ® K Effup_1 ® v @ vi @ Xfp_,] KT ® AT (3.58)
K" ® Ay E[vi ® {_; ® %1 ® Vi) AT @ KV T

+ K ® KV est(RY) est(PS)_ )T AT ® AT

+ k@A RP @ P)_ K" T @ AT

+ kKM @ k" RY kKT o k(T

The filter equations (3.38, 3.57, 3.58), gain equations (3.44), and prediction

equations (3.28, 3.54, 3.55) constitute the discrete filter relations for non-Gaussian

noise with arbitrary symmetrical distributions. Similar to the asymmetrical filter,

these relations are suboptimal in that they do not completely characterize the noise

distributions since they make use of only the first four moments of the distributions.

3.4 Nonlinear Non-Gaussian Filtering

It is straightforward to extend the high order filters that have been derived for

linear plant and measurement models to nonlinear plant and nonlinear measurement

equations in

non-Gaussian noise. Using linearized models based on 1** order Taylor

series expansions, replace ®;_; and H; in the linear model non-Gaussian filters with

boleg=%p_ -y
Fhy(x
H; s

Xp=Xpk_1
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where fy(xi) and hg(x;) are the system and measurement nonlinearities. The equa-
tions for the nonlinear non-Gaussian filter have the same form as those for the linear
non-Gaussian filter. However the nonlinear filter requires the computation of Fi and

H; at every iteration.

Likewise, the locally iterated Kalman filter, which is discussed in Section
2.4.3, can be obtained from the non-Gaussian filter equations. The locally iterated
non-Gaussian filter requires the computation of all the filtered estimates, all the
gains, and all the moments of the a posteriori density function on every iteration in

each step in the filtering process.
3.5 Non-Gaussian Filters for Scalar Models

In this section the scalar equations for the symmetrical and asymmetrical
filters are presented. It is shown that these filters reduce to the Kalman filter
equations for the special case of Gaussian noise. In contrast to the development of
the vector-based filter equations in which the equations are truncated in order to
reduce the filter complexity, the filter equations for the scalar models are derived

without truncation.

The scalar state and measurement equations are given by

Tp = Pp_1Tp—1 + WE—1
(3.59)
zt = hzi + v

The predicted estimate is Zyx_; = $r—121-yx—1 and the prediction error

Zxjk—1 = Tk — Zp— is given by

Tgjk-1 = Pr-1Z1_qpk—1 + Wi-1 (3.60)
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3.5.1 Scalar Asymmetrical Filter

The scalar equations for the asymmetrical filter are presented in this section.
These equations have the same form as the vector equations given previously with
the exception that the moment equations are not truncated. When the measurement
noise, process noise, or initial estimation error has asymmetrical distributions the

filter equation for the scalar model is obtained from (3.14)

Bap = Bapy + K025 4+ Hoy (3.61)
where
o =3 — ) —r{? (3.62)

The filter error Z3; = 7} — &3 becomes

By = Eapoy — kU5 — kD oy (3.63)

The scalar filter gains (3.20) become

0 _ EBup1B]Elef] - B[z ca]Elfrc]

¢ E[E[of] - Elzien]? a6
@ = Elzyi_104)E[7]] — ElZap—17) ElZran) ‘

(2) =

Elo}]E[3] - Elzroq]?
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where
EZgp_1z] = hkpﬁl_l
Elapzyp—y] = hi?ﬁi_l
Elog) = hp)_, +rf” (3.65)
Ela] = hipfj)_, + )

Ele}] = —hipg;i-l 2+ h:p(:ll—l + 4"%"9)1’%1-1 - rgz) 2+ "£4)

The scalar versions of the prediction moments obtained from (3.30- 3.32) are

given by
Pﬁl_l = ¢2-1P£?1|k—1 +a2 (3.66)
Py = o1 + 6 (3.67)
Pﬁl-l = ¢z-—11’£4—)1|k-1 + 6¢i—1‘1£2-)11’£2-)1|k—1 +ai2) (3.68)

The 2nd moment pﬁ = E[:'i:ilk] can be partitioned into 2",3"¢, and 4*
order components of the measurement and prediction moments. Let
2) _ (2 2 2)
Pm = P£|,),2 + Pﬁ.ls + I’;;p;4 (3.69)

where ”gi consists of i** order moments of the measurement and prediction error.
3

The pﬁi‘ are given by

Pfﬂz = aipiﬁ_l + [k (3.70)
Pg}cs = 2k kD) — 2ak’=§2)hipf,'l_, (3.71)
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2 2 2 2
P, = PPy — %) + akdpi) i — P2 +0Y)  (372)
where a;p =1 — hkkg).
The 3rd moment pf’il = E[i:iu] can be partitioned into 3**, 4% 54 and 64
order components of the measurement and prediction moments. Let
3 3 3 3 3
Pﬁ,l = P£|l3 + Pﬁ]i, + PmS + Pilis (3.73)

(3)

where Pk?k- consists of i** order components of the measurement and prediction
3

moments. The pﬁ,):'_ are given by

r, = ooy — kP (3.74)
A, = RN - 3p) ) + KPR - 3rY) -
+ 120,k EP hepl) e o
Phks = a1t 3P, — 6p{d_ip{R_) + 128 p)_rl”
+12hp{) i) + KOk (1288 p) (P (3.76)
- 12h%p$_1r£3) + 6r£2)r£3) - 3r£5))
pfas = [’Cﬁz)ls(hz(-2[1’$_1]3 + 31’311-1?{3-1 - p(k?}:—l)

+ hi(2lp)_ 12 — 125 rt?) ~ 2083p)_ (Y (3.77)

+ hipﬁ{_l(m[rﬁ”]’ - 12r£‘)) - 2[r£2)]3 + 3r£2)r£4) - rﬁs))

The 4th moment pgl =E [itl ;] can be partitioned into 4**, 54, ... 8t* order

components of the measurements and prediction moments. Let

4 4 4 4 4 4
£l =, + ik, + 25 + 2, + B, (3.78)
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where pﬁli consists of i** order components of the measurement and prediction
moments. The ”gli.- are given by

o, = atp{il_, +6adlkV1Pp)_iri® + [k{V)r? (3.79)
4 2 2 3 S
P£|i5 = 4o}k )hi(P£|i-1P£|l):-1 - P£|i-1)
+ 12a3k{0 kD @R P + 5 _1r) as0)
+ 12ak[k,(gl)]2k£2)(—h2pgz_lrﬁz) - 2"“’;:71):-1"}:3))
+ 4[k,(‘l)]3k£2)(r£5) - rﬁz)r?))
4 2
2{ih, = adEPORE(R 1T — 1200 _ipif) + 6pik-1)
+ 243 e + 24hep()_ el + 650 (rf? - 1))
+ ank{D D1 (a8hr (), )2 - p{j)_) — 72hER{) e a8

+a8hpi)_, (1 - ()
+ PR 6hE oLy — ) 1PrD) + 24h3p) )

+26hEp{) il +61r{7)° — 126 + 6r7)
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chlz = "k[kl(cz)]s(hg("12[Pﬁl-1]2?ﬁi—1 + 121’&{—11’31- k|k-1)
+ hi(asp()_ip() el — 8pd_yrl”) + KR8l Pl — s0pig) 1)
+ hp_ (60[r)? — 60r(Y) + apfll_ (48rfPr(Y — 24r(Y))
+ ROIROP () yri? - 48pid ol ari?)
+ hi(60pi)_yr§” — 60[pi_Pri?) + hipi). . (80r(Y — 48[

ipiﬂ 1(481'(5) - 48r£2)r£3)) + 12[r£2)]2r£3) - 121',(:2)1';:5) + 47{’))
(3-82)

4 2 2 2 4 2 6 8
pi, = (TR (=3p{) 1 + 6lp)_,1%pih_s — 4P 2Ly + Pja_s)
+ h§2alp) 1P — asp{)_ o) +24p(5)_1r)

+hE(opilyr(? ~ s0p{l_ipilyri”)

+ k(o 12 Galr 1 — 54r() + 5} (70 - 54[r 1))
+ thiik l("*ﬁr(s) - 80r£2)r£3) )+ hip?l_l (24[r(2)]3 - 481'9) rf) + 241{6))

=3[P + 6P Pri) — arr®) 4 1)
(3.83)

3.5.1.1 Special Case - Symmetrical Distributions

In the case where the initial estimation error, the measurement noise, and the
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process noise all have symmetrical distributions the expectations in (3.59) reduce to
Elzyp_12¢) = hkl’m-l
ElpZpp_1] =0
Elozz] =0 (3.84)
E[}) = hipﬁﬂ_  + r‘(g)
Elof] = —hi[p3)_,1* + hip{l)_, + 4h3rPpR)_ — [P +
Substituting into (3.58) the filter gains become
k) = Elzy_a) BlZE]
(3.85)

K2 =0

It is observed that k{") is now the standard Kalman filter gain. With k{2 = 0 the
3" and 4* order components of the 2™ filter moment (3.69) are zero. Thus there
is no need to compute 3% and higher order filter moments. The resulting equations

are the standard Kalman filter equations for linear systems.
3.5.2 Scalar Symmetrical Filter

The scalar filter equations for the symmetrical non-Gaussian are obtained
in the same manner as the vector equations with the exception that the moment

equations are not truncated. From (3.38) the filter equation becomes

Bue = Sapoy + A5 + KD ED) (3.86)

The filter error Z3; = zj ~ Z4); becomes

= B — MO — D(3) (3.87)




57
The scalar filter gains are obtained from (3.44). They are given by
D Elzyi_12:) E[2f] — ElZge_138) E[3]
* E[Z]E[z}] — E[z]? (3.88)
W8 _ E(Zyi_13)E[3}] — ElZwp-12)E[Z]
* E[z}Elz] - E[z]?
where
Eligp_1%] = hipiph_y
E[3] = thﬁl_l + riz)
ElZy_13}) = hi?ﬁl_l +8hrPph | (3.89)
E[sf] = ol + 6hEripil , + )
E[3f] = hgpﬁi_l + l5h2r£2) pg{_l + 15hir£4) p{ﬂ_l + rﬁs)
The prediction moments are scalar versions of (3.54) and (3.55)
2 2
pgll—l = ¢§-1P£.21|k_1 + 92-2_)1 (3.90)
4 4 2 4
p(kli—l = ¢t—ll’£—)1|k-1 + 6¢i-1q£2-)11’£-21|k-1 +42, (3.91)

The filter variance pﬁl = E[:’i:i'k] can be partitioned into 274,44 and 6t

order components of the measurement and prediction moments. Let

(2) _ (2 2 (2)
Pigi = Pﬁu):z + P£|1):4 + Pijig (3.92)
where piﬂ., consists of it* order components of the measurement and prediction

moments. The pm', are given by
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P S=2|)=2 = aipg‘;{_l + [kil)]z";:z) (3.93)

), = axk((~2h3p)_; — 6hepl_irP) + KR BRI _ D +2r(Y)
(3.94)

pin, = PRy + 15mp)_yr® + 150360 ir) +1{7)  (3.95)

where ap =1 — hkk,(‘l).

The 4th moment pﬁl =E [a':tl i) can be partitioned into 4th 6th ... 124 order

components of the measurements and prediction moments. Let

(4

o) = @ L0 L@ @ @) (3.96)

Phiky 7 Prlbg  Piikg T Prjkyg T Pilky,

where pm‘ consists of i** order components of the measurement and prediction
(4)

moments. The Pyji, are given by

i, = oL, +6ad(k(Pp)_yri? + (k)Y (3.97)
Piin, = obki (—4hipli)_, — 12hiply)_yr?)
+ aikﬁl)k?)(iiﬁhipﬁl_l"9) + 121’;:2[2-1'{4)) 3.08
+ ag (kPR (~1203p)_, D - 36hp{0)_, (V) %)
+ PR (203t + 4 ()
Al = HPPOMR . +S0HA 2+ OMR i+ 6l
+ agkM kI (=7203 ) r? — 20083pl)_ Y — 12800} _1r{")

+ PR (6hEp_ v + 90ndp{t) (V) + 90a2pi7)_ r®) + 6r(Y)

(3.99)
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i, = altIP(~4hdpls) | — 144hTp(Q)_ rl?

- 504"21’;;?;;-1";:4) - 336h2p§:4|):-1"£6) - 36""1’;:72—1";:8))

(3.100)
+ kDR EehEP_ i + 336hEp{)_,ri? + 504hipli) i
+144h3p) () +4r{0)
Pilhy = TR + sohlp{ oY) + a05hipfl)1r{? @101

+ 924h2p§1_1r£6) + 495h§p§:|,)‘_1r£8) + Gﬁhipm_lrim) + r£12))
3.5.2.1 Special Case - Gaussian Noise

In the case where the process noise, the measurement noise, and the initial
conditions have a Gaussian distribution, the symmetrical filter equations reduce to
the standard Kalman filter equations.

If the prediction error Z3;_; is Gaussian, the central moments of the error

(2)

can be expressed in terms of the variance Piji_y 28

Ax3x---(n- 1))p(2)_ »/2 peven
E[&}-] = { He=t (3.102)
0 n odd
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The expectations in (3.89) now become
ElZyr_1%) = hkpiz,l_,
E[s}] = hip)_, + 7
ElZgk-18) = 3’121’&_1 2+ 3hk"£2)1’ﬁl);_1
= 3E[Zx-15:| E[Z])
E(zh] = 3hip(_, 2 + 6h{r{Pp{) | +3r()?
= 3E[z)*
E[5§] = 15h8p{0)_ ® + 45hErpl) | 2 + 45h3riD 2p0) | +15r(D) 2
= 15E[z)3
(3.103)
Substituting these expressions into (3.88) the gains become
KD = Elzyu_y5] Ef3
(3.104)

kgs) =0

k?) is now the gain for the standard Kalman Filter. It is observed that 4** and
higher order moments are no longer required for the gain equations. Thus it is not
necessary to propagate 4** order prediction and filter moments. In addition, since
k£3) = 0, the 4** and higher order moment terms in the 2" moment equation (3.92)
vanish and this equation reduces to the filter moment equation for the standard

Kalman filter.
3.6 Approximation of Prediction Moments

Since the filter equation (3.61) contains quadratic terms involving the in-

novations, the nt* order filter moment is a function of prediction moments up to
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order 2n. Similarly, since the filter equation (3.86) contains 3¢ order functions of
the innovations, filter moments of order n are functions of prediction moments up
to order 3n. This problem cannot be solved by simply computing the high order
prediction moments needed in the filter moment equations, since these high order

prediction moments require the availability of filter moments of the same order.

One method to deal with this problem is to truncate the filter moment equa-
tions, including only 4*# and lower order prediction moments. This was done in the
derivation of the vector-based non-Gaussian filter equations. Another approach is
to approximate the higher order prediction moments. Using this approach 5% and

4tll

higher order moments are approximated as functions of the ond 3rd and order

prediction moments.

Two approximations are considered. The first approximation was stated by
Rao and Yar [27]. For symmetrical distributions they approximate higher than 4%

order moments of a random variable v; using the relation

(n — 1) E[v}] E[v}"?] n even

E[v}] = { . o (3.105)

This formul. is exact if v; has a Gaussian distribution.

Another approximation is described in [74], pp. 246-258. This expansion,
called the Gram-Charlier series, approximates the density of a non-Gaussian dis-
tribution in terms of a Gaussian function, its derivatives, and the moments of the

original density function.

Let z be a random variable with mean g and variance o and arbitrary density

function w(z). Let y be the normalized random variable with n** moment v, defined
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(3.106)

- n
w=2{(*75)}
o
If p(y) represents a Gaussian density function, the Gram-Charlier series approxi-

mation for the density function w(y) is given by
w(y) = ¢(y) (1 — asHs(y) + asHaly) — asHs(y) + --- + (-1)"Ha(y) + --°)
where Hy(y) are the Hermite polynomials expressed as
Hun41(y) = yHa(y) — nHn-1(y) (3.107)

with Ho(y) = 1, Hi(y) = y. The coefficients a, are computed from the Hermite
polynomials and the density w(y) using

an= L 7 vy (3.108)

It is pointed out in [74] that when a limited number of coefficients are available
specific groupings of coefficients are appropriate. In particular, the Edgeworth series

involves the groupings
0, 3

0, 3, 4, 6
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The coefficients corresponding to terms 0, 3,4, and 6 are
a=1
a3 = —v3/3!
ag = (vg — 3)/4!
a¢ = (vg — 15v4 + 30)/6!
The central moments of the random variable z are then evaluated using
Bl -w = [ (ov)"u(v)dy (3.109)

3.7 Experimental Evaluation of the Non-Gaussian Filters

The objective of this section is to determine the performance of the approxi-
mate filters described in this chapter. In order to measure performance it is desirable
to compare these filters to optimal estimators in non-Gaussian noise. Unfortunately,
optimal estimators do not exist for arbitrary probability distributions. However, an
optimal estimator is available for distributions consisting of Gaussian sums. Let the
measurement noise, process noise, and initial estimation error be represented as a

sum of ] Gaussian distributions with aggregate density function

I
p(z) =Y &N(z — a;, B;) (3.110)

=1
where

1
Y =1, & >0Vi. (3.111)

=1
Given a priori densities of this form, the a posteriori densities of the state given the

data are determined by direct application of Bayes’ rule. The resulting estimator is

denoted the Gaussian sum filter. The Gaussian sum filter relations are given in [10].
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The operation of the Ga,us‘sian sum filter can be very computationally in-
tensive. For L densities used to describe the initial state, N densities for the mea-
surement noise, and M densities for the process noise; the state prediction at the
first stage requires the propagation of L * M separate estimates. The filtered es-
timate for the first stage requires L * M * N estimates. In general, the number of
separate prediction estimates that must be computed for the k** stage is given by
L * M* x N¥-1_ and the number of separate filtered estimates is L + M* + N*, The
Gaussian sum representation essentially results in several Kalman filters operating
in parallel. A weighted sum of these filters is used to form the a posteriori density.
The conditional mean is formed as the convex combination of the mean values of
the individual terms, or Kalman filters, of the Gaussian sum. It is important to
note that the weighting function used to form this convex combination is dependent
on the measurement data causing the conditional mean to be a nonlinear function
of the data. In contrast to the linear Kalman filter, the conditional variance of the
Gaussian sum filter is a function of the measurement data. Thus the conditional
variaL.. is not expected to converge smoothly as it does with the linear Kalman
filter. Additionally, it cannot be computed off line as can be done with the Kalman

filter for linear systems.

The primary advantage of the Gaussian sum approach is that it forms an
explicit representation of the a posteriori density. This representation is optimal
if the errors are truly made up of a sum of Gaussian distributions. The major
disadvantage of the Gaussian sum filter is the geometric progression of the number
of separate Kalman filters that are required to implement the estimator. However,
the number of filters can be limited by disregarding those terms in the Gaussian

sum that have very small weights.
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Our interest in experimental evaluation of the approximate filters is to de-
termine what degree of improvement these filters offer over the standard Kalman
filter and to determine how close these approximate filters match the performance
of the optimal estimator using Gaussian sums. Also of interest is to determine if the
truncated forms of the asymmetrical and symmetrical filter approximations given
in Sections 3.2 and 3.3 give similar performance to the nontruncated expressions of

Sections 3.5.1 and 3.5.2.

A scalar model is used to evaluate the performance of the filters. The plant

and measurement equations for this model have the form

Tk = 0.5zk_1 + wE_
(3.112)
2y =zt + Vi

where wp and v; are mutually independent, zero mean possibly non-Gaussian ran-
dom processes, and the initial estimation error for zo may also be non-Gaussian.
The non-Gaussian distributions are modeled as the sum of two Gaussian distribu-
tions with unit variance. In general the non-Gaussian distribution for a random

variable y is given by

I
p(y) =) €&N(si,1) (3.113)

=1
where °1_, € = 1. For the special case of two distributions (I = 2) the parameter
D is defined as the separation between the means of the distributions. In this case
for p(y) to have zero mean uy = —e2 % D, and p2 = e * D. H ¢; = €2, p(y) is

symmetric. f D =0, p(y) is Gaussian.
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In general the density p(y) has zero mean and the next three moments are

I
Ely?Y) =Y el +4d)

=1
I
EW® =Y ei(u + 3ui) (3.114)

=1
I
Ely*] = Y ei(3+ 643 + pf)

=1
3.7.1 Asymmetrical Filter Results

An asymmetrical distribution with ¢; = 0.2, 2 = 0.8, and I = 2 in equation
(3.113). The system represented by equations (3.112) is used to evaluate the different
filters for various combinations of non-Gaussian process noise vi, measurement noise

wy, and initial estimation error Z9. The three noise models are given in Table 3.1

below.
Table 3.1. Noise Models for Non-Gaussian Filter Evaluation
Model vk Wi Zo
1 Tl aN(pis1) N(0,1) N(z0,1)
2 N(0,1) Tia6N@pi1) | N(z,1)
3 N(0,1) N(0,1) Tio1 &N (si + 20,1)

The asymmetrical filter of Section 3.5.1 is evaluated in three different con-
figurations. In the first configuration, denoted Asym/T1, the asymmetrical filter
equations of Section 3.5.1 are modified so that the 3" order filter moment contains
only functions of 3" order prediction moments and 3" order measurement error,

and the 4* order filter moment contains only functions of 4** order prediction mo-
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order measurement error. Thus, the terms pﬁ‘a‘, pgis, and pgis are

set to zero in equation (3.73), and pgl):s,pﬁls,psz‘?, and pﬁls are set to zero in

ments and 4%

equation (3.78). The second asymmetrical filter configuration, denoted Asym/T2,
(3)

4'» moment term Pijk, is retained

is similar to Asym/T1 with the exception that the
(3.73). The vector formulation for this truncated filter configuration is developed in
Section 3.2. The last asymmetrical filter configuration, denoted Asym/Edge, uses

5t and higher order moments

the complete filter configuration of Section 3.5.1 with
being approximated by the Edgeworth expansion using coefficients ag and a3. The
second Edgeworth expansion, which uses the terms ay, a3, a4, and ag, cannot be used

6'* order moment. These

because the ag coefficient requires the availability of the
three asymmetrical filters are compared to the performance of the standard Kalman

filter and to the Gaussian sum filter.

Figure 3.1 displays the non-Gaussian noise distribution, the state estimation
error Z;;, and the filter variance pﬁl for a typical simulation of the system in
equation (3.112) for Model 1. The separation between the distributions for the
non-Gaussian noise was D = 10. Figure 3.1 illustrates that the asymmetrical filter
performance is significantly better than the standard Kalman filter, but not as good
as the Gaussian sum filter. The three asymmetrical filter configurations perform
about equally. It is observed that since Model 1 is indeed a Gaussian sum model,
the Gaussian sum filter produces an optimal estimate. The primary purpose of this
test is to compare the standard Kalman filter to the HOF, since both filters use

only the error moments and not the density function to perform estimation. The

Gaussian sum filter performance is included only as a reference.

A Monte-Carlo analysis was performed to determine the sample variance of

the estimation error. Fifty separate simulation runs of the system were made for




68

9SION juswaInsesy [epowig ‘01 = (7 ‘1 [PPO ‘sy[nsay 199]1] [eolpWIWASY [edidA],

1 souerrep touq (o)

1°g 2ndiyg

M4z 10117 woryewnysy (q)
() ojdureg (1) a1dureg
ol ) 9 ¥ 2 0. 0l 8 9 ¥ 2 [
..... 0000 OO S g S
wng sney o \ 9
adpy/wfisy + i
al/uksy v VA8 2
1L/wdsy o Vg 8 5
ueuwjey Qg \ - F~y
..... At wnby LR S R SR N e & £
nuunn¢unuu¢unnu¢uuun0nuun unuu@,uunn@umnmwnhw‘.l.!ll_ -— m- “
. =] ]
8
a'l
£l
uorpouny Lyisua(y £31j1qeqolJ asioN juswaInNsed]y (&)
x
Gal 01 gl ‘G ge 0 Ge- G- G~ 01— m.N_.Io
0"
..... o
90
80° X
e
..... AR
........... 28




69
each model. The estimation error was accumulated over the last five samples of each
run resulting in a total of 250 samples of the estimation error. The sample variances
of the filter error }3’&'22 and the prediction error Plflzk)-—l are presented in Table 3.2 for

every estimator for each model.

Table 3.2. Sample Variances for the Asymmetrical Filter - D = 10

Filter Model 1 Model 2 Model 3
we | B | RD |7 | AL, |ED | AL
Kalman 1.25 1.35 0.983 18.4 0.575 1.20
Asym/T1 0.952 1.29 0.828 18.5 0.575 1.20
Asym/T?2 0.954 1.29 0.828 18.5 0.575 1.20
Asym/Edge 0.944 1.29 0.828 18.5 0.575 1.20
Gaus Sum 0.575 1.20 0.575 18.5 0.575 1.20

The Monte Carlo results are consistent with the observations made from the
single run results in that the asymmetrical filter performed very well in relation to
the standard Kalman filter. The fact that the Asym/Edge model gives the same
performance as any of the truncated forms suggests that the truncated filters are
sufficient to characterize the asymmetrical filter. Although there may be other
approximations for higher moments that give better results than the Edgeworth
series, this suggests that there is no need to go through the lengthy and cumbersome
vector expansion for 5'* and higher order coraponents for the 3™ and 4** filter

moments.

A similar study was done on the asymmetrical filters for distribution D = 5.

The Monte Carlo results for this configuration are given in Table 3.3.
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Table 3.3 Sample Variances for the Asymmetrical Filter - D = 5

Filter Model 1 Model 2 Model 3
Type PR | B | BRO| R | BR| AR
Kalman 108 | 134 | 0910 | 550 | 0575 | 1.20
Asym/T1 | 0923 | 132 | 0823 | 549 | 0575 | 1.20
Asym/T2 | 0923 | 132 | 0828 | 549 | 0575 | 1.20
Asym/Edge | 0922 | 132 | 0823 | 549 | 0575 | 1.20
GausSum | 0742 | 128 | o2 | 549 | 0575 | 120

As expected the sample variances of the estimation error are closer together
than they were in Table 3.2 where D = 10. As the distribution separation D
approaches 0 all of the results would be the same and all of the estimators would

be optimal.
3.7.2 Symmetrical Filter Results

A symmetrical non-Gaussian distribution is generated with parameter values
e = 0.5, 2 = 0.5, and I = 2 in equation (3.112). The system represented by
equation (3.113) was evaluated for various combinations of non-Gaussian process
noise v, measurement noise wg, and initial estimation error %o as expressed in

Table 3.1.

