
4sCLIlMEI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

AD-A268 383

A group of algorithms is presented generalizing the Fast Fourier Transform to the case of non-
integer frequencies and nonequispaced nodes on the interval [-7r, 7r]. The schemes of this paper are
based on a combination of the classical Fast Fourier Transform with a version of the Fast Multipole
Method, and generalize both the forward and backward FFTs. Each of the algorithms requires
O(N - log N + N • log(I/.)) arithmetic operations, where E is the precision of computations and N
is the number of nodes. The efficiency of the approach is illustrated by several numerical examples.

Accesion For

NTIS CRA&I
DTIC TAB
Ur3ainou!1ccd

,y
B y, i i...........--

DA btio:; I

Availability Codes

Avail aid / or
Dist Spccial

Fast Fourier Transforms for Nonequispaced Data II

A. Dutt and V. Rokhlin D T IC
Research Report YALEU/DCS/RR-980 ELECTE

August 1993 AUG2 4 1993

The authors were supported in part by the Office of Naval Research under Grant N00014-89-J-1527
and in part by the National Science Foundation under Grant DMS9012751.
Approved foi public release: distribution is unlimited.
Keywords: FFT, Trigonometric Series, Fourier Analysis, Interpolation, Fast Multipole Method,
Approximation Theory

93-19592
93 8 23 08 5 I1i1 hIiU

1 Introduction

Fourier techniques have been a popular analytical tool in physics and engineering for more
than two centuries. A reason for this popularity is that the trigonometric functions eiWX are
eigenfunctions of the differentiation operator and thus form a natural basis for representing
solutions of many classes of differential equations.

More recently, the arrival of digital computers and the development of the fast Fourier
transform (FFT) algorithm in the 1960s (see [7]) have established Fourier analysis as a powerful
and practical numerical tool. The FFT, which computes discrete Fourier transforms (DFTs),
is now a central component in many scientific and engineering applications, most notably in
the areas of spectral analysis and signal processing. Numerous applications, however, involve
unevenly spaced data, whereas the FFT requires input data to be tabulated on a uniform grid.
In this paper, we present a collection of algorithms which overcome this limitation of the FFT
while preserving its computational efficiency. These algorithms are designed for the efficient
computation of certain generalizations of the DFT, namely the application and inversion of the
transformation F: CN -- CN defined by the formulae

N/2-1

F(a)i = G"- (1)
k=-N12

for j 1,...,N, where x = {IX,,. . .,XN} is a sequence of real numbers in [-7r,r] and a =

{a-N/2,..., aN/2-1} is a sequence of complex numbers. The number of arithmetic operations
required by each of the algorithms of this paper is proportional to

N .logN+ N .log (1) (2)

where e is the desired accuracy, compared with O(N 2) operations required for the direct appli-
cation and O(N 3) for the direct inversion of the transformation described by (1).

Remark 1.1 The DFT in "unaliased" form is described by the formula

N12-1

fj= E ak . e21rkj/N (3)
k=-N/2

for j = -N/2,..., N/2 - 1, which is clearly a special case of (1). The FFT algorithm employs
a sequence of algebraic manipulations to reduce the number of operations for the DFT from
O(N 2) to O(N .log N). In the more general case of (1), the structure of the linear transformation
can also be exploited via a combination of certain analytical results and the FFT.

The algorithms of this paper utilize the fact that a Fourier series is a trigonometric polyno-
mial. When dealing with the values of this polynomial at equispaced nodes on the unit circle,
the FFT can be applied. In this paper, however, we are interested in the values at nonuniformly
spaced nodes, which are the values of the polynomial which interpolates the equispaced values.
The algorithms we will describe rely for their efficiency on a combination of the FFT with a fast

"V 1

algorithm for evaluating trigonometric polynomial interpolants which uses a version of the Fast
Multipole Method (FMM) specifically designed for the geometry of the circle. This interpola-
tion algorithm is closely related to the interpolation algorithm described in [9] for polynomials
tabulated on the line.

Remark 1.2 Throughout this paper we will be using the well known Lagrange representation
of polynomial interpolants. For a function f : C - C tabulated at nodes z1,. .,ZN, this is
defined by the formula

N N

PN(Z)= f•(zj). 1 -Z _k (4)
j=1 k=1 z3 - Zk

k~j

Following is a plan of this paper. Section 2 contains a number of results from analysis
and approximation theory, and in Section 3 we describe both formally and informally how
these results are used, together with the FMM, in the construction of the fast algorithms of this
paper. Results of several of our numerical experiments are presented in Section 4 to demonstrate
the performance of these alcorithms, and finally in Section 5 we discuss several generalizations
and conclusions.

Remark 1.3 An alternative approach to the problems of this paper is presented in [101, where
an interpolation scheme based on the Fourier analysis of the Gaussian bell is used in place of
the FMM-based interpolation scheme of the present paper. We compare the two approaches in
Section 5.

2 Mathematical and Numerical Preliminaries

This section is divided into two parts. In Subsection 2.1 we present several identities which are
employed in the development of the fast algorithms of this paper. Subsection 2.2 contains a
collection of error bounds which allow us to perform calculations to any prescribed accuracy.

2.1 Analytical Tools

The main results of this subsection are Theorems 2.3 and 2.4 which describe linear transforma-
tions connecting the values of a Fourier series at two distinct sets of points. Lemmas 2.1 and
2.2 provide intermediate results which are used in the proofs of these theorems.

Lemma 2.1 Let {x 1 ,. .. ,XN} and {Y,. .. ,YN} be sequences of real numbers on the interval
[-7r, r], and let {U 1,..., WN} and {z 1,..., ZN } be sequences of complex numbers defined by the
formulae

Wj = e ix (5)

Zj = e', (6)

2

for j =,...,N. Then,

N N
JX (wI - zk) = wN-1)12 1• z12 " 2i . sin((xi - yk)/ 2) (7)
k=1 k=1k~j k~i

forl 1,...,N, and

N NfiN(z1 - zk) = 1/2." zl 2 " 2i -sin((yj - yk)/2) (8)
k=1 k=1k~j k~i

forj =1,...,N.

Proof. A sequence of simple algebraic manipulations and trigonometric identities yields
N N

H (WI- Zk) N(eill - eilk)

k=l k=1
kqj k~j

N
1 e ei(XI+Yk)/2" (ei(X1-Vk)/2 _ e-i(zj-yk)/2)

k=1k~j

N

= ei(N-1)xz"2 . i1 eitk/2 " 2i . sin((xi - yk)/ 2) (9)
k=1k~j

N
- W(N-1)/2 "J zk 2 " 2i sin((xg - yk)/ 2).

k=1k~j

Substituting zj for wi and yj for xi in (9), we also obtain

N N

J(zj - zk) = zJN-1)/2" z2 . 2i - sin((yj - yk)/ 2). (10)
k=l k=1k!Aj Akoj

0

The following lemma describes an alternative representation of the well known Lagrange
interpolation formula for polynomials in the case when the interpolation points lie on the circle.

