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Abstract

Modern computer systems are increasingly relying on parallelism to improve

performance. Automatic parallelization techniques offer the hope that users can simply

and portably exploit parallelism. This thesis addresses the problem of data dependence

analysis, the base step in detecting loop level parallelism in scientific programs.

Exploiting parallelism can change the order of memory operations. Data dependence

analysis involves analyzing the dynamic memory reference behavior of array operations

so that compilers will only parallelize loops in the cases where any resultant reordering

of memory references does not change the sequential semantics of the program.

In general, data dependence analysis is undecidable, and compilers must conservatively

approximate array reference behavior, thus sequentializing parallel loops. Traditional

data dependence analysis research has concentrated on the simpler problem of affine

memory disambiguation. Many algorithms have been developed that conservatively

approximate even this simpler problem. By using a series of algorithms, each one

guaranteed to be exact for a certain class of input, we are able to devise a new method

that in practice solves exactly and efficiently the affine memory disambiguation

problem. Because our affine memory disambiguator is exact in practice, we can devise

an experiment to test the effectiveness of affine memory disambiguation at

approximating the full data dependence problem. We discover that the lack of data-

flow information on array elements is the key limitation of affine memory

disambiguators. We develop a new representation and algorithm to efficiently calculate

these data-flow dependences. Finally, we address the problem of interprocedural data

dependence analysis. By using an array summary representatior that is guaranteed to

be exact when applicable, we can combine summary information with inlining to

exactly and efficiently analyze affine array references across procedure boundaries.

Taken together, our algorithms generate the more accurate information that will be

needed to exploit parallelism in the future.
i
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Chapter 1

Introduction

Powerful computer systems are increasingly using parallelism to provide increased per-

formance. Today we are witnessing the introduction of massively parallel machines with

multi-level parallelism. Machines such as the Intel Touchstone and ThiuAing Machines'

CM-5 consist of large numbers of micropiocesscrs, each processor itself having some

limited amount of parallelism.

Utilizing these machines effectively is becoming increasingly complex. As a result,

much work has gone into developing parallelizing compilers for scientific programs.

These compilers attempt to detect the parallelism present in the original source and

transform the program to effectively utilize the machine's resources. The key to finding

parallelism in scientific programs is analyzing array references, which is called data

dependence analysis.

1.1 Data Dependence Analysis

Most of the parallelism found in scientific programs is present in loops. One common

method to exp'oit this parallelism is to execute the loop iterations concurrently.

In this first section, we give an overview describing the type of information that is

required to parallelize loops. We base our framework on material found in [53] and [55].

Their descriptions are based on a long line of work originating from Kuck, Lamport and

their associates. In the next section, we discuss calculating the information necessary for

I



CHAPTER 1. INTRODUCTION

parallelization.

Before parallelizing a loop, we must be certain that the parallelized version w-11 retain

the sequential semantics of the original version. Current compiler systems conservatively

guarantee this cc:.di0tion by requiring that parallelization maintain the serial execution

order betw,!een. e.very write operation and eve'-y other write or read operation to the same

memory locatior [55].

Parallelizing loops under this model requires the compiler t, analyze array reference

patterns. Consider the following example.

do i = 11 to 20

a[i] = a[i-1]+3

end do

do i = 11 to 20

a[i] = a[i-l0]+3

end do

We would like to be able to run all the iterations of etch loop in parallel, but in the

first loop the location being read in each iteration was written in the previous iteration. It

is not possible to execute this loop in parallel and still guarantee the sequential semantics.

In the second loop, the locations being written do not overlap the locations being

read. Each iteration, is reading from and writing to different locations. The values being

read were written before the first iteration of the I-op. It is therefore possible to execute

the iterations concurrently.

Two array references a and a' are said to be dependent if any of the locations

accessed by reference , ire also accessed by reference a' [53]. Otherwise, the two

references are independent. The existence of a dependence implies that there exist two

iterations of the loop, " and P, within the loop bounds, such that the location accessed by

reference a in iteration i is the same as the location accessed by reference a' in iteration

P'. We introduce the term dependent iteration pairs to describe the set of such pairs,

(i,i').

If all array reference pairs in a loop are independent, we can run all the iterations of

the loop in parallel. If some pairs are dependent, it might still be possible, depending on
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the nature of the dependences, to run the iterations in parallel. For example:

do i = 11 to 20

a[i] = a[i1+3

end do

These references are dependent since the same locations are both written and read.

For each dependent iteration pair, though, we know that Z = '. There are no dependences

between operations in different iterations, and although we cannot run the read and the

write operations of the same iteration concurrently, we can correctly run all the separate

iterations in parallel.

Any dependent iteration pair such that i = i'is a loop-independent dependence, while

a dependent iteration pair such that Z " ' is a loop-carried dependence [55]. All the

iterations of a loop nestinp can be run in parallel if and only if there are no loop-carried

dependences between any two references in the loop.

To parallelize a subset of the loop nestings, we need to know more than if there are

loop-carried dependences. For example:

do i = 11 to 20

do j = 11 to 20

a[i] 7[] = a[i-1] - - 11]+3

end do

end do

All the dependences in this loop nesting are loop-carried. Therefore we cannot run

all the iterations in parallel. Nonetheless, if we run loop i sequentially, we can run the j
loop in parallel. For a given value of i, the array operations in all the iterations of the j

loop refer to different locations.

To fully exploit all the parallelism inherently present in a loop, we need to calculate

all the dependent iteration pairs. This is both infeasible and unnecessary for most opti-
mization techniques. Distance vectors and direction vectors are standard representations
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that allow us to summarize the set of dependent iteration pairs [55]. Distance vectors

represent the vector difference between the two iteration elements in a dependent iteration

pair. Two references are dependent with distance vector d if there exists a dependent

iteration pair, (, "), such that Ž - i = d. In the above example, there is a dependence

from the write to the read with distance (1,1). Direction vectors represent the sign of the

distance vectors. We replace each component distance with its sign; +, - or 0. We use

a * as a short hand notation to represent the direction when the sign of the distance is

unknown or when there are dependent iteration pairs with all the possible directions. In

the above example, there is a dependence from the write to the read with direction (+,+).

It can be shown that since there is no dependence with direction (0,+), it is possible to

run loop j in parallel as long as we sequentialize loop i. We use the term dependence

vector to refer to either distance or direction vectors.

Standard compiler systems require parallelization to preserve the order between all

write operations and all read/write operations to the same location [55]. Given this

model, distance and direction vectors are sufficient representations for parallelization.

This model, though, is too restrictive. Not all dependences are equally harmful. The only

dependences that inherently limit parallelism are dependences between a write operation

and a read operation where the read uses a value produced by an earlier write. All other

dependences are artifacts of aliasing. Take, for example, the following two loops.

Loopl:

do i = 11 to 20

a[i] = a[i-I]+3

end do

Loop2:

do i = 11 to 20

a[i] = a[i+ 1]+3

end do

There are loop-carried dependences in both loops, and we cannot run either loop,
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without modifications, in parallel. In the first loop, the value being written in iteration

i is being consumed in the next iteration i + 1. The loop is inherently sequential. In

the second loop, the location being read in iteration i is being overwritten in the next

iteration i + 1. There is no data being transferred across iterations of the loop. While

we cannot run the loop as written in parallel, we can transform it into the following two

loops, each of which is individually parallelizable.

do i = 12 to 21

b [i] = a[i]

end do

do i = 11 to 20

a[i] = b[i+1]+3

end do

The use of distance vectors is sufficient to discover that Loopl is inherently sequential

while Loop2 is not. In Loopl, there is a dependence with a distance vector of (1) from

the write statement to the read statement while in Loop2 there is a dependence with a

distance vector of (-1). For any pair of write and read references with a positive distance

vector from the write to the read, i.e. -z, > 0, the write operation occurs dynamically

before the read, and the dependence is called a true dependence. Any pair for which the

distance vector is negative is called an anti-dependence [26][27]. Anti-dependences are

artifacts of aliasing and can always be eliminated. Note that if the distance vector is 0,

the dependence is a true dependence if the write comes lexically before the read and an

anti-dependence otherwise.

While only true dependences inherently limit parallelism, not all true dependences are

inherently harmful. For example:

do i = 11 to 20

do 3' = 11 to 20

a (j] = ...

do j = 11 to 20

=a[j]
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There is a loop-carried true dependence between the write and the read because the

locations written in iteration i = x are read in all the later iterations i = x+ 1, x+2,... , 20.

Note, though, that in each iteration of the i loop, the same locations are being overwritten.

Thus the value read in iteration i = x was in fact written in the same iteration. The array

a is in fact being used as a temporary array. We define a read reference to be data-flow

dependent on a write reference if the write reference wntes a value that is read by an

instance of the read reference. Data-flow dependences are a subset of true dependences.

Only data-flow dependences inherently limit parallelism. In the above example, there are

no loop-carried data-flow dependences, and we can parallelize the loop by privatizing the

array, giving each processor its own private copy of the temporary array.

Dependence vectors do not contain sufficient information to distinguish true depen-

dences from data-flow dependences. A new representation, data-flow dependence vectors,

is required. Data-flow dependence vectors will be described in detail in Chapter 4.

1.2 Calculating Data Dependence Relations

Ideally one would always like to know the exact dependence and data-flow dependence

vectors between any two references. Unfortunately, even simpler problems, such as

deciding if two references are dependent, are undecidable at compile time in the general

case. For example:

read (n)

do i = 11 to 20

a[i] = a[i-n]+3

end do

Whether or not the two references are dependent depends on the value of n, which

is unknown at compile time.

Even ignoring the issue of static versus dynamic dependences, the problem can be

made arbitrarily difficult. For example:
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if n > 2 then

if a > 0 then

if b > 0 then

if c > 0 then

x[a'] = x[bn+cn]+3

end if

end if

end if

end if

To prove that these two references are always independent, a compiler would have to

prove Fermat's last theorem.

1.2.1 Affine Memory Disambiguation

Traditional approaches restrict the data dependence domain to the simpler problem of

affine memory disambiguation [8][53][55]. Pairs of references that cannot be proved

independent in this domain are assumed dependent. Before discussing more accurate

approaches, we shall first describe the affine memory disambiguation model.

A memory disambiguator does not distinguish true dependences from data-flow depen-

dences. A memory disambiguator calculates whether two references refer to overlapping

locations; it does not calculate the flow of values through a program.

An affine data dependence solver only utilizes information from loop bounds that are

integer linear functions of more outwardly nested loop indices and from array reference

functions that are integer linear functions of the loop indices. This is frequently extended

to allow constant symbolic terms as well.

Affine systems allow more general loops and array references than we have shown

in the previous examples. They can handle multi-dimensional arrays and nested loops.

The loops need not be rectangular; they can be triangular or trapezoidal. For example:
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do i = 10 to 20

do J = 10 to i+3

a[i] [j] = a[3,j] [2,i- 1]+3

end do

end do

An affine system is not able to handle other cases such as nonlinear terms or indirect

array references. The following example is not affine.

doi = 10 to n

a [i2] = a[3]+3

end do

The first array reference function, i2 , is not linear in i. Note that the two references

are independent since there is no integer i such that i 2 = 3, but an affine system will

have to assume that these two references are truly dependent.