The symmetrical filter was evaluated in three different configurations. In
the first configuration, denoted Sym/T, the symmetrical filter equations of Section
3.5.2 were modified so that the second order filter moment contains only functions
of 2" and 4** order prediction moments and measurement moments, and the 4th

4*» order functions of the prediction

order filter moment contains only functions of
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and measurement errors. Thus terms pﬁ,)q, and pﬁls were set {o zero in equation
(3.92), and pﬁis,pﬁls,pgim, and pﬁllz were set to zero in equation (3.96). The
second symmetrical filter configuration, denoted Sym/Rao used the complete filter
configuration of Section 3.5.2. Moments of order higher that 4** were approximated
using the formula described in equation (3.105), which was obtained from Rao and
Yar [27). The last symmetrical filter configuration, denoted Sym/Edge, used the
complete filter configuration of Section 3.5.2 with moments of order higher than 4**
were approximated by the Edgeworth expansion using coeflicients ag and a3. It is
noted that E[zf] in equation (3.89) requires the availability of the 6** moment of the

prediction error, and the 6** moment of the measurement error. For the truncated

model Sym/T the Rao approximation was used for these moments.

The Monte Carlo results for 250 samples are given in Table 3.4. This ta-
ble shows that the symmetrical HOF performs better than the standard Kalman
filter, but not quite as good as the optimal Gaussian sum filter. Among the three
asymmetrical filter configurations, the truncated form and the form that uses the
Rao approximation perform the same. However, the Sym/Edge filter performance is
somewhat poorer than the other non-Gaussian filters. This discrepancy is probably
due to the fact that the Edgeworth expansion is based on a Gaussian kernel and
this approximation degrades as the separation D increases. A similar study was
performed for symmetrical distributions with D = 5. The Monte Carlo results are

given in Table 3.5.
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Table 3.4. Sample Variances for the Symmetrical Filter - D = 10

Filter Model 1 Model 2 Model 3

Type PR RO | AR BRL, | BR | AR
Kalman 1.33 1.35 0.947 25.7 0.575 1.20
Sym/T 1.22 1.32 0.908 25.7 0.575 1.20
Sym/Rao 1.22 1.32 0.908 25.7 0.575 1.20
Sym/Edge 1.29 1.34 0.933 25.7 0.575 1.20
Gaus Sum 0.575 1.20 0.575 25.6 0.575 1.20

Table 3.5. Sample Variances for the Symmetrical Filter - D =5

Filter Model 1 Model 2 Model 3
Type PR | B, | PR | EQ, | B | B,
Kalman 1.20 1.35 0.876 7.20 0.575 1.20
Sym/T 1.10 1.32 0.838 7.21 0.575 1.20
Sym/Rao 1.10 1.32 0.838 7.21 0.575 1.20
Sym/Fdge 1.15 1.33 0.856 7.20 0.575 1.20
Gaus Sum 0.914 1.26 0.782 1.21 0.575 1.20

As with the asymmetrical filter, as the separation D becomes smaller, the
sample variances of the estimation error are clustered closer together for all models
since as D approaches 0 the mixture distribution becomes “more” Gaussian. For
this case the sample variance for the Sym/Edge model is now about halfway between
the sample variance for the standard Kalman filter and the Sym/T model, whereas
the sample variance for Sym/Edge for D = 10 was closer to the Kalman sample

variance. This is expected since the non-Gaussian distribution is “more” Gaussian




74

as D becomes smaller and thus the Edgeworth approximation is more valid.

Better results may be obtained for the symmetrical filter by propagating

6* order prediction moment can be

6** order filter and prediction moments. The
obtained directly from the prediction error equation Zyx_y = $k—1Tg_1k-1 +Wk-1-

The 6** moment is given by

Pisli—l = ¢g-—1pﬁ)—1|k—1 + 15‘1’}:—11’?-)1&-1‘1;:2—)1 + 1545%—1?{:21“_111?_)1 + qp(‘s_)l (3.115)

6“!

If the 3" power of the innovations in equation (3.87) are disregarded, the 6** order

Gth

filter moment can be expressed in terms of only 6** order functions of the prediction

and measurement errors. This truncation equation lead to
pigs = ol + 150tk 2] r + 156K 40 r{V + KD (3.116)
where ap =1 — kil)hk.
In addition the 6** order terms pﬁlﬁ are retained in (3.92), and ps:'ls in (3.96).

With this configuration the 6!* order symmetrical filters was tested for D =
5,10, and 15 for a bimodal measurement and process noise distributions. An example
simulation run for bimodal measurement noise (Model 1) is shown in Figure 3.2.
Table 3.6 compares the results of the linear Kalman filter, the 4** and 6** order
symmetrical filters, and the Gaussian sum filter for Model 1. Included in this figure
are the values of the bimodal noise variance E[v}]. Define a coefficient of excess I';

for a random variable z as
3E[z?]

= E

(3.117)

I'; represents the deviation of the actual fourth moment from the Gaussian fourth

moment. This value is also included in the Table 3.6.
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Comparison of Sample Filter Variances for 4** and 6** Order Filters

Bimodal Measurement Noise Distribution

D |E[vf] [Ty, |Filter Sample Filter Variances
Order |Kalman |Sym/T |Sym/Rao |Sym/Edge |[Gaus Sum

5 (725 |1.98 | 4t 1.20 1.10 1.10 1.15 0.914
6t 1.01 1.01 1.01

10 | 26 |2.61 | 4th 1.33 1.22 1.22 1.29 0.575
6t 0.773 | 0.824 0.897

15 | 101 [2.89 | 4 1.34 1.28 1.28 1.32 0.575
6tk 0.673 | 0.773 0.880

Table 3.6 shows that as the separation D increases the 6'* order filters per-
form significantly better than the 4** order filters. The truncated filter, ’Sym/T’,
gives the best overall performance. In fact, for D = 15 the sample variance of
Sym/T’ (0.673) is very close to that of the Gaussian sum filter (0.575). It is ob-
served that as D increases from § to 10, I'y, increases from 1.98 to 2.89. Thus,
as the bimodal distribution becomes “more” non-Gaussian, the 6** order filter per-
forms much better relative to the linear Kalman filter. It is important to note that
the high order filters may become unstable under certain conditions. This is evident
in Figure 3.2(c), in which the Sym/Edge configuration behaves erratically. However,
unlike the Gaussian sum filter, the error variance Py for the non-Gaussian filters
can be evaluated off-line without any measurement data if the system is linear, so

stablity can be determined before the filter is impleniented on actual data.

Table 3.7 gives the results for Model 2, bimodal process noise. The results

are consistent with those in Table 3.6.
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Table 3.7. Comparison of Sample Filter Variances for 4** and 6 Order Filters

Bimodal Process Noise Distribution

D (E[w}] [Tw, |Filter Sample Filter Variances
Order |Kalman |Sym/T |Sym/Rao |Sym/Edge | Gaus Sum

5 (7.2 [1.98 | 4 | 0.876 | 0.837 | 0.837 0.856 0.782
6th 0.789 | 0.791 0.794

10| 26 [261( 4** | 0947 | 0.908 | 0.908 0.933 0.575
6th 0.684 | 0.718 0.798

15| 101 [2.89 | 4% | 0964 | 0939 | 0.939 0.956 0.575
6t 0.643 | 0.739 0.790

A commonly encountered non-Gaussian distribution is the so-called heavy-
tailed Gaussian distribution. This distribution is composed of a large central lobe
and two smaller lobes separated by an equal distance on each side of the main lobe.
To generate this distribution I = 3, ¢ = ¢3 = 0.2,e2 = 0.6, = —D/2,p2 =
0,43 = D/2 were used in equation (3.113). Figure 3.3 displays the non-Gaussian
noise distribution, the estimation error Z3;, and the filter variance p{‘a for a typical
simulation of the system in equation (3.112) for model 1. The separation between
the distributions for the non-Gaussian noise was D = 10. Tables 3.8 and 3.9 compare
the performance of the non-Gaussian filters to the Kalman and Gaussian sum filters

for Models 1 and 2 respectively.

Tables 3.8 and 3.9 show that the Gaussian sum filters do not offer any sig-
nificant improvement over the Kalman filter for the heavy-tailed distributions used
for these examples. For the heavy-tailed distributions Iy, and Iy, are approxi-

mately equal to 1. This again demonstrates that the relative performance of the
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Table 3.8. Comparison of Sample Filter Variances for 4** and 6** Order Filters

Heavy-Tailed Measurement Noise Distribution

D |E[v} Ty, |Filter Sample Filter Variances
Order |Kalman {Sym/T |Sym/Rao |Sym/Edge |Gaus Sum

5135 [1.10 | 4% | 0964 | 0.966 | 0.967 0.966 0.989
6tk 0.967 | 0.967 0.967

10 | 11 |1.16 | 4 1.20 1.20 1.20 1.20 0.918
6t 1.21 1.21 1.21

15 | 23.5 [1.18 [ 4t 1.27 1.27 1.27 1.27 0.603
6th 1.28 1.28 1.28

Table 3.9. Compasison of Sample Filter Variances for 4** and 6** Order Filters

Heavy-Tailed Process Noise Distribution

D |E[w}] |Tw, |Filter Sample Filter Variances
Order |Kalman |Sym/T |Sym/Rao |Sym/Edge | Gaus Sum

51( 35 |10 4» | 0.853 | 0.854 | 0.854 0.854 0.849
6h 0.854 | 0.854 0.854

10 11 [1.16 | 4 | 0.957 | 0.955 | 0.955 0.956 0.849
6t 0954 | 0.954 0.954

15| 235 [1.18 | 4% | 0.980 | 0.978 | 0978 0.978 0.639
6** 0.972 | 0.972 0.972
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non-Gaussian filters can be assessed by comparing the fourth moment to that of a
Gaussian distribution. If the coeflicient of excess is close to 1, then the standard

Kalman filter gives similar performance to the symmetrical high order filter.

The last non-Gaussian distribution considered is the uniform distribution.
Figure 3.4 displays the noise distribution, the estimation error Zy;, and the filter
variance pﬁ?,)‘ for a typical simulation of the system in equation (3.112) for uniform
measurement noise with variance equal to 10. Tables 3.10 and 3.11 compare the
performance of the non-Gaussian filters to the Kalman and filters for uniformly
distributed measurement noise (Gaussian process noise and initial estimation error

with unit variance), and uniformly distributed process noise (Gaussian measurement

noise and initial estimation error with unit variance), respectively.

Table 3.10. Comparison of Sample Filter Variances for 4** and 6** Order Filters

Uniform Measurement Noise Distribution

r---E[v';’] Ty, Filter Sample Filter Variances
Order | Kalman | Sym/T | Sym/Rao | Sym/Edge
5 1.67 4th 0.944 0.868 0.868 0.893
6th 0.825 0.825 0.824
10 1.67 4th 1.04 0.984 0.984 1.01
6th 0.912 0.912 0.911
15 1.67 4th 1.08 1.03 1.03 1.06
6t 0.963 0.963 0.962
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Table 3.11. Comparison of Sample Filter Variances for 4t and 6!* Order Filters

Uniform Process Noise Distribution

E[w}] | Tw, Filter Sample Filter Variances
Order | Kalman | Sym/T | Sym/Rao | Sym/Edge
5 1.67 4th 0.866 0.838 0.838 0.848
6t 0.815 0.815 0.816
10 1.67 4th 0.932 0.910 0.910 0.919
6th 0.876 0.876 0.876
15 1.67 4th 0.955 0.937 0.937 0.945
6tk 0.902 0.902 0.903

The non-Gaussian filters give better performance than the Kalman filter
for uniformly distributed noise. Again the relative performance is related to the
difference between the fourth moment E[vf] and the fourth moment of the Gaussian

distribution 3E[v2]2.
3.8 Conclusion

Two approximate methods for filtering have been presented for estimation
in the presence of asymmetric and symmetric distributions of non-Gaussian noise.
Simulation studies have shown that the HOFs can perform very well for estimation
in non-Gaussian noise. The real utility of the filters developed in this chapter comes
when either the noise cannot be adequately represented as Gaussian sums, or when
only the moments of the noise are known, and not the actual density functions.
Although these filters are more complicated to implement than the standard Kalman

filter, they are not nearly as computationally intensive as the Gaussian sum filter
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in which the number of parallel filters grows geometrically as the number of stages

increase.

An obvious method to improve the performance of the non-Gaussian filters
developed here is to use higher powers of the innovations in developing the filter
equations. That is, let I be greater than 3 in

I .
Kagp = Koy — 3 KBS
=0
However, this would make the vector derivation of the filter equations very unwieldy.
In addition this derivation would require the availability of still higher order terms
in the solution of the filter variance equations. That is for I = 4 the filter variance
equation would require up to 8** order prediction moments. The 4*h order moment of
the variance would require up to 16** order prediction moments. In general, when
I > 1 it is necessary to either truncate the expressions for the filter moments so
that only those powers of prediction and measurement error moments are included
for which similar powers of the filter moments exist, or the higher powers of the

prediction and measurement error moments must be approximated.

For non-Gaussian distributions made up of known Gaussian sums, the non-
Gaussian filters presented here give a reasonable compromise between the optimal
but very computationally intensive Gaussian sum filter, and the suboptimal but
easily implemented standard Kalman filter. In addition, when only the moments
of the distributions are known and a Gaussian sum filter cannot be used, the non-

Gaussian filters offer a means to obtain improved performance over the standard

Kalman filter.
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Chapter 4

Nonlinear Filtering Methods for Harmonic Retrieval

This chapter addresses the problem of high resolution parameter estimation
of superimposed sinusoids using nonlinear filtering techniques. Six separate nonlin-
ear filters are evaluated for the estimation of the parameters of sinusoids in white and
colored Gaussian noise. Experimental evaluation demonstrates that the nonlinear
filters perform very satisfactorily (close to the Cramer-Rao bound) for reasonable
values of the initial estimation error. A major advantage of using nonlinear filtering
methods for harmonic retrieval is that the filters can be applied to time varying

process models as well.

Some of the more recent work done in parametric methods for harmonic
superesolution includes modified singular value decorr postion techniques [31], and
cumulant based techniques [32]. Generally these approaches perform well at high
SNR’s, with close correspondence to the CR bound. However, the performance is

severely degraded at low SNR’s.

Solution of the harmonic retrieval problem is approached using 3 nonlinear
filters including the extended Kalman filter, the Gaussian second order filter, and
the minimum variance filter. Three iterated forms of the extended Kalman filter
are also applied to this problem. The main advantage of using recursive filtering
techniques over more traditional batch-type estimators is that time varying system
parameters can be modeled. The nonlinear filters are applied to data consisting of
two exponentially damped sinusoids in white noise. The results are compared to the

Cramer-Rao (CR) bound and to results obtained by other authors using singular
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value decomposition (SVD) techniques. The performance of the nonlinear estimators
is also evaluated in colored noise with known and unknown noise filter coefficients.
In addition, a technique is presented to perform estimation when the noise statistics
are unknown. In this case the noise statistics are estimated along with the state
estimates. Overall it is found that the nonlinear filters give performance very close
to the CR bound whenever the initial state covariance is small. The techniques are
found to be very effective in colored noise with known and unknown coeflicients,

and when the noise statistics are unknown.

The problem of high resolution frequency estimation has received a consid-
erable amount of attention in recent years. The classical method for frequency
estimation is based on nonpar=metric periodogram estimates and their variations
[31]. The frequency estimates are formed from the power spectral density estimates
obtained from the Fourier transform of the data or from the Fourier transform of the
autocorrelation sequence. The frequency resolution of these techniques is directly
related to the number of data samples in the received time series, so the periodogram
method is generally not considered a high resolution frequency estimator. In a re-
lated technique developed by Capon [32], called maximum likelihood (ML) spectral
estimation, the PSD is estimated by effectively measuring the power cut of a set
of narrowband filters. Foias et al. [33] have demonstrated that the ML estimate
converges monotonically to the point power spectrum associated with the sinusoids
as the number of correlation lags app:oaches infinity. They further show how this
convergence property can be used to determine whether a strong spe-tral peak cor-
responds to a sinusoid. A .omplete review of ail of the basic spectrum estimation

techniques is presented by Kay and Marple [34].

Parametric methods attempt to fit some assumed model to the data. Using
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parametric methods, the problem becomes one of choosing a proper model and esti-
mating the parameters of the assumed model. Most of these models can be classified
into autoregressive (AR) or autoregressive moving average (ARMA) models. Some
of the early work on these models was done by Ulrych and Clayton [35] for the (AR)
model, and Cadzow [36] for the ARMA model. Ulrych and Clayton use a modified
covariance technique in which the sum of the squared forward and backward resid-
uals is minimized. Lang and McClellan [37] have shown that the variance of the
spectral estimate obtained using this approach is smaller than that of the covariance
method. Citron et al. [38] compare Ulrych and Clayton’s method with Cadzow’s
method and find that Ulrych and Clayton’s technique appears to perform better.
Tufts and Kumaresan [39 — 43] and Hua [44] have enhanced the performance of AR
models by using singular value decomposition (SVD) and a reduced rank approxi-
mation. They show that this technique has close correspondence to the CR bound
at high SNR’s. However, Bresler and Macovski [45] point out that the performance
of most modern high resolution spectral estimation methods is severely degraded at
low SNR’s and /or short data lengths. They postulate that this is due to the fact that
these techniques are heuristic least squares modifications of algorithms that yield
exact results when there is no noise or when the available data is infinite (kﬁown
covariance case). Other methods include adaptive notch filtering [46], adaptive line

enhancement [47], and pencil of function methods [48 - 50].

A relatively new method used for harmonic retrieval involves the use of higher
order statistics [51,52). For non-Gaussian signal components and Gaussian noise the
third order moment and fourth order cumulant of the measurements will theoreti-
cally only contain signal components and accurate estimates for the signal frequency

components can be obtained. Papadopoulos and Nikias [52) show that by using these
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methods they can match the performance of the Kumaresan and Tufts methods in
white Gaussian noise and perform better in colored Gaussian noise. However, the
high order statistics methods show severely degraded performance at low SNR'’s.
Arun and Aung [57] have proposed a SVD based approach for tracking the param-

eters of sinusoids with time varying parameters.

Other algorithms have been shown to give good performance at low SNR'’s.
Chan et al. [53] developed recursive expressions for the estimation of m sinusoids
in white noise using 2m coefficients of an ARMA model. Friedlander [54] developed
a recursive algorithm for maximum likelihood ARMA spectral estimation. The
iterative inverse filtering method [55] is shown to produce accurate estimates of

unknown frequencies at low SNR’s and a small number of points.

Stankovic et al. [56] uses the extended Kalman filter for the estimation of the
frequencies of sinusoids in white and colored noise. They use an ARMA model for
the signal and the noise. Thus, they need to estimate 2 variables for each frequency.
For good initial parameter estimates, the EKF method outperforms the maximum

likelihood method.

In this chapter nonlinear filtering techniques are employed to estimate the
parameters of exponentially damped sinusoids in colored noise. A direct model is
used. This model requires one state variable for each parameter to be estimated.
That is, the state variables are the frequencies, phases, damping coefficients, and
amplitudes of the sinusoids. Using this model time varying characteristics of the
state can be explicitly evaluated. A comparison is made among the EKF, the it-
erated filters, and the minimum variance filter for this problem. Various filters are

evaluated in order to determine the estimator that is least susceptible to the impact
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of the initial state covariance on the performance of the algorithms. The results are

compared to the CR bound and to the SVD methods of Kumaresan and Tufts.

This chapter is organized as follows: Section 4.1 describes the general system
model used for all of the filters for estimating time varying amplitudes, frequencies,
damping coefficients, and phases for a known number of sinusoids in additive white
Gaussian noise. Section 4.2 presents the nonlinear filtering equations for the general
system model and the details of the implementation for the specific model involving
the two exponentially damped sinusoids in white noise. This section discusses the
extended Kalman filter, the Gaussian second order filver, the minimum variance
filter, and three iterated forms of the extended Kalman filter. Experimental results
obtained from Monte Carlo simulations demonstrate the performance of these fil-
ters. Section 4.3 presents the extended Kalman filter expressions and simulation
results for harmonic retrieval in colored noise with known and unknown noise filter
coefficients. A technique for estimation of the measurement covariance is described

and experimentally analyzed in section 4.4.
4.1 General System Model

Consider the problem of estimating the parameters of P sinusoids from K

measurements. The complex scalar measurement model is given by

P
7= cpexp(—ark + jlwak +01,)) + v (4.1)
r=1

for k = 0,1,---, K — 1. v; is assumed to be complex white Gaussian noise
with mutually independent real and imaginary components each with variance o2.
It is assumed that the frequencies w;, are normalized so that the effective sampling

interval is one second. The 2-element measurement model z; from (4.1) can be
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written as
zp = hi(xx) 4+ vi
2;’:1 Ckp €xp (—ay k) sin(wiy k + Og,) (4.2)
- [Z};l Cip €xp (—ag k) cos(wiyk + 0&,)] i
for £ = 0,1,---, K — 1. The real and imaginary parts of the measurement are

treated as separate measurements. vi is a two element column vector containing

the real and imaginary parts of the complex noise in (4.1) with vi ~ N(0, R;) where
ot 0
Ry = . (4.3)
0 o
The elements of the state variable vector x; can be defined as

Thyp—1)+1 =~ “hp

Thyp—1)42 = bp

(4.9)
Thyp-1)43 = Oxy
Thy(p—1)44 — Chp
The state variables obey the nonlinear plant equation
Xi41 = fi(xe) + Wi (4.5)

where wi ~ N(0,Q4).

It is convenient and straightforward to treat the amplitudes (cj, ), damping
coefficients (a4, ), frequencies (wy, ), and phases (6, ) as state variables. This permits
the time dependence of the signal parameters to be directly modeled through the
process equation (4.5). An alternative approach is to model the differential equation

for the measurements through the process equation. For the case of continuous time
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real sinusoids let
(1) = c(t)exp (—a(t)t)sin(w(t)t + 0())
then
(1) = —a(t)exp(—a(t)t)sin(w(t)t + (1)) + w(t)exp(—alt)t)cos(w(t)t + 6(1))
§(t) = (@2(t) — w2(t) exp(—alt))sin(w(t)t + (1))
— 2a(t)(t)exp(—a(t)t)cos(w(t)t + (1))

and the process equation can be expressed as

y(t)-[g(t)]—[ ’ : Hy(t)]+q(t)
i)~ L=t +or) —200)] L)

where q(t) is the process noise. The advantage of this formulation is that the mea-
surement equation z(t) = y(t) + v(t), where v(t) is the process noise, is a linear
function of the state. However, there are several disadvantages. The primary disad-
vantage is determining the initial conditions. Since the process equation may contain
unknown parameters c(t), a(t),w(t),and 6(t), reasonably small error in the initial
estimates of these parameters may lead to very poor initial estimates for $(0) and
#(0) causing the solution to converge to harmonics of the actual frequency or other
poor filter performance. In addition, to express time dependence and initial uncer-
tainty of the unknown parameters these parameters must also be modeled as state
variables, thus further complicating the process equation. Even in the case where
the unknown parameters are constant, the process equation is nonlinear. With these
considerations it was decided that the models given by (4.5) and (4.2) were more

appropriate and convenient for the harmonic retrieval problem.
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4.1.1 Estimating the Parameters of 2 Sinusoids

A particular measurement model of interest consists of two exponentially
damped sinusoids in white noise. This model has been analyzed by Kumaresan and
Tufts {41] using reduced rank SVD techniques, and by Papadopoulos and Nikias [52]

using cumulants.

For this model the measurement equation (4.2) becomes

z¢ = hi(xz) + v
2;",,__1 exp (—ay, k) sin(wi, k) N (4.6)

= V.
)::=1 exp (—ag, k) cos(wi, k)

The associated state variables are defined as

zkl =

zkz =) )
@7

Tiy = wy

TE, = g

4
Assuming constant frequencies and damping coefficients, the plant equation that

describes the evolution of the states (4.7) is given by

Xkt1p = Xkp- (4.8)

4.2 Nonlinear Filters for Harmonic Retrieval

This section presents the equations used for the extended Kalman filter
(EKF), the Gaussian second order(GSO) filter, the minimum variance filter (MVF),

and three iterated forms of the extended Kalman filter for the harmonic retrieval
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problem. The EKF and GSO equations are approximate solutions to the nonlinear
estimation problem. The EKF requires the first order Taylor series expansion of the
measurement about the latest estimate, and the GSO filter requires second order
expansions. The MVF equations are exact expressions of the mear squared error
state estimates for exponential nonlinearities in Gaussian noise. The three iterated
filters are extensions of the EKF equations. The process model presented in (4.5)
is appropriate for the general case of time varying parameters. However, in this

chapter the state variables are restricted to be time invariant.
4.2.1 Extended Kalman Filter

The EKF is obtained by making Gaussian assumptions about the a posteriori
densities and by extending the plant and measurement nonlinearities in a Taylor
series including first order terms. The extended Kalman filter equations for time

invariant states [6] (p. 195) are given by
Ki = Py HE (Hx Poypr HY + Ri)™?