Lemma 2.2 Let {Xl,... , XN} and {Yl,..., YN} be sequences of real numbers in the interval
[-Xr, r], and let {f,...,fN} be a sequence of complex numbers. Further, let {w,. . ., wN} and
{Zl ,..., ZN) be sequences of complex numbers defined by the formulae

wj = ei,' (11)

Z -= ei'j (12)

3

for j 1,...,N. Then,

N N N 1
"fj= '-=Iwzk= w-I 2 " =1' fj.z;N/ 2 "dj• tan((4T - yj)/2) -i (13)

-~ ~ j z j=il7

k~j

where {cj} and {dj} are defined by the formulae

N
e1 = II sin((xj - yk)/ 2), (14)

k=1

N =

=i sin((yj - yk)/ 2)k=1
kgkj

for j, l=1,...,N.

Proof. Dividing (7) by (8) we obtain

N (N-1)/2 N Z/ 2 .2i"sin((x-yk)/2)IH = w, " I-H 1/2
k=- zj - zN)/2 k-1 Zk .2i sin((yj - yk)/ 2)k~j kt-j

e_,______)1_ . /N2 1N sin((xL - yk)/2)= i(x -' yj)/2l N- (16)
sin((x - yj)/2) zN/2 /Flk#j sin((yj - yk)/2)'

and the combination of (16) with the fact that

e-i(__-_)12 _-- cos((xt - yi)/2) + isin((xi - yj)/2)

sin((x, - yj)/2) sin((xi - yj)/2)

1
tan((xt - yj)/2) - 2, (17)

gives us

E fj " . rj W I- zk W N12 .C, .E fj .zJN I2 . dj , t ((t --) 2 -i18

j=1 k=1 Zj - Zk =-s
(

k~i

where {cj) and {dj} are defined by (14) and (15). 0

The following theorem provides a formula for determining the values of a Fourier series at
a set of points in terms of the values of this series at another set of points.

Theorem 2.3 Let {x 1,... ,ZN) and {yl,..., yN) be sequences of real numbers in the interval
I-r, 7r], and let {fa-N2,. aN/2-1} be a sequence of complex numbers. Further, let {wl,. .. , WN},

4

{Zl, ., ZN}, {fl,. ., fN} and {g, . ., 9N} be sequences of complex numbers defined by the for-
mulae

wto = eizi (19)

zi = eiyj (20)

N/2-1

fj = 1 ak eiky. (21)
k=-N/2

N/2-1

gj = E -. ikej (22)
k=-N12

for j 1,...,N. Then,

N I

91= ct -fi -di (tan((xi- yj)/2) (23)
j=1

where {cl} are defined by (14) and {dj} are defined by (15).

Proof. Let the polynomial P,, be defined by the formula

N-i

P-(z) = Z ak-N/2• zk. (24)
k=O

The Lagrange interpolation formula relates the values of P,, at the points {wj} to the values at
the points {zk} via the expressions

N N

P.(wt) = E P.(zj) " W - Zk (25)
j=1 k= Zj - Zk

k4j

for I = 1,. .. ,N, and applying Lemma 2.2 to (25) we obtain

=N/2cjVPz N()
P"(wt) = w " - (zJ)"_ zN'2 ."dj (tan((xt- yj)/2) (26)

From the combination of (24) and (19)-(22) we see that

N/2-1

pa(Z3) = Z7N1 . N1 2- .1 = •12 .f (27)
k=-N/2

and
N/2-1 k

P,,(,,)=, g ,,•/E.W,, (28)
k=-N/2

5

and finally substituting (27) and (28) into (26) we obtain

N
gi =c f -di tan((I - yi)/2) (29)

j=1

for 1 = 1,...,N. 0

In the case when the points {yj} axe equispaced in [-wr, r], the interpolation formula of
Theorem 2.3 has a simpler form, which is described in the following theorem. The result of this
theorem can be found in a slightly different form in [11].

Theorem 2.4 Let {X 1,. . . , XN} be a sequence of real numbers on the interval [-7r, r] and let

{f -N/2,..., OIN/2-1} be a sequence of complex numbers. Further, let {yl,..., yN} be a sequence
of real numbers defined by the formulae

yi = (j - 1 - N/2)ir/N (30)

for j - 1,...,N, and let {w 1,. .. ,WN}, {zl, ... , ZN}, {fl,...,fN} and {gl,. .. ,gN} be se-
quences of complex numbers defined by the formulae

wj = eiS' (31)

Zi = eiS' (32)
N/2-1

fj = E ak"e ikyj (33)
k=-N/2
N12-1

9j = E Qk'e ikx, (34)

k=-N/2

for j =,...,N. Then,
(N.•) .N f (_l)j 1)

gt =sin 2 "Efj" N "tan((xI - yj)/2)-i .(35)

j=1

Proof. From the combination of (30) and (33), we see that the sequence {a-N/2,... CN2-1}
is the discrete Fourier transform of the sequence .fl,...., fN}. In other words,

1 N
=k N- * i efj e-iky (36)

j=1

for k = -N/2,..., N/2 - 1. Let us now define the function f [-r, r] -- C by the formula

N12-1

f(x)= a.eik . (37)
k=-N/2

6

Substituting (36) into (37) and changing the order of summation, we obtain

N/2-1 1 N

f ~ E __ ZE -Z 3 .ikyj .eikx
k=-N/2 j=1

N 1 N/2-1

h Z fW . . Z eik(z-y,). (38)
j=l k=-N/2

Observing that the second sum in the expression (38) is a geometric series we have

N/2-1 -eiN(x-y.,)/2 _ eiN(z-y)/2
Z e -zyj .

EN 1 - ei(X-11)
k=-N12

= sin(N(x - y)/ 2) (39)ei(x-yi)l2 . sin((x -- yj)/2)

= (sin(N(x - yj)/ 2)) (cot((x - yj)/2) - i)

for any x E [-ir, ir]. The definition of {yj} now yields

sin(N(x - yj)/2) = sin(Nx/2)cos(Ny3 /2) - cos(Nx/2)sin(Nyj/2)

= sin(Nx/2) (-1)j, (40)

and finally, using the fact that g1 = f(xi) and combining (38), (39) and (40) we obtain

2(j=) " tan((xC- yj)/ 2 y)- (41)

0

2.2 Relevant Facts from Approximation Theory

The algorithms of this paper are based on several results from the Chebyshev approximation
theory of the function 1/ tan(z). These results are contained in the lemmas and theorems of
this subsection, numbered 2.8-2.14. Analogs of these results for the function 1/x can be found
in [9].