Most work in data dependence analysis has focused on solving the affine memory

disambiguation problem. Most previous approaches to even this simplified problem have

approximated its solution. In Chapter 2, we develop a system that exactly and efficiently

solves the affine memory disambiguation problem in practice. Solving this problem

exactly allows us to judge how effectively affine memory disambiguation approximates

data dependence analysis. In Chapter 3, we develop a method for judging the effectiveness

of this approximation. We use the llpp system developed by Larus [28], a dynamic

trace-based system, to find all the intraprocedural data dependences dynamically. By

comparing the results of our system to this dynamic system, we show that while the

affine approximation is reasonable, memory disambiguation is not.

Feautrier has developed an algorithm that can be used to differentiate data-flow de-

pendences from other true dependences in the domain of simple loop nests that contain no

IF statements, no subroutine calls and no non-affine terms [16][15]. His algorithm is too

expensive to be used in real compiler systems. In Chapter 4, we develop a new algorithm
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for Feautrier's domain that is much more efficient and is as accurate as Feautrier's in the

vast majority of cases seen in practice.

1.2.2 Interprocedural Analysis

To fully utilize all the possible parallelism, one would have to compare every array

write reference to every other array reference. While this is frequently done for a single

subroutine, interprocedural analysis greatly increases the number of comparisons required.

To be completely accurate, one must inline every subroutine call to make the comparisons.

As we will show in Chapter 5, this is impractical. Most systems either partially inline

a program or attempt to summarize a set of accesses. Both approaches are inexact and

potentially sacrifice some parallelism. Partially inlining a program prevents parallelization

across remaining subroutine calls. Summarizing a set of accesses can limit parallelism

when the summary is not accurate. In addition, if a summary prevents the parallelization

of a loop, it is not possible to know if the summary is conservatively faulty or if the

loop is inherently sequential. It is therefore very difficult to judge the effectiveness of a

particular summary algorithm.

In Chapter 5, we develop an algorithm for interprocedural parallelization that com-

bines summary information with inlining. Whenever our summary cannot describe the

array accesses exactly, we inline. Thus we are able to use a simple summary structure

that can be efficiently computed while retaining the accuracy of full inlining.

Finally, in Chapter 6, we summarize our work and discuss future directions.



Chapter 2

Affine Memory Disambiguation

We showed in Chapter 1 that it is not possible to solve the data dependence analysis

problem exactly at compile time. There are pairs of independent references for which

the compiler must assume dependences exist. Traditional approaches restrict the data

dependence domain to the simpler, decidable, problem of affine memory disambiguation

[8][53]. Pairs of .. `>rences that cannot be proved independent in this domain are assumed

dependent.

In this chapter, we present an approach to solving the affine memory disambiguation

problem [37]. While in the worst case affine memory disambiguation is too expensive

to solve exactly, we show that in the cases seen in practice we can be both exact and

efficient. Even when computing distance and direction vectors and when allowing sym-

bolic constants, we are able to be exact in every case we have seen in practice at a very

reasonable cost.

2.1 Problem Definition

We first give the standard definition for affine memory disambiguation. The affine domain

restricts us to only utilize constraints that come from loop bounds that are integral linear

functions of more outwardly nested loop indices and array references that are integral

linear functions of the loop indices.

For the purpose of this thesis, we use a more generalized form of the affine restriction,

10
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where the affine conditions do not necessarily have to be met directly in the source

program. For example, we can use optimization techniques (constant propagation and

induction variable and forward substitution [49][50]) to increase the applicability of the

solution techniques. For example:

n = 100

2= 0

do i = to 10

Z = i2 + 2

a[iz2+n] = a[i2 +2*n+ 1]+3

end do

These references are not strictly affine since they refer to the non-loop indices i 2 and

n. Nonetheless. our optimizer will discover that n = 100 and that i2 = 2i, and it will

transform the code into:

do = 1 to 10

a[2,i+100] = a [2*i+201]+3

end do

which does meet our conditions for analysis.

In addition, having non-affine terms that we cannot eliminate implies that we lose

information, but it does not necessarily force us to assume dependence. As long as some

of the array dimensions are affine, we may be able to use these dimensions to prove

independence. For example:

do i = 10 to 20

a[i 2 ] [2*i] = a[3] [2*i+1]+3

end do

The first dimension of the array write contains a non-affine term, but the second

dimension of both references are affine. Looking only at the second dimension of the
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array, we know that the write only refers to even locations while the read only refers

to odd ones. Even without using the information in the first dimension, we are able to

prove independence.

In the memory disambiguation domain, two references are dependent if and only if

the sets of locations they refer to overlap. That is, two references are dependent if there

exists a pair of iterations (i,i') such that the location accessed by one of the references

in iteration i is the same location accessed by the other reference in iteration i'.

We can formally define dependence in the affine memory disambiguation domain as

follows:

Definition 2.1.1 Given the following general normalized loop (we normalize the step

size to 1):

do iI = LI to U1

do i 2 = L 2 (il) to U 2 (il)

do i', = Ln (il1 ... in-l) to U,-'(ii,.. i,_1)

a [fl(i-'] f2(J)... [fm,)] =...

en... dof ( (

end do

end do
en d do

such that all the L, U, f, f' are known integer, linear functions. The two references are

dependent in the affine memory disambiguation domain iff

3 integer il,... *,,i"1,... ,i" such that

fl(7) = f(7). .... fm(i = f-n(Z
7 )

LI < ij _< U,

L _< i• _< U,

Ln(ij .... Z,in- ) I _ in Un(11,...in- I

L,-(i) " " < n(i,]-, -1
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In matrix form this is equivalent to

3 integral 1 such that Ali = b1, A2 1 <_ b2  (1)

where Y is the combined vector (Z, P), where the rows of A, and b, are the array reference

constraints and where the rows of A 2 and b2 are the loop bounds constraints. By replacing

any equality ax = b in (1) by the two inequalities ax < b and -ax < -b we see that this

is equivalent to

3 integral Y such that AZ < b. (2)

2.1.1 Affine Memory Disambiguation is Integer Programming

Ideally one would like an exact affine memory disambiguation system. Unfortunately,

affine memory disambiguation in general is exactly equivalent to integer programming,

a well-studied problem. The standard integer programming problem [44] is to find

max Y such that A9 < b, X- integral (3)

It is clear that (2) is a special case of (3) so affine memory disambiguation can be

reduced to integer programming. Another polynomially equivalent version of integer

programming is [44]

3 - such that AY = b, 1 > 0, X- integral (4)

If A is an m x n matrix, one can reduce (4) to affine memory disambiguation by

constructing the following program:

do x, = 0 to unknown

do x, = 0 to unknown

a [A,,lx, + ... Alx]. [Am,ii +...] . ...

= a[bl]... [bi]
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Given that we showed that (2) can be reduced to (3) and that (4) can be reduced to (2), the

affine memory disambiguation and the integer programming problems are polynomially

equivalent. All integer programming algorithms that we know of are too expensive in

the worst case. Integer programming is NP-Complete; any existing algorithm either

depends exponentially on the number of variables and constraints or depends linearly on

the size of the coefficients. Typical programs have very few array dimensions and do not

have deeply nested loops. Therefore being exponential in the number of variables and

constraints could be acceptable. The size of the coefficients, though, could conceivably

be very large.

The complexity of most common algorithms (branch and bound, cutting plane) depend

on the size of the coefficients in the worst case. Lenstra [29] and Kannan [24] have

developed algorithms that do not depend on the coefficients, but in the worst case,

Kannan's algorithm is O(n 0(n)) where n is the number of variables. Unfortunately,

even for the relatively small n we see in practice, this is much too expensive to use in

compilers. Therefore, we do not believe it is possible to develop a practical test that will

apply to every conceivable case. Nonetheless, as we next show, special case algorithms

that are efficient, apply to all the examples we have found in practice.

2.2 Solving the Affine Memory Disambiguation Problem

Many algorithms have been proposed for affine memory disambiguation, each one se-

lecting different tradeoffs between accuracy and efficiency. Traditional algorithms such

as the GCD Test and Banerjee's inequalities attempt to prove independence, assuming

dependence if they fail [4][8][53]. We call these algorithms may algorithms since when

they return dependent, we do not know if an approximation was made.

In its most general form, the GCD Test solves the affine memory disambiguation

problem exactly ignoring the loop bounds. For example, the GCD Test could conclude

that the two references 2i and 2i + 1 are independent since they are in fact independent

regardless of the values of the loop bounds. If there are two references that are only

independent because of the values of the bounds, then the GCD Test must incorrectly

assume that the two references are dependent. Often, a simpler and less accurate version
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of the GCD Test is used. We will describe both versions in greater detail in the next

section.

Banerjee's inequalities use the loop bounds to find a range of values for each dimen-

sion of each reference. If the ranges of the two references overlap in each dimension,

they are assumed dependent. Otherwise, they are known to be independent. If every loop

bound is a constant and the different array dimensions are not coupled (no loop index is

used in more than one dimension), Banerjee's inequalities give the exact solution to the

real problem

3 X- such that Ax- <

If the set of equations has a real solution, but no integer one, Banerjee's inequalities must

incorrectly assume that the references are dependent. When some of the loop bounds

are triangular or trapezoidal or when multiple dimensions are coupled such as a [iI [tilI,

Banerjee further approximates and does not solve the real (non-integer) problem exactly

either.

Other researchers have developed more accurate may algorithms. Triolet uses the

Fourier-Motzkin algorithm [51]. Fourier-Motzkin solves the real system exactly, even

when there are triangular and trapezoidal bounds. Wallace has developed a variation

of simplex extended to look for integer solutions [52]. To guarantee termination, it

must assume dependence after a certain number of iterations. The Lambda Test extends

Banerjee's inequalities to better deal with coupled subscripts [32]. The Power Test [54]

combines the GCD Test with Fourier-Motzkin.

While some of these algorithms may be accurate in most cases, they all have the

problem that their approximations are implicit. If such an algorithm returns dependent,

we do not know if an approximation was made. In addition, there is evidence that

some of these algorithms are too inefficient. Li, Yew and Zhu, for example, consider

Fourier-Motzkin to be too expensive [32].

Some work has been done on algorithms that are guaranteed to be exact for special

case inputs. Simple loop residue [46], Li and Yew's work [31], the I Test [25] and the
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Delta Test [18] fall into this category. Little work has been done to analyze either the

accuracy or the efficiency of these algorithms in practice.

None of these algorithms, as far as we know, has been definitively shown to be both
"accurate enough" and "efficient enough". In fact, Shen, Li and Yew found that cases

such as coupled subscripts appear frequently and cannot be analyzed accurately using

traditional algorithms such as Banerjee's [45].

Our approach is to use a series of special case exact tests. If the input is not of

the appropriate form for an algorithm, then we try the next one. Using a series of tests

allows us to be exact for a wider range of inputs. We evaluated our algorithms on the

PERFECT Club [14], a set of 13 scientific benchmarks, and found the algorithms to be

exact in every case.

Cascading exact tests can also be much more efficient than cascading inexact ones.