Pyp = (In — K Hy ) Py -1
(4.9)
Xk = Xg_1jk—1 + K Zi

Zr = 2 — hi(Xgp—1)

where Xj;_, is predicted estimate, Py;_, is the one-step prediction covariance,
K} is the filter gain, X;); is the filtered estimate, and Py; is the filter covariance.
I, is the n-dimensional identity matrix. The filter requires the initial conditions

E[xo] = %o and E[(x9 — %q) (X0 — %0)T] = Po.
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For the measurement equation in (4.4) the Jacobian of hix;) is given by
Ohy(xx
= T
ko b=ty
[ e k2 kcos(:ckl k) —e "k ksin(zkl KT
- - 4.10
—e k2 ksin(:z:kl k) —e k2 hcos(:v:,;l k) (4.10)
- e kg kcos(:zk3 k) —e Tk ksin(:::;,.3 k)
-~z k . ~zp k
| ~e ™"k sin(zg, k) —e Thy cos(zTp, k) | xp=%p_1jk—1

4.2.2 Gaussian Second Order Filter

The Gaussian second order (GSO) filter relations [6] are obtained by including
second order terms in the Taylor series expansions of the plant and measurement

equations. The constant state model of (4.4) leads to the GSO filter equations
Ky = Pe_yji—y HY (Hy Py_yp—1 Hi + Ri + By)™
X = Xpp—1 + K (4.11)
Py = (In — Ki Hi) Py

where

~ . 1
2 = 7k — hi(Rp-1p-1) - 5 32(hk,Pk-1|k-1)|x"=ik|k g (4.12)

and

&b, Prpr) = trace{[ | Pooaea - (.13)

The bracketed quantity in (4.13) is a matrix whose pg** element is the quantity

a%h
e ’;q The matrix and B; is approximated by

0z, 0z ,,( pmCqn + Cpn "")az Oz,

(4.14)

1

¢,M,n

]x‘.=i‘.,k_l
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where ki, denotes the ith element of hi(.), and the d’s are elements of Pi -1
For the model (4.8)
r —Ik k
8hy, (xi) _ 2 e 2 Dy, 0
Ix 9% | 0 e-’thk.'i
2 - —zkzkE 0 (415)
Ohiy(xp) _ 121° ky
Bx,0x] | 0 HUE,
where
D [ —sin(zy k) -—cos(zk..k)]
K = .
Yl —cos(zy.k)  sin(zyk) (4.16)
[ —cos(zy;k) sin(zik)
E. =
ol sin(zy,k)  cos(zyk)
- . 1
Reje—1 = fio1(Recaji—1) + 5 °(femrs Pcapar)| .
2 Xk—1=Xk—1)k—1
Pipr = Fecr Py FEq + TecaQeaaTh_ g + Akr
Xek = Xapp-1 + Kid (4.17)

Py = (In — K Hi) Peje—y

Ki = Py HY (Hy Pop 1 HY + R + By)™.

4.2.3 Minimum Variance Filter

The EKF and the GSO filters are based on a Taylor series expansion of
the nonlinear equations about the most recent estimate. As such the EKF and
GSO filters are subject to the inherent problems of local linearizations and may
lead to poor performance. Liang [23] developed a minimum variance filter (MVF)

which gives exact estimates at each iteration of the filter based on the assumption
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that the estimation errors are Gaussian. He has shown that for certain nonlinear
functions such as polynomial nonlinearities, exponential functions, and sinusoids,
exact expressions for the state estimates can be obtained and used in the filter
relations in place of the usual approximations. At each step in the operation they
assume that the prediction and filter errors are Gaussian. They have compared their
filter to the EKF and other filters using numerical examples and claim that their
filter performs much better than the EKF for large initial error variances. Using
the plant and measurement models in (4.5) and (4.6) the minimum variance filter

relations are given by
Ki = EfRyp_1he ()] (Re + Elbe(xa)ha(xe)7]) ™
Xepk = Xno1pp-1 + Kee = 76 — hy(xs) (4.18)
Pyg = Py_ypp-g — Ki E[hy(x4)%E—y)

where
Xk|k-1 = Xk — Xk|k-1

hi(xi) = he(xi) — ha(xs) (4.19)

fi—1(Xk-1) = fee1(Xk—-1) — fr—(xa-1)-
The MVF requires exact analytical expressions for E[hy(x})], E[xthi(xz)T], and
Efhg(xi)hi(xz)T].

The general system model (4.2) requires closed form relations for functions
of the form Elexp(yi)], Elziexp(yi)], and Elzy, T, exp(yz)], where y; is defined

by the inner product

T
Yi = U Xk

and where u; is a vector of deterministic coefficients. Note that if x; is a vector

of jointly Gaussian variables, then y; is also Gaussian. Liang [24] derives relations
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for expectations of this form. The following relations can be used to evaluate these

expectations for t.. general system model given in (4.2) :

. 1
Elexp(ys)] = exp(uf Xyu—; + Eu{Pklk-luk)
Elziexp(yi)] = (Zxje-s; + uf Prjp—rei)
R 1
x exp (uf kppp_y + Eu{Pklk—lul:)
Elzy; 71 exp(yi)] = (el Pijp_rej + Zelk—1,Zk1k-1; (4.20)
A TP . 4 TP .
+ Zhik-1, Uk Frjk-1€5 + Tajk—1, 9% Felk-1€i

T T .
+ uj Py yejui Py g i)

. 1
X exP(“{xklk—l + 5“{Pk|k-1uk)

where e; is the #*® unit vector. This vector is zero except for the i** element.

For the measurement equation in (4.6), in which the amplitudes of the sinu-

soids ci, are known, only the first two expressions in (4.20) are necessary.

4.2.3.1 Evaluation of E[h;]

Let the measurement nonlinearity from (4.6) be expressed as

b, [T (exp(uTx) + exp(uf o) aan

Re (exp(u]xx) + exp(ufxy))

where T
up, = jk -k 0 0
o= ) (4.22)
u, = [ 0 0 jk -k |




Define the quantities
: T . 1 7 T
hiy = exp(ug, Xg—1 + 5k, Prg-19%,)

a T 1 T T
hkz = exp(ukzxm_l + §“k2Pk|k‘1uk2)
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(4.23)

Using (4.23) and (4.20) the expression for the expected value of the measurements

for the model in (4.6) is obtained as

4.2.3.2 Evaluation of E[x; h;]T
For the model in (4.6), E{xxh]] can be found from (4.20) using
Ci = E[xi (exp(ui; xi) + exp(uf,x)]
= (Repo1 + ui, Pup=1)hiy + (kpjeor + 9k, Pgx—1) b,
which gives

Efx;h}] = [Im(Cy) : Re(Cy)]

4.2.3.3 Evaluation of E[h; h;]T

(4.24)

(4.25)

(4.26)

E[h h]] for the model in (4.6) is evaluated using the first equation in (4.20).

hi,, by
Elhs h{] - [ 11 ) 12]
k12 h*zz

where

he, =Re{[l -1 2 -2 1 1]E/2}
hi,, =Im{[0 1 0 2 0 1]E;/2}
he,, =Re{[l 1 2 2 1 1]Ey/2}

(4.27)

(4.28)
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The i** element of the column vector Ey is defined as
Ek,' = E[exp(Uk,'ik]
r (4.29)
= exp(Ug;Xpji—1 + Us, Prji-1U},/2)
and where Uy, is the ith of the matrix Uy, which is given by
[0 -2 0 0]
27 -2 0 O
-1 -5 -1
U=k (4.30)

The quantities E[h;], Efx;h]}, and E[h;h]], found from (4.24), (4.26),
and (4.27), respectively, are used in (4.18) to form the minimum variance filter

expressions.
4.2.4 Iterated Filters

Three iterated forms of the extended Kalman filter are also used for param-
eter estimation. The iterated filters can be categorized into two classes. Locally
iterated filters are implemented by continuously processing the data for a given
measurement (i.e. for a given value of k) until the error between iterations is mini-
mized or until a maximum iteration count is exceeded. Globally iterated filters are
implemented by processing the entire data set more than once essentially recycling

the data set through the filter.
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4.2.4.1 Locally Iterated Extended Kalman Filter

The locally iterated Kalman filter (LIKF) is an enhanced version of the ex-
tended Kalman filter where, at each step of the iteration procedure, the measurement
nonlinearity is linearized about the state estimate obtained from the EKF equations.
This filter was first introduced by Denham and Pines [21]. The procedure is to repet-
itively calculate Xz, Ki, and Py, each time by linearizing about the most recent

estimate. The recursion relations for the LIKF are given by [6] (p. 190)
ke (4 1) = Xy + Ka(8)[ze — ha(Zee(9)) — Hi(Rapp—1 — Xapa(2)))
Prp(1) = (In — Ki())Hi) Peje—y (4.31)
Ki(i) = Pypr HE (Hi Py HY + Ry)™!

where ¢ = 0,1, ---. The number of repetitions of the calculations shown above can
be determined by requiring the magnitude of the difference between successive state

estimates to be less than some small number.
4.2.4.2 Globally Iterated Extended Kalman Filter

Another form of the iterated Kalman filter, designated the globally iterated
extended Kalman filter (GIKF) [6], involves restarting the filter after each com-
plete pass through the data. After filtering the K measurements with the extended
Kalman filter the covariance is reset back to its initial value and the filter is restarted
with the first measurement but using the final estimate from the previous iteration
as the new initial estimate. This technique can be repeated until the difference in
the final estimates from successive iterations converges to some small value. By re-
setting the covariance the system is essentially re-excited thereby allowing the state

estimates to be perturbed. The premise for this technique is that good estimates
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will not be made worse, but poor estimates may be forced to better values.
4.2.4.3 Covariance Resetting

A similar procedure can be applied within a single pass of the data. For
example whenever the state covariance converges rapidly to a relatively small steady
state value, resetting of the covariance to a point between its present value and the
initial value takes place. The effect of resetting is to re-excite the system after
steady state is reached, so that early saturation of the filter gain to a small value
that would prevent changes in the estimates is avoided. The disadvantage of this
technique is that the variance of the final estimates could not be as good as it would
if no resetting took place. The advantage is that poor estimates may be forced to
better values. This technique could also be done through multiple passes of the same
data. During the final pass the covariance would not be reset within the single pass,
thus allowing the estimates to converge to the best possible values. This filtering
technique will be referred to as the extended Kalman filter with resetting (EKFR).

4.2.5 Experimental Results for Estimation in White Noise

A well documented problem that has been traditionally approached using
AR-based techniques is the estimation of the damping coefficients and frequencies
of two sinusoids [41, 52]. Referring to equation (4.4) damping coefficient values were
aj, = 0.2 and ag, = 0.1 with normalized frequencies of wg, = 0.42 *2x radians and

wi, = 0.52 » 27 radians for 0 < k < 24.

The six nonlinear filters discussed previously are applied to this problem.
These filters will be designated as: EKF - extended Kalman filter, GSO - Gaussian
second order filter, MVF - minimum variance filter, LIKF - locally iterated extended
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Kalman filter, GIKF - globally iterated extended Kalman filter, and EKFR - ex-
tended Kalman filter with covariance resetting. In the implementation of the LIKF,
using (4.31) the repetition cycle for a given sample was terminated whenever either
the magnitude of the difference between successive state estimates was less that
0.0001 or whenever a total of 9 repetitions were completed. The GIKF was imple-
mented by processing the entire set of measurements five times. The EKFR was
implemented by resetting the covariance every three measurements. The covariance
was reset according to the formula

Pref + Pk—ll"-l
2

Py(-) = k=258, (4.32)

where initially Pof = Po. After Py(—) is computed the new reference becomes
Preg = Pyi(—). Using the EKFR the covariance was reset during the first two
passes using (4.32). On the third and final pass the covariance was not reset. At
the beginning of ezch of the second and third passes initial condition on the state

was set to the final state estimate from the previous pass.

The filter performance was evaluated as a function of signal-to-noise ratio
(SNR) for a range of 0 dB to 30 dB. SNR is defined as 10105#, where o2 is the
variance of each of the real and imaginary components of the i.i.d. complex noise.
Note that this definition gives the peak SNR. Performance was evaluated at each
SNR by forming the sample variance of the estimation error over 500 independent
noise runs. In each run the signal was kept the same while the noise was modified

using different random number seeds.

Figure 4.1 illustrates the estimation error as a function of sample number for

a representative run at 20 dB SNR. This figure compares the relative performance of

the non-iterated filters (the EKF, GSO, MVF) and the locally iterated LIKF. The

e
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diagonal elements of the initial covariance were set to a value of 0.04 and the initial
errors were randomly chosen based on this value. Overall this figure shows that
the LIKF outperforms any of the noniterated filters. The MVF and the GSO give
about the same results, and the EKF gives the worst performance. In this example
the filters perform about the same in estimating the other state variables. Figure
4.2 shows the diagonal elements of the filter covariance Py for the same example.
This graph shows that the covariance elements for the LIKF converge more rapidly
than those for the other filters. It can be seen from this example that at 20 dB
SNR the filter converges to its final state estimate within about 10 samples. Figures
4.3 and 4.4 show the estimation error and sample covariances, respectively, at 0 dB
SNR. These figures again demonstrate that LIKF generally outperforms the other
estimators, and that the EKF performs the worst. At 0 dB SNR the estimates
stabilize in about 12 — 15 samples for Py = 0.04. This illustrates the suitability of

using these nonlinear filtering techniques for short data lengths.

Figure 4.5 presents the performance results of the three noniterative filters as
a function of SNR for Py = 0.01. Each point on graph represents the sample variance
of the estimation error over 500 simulation runs. The results of the Kumaresan-
Tufts (KT) method and fourth order cumulant (FOC) method obtained from [52]
are also shown. The Cramer-Rao bound is also shown. This bound is derived in
the Appendix. Figure 4.5 illustrates that all of the noniterative filters give similar
performance for P = 0.01. The performance is very close to the CR bound, partic-
ularly at high SNR’s. The results for the first sinusoid (wy, = 0.42 + 27,0, = 0.2)
are slightly worse than those for the second sinusoid (wg, = 0.52 * 2x,ay, = 0.1).
This is probably because the first signal has been damped significantly before the

filter has converged. The nonlinear filter results are significantly better than the KT
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and FOC results. However the KT method makes no assumptions about the noise
statistics and does not require initial estimates. The nonlinear filtering techniques
assume that the noise statistics are known a priori. Section 4.4 presents a technique

to estimate the noise statistics on line.

The results of the iterative techniques (LIKF, GIKF, EKFR) are given in
Figure 4.6. These results are slightly better than those for the noniterative filters
for SNR’s above 10 dB, but slightly inferior for SNR’s below 10 dB. Of course the
price paid for better performance is higher computational requirements. Among
the three noniterative filters the LIKF performs slightly better than the other two,
particularly at low SNR’s.

As the initial covariance increases the filter performance degrades. This is
illustrated in Figures 4.7 and 4.8, where the mean squared estimation error as a
function of SNR is shown for the iterative and noniterative filters, respectively,
for Pp = 0.04. The higher order forms of the noniterative filters, the GSO and
the MVF, perform better than the EKF especially at high SNR’s. This satisfies
intuition in that the second order approximations for the GSO and the assumptions
of Gaussian error distribution for the MVF should be more valid at high SNR’s than
at low SNR’s. Results for all filters are still better than the KT and FOC methods.
However again it must be emphasized that the KT method makes no assumptions

about the noise statistics or the initial estimation error.

Least squares-based techniques such as the KT method generally fall apart
at around 15 dB SNR due to the so-called threshold effect. A threshold occurs
whenever there are more than P zeros outside the unit circle in the singular value

decomposition process. One of the advantages of using filtering methods is that




107

1 10°0 = °J ‘[PPOIN 21°1S-F ‘OSION YA\ Ul 2dueurIojiad Iay|1] payerajiuoN G am3dig

1'0 = “o 10} souewiojrag 199113 (P)

20 = "o 10j soueurtojiag 199114 (q)

(ap)uns
0e 7 02 gl o1 S 0

(17

\\\\\\\\\\ wN

0oe

cg

204= |OF
A R

JAN + s

0sHv | 0G
. o

punog Y0 o o

(aSW/1)301 01

(ap)uNs

0 G 0c cl 01 G 0

Y

204 =
Iy o
JAR +
0S) v
I o

punog ¥ o _

(4SK/1)301 O1

17 * 6'0 = “Im 3o} souewnIopag 1991 (9)

¥z * 730 = Mm 10} souewIONay 1YL (®)

(dap)aNs
0g ez 02 gl o1 S 0

SRBRBLIBBRQR

(dsw/1)301 o1

(ap)uNs

0t G 0c ¢l 01 S 0

-
-
-
-
-

J0] e
A K
JAK +
0SD v
I o

punog ¥) o

or
1414

(aSW/1)301 01




108

1 10°0 = % ‘|9POJy 27e31S-¥ ‘SION 2HYA Ul 3dURULIOJI] I9j[L] Pajesay] 9§ aIndig

1'0 = “o 10§ 2dueUNIOpa ] 1931 (P)

2'0 = "o 10§ soueuniopad 199j14 (q)

(4P)iNS (dP)uNS
0e Gé 02 Gl ]| G 0 02 0e 17 0c Gl 01 G 0 al
2 L Oc
0 = x5
oyl o€ &
204 = = =
: e >
RS cyp M m
il - e 8 g « |or 2
JAID ¢ DO v
. dMITo |gg ANiTo | S¥
punog ¥J o punog ¥J o
xg * gg'0 = e 1o} souerIopag 1oL (2) 17 % Zp'0 = "Im 10j souRwIONRy 1291 ] (©)
(ap)iNs (dP)UNS
oe Ga om Gl 01 m 0 o2 0g mm 03 Gl 01 4] 0 al
mmm.. G (474
MM = ® 5
S e g
0d = | 0F & & S
. H.._.v_ ° ch
e | 06
: Do | g b
punog ¥) o
oo S




109

I 70°0 = % ‘[PPOJN 27®1S-¥ ‘OSION )AL Ul 20URUIIONI] 323[L] pieIdjiuoN  L'f 2indiyg

1'0 = “1o 1o} soueuniojrag 19314 (p)

20 = "o 10 eoueunioprag 19914 (q)

(ap)uNs
2 02 G 0! S 0

(aP)uNS
ot o2 02 Gl ol S 0

o1 7 S
SPITLY Toiadand o2
S % s
2 € 8
S o0ie | %€ R
z we | B
2 o R
punog W__w v::om.._mw a =
_ ' 09 0S
xZ * 7¢°0 = “Im 10j oweuriojsag 19914 (°) ¥z % Zy'0 = "m 10§ soueuLIo)Iay 1991 (®)
(ap)uNs (@p)uns
G 02 Gl ] G 0 o1 oe e 02 Gl o1 S 0 ol
¢l
5 o 5
2 o
> =
z = B
£ o =
414
0s




110

I ¥0°0 = °%f ‘1oPOIN 27e1S-¥ ‘9sION 93y Ul dURULIONad 13){l Pajesay]

1'0= %o 10§ aouewlIojIdg 1991 (P)

8% aand1yg

Z'0 = "o 10} eouennIopag 1931 ()

0e

(dP)uNS
G2 02 gl 0! g 0

09

(3SK/1)301 01

(ap)uNS
0g G2 (174 Gl 01 S 0

o
°
e |

v
. JATo | S
‘::o.m YD) o

(4SK/1)301 01

17 % g0 = “m 10} soueunIojrag 123tg (°)

XZ % Zp'0 = m 1o} duewnIopag 1991 (®)

5

(dpP)uNS
G2 02 cl 0l S 0

(asw/1)301 01

(ar)uNs
0g G2 (17 gl o1 S 0

(3sw/1)301 o1




111

performance smoothly degrades as the SNR is decreased. That is, there is no sharp
dropoff in performance around the 15 dB point as there is with the least squares
approaches. However, there is evidence that there is some kind of threshold effect
in the filter performance. In Figure 4.7 the curves representing the estimation error
for the two damping coefficients (Figures 4.7(b) and 4.7(d)) change slope between
10 dB and 20 dB SNR. At 10 dB the slope changes back to be roughly parallel
to the CR-bound curve. As shown in the Appendix, the performance of the filters
has a lower bound represented by the statistics of the initial estimation error. That
is, the sample variance of the estimation error cannot be any worse than the ini-
tial covariance Py. This constrains the worst case performance of these nonlinear

estimators.

EKF-type algorithms have been known to diverge for poor initial estimates.
In some cases these poor estimates lead to poor filter performance due to the ap-
proximations made by 1%t and 2" order Taylor series expansions. A test was devised
to detect situations with poor final state estimates based on the sample variance of
the time series generated by subtracting the estimated measurement, formed from
the final state estimates, from the actual measurements. This test is described in
Section 4.4. The test works best at high SNR’s where the variance of the signal
plus noise is significantly better than the variance of the noise alone. The results
in Figures 4.7 and 4.8 are those which have passed this test. Figure 4.9 shows the
number of runs which passed the test as a function of SNR for each of the six fil-
ters for Py = 0.04. In general, more runs were discarded by the noniterated filters
than by the iterated filters. Among the iterated filters there is no consistent better
performer. The EKF discarded many more runs than any other filter. The MVF
and the GSO performed about the same - significantly better than the EKF, but
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worse in general than the iterated filters. The iterated filters not only discarded less
runs due to poor performance, but among those runs that were considered valid,

the iterated filters gave better overall sample variance.
4.3 Harmonic Retrieval in Colored Noise

Consider the case where the measurement noise is colored by the single pole
filter model

Ug = Ye-1Uk-1 + V-1 (4.33)

where u; is the measurement noise, and v; is a zero mean white Gaussian noise
sequence with vy ~ N(0,Ri). The parameter 4x_; is the filter coeflicient. To
accommodate the colored noise state augmentation or measurement differencing
can be applied when 7;_; is known. The complete derivation of the filter equations
in colored noise is given in [65]. The plant and measurement models for the colored

noise model are given by
Xk41 = Xg
(4.34)
zp = hy(xx) + up

Here, xo, v, and u; are mutually independent and Gaussian. We have xo ~

N(io, Po), and Ug ~ N(O, Uo).
4.3.1 Colored Noise - Known Filter Coefficient

When the filter coefficient 4;_; is known, a set of equivalent “derived” mea-

surements is obtained by subtracting v;_; Zx~) from (4.34) to obtain

Tk = Zp ~ Tk-1Zk~1 = he(Xi—1) — Ye—1hi-1(Xi-1) + Vi (4.35)

where x; = X;.;. The augmented measurement Z; is a nonlinear function of the

state with additive white noise.
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By applying the usual extended Kalman filter linearization of the measure-

ment equation, the filter equation
Xie = Xp—aje—1 + Ki (2 — Hikpoqpi-q] (4.36)

is obtained, where Hy = Hy — vi_1Hi_; and both H; and Hj;_, are evaluated at

Xk-1)k—1- The filter gain and covariance propagation equations are now given by

Ki = Py HT (He Py HT + Ri)™?

i (4.37)
Prp = (In — K Hi) Py
The initial conditions for this estimator are given by
Efxo] = %o + Var[xo] Hj |HoVar[xo]H] + Ro]™[z0 ~ Hoo]
(4.38)

Py = Var[xo] — Varfxo]Hg (HoVar{xo] Hy + Ro)™'HoVar|xo]

4.3.2 Colored Noise - Unknown Filter Coefficient

If the filter coefficient -; is unknown, the state vector can be augmented to

include the unknown parameter ;. The augmented state vector is defined as

Xk
Xy = (4.39)
Tk
Hj is then defined by
Hy = -61'5—,_({59 . (4.40)
oyt g

Let gi(Xz) = vihi(xi), such that
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G, = &%) . (4.41)
ko dxp=Rp g1
If Hy = Hp — Gi_; then the filter equations are given by
Xppk = Xg—1jk—1 + Ki[Z: — HiXp_qji—1]
Py = (In — Ki Hy) Py s (4.42)

Ki = Py BT (Hi Py AT + Ri)™.
4.3.3 Experimental Results for Estimation in Colored Noise

The EKF was used to estimate the model parameters of (4.6) with colored
noise given by model (4.33). The simulation results from 500 Monte Carlo trials
are rresented in Figure 4.10 for initial uncertainty Py = 0.04]. The filter coefficient
is 4x—1 = 0.8. Results are shown in this figure for case of known and unknown
vk The solid lines in the four plots show the white noise CR bound, which is not
applicable in this case, but is included as a reference. Figure 4.10(d) shows the
EKF performance when the filter coefficient is unknown and estimated along with
the model parameters. Due to the frequency response of the colored noise filter
one would expect the estimates for the first sinusoid to be slightly worse relative
to the white noise CR bound than for the second sinusoid. That is, the gain due
to the colored noise filter at the frequency of the first sinusoid is higher than that
at the second sinusoid. This is verified by Figure 4.10. This figure also shows that
the estimation results of the model parameters when the coefficient 4;_; is unknown

and is estimated on-line, are only slightly inferior to the results when ~;_, is known.
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4.4 Estimation of the Measurement Covariance

In many situations of practical interest, the measurement noise R is un-
known. In the following development it is assumed that the measurement noise is
stationary over all of the measurements and that the states are constant. An initial
estimate of the noise Ry i1s used to initialize the filter. Given the measurements
Zy = (21;22; - - - ;Zk), Ri can be estimated by taking the sample variance of the
innovations error at each iteration of the filter. Let Si be defined by

St = Elax{)
(4.43)
= Hp Pyp HE + R;.
Given Hy and Py;_; an estimate of S; is required in order to obtain an estimate

for the measurement noise Rj. Let O be the matrix of estimates

9); = [hl(xl)lx]:iklk—l;hz(x2)|x2=iklk._1; ceeys hk(xk“xk:iklk—l] . (4.44)

O and Z; are m by K matrices where m is the number of elements in the
measurement vector, and K represents the total number of time intervals. Let the

innovations error matrix be defined by
Ey = Z} - Oy, (4.45)

and let e, be the :** row of Ej. Assuming that the innovations are zero mean, an

estimate of the ij* element of Si can be obtained using the sample variance

. 1 T
B = ek (4.46)
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The measurement variance can then be estimated using

Ry = S - Hy Py, HY. (4.47)

In the situation where the Py;_, is equal to zero, that is when the estimates
are perfect, the parameter 3k,-j gives the sample variance of the measurement noise.
The statistic (K — 1).'95'.1. is chi-square distributed with K degrees of freedom. The
chi-square distribution, represented by the sample variance statistic, has a 99.9%
probability of being less than or equal to 262 for K = 50, where o? is the variance of
the measurement noise. The statistic 3)‘..1. can be used as a way to detect poor state
estimates. A reasonable criterion is to reject the estimate as probably bad if 31:,'1- is
greater than 202, This criterion works very well at high SNR’s where the variance of
signal plus noise is significantly different from the variance of noise alone. However,
at low SNR’s the variance of signal plus noise can be close to the variance of the

noise alone and this test does not work as well.
4.4.1 Experimental Results - Unknown Noise Statistics

Experimental results of the extended Kalman filter with unknown noise co-
variance are shown in Figure 4.11. This figure gives two sets of curves. One set
shows the filter performance with one pass through the data. During this pass the
noise statistics are estimated at each iteration using equation (4.35). The initial
noise covariance was estimated 62 = 0.05, corresponding to 10 dB SNR, for all
points on this curve. The second curve shows the results of processing the data
with two passes. During the first pass the noise is estimated as in the first case.
During the secon1 pass the noise covariance estimate is held constant at the final

value from the first pass and the data is filtered using the normal extended Kalman
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filter relations. For this second pass the initial state covariance is reset to 0.04.
The initial state estimate for the second pass was equal to the final state estimate
from the first pass. The results show that the two-pass filter performs significantly
better than the single-pass filter, particularly at high SNR’s. At low SNR’s the two
filters result in about the same performance. Comparing Figure 4.11 to Figure 4.7
the two-pass filter with initially unknown noise statistics results in about the same

performance as the (single-pass) extended Kalman filter with known noise statistics.
4.4.2 Experimental Results - Single Sinusoid

A study was also performed on a single sinusoid model. This model was
formed by letting P = Ler; = 1,0, = 0.12,wy; = 0.22%27, and 6, = 0 in equation
(4.6). The unknown random parameters in this system were aj, and wi,. The
sample variances for all six of the filters is given in Figure 4.12 for initial estimation
error variance Py = 0.09 for both state variables. Figure 4.13 presents the sample
variance for the model with initial estimation error uniformly distributed between 0
and 27 for the frequency, corresponding to no a priori information, and with initial
estimation error uniformly distributed between 0 and 1 for the damping coefficient.
The results are similar to those in Figure (4.12) for high SNR, especially for the
LIKF. However, for low SNR the performance is significantly worst in (4.13) than
in (4.12). These results satisfy intuition in that whenever there are less parameters

to be estimated the filter can sustain larger initial estimation error.
4.5 Conclusion

Methods based on nonlinear recursive filters for estimating the parameters
of exponentially damped sinusoids in white and colored noise have been described.