The main results of this section fall into two categories. Theorems 2.11 and 2.14 describe
how the function 1/tan(x) can be approximated on different regions of the interval [-!, !]
using Chebyshev expansions. Theorems 2.15, 2.16 and 2.17 provide three ways of manipulating
these expansions which are needed by the fast algorithms of this paper.

We begin with three classical definitions which can be found, for example, in [13], [17].

Definition 2.1 The n-th degree Chebyshev polynomial Tn(z) is defined by the following equiv-
alent formulae:

Tn(x) = cos(n arccos x) (42)

Tn(X) = 2" ((Z+/ - 1)n+(-/ '-i)n). (43)

7

Definition 2.2 The roots tl,..., t, of the n-th degree Chebyshev polynomial T" lie in the in-
terval [-1, 11 and are defined by the formulae

tk = Ccos(1 j) (44)

for k = 1,..., n. They are referred to as Chebyshev nodes of order n.

Definition 2.3 We will define the polynomials u,. .. , un of order n - 1 by the formulae

uj (t) -- H t-- tk (45)
k=1
kk~j

forj= 1,.., n, where tk are defined by (44).

For a function f : [-1, 1] --- C, order n - 1 Chebyshev approximation to f on the interval
[-1, 1] is defined as the unique polynomial of order n - 1 which agrees with f at the nodes
t ,... , tn. There exist several standard representations for this polynomial, and the one we will
use in this paper is given by the expression

n

E f(tj), ui(t). (46)
j=1

For the purposes of this paper, Chebyshev expansions for any function will be characterized by
values of this function tabulated at Chebyshev nodes.

Lemmas 2.5-2.7 provide estimates involving Chebyshev expansions which are used in the
remainder of this section. The proof of Lemma 2.5 is obvious from (42).

Lemma 2.5 Let Tn(x) be the Chebyshev polynomial of degree n. Then,

IT'(x)[< 1 (47)

for any x E [-1,1].

Lemma 2.6 Let Tn(x) be the Chebyshev polynomial of degree n. Then,

1 . 5, I
IT,(x)l > -•- (48)

for any x such that lxi > 3.

Proof. From Definition 2.1, we have

ITn(x)l = •' +(X -
> 1. Ix + VX/2_ (X13)21n 1 Ix.- (I + 08/9)1 (49)

1.1 5XI

2 3

for any x such that lxi > 31 0

8

Lemma 2.7 Let ui(x) be defined by (45). Then, for any z E [-1, 1],

Iuj(x) < 1. (50)

Proof. It is obvious from (45) that ui(ti) = 1, and that uj(tk) = 0 when k 6 j. In addition,
the expression

- E Tk(tj) . Tk(X) (51)
n k=1

is also equal to 1 at tj and equal to 0 at all other tk. Since both uj and (51) are polynomials
of order n - 1, we have

1n

Uj(x) = - E Tk(t) . Tk() (52)
-k=1

for j = 1,..., n. Furthermore, due to the combination of (52) and the triangle inequality, we
obtain

Iuj(X)I = - E T,(t3) T-(z) = - ITk(tj)l " ITk(x)l < 1 (53)
1 k=-1 nk=

for any x E [-1, 1]. 0

The next lemma is obvious.

Lemma 2.8 For any a E [0, -],
tan 3a > 3- tan a. (54)

The following two lemmas provide preliminary results which are used in the proof of Theo-
rem 2.11.

Lemma 2.9 Suppose that n > 2, and that b > 0 and xo are real numbers with IxOI > 3b. Then,
for any x,

1 + XXo _ (X _ Xo). 1 + btjxo u - (1 + X2)• Tn(x/b) (55)
1=1 btj - 0 (T(xo/b)

Proof. Let Q(x) by the polynomial of degree n defined by the formula

Q(X) l+ xxo-(x- xo). '1 + btJxo . (b) . (56)
bt 1 - xo

It follows from the combination of (45) and (56) that

= " 1bt xo
Q(btk) = 1 + btkxo - (btk - Xo)" bi_. Xo . u,(tk)

j=1 btk-o

= 1 + btkxo- (btk - Xo). 1 + btkxo = 0, (57)
btk - XO

for k = 1,..., n. Clearly, then, Q(x) satisfies the conditions

Q(zo) = 1+zo0
Q(bt1) = 0

(58)
Q(btn) = 0.

It is clear that the function
(1 +) T,(xlb) (59)

T,(zo/b)

is also a polynomial of degree n which satisfies the n + 1 conditions (58). Therefore,

(). T,(z/b) (60)
Q(x) - (I + x) T.(zo/b)'

and (55) follows as an immediate consequence of (56) and (60). 0

Lemma 2.10 Suppose that n > 2, and that b > 0 and xo are real numbers with Ixol > 3b.
Then,

+ xxo n1 + b..tjxo . 1u+ 9b2 (61)
XO j=b j (b) < b5

for any x E [-b, b].

Proof. Dividing (55) by (x - xo) and taking absolute values, we obtain

I1+ XXO _ n1I+ btjxo . x' 1j- I+ X02 IT,(x/b)I (62)
x - Xo -= bt3 - Xo \/b = j- -ol IT((xo)b)"

Due to Lemmas 2.5 and 2.6 we have

ITn(x/b)I < 1 (63)

for any x E [-b,b], and

X02 3b1 + 2
T'x < (1+o 1).2 -o < - (1 +(3b) 2) (64)

IT.(xo/b) 5x0 I 5n

for any IxoI 2! 3b. Finally, substituting (63) and (64) into (62), we obtain

+ xxo n 1 + btjxo ., (- 1+ 9b2 (65)
x -xo btj - xo /;(b.n5

for any x E [-b, b]. 0

10

Theorem 2.11 Suppose that n > 2, and that a and 80 are real numbers with 0 < a < Z and
3a < 10ol < L. Then,

1 n 1+t-tanatan~o ftan \ 1 + 9tan2 a
taP.(- d,1 tttana-_an-0 U3 'tana < tana-5nj=l jtna-tn0

for any 0 E [-a,a].

Proof. Let 9 E [-a, a]. Then, defining the real numbers b, x, and xo by the formulae b = tan a,
x = tan 0 and xo = tan 00, we observe that lxi <5 b, and, due to Lemma 2.8, ixol _> tan 3a > 3b.
We also observe that

1 1 + tan 0 tano + xxo (67)
tan(G - 9C) tanG- tan 0 o x - xo

and
n, I+ttj tan- o a . uj tan\ n / 1+ tjbxO (x\ (68)

L.=d t tan a -tan 0 (tan a/ = -tjb - xO

It follows from the combination of equations (67) and (68) and Lemma 2.10 that

1 n-1 + t. tanatano (tanG 0
tan(O- 0o) j=t, i tano a-tan 0 tan a

1 + XXo E1+ tjbxo .u 61x'-0 •21+ " ub-0 J (b)I (69)

1 +9b 2 1 + 9tan2 a
b. 5n tan a • 5n

for any GE I-a,a]. 0

The following two lemmas provide preliminary results which are used in the proof of Theo-
rem 2.14.