By attempting our most applicable and least expensive test first, in most cases, even the

dependent ones, we can return a definitive answer using just one exact test. Even when

one test is not sufficient, we only need to check the applicability of multiple tests. We

never have to apply more than one. In contrast, cascading may algorithms would require

using all the tests on at least all the dependent cases. As we will show, most cases

encountered in practice are in fact dependent. In fact, most direction vectors tested are

dependent as well.

2.3 Data Dependence Tests

In this section, we describe the individual tests used in our approach: the Extended GCD

Test, the Single Variable Per Constraint Test, the Acyclic Test, the Simple Loop Residue

Test and Fourier-Motzkin Elimination. We describe them in the order in which they are

applied by our system.

2.3.1 Extended GCD Test

We use the Extended GCD Test [8] as a preprocessing step for our other tests. While the

test itself is not exact, it allows us to transform our problem into a simpler and smaller
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form, increasing the applicability of our other tests. This test solves the simpler question:

Ignoring the bounds, is there an integral solution to the set of equations. From equation

(1) we see that this is equivalent to: does there exist an integer vector 1" such that Ai = b.

If this system of equations is inconsistent, then we know that the original system is also

inconsistent since the loop bounds merely introduce additional constraints. If the system

is consistent, then the total system may be either inconsistent or consistent. In this case,

though, we are able to use the results of the extended GCD Test to make a change of

variables that simplifies the original problem. The original GCD Test is derived from

number theory. The single equation aIxI + a2X2 + ... + a,•x = b has an integer solution

iff gcd(ai) divides b. This gives us an exact test for single-dimensional arrays ignoring

bounds. Banerjee shows how this can be extended to multi-dimensional arrays. The

system of equations zFA = e can always be factored into a unimodularI integer matrix U

and an echelon 2 matrix D (with di, > 0) such that UA = D. The factoring is done with

a process similar to Gaussian elimination. The system YA = C- has an integer solution Y

iff there exists an integer vector F such that FD = c. Since D is an echelon matrix, we

can use back substitution to solve for t very simply. If no such F exists, then the total

system is inconsistent. Otherwise, ignoring the bounds, there is a dependence. We then

add in the bounds and continue.

If such a F exists then the solution , is given by Y = WU. If the system is not of

full rank, and it usually is not, then X- will have some degrees of freedom. For example:

t= (lt,) U = [10 ] then Y = (lt,) where tj (and therefore X2) can take on

any integral value. Wolfe showed that the bounds constraints on i" can be expressed as

constraints on F [53]. For example:

do i = 1 to 10

a[i+ 10] = a[i]

end do

SA unimodular matrix is a matrix whose determinant is ±-1.
2An echelon matrix is an m x n matrix such that if the first non-zero element in row i is in column j,

then the first non-zero element in row i + 1 is in column k > j
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The initial dependence problem is to find

integers i,i' such that i + 10 = i' and 1 < i i' < 10

The extended GCD Test tells us that (i, i') = (ti, tj + 10). Transforming the constraints

to be in terms of tl gives us:

3 integer tj such that

1 < t1 < 10 and

1 < ti + 10< 10

This transformation is valuable for several reasons. First, we have reduced the number

of variables. In general, each independent equation will eliminate one variable. Second,

we have reduced the number of constraints. Before, each lower bound generated two

constraints (one for each array reference), each upper bound generated two constraints and

each dimension of the array generated one equality constraint. The equality constraint

a" = b had to be converted into the two inequality constraints ag < b and ax" > b.

Therefore we had 41 + 2d constraints (where I is the number of enclosing loops, and d

is the number of array dimensions). Now all the equality constraints are folded into the

bounds constraints. Thus we are left with only 41 constraints.

The complexity of most integer programming algorithms depends on the number of

constraints and the number of variables. Thus, in general GCD preprocessing should make

the other algorithms more efficient, but more importantly, the form of the new constraints

is typically simpler than the original. We have eliminated equality constraints, a necessity

for our Acyclic Test discussed below, and we have cut down on the number of variables

per constraint. In the previous example, some constraints (the equality ones) contained

two variables, while after the transformation all constraints contain one variable. As we

shall see, our first exact test, the Single Variable Per Constraint Test, only applies in cases

where each constraint has at most one variable.

2.3.2 Single Variable Per Constraint Test (SVPC)

Banerjee shows that if the solution to the generalized GCD Test has at most 1 free

variable then one can solve the exact problem easily [8]. Each constraint is merely an
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upper or lower bound for the free variable. One merely goes through each constraint

calculating the appropriate lower or upper bound and storing the best ones found. If

after going through all the constraints, the lower bound is greater than the upper bound,

then the test returns "independent". Otherwise the equations are consistent, and the test

returns "dependent". Banerjee notes that this can be extended to the case where there are

an arbitrary number of variables in the system but at most one variable per constraint.

Each constraint is merely an upper or lower bound for one of the free variables. One

goes through each constraint and remembers the tightest bound for each variable. If after

going through all the constraints, ibi > ubi for any variable ti, the system is inconsistent.

Otherwise it is consistent. This test is a superset of the well-known single loop, single

dimension exact test [7]. It is quite clear that with one loop and single-dimensional

arrays one cannot get constraints with more than one free variable. This test, though,

also applies to many common multi-dimensional cases, including those with coupled

subscripts, as shown below.

do ij = L, to U,

do i2 = L 2 to U2

a[il [i2 ] = a[i2+constl] [il +const 2]

end do

end do

To demonstrate the algorithm, we cover an instance of the above in detail.

do it = 1 to 10

do i2 = 1 to 10

a [il [i 23 = a [i2 + 10] [il + 91

end do

end do

The GCD Test will set ij = ti, i' = t 2 , i 2 = t 2 + 9 and i t = - 10. Expressing the

constraints in terms of the t variables we get the following:
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1 < tl < 10

<_ t 2 < 10

1 < t 2 + 9 < 10
1 < t1 - 10 < 10

The first constraint sets the lower bound of t I to 1 and its upper bound to 10. The second

does the same for t2 . The third constraint resets t 2's upper bound to 1. Finally, the last

constraint resets tI's lower bound to 11. Since the lower bound on tI is greater than its

upper bound, the system is inconsistent.

This algorithm is very efficient. It requires O(C + V) steps where C is the number

of constraints and V is the total number of variables. Each step in the algorithm requires

very few operations. Even if certain constraints have more than one variable, applying

this test to the applicable ones will eliminate constraints for the following algorithms.

2.3.3 Acyclic Test

We have developed the Acyclic Test for cases where at least one constraint has more

than one variable. It works by trying to eliminate variables that are only constrained

in one direction. Before applying the Acyclic Test, we first apply the SVPC Test to all

the single variable constraints in our system. If any lb, > ub1 , we return independent.

Otherwise, we remove all such constraints from further consideration and instead store

the lower and the upper bound for each variable that was calculated by the SVPC Test.

We then proceed with our Acyclic Test. Given a system of constraints AF > 0 and a

variable we wish to eliminate, ti, we rewrite all our multi-variable constraints to be in the

form

al,it• < fl(t)

a2,iti __f2(t)

an, ti <_ (t)

where each f3 (t) is a linear function involving any of the variables except ti. If every

aki > 0, then the variable t, is only constrained in one direction, to be smaller than
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some function of the other variables. Thus we can set t, to lbi (the lower bound that

the SVPC Test has previously calculated for ti). If there is a solution with t, = lbi then

that solution is a solution to the original system. If there is a solution to the original

system with t, > Ibi then clearly setting t, to the lower value of lb, will not violate any

constraints. Thus there is a solution with ti = lbi iff there is a solution to the original

system. Note that it is possible that lbi = -00 if there is no lower bound for ti.

Similarly, if every ak,i _< 0, then t, is only constrained to be larger than some function

of the other variables and we can set t, to its upper bound, t, = ubi.

Once we set ti, some constraints may become single variable constraints. We apply

the SVPC Test to these constraints. If the SVPC Test can now prove independence, we

return independent. Otherwise, we update our bounds, remove these constraints from the

system and search for another variable to eliminate.

If we successfully eliminate all the variables without a contradiction, the references

are dependent. If we reach a stage where all the remaining variables are constrained in

both directions, we say that the Acyclic Test does not apply, and we must try the next

test. Even for these cases, the Acyclic Test may be beneficial. Eliminating some of the

variables simplifies the system for the next stages.

We illustrate the Acyclic Test with the following example:

1 <_ t 1,t 2 < 10

O < t 3 <4

t2 t• 1

tl < t 3 +4

tj is constrained in both directions, but we can set t 2 to 1b2 = 1. This leaves us with

1 < tl < 10

0 < t 3 <4

l<tl

ti • t3 + 4

Now, tj is no longer constrained in both directions. We can set tl to lbm = 1, leaving us

with
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0 < t 3 < 4
t3 > 1-4

t 3 can be set to any value between 0 and 4. There are no contradictions so the system is

consistent.

As we have described it, the running time complexity of the Acyclic Test is as follows.

To find a variable to eliminate, we might have to check every variable to see if it can be

eliminated. To decide if a variable can be eliminated, we must check every constraint.

Thus to find a variable to eliminate takes O(CV) steps. To actually do the elimination

only takes another O(C) steps. To completely solve the system, we must eliminate all

the variables so the total complexity in the worst case is O(CV2 ).

We can improve this complexity by using a graph algorithm framework. We use the

constraints involving more than one variable to create a directed graph. We add two

nodes to the graph for each variable ti; one labeled i and one labeled -i. We examine

each pair of variables, t, and tj, occurring in a single constraint. We first express the

constraint as aiti < ... + ajtj. If both a, and aj are greater than zero, we add an edge to

our graph from node i to node j. We then express the constraint as -ajtj < ... - ait•

and add an edge from node -j to node -i. If ai is less than zero, we would use node

-i for the first edge and node i for the second. Similarly, if aj is less than zero, we
would use node -j for the first edge and node j for the second. Two nodes (one positive,

one negative) are needed for each variable to distinguish the case t, - tj +... < 0 from

the case t, + tj + ... > 0. In the first case, t2 is less than tj plus a function of the

other variables while in the second case, t, is less than -tj plus a function of the other

variables.

Looking at an example, let us assume that we have one constraint t1 + 2t 2 - t 3 < 0.

We show the resultant graph in Figure 1.

If the resulting graph has no cycles, then we can solve the system exactly using the

Acyclic Test. If there is no cycle, there exists a node i (there is no loss of generality in

assuming that i > 0) such that there are no edges leaving node i (this node is a leaf in

the depth-first search tree of the graph). From the method used to construct the graph,

this implies that there are no constraints of the form aiti < ajtj +... where ai > 0. Thus

all constraints involving t, are of the following form:
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Figure 1: Example graph for Acyclic Test

a1,2 t2 _ fl(t)
a2,iti f2(t)

where f(t) is a linear function involving any of the variables except t- and where al, >

0,..., an,, > 0. From our previous discussion, we can eliminate variable t j by setting it

to ubi.

If our initial node was -i rather than i, then all constraints on t1 would be in the

other direction, i.e. al,j < 0,... , a,•,i < 0 and we would set t, to lbi.

Once we set ti, the next node visited in on our depth-first search must also be

constrained in only one direction, and we can set it. We continue until we reach a

contradiction, a lower bound larger than an upper one, or until no variables are left. If we

eliminate all the variables without finding a contradiction, then the system is consistent.