Filter equations have been developed for time varying systems in white and colored

*_
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noise with known and unknown noise covariances. Simulation results for the prob-
lem of estimating the parameters of two exponentially damped sinusoids show that
the nonlinear filtering techniques described perform very close to the Cramer-Rao
bound, even at low SNR’s, for relatively small initial estimation errors. For larger
values of the initial un'certainty on the model parameters the iterated forms of the
extended Kalman filter give better performance than the noniterated forms. Among
the noniterated forms the Gaussian second order filter and the minimum variance
filter give comparable performance, and both perform better than the extended
Kalman filter, particularly at high SNR’s. In addition these two high order filters
are generally more stable as evidenced by the number of final state estimates that
passed the noise discriminator test. The extended Kalman filter has been shown to
give good results in colored noise with known and unknown noise filter parameter.
A technique has also been developed for on-line estimation of the measurement noise

covariance.

In summary the following general observations can be drawn about the per-

formance of nonlinear filters for harmonic retrieval:

* The nonlinear filters incorporate a priori knowledge about the state. The

KT method has no inherent capability to use a priori knowledge.

* As with the KT method the nonlinear filter method approaches the CR bound
at high SNR’s. However, the performance of the nonlinear filters does not
degrade sharply in the range of 10 to 15 dB as the performance of the KT
method does. Worst case performance of the nonlinear filters is bounded by

the initial error covariance.

* The nonlinear filters can estimate parameters in colored noise. The KT
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method is not designed to operate in colored noise.

The filters converge relatively fast, making the nonlinear filters suitable for

short data lengths.

The nonlinear filters are recursive in nature, thereby providing adaptability

to time varying parameters.

The primary disadvantage of the nonlinear filter methods is that they may
require good initial estimates to converge to a valid solution. The KT method
does not share this problem. However, the multi-filter resolution approach,
which is defined in Chapter 5 and implemented in Chapter 7 for time delay
estimation, can be used to accommodate poor initial conditions by parti-
tioning them into smaller intervals of uncertainty and applying joint detec-

tion/estimation techniques for resolving ambiguity.

Another interesting approach to performing harmonic retrieval in with large
initial estimation error would be to use the KT method to initialize the

nonlinear filter. The nonlinear filter would then be to refine the estimates.
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Chapter 5

Joint Detection/Estimation

This chapter presents a procedure for combining detection and estimation
theory. This procedure is used in subsequent chapters for selected signal process-
ing problems. Two general applications of joint detection/estimation theory are
addressed. In the first application the nonlinear measurement model is constant,
but the initial estimation error is large enough such that the approximations made
by nonlinear estimators such as the extended Kalman filter may lead to very poor
performance. In this case the a priori pdf can be partitioned into M smaller subre-
gions. Each subregion is associated with a hypothesis and the problem is treated as
an M-ary hypothesis joint detection/estimation problem. In the second application
the measurement model is unknown. Again, several hypotheses are proposed. Each
hypofhesis is associated with a different model. For each model the state variables
are estimated on line. This operation is performed concurrent with estimation the
a posteriori probability of each hypothesis. The states are not constrained to be
common among the models. A third application involves a combination of the other
two applications. This chapter presents the general technique for applying joint

detection/estimation theory to these applications.

The traditional estimation theory approach to solving parameter estimation
problems involves starting with initial estimates of the state variables and refining
these estimates by filtering the measurement data. The performance of the filter is
governed by the statistics of the process and measurement noises, and by the process
and measurement models. Filters such as the Kalman filters may exhibit unstable

behavior. For nonlinear process or measurement models the approximations result-
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ing from truncated Taylor series expansions used in the implementation of the EKF
may also lead to poor performance. It is well known that under certain conditions
the extended Kalman filter may give poor results due to the approximation made
with the first order Taylor series expansion. This is particularly evident when the
initial estimation error is large. This problem is discussed in the context of the

harmonic retrieval problem in Chapter 4.

M-ary detection is used in a number of practical signal processing prob-
lems. One example of this type of detection is ambiguity function processing for
radar/sonar signal processing. This process involves the convolution or matched
filtering of a received signal with a number of signal replicas. Each replica has a
different estimate of the unknown states (e.g. amplitude, delay, Doppler shift). The
replica that results in the largest value of the ambiguity function is chosen is used
to determine the state estimates. Autoregressive model order selection may also be
treated usiag M-ary detection theory where the M hypotheses correspond to all of
the combinations of a discrete set of frequencies. These two problems are addressed
in Chapters 6-8 of this thesis using the joint detection/estimation approach which

is presented in this chapter.

The joint detection/estimation (JD/E) approach combines M-ary detection
with estimation. The distinction of JD/E over pure M-ary detection is that the
estimates are refined for each hypothesis. JD/E may permit the use of a smaller
number of hypotheses than detection only since the hypotheses are continuously
refined through estimation, which is performed concurrently with the hypothesis
testing. Alternatively, one may use the same number of hypotheses as the detection
only problem, but by refining the estimates through filtering, better estimates may

result. A major reason for using JD/E in nonlinear filtering problems is to reduce
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the effects of large initial estimation error on the truncated Taylor series expansion

used in the EKF.

In this chapter a recursive technique for joint detection/estimation is de-
veloped based on nonlinear state and measurement models. The objective is to
develop a procedure that results in an optimal minimum variance estimate for the
state variables for each hypothesis and, given this optimal estimate, to select the

proper hypothesis which most closely matches the measurement data.

The development of the joint detection/estimation is based on the segmen-
tation of the unknowns into a state vector x; and a parameter vector 8. Let 0 € ©
designate the parameter vector that describes the different models that may have
generated the measurements. Each model is identified with a specific hypothesis,
and corresponds to a unique §, § € ©. The set © is assumed to be countable (in
our application also finite). In addition, the parameter vector 8 is assumed time
invariant. The development of the joint detection/estimation presented here follows
a similar procedure to that presented by Fredriksen et al [58]. However, these au-
thors combined the state vector x; and the parameter vector @ together into one
state vector that was used in the estimation process. In addition, it was required
that all of the variables in the augmented state vector be energy variables. In the
development that follows a distinction is made between the state vector x; and the
parameters 6. The state variables are the same for each hypothesis, while the vector
0 is used to distinguish between the various hypotheses. There is no restriction on
the state vector x;. The parameter vector 0 is assumed to be time invariant. Under

hypothesis Hy the discrete time measurements are modeled according to

Hy : zp=hp(xi,0)+vig (5.1)
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where the state x; is common for all # € ©, and satisfies the discrete time process
equation

X = fe_1(Xk—1,0) + Wi_10 (5.2)

with initial state estimate Xgj04, and initial state covariance FPylg9. The initial
state estimate, the measurement noise, and the process noise are uncorrelated up
to the moment order required by the implemented filter (e.g EKF or EHOF). The
process and measurement noise are zero mean and distributed with covariances

E[wiswE o] = Qrg, and E[viev] el = Rup.

The model structure in (5.1) and (5.2) is similar to the traditional state and
observation models with the exception that an unknown time invariant parameter
vector 6 is used to distinguish between the various hypotheses. This model structure
i3 designed to accomodate a large class of process and measurement models. The
only restriction is that the state vector is the same for each hypothesis. Note,
however, that not all of the elements of the state vector x; are required to be
estimated under each hypothesis.

It is assumed that 6 has known probability density function p(6). The vector
0 is required to contain coefficients of a sufficient set of energy parameters (e.g.
amplitude, time duration) such that the null hypothesis is indicated whenever this
set of parameters is equal to zero. Although it is not mandatory that all of the
parameters in 0 be zero to indicate the null hypothesis, it simplifies the discussion
of the method. Thus, under Hy, 8 = 0, and ha(xy,8p) = hy(xx,0) = 0.

5.1 A Bayes Test for Joint Detection/Estimation

The Bayesian approach for optimum detection involves the minimization of
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the average decision cost over all possible decisions under all possible hypotheses.
Let Z; = {z1,22, - - - 21}, be the collection of measurements that are functions of the
time varying state variables x;, and the unknown time invariant parameter vector
0. The total average cost, or Bayes Risk for joint detection/estimation, of making

the decisions D; associated with hypotheses H;, j = 0,---, M can be expresses as

M

Rpee =3, /R’ / / Cj(xi)p(2zk, Xk, 0| Zg—1)dOdx dzy (5.3)
J=0""%

where Cj(x;) is the cost of making decision j, and p(zy,Xx,0|Z;_,) is the

density function of all of the random parameters in the system, given the measure-

ments up to k — 1. The goal is to find the estimate Xi; that minimizes the total

average cost. By conditioning the decision probability on the past measurements a

recursive technique for joint detection estimation can be developed.

If the cost Cj(.) is not a function of the state x; (i.e, the detection only case

[75]), then C; can be moved outside of the integral and the risk becomes
M
R =Y C;P(Dj|Z-1) (5.4)
=0 i
where P(D;|Z_,) is given by

PD;(Ze1)= [, [ [ pl@s,xt,01Z1)dbdxsdz (5.5)
7

By applying Bayes rule to the joint density function in (5.3), the Bayes risk for joint
detection/estimation can be expressed as

;- 0 Z;_,,0)p(0 dfdx;d
%ous = 32 [ [ [ Cotuidntasiee, OptxalZacs, Op(01Zs-)bixsdny - (56)

where p(z;|xk,8) = p(zg|Zi~1, Xy, 0) because of the Markov noise process in (5.1).
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That is, it is easily seen from (5.1) that if the x;, and 8 are known, then the density
function for z; is a function of the measurement noise v only. Let the parameter
space spanned by @ be discrete such that it can be characterized by a finite number of
quantized points. Then the a priori probability density of 6 given the measurements
Z;_; can be expressed as
M M

p(01Zy-1) = gp(ailzk-l)m(alzk—l) = gP(oiIZk-l)J(o -6) (87)
where P(0;|Z;_, ) is the a priori probability of hypothesis H; given the measurements
Z;_;. Thus, P(6;|Z;_;) can be used in place of the more conventional P(H;|Z;_,)
to demonstrate the explicit dependence of each hypothesis on the parameter §;. The
hypothesis H; then corresponds to

H; : 2z =h(x,0;) + UL,p; (5.8)

Given the measurements Z_;, the cost associated with hypothesis j 75, pp.
140-141] can be expressed as

M _ .
Cj(xi) = § C:'-'(iuk,x&)P(o‘lzp;;,lZ'—(f)lzk-l)

- P(0:|Z4-1)5(0 — 6;)
= g Cji(Xaqe, Xx) P(qék—l)

where Cji(.) is the cost of deciding Hj given H; is true. Substituting (5.9) into (5.6),
the Bayes risk becomes

(5.9)

M M
Rpee=)_). /1:- / P(0i|Zg—1)Ci(Xaye, X )p(za |xk, 0:)p(xk| 21—y, 0;)dx i dz:
j=0i=0""2
(5.10)

The risk associated with deciding hypothesis Hy, the null hypothesis, is found by
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evaluating (5.10) for j = 0. Noting that if the decision regions are disjoint, then
Ro = R—-TX R;, and this risk becomes

M
Co(xg)P(Do|Zp—1) = /Ro / P(6:|Zy_1)Coi(xk)p(zr Xk, 0:)p(Xk|Z k-1, 0;)dx  dz

=0

M
= z/R/P(0i|Zl:-1)Coi(xk)p(zklxk,Og)p(xk|zk_l,gi)dxkdzk

1=0

M
- E/ZJALI Rj/P(o.'IZL-_))Coi(xk)

=0
x p(zk Xk, 0)p(Xk|Zk-1, 8i)dxidzi
(5.11)
where the explicit dependence of Coi(xy) on Xz has been removed because

an estimate is not required whenever hypothesis Hp is decided. Using the result

(5.11) in (5.10) the total risk now becomes

M
Rpge =), /R / P(0i|Zy—1)Coi(x)p(z1|xk, 05)p(x1 |21 1, 0i)dx1dZs

=0
M M
* Z E /R /P(o‘lz"-l) [Cji(ik“,,Xg) — Coi(x1)] (5.12)

J=1i=0
X p(Zg|xr, 0:)p(Xt|Ze—1, 0i)dxrdzs

Under the null hypothesis Hp, the cost is not a function of x;. Thus,
Cjo(Xyes xk) = Cjo(Xxx). In addition, Coo is neither a function of X nor of
Xi. Furthermore, under the null hypothesis, p(zi|xx,00) = p(zx|0o). That is, the

density function for the measurements is not a function of the state variables. This
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leads to
/ P(06|Z-1) [Cjo(%ix) ~ Coo) p(zi )X, O0)p(xk]|Zk -1, 00)dxi =

P(00|Zi-1) [Cjo(Xije) = Coo) p(zk|60)
(5.13)

By defining the likelihood ratio
P(8ilZg~1) [(Coi(xi) — Cji(Xppr, Xa )] p(zk|xk, 0:)p(x1| 211, 6;)dxy

P(80|Zk-1) [Cjo(Xxi) — Coo] p(zk160) ’
(5.14)

Lji(ze) =

the Bayesian risk can now be expressed as

RpukE = i:’; /z / P(0:|Zg—1)Coi(x)p(zk [xk, 0:)p(xk [ Zk -1, 0i)dxrdzy
M M
+’_§l [R,- P(80|Z—1) [Cjo(Xxp) — Coo) p(2z1)60) [1 - E L,-.-(zk)] dz;

(5.15)

The first term on the RHS of (5.15) is constant. Hence, it does not contribute

to the selection of the decision boundaries. It is assumed that the cost making a

wrong decision Cji(Xk,Xk), j # ¢, is greater than the cost of making a correct

decision Cii(Xz,Xs). Since all probabilities and density functions are positive or

zero, P(00|Zx-1) [Cjo(Xxx) — Coo] p(21160) = 0. Thus, the decision is made in favor

of hypothesis H; based on the selection

M
j = argmin; {[Cjo(*klk) — Coo} [1 - Lji(zk)] } (5.16)

=1
This decision rule is based on the fact that the estimate X;; is optimum.

The second part of the joint detection/estimation procedure is to find the

optimum estimate. The optimum estimator, given that decision D; was decided
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after the first stage, will be denoted iil & and is determined by finding the value that
minimizes the total average cost in decision region R;. That is, i;l & 18 determined
from the condition

M
ming, /Rj P(60|Zx-1) [Cjo(Xrx) — Coo] p(zx[00) [1 - ;Lﬁ(zk)] dzx. (5.17)
The exact form of the optimum estimator is a function of the type of cost function

Cii( Xk, Xz )-
5.1.1 Quadratic Cost Function

Consider the case where the cost is a quadratic function of the estimation

error. The quadratic cost is expressed as
CjiGaper Xa) = bji + cji [xx — Fua) T[xe — Kapa) (5.18)

The cost includes the term bj; which represents the conventional cost associated with
the problem of detection only, and the cost cj; which accounts for the estimation
error. The cost of deciding hypothesis D; given hypothesis Hy is related to the

estimate only and

Coo = coo
Coi(xi) = boi + coixi X i#0
i (5.19)
Cjo(Xik) = bjo + cjoXpp¥ap J#0
Cji(Rr, X&) = bji + cji [xa — Repe) T [xe — Faqa] i#0,j#0

Using the cost function (5.18), the integral in (5.17) can now be expressed as
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I = [, P(6olZe-1)p(zel60) Glas, Xaye)dzs (5.20)
7
where
M
G(za, %xpt) = 3, P(6i|Zk—y) / [bi — boi] p(zalxz, 0:)p(xk|Zk—1, b;)dx;
=0
(5.21)

M
+ 3 P(6i|Zs-) / [eji — coil Xk — Fuga) T [xe — Faga)

i=0
X p(zg Xk, 0:)p(xk|Z1~1, 0;)dx

The first term on the right hand side of the above equation is independent of X;; and
can be excluded from consideration in determining the optimum estimator. Since
it is assumed that the cost of making a wrong decision is greater than the cost of
making a correct decision (cji 2 cii), G(zk, Xii) is always positive or zero . So if the
integrand is minimized then the integral will also be minimized and the optimum
value of :‘c;, & i8 found by differentiating the integrand with respect to the estimate

and equating it to zero.
0G(zk, Xij)

=0 5.22
Oxage (5-22)

& =g
o | 1

Carrying out this minimization the optimum value of the state given hypothesis H;

is determined from
M
D _leji — coi] P(8ilZ-y) / [xi — Xa) p(zalxi, 0)p(xk|Z~1,0i)dxr =0 (5.23)
=0
which gives
i3, = Zioless — coil P(8ilZy_1) J X p(Zelxe, 0)p(xe|Zs1, 0:)dxs
= T olesi — coil P(8:lZa-1) J pl=alx, 0)p(xe|Za1, 6:)dxs

(5.24)

It is observed that no estimation is performed under hypothesis Hy. Thus, the




density function p(xz|Z;_1,80) is equal to zero, and

[cji ~ coi] P(60)|Zi-,) / Xk p(Zk|Xk, 00)P(xk|Zi—1,00)dx; = 0.

Using this result in (5.24) yiclds

M
Xie = 2 Ti(2r)Xie g

$=1

where

[cji — coi] P(0ilZx—1) [ p(z&|xk,0:)p(xk|Zk-1, 0i)dxy

I‘l'(zk) = Eﬁ__:o[c)'m _ (:om]P(om) f P(zk ka, om)p(xklzk_l,am)ka

and
_ I p(zelxe, 0:)p(Xi |11, 0:)dx;
I p(zalxi, 0:)p(xi|Zx—-1, 0i)dx;

Xifk,6;
From Bayes rule
P(z|xk, 0:)p(xk|Zk-1,0i) = p(xk|Zk, 0:)p(zk|Zk-1, 6i),
and Xy); 9. becomes

s o, = 4 X6P(XE|Zy, 8i)dx;
HE& T ok, O)dxe
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(5.25)

(5.26)

(5.27)

(5.28)

(5.29) .

(5.30)

This is the mean of the a posteriori density function of x; given the measurements

Z; and hypothesis H;. If it is now assumed that

[cji ~ coil = [exi — coil, 0<ij k<M

(5.31)




136
that is, the cost of all errors is the same, then (5.27) becomes
Ti(ze) = P(6:\Z¢_1) [ p(xi|Z, 0:)p(zx| 21, 0;)dx;
iz) =
=0 P(0m|Zi-1) J p(Xi|Zt, 0m)p(2|Z1_1,0m)dxs (5:32)

_ P(6|Zg~1) p(z|Zs_1, )
TM_o P(Om|Zi-1) P(2k|ZE~1,0m)

The denominator is the marginal density of z; given the measurements Z;_,, and it
can be shown ([77], p.85) that I';(zx) = P(6;|Z;), the a posteriori probability of 6;
given the measurements Z;. This gives the recursion for the a posteriori probability

of hypothesis H; as

P(6i1Zi-1) p(z1|Zs—1,6:)

P(6:i|Z) = 5.33
(0ilZ¢) 221 Ze1) (5.33)
Substituting the likelihood ratio
P(zk(Zx—1, %)
Ai(z) = D121 78 5.34
(=) P(2k1Z-1,60) (5:34)
into (5.33), the a posteriori probability becomes
P(6i|Zg—1) Ai(zz)
P(6i|Z;) = 5.35
o) = A P (GmlZa—1) () (539
Under the conditions (5.31) the optimal estimate becomes
X M
lek = E P(o.-lzl,)i,",,,,... (5.36)

s=1
So the optimal estimate is the sum of all of the conditional means weighted by the

a posteriori probability of each hypothesis.

Equations (5.35) and (5.36) are verified by Lainiotis [59] for Gaussian dis-

tributions. The implementation of the above procedure involves the operation of
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several extended Kalman filters in parallel - one filter for each possible value of the
parameter ;. In addition to estimating the state iklk,ﬂ,- at each iteration of the
Kalman filter, the a posteriori probability of 8;, P(6;]Z;), is also propagated. The
optimal mean square estimate Xj; of xj is the integral over all values of §; of the
estimates from each of the filters weighted by the a posteriori probability of each
value of 6;.

The error covariance Py is given by
Pus = E {[xi — %uga) s — e )T 12 } (5.37)
which can be determined from the relation

Pa = [ B {pce — aallxe — Sl 12, 8} p(61Z:)do. (5.38)

Substituting (5.7) gives

M
Pup = 3 E {[xi — Sapellx ~ uel7 121, 6:} P(0:12Z,)

i=1

M
=Y |E{[xt — %epp0.][%k — Repr 0,17 122, 0i
E[ {Ixk = Rapu0,]lxe — Xeye 0,17 |2, 0:} (539

+ Bap — X0, [Fapn ~ im,a,-]T] P(6i|Zy)

M
= [Pm,a,- + APm,o,-] P(6i|Z,)

i=1
where it is noted that Py, is not defined under hypothesis 6. Py g, is the usual
variance which is recursively computed by the Kalman filter under hypothesis H;.
APy)i¢, represents the price of model uncertainty. It represents the performance

degradation, or additional error, due to the fact that the model, characterized by

0;, may not match the actual system that produced the measurements.
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The estimator in (5.36) is the weighted sum of least squares estimators with
the weights being the a posteriori probabilities of the various hypotheses. Becaus-
the cost of incorrect decisions is the same regardless of the decision, this estimator

is independent of the decision.
5.2 JD/E for Systems in Gaussian Noise

For the measurement model (5.1), if the process and measurement noise are
assumed to be Gaussian, the density function p(z;|6;,Z;_,) used in (5.33) can be

expressed as

P(z|Zk1,0i) = |Skpp1,6, " 2exp {~1/224_1 9, Sh|k—l,0,-i£k-1,0,-} (5.40)

where
Zrjk-1,0; = Zk — Br(Rije-1,0;,65) (5.41)
and
Skik-1,8; = He(Xaji-1,0;5 oi)Pm—l,o,-Hk(*m-l,a,-, 0.')T + Ryp; (5.42)
with

. Ohy(xy, 0
Hi(Xkjk—1,0;,03) = —%:——)

(5.43)
Xp=Xp1k_10;

The a posteriori probability (5.35) now becomes

P(Oilzk_l)lskk_l'o.l-%exp{_likk_l’o_s-l_ &7 _ }
P(0|Z;) = k1.4 27Mk—1,0;kjk—1,0, “k|k—1,6;

_1 y - .
TN 0 P(Om|Ze-1)|Skjk—1,6m | Texp {-%zklk—l,OmSk|i—1,0mz{|k—l,0m}
(5.44)
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5.3 JD/E in Non-Gaussian Noise

Two non-Gaussian distributions that are be of interest in subsequent chapters
are the Weibull and lognormal. The high order filter, developed in Chapter 3, is
used to perform parameter estimation in non-Gaussian noise. In the case of Weibull
measurement noise, the a posteriori pdf, given the estimate Xy k-1,0;» Can be updated
as follows for a scalar measurement model z;

1 [Ze_1s. + a-1 Zii_19. + a
Pw(zk|zk—1,0i)=a;_— (.’i"__l_‘_v__‘i‘i) exp{— (.L"il_"-_"i)} (5.45)
w

Ow Ow

The parameter a is a known constant that controls the skewness of the distribution.
When a = 2 the Rayleigh distribution results. g, is the mean of the noncentral

Weibull distribution. The n** noncentral moment of the Weibull distribution is

given by

Bl(iaprg; +mo)) =T (22) o3 (5.46)

where I'(.) is the Gamma function. Since E[Zx—,0,] =0,

o =T (“ :“ 1) e (5.47)

The variance of Zy;_) g, is given by
skk-1,6; = Elzfi_14]]
2
=t [r(57)-r(5)]

Given the the parameter a and the variance sy)x_1,9;, 0w can be found from (5.48),

(5.48)

and p,, can subsequently be found from (5.47).

If a scalar error Z;_ g, is centrally distributed according to the lognormal
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distribution, its density function is updated by

1 1
Z2k|Zy_1,0;) = — exps —=—=(In(Zxir—10. + p1) — 2}
P1(2x|Zg 1, 6;) VEro g, ¥ 1) p{ 3 012( (Zej—1,6; + 1) = 7)
(5.49)
The mean and variance of the lognormal distribution are
m = El[zy;_y 9, + pi]
(5.50)
= exp(y + 0} /2)
and
skk-10; = ElFp_16]
(5.51)

= exp(2y + 207) — exp(27 + of)
Thus, given the variance syx1 ¢, and the parameter 7 for the lognormal distribution,

o) can be obtained from (5.51), and y; can be subsequently obtained from (5.50).
5.4 JD/E with Model Uncertainty

Consider the situation in which several different hypotheses are to be eval-
uated where the measurement model for each hypothesis may not be a function of
all the elements of the state vector x;. For example, let x; consist of two subvec-
tors x1, and xz, , such that x; = [xﬂ : x%;]T. Furthermore, let the measurement
equation as a function of 8; = [9;1 9;2]T be given by

Hi :  zp=hi(x,0)+ v

(5.52)
= "ilhlk(xlk) + l’i?hzk(xh) + Vi

Thus h; is segmented into two separate models, h, ; and hlh' Each model is a
function of a subset of the state x;. Let us consider four hypotheses. Under hy-
pothesis Ho no signal is present. Under hypotheses H; and Hj, signals h;, and

hy, are present, respectively. Hypothesis H3 represents the situation where both
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signals are present. The possible values of the parameter vector 8 corresponding to
the four different hypotheses are given by 8o = [00]T, 8; = [10]T, 8; = [01]T, and
0o = [11)T. The goal is to find the model that best fits the received data zj. For this
situation it is not proper to use the optimal estimate represented by equation (5.36)
since all state variables cannot be estimated by each model. Under these conditions
the maximum a posteriori (MAP) decision rule is used. The model 6; is chosen
such that P(6;|Z;) = max{P(6;; j =0, ---, M}, where M + 1 is the number of
hypotheses, including the null hypothesis. Note that for the example given above,
if Hy is chosen no estimate is required. If H; is chosen, then x; § can be estimated.
If H; is chosen, then x3, can be estimated, and if H3 is chosen,the full state vector
x; is estimated. Chapter 6 uses MAP estimation to perform model order selection

for a system of sinusoids in Gaussian and non-Gaussian noise.