Lemma 2.12 Suppose that n > 2, and that b > 0 and xo are real numbcrs with Ixol <_ b. Then,
for any x,

x -3tj +3bxo . (3b + Tn(x)
x+ 3bo-(3 b-xxo)"= 3 b -tjx u 3(x)-\o+ 3bo C• T,(3b/xo)"

Proof. Let Q(x) be the polynomial of degree n defined by the formula

Q(x) = x + 3bxo - (3b - xxo) t + 3bx- . uj(0)" (71)
3b - t1x u

It follows from the combination of (45) and (71) that

Q(tk) = tk + 3bxo - (3b- tkXO) tj + 3bxo U 3(tk)
j=1 3b -13 x

= k+ 3bxo- (3b- tkZO) tk+3bx0 (72)
3b - tko

for k 1,..., n. Clearly, then, Q(x) satisfies the conditions

Q(3blxo) = 3b/xo + 3bxo

Q(t1) = 0
(73)

Q(t") = 0.

It is clear that the function 3b + 3bx0) T-(x) (74)

0 +~) Tn(3b/xo)

is also a polynomial of degree n which satisfies the n + 1 conditions (73). Therefore,

- 3b + Tn(X) (75)
Q(x) = o)3bo Tn(3b/xo)'

and (70) follows as an immediate consequence of (71) and (75). 0

Lemma 2.13 Suppose that n > 2, and that b > 0 and xo are real numbers with IxoI <b. Then,

x + 3bxo n t -+ 3bxo 3(1 + b2)3b x o " 3b t -• "uj W) < • •(76)
3b - xxo j=L3btx b5

for any x E [-1, 1].

Proof. Dividing (70) by (3b - xxo) and taking absolute values, we obtain

x + 3bxo n tj + 3bxo . I 1 b +3bxo ITn(x)j (77)-3b -- xxo F, jx .•b [(7

j=3 3b - tjxo 13b- xxol xo ITn(3b/xo)l

In addition, due to Lemmas 2.5 and 2.6 we have

ITn(x)I < 1 (78)

for any x E [-1, 1], and

3b/lxo+3bxO <AbIxo + xo) -2 °- I < 6b.(11b+b) (79)

Tn(3b/-'o) <5 3b < 1- b

12

for Ixol < b. Substituting (78) and (79) into (77), we obtain

x_+_3bxo n 1+3bxo 1 6b 3(1 + b2)
3b - 4- 13b- tXO .ujW(!) 2b . .(1/b+b)= b-5n (80)j=13"-t I b•b5

for any x 0 [-1,1]. 0

Theorem 2.14 Suppose that n > 2, and that a and 0o are real numbers with 0 < a < and
IOol < a. Then,

1 n t- +-3tanatan0o (3tana' 63 7 a\ jtn o.u i- < sn2-5n(81)
tan(O"- 0o) t=asin2a-5

for any 0 such that 3a < 101 < '.

Proof. Let 0 be any real number such that 3a < 101 < Z. Then, defining the real numbers b, x
and xo by the formulae b = tan a, x = 3tana/ tan and xo = tan 0o, we observe that IxoI _< b,
and, due to Lemma 2.8, IxI < 1. We also observe that

1 _ 1 +tan tanOo _- 1 + 3bxo/x = x + 3bxo (82)

tan(G - 0o) tan 0 - tan 0o 3b/x - zo 3b- zxo

and
n tj + 3ttanatan0o 3tana tj + 3bxo(83)

13tana-t tan- o .uj _ tan0) = 3b-tjxo

It follows from the combination of equations (82) and (82) and Lemma 2.12 that

_ 1 n ti + 3tanatan0o (3tana'
tan(-- 3o) tana-ttanOo tanG0tan(O- 00)j=1

x + 3bxo n tj + 3bo (843b- •x ý.u X (84)

1 + b2
_3 sec2 a 6

b.5n tana.5n sin2a .(5n

for any 0 such that 3a _< 101 < Z. *

The following three theorems provide formulae for translating along the interval [-2, 2]
Chebyshev expansions of the type described in the previous two theorems. Theorem 2.15 pro-
vides a formula for translating expansions described in Theorems 2.11, Theorem 2.16 describes
a mechanism of converting the expansion of Theorem 2.14 to the expansion of Theorem 2.11,
and Theorem 2.17 provides a way of translating the expansion of Theorem 2.14.

13

Theorem 2.15 Suppose that n,N > 2, and let a,c,d be real numbers such that 0 < a <_ v/8
and [c - d,c + d] C [-a,a]. Let the function f: [,] -- C be defined by the formula

N k (86)

k=) tan(- Ok)

where 3a < IjkI _ • for k = 1,...,N, and al,.. .,N is a set of complex numbers. Further,
let T,., I .n be a set of complex numbers defined by the formula

Tk = f(arctan(tk tan a)) (87)

fork = 1,...,n, and let C,...,i•n be a set of complex numbers defined by the formula

n (tan(c + arctan(tk tan d))\
lk = E j uj tana(88)

j=l

for k =1,...,n. Then, for any 0 E [c - d, c + d],

f()•) ntan(O- c)\ (n + 1)(1 + 9tan2 a)
f(--lk-uj t•an d < A tana.5n (89)

where A = ZN=1 Jka.

Proof. It follows from the triangle inequality that

A6)(nik'jtan(- C)" S1 +±S2 (90)f(O)-£'kE (. tand /
k=1

where

$, = f(O)- ZL f(c + arctan(tk tan d))u. uj tan(O- c) (91)
k=1

and

S2 = (f(c + arctan(tk tan d)) - ik) uj (tan(0 c)) (92)
k=1

Combining Theorem 2.11 with Lemma 2.7 and the triangle inequality, we have

1 + 9tan2 aSi < A ,(93)
tan a •5

and

n n- (tan(c + arctan(tk tand))t
S 2 : E f (c + arctan(tk tan d)) F- T>i'. is3

k=1 9=1 tan an

< An.1+ 9 tana (94)
tan a•5

14

where A = EN I lakl. Finally, substituting (93) and (94) into (90) we obtain

n(jtan(a - C) (1+9tan 2 a (95)f(E)- ->='k.uJ ktand <A.(n% tana.5n9

for any 0 E [c-d,c+d]. 0

Theorem 2.16 Suppose that n, N > 2, and let a, c, d be real numbers such that 0 < a < T/8
and Icl - d > 3a. Let the function f: [-!, 1] --+ C be defined by the formula

N

=Ik (96)
k=o tan(0 - ok)

where Ok E [-a,a] for k = 1,...,N, and a1,...,aN is a set of complex numbers. Further, let
,,.. ., �,n be a set of complex numbers defined by the formula

40k = f(axctan(3 tan(a)/ti)) (97)

for k = 1,..., n, and let I,. . ., 'n be a set of complex numbers defined by the formula
n 3 3tanaa)(8

Tk = E Z j " uj tan(c + arctan(tk tan d)) (98)
j=1

for k = 1,..., n. Then, for any 0 E [c - d, c + d],

f(O) _ n uJtan(O -c)) A3n sec2a + 1+ 9 tan 2a

E()--k= k uj tand <A- tana-5n (99)

where A = JN=- iakl.