Otherwise it is inconsistent.

This version of the algorithm can be somewhat more efficient since we do not have

to check all the variables when searching for a variable to eliminate. Its complexity is

proportional to the number of edges in the graph. If each constraint contains a term for
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every variable, we will have O(CV 2) edges in the graph, but in the sparse systems we

see in practice, we expect it to be much smaller.

For the small systems we see in practice, the better asymptotic complexity might

not make much of a difference. For simplicity, we have chosen to only implement the

non-graph version ot the algorithm.

The Acyclic Test illustrates the benefit of using the GCD Test as a preprocessing step

to eliminate equality constraints. For example, without GCD preprocessing, the simple

equality constraint il = i2 would be represented as the two constraint i1 < i2 and i2 _> i2.

These two constraints alone create a cycle in the graph (il S i2 _< i1 ).

2.3.4 Simple Loop Residue Test

If there is a cycle in our graph, we attempt the Simple Loop Residue Test. Pratt developed

a simple algorithm that can be used for data dependence testing that works when all

constraints are of the form tI < tj + c [39]. One creates a graph with a node for each

variable. For this inequality, we place a directed arc with value c from node t1 to node

tj. Assume we have another constraint tj _< tk + d. By transitivity, this implies that

ti :S tk + c + d. We define the value of a path in the graph to be equal to the sum of the

values of the edges on the path. In the above example, the value of the path from node

i to node k is c + d. So the value of the path constrains its endpoints in the same way

that an edge does. Thus, if there is a path from node nl to n2 with value v, we know

that n _< n2 + v. Constraints with only one variable are also acceptable. We create a

special node, no. The constraint t1 :S c is represented with an edge from i to no with

value c. Similarly, the constraint t1 _> c is represented with an edge from no to i with

value -c. A cycle in the graph represents a constraint of the form i - i < c or 0 < c.

We check every cycle in the graph. If any cycle has a negative value, the system is

inconsistent. Otherwise it is consistent. While a graph may have an exponential number

of cycles, checking if a graph has a negative cycle can be done in time proportional to

the number of edges times the number of vertices using Bellman-Ford's algorithm [48].

Since our graph has one vertex for every variable and one edge for every constraint, the

complexity of the Simple Loop Residue Test is O(CV).
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Shostak [46] extends this algorithm first to deal with inequalities of the form at <

btj + c and then to handle cases with more than two variables. 3 Unfortunately these

extensions make the algorithm inexact. However, the algorithm can be extended to the

case at :< atj + c without losing exactness. This case is equivalent to a(t j - tj) < c.

Let d be the largest integer such that d < c and d is a multiple of a. We can replace the

inequality with tj - t3 < d/a where d/a is an integer.

As an example of the Simple Loop Residue Test, assume we have the following

constraints:

1 <tl,t 2 < 10

0 < t 3 < 4
t2 < tI

2t, < 2t3 - 7

Figure 2 shows the graph after converting the last constraint to t1 < t 3 - 4.

-1 1

Figure 2: Example graph for Loop Residue Test

There is a cycle from tl to t 3 to to to tI with value -4 + 4 - 1 = -1. Therefore the

system is inconsistent.
3For clarity we use the term Simple Loop Residue Test to refer to the Loop Residue Test without

Shostak's extensions.
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2.3.5 Fourier-Motzkin Test

Our last algorithm, Fourier-Motzkin [12], is a backup inexact test. It solves the general

non-integer linear programming case exactly. If it returns independent, we know that the

integer case is also independent. If it returns dependent, we can use it to return a sample

solution. If this sample solution is integral, then the integral case is dependent. Otherwise

we are not sure. In the few cases where our first four algorithms did not apply, and we

were required to call Fourier-Motzkin, the algorithm was always exact (i.e., it either

returned independent or the sample solution was integral). The cost of this algorithm

is a matter of debate. Theoretically it can be exponential. Experimentally, Triolet has

implemented this approach and seems to be satisfied with its efficiency [51], but Li,

Yew and Zhu consider Triolet's numbers to be too expensive [32]. Nonetheless, we are

required to call this algorithm so few times that its accrued expense is very reasonable.

In the first step, we eliminate the first variable, x1 , from the set of constraints. All

the constraints are first normalized so that their coefficient for x I is 0, 1 or -1. The set of

constraints is then partitioned into three sets depending on the value of the coefficient.

x, Ž D>(_ 2  ,.... , 2

x1: Ej . ..... , x15 Eq(X-z.....

X2,_ ,..., X2

This system has a solution iff

3Y2,...,. such that
Dj(h2,..,n)_<Ej(H'2,...,,n), i=(1,...,p), j=(1,...,q)
0 <_ Fk(X_2,...,,) , k =(,.,r)

A proof can be found in [12]. Thus, one can eliminate one variable at a time until there

are none left. At each step, the number of constraints grows by pq - p - q. While this

can lead to exponential behavior in the worst case, when p and q are small, each step

might actually eliminate constraints. If there is a solution X-2. , then the original system
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will be satisfied with any x1 such that max(D(- 2 . .,)) ) x_ I < min(E('2,...,,)). Thus

one can back substitute to find sample solutions for all the x variables. We would like

the sample solution to be integral. As a heuristic, at each step of the back substitution,

we set xi to be the integer at the middle of the allowed range.

We have extended the Fourier-Motzkin algorithm in two simple ways. This allows us

to sometimes be able to prove independence even when there are real solutions. When we

are computing our sample solution, at each step i in the back substitution, we know that

there exists a real solution for xi such that max(D(i,+i,.... )) < x2 < min(E(,+ .

where we have already substituted in values for .. ,•. Having no integer in the

allowable range for xi does not necessarily imply that there is no integer solution. If we

had substituted a different sample value for some earlier !i+1...,, we might have found

an integral solution.

Suppose, though, that there is no allowable integer for our first variable, x,,. Since we

have not constrained ourselves by selecting a value for any other xj, we can be assured

that there is no integer solution, and the system is inconsistent.

A second extension involves implicit branch and bound. Most systems, including ours,

do not just test pairs of references for independence. They also compute the distance and

direction vectors between the pairs. Recall that given a dependent iteration pair (Z*,/7),

the distance vector between the two references is d = _ " and the direction vector 9 is

the sign of the distance vector, 9 = (sign(dl), sign(d2), .. ). Since all iteration values are

integral, we use directions to partition a distance into one of three sets; di = 0, di > 1,

di < 1. Thus if there is a real dependence with a fractional distance 0 < d, < 1, Fourier-

Motzkin might say that the two references are dependent but have no dependent direction

vectors. In such a case, we know that the two references are in fact independent.

In general, if the sample solution is not integral, one must use full integer program-

ming techniques such as branch and bound. Say for example that xi = 3.5. Then one

sets up two companion systems. One with the added constraint that xi _ 3 and another
with the constraint xi >_ 4. If neither system has a solution then the original system is

inconsistent. It is possible that after this step one is still left with a non-integral solution.

One can then repeat the branch and bound step. Conceivably, one might be required to

branch and bound many times (proportional to the size of the region). In such a case,
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one might have to cut off the process after an arbitrary number of steps and assume

dependence. We have not found any cases that require us to use explicit branch and

bound.

2.4 Effectiveness of Algorithms

We have implemented these algorithms in the SUIF system [49], a compiler system

developed at Stanford. We then ran them on the PERFECT Club benchmarks. These are

a set of 13 scientific Fortran programs ranging in size from 500 to 18,000 lines collected

at the University of Illinois at Urbana-Champaign [14]. We feel that these are a fair set

of benchmarks. Non-scientific codes do not exhibit much loop level parallelism, and we

feel that library routines tend to be simpler than full programs.

Table 1 shows how many times each test was called per program. The first column

represents array constants, for example a[3] versus a[4]. These cases are handled without

dependence testing. We merely include them to show that their frequency can skew

statistics if we apply general dependence routines to them. The second column represents

the cases where GCD returns independent. For these cases, we do not need to call the

exact routines. The other columns correspond to the number of successful applications of

the tests. There are two key results. First, the vast majority of cases are handled with the

efficient Single Variable Per Constraint Test. Second, there is an implicit final column

for the cases when Fourier-Motzkin failed. Since this never happened, the column of

O's is eliminated. In no cases were we required to use a general integer programming

algorithm such as branch and bound.

2.5 Memoization To Improve Efficiency

We have shown that our algorithms are exact in every instance of our benchmarks. Now

we consider efficiency. We have argued that using special case exact tests is inherently

efficient since most problems can be solved using only one test. We can further improve

the efficiency of our approach. It has been said that dependence testing is performing

a large number of tests on relatively small inputs [32]. We show that in actuality it is
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Table 1: Number of times each test was called for each program in the PERFECT Club

Affine Memory Disambiguation Test Frequency

Program #Lines Constant GCD SVPC Acyclic Loop Residue Fourier-Motzkin
AP 6,104 229 91 613 0 0 0
CS 18,520 50 0 127 15 0 0
LG 2,327 6,961 0 73 0 0 0
LW 1,237 54 0 34 43 0 0
MT 3,785 49 0 326 0 0 0
NA 3,976 45 0 679 202 1 2
OC 2,739 2 7 36 0 0 0
SD 7,607 949 0 526 17 5 12
SM 2,759 1,004 98 264 0 0 0
SR 3,970 1,679 0 1,290 0 0 0
TF 2,020 801 6 826 0 0 0
TI 484 0 0 4 42 0 0
WS 3,884 36 182 378 4 0 160
TOTAL 59,412 11,859 384 5,176 323 61 174
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performing a small number of unique tests on small inputs repeatedly. There is little

variation in array reference patterns found in real programs, and most bounds tend to

go from 1 to n where n is the same throughout the program. Thus, one can save much

computation by using memoization,4 remembering the results of previous tests. The use

of a hash table allows us to find a duplicate call very quickly.

A simple memoization scheme does not repeat a test if the input exactly matches a

previous one. We can improve the effectiveness of memoization by eliminating the loop

bound constraints of loop indices that are unused by the array reference function. If a

loop index is unused by either reference function, its bounds do not affect the dependence

of the references. Eliminating such loops increases the likelihood that different pairs will

match in the memoization table. Both of the following programs

(a)do i = 1 to 10

do j = 1 to 10

a[i+101 = a[i]+3

end do

end do

(b)do i = 1 to 10

do j= 1 to 20
a[i+ 10] = a[il+3

end do

end do

collapse to this one:

do i = 1 to 10

a[I+10] = a[i]+3

end do

4Memoization is a technique to remember the results of previous computations, prev jusly used to
implement call-by-need arguments in LISP compilers [1].
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Two cases that before appeared to be different, now are identical.

In Table 2 we show the results of both our simple scheme and our improved one

applied to the PERFECT Club. We use two hash tables; one using loop bounds and one

not. The GCD Test does not make use of bounds. Thus, if a particular reference matches

ignoring the bounds, we are not required to repeat the GCD Test.