If the dimensionality of the state vector is different between models, or if
state variable assignments are different between the various hypotheses, or if some
of the state variables are unobservable between models, then the optimal estimate,
represented by equation (5.36) no longer applies. That is, if not all variables can be
estimated under each hypothesis (i.e. under each model), then it is not proper to
form a combined estimate by summing the estimates from each model weighted by

the a posteriori probability of each hypothesis.
5.5 JD/E with Uncertain Initial Conditions

Joint detection/estimation theory may also be applied to systems in which
the measurement model is the same among all of the hypotheses but in which the
different hypotheses are used to distinguish different sets of initial conditions. This

can be very useful for nonlinear estimation problems since it is well known that
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- the performance of approximate estimators such as the extended Kalman filter is
susceptable to errors in the initial estimates. This is due primarily to the first order

Taylor series expansion used in the filter.

Consider the scalar case in which the initial estimation error on the state
variable is uniformly distributed in [-w/2, w/2] with mean Zgo. Let the width of
the uniform distribution be w. The initial variance is pgjp = w?/12. Now consider
the situation in which two models are used for the initial conditions, with each model
accounting for one half of the uncertainty in the original model. In the first model,
represented by 0;, the initial estimate has mean zg)99, = Zojo — w/4. This mean is
in the center of the left half of the original distribution for Zq9. The width of the
uniform distribution for model 1 is w/2, and the initial estimation error variance is
Pojo,g; = w?/48. Similarly the mean and variance of the initial estimation error for

model 2 are Tojo,0, = Zop + w/4, and Pojo,9, = ?/48.

For this example let 8; = —1, and 62 = 1. The two hypotheses can then be
represented as
H; : 2 = hk(zk) + v;
Zojo,0; = Topo + Oiw/4 (5.53)
Pojo,s; = w2/ 48

With this model the performance of the extended Kalman filter is likely to
be significantly more stable, as the initial estimation error variance is reduced by a
factor of 4 compared to the original model. Since the state variables are the same
for each model the optimal estimate described by (5.36) can be implemented. The a
priori probabilities P(f;) are obtained by integrating the original initial density func-

tion over the limits used to partition the initial error into the separate hypotheses.
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For the example given above P(6,) = P(6;) = 0.5.

This procedure could be particularly useful whenever the density function
for the initial estimation error is multimodal. A filter could be constructed for each

mode of the density function thereby greatly reducing the initial error variance.

As the number of partitions increases the joint detection/estimation problem
becomes one of detection only. That is, the initial estimation error becomes so small
that the implementation of the filter does not improve the estimate. Thus there is
a tradeoff between estimation accuracy and the computational burden imposed by

the implementation of several extended Kalman filters in parallel.

Chapter 7 uses joint detection/estimation for estimation of radar/sonar signal
parameters in which the measurement model is the same for each hypothesis, but

the initial estimates of the time delay and Doppler shift distinguish the hypotheses.
5.6 JD/E with Model Uncertainty and Uncertain Initial Conditions

The two estimation procedures discussed in the previous two sections can
be used together to perform multiple hypothesis testing and for each hypothesis to
have several sets of initial estimates. An application of this is given in Chapter 8

where radar/signal parameters are estimated from multiple sensor measurements.
5.7 Summary

A general procedure for joint detection/estimation has been presented. It is
shown that this procedure may be used to segment the initial conditions of a estima-
tion problem effectively controlling unstable behavior that characterizes nonlinear

filtering techniques such as the extended Kalman filter in the presence of large initial
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uncertainty. It is also shown that the joint detection/estimation procedure can be
used for estimation problems with model uncertainty. In the following chapters this

procedure is applied to specific signal processing problems.
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Chapter 6

Joint Detection/Estimation for Model Order Selection

This chapter presents a general approach to determining the number of si-
nusoids present in measurements corrupted by additive white Gaussian and non-
Gaussian noise. The approach involves the simultaneous application of maximum
a posteriori (MAP) detection and nonlinear estimation using either the extended
Kalman filter when the noise is Gaussian, or the extended high order filter (EHOF)
when the noise is in non-Gaussian. The problem is formulated as a multiple hypoth-
esis testing problem with assumed known a priori probabilities for each hypothesis.
Each hypothesis represents a different measurement model. The unknown parame-
ters for each model are estimated recursively along with the a posteriori probability
of the hypothesis. The general technique for joint detection/estimation is presented

in Chapter 5.

Other order selection methods [60 - 62] take the form of a function of the
hypothesized number of parameters which penalizes over-estimation of the actual
number of parameters when added to the log-likelihood function. A technique de-
scribed Fuchs [63] uses eigenvector decomposition of the estimated autocorrelation
matrix and is based on matrix perturbation analysis. In all of the autocorrelation
techniques the additive noise is assumed to be Gaussian. Rao and Vaidyanathan
[64] use cumulant based approach to estimate model order in non-Gaussian noise.
In contrast to these methods, the technique used in this chapter is based on Bayes’
theorem. The advantage of this technique is that it can be used in both Gaussian
and non-Gaussian noise. It is completely general in that it applies to arbitrary

density functions.

g




146

A typical method for determining the number of sinusoids present in a re-
ceived signal is to form a model using all of the bins in the FFT as the maximum
number of sinusoids present in the signal. If it is assumed that there is one sinusoid
present in the measurement, then the number of hypotheses to be tested is N (the
number of bins in the FFT). If there are two sinusoids present, then N!/(2(N — 2)!)
hypotheses must be tested. If it is unknown whether one or two sinusoids are present,
then N + N!/(2(N — 2)!) hypotheses must be tested. The obvious disadvantage of
this approach is the exponential computational complexity in testing all hypotheses.
In addition, the resolution of the frequencies is limited by the bin size of the FFT.

The method used in this chapter assumes that, if one sinusoid is present,
then the estimates of the amplitude and frequency are known within some known
mean and variance, that is, the distribution of the initial estimation error is assumed
to be known. The procedure also allows for time varying variables (not allowed in

the FFT method).

Simulation results are presented for the estimation of up to four sinusoids
in white Gaussian, and non-Gaussian noise, when the actual number is two. In
Gaussian noise the extended Kalman filter is used to perform estimation. In non-

Gaussian noise the high order filter (EHOF) developed in Chapter 3 is used to

perform estimation.
6.1 Joint Detection/Estimation Applied to Model Order Selection

The problem of model order selection can be cast into the framework of
joint detection/estimation with model uncertainty. Section 5.4 describes the gen-
eral solution for joint detection/estimation problems with model uncertainty. Con-

sider the situation in which several different hypotheses are to be evaluated where
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the measurement model for each hypothesis may not be a function of all of the

state variables in the vector x;. For example, let x; consist of P subvectors

T: ... Dl

2"
tor 0; = [J;; di, -+ U; P]T’ with J;; = Oorl. The measurement model is given

by

such that x; = [x{kix fxa Define the binary-element parameter vec-

Hy :  zp=gi(xp,0i) + vy
P (6.1)
= E "ipgp),(xn) + Vi
p=1
with plant equation
Xi = fr—1(Xk-1,0) + Wi_10 (6.2)

with initial state estimate Xgj9¢, and initial state covariance Fygg9. The initial
state estimate, the measurement noise, and the process noise are uncorrelated. The
process and measurement noise are zero mean and distributed with covariances

E[wiowi gl = Qig, and E[vievigl = Rig.

Hence, 9J;, = 1 indicates the presence of the py, term in the it" model; and
Ji, = 0 indicates its absence from the model. g; is segmented into P separate
models, with each model being a function of some subset of the state x;. Under
hypothesis Hy no signal is present and 6p = [00 --- 0]T. There are P diﬂ'e;'ent
possible combinations of one model only. The number of different combinations for
more than one model is obtained from the binomial expansion. The total number
of different models that can be accommodated by the measurement equation (6.1)
is

Ny=143 L
»= 1 L Py

The goal is to find the model that best fits the received data 2z, i.e. to select

the parameter vector that gives the best fit. Given the measurements modeled as
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(6.1), for model order selection it is not proper to use the MMSE estimate rep-
resented by equation (5.36), since all state variables cannot be estimated by each
model. Under these conditions the maximum a posteriori decision rule should be

used for model selection according to:
Choose H; : 0; = argmaxy ce P(0m|Zi) m=0,---,M (6.3)

where M + 1 is the total number of hypotheses tested. The recursion for P(0;m|Z;)
from Chapter 5 is

P(6i)Zi_y) Ai(z)

POIER) = SR P (6mlZa—s) A o9
where A;(2z;) is the likelihood ratio
Ai(z) = P(Zt|Zx-1,0) (6.5)

p(zk‘zk—lv 00) ’

and where Z;_, = {23,232, - - - Zi~1}. The initial condition for (6.4) is the a priori
probability density function p(@) = p(0]Zo), which is assumed to be known. The
conditional probabilities p(zx|Z;—, ;) are updated using the EKF or the EHOF as
described below.

6.2 General System Model for Model Order Selection

Consider the problem of estimating the parameters of P unknown sinusoids
from K measurements. The scalar measurement model for hypothesis H; is given

by

P
= Z Jipcp, €xp (—ap, k) sin(wp, k + ¢p,) + vi (6.6)
=1

fork = 0,1,---, K—1. It is assumed that the frequencies wy, are normalized
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so that the effective sampling interval is one second. vy is assumed to be a white
noise sequences each with variance g2. The objective is to estimate some or all of
the 4P possibly time varying parameters in this system based on the measurements.

Define the elements of the state variable subvector x,, as

Tp ()= Wpp
Top (2) = Cp;.
6.7
zp(3) = &,
zp (4) = ap;.

6.3 Model Order Selection Experimental Evaluation

In this section the performance of the joint detection/estimation method is
evaluated experimentally. The number of sinusoids is unknown except for an upper
bound. Furthermore, it is assumed that the damping coefficients and phases are all
equal to zero. The amplitudes and frequencies are assumed to be either known or
unknown. When they are unknown, estimates of them are obtained along with the
model order selection. Assuming the unknown number of sinusoids to be four, the

measurement equation becomes

zr = gr(Xx,0) + v

4 (6.8)
=3 Jip8pk(Xp) + Vi
r=1
where
8ok (Xp,) = i sin(w,k k) (6.9)
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The state variables are defined as
-”"p,,(l) = Wp, (6.10)
"’pg(2) = Cpy

The states are assumed to be constant with random initial values so that the
plant equation becomes

Xk41)k = Xi- (6.11)

Since Pyji—1,; = Pi-1jk-1,; the extrapolation equation is redundant and the EKF

equations (section 2.4.1) simplify to
Zayk-1,0; = HiXppe-1,0; + Vi
Xijk,0; = Xp-1j6-1,0; + KiZa
Skjk-1,0; = GiPi—1ji-1,9, Gl + Ry (6.12)
K= Pb-ljk-l,o,-G{ S;[:—I,O,-
Pirg; = (In — KiGi)Pi_ji-14;
where the first partial derivative of the measurement nonlinearity (6.8, 6.9) under

hypothesis H; is given by

og1, ., Oga ., Ogs ., Ogs
Gr= |t idin—tidip—Lidy—*t 6.13
k Fmily kbl el (6.13)

where

Ogpi _ [z,k(2)kcos(z,k(l)k) T ©14)

%y, sin(zy, (1) k) Xp=%pg_1[k—1,0,
”s

For estimation in Gaussian noise Zy;_; ¢, and Syj_),9; from (6.12) are used in (5.44)

for computation of the a posteriori probability (6.4).

If the noise is non-Gaussian, the EHOF equations from Chapter 3 are used for
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estimation. For the EHOF the innovations vector Zyx_, ¢, and its variance Sgjx_1 4,
are obtained in the same manner as they are in the EKF (6.12). However, in the
EHOF the update equations for the filter variance Py;_; 9, (3.30 or 3.54) are much
more complicated than they are for the EKF. In the experimental analysis that
follows the measurement noise was distributed according to Weibull and lognormal
distributions. The form of the density functions p(zi|Zx—,,8;), which is required in

(6.5), is given in section 5.3 for these distributions.

Five separate models are considered in the experimental evaluation. In the
first model it is assumed that no signal is present, and 8y = [0 0 0 0}, corresponding
to the null hypothesis. The other four models correspond to the hypotheses that
one, two, three or four different sinusoids are present in the measurements. The

parameter vectors for these models are given by
0;=[{1000]

0,=(1100]
(6.15)
03=[1110]

04=[1111]

The a priori probability is chosen to be the same for each model, i.e. P(6;|0) =
1/5, i = ¢, --- ,5. The measurements (6.9) are modeled using four sinusoids with
amplitudes ¢, = 1, for p = 1, --- 4, and normalized frequencies w;, = 0.12 * 27,
wy = 0.22 % 27, w3, = 0.32 x 2x, and wy, = 0.42 % 2x. In the actual data only the
first two sinusoids are present, namely the ones with frequencies wy, and wy,. The
hypotheses are indexed according to the number of sinusoids assumed present in the

data. The actual model corresponds to hypothesis H,.

Three separate scenarios are evaluated. In the first scenario it is assumed that
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there is no initial estimation error in the state variables, and therefore, estimation
is not required. This corresponds to the detection-only case. In the second scenario
only the frequencies are estimated. For this scenario equation (6.9) is modified ac-
cordingly to include only frequency variables. In the third scenario, both frequencies
and amplitudes are estimated. Performance of the technique is evaluated via Monte
Carlo simulations for v; having Gaussian, Rayleigh, and lognormal measurement
noise. The parameter a = 2 is used for the Rayleigh distribution (equation (5.45)),
and 7 = 0 is used for the lognormal distribution (equation (5.49)). In the scenar-
jos in which the EHOF is employed, the 2", 3", and 4** order statistics of the

measurement noise are used in the filter implementation.

The detection results for scenario 1, the detection-only case, are presented in
Tables 6.1, 6.2, and 6.3 for detection in Gaussian, Rayleigh, and lognormal noise,
respectively. These tables contain the number of detection decisions for each model.
The column iabeled P(82|Z;) gives the average a posteriori probability of the hy-
pothesis Hj for those simulation runs which chose H; as having the highest a poste-
riori probability. The results are shown as a function of signal to noise ratio (SNR)
and the probability density function (pdf) type used in computing the likelihood
ratio in equation (6.0). The SNR is defined as IOIOg(c;k /(202)), where o2 is the
measurement noise variance. Since the amplitude is equal to one for all sinusoids,
the SNR is 10log(1/(202)). In Table 6.1 only the measurement noise is Gaussian
and only the Gaussian pdf is used to propagate the a posteriori probability. In Table
6.2 the noise is Rayleigh, and the a posteriori probability is computed using both
the Rayleigh and Gaussian densities. Table 6.3 shows the results in lognormal noise.
Tables 6.2 and 6.3 illustrate the importance of choosing the proper density function

to make the deiection decision.
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Table 6.1. MAP Decisions as a Function of SNR
Gaussian Noise - Detection Only
SNR(dB) pdf Type Hy H H, H; H, P(02|Z;)
-5 Gaussian 3 15 171 10 1 0.865
0 Gaussian 0 2 196 2 0 0.991
5 Gaussian 0 0 200 0 0 1.0
Table 6.2. MAP Decisions as a Function of SNR
Rayleigh Noise - Detection Only
SNR(dB) Pdf Type Hy 1 m H, H; Hy P(0,|Z;)
-5 Gaussian 2 16 169 12 1 0.872
Rayleigh 3 8 180 8 1 0.925
0 Gaussian 0 3 197 0 0 0.991
Rayleigh 0 0 199 1 0 0.999
5 Gaussian 0 0 200 0 0 1.0
Rayleigh 0 0 200 0 0 1.0
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Table 6.3. MAP Decisions as a Function of SNR

Lognormal Noise - Detection Only

SNR(dB) Pdf Type Hy H; H, Hj Hy P(6,)Z;)
-5 Gaussian 2 15 174 8 1 0.885
Lognormal 0 0 200 0 0 0.999
0 Gaussian 0 2 197 1 0 0.992
Lognormal 0 0 200 0 0 1.0
5 Gaussian 0 0 200 0 0 1.0
Lognormal 0 0 200 0 0 1.0

For scenario 2 it is assumed that the signal amplitudes ap, are known. The
frequencies wy, are estimated for each model. The standard deviation of the initial
estimation error for the frequency in each model is & = 0.1. Table 6.4 shows the
number of times each hypothesis is chosen as a function of signal to noise ratio
(dB) when the measurement noise is Gaussian and the measurements are processed
with the EKF. The EHOF gives the same results as the EKF whenever the noise
is Gaussian. Tables 6.5 and 6.6 show the results whenever the measurement noise
is Rayleigh and lognormal, respectively. The development of the EKF is based on
the fact that the filter error is a first order function of the innovations process.
Thus, only first and second order statistics are necessary for EKF implementation.
Therefore the EKF provides an optimal solution in Gaussian noise (providing the
Taylor series approximation is valid). Although the EKF does not give optimal
performance in non-Gaussian noise, it is evaluated in Tables 6.5 and 6.6 in order to

compare its performance to the EHOF in non-Gaussian noise. The EKF is evaluated
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in two configurations in these tables. The rows in these tables lzbeled "EKF,’ denote
the performance of the EKF in which density function in (6.5) is evaluated using a
Gaussian density. ’EKF,’ and ’EKF;’ correspond to the performance of the EKF
in which the Rayleigh and lognormal density functions are used for computation of
the likelihood ratio. The EHOF employs the appropriate pdf associated with the

measurement noise.

This data demonstrates that the nonlinear filtering techniques can give ex-
cellent performance for model order selection. Tables 6.5 and 6.6 demonstrate that
the detection error probability for the EHOF is lower than that for the EKF in non-
Gaussian noise, especially when the EKF is used in conjunction with the Gaussian
density function. The EKF performs much better whenever the proper (Rayleigh of
lognormal) density function is used. Furthermore, the EHOF decides with a higher
confidence than the EKF, as demonstrated by the a posteriori probability P(62|Z;).

This difference occurs primarily at low values of the SNR.

The EHOF performs better relative to the EKF in lognormal noise than it
does in Rayleigh. This is due to the fact that the lognormal noise has a higher
degree of skewness than does the Rayleigh noise. That is, the EHOF has more of
an advantage whenever the higher order statistics are large relative to what they

would be in Gaussian noise.
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Table 6.4. MAP Decisions as a Function of SNR
Gaussian Noise - Frequencies Estimated
SNR(dB) Filter Hy H, H; H3 H, P(02)Zy)
-5 EKF 46 45 107 2 0 0.852
0 EKF 4 15 180 1 0 0.980
5 EKF ] 0 200 ] 0 1.0
Table 6.5. MAP Decisions as a Function of SNR
Rayleigh Noise - Frequencies Estimated
SNR(dB) Filter Hy H; H; Hj H, P(6,|Z;)
-5 EKF, 44 46 108 2 0 0.844
EKF, 23 28 135 6 8 0.924
EHOF 23 27 137 7 6 0.926
0 EKF, 5 13 181 1 0 0.975
EKF, 2 16 174 8 0 0.996
EHOF 1 11 182 6 0 0.995
5 EKF, 0 0 200 0 0 1.0
EKF, 0 0 200 0 0 1.0
EHOF 0 0 200 0 0 1.0
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Table 6.6. MAP Decisions as a Function of SNR
Lognormal Noise - Frequencies Estimated
SNR(dB) Filter Hy H H, H; Hy P(82|Z;)
-5 EKF, 41 47 104 1 7 0.801
EKF,; 27 30 129 11 3 0.934
EHOF 24 20 146 5 5 0.954
] EKF, 3 13 183 1 0 0.979
EKF,; 1 12 181 6 0 0.993
EHOF 3 7 188 2 0 0.993
5 EKF, 0 1 199 0 0 0.998
EKF, 0 1 198 1 0 0.999
EHOF 0 0 200 0 0 1.0

Figures 6.1, 6.2, and 6.3 display the sample variance of the estimation error
of the two estimated amplitudes as a function of SNR for estimation in Gaussian,
Rayleigh, and lognormal noise. For Figure 6.1, the sample variance is computed
only from those trials in the Monte Carlo simulation which resulted in the EKF
choosing the correct hypothesis. Figures 6.2 and 6.3 display the sample variance
for those trials which resulted in both the EKF and the EHOF choosing the correct
hypothesis. The CR bound on the estimation error is also shown in these figures.
A noise discrimination test is used in an attempt to detect poor estimates. This
test involves discarding any estimate for which the sample variance of the residual
Zhjk—1,0;» computed over k =0, --- 24, is greater than twice the noise variance o3.

The results of using this test are also shown on Figures 6.1 - 6.3. The MSE of the
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EHOF is slightly lower than the EKF, with both filters producing results that are
close to the Cramer Rao bound.

In scenario 3 both the signal amplitudes ¢, and frequencies wy, are estimated
for each model. The standard deviation of the initial estimation is ¢ = 0.1 for both
frequency and amplitude. Table 6.7 shows results for Gaussian noise, and Tables
6.8 and 6.9 display the results for Rayleigh and lognormal noise, respectively. These
results are consistent with those in Tables 6.4 - 6.6 in that the EHOF makes better
detection decisions than the EKF in non-Gaussian noise. However, as it can be
expected, the probability of detection error increases whenever both frequency and

amplitude are being estimated as compared to when only the frequency is estimated.

The estimation results for scenario 3 are given in Figures 6.4, 6.5, and 6.6
for estimation in Gaussian, Rayleigh, and lognormal measurement noises. Again it
is shown that both the EKF and the EHOF perform close to the CR bound, with
the EHOF giving better results than the EKF after the noise discrimination test is

applied.

Table 6.7. MAP Decisions as a Function of SNR

Gaussian Noise - Amplitudes and Frequencies Estimated

SNR(dB) Filter Hp H; H, H; H, P(6:)Z;)

-5 EKF 49 51 95 5 0 0.792
0 EKF 1 25 174 0 0 0.971
5 EKF 0 0 200 0 0 1.0
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Table 6.8. MAP Decisions as a Function of SNR
Rayleigh Noise - Amplitudes and Frequencies Estimated
SNR(dB) Filter Hy H, H; H; H, P(62)Z;)

-5 EKF, 48 56 88 8 0 0.824
EKF, 20 31 125 19 5 0.880
EHOF 20 34 124 20 2 0.885

0 EKF, 1 25 174 0 0 0.973
EKF, 2 11 178 7 2 0.992
EHOF 0 11 182 5 2 0.989

5 EKF, 0 0 200 0 0 1.0
EKF, 0 0 200 0 0 1.0
EHOF 0 0 200 0 0 1.0
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Table 6.9. MAP Decisions as a Function of SNR
Lognormal Noise - Amplitudes and Frequencies Estimated

SNR(dB) | Filter | Ho | Hy | Ho | H» | Hy | P(62)Zs)

-5 EKF, | 44 | 52 | 98 6 0 0.783
EKF, | 28 | 46 | 11 | 1 4 0.933
EHOF | 21 | 33 [ 132 | 10 4 0.936

0 EKF, 3 18 | 118 | 1 0 0.968
EKF, 1 4 | 179 | 6 0 0.995
EHOF | o 7 | 18¢ | 8 1 0.995

5 EKF, 0 o | 200 | o 0 1.0
EKF, 0 0o | 198 | 2 0 1.0
EHOF | 0 0 |20 | o 0 1.0

6.4 Conclusion

A general approach to model order selection has been presented based on joint
detection/estimation theory. The approach involves the simultaneous application of
maximum a posteriori detection theory and nonlinear estimation. The approach
requires only an upper limit on the model order and is applicable to data that are
being corrupted by additive Gaussian and non-Gaussian noise. The advantage of
the approach lies in the potential to accommodate time varying as well as time
invariant parameters in the measurement model. Experimental evaluation of the
approach demonstrates excellent performance in selecting the correct model order

and estimating the system parameters even in SNR’s as low as -5 dB.
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Chapter 7

JD/E Applied to Esti:nation of Time Delay and Doppler Shift

A nonlinear adaptive detector/estimator (NADE) is introduced for single and
multiple sensor data processing. The problem of target detection from returns of
monostatic sensor(s) is formulated as a nonlinear joint detection/estimation problem
on the unknown parameters in the signal return. The unknown parameters involve
the presence of the target, its range, azimuth, and Doppler velocity. The problems
of detecting the target and estimating its parameters are considered jointly. A
bank of spatially and temporally localized nonlinear filters is used to estimate the a
posteriori likelihood of the existence of the target in a given space-time resolution
cell. Within a given cell, the localized filters are used to produce refined spatial
estimates of the target parameters. A decision logic is used to decide on the existence
of a target within any given resolution cell based on the a posteriori estimates
reduced from the likelihood functions. The inherent spatial and temporal referencing
in this approach is used for automatic referencing required when multiple sensor
data is fused together. Thus, the approach is naturally extendable to centralized

multisensor data fusion.

This chapter addresses the joint estimation of time delay and Doppler shift
from measurements of a received signal. Knapp and Carter [66) showed that the
ML estimator of time delay can be represented by a pair of prefilters followed by
a matched filter. Stuller [67] generalizced these results to obtain ML estimates of
time varying delay, nonstationary signals, and arbitrary observation interval. An

extension of the ML methods is given by Abatzoglou [68] in which local maximization
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of the cross-correlation function results in fast ML estimation. An optimum time
delay tracker based on a first order markov model is given in [69]. In [70] the same
model is used for optimum time delay detection and tracking. These studies assume
linear plant and measurement equations so that an optimal solution can be obtained

using the Bayesian approach.