Proof. It follows from the triangle inequality that

f () _n k _U(tan(O -C)\
t tan d) _ S1 + S2 (100)

k=1

where

Si = f(O) - • f(c + arctan(tk tan d))- u_. (tan d (101)
k=1 tn

and
n /____-

S2 = Z(f(c + arctan(tk tand))- k). \ tand (102)
Ik=1 tan d

Combining Theorem 2.11 with the triangle inequality gives us

S1 < A -+Itan a. a (103)

tana15n

15

and from the combination of Theorem 2.14, Lemma 2.7 and the triangle inequality, we have

S2 _ E f(c+arctan(tktand))-_E ')j.uj ta(c +arctan(tktand))
k=l j-aa1

< An 3asec 2 a (104)

tan a. 5n"'

where A = E'NI IakI. Finally, substituting (103) and (104) into (100) we obtain

f() .U tnan(- < A 3nsec2 a+1+9tan (105)

= tand tana . 5n
k=1

for any 0 E [c - d,c + d].

Theorem 2.17 Suppose that n,N > 2, and let a,c,d be real numbers such that 0 < a < lr/8
and [c - d,c + dJ D [-a,a]. Let the function f: [-!,] -- C be defined by the formula

N
=k (106)

k=1 tan(O - Ok)

where Ok E [-a,a] for k 1,...,N, and a,,...,a aN is a set of complex numbers. Further, let
i,.. ., 4)n be a set of complex numbers defined by the formula

4'k = f(arctan(3tan(a)/tk)) (107)

for k = 1,..., n, and let l1,-.., 4,, be a set of complex numbers defined by the formula

nj - U3 3 tan a (108)
tan(c + arctan(3 tan(d)/tk))

for k = 1,...,n. Then, for any 0 such that I0 - cl Ž_ 3d,
(0 - n(k-U 3tand < A 3(n + 1) sec2 a(1 9

f(O)-Z'k'E)tan() - c)) tan , (109)k=1 a a•5

where = k=1 Jok&.

Proof. It follows from the triangle inequality that

f(O)-n)k *uj 3tan(O-c) <S 1 +S 2 (110)

k=1

where
S• ((O 3tand •
S= f(O) -- E f(c + arctan(3 tan(d)/tk)). (ta---c)) (111)

k=1

16

and

S2 (f (c + arctan(3 tan(d)/tk)) - ik) (3tand (112)
1 - 3tan d- C) .

Combining Theorem 2.14 with Lemma 2.7 and the triangle inequality, we have

3 sec2 a (113)
tan a tn 5n'

and

S 2 E Z f(c-+ arctan(3tan(d)Itk)) j .uj tan a /tk))

k=13 a1 tanc + arctan(3 tan(d)

< An san (114)
tana a n

where A = l•N=1 lakd. Finally, substituting (113) and (114) into (110) we obtain
I f3tand) 3(nlse__

E() - k .Uj 3tan(d) < A n- 3 (115)k=1l tnO) tan a . 5n

for any 0 such that 10 - cj > 3d. 0

3 Application of the FMM to Nonequispaced FFTs

For the remainder of this paper we will be considering the mapping F : CN -. CN defined by
the formulae

N/2-1

= aj- (116)
k=-N/2

for j = 1,...,N, where x = {x,. .. ,XN} is a sequence of real numbers in [-7r,r] and a =

{ al,..., aN} is a sequence of complex numbers. We are interested in the efficient application
and inversion of the transformation F and its transpose. More formally, we will consider the
following four problems:

* Problem 1: Given a, find f = F(a).

o Problem 2: Given a, find f = FT(a).

* Problem 3: Given f, find a = F-'(f).

* Problem 4: Given f, find a = (FT)-1(f).

This section consists of four parts. In Subsection 3.1 we describe briefly how the one di-
mensional Fast Multipole algorithm of [9] can be applied to the problems of this paper, in
Subsection 3.2 we outline a set of four algorithms for these problems, Subsection 3.3 contains
more formal descriptions of these algorithms, and finally in Subsection 3.4 we discuss a gener-
alization of Problems 1-4.

17

3.1 FMM and Trigonometric Interpolation

There exist a number of different formulations of the trigonometric interpolation problem (see
[17]). The version we will use for the purposes of this paper is described as follows: given a
set of points {Yj,..., y•N) and function values {fl,..., fN), evaluate the interpolating Fourier
series at the points {x 1 ,. . , XN}. According to Theorem 2.3, these values are given by the
formulae

N
9g = cj " 1 fJ " d, tan((x- y)/2)- i (117)

for I = 1,..., N, where {cj} and {dj} are defined by the formulae

N E ,

c= II sin((x1 - Yk)/2) = e k=1 i(sin((z,-uk)/2)) (118)
k=1

for I = 1,...,N, and

= f~j 1 e Z-1 kN in(sin((yI,-pk)/2))(1)dj =kI sin((yj - yk)/2) - e-E f n (119)
k=l
k34j

forj =1,...,N.

Remark 3.1 The FMM algorithms of [9] are designed to evaluate expressions of the form
N a

E --ak (120)
k=1 X -

in 0 (N log (i)) arithmetic operations, where • is the desired accuracy. With a few minor
modifications they can also be used to evaluate expressions of the form

N
k=1 tan(X - X121

and
N

E ln(sin(x - Xk)), (122)
k=i

and hence expressions of the form (117) for the same computational cost. Moreover, the algo-
rithmic procedure for the kernel 1/ tanx is virtually identical to that for I/z, and the various
expansions required by the algorithms are manipulated via Theorems 2.15, 2.16 and 2.17 (see
[9] for detailed descriptions of these algorithms).

18

3.2 Informal Descriptions of the Algorithms

In this subsection we outline how a fast trigonometric interpolation scheme can be used to
construct efficient algorithms for Problems 1-4 of this paper.