Table 2: Percentage of unique cases for memoization schemes
Percentage of Unique Cases

Piogram Without Bounds (GCD) With Bounds
Total Unique Total Unique

Simple Improved Simple Improved
AP 704 7.0% 4.4% 613 6.4% 4.4%
CS 142 7.7% 7.0% 142 16.2% 14.1%
LC 73 32.9% 13.7% 73 47.9% 31.5%
LW 77 11.7% 10.4% 77 23.4% 22.1%
MT 326 3.4% 2.5% 326 6.4% 4.3%
NA 884 4.2% 3.4% 884 7.9% 6.9%
OC 43 27.9% 20.9% 36 19.4% 13.9%
SD 560 6.6% 6.1% 560 9.5% 8.8%
SM 362 5.5% 3.6% 264 4.9% 3.0%
SR 1,290 1.1% 0.9% 1,290 1.6% 1.1%
TF 832 2.2% 1.7% 826 2.9% 2.4%
TI 46 30.4% 19.6% 46 34.8% 23.9%
WS 724 11.9% 11.0% 542 14.2% 11.6%
TOT 6,063 5.7% 4.4% 5,679 7.3% 5.8%

In Table 3 we show how memoization improves the results of Table 1. The Total

Cases column gives the total number of exact tests from Table 1. The remaining columns

show how many of each exact test is left after memoization. Memoization reduces the

total from 5,679 to 332 tests!

Further optimizations are possible. For example, one can eliminate symmetrical cases.

Assume there are two references in a loop; r, and r 2. We wish to know if this case is

equivalent to a pair of references in our table; r' and r'. Assume the bounds are the

same. Our simple scheme would say the two cases are equivalent iff rl = r' and r2 = r'
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Table 3: Number of times each test was called looking only at unique cases
[- Dependence Test Frequency For Unique Cases
Program #Lines Total Cases SVPC Acyclic Loop Residue Fourier-Motzkin
AP 6,104 613 27 0 0 0
CS 18,520 142 14 6 0 0
LG 2,327 73 23 0 0 0
LW 1,237 77 15 2 0 0
MT 3,785 326 14 0 0 0
NA 3,976 884 48 11 1 1
OC 2,739 36 5 0 0 0
SD 7,607 560 36 6 3 4
SM 2,759 264 8 0 0 0
SR 3,970 1,290 14 0 0 0
TF 2,020 826 20 0 0 0
TI 484 46 3 8 0 0
WS 3,884 542 35 1 0 27
TOTAL 59,412 5,679 262 34 4 32

but the cases are actually also equivalent if rl = r' and r 2 - r'. For example comparing

a [Zi] to a [i - 1 ] is the same as comparing a [i - 1I to a [i]. This can be taken farther:

a[i] [j] versusa[i+l] [j+l] is equivalent toa[j] [i1 versus a [j3+ l] [i+1].

One other possible improvement is to store the hash table across compilations. This

will eliminate the data dependence cost of incremental compilation. In addition, if there

is similarity across programs, one could use a set of benchmarks to set up a standard

table that would be used by all programs.

Our hash table is implemented using a simple-minded open table hashing scheme.

Treating the input data, array reference equations and loop bounds, as one long vector, 1F,

of integers, our hashing function is h(x-) = size(x-) + Ej 2ixi. This function was chosen

so that symmetrical or partially symmetrical references would not collide. Because of

the low number of unique cases, random collisions are not much of a problem.

Our hashing scheme performs well enough for our purposes. The hit cost does not

appear to be too high. If necessary, though, we believe that we could do much better.

Our hashing table is applied to a pair of references (r1 ,r2). We can use another hash
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table to assign each array reference in the program a reference number. Two references

would have the same reference number iff they were equivalent. Since there are far

fewer referenccs than pairs of references, this would be very inexpensive. We could then

define a new hashing function for pairs that would be some function of the two reference

numbers. Since the size of our input data, Y, is typically much larger than two integers,

computing this hashing function could be even cheaper than scanning the input data.

2.6 Direction and Distance Vectors

Typically, we are not just interested in knowing if two references are independent. We

must also compute the distance and direction vectors for the pair.

Two references are dependent with distance i if there exists a dependent iteration

pair, (Z*,Z*'), such that 9 - -Z*'* = j. The extended GCD Test, by computing an expression for

the dependent iteration pairs, provides us with an easy way to compute distance vectors.

For example:

do 1 = 0 to 10

a[i] = a[i-31+7

end do

The extended GCD Test tells us that for all dependent iteration pairs (ij% Z' = ti and

= ti + 3. We merely subtract these two expressions to compute the distance vector

d = (3). This method does not work when the two references are dependent with more

than one distance vector. In such cases, subtracting the t expressions would result in a

non-constant vector. Typically, though, we are less interested in non-constant distances.

In addition, since the extended GCD Test does not use bounds, this method does not

work for cases where the distance is only constant because of the bounds. For example:
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do i 1 to 8

do j = 1 to 10

a[10*i+j] = a[10*(i+2)+j]+7

end do

end do

We will not discover that the only distance vector is (-2,0). Nonetheless, these types of

examples are fairly rare and the extended GCD Test should be sufficient for the common

constant-distance cases.

Pugh has developed a more accurate method for computing distance vectors [40]. For

each pair of loop indices, (i,,i•), he adds to his system of constraints a new variable dj

and the constraint that dj = i* - i1 . Then, using an extension to the Fourier-Motzkin

algorithm, he eliminates all the variables except the d variables. Using Fourier-Motzkin

to eliminate a variable is equivalent to projecting the system of constraints to the space

of the remaining variables. Thus after eliminating all the other variables, Pugh is left

with a series of constraints on the d variables that describes all the dependent distance

vectors. While Pugh's method is more accurate, it is also more expensive. Adding extra

variables and constraints to his system increases the cost of his test.

Not all dependent references are dependent with a constant distance vector. When a

pair of references is dependent with many distances, it is useful to use direction vectors

to summarize all these dependences. While a pair of references may be dependent with

more than one direction vector, the number of dependent direction vectors can be much

smaller than the number of dependent distance vectors. For example:

do i = 0 to 10

do j = 0 to 10

a[i] [J] = a[2*i] [j]+7

end do

end do
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These two references are dependent with the dependent iteration pairs ((i,,, J"), (iT,

jE)) e {((0, j),(0, D)), ((2, j),(1, j)), ((4, j),(2, j)), ((6, j),(3, j)), ((8, j),(4, j)), ((10,
j),(5, j))} where j = 0... 10. The two references are dependent with the two direction

vectors (-, 0) and (0, 0), but the six distance vectors (0, 0), (-1, 0), (-2, 0), (-3, 0), (-4, 0)

and (-5, 0). There is little benefit in this case to the extra precision of distance vectors.

A simple method to compute direction vectors is to enumerate all the possible direction

vectors 5 and ask if the references are independent subject to the current vector. Each

direction vector is a set of simple linear constraints on the loop indices. We simply add

these constraints to our system and solve as before. The standard approach, based on

Burke and Cytron [10], uses a hierarchical system to avoid testing all possible direction

vectors. Rather than testing each possible vector it first tests (*, *,... , *). Recall that *

represents a dependence with any direction. If this returns independent, we know there

are no direction vectors for which the references are dependent. If it returns dependent,

we then preform the tests with each of the following vectors (+, *,... , *), (0. *.... *)

and (-, *,..., ,). If, for example, the first vector returns independent we know that there

is no dependence with any vector whose first component is +. We can prune any such

vector. If any vector returns dependent, we continue to expand its *'s.

The addition of direction vector constraints can conceivably limit the applicability of

our tests. For example:

I < t1,t 2 ,< 10

tl <t 2

can be solved with the Acyclic Test. A direction vector may add the constraint t 2 <

t1 . The Acyclic Test is no longer applicable and we must use the Loop Residue Test.

Similarly, there could be cases where direction vectors force us to use the Fourier-Motzkin

Test. In practice, we have observed a greater need for Acyclic and Loop Residue, but

in no case have we been forced to use Fourier-Motzkin due to the addition of the extra

constraints.

A more serious problem is that direction vectors require the dependence tests to

be applied multiple times for a pair of references. The number of possible vectors is
5Note, with distance vectors we would have had to enumerate all possible dependences. With direction

vectors we only need to enumerate all possible directions, a large but much smaller number.
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potentially exponential in the loop nesting. Even using hierarchical pruning, without

further optimizations we still have problems in practice. In Table 4, we repeat Table 3

with direction vectors, counting every direction tested. This overestimates the cost since

certain fixed costs such as the GCD Test and the overhead of transforming the bounds to

be in terms of the t variables do not depend on how many vectors are tried per test.

Table 4: Number of times each test was called computing direction vectors
- Dependence Test Frequency For Direction Vectors

Program #Lines SVPC Acyclic Loop Residue Fourier-Motzkin
AP 6,104 363 104 100 0
CS 18,520 127 48 34 0
LG 2,327 1,067 1,138 4,619 0
LW 1,237 132 73 59 0
MT 3,785 120 32 16 0
NA 3,976 295 124 172 23
OC 2,739 37 8 4 0
SD 7,607 309 106 120 28
SM 2,759 355 110 169 0
SR 3,970 130 30 18 0
TF 2,020 169 16 11 0
TI 484 780 267 703 0
WS 3,884 303 105 52 106
TOTAL 59,412 4,187 2,161 6,077 157

Even allowing for a generous overestimate, calculating direction vectors has greatly

increased the number of tests performed. Before, the compiler called 332, mostly SVPC,

tests. Now, it needs to call about 12,500, mostly Acyclic and Loop Residue tests. The

number of times Fourier-Motzkin is applied has gone from 32 to 157 (note that this is

solely due to checking multiple vectors for the same references).

Some simple pruning methods can bring these costs back down dramatically. In

discussing memoization, we mentioned that we need not include unused variables. For

example:
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do i 1 to 10

do j = 1 to 10

a[j] = a[j+l]

end do

end do

Since i does not appear in neither the array expression nor in a loop bound, we know

that direction for i' - i is *. Thus we run the tests for j and then prepend a * to the

resultant direction vectors.

Calculating distance vectors can also help. If, for example, we have

do i =...

a[i+1] = a[i]

end do

we know from the GCD Test that i' - i = 1. We therefore know that i' > i and need not

try out any other directions.

Table 5 shows our results with unused variables eliminated and with distance vector

pruning.

We now have to call the tests only about 900 times. If we need better results, Burke

and Cytron suggest as an optimization that nice cases can be treated on a dimension by

dimension basis rather than as a system. For example:

do i = 1 to 10

a[i+l] [j] = a[i] [j]
end do

i and j are not interrelated and we can compute each component of the direction vector

independently.
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Table 5: Number of times each test was called using pruning
[ _ Unused Variables and Distance Vector Pruning

Program #Lines SVPE Acyclic Loop Residue Fourier-Motzkin
AP 6,104 27 6 6 0
CS 18,520 14 16 14 0
LG 2,327 44 6 6 0
LW 1,237 15 12 5 0
MT 3,785 14 0 0 0
NA 3,976 48 59 118 7
OC 2,739 5 0 0 0
SD 7,607 54 20 55 28
SM 2,759 8 0 0 0
SR 3,970 14 0 0 0
TF 2,020 23 0 0 0
TI 484 3 38 72 0
WS 3,88 4 35 15 0 106
TOTAL 59,412 304 172 276 141

2.7 Cost of Affine Memory Disambiguation Tests

In the previous sections, we have suggested that our suite, combined with memoization,

can solve the affine memory disambiguation problem exactly and efficiently. In this

section, we explicitly show the efficiency of our approach. In Table 6 we timed our

dependence tests and compared them to standard scalar optimizing compilers (f77 -03).