A general overview of techniques employed for time delay estimation in sonar
signal processing is given by Carter [71]. Stein [72] describes how the complex
ambiguity function can be used for joint estimation of time delay and Doppler shift.
The ambiguity function approach is one of the most widely accepted methods for
joint estimation of time delay and Doppler shift. The major disadvantage of this
approach is that its implementation requires t> us~ s ;he Fourier transform. Thus
the resolution is limited, especially for short data lengths. Time delay estimation
has also been approached using higher order statistics. Nikias and Pan [73] and
Chiang and Nikias [74] make use of the fact that Gaussian noise is suppressed in

the third order cumulant domain to form estimates of time varying delay.

This chapter considers the problem of localizing a target in a range-Doppler
space. The range-Doppler space is partitioned into a number of resolution cells.
Each cell is identified with a hypothesis that the signal is present in it. A joint de-
tection/estimation scheme is then used to localize the target and refine its parameter
estimates (i.e. time delay and Doppler shift). The measurements that are used to
localize the target consist of signal returns corrupted by additive white Gaussian

and non-Gaussian noise.

The problem is formulated using the joint detection/estimation procedure
developed in Chapter 5 adapted to problems with uncertain initial conditions. The
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approach involves the operation of several nonlinear independent filters in parallel.
In the case of Gaussian measurement noise the extended Kalman filter is used for
estimation. The extended high order filter (EHOF), developed in Chapter 3, is used
in non-Gaussian noise. The parallel filters are distinguished by the initial conditions
used to set up the problem. Along with the state estimate the a posteriori probability

of each hypothesis is computed recursively.

Two different implementations are evaluated. In the first implementation, the
model parameters for each resolution cell are kept fixed at their a priori estimates.
The fixed estimates are then used to update the a posteriori probability of each cell.
In the second implementation, the model parameters for each resolution cell are
estimated on-line and used to update the a posteriori probability for each resolution
cell. After all data is processed, the a posteriori probabilities and the initial estimates
are used to produce a minimum mean square error (MMSE) estimate of the time

delay and Doppler shift.
7.1 Problem Statement

Consider the problem of signal detection and parameter estimation in the
context of the reception of an active echo return from a object that has been il-
luminated by a monostatic source. The situation is considered in which there are
P collocated sources that illuminate the target simultaneously, but with different
carrier frequencies designated wc,. The received signal at each sensor is frequency-
translated by mixing it with a signal at frequency wi,. The resulting signal is
low-pass filtered, and digitized at a rate f,, which is at least twice the highest fre-
quency in the data. The time between samples is denoted ¢,. It is assumed that all

sensors have the same digitization rate, and that all clocks are synchronized. The
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general expression for the received signal at the p* sensor can be written

Zkp = Ay (Tk)Php (Tks Vi)Thp (Ths Vi) + Ry (7.1)

where a, (i) is the received signal amplitude, py,(7k, i) is the pulse shaping func-

tion, and

kg (s 1) = <08 [(vk(uep (s — 72)) — wiph ) (7.2

vk, is white noise with E[vg,] = 0, E[vz,v;,] = 0% 6(k—j). and 7; is the time delay
P P pVip kp
between signal transmission and reception. 7} is a function of the range D; between

the receiver and the object, and is given by

Tp = — (7.3)

The Doppler shift parameter v is given [76] by

=1+ 2—V:—" (7.4)
where Vj, is the Doppler velocity obtained by projecting the velocity vectors of
the target and receiver along the line of sight between them, and c is the speed
of electromagnetic propagation. v, is bounded by the perceived maximum speed
of the object and exact knowledge of the receiver platform speed. Based on these
capabilities one could postulate fairly accurate representations for the moments of
the probability density functions for v;. For unambiguous range estimation the
uncertainty in 73, denoted A7 is bounded by An < 21r/(v;.wc,). This is due to
the fact that the cos(.) function is not monotonic (i.e. ri,(m1,¥) = ray(m2, 1), if

T —T = 2‘!’/(ka¢’)).

Piky (7, i) is the pulse shaping function, which has average energy E,. The
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signal amplitude is attenuated due to spherical spreading loss by a factor of 1/DZ.
With known transmitted amplitude Ay, the received amplitude as a function of

time delay is given by
4A¢p

aky (1) = en)? (7.5)

Note that the effects of filtering, amplification, and digitization on the re-
ceived signal amplitude are not considered. These effects are generally known and

can be accounted for in the amplitude function (7.5).
7.2 Joint Detection/Estimation

The joint detection/estimation procedure for problems with uncertain ini-
tial conditions is followed in this chapter for optimal estimation of time delay and
Doppler shift. This procedure is described in Section 5.5. The hypotheses are dis-
tinguished from each other by the initial conditions on the initial state estimates
, io'o,ai, and initial state covariances P0l0.0i' The measurement and process mod-
els are the same for each hypothesis. Let 6; € © designate the parameter vector
that describes the different initial conditions on the states. The parameter vector
0; is also assumed to be time invariant. Under hypothesis Hy, the discrete time

measurements are modeled according to

Hy, : zp=gi(xk)+ Vi
(7.6)
with i.c.’s io'o’o'., Po'o,g'.

The measurement vector zj is composed of the scalar measurements of the

P individual sensors such that

Zp = [zkl Zhy *t ng]T (7.7)
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The state x; is common for all §; € ©, and satisfies the discrete time process
equation

Xp = f(xp_1) + Wi (7.8)

The initial state estimate, the measurement noise, and the process noise are uncor-
related. The process and measurement noise are zero mean and distributed with

covariances E[wiwi| = @, and E[vyvi] = R;.

For each 0; € © (each assumed model), a minimum variance estimate of the
model parameters is obtained recursively using the joint detection/estimation tech-
nique. Using this technique a minimum variance estimate of the model parameters
is obtained for every assumed model. These estimates are subsequently used to es-
timate the likelihood of each model being the correct one. Based on these likelihood
estimates, a maximum a posteriori (MAP) decision criteria or a minimum mean

square error (MMSE) decision criteria can be used to select the proper model.

Using Bayes’ rule, the a posteriori probability of the parameter vector 9 is

updated recursively by [67, 68]

P(0ilZ-1) p(zk|Zx—s, 6i)
o1 P(Om|Zi—1) p(21|Zk-1,0m)

P(0ilZy) = (7.9)

where Zy_; = {21,22, ‘- zx~1}. The initial condition for (7.9) is the a priori
probability density function p(8) = p(6]|Z¢), which is assumed to be known. The
densities p(2;|Z;_;,0;) are updated using the EKF or the EHOF.

The update procedure for measurements in Gaussian, Rayleigh, and lognor-

mal noise is described in Chapter 5, sections 5.2 and 5.3 .

Since the state vector x; is common to all models, the minimum mean
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squared error (MMSE) estimate can be used. The MMSE estimate is expressed

as a weighted average of the conditional state estmates Xy ¢, over all 6; as follows:

M
ik = D P(6ilZe) Jayu ;- (7.10)

=]
7.3 Specification of Initial Conditions

The localized initial conditions for each resolution cell are defined as follows:
Let the time delay have mean 7 and density function pr;(70). The distribution of 7
is segmented into N nonoverlapping segments such that the segment around some
localized initial estimate 7y, is defined by

Prag(Tng) =Prg(0) en<m<aayr 1<n<N (7.11)

We have

f: /;”H Prag(T)dr = /_: Prp(7)dr =1

n=1

Define the scaling parameters (5 such that

o
c,./ " g (T} =1 1<n<N

an

Then the mean and variance of the initial conditions of the segmented model are

given by
On41

Tag = E[Tuo] = (u/

an

TPy (7)dT

Var[rag] = (a /a :'H sz"‘o (r)dr - 1',102

Similarly, the i:itial estimate of Doppler shift have mean iy and density function

Pvy(10). Now let the distribution for vp be segmented into M nonoverlapping seg-
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ments such that the segment corresponding to initial estimate v, is defined by

Pvm, (Vmo) = pV()(VO) MmE<w<Imy1 1<m<M (7.12)

We have

M Tm+1 00
2 -[Im Pomg (v)dv = ./_mp"o(")d” =1

m=1

Define the scaling parameters kn, such that
v
Km/ m+1p.,,,,o(u)du =1 1<m<M
m

Then the mean and variance of the initial conditions of the segmented model for v

are given by

Tm+1

my = Elvmg) = £m -/m YPymg (v)dv

Tm+1 2

Var(vmy] = &m / YmgPrmg (V)dv — 17,2,.0

m

With N different initial conditions on 79, and M different initial conditions
on vg there are NM different resolution cells for referencing the measurements.
A different filter is initialized in each resolution cell. The total number of cells,
MN, in the resolution space can be large, depending on the desired accuracy in the
parameter resolution. However, the filters can be run in parallel, and independent

of each other, thus reducing the execution time to that of a single filter.

The parameter vector 8;, t=(n—1)*M+m, 1 <n<N,1<m<M,is
defined to be the (n, m)** resolution cell and is used to define NM initial conditions
on the state variables 7 and v. The a priori probabilities of each hypothesis are

determined by integrating the density functions pr(70) and p, (o) over the limits
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defined for each hypothesis. They arc given by
n4l Tm+1
P(6;) = /., " pry(r)ir /1 " by () (7.13)

7.4 Joint Detection/Estimation of Delay and Doppler

The model is now considered in which both v and 7; are unknown, with both
state variables to be estimated. The parameter vector 6; = [n m]T, 1<i<NMis
used to define NM different initial conditions on the state variables 7 and ». The

hypothesis H; that corresponds to 8; for sensor p is given by

Vg kts < 71
H; : 2y = gb'(‘i’k,l:'k) +uvp <kt <Tp+ty (7.14)
Vi kts 2 7+t

where t,, is the pulse width. The initial conditions are given by

Zojo,0; = [Fngs Pmo)T

[Va.r[r,.o] 0 ] (7.15)
0,0; = .
o0 0 Var(vmg)
where

Ikp (Tis V) = @iy (T )Prp (Ts 1)y (Tiy ) (7.16)
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) 4A
W= Ry
Py (T2, 1) = 0.5(1 — cos(2x P (kts — 74)/tw)) (7.17)

Tkp(Tky k) = cos [(f/k(wc, (kts — 7)) — wtpkt,]

The Hanning window is used as the pulse shaping function pi,()-

With the state variable vector as x; = [rg 1], the Jacobian of the measure-

ment model is given by
T T T 1T
G:=[Gf, G, --- G, (7.18)

where the Jacobian Gy, for the p® sensor , that is used in both the EKF and the
EHOF, is given by

G = Iy (X, 0i)
P %z

Xp=%p_1|k—1,0,

day py Opy T
[54(1)“»""» + Gl + “kppkﬁz,,flj
= 3y, ar}
ak?}zkhirkp + a"pp"rEsz

(7.19)
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The partial derivatives within the brackets are given by
6akp _ —-SAt,,
9zi(1) ~ Azi(1)?
/) zr(2) . . .
a:’:?i) = —Wxt:f ) sin(27 ;(2)(k ts — 2x(1))/tw))
6r,,p .
= Z1(2) wep sin (T (2)(wep(kts — Z8(1))) — wipkt
5er ) = B2 wep sin [21(2)(wep(kta — 24(1))) ~ ok t] )
0 kt, — z(1)) . . .
oz = T2 =20 o e 2@ty ~ 5100/ t0)
6rkp

6::;(2) = —Wep (k ts — ik(l))

X sin [5:;(2)(‘&%’(’5 ts — ik(l)) - ""’ipk t’)]

The detection procedure consists of computing gi(Xi,6;) and Gg(xx, ;) for
each value of ki, and for each model 8;. For each model 6;, if z;(1) < kt, <
zx(1) + tw then gi(xx,0;) and Gy(x;,6;) must be computed. The equations for the
innovations Zy;_;,9, and covariance Syj;_); are given in [5.41, 5.42] for both the
EKF and for the EHOF. Whenever the signal is assumed absent (Zx(1) < kt,, or
kts > 2(1) + tw), the innovations become

Zjk-10; = 2k
Skjk-1,6; = Ri
With Zyx_19, and Sii_1,6;, P(0ilZs) is computed using (7.9). The final state
estimate is then computed using (7.10).

7.5 Joint Detection/Estimation of Time Delay

Under some conditions in which v; and 7; are unknown it may be possible to

obtain improved estimated of only one of these these state variables. For example,
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if the pulse width is very short the minimum variance estimate of v;, which can
be obtained from any unbiased estimator, may be larger than the initial Doppler
variance. In this case Doppler estimation is redundant. This section addresses the
model in which »; and 7; are unknown, but only the time delay is to be estimated.
Estimation of Doppler alone is addressed in the next section. The parameter vector
0; is defined as before. To define hypothesis H;, i is replaced by im,, that is, the
Doppler parameter does not change from its initial estimate. Hypothesis H; is now

given by

Uk kt, < 73
H; : zi, =1 gp(Trslmg) + 06 e Skts <Fi+tw (7.21)
Uk kts 2 T+ tw

with initial conditions T
5:o|o,o; = [i'no» Vmo]

(7.22)
Pojog; = [Varlrag]
where
Gkp (;"-k’ l‘;m()) = Gy (i-k )pkp (ik ’ lA’m»o )"Ep (ﬁ ’ "’mo) (723)
. 4A
(%) = g
Py (7ks Pmg) = 0.5 (1 — cos(2x dmg (ks — 1) /te)) (7.24)

Pip (P2 Pmg) = €08 [(Pmg (wep (Kts — 7)) — wipk ts]

The state variable is z; = (3], and the Jacobian equations (7.19, 7.20)
now contain only those terms that include partial derivatives of z;(1). The detec-

tion/estimation procedure is then the same as that described previously.
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7.6 Joint Detection/Estimation of Doppler Shift

Consider the model in which v} and 7 are unknown, but only the Doppler
shift parameter is to be estimated. The parameter vector 0; is defined as bzfore. To
define hypothesis H; 7; is replaced by 74, that is, the time delay does not change

from its initial estimate. Hypothesis H; is now expressed as

vk kta < 'i’no
Hi : zp= Gip(Tngs Vk) + vk Tag S kits < Tng +iw (7.25)
Vi kta 2> %"0 +tw

with initial conditions r
-‘Eolo,a; = [i'no"’mo]

(7.26)
Pojp,s; = [VM[Tno]]
where
gkp(fnoy i’k) = akp(ﬁlo )Pkp(ﬁlov i’k)rkp(}ﬂm i)k) (727)
. 44
agy(Tng) = (c-,,.:;f)'f
Py (P10, 71) = 0.5 (1 — cos(2x D (kts — Fng)/tw)) (7.28)

rip(Fgs ) = €08 [(Ba(wep (kts — np))) — wipkt,)

The state variable is zx = [1;], and the Jacobian equations (7.19, 7.20)
now contain only those terms that include partial derivatives of z;(2). The detec-

tion/estimation procedure is described in section 7.4.
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7.7 Detection Without Estimation

For the detection-only problem we use the initial estimates '7',,0 and ‘A’mo in
the measurement equation. The state estimates remain invariant. The hypothesis

H; that corresponds to parameter §; is defined as

Vi kty < Tnq
H;y : 2z =14 gi(TagsPmy) + Vi Tug S kits < Tny +tw (7.29)
Uk kty > Top + tw
where
9k(Tngs Pmg) = ai(Tng )Pt (Tag)ri(Tags Pmg) (7.30)

The procedure for determining the a posteriori probability is the same as
that described in the previous section with the exception that the state variables

are held constant at their initial estimates Tng and Ugg.
7.8 Experimental Evaluation

As a prelude to the experimental evaluation it is useful to discuss the min-
imum variance that can be obtained through the estimation of time delay and
Doppler shift. Consider the measurement model for a single-frequency pulse in
a rectangular window of size K, where K is the number of samples per pulse. This

signal is expressed by
hi = sin(vw(kt, — 7)) 0<k< K

If the signal k; is received in additive white Gaussian noise with variance o2, the
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Cramer Rao bound (Appendix A) is given by

Var[r] > o _ 11
- Z{(:—ol E{(ahf )2} SNR Vzng (731)
2 ] 1
Var[y] 2 z - L
TKIE { (%})2} SNR w2t2(Tpp' #2) (7.32)

where SNR is the mean square signal amplitude divided by the white noise variance,
i.e. SNR = A?/(20%). The delay variance is reduced by increasing the carrier
frequency w, or by increasing the number of samples. Doppler variance is reduced by
increasing the carrier frequency or by increasing the pulse width (i.e. by integrating
over a longer time). The bound for time delay is achievable only if the initial
uncertainty Aty < 1/(2f:). Measurement of time delay is actually accomplished by
measuring the phase of the received signal. Since the phase is periodic at a rate f,
two time delay estimates separated by 1/ will give the same phase measurement
for a single-frequency rectangular pulse. That is, an initial estimate + > 7 +1/(2f)
is more likely to converge to 7 + 1/ f. than it is to 7. The situation can be improved
somewhat by employing amplitude modulation or angle modulation. However, as
shown in the following section, window functions such as the Hanning window do
not help appreciably. Thus the variance of time delay error may be more accurately

bounded by

Sﬁl{ ;{jzﬁ Ar <1/(2fc)

(7.33)
Varlg]  Amo > 1/(2f.)

Var[r] > {

If the iritial estimation error for time delay is not known to within Ar =

1/(2f;) then parameter estimators will not do any better than the initial estimates.
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This is especially true whenever the SNR is large enough to nullify the effects of any
pulse shaping. This limitation drives the requirement for the number of different
filters needed for accurate delay estimation. If 7o = LA is the total width of the

uniform distribution of the initial delay error, then the number of required filters is
L=2f% (7.34)

For example assume a typical radar operating frequency of 10 GHz. For unambigu-
ous range resolution the associated initial time delay uncertainty must be less than
1 x 10719 seconds, corresponding to a range uncertainty, computed from equation
(7.3), of 0.05 feet. It may be more appropriate to discuss time delay estimation
in the context of communications signals where the operating frequencies are much

lower and the pulse widths larger.

One method for dealing with this problem is to ensure that an initial es-
timate is within £1/(2f,) of the actual time delay . This can be accomplished
by segmenting the initial conditions and operating several estimators in parallel as
described in Sections 7.2 - 7.6. This procedure is evaluated experimentally in the

next section.

Another technique for time delay estimation discussed in the radar literature
[78, pp.167-169) involves leading- and trailing-edge detection of the envelope of the
received signal. The rise time tg of the pulse is lower-bounded by the bandwidth
fB of the received signal with tg & 1/fp. The receiver includes a bandpass filter
of width fp, an envelope detector, and a threshold stage. For this type of receiver,
the variance of the time delay estimate error is lower-bounded by {79, p. 299], (80,
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pp. 400-404]

Var[r] > [ (7.35)

2E,] -1
No 4x? f % ’
where Ny /2 is the noise power spectral intensity, and E, is the received signal energy.

The variance of the frequency estimation error, obtained from coherently processing

the received signal, is bounded by

2k 171 1
Var{w] > [ No'] R (7.36)
w

Noting that Var[v] = Var|w,]/w?, (7.36) is the continuous-time equivalent of (7.32).
The variance in estimating Doppler shift is reduced by increasing the signal pulse
width or by employing a larger carrier frequency. For envelope detection the variance
in estimating time delay is reduced by increasing the signal bandwidth fg. The ideal
situation is to design the signal to obtain good estimation of both delay and Doppler.
This is generally accomplished by employing amplitude and/or angle modulation
on the pulse. The modulation is designed to produce large bandwidth (low Var[r]),

while a large ¢, produces low Var[w,].

Delay and Doppler estimation are addressed separately in the following ex-
perimental evaluation of the JD/E technique. Delay estimation is evaluated in sec-
tion 7.7.1 for a signal with relatively small pulse width (large bandwidth). Doppler

estimation is performed in section 7.7.2 for a signal with large pulse width.
7.8.1 Time Delay Estimation

Both single and double sensor models (P = 1, and P = 2) in (7.7) were
selected for experimental evaluation. For this evaluation the sampling frequency was
fs = 100 x 10° Hz, the pulse width was set to 121, and c, the speed of propagation,

was 186000 miles/sec. For all tests, the nominal time delay and Doppler were
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Tnom = 0.000324 and (vpom — 1) = 8.96 x 10~7 respectively, corresponding to a

target at a nominal range of 10 miles, traveling at 300 mph Doppler velocity.

It was assumed that the error in the time delay estimate was uniformly dis-
tributed at +3.5¢, about the nominal delay. The corresponding variance is then
(7t5)2/12. The error in the Doppler estimate was assumed to be uniformly dis-
tributed at +7.47 x 10~7 about the nominal Doppler. This corresponds to an error

in the Doppler velocity of £250 mph. The corresponding variance is 1.85 x 10713,
7.8.1.1 Single Sensor Evaluation

It is noted that the model in (7.14) does not change appreciably for the
range of values for v; specified in Section 7.8.1. That is, the magnitude of the
partial derivatives with respect to z;(2) (Doppler shift) in (7.19) are much lower
than those with respect to z3(1) (time delay). In fact it was found experimentally
that the filter gain corresponding to the Doppler shift parameter was very small
resulting in negligible change in this parameter from its initial estimate. For this
reason the results presented for joint detection/estimation (JD/E) are shown for
time delay estimation only. In this case the measurement model (7.14) becomes
Zkp = Gkp(Tk, vnom) + vi, for 7 < kt, < 74 + to, with Z0j0,6; = Tng» and Pojop; =
Var(7yny). Thus, for the JD/E technique, #; is held constant at its initial estimate
vnom. For the single sensor evaluation the carrier frequency was w, = 27 * 10 x 106,
The translation frequency was w; = 0. Since the signal is oversampled (f; = 10f,),

it is not necessary to translate the signal.

The single sensor model was used to compare the use of multiple filters (N =
7) to a single filter (N = 1) for joint detection/estimation. With only one filter,

00,0, = Toom, Pojo,e, = (7 t,)?/12, as described previously. The initial estimates
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of time delay for the multiple filter implementation are given by 75, = (n —4) *t, +
Tnom, n = 1,2, --- 7. Thus, the initial delay estimates were separated by t,, with
Var(tn,) = t2/12, Vn. The a priori probabilities are given by P(6a|Zo) = 1/N, 1 <

n<N.

Figure 7.1 illustrates typical simulation results for the JD/E performance
with a bank of seven filters (N = 7). This figure displays the received signal z;, the
estimation error Ty 4., the error covariance Pik,p;, and the a posteriori probability
p(6i|Z;) for all models 6;,¢ = 1,---, 7. The SNR was 10dB for this example. This
figure shows that although the covariance converges, the estimation error does not
converge to zero for all models. However, the weighting provided by a posteriori

probability allows the proper model selection.

The Monte Carlo simulation results for JD/E with a single filter (N = 1) and
a bank of seven filters (N = 7) are shown in Figure 7.2(a). In this figure the mean
square error (MSE) of the estimation error in 73 is shown as a function of SNR,
where SNR = 10log(E,/02), for 1. < kt, < 7 + tw, and E, is the average received
signal energy per sample. Each point on the graph represents the results of 500
simulation runs. Both the MAP and MMSE estimates are shown in Figure 7.2(a).
The MAP and MMSE estimates are the same for N = 1. Also shown on this graph
are the results for the detection-only (D-O) technique. The noise is Gaussian, and
the EKF is used to perform estimation in the JD/E method. The JD/E (N = 7)
implementation gives better results than the D-O method, particularly at higher
SNR. This is expected since the filter in the JD/E method allows a considerable
refinement estimates at higher SNR as compared to low SNR where the larger noise
covariance restricts the filter gain. At —5 dB SNR the JD/E and T O implementa-
tions perform identically. In general, the MMSE estimates are better than the MAP
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estimates, particularly at low SNR’s. The JD/E (N = 1) implementation gives the
worst overall performance. The filter used in this implementation often converges
to poor final estimates due to the tendency, mentioned previously, of time delay to

converge to values that are separated from the actual time delay by multiples of

:!:l/fc,

The importance of selecting an initial estimate within £1/(2f,) is illustrated
in Figure 7.3. This figure compares the JD/E MMSE (eqn 7.10) error distribution for
N =1 to that for N = 7. The distributions are formed from the results of 500 trials
at each of the 6 SNR values —5dB,0dB,- - -,20dB, giving 3000 total observations
of the time delay estimation error. For the JD/E N = 1 case, where the initial
estimation error is allowed to range between +3.5ts (£0.35/f.) for a single filter,
a significant portion of the error distribution is centered around 1 x 107, of 1/f..
However, for the N = 7 case, in which the initial error distribution is segmented
among the 7 filters, the entire distribution is centered around 0 error. In addition,
the distribution around 0 error for N = 7 is tighter than the distribution around 0
for N = 1. This suggests that if the number of filters is chosen such that the initial
estimation error of at least one of the filters is small in terms of 1/(2f.), then the
JD/E procedure can overcome the restriction on the initial estimation error imposed

by (7.33).

The JD/E (N = T7) technique is evaluated in lognormal noise in Figure 7.2(b)
for the single sensor model. The MMSE estimates of 7; are shown in this figure for
the EKF and for the EHOF. The EKF is evaluated in two configurations. In the first
configuration, the Gaussian pdf is used to evaluate the detection statistic given by
equation (7.9). In the second configuration, the lognormal pdf is used. The EHOF
is evaluated using the lognormal pdf only. The EKF in the second configuration and
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the EHOF give very similar results at low SNR. However, at high SNR the EHOF
outperforms the EKF. When the Gaussian pdf is used in conjunction with the EKF
to perform detection, the results are much worse than when the proper lognormal

pdf is used. This advantage is particularly evident at low SNR's.
7.8.1.2 Double Sensor Evaluation

In the multiple sensor case (P > 1), the sensors may have different carrier
frequencies (wc,), and different translation frequencies (wy,). A two-sensor (P = 2)
model was evaluated in which we, = 27 % 10 x 106, Wep = 27 * 30 x 108, and
wit; = wyy = 0. The MMSE results of this evaluation for JD/E (N = 7) are given
in Figure 7.2(c). The single-sensor (P = 1) MMSE results are also shown in this
figure. This figure illustrates the distinct advantage of centralized fusion for JD/E.

