Atlas of Formability

Super α_2 Titanium Aluminides
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Navy position, policy, or decision, unless so designated by other documentation.
In this investigation, flow behavior of Super α_2 titanium aluminide was studied by conducting compression tests over a wide range of temperatures and strain rates. Constitutive relations were determined from the flow behavior, and a dynamic material modeling was conducted on this alloy. Thus, the optimum processing condition in terms of temperature and strain rate was identified. Microstructural changes during high-temperature deformation were also characterized.
TABLE OF CONTENTS

Introduction 1
Experimental Procedure 1
Results .. 1
Summary .. 26
Implementation of Data Provided by the Atlas of Formability 26
LIST OF TABLE

Table 1. List of figures, testing conditions and microstructural observations for super α2 titanium aluminide .. 2
Super α_2 Titanium Aluminides

Introduction

Super α_2 titanium aluminides have attracted much attention in aircraft industry because of their light weight, high strength and stiffness, and high temperature resistance. Although this alloy was designed for improved mechanical properties in service, it exhibits low ductility at low temperatures and has limited workability compared to conventional titanium alloys. For successful manufacturing using this alloy it is desirable to find the mechanical as well as microstructural conditions at which the alloy can be processed with optimum efficiency. Flow behavior of the alloy through compression testing at various temperatures and strain rates were performed to determine the constitutive relation at high strain rates. From the constitutive relation a dynamic material modeling on super α_2 was carried out to optimize processing conditions such as temperature and strain rate. In addition, workability tests and microstructural characterizations were conducted to show the effect of the optimization on the formability and the resulting microstructure.

Experimental Procedure

The material used in this project was Ti-14Al-20Nb-3.2V-2Mo (wt%) produced by RMI Titanium Co., Niles, Ohio. The materials were cast, forged, and hot rolled and was in the form of hot rolled plate with thickness of 0.782 and 0.804 inch. As-received microstructure is shown in Figure 1.

Both flow stress-strain testing and workability testing were carried out in compression with cylindrical specimens. The specimens had a diameter of 0.5 inches and a height of 0.625 inches. For flow stress-strain testing, the test matrix is as follows:

Temperature, C (F): 843 (1550), 899 (1650), 954 (1750), and 1010 (1850)
Strain rate, s$^{-1}$: 0.1, 2, 4, 6, and 8.

Workability tests was conducted at temperatures of 843 C (1550 F) and 1010 C (1850 F), and strain rate of 4 s$^{-1}$.

Microstructural analysis of the deformed specimens was conducted using scanning electron microscope (SEM) with backscattered electron image (BEI). Specimens were cut through the compression axis (longitudinal) and transverse direction, and micrographs were taken at the center of the specimens.

Results

All the true stress-true strain flow curves with corresponding microstructures are shown in Figures 2 to 20. Table 1 is a list of the figures, test conditions and the observed microstructure. True stress versus strain rate was plotted in log-log scale in Figure 21 at a true strain of 0.2. The slope of the plot gave the strain rate sensitivity m, which is not a constant over the range of strain rate tested. Log stress vs. $1/T$ at 0.2 true strain is shown in Figure 22. Processing map at this strain was developed for super α_2 (Figure 23).

The results for workability tests are shown in Figures 24 for specimens tested at 843 C, and Figure 25 at 1010 C. At 843 C, there were no tensile cracks observed on the surfaces of the specimens, but slip bands formed due to localized shear at some strain combinations. As temperature was increased to 1010 C, workability increased extensively.
Table 1. List of figures, testing conditions and microstructural observations.