The entries labeled * were too small to measure. We wish to show that being exact adds

very little cost to compilation time. The timings do not include the set up time required

for dependence testing, for example expressing a reference in terms of the loop indices.

This setup time, while possibly significant, is equi alent for all methods. The timings

therefore should be looked upon as an upper bound for the extra time required to use our

approach. The standard compilation time used full scalar optimizations. Our approach

added only about 3% on average to the compile time.
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Table 6: Total cost of affine memory disambiguation testing
Dependence Testing Cost

Program Dep. Test Cost (in secs) f77 -03 (in secs)
AP 2.2 151.4
CS * 485.0
LG 4.0 65.4
LW 1.1 33.0
MT 1.0 45.0
NA 3.6 136.3
OC 0.3 38.2
SD 2.7 62.1
SM 3.5 102.5
SR 3.8 118.5
TF 2.6 116.6
TI 0.7 12.6
WS 3.6 110.0

2.8 Discussion

We have shown that our algorithms can be exact and efficient in practice. We have not

shown how being exact compares with other, inexact, approaches. Looking at pairs of

references does not give the entire picture. In a loop with a thousand independent pairs,

being inexact in just one test could have a devastating effect on the amount of parallelism

discovered. Ideally, one would like a standard model to measure the parallelism found.

Then one could say how much faster a program ran due to exact affine memory disam-

biguation. Unfortunately it is very difficult to define such a model since the amount of

parallelism depends on the optimizations performed.

Nonetheless, to give some comparison, we implemented two standard algorithms: the

Simple GCD Test (algorithm 5.4.1 in [8]) and the Trapezoidal Banerjee Test (algorithm

4.3.1 in [8]). Not computing direction vectors, these algorithms found 415 out of 482

independent pairs, missing 16%. For direction vectors, we used the Simple GCD Test

followed by Wolfe's extension to Banerjee's rectangular test (2.5.2 in [53]). We eliminated

unused variables so that a[i] versus afi-l] would return the one direction vector (., +)
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and not, for example, the three direction vectors ((+, +) (0, +) (-, ±)) that would be

returned if these references were also enclosed by a second, unused outer loop. These

algorithms returned 8,314 direction vectors, which is 22% more than the exact answer of

6,828.

We do not believe that our particular choice of tests is very important. Our key

contribution is that it is possible to be exact and efficient in practice using a suite of

special case exact tests. It is quite possible that other tests could be added and some

eliminated without significantly changing our results. In fact, since we first presented

these results, Pugh has come up with an alternative exact approach [40]. He uses a

variation of the Extended GCD Test followed by an extension to the Fourier-Motzkin

algorithm. His approach may be a little more expensive than ours. He claims that his

test requires O(CV 2) worst case time for the common cases when the SVPC Test applies,

while we have shown that the SVPC Test requires O(C+ V) time. Pugh does not believe

in memoization [40]. He makes the incorrect claim that the cost of a memoization hit

would be about 2 to 4 times the scanning, or copying, cost of a problem. We have shown

that in fact the hit cost could be less than the scanning cost. Nonetheless, we believe

that with memoization Pugh's approach might not be much more expensive than ours.

We included the Extended GCD Test in our suite because it increases the applicability

of the other tests. We chose our other tests because of their efficiency, applicability and

compatibility. They all expect their data in the same form: Ai < b. Thus there is no need

to convert data from one form to another. Some tests, like the Lambda Test [32] expect

their data in a different form. All the tests succeed in finding independent references

in practice. We checked how many times each test returned independent (counting each

direction vector tested) for the tests in Table 5. SVPC returned independent in 40 out of

308 cases, Acyclic in 14 out of 172 cases, Loop Residue in 131 out of 276 cases and

Fourier-Motzkin in 82 out of 141 cases. We ordered the tests by cost. Thus, in most

cases, we only need to call our most efficient test, SVPC.
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2.9 Extension to Symbolic Testing

Our tests expect all references and bounds to be linear functions of the loop indices. We

mentioned before that we use optimization techniques (constant propagation and induc-

tion variable and forward substitution) to increase the applicability of these conditions

[49][501.

Nonetheless, there are cases where the unknown symbolics variables cannot be ex-

pressed as functions of the loop indices.

read (n)

do i = 1 to 10

a[i+n] = a[i+2*n+1]+3

end do

As long as we know that n does not vary inside the loop, we can add it to our system

as if it were an induction variable without bounds. For this example, our system would

ask the following question.

3 integers i, i' and n such that

I1< i, i' < 10 and

i+n = i'+2*n+l

Table 7 shows the results of adding symbolic testing to our system. Our tests are now

called about 1,060 times compared with about 900 times before. This should add little

to our total cost. We speculate that the low cost is because our prepass optimizations are

quite powerful.

Other groups have advocated more powerful symbolic techniques [21][33]. In the

next chapter, we will describe these other approaches in greater detail and argue that our

approach is sufficient.
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Table 7: Number of times each test was called computing direction vectors and adding
symbolic constraints

Symbolic Testing
Program #Lines SVPE Acyclic Loop Residue Fourier-Motzkin
AP 6,104 33 22 6 0
CS 18,520 20 24 19 0
LG 2,327 48 6 6 0
LW 1,237 15 12 5 0
MT 3,785 19 0 0 0
NA 3,976 55 149 101 7
OC 2,739 5 1 0 0
SD 7,607 54 20 55 28
SM 2,759 8 0 0 0
SR 3,970 21 1 2 0
TF 2,020 43 0 0 0
TI 484 3 38 72 0
WS 3,884 35 19 0 106
TOTAL 59,412 359 292 266 141
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2.10 Chapter Conclusions

Affine memory disambiguation is a fundamental component in any parallelizing com-

piler. Previous techniques have required approximations. We have presented a definitive

solution to the problem by using a combination of simple, easy to implement techniques;

cascading special case exact tests, memoization and better direction vector pruning. In

practice, our tests have found independent references that could not be found with cur-

rently used techniques. Testing on large benchmarks, we demonstrate empirically that

our method is both exact and inexpensive.



Chapter 3

Effectiveness of Affine Memory

Disambiguation

We have shown in the previous chapter that intra-procedural affine memory disambigua-

tion can be solved exactly and efficiently. However, we want to solve data dependence in

general and not just affine memory disambiguation. Compilers restrict themselves to this

domain because it is easier to solve. The question remains how accurately this domain

approximates the full data dependence problem.

Solving the affine memory disambiguation problem exactly allows us to judge the

effectiveness of the domain restriction. Using a dynamic, trace-based system developed

by Larus [28], we can find a solution to the full data dependence problem for a given

input set. By comparing our exact affine memory disambiguator to Larus's system, we

can discover the limitations of the domain. We show that while the affine approximation

is reasonable, the memory disambiguation approximation is not. This experiment was

first describc . in [38].

3.1 Experimental System

In the last chapter we described our dependence analysis system. It solves exactly the

affine memory disambiguation problem with an extension for symbolic analysis.

We use llpp, a system developed by Larus, to dynamically find all the loop-carried

44
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true data-flow dependences in a program for a given input set [28]. Recall that a loop-

carried true data-flow dependence occurs when we read a value in iteration i*, that was

written in an earlier iteration iZ,,. Larus developed his system to dynamically estimate the

amount of loop level parallelism in a program. It modifies a standard compiler, gcc, to

add tracing code to the sequential program. By keeping track of high level information

such as the current loop iteration and the loop iteration when a value was written, it is

able at each read to determine if there is a loop-carried true data-flow dependence. Llpp

gives us the exact number of true data-flow dependences for a given input. Because it

is a dynamic system, it need never assume that a true data-flow dependence exists when

one does not, but it will not find dependences that could occur with a different input set.

The scope of our study is limited. Looking at pairs of references does not necessarily

give one an accurate picture. If a particular program has 1,000 array reference pairs, all

of which are independent, and our system is able to prove that 999 are independent, we

would say that our system was accurate in 99.9% of the cases. Nonetheless, we would

have eliminated all the potential parallelism. A better study would discover how much

parallelism was lost due to the domain restrictions. This would require an agreed upon

model of the amount of parallelism in particular programs. This model may be very

complex. It could depend on the input data and the target machine. Unfortunately, such

a model does not yet exist.

Our study ignores all true data-flow dependences where the read and write are in

different subroutines. We do not count in our statistics any interprocedural array pairs

that according to Larus have loop-carried true data-flow dependences. To prove two such

references independent requires interprocedural data dependence analysis. Chapter 5

discusses interprocedural analysis in detail.

We ignore anti and output dependences. While they do not inherently limit paral-

lelism, they do need to be recognized to be eliminated. Our compiler system is capable

of differentiating different types of dependences. We do not believe that it is any more

difficult for our system to detect these types of dependences than it is for our system

to detect true dependences, so we do not believe that their exclusion in the experiment

significantly affects our results.

We look at five programs in the PERFECT Club, ranging in size from 500 to 7,600
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lines. Looking at five programs does not constitute a broad enough study. We were

forced to limit ourselves mainly for two reasons. First, llpp requires a very large amount

of memory on larger traces. Second, it was not possible to automate the categorization

of the failure cases; we had to compare the results of the two systems by hand. While

we believe that a deficiency that is widely found in these five programs is probably a real

problem, the reverse may not be true. There could be other limitations of affine memory

disambiguators that do not appear in these benchmarks.

3.2 Experimental Results

Table 8 shows the results of applying llpp to each of the programs in our suite. We

compared every array write statement with every array read statement. The first column

shows how many of the array reference pairs have loop-carried true data-flow dependences

for the given input data (We used the standard input data that comes with the PERFECT

Club). The second column shows how many of the pairs have no loop-carried true

data-flow dependences. The large majority of the cases have no loop-carried true data-

flow dependences. Thus we can be hopeful that these programs have some inherent

parallelism.

Table 8: Number of loop-carried true data-flow dependences for each program

_ __ Number of Loop-Carried True Data-flow Dependences
Program #Lines True Data-flow Dependence No True Data-flow Dependence
LG 2,327 64 6,006
LW 1,237 28 690
SD 7,607 21 379
SR 3,970 41 1,654
TI 484 16 36
TOTAL 15,625 170 8,765

Table 9 shows the effectiveness of affine memory disambiguation. As any conserva-

tive compilers will err on the side of assuming dependences, all systems should correctly
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handle the cases that do have loop-carried true data-flow dependences. We therefore only

compare the 8,765 pairs that do not have loop-carried true data-flow dependences.