7.8.1.3 Multiple Pulse Processing

The results of processing two pulses are given in Figure 7.2(d). The EKF and
EHOF are configured such that the initial error covariance is reset at the beginning
of each pulse. The rationale for this, as discussed in Chapter 4, is to re-excite
the system. This helps to allow poor estimates to possibly converge to smaller
errors, and as shown in Chapter 4 it does not significantly effect those estimates
that have already converged close to the actual state value. Figure 7.1(d) shows an
improvement of about 3 dB for the two pulse estimate over the single pulse estimate.

This improvement is supported by (7.31).
7.8.2 Doppler Estimation

Both single and double sensor models (P = 1, and P = 2) in (7.7) were

selected for experimental evaluation for Doppler shift estimation. For this evalua-
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tion, the pulse width was set to 24 ¢, and, c, the speed of propagation, was 186000
miles/sec. For all tests, the nominal time delay and Doppler were Thnom = 0.000324
and (vpom — 1) = 8.96 x 10~7 respectively, corresponding to a target at a nominal
range of 10 miles, traveling at 300 mph Doppler velocity. The sampling frequency
was set to f; = 4 x 108 Hz. The error in the Doppler estimate was assumed to
be uniformly distributed at +7.47 x 10~7 about the nominal Doppler. This corre-
sponds to an error in the Doppler velocity of £250 mph. The corresponding variance
is 1.85 x 10713, It is observed from (7.32) that the Doppler error variance can be
decreased by increasing the pulse width or by increasing the carrier frequency w..
This is the reason for the large pulse width (6 msec) for Doppler estimation versus

the relatively small pulse width (0.12usec) used for time delay estimation.
7.8.2.1 Single Sensor Evaluation

For Doppler-only estimation the measurement model (7.14) becomes z, =
9kp(Tnom, V&) + vk, for fnom < kts < fnom + tw, With Z0j0,9; = Vmy, and Pojo,e; =
Var(vy,). Thus, for the JD/E technique, 7; is held constant at its initial estimate
Tnom. For the single sensor case the carrier and translation frequencies were w, =

27 * 100 x 10%, and wy = 27 * 99.9975 x 108.

The single sensor model was used to compare the use of seven Doppler filters
(M = T7) to a single filter (M = 1) for joint detection/estimation. With only
one filter, Zo09, = 7nom, Pojo,s, = (2Vmaz)?/12, where vmq; is the maximum
initial Doppler shift excursion due to the maximum Doppler velocity of 250 mph.
Ymaz = (2 *250)/(3600 * ¢) = 7.46 x 10~7. The initial estimates of Doppler for
the multiple filter implementation are given by ¥mg = (m — 4) * Av + vnom, m =

1,2, --- 7, where Av = 2vpe;/7. The initial variance for each of the 7 filters is
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Var(vmy) = (Av)?/12, Vm. The a priori probabilities are given by P(8m|Zo) =
1/M, 1 < m < N. The Monte Carlo simulation results for JD/E for M = 1 and
M = 7 a:c shown in Figure 7.4(a). In this figure the mean square error (MSE)
of the estimation error in v is shown as a function of SNR. Both the MAP and
MMSE estimates are shown in Figure 7.4(a). The MAP and MMSE estimates are
the same for M = 1. Also shown on this graph are the results for the detection-only
(D-0) technique. The JD/E (M = 7) results are essentially the same as the JD/E
(M = 1) results. Thus, in this case there is no advantage in using more than one
filter to estimate the Doppler shift. (This is in contrast to the time delay estimation
results shown in Figure 7.2(a), in which the JD/E N = 7 performance was much
better than that for JD/E N = 1.) The JD/E (M = 7) implementation gives better
results than the D-O method, particularly at higher SNR. This is expected since
the filter in the JD/E method allows a considerable refinement estimates at higher
SNR as compared to low SNR where the larger noise covariance restricts the filter
gain. At —5 dB SNR the JD/E and D-O implementations perform identically. In
general, the MMSE estimates are better than the MAP estimates, particularly at
low SNR'’s.

The JD/E (M = T) technique is evaluated in lognormal noise in Figure 7.4(b)
for the single sensor model. The MMSE estimates of v; are shown in this figure
for the £KF and for the EHOF. The EKF is evaluated in two configurations. In
the first configuration the Gaussian pdf is used to evaluate the detection statistic
given by equation (7.9). In the second configuration the lognormal pdf is used. The
EHOF is evaluated using the lognormal pdf only.




193

uoryewiysy YyS J9jddo( 10y avueunioprod J/dAr  ¥'L 2By

sas[ng o|dnn|y ‘L = N ‘¥ 10} IS - d/ar (p)

J08uag I[Ny ‘L = N ‘Y1 30} ASWI - d/ar (q)

(dp)uNS (ap)uns
02 Gl 01 G 0 S~ oel 02 4 0l S 0 S ocl
oM s m”” 5
....... chl S 5
i gl W 05! .\M
B « B
.. -1 661 = 09l —
= sa5Ind 2 ‘=N — ASHN © | gy 2=d ‘M o | oq
asind 1 ‘=K — ASKN o I=d ‘43 o
: 9l oLl
1=d ‘L= N ‘osioN [2unzoulof ‘Y1 10} GSNI - 4/Ar (@) 1 = d ‘esioN werssner) ‘11 ut Jouq (e)
(dP)uNS (apP)uNs
02 Gl o1 G 0 S=oe1 02 cl o1 G 0 S oel
el cel
A — vl S
okl S e 2
W - ohl =
0s! L=N ‘dVN - 00 + =
. ccl m\ 2=N '3SKK - 00 v | 0GI m
jpd ueissney ‘qyq v =R 'd¥d 0] VK - /0t o -
jpd jewsoudo] ‘4yd o | 091 4=K '4X3 10 ISKK - 3/at o | SS!I
jpd jewzoudoy ‘4oHd o ol 1=R ‘433 10} ISHK - 3/at o -




194

7.8.2.2 Double Sensor Evaluation

In the multiple sensor case (P > 1) the sensors may have different carrier
frequencies (wep), and different translation frequencies (wtp). A two-sensor (P = 2)
model was evaluated in which we; = 2w % 100 x 106, wy, = 27 % 99.9975 x 108,
Wey = 27 x 200 x 10%, and wy, = 21 % 199.9975 x 105. The MMSE results of this
evaluation for JD/E (M = 7) are given in Figure 7.4(c). The single-sensor (P = 1)
MMSE results are also shown in this figure. This figure illustrates the distinct
advantage of centralized fusion for JD/E.

7.8.2.3 Multiple Pulse Processing

The double pulse model is compared to the single pulse model in Figure
7.4(d). Recall from (7.36) that the variance in frequency (and Doppler) estimates is
a function of the inverse pulse width squared. However, processing two pulses does
not give the same advantage as processing an equivalent pulse of size 2¢,,. As shown
in Figure 7.4(d) the advantage is approximately 3 dB - the same as for time delay
estimation (Figure 7.2(d)).

7.9 Conclusion

The space-time modeling of the signal returns as described in (7.14) has been
used in conjunction with nonlinear filters to design a new adaptive sensor processor.
Simulation results show excellent detection capabilities and excellent resolution in
target parameter estimation for both single and multiple sensor data. With the
excellent detectability, fine parameter resolution, and automatic data referencing,
this approach presents a very competitive design for target detection and parameter

estimation.
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The most significant result from the implementation of the JD/E technique
for time delay estimation is that the requirement that the initial estimation error

At < 1/(2fc) can be relaxed by implementing several parallel filters.
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Chapter 8

Multisensor Detection and Signal Parameter Estimation

This chapter addresses the problem of multi sensor detection and high reso-
lution signal parameter estimation using joint maximum a posteriori detection and
high order nonlinear filtering techniques. The specific problem addressed is that
of two spatially separated sensors that employ active echo processing to estimate
the parameters of a target. The geometric area of coverage of the two sensors is
permitted to overlap. In the overlap region the estimates from the two sensors are

combined to produce improved estimates over the single sensor estimates.

The problem is approached using joint detection/estimation techniques. Sev-
eral hypotheses are postulated for detection. Each hypothesis corresponds to the
ability of each sensor to detect the target in its area of coverage. The a priori prob-
abilities of each decision are based on the area of coverage of the two sensors. For
each hypothesis, a high order filter recursively estimates time delay, Doppler shift
and geometric angle to the target from processing the returns of the transmitted
signal from each sensor. These estimates are in turn used to estimate target position
and velocity. For each of these hypotheses, another set of parallel filters is used to
obtain more accurate estimates of signal parameters and to account for the stability
problems that result from the first order Taylor series expansion used in the nonlin-
ear filtering algorithms. This is accomplished by operating a separate filter for each
of several different initial time delay estimates of the return signal. The maximum
likelihood estimate for a given hypothesis is then determined as a weighted sum of
the estimates from each of the local hypotheses, with the a posteriori probability
being used as the weighting function. It is assumed that the signals are imbedded
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in Gaussian noise, and clutter. The clutter is treated as non-Gaussian noise with a

lognormal or Weibull distribution.

Consider the situation of two spatially separated sensors, s1 and s2. Each of
the two sensors attempts to detect and track objects coming into its respective area
of coverage. For a valid data fusion scenario, the coverage of the two sensors is as-
sumed to overlap in space, but not entirely. The sensor geometry is shown in Figure
8.1. In the overlap region the data received by the two sensors can be combined to
get a more accurate estimate of target parameters or to estimate parameters that
cannot be estimated with one sensor alone. In the overlap region the estimates from
the individual sensors are combined to form improved target parameter estimates.
We consider the case where each of the sensors may have different types of tracking
devices such as optical trackers, various types of radars, etc. It is assumed that
these sensors transmit a signal and process the echo returned from that signal. It
is assumed that the signals are corrupted by additive Gaussian noise due to ther-
mal effects within the receiver, and by clutter which may be due to non-Gaussian
distortion such as sea clutter or other multipath spreading. The amplitude of sea
clutter is characterized by statistical fluctuations which may be described in terms
of a probability density function. Typical distributions used to model this distor-
tion include the Rayleigh, Weibull or lognormal distributions [81, pp. 478-479]. In
general, the Gaussian noise introduced into the receiver is uncorrelated between the

two sensors.
8.1 System Model

Assume that each sensor consists of a phased array or other sensing device

that can produce target angle estimates along with estimates of time delay and
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Doppler shift. It is assumed that there are two separate measurements taken at
each sensor - one measurement at each of the offset phase centers. The received

signal at the i*% sensor may be described by
zZi, = h.'k +ui, +vi, (8.1)

where h.'k represents the received signal, u;, is the clutter, and Vi, is the Gaussian
noise at the k** sampling interval. Since there are two measurements, the received

signal can be more explicitly stated as

Zi1 hiy u;) Vi1
Zi2) hizk 42, Uiz,
The received signal vector h;, at sensor i can be described by the following model.

[h.‘lk ] _ [a(kt, — 71 + Ti2/2)p(kts — Ti1 + Ti2/2)sin(vi(wi(kt, — Ti1 + Ti2/2)))

a(kts — iy — Ti2/2)p(kts — Tix — Ti2/2)sin(vi(wi(kts — Ti1 — Ti2/2)))

h;
2" (8.3)

where a(.) is the amplitude, p(.) is the pulse shaping function, and ¢, is the
sample time (t, = 1/f,). The delay 7;; is the round-trip propagation time from the
center of the sensor to the target and back to the sensor. Referring to Figure 8.2,
this is the time for the signal to travel from point P; to O and back to point F;.

From 7;; the range to the target can be determined using the relationship

a

Ri= 2 (8.4)

(]
[y}

where c is the speed of propagation. The delay 7i; is the difference in time for
the signal to reach from point P;; to point P,;. The difference in the propagation
distance is given by c7j;. The differential angle A¢; to the target from sensor i,

which represents the difference between the sensor pointing angle ¢;; and the actual
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target angle ¢;, is then

A¢i =sin! (S22
( Di ) (8.5)
¢i = dig + Adi

where D; is the distance between the two offset phase centers in the phased array for
sensor ¢. The initial estimates of 7;; are based on the geometric relationship shown

in Figure 8.2. This figure shows that the geometric angle A¢; is given by

sin(Adi) = %‘ = 51;'% (8.6)

The function p(.) in (8.3) represents the pulse shaping function and is gen-

erally designed to limit the signal bandwidth at the expense of widening the main
lobe of the function in the frequency domain. Several possible pulse shapes and
their spectral characteristics are given by Harris [82]. It is assumed that the signal
is attenuated by spherical spreading loss such that the received amplitude a(.) is

related to the transmitted amplitude A through the relation

4A

alkts — (ra £ 7i2/2)) = T o

(8.7)

For constant receiver noise power 03, the signal to white noise ratio at the receiver
is given by

Epa(kt, - (1’,‘1 + 1'.'2/2))2 _ SEPAZ

SNR; = 207 ~ E(ra £ Ti2/2)20?

(8.8)

where E, is the average pulse energy per sample. Given that the transmitted ampli-
tude A and the carrier frequency w; are known, then the unknown delays 7;; and 72,
and the Doppler shift parameter ¥; must be estimated. The Doppler velocity Va,,
which is the projection of the target velocity along the line of sight from sensor 1 to

the target and is given by Vg, = [V|cos(vi), where V is the target velocity vector.
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Vi, is related to v; through the relation

(8.9)

The estimation accuracy and the number of target motion parameters that
can be estimated are a function of the position of the target within the coverage area
of each sensor. If the target is located in a region covered only by a single sensor
then estimates of the Doppler shift and the two time delays from this single sensor
can be used to estimate only the target position and Doppler velocity Vg, for that
sensor. If the target is in the overlap region then estimates of the Doppler shift and
the two delays from each sensor can be used to obtain a more accurate estimate of
target position in addition to estimating the complete target velocity vector. The

models for these two situations are developed next.
8.1.1 Single Observer Model

Using estimates of 7;1, T2 and »; from one sensor the target position and
Doppler velocity can be estimated through the relations (8.4, 8.5, and 8.9). Define

the state variable vector for sensor : as
T
Xip = [""lk Tizy ""k]

It is assumed that the state does not change while the pulse is being reflected from
it. Therefore the process equation is not necessary; that is, the state transition
matrix is unity and there is no process noise. In terms of the state variables the

received signal at transmitter 1 is

b, = airy (i )pin, (Xig Jrin, (i) (8.10)

@iz, (Xig )pizy (ig Jrizy (i)
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where

ain (3. ) = 4A
T T (2 (1) + 24, (2)/2))2

i (i) = 4A
2\ R ) = (c(zi (1) — i (2)/2))?

p,'lk(x.'k) =05x%(1— cos(21rz,'k(3)(kt, - :L'.‘k(l) + zik(2)/2)/twg))

(8.11)
pizg (xip) = 0.5% (1 — cos(2rz;, (3)(ts — iy (1) — 2iy (2)/2)/tw;))

riy, = cos(zi, (3)(wilkts — ziy (1) + i (2)/2)))
rig, = COS(Iik(3)(Wi(kta - 3ik(1) - zih(2)/2)))

The definition of pi1, (i, ) given above represents the Hanning pulse type with pulse
width £,,;. The filter equations require the derivative of the signal model with respect
to the state. This derivative is given by

da;y i1 driy
'a;'.':ml gy +aia -a;..:r.‘l,, + ai1pi ,,-,;'.:

8r,-2

. 84-2 8p-2
ax'k ’ﬁ:Piszizk + aizk #rﬂk + a"zkp"sz,-:

oh;,

(8.12)
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where
daij, —84
0zip (1)~ e (i (1) — K574, (2)/2))3 |
daij, kj4A |
9zi(2) 2 ((iy (1) — 5570, (2)/2))° ‘
Opi;
5?1.-’,:?"1_) = —(miy (3) /tuw; )sin(27 iy (3)(kts — iy (1) + K3y (2)/2)tu;)
Opi;
b?ff(‘kfﬁ = 0.5%;72iy (3) /tu;sin(27 iy (3)(kts — 23y (1) + K523y (2)/2)//te;)
Opi;
a%(';,; = (x(kty = iy (1) + K;%iy (2)/2)/tw;) (8.13)
sin(27zi, (3)(kts — ziy (1) + 5,7, (2)/2)/tw;)
ori;
ﬁ = +zi, (Bwisin(ziy (3) (wilkt, — i, (1) + £;zi, (2)/2)))
Ori;
’a?.-f(z_) = —0.5k;zi, (3)wisin(zi, (3)(wi(kts — iy (1) + &2 (2)/2)))
ori;
33:.':(3) = —wi(kts — zi, (1) + 52, (2)/2)
sin(zi, (3)(wi(kt, — ziy (1) + 2y (2)/2)))
for j = 1,2. x; = +1 whenever j = 1. x; = —1 whenever j = 2.

It is assumed that the error in the initial conditions is not correlated with the
measurement noise and that the Gaussian noise is not correlated with the clutter.

Thus the measurement noise covariance is given by
Ryy) = El(wiy +viy)(uiy +vip)T)
1 . 'k % %k Sk

= E[u.-,,u?;] + E[V-',,V-',,)T] (8.14)

)L
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where it is assumed that the Gaussian measurement noise and the clutter are un-
correlated, and that the clutter has correlation coefficient p; between the two offset

phase center beams. The third moment of the measurement noise is
R® = E[(u;, ® u;,)u7] (8.15)
U kS T/ 0 '

which contains components only due to the clutter since the Gaussian noise has a

symmetrical density function. The fourth moment of the measurement noise is

R = E[(ui, ® uiy)(uiy ® uiy)T] + E[(vi, ® Vi, )(viy @ vi,)"] (8.16)

8.1.2 Double Observer Model

When information is available from two sensors, that is, whenever the target
is in the overlap region, and the target is illuminated simultaneously by the two
radars, the Doppler and time delay estimates from each sensor can be combined to

obtain a better estimate of target position and velocity.

Let X’ and Y’ denote the directions of a local coordinate system as shown in
the insert in Figure 8.1. Let ¢y, and ¢, the pointing angles of the two sensors, be
chosen such that ¢z, — ¢1, = 90deg. In this case the direction X' points directly
along the line of sight (LOS) of sz, and perpendicular to the LOS of s;. Likewise,
Y’ points directly along the LOS of s; and perpendicular to the LOS of s2. X' is
the in-track direction for s; and the cross-track direction for s;. Y’ is it in-track

direction for s; and the cross-track direction for s;. For small angles Ad; such that
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sin(A¢; =~ 0), the position estimates in the X', Y’ coordinate system are given by
0, = —(cha1/2 — Ry,)

= Ryych2/Dy
‘ (8.17)
Ovl =cm /2 - R]o

= Ryyctaz /Dy

where R;, is the nominal range from sensor i to the center of the insert in Figure

8.1. The associated position error variances are given by
2 2
Tt = RloczVar[m]/Df

0% = Var[ry]/4

=
(8.18)
03,1 = ¢*Var[r1]/4

0312 = Rgo ¢*Var[ry)/ D3

If it is assumed that the time delay estimation errors have Gaussian distributions
then the maximum likelihood estimate of the target position in the overlap region

R; is given by
02; Ryychi2/ D1 — U:Il (cf21/2 — Ryy)

0. = 8.19
! a:,la:,z (8.19)
0% (ct11/2 — Ry1p) + 0% Ryycr22/D
" Y, 11 1o s 20€722 1
Oy = 4 g 1 (8.20)
"%

From Figure 8.1 it is seen that the target position (O;,0Oy) can be found
from the time delays at either sensor. The position coordinates are determined from
Oz = izl cos(&l)

(8.21)
= Riyzcos(a) + Rycos(¢2)
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O, = filsin(a)l)
(8.22)
= Ryzsin(a) + Rzsin(¢2)
where R; and ¢; are obtained from (8.4, 8.5). Define the position error variances
02, = Var[Ricos(¢1)]
032 = Var[Rizcos(a) + Rzcos(¢2)]
. ) (8.23)
031 = Var[R;sin(¢1)]
032 = Var[Ryzsin(a) + Rysin(é2)]
For small angles A¢; these error variances can be expressed in terms of the time
delay variances through the use of (8.5) and (8.4). This yields
03, = R} sin*(419)(c/D1)*Var[nz] + (c/2)*cos’ $1q Var[ry)
o2, = Rj sin®(¢2,)(c/ D1)*Var|ra] + (c/2)cos 2, Var[ry1]
(8.24)
of, = R} cos?(19)(c/D1)*Var[ri] + (¢/2)’sin® $1, Var[ry]
032 = Rgocosz(tﬁzo)(c/Dl )?Var[m] + (c/2)2sin2¢20Var[1'21]

In the overlap region the estimates can be combined to form the weighted estimate

b, = Th(Pacos(d)) + o2, (Rizcos(a) + Racos(4s))

- ool (8.25)
0, = afl (Rysin(é1)) + 032 :Rlzzsin(a) + Rysin(¢2)) (8.26)
0%

The Doppler velocity estimate V and Doppler angle estimates 4; and 42 can
also be estimated in the overlap region. With the estimates $1 and $2 in hand, the
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angle { is found from

Using the Doppler velocity equation
Va; = [Vieos(3:), (8.27)

and 4 = 43 + (, the ratio of Doppler velocities gives

E _ cos(¥2 + 9)
Vi,  cos(32)

Solving for 4,

sin(()

With the estimate 92, the magnitude of the Doppler velocity [V| can be found from

:’2 = tan'l [COS(Z) - ‘A/dl /%2]

(8.27), and the target heading is ¥ = —4; + ¢2 — 7.
8.2 Joint Detection/Estimation

The target search region has been localized to the rectangular box shown in
Figure 8.1. This box is subdivided into several resolution cells as shown in this figure.
The beam pattern from sensor s; allows this sensor to detect a target and estimate
its parameters if the target is located in resolution cells 1 through 21. Sensor s;
can detect the target if it is in cells 11 through 15, 22 through 25, or 26 through
31. If the target is not located in any of these cells then the target is declared
not present (or more precisely, not detectable) . This situation is represented by
the null hypothesis Hp. The resolution cells are grouped into regions which will
be used for minimum mean square error estimation. If the target is located in

regions R; (resolution cells 1 through 9) or R3 (resolution cells 16 through 21) only
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sensor 81 can detect the target. Regions R4 (resolution cells 22 through 25) and Rs
(resolution cells 26 through 31) correspond to the coverage area of sensor s only. If
the target is located in region Ra (resolution cells 10 through 15) both sensors can
detect the target and perform parameter estimation. In this case the estimates can
be combined as described in section 8.1.2. The remaining area in the rectangle in

Figure 8.1 is designated as region Ry, where neither sensor can detect the target.

The joint detection/estimation (JD/E) procedure applied to this problem
involves both model uncertainty and uncertain initial conditions. JD/E for this
situation is discussed in Chapter 5. Let 8§; € © designate the parameter vector
that describes the different combination of model uncertainty and initial condition
uncertainty. The parameter vector §; is assumed to be time invariant. The param-
eter vector 0, j = (n—1)*M+m, 1 <n<N,1<m< M, is defined to be
the (n,m)** delay/Doppler resolution cell and is used to define NM + 1 different
combinations initial conditions and models. n corresponds to the range resolution
cell number determined from the initial conditions on the two time delays from each
sensor, and m corresponds to the velocity resolution cell number determined from
the initial conditions on the Doppler shift from each sensor. Since the model uncer-
tainty is associated with the spatial coverage of each sensor, Doppler shift estimation
is not considered in the experimental evaluation. The signal carrier frequency w,
and pulse width ¢, will be assigned values that lead to good delay estimation, but
poor Doppler estimation. This is done so that large Doppler uncertainty has limited
effect on the model used in each spatial resolution cell, and the focus can be directed

primarily on range and azimuth resolution.

The number of Doppler resolution cells is set to M = 1 in order to simplify

the discussion to follow. For the case M > 1 the initial conditions on Doppler shift
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would be different for each hypothesis. This situation is discussed in Chapter 7. For
M =1 the parameter 0; is directly associated with the range resolution cell number.
Hypothesis Hoj, redesignated Hj, corresponds to the hypothesis that the target is

present in range resolution cell j.

In region Ry, from which neither sensor can detect the target, hypothesis Hy
is defined by
Ho : ziy =ui +vy, Vk, 1=1,2 (8.28)

For those resolution cells in regions R; and R3, the hypothesis corresponding

to cell j,7 =1,2,---,9 (Region Ry),j = 16,17,---,21 (Region Rj3) is given by

( Ulm, + Vim; kt, < 'f'lmjk
2imy = hlmk + Ulm, + Vim, ﬁ"‘jk <kt < ‘i’lmjk + t"’l
HJ 1 4 ulmk + vlmk kta Z ‘i.lm.’k + twl (8-29)

Z2, = Uz, + V2, Vk

\

for m = 1,2. The delay #; i is given by

ﬁmjk = ﬁljk + "mﬁ?jk (830)
where k,, = +1 whenever m = 1, and x,, = —1 whenever m = 2. The initial

conditions are given by

&lolo“’. = [“i'lljo ’ %12"0 ’ i.’l"’]T

(8.31)
Pigs; = Disg [Varltus, ), Vactira ], Vaeloso]

The initial estimates 73 J'o’%"z J'o’i = 1,2 are chosen such that the position of the

target for a signal received ate sensor i is at the center of resolution cell j. The
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variances Var[‘i‘.'ljo] and Var[7;2 J'o] are determined based on a uniform distribution

of the error within the cell.

