Basic optical studies of High Tc Oxide superconductors

6. AUTHOR(S)
Professors M.S. Dresselhaus, G. Dresselhaus

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
Center for Materials Science & Engineering
77 Massachusetts Avenue
Cambridge, MA 02139

8. PERFORMING ORGANIZATION REPORT NUMBER
AFOSR-TR-93-0584

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NE
110 Duncan Avenue Suite B115
Bolling AFB, DC 20332-0001

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
2306/C1

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
UNLIMITED

12b. DISTRIBUTION CODE
UNCLASSIFIED

13. ABSTRACT (Maximum 200 words)

DTIC ELECTED
AUG 18 1993

14. SUBJECT TERMS

15. NUMBER OF PAGES
7

16. PRICE CODE

18. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500
Final Technical Report
to the
Air Force Office of Scientific Research
for research on
BASIC OPTICAL STUDIES OF HIGH T_c
OXIDE SUPERCONDUCTORS

AFOSR Agreement #90-0123
for the period
January 15, 1990 — January 14, 1993

Principal Investigator: M.S. Dresselhaus
Co-Principal Investigator: G. Dresselhaus
Room 13-3005
Massachusetts Institute of Technology
Center for Materials Science and Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
Tel. (617) 253-6864

June 15, 1993
Annual Report

Abstract

During the 1992–93 year of the research program on "Basic Optical Studies of High T_c Oxide Superconductors", the effort was focused on a number of projects. The collaborative study of the microwave properties of superconductors with researchers at Rome Labs and the MIT Lincoln Laboratory continued and significant results were obtained on the microwave behavior in the non-linear high rf power regime for YBa$_2$Cu$_3$O$_{7-x}$ and this work will be a major part of the Ph.D. thesis of Paul Nguyen. During this year we continued study of the effect of halogen doping on the restoration of superconductivity to YBCO samples previously deoxygenated, and hence rendered non-superconducting. Extensive progress was also made on our new effort in studying superconductivity and the associated phonon spectra and electron-phonon interaction in the alkali metal doped C$_{60}$ materials. We review in this report the progress that was made on each of these projects, referring to the publications that were prepared on each of the topics under investigation.

Microwave Properties of High T_c Superconductors

A main topic under investigation has been the experimental measurement and theoretical modeling of the microwave properties of high temperature superconductors, carried out as a collaborative effort between researchers at MIT (including an MIT Physics graduate student Paul Nguyen, who is working on his Ph.D. thesis), Rome Labs and the MIT Lincoln Laboratory.

The nonlinearity of the surface resistance R_s of YBa$_2$Cu$_3$O$_{7-x}$ as a function of the microwave power level is of great importance for passive microwave devices. Since R_s depends upon the microwave current I_{rf} and microwave magnetic field H_{rf}, microwave circuit designs must consider the losses, harmonic generation and intermodulation distortion at the operating power levels. Microwave frequency $1/f$ noise may also be related to nonlinear conduction processes. The dependence of R_s on the microwave magnetic field ($R_s(H_{rf})$) must therefore be measured, since materials with comparable low-field R_s values can differ substantially in their rf field dependencies. To address this issue, we have carried out the first complete characterization of the nonlinear properties of high-quality YBa$_2$Cu$_3$O$_{7-x}$ thin films by measuring $R_s(H_{rf})$ for H_{rf} from 0 to approximately 1 kOe, versus temperature from 4.2K to T_c, and versus frequency from 1.5 GHz to 20 GHz using a stripline resonator. At all frequencies, there is a sharp increase in the nonlinearity at about 60 K. At low fields, flux penetration at weak links dominates the behavior, while at high fields and temperatures, losses
due to pair breaking or flux flow cause the nonlinearities. In this work we have explored the various mechanisms causing the nonlinearities and how the field dependencies are related to film structure and quality. The results have been interpreted in terms of a coupled-grain model which shows good agreement with the experimentally measured $R_s(H_{ff})$. The imaginary part of $Z_s(H_{ff})$, i.e., $X_s(H_{ff})$, however, does not seem to fit the model.

Several publications on this topic have been completed during the grant period January 15, 1992 – January 14, 1993 (#1,2,6,9).

Halogen substitution experiments

The restoration of superconductivity to partially de-oxygenated non-superconducting YBa$_2$Cu$_3$O$_{6.2}$ crystals through halogen substitution (#4) has stimulated a large amount of scientific and technological interest in the compound YBa$_2$Cu$_3$O$_x$X$_y$ where X is a halogen. Since bromine addition can be carried out at much lower temperatures ($\sim 230^\circ$C) than oxygen annealing, the halogenation approach for the restoration of T_c is of technological interest.