Table 9: Effectiveness of restricting domain to affine memory disambiguation
Effectiveness of Domain Restrictions

Program #Lines Successes Affine Failures Disambiguation Failures
LG 2,327 5,485 0 521
LW 1,237 290 5 395
SD 7,607 207 19 153
SR 3,970 1,475 23 156
TI 484 0 0 36
TOTAL 15,625 7,457 47 1,261

The first column shows the number of pairs that could be resolved correctly, i.e.

proven by our system to not have any loop-carried true data-flow dependences. The

affine memory disambiguation domain is sufficient to correctly solve about 85% of the

cases. We examined each of the failure cases by hand to determine which domain

restriction was responsible for the failure. In the second column, we show the number

of cases that fail due to the affine restrictions. In the last column, we show the number

that fail due to memory disambiguation failures. While we have very few failures due to

the affine restrictions, solving only the memory disambiguation problem leads to many

errors. In the next section, we will categorize the types of failures in detail.

3.3 Memory Disambiguation Failures

Most of our failures were due to the memory disambiguation restriction. Table 10 divides

these failures into three categories that we will discuss in detail.

3.3.1 Data-flow

The largest category of failures is what we classify as data-flow failures. These are the

types of examples we discussed in Chapter 1.
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Table 10: Categorization of memory disambiguation failures
Memory Disambiguation Failures

Program #Lines Data-flow Dynamic Harmless
LG 2,327 258 17 246
LW 1,237 379 0 16
SD 7,607 27 51 70
SR 3,970 93 0 63
TI 484 10 0 26
TOTAL 15,625 767 68 421

do i = 1 to n

do j = 1 to m

work[J] .

end do

do j = I to m

work [j]

end do

end do

There is no loop-carried true data-flow dependence between the two array statements

in the above example. In each iteration of the outer loop, the work array is being

reinitialized and then used. While the location being read in every iteration of the outer

loop, i4, was written in all the previous iterations, the value read was written in the same

iteration, iZ = i4. It is impossible to discover this looking only at pairs of references.

For example:

do i = I to n

if i < 4 then

do J = 1 to m

work[3] =

end do

end if
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do j = 1 to m

. work[j]

end do

end do

The two array references are identical to the ones in the first example, but in this case

there is a loop-carried true data-flow dependence. The values being read in iterations

i = 4 to i = n were all written in iteration i = 3. To differentiate the two cases requires

data-flow information.

Even if one can differentiate the two cases, the first case cannot simply be run in

parallel. There is an output dependence that has to eliminated. This can be accomplished

using array privatization or array expansion. Each processor can be given its own private

copy of the work array. Each processor would then run the following code where mywork

is the processor's local copy of the array:

do i my first to mylast

do j = 1 to m

myworkj] =.

end do

do j = 1 to m

. mywork [3j

end do

end do

The majority of our total failures were due to data-flow problems. This indicates

that array privatization is very important. We discuss data-flow dependences and array

privatization in detail in Chapter 4.

3.3.2 Dynamic

Another memory disambiguation problem relates to dynamic versus static dependences.

For example:
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read (n)

do i

if n == 0 then

a[i]

end if

.... = a[i-1]

end do

Assume n is never zero for the input set we use. There is no true data-flow dependence

as the write statement is never executed. Clearly the compiler cannot assume that n is

never zero. What might be useful is for the compiler to use versioning. By hoisting the

conditional out of the loop, we create two versions of the loop as follows:

read (n)

if n ==0 then

do 2

a[i] =

.... = a[i-1]

end do

else

do i

... = a[i-1]

end do

end if

The second loop can be parallelized, and only it will be executed if the input set is

parallelizable.

3.3.3 Harmless Flow

Counting only the number of pairs of references for which the memory disambiguation

domain fails does not give one a full picture. Some failure cases may not interfere with
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parallelization at all. There are cases where, for example, a particular subroutine is never

executed. An unexecuted subroutine has no loop-carried true data-flow dependences.

Our compiler may assume that two references in such a subroutine have a loop-carried

true data-flow dependence and may not parallelize their enclosing loops. Nonetheless,

since these loops are never executed, it does not matter. Our compiler has not inhibited

parallelization.

Similarly, there are loops that dynamically have only one iteration. A loop with

only one iteration cannot have a loop-carried true data-flow dependence. Again our

compiler may not be able parallelize these loops, but parallelizing them would not improve

performance.

3.4 Affine Failures

Next we discuss in detail the affine failures. Table 11 divides these into the cases we

have seen. The cases labeled as other are small problems that could be fixed without

significantly changing our model. We merely include them for completeness.

Table 11: Categorization of affine failures

_ __Affine Failures
Program #Lines Indirect Symbolic Nonlinear Dynamic Other
LG 2,327 0 0 0 0 0
LW 1,237 0 0 5 0 0
SD 7,607 14 0 0 0 5
SR 3,970 9 11 0 3 0
TI 484 0 0 0 0 0
TOTAL 15,625 23 11 5 3 5

3.4.1 Indirect Array References

Our model is not able to handle indirect array references such as:
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do i

a[b[ill = a[b[i]]+3

end do

In the general case, this loop cannot be run in parallel. If, however, b is a permu-

tation array, the loop can be run in parallel without any modifications. All the indirect

reference cases we have seen, where llpp tells us there is no dependence, appear to be

permutation arrays. User assertions or language extensions would be useful to identify

these permutation arrays.

3.4.2 Symbolic Analysis

In Chapter 2, we described how we extended our affine model to handle some symbolic

analysis. We use a scalar prepass to discover which variables can be expressed as

affine functions of the induction variables, and we treat any other variables as unbound

induction variables. Our treatment of symbolic variables is less general than advocated by

Haghighat [21] and by Lichnewsky and Thomasset [33]. Both groups advocate finding the

convex hull of all scalar constraints interprocedurally and annotating the array references

with these constraints. They then use these annotations to help prove independence. This

approach enables them to solve more systems exactly than our approach. Consider:

read (n)

if n> 10 then

do i = 1 to 10

a[i+n] = a[i]+3

end do

end if

For this example, they annotate the two references with the fact that n > 10. This

allows them to prove that the two references are not dependent. The more general

approach can be expensive at compile time. It is necessary to track the relationship of
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all scalar variables in a program. In addition, the integer programming problem being

solved becomes more complex, containing more variables and more constraints.

Our approach fails due to lack of symbolic information for 11 pairs, all in one program.

All 11 pairs look like the following:

program

if (x) then

n = max - 1

else

n = max

end if

call f red

end

subroutine fred

do i

if (x) then

al[max] = ... (annotate with n=max-l)

end if

... = a[n]

end do

end

The two references are independent. If x is true then n = max - 1 and n cannot

equal max. If x is not true, the write never happens. To know that the two references are

independent, we need to annotate the write with n = max - 1, but to do this, we need

to know in subroutine fred that n = max or n = max - 1 depending on the value of

x. This constraint is not convex. Therefore, even the more general symbolic techniques

mentioned would not be able to solve this case. Thus our inexpensive approach is able

to solve all the cases we have seen that could be solved by the more general system.
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3.4.3 Nonlinear Expressions

Programmers sometimes hand linearize multidimensional arrays. They convert code like

the following:

do i

do j

a[j+c] [i] = a[j+c2] [i]+3

end do

end do

into code that uses one-dimensional arrays like:

do i

do j
a[in*i+j+cl = a[n*i+j+c 2 ]+3

end do

end do

While the first example can be handled easily by our system, the second cannot. The

use of the nonlinear term, ni, violates our model. We would like to be able to delinearize

the arrays, converting them back into the multidimensional form.

The two references in the nonlinearized code are dependent iff

i. = Z, and jW + c = j7 + c2 subject to the bounds (1)

The two references in the linearized version are dependent iff

ni•w + Jw + c = hi,. + J, + c2 subject to the bounds (2)

It is clear that a solution to 1 implies a solution to 2. Now assume there is a solution

to 2. Equation 2 can be rewritten as:
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niw - nzr = J)r - •w + C2 - C

The left hand side is a multiple of n. Let us assume that the magnitude of the right

hand side is less than n. Then, the left hand side must equal 0 and:

niw = nZr and jw + c = Jr + C2

and there is a solution to 1. Thus, as long as abs(j, - j, + c- C2) < n for all j,, jr,

we can safely delinearize the two references.

Maslov has independently developed a more formal algorithm for delinearization [34].

His algorithm is more detailed and little bit more general than ours.

Other examples, which at first do not appear to be linearized, are equivalent to our

linearized example. For example:

count = 0

do / = 0 to n-I

do j = 0 to n-1

a[count] = a[count]+l

count = count + 1

end do

end do

Using induction variable substitution, we can make the substitution count = ni +j.

After the substitution, this example is exactly the same as the explicitly linearized case,

and our delinearizer will be able to parallelize it.

Linearized arrays do not appear to occur very frequently in our study. We believe

that if we also measured output dependences, we would see more such arrays. While

examples like the one above may not be that common, others like the following may be.
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count = 0

do i

do j

a[count] = 0

count = count + 1

end do

end do

There is no read and therefore no true data-flow dependence. Nonetheless, if we do

not delinearize this array, we will have to assume that there is an output dependence

between the write and itself. We would like to be able to recognize this case.

Delinearization is also important when performing interprocedural data dependence

analysis. In Chapter 5, we will show that without delinearization, we will not be able to

accurately summarize key subroutines in one of the PERFECT Club programs.

3.4.4 Dynamic

As with the memory disambiguation model, the affine model can also fail due to dynamic

dependences. There are array pairs that are dependent for some of the, but not all of the,

values of the input data. For example:

read (n)

do i = 10 to 20

a[i] = a[nl+3

end do

It may be true that n never equals i for the inputs we see in practice. As with dynamic

memory disambiguation failures, versioning can be used to solve this problem.
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3.5 Chapter Conclusions

We have presented a methodology for evaluating the effectiveness of data dependence

analyzers. Using a compiler that can solve the affine memory disambiguation problem

exactly and a dynamic tracer that can solve the data dependence problem exactly, we

are able to show that affine memory disambiguators are not powerful enough to find

parallelism in practice.

Most of the failure cases are due to the memory disambiguation approximation. An-

alyzing these cases shows us that array privatization is a vital technique for parallelizing

loops. We also show that our simple, efficient symbolic scheme works as well as the more

complicated, general schemes for the benchmarks we have used. Finally, we advocate

delinearizing linearized arrays.

These results show that current data dependence analyzers are not powerful enough,

but, we feel that using the techniques we mention, compilers will be able to solve the

large majority of intraprocedural cases seen in practice.



Chapter 4

Data-flow Dependence Analysis

Traditional data dependence analysis has concentrated on solving the memory disam-

biguation problem. Memory disambiguation is an extension of alias analysis to individ-

ual array elements. Two references are dependent if they refer to overlapping locations.

For a long time, scalar optimizers have gone beyond this type of analysis and utilized

data-flow analysis to calculate how values flow through a program. Civen a use of x,

data-flow analyzers do not care about all the definitions to x, they care about the reaching

definitions of x, those definitions that produce a value for x [2]. Similarly, we showed

in the last chapter that memory disambiguation is not sufficient for parallelization. We

need to extend our analysis to perform data-flow analysis on individual array elements,

what we call data-flow dependence analysis. Given a use of an array element, we do not

want to compute all the definitions to the same array element location, only the reaching

definitions.

Other researchers have come to similar conclusions. Eigenmann et al. [13] discuss

the techniques used to hand-parallelize four of the PERFECT Club programs. They show

that commercial parallelizers are not powerful enough to parallelize these real programs.