We begin with some notation.
•F: CN -_+ CN will denote the matrix which maps a sequence of N complex numbers to its

discrete Fourier transform. F is defined by the formulae

Yjk = e21ri-(j-N/2-1)-(k-N/2-1)/N (123)

for j, k = 1,..., N, and it is well known that TT = Y, and that -- 1

Remark 3.2 Y and Y- 1 can each be applied in O(N log N) operations via the FFT.

p : CN __+ CN will denote the matrix which maps the values of an N-term Fourier series at
N equispaced points {YI,. •., YN} on [-r, ir] to the values of this series at the arbitrarily spaced
points {x ,...., XN}. According to Theorem 2.4, P is defined by the formulae

7•jk =sin (_•X) .(-W). (1 -)(14
2 N s tan((Xj - yk)/2) - (124)

for j, k = 1,..., N. It follows directly from (124) that

rjk = N *sin () (tan((Xk yj/)- i(125)

for j, k = 1,..., N. The inverse of the mapping P converts the values of an N-term Fourier series
at the points {x 1 ,... .,XN} to the values of this series at the equispaced points {Yi,. . .,YN}
P'1 is therefore given analytically, and according to Theorem 2.4 it is defined by the formulae

'D- I = C3 •dj * (tan((j- Zk)/ 2) - i (126)

for j, k -= 1,.. ., N, where cl,.. ., cN and dl,. .. , dN are sequences of real numbers defined by
the formulae (118) and (119). It follows directly from (126) that

p TI= Cdj * (tan((yk - x)2)) (127)

for j,k = 1,..., N.

Remark 3.3 p, pT, P-1 and (pT)-i are all of the same form, and each can be applied with
a relative precision - in 0 (N log (.)) operations via the FMM (see Section 3.1).

19

Observation 3.4 From the combination of (116), Theorems 2.3 and 2.4, and several elemen-
tary matrix identities, we see that

F = P.-J1

FT = F..pT

F-1 = Y-1-P-1 (128)

(FT)-I = (pT)-1 .y- 1 .

Furthermore, due to Remarks 3.2 and 3.3, F, FT, F-1 and (FT)-1 can each be applied in
o (N log (i)arithmetic operations.

3.3 Formal Descriptions of the Algorithms

Following are detailed descriptions of the four algorithms of this paper.

Algorithm 1
Step Complexity Description
1 O(N log N) Comment [Evaluate Fourier series at equispaced points using FFT.]EN/2-1 ky

Compute gj = Zk=-N/2 ak • eik for j =1,..., N.

2 O(N log(.)) Comment [Interpolate in space domain.]
do j= 1,N

gj = gj. (-1)/N
end do
Compute fi = Ej=_ gj/tan((x, - yj)/2) for I = 1,..., A using FMM.
do I= 1,N

f = fj - i =

end do
do I= 1,N

ft = f" sin(Nxi/2)
end do

Total O(N logN + N log(-))

Algorithm 2
Step Complexity Description
1 O(N log(-)) Comment [Interpolate in frequency domain.]

do j = 1,N
aj = ,j -sin(Nxj/2)

end do
Compute a, = -E j aj/ tan((yr - xj)/2) for 1= 1,..., N using FMM.
do I= 1,N

al = a, - i = ai
end do
do I = 1,N

al = a, (-1)1 /N
end do

20

2 O(N log N) Comment [Evaluate Fourier series at equispaced points using FFT.]

Compute fi = .k=-N/2 ak • eikyj for j = 1,..., N.

Total O(N logN + N. log(.))

Algorithm 3
Step Complexity Description
1 O(N log(.)) Comment [Interpolate in space domain.]

do j = 1, N
fj =-fj . di

end do
Compute at =E-N I f,/ tan((yt - zj)/2) for I=1,..., N using FMM.
do I= 1,N

a1 = a0 - i fj

end do
do I = 1,N

at = at 1cl
end do

2 O(N log N) Comment [Obtain Fourier coeffients using FFT.]
Compute aj = _. EN=I ak. e- ky' forj- -N/2,..., N/2 - 1.

Total O(N . logN + N . log(.))

Algorithm 4
Step Complexity Description
1 O(N log N) Comment [Obtain Fourier coeffients using FFT.]

Compute aj = _.L. FNI fk e-'ky, for j N.

2 O(N log(-)) Comment [Interpolate in frequency domain.]
do j= 1,N

aj = ai , ci

end do
Compute at=- =1 aj/tan((zj -yj)/2) for I= 1,...,N using FMM.
dol= 1,N

= aj - i' = aj

end do
do I= 1,N

at = at- di

end do

Total O(N . log N + N -log(.!))

3.4 FFTs for Complex Data Points

Various generalizations of the problems addressed in this paper are mentioned briefly in Sec-
tion 5. One of the generalizations of Problems 1-4 merits special attention, and is discussed in
this section: this is the case when the points {xj} are complex, and lie slightly off the real axis.

21

We axe interested here in the transformations described by the formulae

N/2-1

fj E keiki "e-kai, (129)
k=-N12

for j = 1.... , N, which is a generalization of (116) with

xi = rj + isj. (130)

Algorithms 1-4 can be modified to evaluate expressions of the form (129), provided that the sj

are small (on the order of -k).

Problems of this type are frequently encountered in signal analysis, computational complex

analysis and several other areas.

4 Implementation and Numerical Results

We have written FORTRAN implementations of the algorithms of this paper using double

precision arithmetic, and have applied these programs to a variety of situations. This section

contains results of four of our numerical experiments demonstrating the performance of our
implementations of Algorithms 1-4.

Several technical details of our implementations appear to be worth mentioning here:

1. Each implementation consists of two main subroutines: the first is an initialization stage

in which the elements of the various matrices employed by the algorithms are precom-

puted and stored, and the second is an evaluation stage in which these matrices axe
applied. Successive application of the linear transformations to multiple vectors requires

the initialization to be performed only once.

2. The algorithms of this paper all require the evaluation of sums of the form

N12-1
hj = E ak'e 21rikj/N (131)

k=-N/2

for j = -N/2,..., N/2 - 1, whereas most FFT software computes sums of the form

N-I

fj =• ak" e2rikh/N (132)

k=O

for j = 0,. .. ,N - 1. We used a standard FFT to evaluate sums of the form (131) by

defining &k = ak for k = 0,...,N/2- 1, 6k = ak-N for k = N/2,...,N - 1, f, = f) for

j = 0,..., N/2 - 1 and fj = fk-N for j = N/2,..., N - 1. This substitution converts the

form (131) to the form (132).

22

3. The algorithms of this paper require an FFT of size proportional to N, and will thus
perform efficiently whenever the FFT does. This restriction on problem size can be
removed by extending the input vector to length 2 P0og2 N (i.e. the smallest power of 2
which is greater than N) and padding it with zeroes. This ensures that the algorithms
will perform efficiently for any choice of N. In our implementations these changes were
made.

4. Each of the algorithms described in Section 3 utilizes a version of the one dimensional
FMM. The version used in our implementations was Algorithm 3.2 of [9] which was chosen
to maximize both efficiency and accuracy.