In region R; both signals are assumed to be present. In this region the

hypothesis associated with cell j, j = 12,13,---,15 is given by

4

21my, = 4

22"'& = {

\

(

\

\

Ulm; + Vim, kt, < i'lmjk

hlmk + Uim,; + Vim, ‘hmjk < kta < ‘?lmjk + twl
Uim, + Vim, kt, > %lm,'k + twl
u2mk + v2mk ktl < hm,b

thk + uzm; + V2m, +2mjk Skt < +2mjk + tw,

U2m; + V2m, kt, > ﬁmjk + tw,

for m = 1,2. The initial conditions are given by

3 — [4. A, » 1T
J'OIO,OJ' = [Ttljo ’ 702,'0 ’ Vlo]

Pigyo,e; = Diag [Va-f ["'il,-o],Var[ﬁz,—o],Va.r[f/.-o]]

1=12

(8.32)

(8.33)

For those resolution cells in regions R4 and Rs, where only sensor 2 can detect

the target, the hypothesis corresponding to cell j, j = 22,23, --,25(Region Ry),j =
26,27, ---,31(Region Rs) is given by

\

[ zlk=u1k+vlk Yk

“ka + v2mk ktl < hmjk

Z2mk = h2mk + “2'»& + vak ﬁm’k S ktl < ﬁm,k + th

u2mk + v2mk ktl 2 hm’k + th

(8.34)
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for m = 1,2. The initial conditions are given by

&%lo,aj = [‘?21,-0,*22,-0,1‘/20]7'
(8.35)
P 2o|o,oj = Diag [Va.r [%21 J'o]’ Va.r[‘i‘zz 50]’ Var[ﬁgo]]

A maximum a posteriori detection criterion can be used to determine the
most likely range resolution cell. This criterion requires the availability of apriori
probabilities of each hypothesis, and it requires the probability density functions for
the measurements. Define Z; = (21,22, - - - z;), where z; = [z{k,z'{k]T, as the set
of all measurements up to time k, and let p(zi]|Z;—,, ;) be the probability density
function of z; given the measurements Z;_; and hypothesis H;. The a posteriori

probability of hypothesis H; is given by

P(0;|Z;_1) Ai(z)

P(8;|Z:) = 8.36
) = N P(OmlZs 1) Am(ar) (8:39)
where A ;(z;) is the likelihood ratio defined by
Ak(zk) = p(zklzk—l’ok) (837)

P(zk|Zx—1,00)

In general the distribution function p(2i|Zj_,0;) is non-Gaussian. Since the mea-
surement noise consists of a sum of Gaussian noise and non-Gaussian clutter, the
joint density function consists of a convolution of the Gaussian and non-Gaussian
density functions. In general it is not possible to compute this joint density analyti-
cally and must be done numerically for each iteration of the filter, since the density

function changes as the estimate *klk.ﬂ.' changes.

Maximum a posteriori (MAP) detection can be used to decide the most likely
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hypothesis according to :
Choose Hj : 0; = argmaxy  c@ P(0m|Z:i) (8.38)

The MAP estimate from sensor s; is then the estimate associated with cell j if cell

7 1s in the spatial area of coverage of that sensor.

The minimum mean square error estimate can be found be combining the
estimates from all of the cells with a particular region. If the state vector x; is
common to all models the minimum mean squared error (MMSE) estimate can be

used. The MMSE estimate for sensor ¢ in region R, can be expressed by
i:klk = Z P(ojlzk)iiklk,ﬂj' (8.39)
celljerp

The most likely region is selected using the MAP criterion. Define as the hypothesis
that the target is located in region Rp as I, p = 0,1, ---, 5. The a posteriori
probability associated with region R, is the sum of the a posteriori probabilities of
all of the cells in that region. This region-level probability is given by

P(LlZi)= Y P(6;|Zs) (8.40)
celljeRp

The most likely region is chosen such that

Choose I, : P = argmax,_,..56.c0 P(I,|Zy) (8.41)

8.2.1 Definition of Priors

The a priori probabilities of each hypothesis are based on the area coverage
of the sensors. The total number of resolution cells shown in Figure 8.1 is 56. Of
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these, 25 are located in region Ry. All cells are assumed to have an equal probability

containing the target. The a priori probabilities are given by

P(6o) = 25/56

(8.42)
P(6;) = 1/56, j=12 ---31
The probabilities asscciated with regions R;, j = 0,1, ---, 5 are given by
P(Ip) = 25/56
P(I,) =9/56
P(I;) =6/56
(8.43)
P(I3) = 6/56
P(I4) = 4/56
P(Is) = 6/56

8.3 Simulation Experiments

An experimental study was conducted to evaluate the performance of the
multisensor fusion technique. In this evaluation the measurement noise consisted of
50% Lognormal Noise and 50% Gaussian noise. The nominal angles from sensors
s1 and sy to the target were ¢1, = 45deg and ¢, = 135deg, respectively. The
nominal range from s; to the target was 10 miles. The nominal range from sensor
82 to the target was chosen such that the received signal at s; was 5 dB higher than

at s; for the same transmitted signal level and target strength.

The carrier frequencies used by the two sensors were the same at f. = 10x106.

This is not practical situation since two cooperating sensors would not transmit at
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the same frequency, unless they use the same signal generator and transmissions
from the two sensors are offset in time. However, it is desired to show the effect of
only one variable, the relative SNR at each sensor, on the estimation error. Since the
operating frequency affects the variance of the estimates as described by (7.31), the
operating frequencies are kept the same. Both sensors illuminate the target simulta-
neously. They both sample the signal at a rate f, = 100 x 106, and both signals have
the same pulse width ty, = 12/fs, ¢ = 1,2. The resolution cell width is 1/f, sec-
onds. The associated initial error variance on time delays 114 and 721, is t2/12. The
corresponding range resolution cell width is Ar; = ¢/(2f,). Thus, the initial variance
for the angle-measurement delays is (8.6) Var[riz,] = ((Dic)/(2fs Ri))?/12, i = 1,2.
D;, the separation between phase centers at the sensor was chosen to be 3 feet for

each sensor.

The carrier frequencies, pulse widths, and sampling frequencies chosen for
this evaluation are the same as that chosen for the time delay estimation experi-
ment in Chapter 7. It was observed in Chapter 7 that the values chosen for these
parameters are not conducive to estimation of Doppler shift. Since the primary
goal of the evaluation in this chapter is to properly locate the correct region and
resolution cell number, the estimation of Doppler shift plays a secondary role. Ac-
cordingly, Doppler shift is not estimated in this evaluation. Target positions are
selected randomly with a uniform distribution in the spatial area designated by the
large box in Figure 8.1.

Simulations were performed for SNR'’s (at sensor s;) ranging from -10dB to
10dB. 500 random target positions were chosen at each SNR. Of these 500 trials,
228 target positions randomly chosen in region Rg, 91 in R;, 54 in Rz, 44 in R3, 40
in R4, and 40 in Rs.
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Table 8.1 shows the detection results for the EKF using the Gaussian pdf
to evaluate the a posteriori density function in (8.37). The average a posteriori
probability for correct decisions at the region level is given by P(I,|zk). This is
computed as the arithmetic mean of the a posteriori probabilities (8.40) for those
trials in which the correct region was chosen using (8.41). This value gives may be
used as a measure of the level of confidence that the proper region was chosen. At
the resolution cell level the average probability is denoted P(oj|zk). A target was
declared present if the a posteriori probability P(Ip|Z;) for any region p,p=1,---,5
was greater than P(Iy|Z;). The probability of detection is labeled P(I,|1,), p,q # 0.
This quantity was determined by dividing the total number of declared detections,
or the number of trials in which a target was declared present in any of the regions
R; through Rs, by the total number of trials in which the target was actually located
in one of the regions Ry through Rs. The probability of false alarm, P(Ip|Io), was
determined by dividing the total number of trials in which a target was declared
present when it was actually in Rp, by the number of trials in which the target was
actually in Ry.

Table 8.1. Multisensor Fusion Detection and False Alarm Probabilities

SNR(dB) | P(6;lZs) | P(IZ) | P(lL), p.a#0 | P(Ilh)

-10 0.61 0.74 0.74 0.18
-5 0.77 0.93 0.91 0.059
0 0.83 1.0 0.99 0.0044
5 0.84 1.0 1.0 0.0

10 0.84 1.0 1.0 0.0
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The JD/E technique performs very well in terms of locating the proper region.
However, the performance is not as good in finding the correct cell. This is due to the
fact that the initial variance in angle delay is so small that the filter cannot properly
decide the correct cell number. The probabilities of missed detection P(Ip|I,) and
correct classification (i.e. not only detection of the target but correct localization at
the region level) P(Ip|l;) , p=1,-:-,5 are displayed in Table 8.2. The probability
of misclassification, which is not shown in this table, is given by P(I,|l;) = 1 -
P(Ip|I,)— P(Io|l,), g # p. Sensor s; outperforms sensor s;, which is to be expected
since the SNR at s; is 5 dB higher than the SNR at sensor s2. In the overlap region,
Ry, the classification performance is much better than it is for any other region,

with an 85% probability of correct classification.

Table 8.2. Probabilities of Missed Detection and Correct Classification - Region Level

SNR(dB) Probability

p= p=2 | p=3 | p=4 | p=35

-10 P(Io|1,) 0.35 0.074 0.50 0.15 0.16
P(Ip|Ip) 0.57 0.85 0.45 0.78 0.79
-5 P(Io|Iy) 0.13 0.019 0.23 0.025 0.023
P(Iy|Ip) 0.87 0.96 0.77 0.98 0.98

0 P(IlI,) | 0.022 0.0 0.023 0.0 0.0

P(Ip|1,) 0.98 1.0 0.98 1.0 1.0

5 P(Io|Iy) 0.0 0.0 0.0 0.0 0.0

P(I,|I,) 1.0 1.0 1.0 1.0 1.0

10 P(Io|1,) 0.0 0.0 0.0 0.0 0.0

P(I,|1,) 1.0 1.0 1.0 1.0 1.0
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The missed detection and correct classification probabilities at the cell level
are shown in Table 8.3. The results are averaged over all of the cells in each region.
Again the performance for those cells in region R2 was much better than for any
other region. The classification results for regions R;, R3, Ry. and Rs were poor
even at high SNR’s. The results in this table reflect the inability of the sensors
to detect the proper cell number in the cross-range direction. Figure 8.1 shows
that there are three cells in the cross range direction for sensor s;, and two cells for
sensor 2. Thus assuming that the cell number cannot be resolved in the cross-range
direction, the expected cross-range uncertainty for regions R; and Rj3 is 1/3, and the
cross-range uncertainty for R4 and Rs is 1/2. This is verified by the experimental
results in Table 8.3 at 10 dB SNR.

Table 8.3. Probabilities of Missed Detection and Correct Classification - Cell Level

SNR(dB) Probability

Ry Ry Rs Ry Rs

-10 P(6ol6;) | 085 0.20 0.86 0.28 0.33
P(65160;) 0.022 0.52 0.046 0.23 0.21
-5 P(60}6;) 0.29 0.019 0.39 0.025 0.023
P(o;16;) | o0.16 0.76 0.20 0.33 0.44

0 P(60)0;) 0.033 0.0 0.046 0.0 0.0
P(9;16;,) | 0.3 0.94 0.27 0.43 0.51

5 P(60)6;) 0.0 0.0 0.0 0.0 0.0
P(9;16;) | 0.39 0.94 0.27 0.45 0.53

10 P(60]6;) 0.0 0.0 0.0 0.0 0.0
P@;6;) | o036 | 09 | 032 045 | 0356
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The estimation results are shown in Figure 8.3. All results shown in this
figure are in reference to the (X’,Y’) coordinate system. Figure 8.3(a) shows the
average mean squared error for those detections in regions R; and Rj3, in which only
s1 has coverage. The results in this figure are consistent with those in Table 8.3
in that the estimates in the cross-track direction X’ never improve over the initial
estimates regardless of the SNR. Figure 8.3(c) shows similar results for regions Ry
and Rs, which are covered by sensor s;. Figure 8.3(c) also illustrates the 5 dB
performance for sensor sz over that for s;. Figure 8.3(b) shows the results for both
sensors in region R;. In this region, as shown in Table 8.3 the proper cell is almost
always found. Thus the cross-range estimation error variance should improve by
about 6 dB (20log(2)) for sensor sy, since the cross-range error for s; has been
localized from 2 cells down to 1. Similarly, the cross-range error variance for sensor
s1 in Region R2 is reduced by about 10 dB (20log(3)) since the target has been
localized from 3 cells down to 1. This improvement is evident in Figure 8.3(b).
Figure 8.3(d) shows the estimation results using the combined measurents obtained
from (8.19and 8.20). Because of the larger variance in the cross-range error for each
sensor and the fact that the intersection of the LOS’s between the two sensors are
perpendicular, the combined estimate consists of the X’ estimate from sensor s and

the Y’ estimate from sensor s;.

The mean squared errors in the (X, Y’) coordinate system are shown in Figure
8.4. Each curve in this figure represents the combined X and Y position errors,
since the geometry dictates that the error variance should be the same in each
direction. The (X,Y) positions are obtained using (8.21) and (8.22). This figure
again illustrates the approximate 5 dB improvement in the estimates from sensor s

over that of sensor s; in the nonoverlapped regions, and the significant performance
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improvement in region Rp. It is observed that the (X,Y’) position errors for the
overlap region shown in Figure 8.4 are significantly worse than those shown in Figure
8.3(d) for the (X',Y”) coordinate system. This is particularly evident at high SNR’s.
This is due to the fact that the cross-track errors are included in the computation
of the combined estimate O, and O, determined by (8.21) and (8.22). The choice
of the proper coordinate system can make a large impact on the performance of the

estimator.
8.4 Conclusion

A technique has been presented for multisensor fusion based on joint detec-
tion/estimation procedure. It is shown that excellent performance can be obtained
for both target detection and target parameter estimation using this technique. A
significant advantage of this technique is that each sensor can perform detection and
parameter estimation in a decentralized mode. The final estimates and a posteriori
probabilities from each sensor are processed by a centralized processor to derive the

optimum estimate.

The method provides an automatic referencing mechanism of the data from
the different sensors (automatic data alignment) as long as the geometry and timing
of the sweeping beams are known. For optimal target resolution performance, it is
found that the lines of sight of the two sensors should be perpendicular to each
other at any given time, requiring special synchronization. This implies that if the
sweeping angle of one of the sensors, e.q. s; as a function of time is ¢1,(t), the
corresponding sweeping angle of sensor s; must be ¢3,(t) = 7/2 + ¢y4(t), a goal

that is easily accomplished with an efficient model reference (adaptive) controller.
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Chapter 9

Summary and Areas for Further Study

Two high order filters (HOFs) have been presented for estimation in non-
Gaussian noise. The first filter is designed for systems with asymmetric probability
densities. The asymmetrical filter is developed by using the first and second pow-
ers of the innovations in the derivation of the filter equations. The second filter is
designed for systems with symmetric probability densities. It is developed based on
first and third powers of the innovations. These filters are evaluated experimentally
in non-Gaussian noise formed from Gaussian sum distributions. Under these con-
ditions the HOFs perform much better than the standard Kalman filter, and close
to the optimal Bayesian estimator, the Gaussian sum filter. However, the primary
advantage of using the HOFs occurs either when the noise cannot be adequately
represented as Gaussian sums, or when only the moments of the noise are known,
and not the actual density functions. Although these filters are more complicated to
implement than the standard Kalman filter, they are not nearly as computationally
intensive as the Gaussian sum filter for which the number of parallel filters grows

geometrically as the number of stages increase.

For HOFs designed for I** order filter moments, their implementation re-
quires the availability of prediction error moments of order up to 2I. In general,
when I > 1 it is necessary to either truncate the expressions for the filter moments
so that only those powers of prediction and measurement error moments are in-
cluded for which similar powers of the filter moments exist, or the higher powers of
the prediction and measurement error moments must be approximated. This leads

to either the truncation of the filter error moment expressions or the estimation of
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prediction error moments of order I +1 through 2I. It is shown that the truncated
filter expressions give comparable performance to those with estimated higher order

moments.

For non-Gaussian distributions made up of known Gaussian sums, the non-
Gaussian filters presented here give a reasonable compromise between the optimal
but very computationally intensive Gaussian sum filter, and the suboptimal but
easily implemented standard Kalman filter. In addition, when only the moments
of the distributions are known and a Gaussian sum filter cannot be used, the non-
Gaussian filters offer a means to obtain improved performance over the standard
Kalman filter. One method to improve the performance of the non-Gaussian filters
is to use higher powers of the innovations in developing the filter equations. However,
the resulting filter expressions would be extremely complicated and it is anticipated
that the expected performance improvement over the HOF's presented here may be

marginal.

A more general filter can be developed by including the first, second, and
third order powers of the innovations in developing the filter equations. This can be
useful, for example, in a situation in which the measurement noise has an asymmet-
rical distribution and the process noise has a symmetrical non-Gaussian distribution.
The derivation of this filter will follow the same procedure as shown in Chapter 3.

Three separate gain matrices will be required in this case.

From the implementation standpoint a significant reduction in the computa-
tional burden imposed by the HOF's can be accomplished by exploiting the redun-
dancy in the high order filter moment matrices. For example the error covariance

matrix can be represented by either the upper or lower triangular matrix. Similarly,
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matrices for the 3" and 4** order expansions also contain a significant amount
of redundancy, and efficient algorithms may be developed for including only the

necessary terms in these matrices.

This thesis also addresses several signal processing estimation problems with
a model-based formalism. These problems are all treated as nonlinear estimation
problems in Gaussian and non-Gaussian noise. A direct model is used in which the
frequencies, amplitudes, damping coefficients and phases of the sinusoids are defined
as state variables. This model has the advantage that the time varying behavior
of these parameters can be directly described through the process equation. The
harmonic retrieval problem is solved using three separate nonlinear filters and three
iterated forms of the extended Kalman filter. The nonlinear filters offer a significant
advantage over batch-type estimators in that time varying system parameters can
be modeled. A problem that has been studied by other authors is addressed and it
is found that the nonlinear filters offer a significant advantage over other techniques
such as modified singular value decomposition and cumulant-based techniques when-
ever the initial estimation error is constrained. It is shown that the nonlinear filters
can be used effectively in colored Gaussian noise with known or unknown coeffi-
cients, and in measurement noise with known and unknown covariances. Another
advantage of the nonlinear filter approach is that these filters converge relatively
fast, making them well-suited for short data lengths.

A joint detection/estimation (JD/E) procedure is presented and applied to
problems with model uncertainty and/or uncertain initial conditions. The imple-
mentation of this procedure consists of several filters operating in parallel. Each
filter hypothesizes a different measurement or process model, different initial condi-

tions, or both. The estimators act independently of the detection mechanism. The
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link between the two is provided by the a posteriori probability, which is evaluated
for any arbitrary density function. These estimators can include any recursive filter

such as the linear Kalman filter, nonlinear filters, or the HOF's.

The JD/E approach is applied to model order selection. A general approach
is presented for determining the number of sinusoids present in measurements cor-
rupted by additive white Gaussian and non-Gaussian noise. The approach involves
the simultaneous application of maximum a posteriori (MAP) detection and nonlin-
ear estimation of the state variables, which consist of the amplitudes and frequencies
of sinusoids in each model. Estimation is performed using the extended Kalman fil-
ter when the noise is Gaussian, and the extended high order filter (EHOF) when the
noise is in non-Gaussian. The initial state estimates are constrained to be within an
initial variance. The problem is formulated as a multiple hypothesis testing problem
with assumed known a priori probabilities for each hypothesis. Each hypothesis rep-
resents a different model. Experimental evaluation of this approach demonstrates
excellent performance for model order selection and system parameter estimation in

both Gaussian and non-Gaussian noise.

The JD/E approach for problems with uncertain initial conditions is applied
to the estimation of the time delay and Doppler shift from the active echo returns
of monostatic sensor(s). The problem becomes one of localizing a target in range-
Doppler space. The range-Doppler space is partitioned into a number of resolution
cells. Each cell is identified with a hypothesis that the signal is present in it. The
joint detection/estimation scheme is then used to localize the target and refine its
parameter estimates (i.e. time delay and Doppler shift). The measurements that
are used to localize the target consist of signal returns corrupted by additive white

Gaussian and non-Gaussian noise. It is found that the initial estimation error for
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time delay must be within 1/2 f for any given estimator to form an accurate estimate
of target position. This requirement can be relaxed with the JD/E scheme, since a
very large initial estimation error can be segmented into a number of filters, each
with a much smaller error. The MAP estimate gives very good results under these

conditions.

The JD/E approach for the combination of model uncertainty and uncertain
initial conditions is applied to the problem of data fusion from two cooperating, non-
collocated sensors that are attempting to detect a target and estimate its position.
The geometric areas of coverage of the two sensors partially overlap. Thus, the
model is general enough to include sensor misa.ligﬁment. In the overlap region the
estimates from the two sensors are combined to produce improved estimates over

the single sensor estimates.

Several hypotheses are postulated for detection. Each hypothesis corresponds
to the ability of each sensor to detect the target in its area of coverage. The a
priori probabilities of each decision is based on the area of coverage of the two
sensors. For each hypothesis, a high order filter recursively estimates time delay,
Doppler shift and geometric angle to the target from processing the returns of the
transmitted signal from each sensor. These estimates are in turn used to estimate
target position and velocity. For each of these hypotheses, another set of parallel
filters is used to obtain more accurate estimates of signal parameters and to account
for the stability problems that result from the first order Taylor series expansion
used in the nonlinear filtering algorithms. This is accomplished by operating a
separate filter for each of several different initial time delay estimates of the return
signal. The maximum likelihood estimate for a given hypothesis is then determined
as a weighted sum of the estimates from each of the local hypotheses, with the a
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posteriori probability being used as the weighting function. It is assumed that the
signals are imbedded in Gaussian noise and clutter. The clutter is treated as non-
Gaussian noise with a lognormal or Weibull distribution. Excellent performance is
obtained using the JD/E approach with high detection probability and very good

target position estimates.

The restriction of small initial estimation error, made for the harmonic re-
trieval and model order selection problems can be relaxed, if the JD/E approach
is used for estimation (the model with uncertain initial conditions). The model or-
der selection initial conditions can also be relaxed if the JD/E approach for model

uncertainty and uncertain initial conditions is used.

Since the estimation for each of the hypotheses in the JD/E approach is
performed independently, this scheme is a natural application for parallel processing.
The model selection or detection decision can be made by a centralized processor

after all of the data is processed. Thus, the JD/E approach is very well suited for

real-time implementation using advanced massively parallel computer architectures.
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Appendix

Cramer-Rao Bound for the Harmonic Retrieval Problem

This appendix presents the derivation of the Cramer-Rao bound for P ex-
ponentially damped sinusoids in white gaussian noise. Consider the measurement

model given by the formula

P
Zp = z Ckp €XP (—akpk +j(wkpk + okp)) + vk
P> (A1)

= hg(xk) + v;

for k = 0,1,---, K — 1. v; is assumed to be complex white Gaussian noise

with mutually independent real and imaginary components each with variance o2.

The elements of the state variable vector x; are defined as

Thyp-1)41 = “hp

Thyp-1)42 = b

(A2)
Thyp—1)43 — Oy
Thy(p1yps = hp-

The objective is to estimate some or all of the 4P possibly time-varying
parameters in this system based on the measurements. The probability density
function of the set of measurments z = [z, 21, -*-, zK_l]T conditioned on the

unknown parameters Xx; is given by
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K-1

plebes) = (2r0) ¥ exp |55 3=t — maGxa)f (43)

The Cramer-Rao bound [73] (pp. 66, 84) gives the minimum possible vari-
ance of any unbiased estimate X;(2z) of the state x;. In the presence of no prior |

information about the state this bound is given by \

Var[ki(z) — xi} = Jp' (A.4)

where Jp is the Fisher information matrix given by

g |2 1op(zlxi)
T oxox]

Applying this to (A.3) yields

K-1
Jp = 212 2 E { axf;x{(z" zi — zkhe(x)* — 23 hi(xe) + ha(xs) hk(xk)‘)}

which reduces to

_ 1 Ohi(xk) Ohx(xi)* | Ohi(xs)* Ohi(xi)
o = 202 ,Z% E{ ox; axT + Oxyi axT (4.5)

Noting that M;#— (ﬂg—x‘-) , (A.5) can be evaluated by finding expres-

sions for —g—xk— and %‘L Let

P
hie(xk) =D hiy(xi)
=1
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where the measurement component kg, (x;) represents the contribution from the ph

sinusoid and is given by

hiy (Xk) = cip exp (—arpk + j(wipk + Oky))

The two partial derivative vectors can then be expressed as

e
Oh(xx) & | Yew
—_= hiy (1)
& g ™
—k
S (A.6)
[ —jk

T oxy = | By (3er)*

- —k J
A.1 Case 1 : Estimation of two Frequencies and Damping Coefficients

For estimation of the parameters of two exponentially damped sinusoids the

measurement equation becomes

p
2y = Z hkp(xk) + ur
p=1

where

hip(xi) = exp (—ap,k + jwi, k) (A.7)
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The elements of the state variable vector x; are defined as

Tk = w1
Tpy =1
(A.8)
Tky = w2
Tp, = 02
and the partial derivatives in (A.5) become
[ 7 by (X)) ] [ —3 Ry (xk)* ]
— hiy (xx) . — by, (xi)*
Ohp(xp) _ 1 Ahp(xp)* _ 1
—gx_k_k =k . \ —s;k—k =k i E (A.9)
J hig(xk J by (X)
| — hy (xi) | | = By (xx)* ]
The Fisher information matrix for this system becomes
a 0 ¢c 0
; 1 |0 ¢ 0 ¢ (4.10)
D —_— — al
o ¢ 0 5 0
[0 ¢ 0 b
where
K-1
a= z: k? 6—2015
k=0
K-1
b= E k2 e—2¢2k
=0

K-1
c= Y K e~(rta2)boog((wy —wy) k)
k=0
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Inverting this analytically the CR bound becomes

ad 0 ¢ 0]
Vattat@) sl =o? [0 © 0
ar[Xi(z) —Xi] =0
d 0 b o0
0 ¢ 0 ¥
where
y_ ab — bc
T TR < 2402
¥ = a’b — ad?
T alh? — 2ab2
' c(ab—cz)

€= a?h? — 2abe?

From this the following observations are made:

1 For a given sinusoid, the CR bound for the frequency estimate is the same

as that for the damping coefficient estimate.
2 A higher damping coefficient gives a larger CR bound.

3 The bound is dependent on the difference between the two frequencies and

not their individual values.
A.2 Case 2 : CR Bound with a priori Information

In the case where the statistics of the initial estimation error are known and

are given by the initial covariance Py the CR bound (A.4) becomes

Var[kx(z) — xi) = [Jp + Jp] L. (A.11)

where Jp = 1/P,.
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If Jp is small relative to Jp then the bound will be controlled by the initial
covariance. From equation (A.5) it can be seen that as the noise variance o2 increases
Jp decreases. However, even though the increased noise increases the CR bound,
there will be a point when the Jp dominates implying that the optimal unbiased
estimate is always at least as good as the initial estimate. Thus Jp sets an upper

limit on the variance in the estimate.