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Temperature F (°C)</th>
<th>Strain Rate S⁻¹</th>
<th>Backscattering Images (BEI)</th>
<th>Microstructure</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>As-received (α₂+β) hot rolled plate.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1550 (843)</td>
<td>0.1</td>
<td>Elongated α₂ stringers in a (α₂+β) matrix, where α₂ shows an elongated plate morphology,</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1550 (843)</td>
<td>2.0</td>
<td>Same as above, but α₂ stringers are slightly larger,</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1550 (843)</td>
<td>6.0</td>
<td>Same as above, but α₂ plates in the (α₂+β) matrix are finer,</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1550 (843)</td>
<td>8.0</td>
<td>Same as above, but α₂ stringers and the α₂ plates in the (α₂+β) matrix are finer.</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1650 (899)</td>
<td>0.1</td>
<td>Same as above, but the α₂ stringers and α₂ plates in the (α₂+β) matrix are coarser at this temperature,</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>1650 (899)</td>
<td>2.0</td>
<td>Same as above, but the α₂ stringers have decreased in aspect ratio,</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>1650 (899)</td>
<td>4.0</td>
<td>Same as above, but the α₂ plates from the matrix appear more elongated,</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>1650 (899)</td>
<td>6.0</td>
<td>Same as above, but the α₂ stringers increased in aspect ratio,</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>1650 (899)</td>
<td>8.0</td>
<td>Similar to microstructures 9,</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>1750 (954)</td>
<td>0.1</td>
<td>Small and rod-like α₂ stringers and elongated plates of α₂ plates in the (α₂+β) matrix,</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>1750 (954)</td>
<td>2.0</td>
<td>Same as above, (longitudinal view).</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>1750 (954)</td>
<td>4.0</td>
<td>Coarse and elongated α₂ stringers,</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>1750 (954)</td>
<td>6.0</td>
<td>Same as above, (transverse view).</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>1750 (954)</td>
<td>8.0</td>
<td>Flat stringers of α₂ in fine (α₂+β) matrix,</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>1850 (1010)</td>
<td>0.1</td>
<td>Large aspect ratio rod-like α₂ stringers in a (α₂+β) matrix, where the proportion of α₂ is decreasing,</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>1850 (1010)</td>
<td>2.0</td>
<td>Same as above, but the α₂ phase in the (α₂+β) matrix is very fine and decreasing in proportion,</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>1850 (1010)</td>
<td>4.0</td>
<td>Coarse and elongated α₂ stringers the α₂ phase in the (α₂+β) matrix is becoming coarser,</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>1850 (1010)</td>
<td>6.0</td>
<td>Coarse and elongated α₂ stringers the α₂ phase in the (α₂+β) matrix is becoming coarser,</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>1850 (1010)</td>
<td>8.0</td>
<td>Same as microstructure 17,</td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>
Figure 1. As-received microstructure of the hot rolled plate: (a) longitudinal and (b) transverse optical views, and (c) BEI image showing; α_2-elongated globuli (dark) in a ($\alpha_2 + \beta$) matrix.
Figure 2. Compression true stress-true strain curve performed at 1550 F (843 C) and at a strain rate of 0.1 s⁻¹. The microstructure is a BEI view from the longitudinal axis of the specimen.
Figure 3. Compression true stress-true strain curve performed at 1550 F (843 C) and at a strain rate of 2.0 s⁻¹. The microstructure is a BEI view from the longitudinal axis of the specimen.
Figure 4. Compression true stress-true strain curve performed at 1550 F (843 C) and at a strain rate of 6.0 s⁻¹. The microstructure is a BEI view from the transverse axis of the specimen.
Figure 5. Compression true stress-true strain curve performed at 1550 F (843 C) and at a strain rate of 8.0 s\(^{-1}\). The microstructure is a BEI view from the longitudinal axis of the specimen.
Figure 6. Compression true stress-true strain curve performed at 1650 F (899 C) and at a strain rate of 0.1s\(^{-1}\). The microstructure is a BEI view from the transverse axis of the specimen.
Figure 7. Compression true stress-true strain curve performed at 1650 F (899 C) and at a strain rate of 2.0 s\(^{-1}\). The microstructure is a BEI view from the transverse axis of the specimen.
Figure 8. Compression true stress-true strain curve performed at 1650 F (899 C) and at a strain rate of 4.0 s⁻¹. The microstructure is a BEI view from the transverse axis of the specimen.
Figure 9. Compression true stress-true strain curve performed at 1650°F (899°C) and at a strain rate of 6.0 s⁻¹. The microstructure is a BEI view from the transverse axis of the specimen.
Figure 10. Compression true stress-true strain curve performed at 1650 F (899 C) and at a strain rate of 8.0 s⁻¹. The microstructure is a BEI view from the transverse axis of the specimen.
Figure 11. Compression true stress-true strain curve performed at 1750 F (954 C) and at a strain rate of 0.1 s⁻¹. The microstructure is a BEI view from the longitudinal axis of the specimen.
Figure 12. Compression true stress-true strain curve performed at 1750°F (954°C) and at a strain rate of 2.0 s⁻¹. The microstructure is a BSE view from the longitudinal axis of the specimen.