Our implementations of the algorithms of this paper have been tested on the the Sun
SPARCstation 1 for a variety of input data. Four experiments are described in this section
and their results are summarized in Tables 1-4. These tables contain error estimates and CPU
time requirements for the algorithms, with all computations performed in double precision
arithmetic.

The table entries are described below.

"* The first column in each table contains the problem size N, which was chosen to be a
power of 2 ranging from 128 to 2048 for each example.

"* The second column in each table contains the relative oo-norm error defined by the formula

E,,=max I-fI/max f , (133)I<_j:_N l1 '<

where the vector I is the algorithm output and the vector f is the result of a direct
calculation.

"* The third column in each table contains the relative 2-norm error defined by the formula

E2 = Ij - fjI 1 f112, (134)
j=l

where the vector f is the algorithm output and the vector f is the result of a direct
calculation.

" The fourth and fifth columns in each table contain CPU timings for the initialization and
evaluation stages of the algorithm.

" The sixth column in each table contains CPU timings for the corresponding direct calcu-
lation.

"* The last column in Tables 1 and 2 contains CPU timings for an FFT of the same size.

Remark 4.1 Our implementations of the direct methods for Examples 1 and 2 were optimized
by using the fact that eikx1z = (eij)k to reduce the number of complex exponential computations.

23

Remark 4.2 Standard LINPACK Gaussian Elimination subroutines were used as the direct
methods for comparing timings in Examples 3 and 4. E.-timated timings are presented for larger
N, where this computation became impractical.

Following are the descriptions of the experiments, and the tables of numerical results.
Example 1.
Here we consider the transformation F : CN .-* CN of Problem 1, defined by the formula

N/2-1

F(a)j = E ak" eikx_ (135)
k=-N12

for j = ... ,N. In this example, f. X.... ,XN} were randomly distributed on the interval
I-7r, r] and {faN/2,. aN/2-1} were complex numbers randomly chosen from the unit square

0 < Re(z) _< 1, 0 < Im(z) •_ 1. (136)

The results of applying Algorithm I to this problem are presented in Table 1.

Example 2.
Here we consider the transformation FT : CN __- CN of Problem 2, defined by the formula

N

FT (a)j = E k .e (137)
k=1

for j = -N/2,...,N/2 - 1. In this example, { 1X,.. .,XN} were randomly distributed on the
interval [-7r, 7r] and {al,..., cN} were complex numbers randomly chosen from the unit square

0 < Re(z) _< 1, 0 < Im(z) <_ 1. (138)

The results of applying Algorithm 2 to this problem are presented in Table 2.

Example 3.
Here we consider the transformation F-: CN _ CN of Problem 3 where F is defined by the
formula

N/2-1

F(o)j= 1: ak'eikx, (139)

k=-N/2

for j = 1,...,N. In this example, {x 1 ,. .. ,XN} were defined by the forr ulae

xj = -7r + 27r j + 0.5 + 6j (140)

N

for j = 1,...,N, where 6j were randomly distributed on the interval [-0.1,0.11. In addition,
{CtN/21,. . N/I} were complex numbers randomly chosen from the unit square

0 < Re(z) <_ 1, 0 < Im(z) 5 1, (141)

24

and the numbers ffl,..., fN} were computed directly in double precision arithmetic according
to the formula fj = F(a)i. The vector f was then used as input for Algorithm 3. Results of
this experiment are presented in Table 3.

Example 4.
Here we consider the transformation (FT)-1 : CN -. CN of Problem 4 where FT is defined by
the formula

N
FT(,)j= E ajk "eijXA (142)

k=1

for j = -N/2,..., N/2 - 1. In this example, {xI,. . . ,XN} were defined by the formulae

+j = -r + 27r j + 0.5 + ., (143)
N

for j = 1,..., N, where bj were randomly distributed on the interval [-0.1,0.1]. In addition,
{01,..., aN} were complex numbers randomly chosen from the unit square

0 < Re(z) _< 1, 0 < Im(z) _ 1, (144)

and the numbers {f-N/2,..., fN/2-1} were computed directly in double precision arithmetic
according to the formula fj = FT(a)j. The vector f was then used as input for Algorithm 4.
Results of this experiment are presented in Table 4.

The following observations can be made from Tables 1-4, and are in agreement with results
of our more extensive experiments for this particular computer architecture, implementation
and range of N.

1. All of the algorithms permit high accuracy to be attained, and the observed errors are in
accordance with the theoretically obtained error bounds.

2. As expected, the CPU timings for all the algorithms grow slightly faster than linearly
with the problem size N.

3. The timings for Algorithms 1-4 are similar, which is to be expected since these four
algorithms are so closely related.

4. The initialization times for Algorithms 1 and 2 are less than those for Algorithms 3 and
4. This is because the former pair does not incur the additional cost of computing the
numbers {Ck} and {dk}.

5. The evaluation stages of Algorithms 1-4 are about 15 times as -ostly as an FFT of the
same size.

6. Algorithms 1 and 2 can compete with the direct method at about N = 32 ignoring
initialization time, and at N = 1024 including the initialization. Algorithms 3 and 4 are
always dramatically faster than the direct calculation (15000 times faster at N = 2048)
if we ignore initialization time, and break even with it at N = 64 if we include the
initialization.

25

N Errors Timings (sec.)
E,,o _E2 Alg. Init. Alg. Eval. Direct FFT

128 0.379 E-14 0.704 E-14 1.04 0.030 0.09 0.002
256 0.398 E-14 0.116 E-13 2.03 0.081 0.33 0.005
512 0.499 E-14 0.195 E-13 3.26 0.171 1.24 0.012
1024 0.318 E-13 0.625 E-13 4.97 0.408 4.93 0.026
2048 0.763 E-13 0.204 E-12 8.07 0.822 19.62 0.059

Table 1: Example 1, Numerical Results for Algorithm 1.

N Errors Timings (sec.)
E. E 2 Alg. Init. Alg. Eval. Direct FFT

128 0.206 E-14 0.800 E-14 1.03 0.033 0.08 0.002
256 0.323 E-14 0.136 E-13 2.05 0.081 0.31 0.005
512 0.153 E-13 0.343 E-13 3.21 0.174 1.20 0.012
1024 0.180 E-13 0.654 E-13 5.11 0.409 4.76 0.026
2048 0.470 E-13 0.221 E-12 8.16 0.823 18.93 0.059

Table 2: Example 2, Numerical Results for Algorithm 2.

7. The initialization stage is much more costly than the evaluation stage for all of the algo-
rithms. Implementing the algorithms in two stages thus gives considerable time savings
whenever the same linear transformation is to be applied to multiple vectors.