To carry out transport measurements including temperature dependent resistivity and magnetoresistance measurements, we have prepared de-oxygenated non-superconducting YBa$_2$Cu$_3$O$_{6.2}$ single crystals and we have subsequently doped them with Br. The resulting crystals become superconducting with $T_c \sim 92$ K, $\Delta T_c \sim 1.0$ K as determined by four-point probe resistivity measurements. The normal state resistivity in our best sample decreases linearly with decreasing temperature. We found a large ratio in the resistivity at 300 K of the brominated to the pristine YBCO single crystals (\sim35:1), suggesting that bromination greatly increases the scattering rate. For these samples we have determined by resistivity measurements the upper critical field $H_{c2}(T)$ parallel and perpendicular to the ab plane. $H_{c2}(0)$ and the corresponding coherence lengths $\xi_{ab}(0)$ and $\xi_c(0)$ were then estimated from the Ginzburg-Landau relations. A comparison with the fully oxygenated YBCO single crystals show that $\xi_{ab}(0)$ remains approximately the same upon bromination, whereas $\xi_c(0)$ decreases by a factor of ~ 3, suggesting that Br never enters the CuO$_2$ planes. The pinning energy for vortex motion in the ab plane decreases after bromination and this decrease can be attributed to the increased anisotropy. For vortex motion along the c-axis, however, the pinning energy decreases or increases depending on temperature and field. Compared with the fully oxygenated YBCO single crystals, the critical current density is suppressed by bromination and is strongly dependent on the applied magnetic field. The reduced lower critical field H_{c1} in the brominated YBCO single crystals indicates a reduction in the carrier density (by a factor of between 2 and 3), which is consistent with the observed reduction in the plasma frequency.
A paper based on this work has been prepared and accepted for publication (#4).

Phonons and Electron-Phonon Coupling in \(C_{60} \) and Doped \(C_{60} \)

The alkali metal doped \(C_{60} \) compounds are particularly interesting because of their relatively high values of \(T_c \). Because of the importance of the electron-phonon interaction in superconductors, we have initiated a detailed study of phonons and the electron-phonon interaction in alkali metal doped \(C_{60} \). Our initial work has addressed the phonon spectrum and subsequently the electron-phonon interaction in undoped and doped \(C_{60} \) will be studied.

A force constant model has been developed for the vibrational modes in \(C_{60} \), based on bond-stretching and angle-bending interactions (#3). The result of this model are compared with the experimental data available from Raman, infrared, and high resolution electron energy loss spectroscopies, as well as neutron inelastic scattering measurements. Excellent agreement is obtained between calculation and experiment. This force constant model not only provides the mode frequencies but also all the eigenvectors. This model for \(C_{60} \) has subsequently been extended to treat \(C_{70} \) and alkali metal doped \(C_{60} \) and \(C_{70} \) (#11,12). These results have been very useful for the interpretation of experimental Raman spectra in \(C_{70} \), \(M_x C_{60} \) and \(M_x C_{70} \) films (#17). A model for the phonon spectra of carbon nanotubes has also been developed (#18) utilizing the generalized symmetry properties of carbon nanotubes (#15).

An expression for the electron-phonon coupling strength in fullerene nanotubules has been derived within the tight binding model. It is estimated that under ideal circumstances, the electrical conductivity of metallic fullerene nanotubes could be an order of magnitude larger than that of copper. What is of particular interest is the limited availability of scattering states for such a 1D electron system and the special restrictions for scattering of longitudinal modes (intra-branch scattering only) and transverse modes (inter-branch scattering only). This work has been submitted for publication (#16).

The influence of curvature on the electron-phonon coupling in \(C_{60} \) doped with alkali metals has been studied within the tight-binding formulation. It is shown that the modulation of the tight binding matrix element due to the displacement of atoms from equilibrium has a value which is essentially the same as in graphite. Nevertheless, the existence of coupling between the electrons and the low-frequency radial phonons in \(M_3 C_{60} \), \(M \) being an alkali-metal atom, leads to a reasonably large value of \(\lambda \), the dimensionless electron-phonon coupling parameter. The superconducting transition temperature is then readily calculated and is found to be in the experimentally observed range (#8).
Experimental transport studies of weak localization effects in the normal state of superconducting K_3C_{60} films have been carried out (#10). The femtosecond dynamics of K_3C_{60} and Rb_3C_{60} films have been investigated experimentally and related to that observed in C_{60} films before intercalation, showing a great enhancement in coupling between electrons and phonons in the metallic M_3C_{60} system relative to that in the precursor insulating C_{60} film. These results have been related to interband processes in the respective materials. The relation of these findings to the observation of superconductivity in M_3C_{60} films has also been discussed (#14).

Several review articles relevant to fullerenes were prepared (#5,13).

Invited Talks and Honors

Honors

- Elected Treasurer of the National Academy of Sciences
- Honorary D.Sc., University of Massachusetts, Boston
- Honorary D.Sc., University of Connecticut
- Honorary D.Sc., Princeton University
- Houston Lecturer, Rice University

Research Lectures related to work supported by this grant

- Jan. 16, 1992
 General Motors Research Laboratory

- Jan. 21, 1992
 MIT Club of Boston

- Jan. 28, 1992
 George Washington University and the National Science Foundation

- Feb. 17, 1992
 WPI

- Mar. 3, 1992
 Williams College

- Apr. 30, 1992
 MIT, Math Department Lecture

- May 19, 1992
 Electrochemical Society, Invited talk
- May 21, 1992
 CalTech Physics Colloquium
- May 26, 1992
 AT&T Bell Laboratory
- May 27, 1992
 Princeton University Symposium
- Aug. 3, 1992
 Hokkaido - Hironaka Symposium
- Oct. 1, 1992
 Emery University
- Oct. 14, 1992
 NEC Symposium, Karuizawa, Japan; invited talk
- Oct. 15, 1992
 NEC Symposium, Karuizawa, Japan; Summary talk
- Nov. 29, 1992
 MRS Tutorial on Fullerenes
- Dec. 8, 1992
 University of Maryland
- Jan. 10, 1993
 Houston Lecture, Rice University
- Jan. 12, 1993
 Houston Lecture, Rice University

New Discoveries, Patents or Inventions
None.

Publications

and N. Koshizuka, page 167, Springer-Verlag, Tokyo, Berlin, New