Test number: (NPT)
Strain rate: 2 in/min/sec
Temperature: 1750°F
Lubricant: TK-5373
Figure 13. Compression true stress-true strain curve performed at 1750 F (954 C) and at a strain rate of 4.0 s⁻¹. The microstructure is a BEI view from the transverse axis of the specimen.
Figure 14. Compression true stress-true strain curve performed at 1750 F (954 C) and at a strain rate of 6.0 s⁻¹.

The microstructure is a BEI view from the transverse axis of the specimen.
Figure 15. Compression true stress-true strain curve performed at 1750 F (954 C) and at a strain rate of 8.0 s⁻¹. The microstructure is a BEI view from the longitudinal axis of the specimen.
Figure 16. Compression true stress-true strain curve performed at 1850 F (1010 C) and at a strain rate of 0.1 s\(^{-1}\). The microstructure is a BEI view from the longitudinal axis of the specimen.
Figure 17. Compression true stress-true strain curve performed at 1850 F (1010 C) and at a strain rate of 2.0 s⁻¹. The microstructure is a BEI view from the longitudinal axis of the specimen.
Figure 18. Compression true stress-true strain curve performed at 1850°F (1010°C) and at a strain rate of 4.0 s⁻¹.

The microstructure is a BEI view from the transverse axis of the specimen.
Figure 19. Compression true stress-true strain curve performed at 1850 F (1010 C) and at a strain rate of 6.0 s\(^{-1}\). The microstructure is a BEI view from the transverse axis of the specimen.
Figure 20. Compression true stress-true strain curve performed at 1850 F (1010 C) and at a strain rate of 8.0 s⁻¹. The microstructure is a BEI view from the longitudinal axis of the specimen.
Figure 21. Effect of strain rate on stress in log-log scale at a true strain of 0.2.

Figure 22. Effect of temperature on stress at a true strain of 0.2.
Figure 23. Processing map of Super α2 at a true strain of 0.2.

Figure 24. Workability of super α2 at 843°C (1550°F).
Figure 25. Workability of super α_2 at 1010°C (1850°F).
Summary

Compressive testing has been performed on super α_2 titanium aluminide over a range of temperatures and strain rates. The experimental conditions used in this work are representative of those used in conventional metalforming practices. From the stress-strain curves, the flow behavior was characterized and a map which indicates the optimum processing conditions was generated by employing the dynamic material modeling approach. The microstructure was characterized from the as-quenched specimens by SEM and are presented for each testing condition under the stress-strain curves. The testing was performed in the ($\alpha_2 + \beta$)-field of the material, with the proportion of β-phase increasing with increase in temperature.

Implementation of Data Provided by the Atlas of Formability

The Atlas of Formability program provides ample data on flow behavior of various important engineering materials at different temperatures and strain rates. The data are valuable in design of metalforming processes with advanced materials. Microstructural changes with temperature and strain rates are also given in the Bulletin, which would help the design engineer to select processing parameters which lead to the desired microstructure.

The data can also be used to construct processing map with dynamic material modeling approach, giving stable and unstable regions in terms of temperature and strain rate. The temperature and strain rate at the highest efficiency in the stable region provide the optimum processing condition. In some metalworking processes such as forging, the final strain and strain rate vary at different position in the work piece. An analysis of the process with FEM can ensure that the strain rates at the processing temperature in the whole workpiece fall into the stable regions in the processing map. Furthermore, FEM analysis with the data from the Atlas of Formability can also be coupled with fracture criteria to predict defect formation in metalworking processes.

Using the data provided by the Atlas of Formability, FEM design of metalforming processes, dynamic material modeling, defect prediction in forming processes, microstructure characterization of deformed materials are common practice in Concurrent Technologies Corporation. Any needs in solving problems in metalworking processes can be directed to Dr. Prabir K. Chaudhury, Manager of the Atlas of Formability project, at (814) 269-2594.