26

N Errors Timings (sec.)
Eoo_ E2 Alg. Init. Alg. Eval. Direct FFT

128 0.117 E-13 0.800 E-14 1.28 0.034 2.96 0.002
256 0.196 E-13 0.137 E-13 2.51 0.082 23.6 0.005
512 0.344 E-13 0.230 E-13 4.33 0.175 189 0.012
1024 0.107 E-12 0.757 E-13 7.45 0.409 1512 (est.) 0.026
2048 0.357 E-12 0.247 E-12 12.97 0.819 12096 (est.) 0.059

Table 3: Example 3, Numerical Results for Algorithm 3.

N Errors Timings (sec.)

E__ _ E2 Alg. Init. Alg. Eval. Direct FFT
128 0.134 E-13 0.806 E-14 1.26 0.033 2.96 0.002
256 0.511 E-13 0.179 E-13 2.47 0.080 23.6 0.005
512 0.870 E-13 0.373 E-13 4.24 0.173 189 0.012
1024 0.178 E-12 0.811 E-13 7.29 0.407 1512 (est.) 0.026
2048 0.942 E-12 0.369 E-12 12.80 0.820 12096 (est.) 0.059

Table 4: Example 4, Numerical Results for Algorithm 4.

5 Conclusions and Generalizations

In this paper we have described a set of four algorithms for computing FFTs for nonequispaced
data to any specified precision. An alternative group of algorithms for the problems considered
in this paper is presented in [10]. Similarities and differences between the two approaches are
summarized below.

1. Both sets of algorithms use a standard FFT.

2. Both sets of algorithms use interpolation formulae to transform function values from
equispaced to nonequispaced points and vice-versa. The algorithms of this paper use an
interpolation scheme based on the FMM, while the algorithms of [10] use an interpolation
scheme based on the Fourier analysis of Gaussian bells.

3. For the application of the linear transformations being considered the algorithms of [10]
are the more efficient of the two.

4. For the inversion of these linear transformations, the direct schemes of this paper are
generally more efficient than the iterative schemes of [10] whose complexity is dependent
on the distribution of the nodes.

5. The FMM-based approach leads to a set of closely related forward and inverse algorithms
which can be generalized to complex data points.

27

In conclusion, a group of algorithms has been presented for the rapid application and in-
version of matrices of the Fourier kernel. These problems can be viewed as generalizations of
the discrete Fourier transform, and the algorithms, while making use of certain simple results
from analysis, are very versatile, and have a broad range of applications in many branches of
mathematics, science and engineering.

The results of this paper are currently being applied to problems in a diversity of areas. Ex-
amples include problems in the numerical solution of parabolic partial differential equations, the
analysis of seismic data, the modelling of semiconductors, weather prediction and the numerical
simulation of fluid behavior.

Several obvious generalizations of the results of this paper are discussed below.

1. Problems 1 and 2 involve the evaluation of an N-term series at N points. Straightforward
modifications to Algorithms 1 and 2 will allow the efficient evaluation of these N-term
series at M points, where M $ N. These modifications have been implemented.

2. The algorithms of this paper are based on a special case of a more general idea, namely
the adaptive use of interpolation techniques to speed up large scale computations. Other
examples of this approach include the use of wavelets for the construction of fast numerical
algorithms (see, for example, [1], [4]), and the use of multipole or Chebyshev expansions
for the compression of certain classes of linear operators (see, for example, [2], [6], [16]).

3. One of the more far-reaching extensions of the results of this paper is a set of algorithms
for discrete Fourier transforms in two and three dimensions. Detailed investigations into
higher dimensional problems of this type are currently in progress and will be reported
at a later date.

References

[1] B. ALPERT, G. BEYLKIN, R. COIFMAN AND V. ROKHLIN, Wavelets for the Fast Solution
of Second-Kind Integral Equations, SIAM J. Sci. Stat. Comp., 14 (1993).

[2] B. ALPERT AND V. ROKHLIN, A Fast Algorithm for the Evaluation of Legendre Expansions,
Technical Report 671, Yale Computer Science Department, 1988.

[3] D. H. BAILEY AND P. N. SWARZTRAUBER, The fractional Fourier transform and applica-
tions, SIAM Review, 33 (1991), pp. 389-404.

[4] G. BEYLKIN, R. COIFMAN AND V. ROKHLIN, Fast Wavelet Transforms and Numerical
Algorithms I, Comm. on Pure and Applied Mathematics, 44 (1991), pp. 141-183.

[5] E. ORAN BRIGHAM, The Fast Fourier Transform and its Applications, Prentice Hall Inc.,
Englewood Cliffs, N.J., 1988.

[6] J. CARRIER, L. GREENGARD AND V. ROKHLIN, A Fast Adaptive Multipole Algorithm for
Particle Simulations, SIAM J. Sci. Stat. Comp., 9 (1988), pp. 669-686.

28

[7] J. W. COOLEY AND J. W. TUKEY, An algorithm for the machine computation of complex
Fourier series, Math. Comp., 19 (1965), pp. 297-301.

[8] G. DAHLQUIST AND A. BJORCK, Numerical Methods, Prentice Hall Inc., Englewood Cliffs,
N.J., 1974.

[9] A. DUTT, M. Gu AND V. ROKHLIN, Fast Algorithms for Polynomial Interpolation, Inte-
gration and Differentiation, Technical Report 977, Yale Computer Science Dept, 1993.

[10] A. DUTT AND V. ROKHLIN, Fast Fourier Transforms for Nonequispaced Data, SIAM J.
Sci. Stat. Comp., to appear, 1993.

[11] D. GOTTLIEB, M. Y. HUSSAINI AND S. ORSZAG, in Spectral Methods for Partial Differen-
tial Equations, edited by R. G. Voigt, D. Gottlieb and M. Y. Hussaini, SIAM, Philadelphia
PA, 1984, p. 1 .

[12] D. GOTTLIEB AND S. ORSZAG, Numerical Analysis of Spectral Methods, SIAM, Philadel-

phia PA, 1977.

[13] I. S. GRADSHTEYN AND I. M. RYZHIK, Table of Integrals, Series and Products, Academic
Press Inc., 1980.

[14] L. GREENGARD, Spectral Integration and Two-Point Boundary Value Problems, Technical
Report 646, Yale Computer Science Department, 1988.

[15] L. GREENGARD AND V. ROKHLIN, A Fast Algorithm for Particle Simulations, J. Comp.
Phys., 73 (1987), pp. 325-348.

[16] V. ROKHLIN, A Fast Algorithm for the Discrete Laplace Transformation, Journal of Com-
plexity, 4 (1988), pp. 12-32.

[17] J. STOER AND R. BULIRSCH, Introduction to Numerical Analysis, Springer Verlag, New
York, 1980.

[18] C. VAN LOAN, Computational Frameworks for the Fast Fourier Transform, SIAM,
Philadelphia, 1992.

[19] H. JOSEPH WEAVER, Theory of Discrete and Continuous Fourier Analysis, Wiley, 1989.

29

