Advanced Research Training in Marine Molecular Biology and Biotechnology

Rebecca J. Van Beneden

Duke University School of the Environment
Marine Laboratory
111 Pivers Island Road
Beaufort NC 28516

Office of Naval Research
800 N. Quincy Street
Arlington VA 22217-5000

Distribution Unlimited

The ONR sponsored grant entitled "Advanced Research Training in Marine Molecular Biology and Biotechnology" founded a training course to teach students and established scientists the basic principles of modern recombinant DNA technology. The emphasis was on the development of marine models and problems in environmental and ocean sciences. Students were trained in the isolation and characterization of DNA and RNA which included Southern and Northern blotting, DNA sequencing and cDNA libraries. Other techniques taught were the use of the polymerase chain reaction (PCR), in situ hybridization, gene transfer, mtDNA analysis and immunoblotting. These techniques were applied to problems in environmental toxicology, marine microbiology, the development of transgenic organisms, evolution and population studies, developmental biology and gene expression analysis.
Objective: To train undergraduate, graduate and postgraduate students in the basic principles of current molecular biology and recombinant DNA techniques. The emphasis was on the application of these methods to study processes in biological oceanography and the development of marine organisms as model systems.

Approach: Students were trained in basic techniques of molecular biology, which included: (1) DNA ANALYSIS - (DNA isolation, Agarose gel electrophoresis, Southern blotting, hybridization, plasmid preparation and DNA sequencing; (2) MARINE MICROBIOLOGY - (immunoblotting, antibiotic production, PCR); (3) GENE TRANSFER - (cell culture, electroporation, calcium phosphate precipitation, lipofection, CAT assays); (4) RNA ANALYSIS - (RNA isolation, cDNA libraries, Northern blots); (5) DEVELOPMENTAL BIOLOGY OF SEA URCHINS (in situ hybridization); (6) mtDNA ANALYSIS (mtDNA isolation, PCR).

Staff members:

Dr. Rebecca Van Beneden, Duke University
Dr. James Oliver, University of North Carolina at Charlotte
Dr. Donald Blair, National Cancer Institute
Dr. Patricia McClellan-Green, Duke University
Dr. Gary Wessel, Brown University
Dr. Robert Chapman, East Carolina University

Students (year 01):

Bodishbaugh, Donovan; Postdoc; Duke University
Catallo, William; Ph.D.; Louisiana State University
Heath, Judy; Research Assistant; East Carolina University
Parker, Heather; Research Assistant; Oberlin College
Peichel, Catherine; Undergraduate; University of California
Schlenk, Daniel; Postdoc; Duke University
Small, Maureen; Graduate Student; Duke University
Terwilliger, Nora; Ph.D.; Oregon Inst. of Marine Biology
Wadman, Elizabeth; Research Assistant; Univ. Pennsylvania
Winn, Richard; Postdoc; Duke University
Students (year 02):

Alves Gomes, Jose, Graduate Student, Scripps Institute of Oceanography
Andacht, Tracy, Graduate Student, Duke University
Brown, David, Graduate Student, Duke University
Cashon, Robert, Dr., Research Assoc., Duke Univ. Marine Lab
Davis, Greg, Undergraduate, Duke University
Gross, Paul, Graduate Student, George Washington University
Kim, Chang-Hyum, Dr., Professor, Pusan University, Korea
Matese, John, Graduate Student, Duke University
Van Veld, Peter, Dr., Asst. Professor, Virginia Inst. of Marine Sciences
Watson, David, Graduate Student, Duke University
Rainer, Julia, (Independent Study only), Virginia Institute of Marine Sciences

Accomplishments: The course for the first two years was highly successful and well organized. The laboratory participants were limited to 10. Student evaluations indicated that they were very pleased with the general format. Many rated this course as the best they had taken at Duke University. The format allowed for maximum hands-on experience. Lectures emphasized techniques, problem solving and the unique aspects of marine organisms as model systems. The follow-up independent study period allowed students to focus on selected techniques as applied to their individual research efforts.

We have kept in contact with many of the students. One undergraduate became very interested in oncogenes and is now in graduate school. Another has taken a position as research assistant in a molecular biology laboratory at Johns Hopkins University and has future plans to enter graduate school studying marine organisms at this level. One assistant professor has incorporated molecular techniques in her studies of marine snails. Two postdoctoral fellows are making excellent progress using recombinant DNA techniques and aquatic models. Doctoral student David Brown has been studying the Ah receptor in marine invertebrates in my laboratory. Techniques learned here by Mr. Gomes (Scripps) on mtDNA analysis of several fish species have developed into a major part of his thesis work. Ms. Andacht and Mr. Matese, both graduate students of Dr. David McClay at Duke University, are using techniques learned in this course to address different molecular aspects of sea urchin development. Several other graduate students have used these techniques as part of their thesis projects. Mr. Gross (Georgetown University) will be returning this summer to continue some of his studies. Data generated in independent studies of Ms. Rainer have been published (see below) and used as preliminary support in several grant proposals. These examples illustrate the far-reaching impact of this course and the flow of information from molecular biology to problems in the biological ocean sciences.
II. Index of all publications

1. Course Bulletins (years 01 & 02)
2. Independent Study Report - Jose Gomes
3. Independent Study Report - Julia Rainer

III. Patents Pending or Filed

Not applicable.
Distribution List for Final Reports

Attach a copy of the REPORT DOCUMENTATION PAGE (DD FORM 1473) to your final report as the first page and mail two copies (including the postcard labelled DTIC FORM 50) to:

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

This allows other investigators to obtain copies of your report directly from DTIC. DTIC will fill out the postcard DTIC ACCESSION NOTICE (DTIC FORM 50) and return it to you with their number for your report. When you refer people to DTIC to get a copy of your report, give this number to expedite the request.

Mail one copy to each of the following and attach this very page to the back of your report – otherwise the folks below will think they have mistakenly received a copy meant for the Molecular Biology Program:

(a) Dr. Michael Marron
ONR Code 1141
Molecular Biology Program
800 N. Quincy Street
Arlington, VA 22217-5000

(b) Administrative Grants Officer
ONR Resident Representative
(address varies - see copy of your grant/contract)

(c) Director,
Applied Research Directorate
ONR Code 12
800 N. Quincy Street
Arlington, VA 22217-5000

(d) Director
Office of Naval Technology
Code 22
800 N. Quincy Street
Arlington, VA 22217-5000

(e) Director
Chemical and Biological Sci Div
Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709

(f) Life Sciences Directorate
Air Force Office of Scientific Res
Bolling Air Force Base
Washington, DC 20332

(g) Director
Naval Research Laboratory
Technical Information Div
Code 2627
Washington, DC 20375

Encl (1)

3/12/91