In particular, they find array privatization to be useful in all of the programs. In two

of the four programs, 98% of the dynamic execution time of the program is spent in

loops that require array privatization. That is to say that without privatization 98% of the

dynamic time of these programs could not be parallelized. To privatize arrays, memory

disambiguation is not sufficient; data-flow dependence analysis is required. Singh and

58
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Hennessy perform a similar study on two of the PERFECT Club benchmarks and also

find privatization to be important [471.

In this chapter, we introduce the concept of data-flow dependence vectors. Data-

flow dependence vectors provide us with a clean and simple representation to extend

standard direction and distance vectors. We will describe a set of algorithms developed

by Feautrier, which we can adapt to compute data-flow dependence vectors [16][15][17].

Unfortunately, we believe that Feautrier's algorithms are too expensive to be used in

general purpose compilers. We introduce new and efficient algorithms for the same

problem that are as accurate as Feautrier's in the large majority of cases seen in practice.

In order to utilize the data-flow dependence information to parallelize loops, we must

privatize arrays. We therefore close this chapter by presenting an algorithm for array

privatization. A description of the algorithm is available in [36]. A description of how

data-flow dependence analysis fits in with more standard data dependence information

can be found in [35].

4.1 Data-flow Dependence Vectors

Distance and direction vectors provide us with a representation to summarize a set of

dependent iteration pairs. For example, two references are dependent with distance vector

dif there exists a dependent iteration pair (T, P) such that i - iT = d.
With data-flow dependence analysis, we are no longer interested in all the data de-

pendence iteration pairs. We are only interested in true data-flow dependences. We can

analogously define data-flow dependence pairs. Two references are dependent with the

data-flow dependence iteration pair (1w, Z,) if the value read by the read in iteration Ir

was written by the write in iteration zn,. Using data-flow dependence pairs, we can define

data-flow distance and data-flow direction vectors using the same summaries that we use

for standard distance and direction vectors. For example, two references are data-flow

dependent with distance d if there exists a data-flow dependence pair (a,, •.) such that

Cnd- th = d.
Consider the following example:
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do i = 0 to 1

do j = 0 to 1

a[i] = a[i -1]

end do

end do

For these two references to be dependent, 1, = iT - 1 while J* and j, can take on any

value within their bounds. Thus, the two references are dependent with the dependent

iteration pairs ((i,, jw), (it, jr)) E {((0, 0), (1, 0)), ((0, 0), (1, 1)), ((0, 1), (1, 0)), ((0,

1), (1, 1))} giving the three distance vectors (1, 0), (1, 1) and (1, -1).

Looking at the data-flow dependences, i*,, must still equal i, - 1, but the only data-

flow dependences occur when Jw = 1. Thus, the two references are dependent with the

data-flow dependent iteration pairs ((iw, j Z') , J,)) E {((0, 1), (1, 0)), ((0, 1), (1, 1)))

giving the two data-flow distance vectors (1,-i) and (1,0).

Data-flow dependence vectors allow us to cleanly extend distance and direction vec-

tors to deal with data-flow dependences. As we shall show at the end of the chapter, they

will allow us to integrate privatization with parallelization.

4.2 Last Write Trees

In this section, we introduce the concept of the Last Write Tree, LWT. LWTs give us a

way to represent all the data-flow dependence pairs. Given an LWT for two references,

we can easily compute the data-flow dependence vectors for the two references.

Given a read iteration, i, there can be at most one dynamic write iteration, ZW, that

writes the value consumed by the read. This value-producing write is the last write

before the read to the same location. We can therefore define a function that given a

write statement and a read statement, maps each read iteration, z,., into an expression for

the last write iteration, iW, before the read to the same location.

We first motivate this representation with a simple example:
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do i = 11 to 20

do j = 11 to 20

aj] =...
=.. a[j-1]

end do

end do

It is easy to see that the data read in the first iteration of the innermost loops (j=I 1) are

not defined within the loop nest. For all other iterations, the data read are written in the

very preceding iteration. This information can be organized in a binary tree as shown in

Figure 3. The tree represents a function that maps an instance of the read operation to

the last write instance to the same location. The read/write instances are denoted by the

values of their loop indices, 2" and _T,, respectively. The domain of the function is the

set of •7, that satisfies the constraints imposed by the loop bounds. Each internal node in

the tree contains a further constraint on the value of 7,. It partitions the domain of read

instances into those satisfying the constraint, represented by its right descendants, and

those not satisfying the constraint, represented by its left descendants. In other words,

the constraints of a node's ancestors make up the node's context. The iteration set of

a node is defined as the set of z, that satisfies the node's context. Each leaf node has

a solution that expresses the last write instance i,, in terms of 7,, for all those Z, in its

iteration set. If there is no preceding dependent write for a particular iteration set, the

solution of the corresponding leaf is denoted by IL.

We can formally define the LWT function as follows:

Definition 4.2.1 Given two loop iteration vectors, - and -", corresponding to two state-

ments nested in n common loops and an arbitrary number of non-common loops. Vector

i is lexicographically less than vector i', written -T-< P, iff

3k < n,i1 = .',.. . ,ik-= k-l 4k < zk

Similarly,- - if- - or =Z = Z 1-I,,.
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rjr> 11

F T.. ..... .. ........... .................... ................. ... ...
IF 

T........Level........................... ........l .........• .• .!.. 9........................ i ...
S...................... ... .. .................................................

1L 0

Figure 3: Example of an LWT

Definition 4.2.2 Let z,, 7', be iterations corresponding to a write statement in an m-deep

loop nest, Z' be an iteration corresponding to a read statement in an n-deep loop nest,

and g be a p-element symbolic constant vector in the loop. We define

6= (i'W ..... wm,S1 .sp) ,"Uw = (i' P).. ) . = ( ri ... i ,S 1 ... S).

Let Fw, F, be affine read and write access functions in the loop, and B,, B, be affine

read and write loop bound constraints.

If Fw appears after F, lexically in the program, then LWTFw,Fr,Bw,B,(iZT) = zw if

and only if

B,,it,, Ž 6, Fwi7. = Ft7,W lz < Z'

and

Tw -T•) such that Bwil" Ž 0, Fw i = Fr, - ?w -< z,

If instead, the write statement appears lexically above the read, we must replace the

condition 1W -< i in the definition with the condition 1, Z i.
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4.3 Data-flow Dependence Vectors from LWTs

We can use an LWT to easily calculate the data-flow dependence vectors. We visit every

leaf in the tree that is not labeled I. The context and the solution of the leaf impose a

set of linear constraints on the iteration variables that can be expressed in matrix form as

Ai > 0 where T is the combined vector (Z,, ',. s-). This is exactly the same formulation

as for the affine memory disambiguation problem. We can solve for the data-flow vectors

in the same way that dependence analysis solves for direction vectors using a variation

of Burke and Cytron's method [10]. We then return the set union of all the data-flow

dependence vectors calculated at each leaf.

The concept of dependence levels can be used to optimize our algorithm for calcu-

lating data-flow dependence vectors. We define the level of a dependence as follows

[31.

Definition 4.3.1 A dependence vector or a data-flow dependence vector d = (da,..., d,)

is said to be carried at level k if(di, ... , dk-I) = (0, ... , 0) and dk is +.

Definition 4.3.2 The level of a dependence iteration pair is the level of the data-flow

dependence vector associated with that pair.

As described below, we calculate LWTs one dependence level at a time. All the data-flow

dependence pairs described by a leaf are at the same level. Burke and Cytron's method

works by enumerating and verifying possible direction vectors. If the dependence level

of a leaf is k, any data-flow dependence vector with a direction other than 0 in any of

its first k - 1 dimensions is infeasible. We can immediately prune away any such vector.

Given an LWT, we can calculate data-flow dependence vectors this way as efficiently as

calculating direction vectors.

Different algorithms for constructing LWTs might not guarantee that each leaf only

describes single-level dependences, but it is always possible to split a multi-level leaf

into several nodes with only single-level leaves.

To simplify our presentation, we incorporate dependence levels directly into our trees.

We draw our LWT so that each leaf's height is equal to its dependence level. Any leaf

that is .1 is considered to be a level 0 leaf. Any leaf describing a dependence such that

i= , is considered to be a level n + 1 leaf.



CHAPTER 4. DATA-FLOW DEPENDENCE ANALYSIS 64

4.4 Calculating LWTs

Feautrier has developed a set of algorithms that can be used to calculate LWTs in the

domain of loop nests that contain no IF statements, no subroutine calls and no non-

affine terms [16][15]. His first algorithm, Parametric Integer Programming, is based on

modifying simplex for the integer case with symbolic parameters. This algorithm finds,

for all array locations, the last write where the write iteration, iz,, is subject to a set of

linear integer constraints, A;w >_ b, where the vector b is a symbolic constant vector.

Finding the last write before a read access cannot be directly expressed in the same

framework. The constraint that the write comes before the read is a lexicographic con-

straint that cannot be represented in the form of A7_ > b. The parametric integer

programming algorithm is able to find the lexicographically last write subject to a set

of linear constraints but not the lexicographically last write subject to a lexicographic

constraint. Finding the last write at a given dependence level, however, can be expressed

in this framework. Feautrier's second algorithm therefore solves for the LWT on a level

by level basis. If, for a certain value of Z,, a dependence at level k exists, then there

cannot be a later dependent write with a lower dependence level. Assume first that the

read statement comes lexically before the write statement in the program text. Feautrier

first solves for the last write within the innermost loop level, say, n. This generates a

sub-tree. If a particular leaf of the subtree has a last write solution, he has found the last

write before the read for the read iteration set. If a leaf is 1, it represents a read iteration

set with no level n dependences. For each such leaf, he then searches for the last write

at level n - 1, replacing the leaf with the newly generated level n - 1 subtree. Each

recursive call inherits the context of its leaf. This insures that all solutions with a level

k dependence represent read iterations sets that do not have higher level dependences.

This procedure generates the full LWT.

If the write statement comes lexically before the read, it is possible that there is a true

data-flow dependence when 1:. = i,. We can consider this to be a level n + 1 dependence.

In this case, the algorithm is slightly modified to start the recursion at level n + 1 instead

of at level n.
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Using Feautrier's algorithm, for each array pair, we are required to solve exponen-

tially many parametric integer programming problems for each dependence level. Each

parametric integer programming problem itself requires solving a large number of integer
programming problems. As an example, Feautrier timed his algorithm on the following

test input case [17].

doi= 1 to I

do j = 2 to n-l

do k = 2 to n-1
a kj [] =0.25* (a kj k- 1] +a [j k + 1I +a [I - 1] [k] +a [3'+ 1] k]

end do

end do

end do

Feautrier found that his algorithm takes 1.7 seconds to solve this input on a low end

SPARC [17]. We have also implemented Feautrier's algorithms; we find them complex

and obtain similar timing figures. We believe that the algorithm is much too inefficient

for use on real programs.

Our algorithm described below is designed to exploit the inherent simplicity in real

code. It can find exact data-flow information for the vast majority of programs very

efficiently. On Feautrier's example that took 1.7 seconds, our algorithm takes on a

similar machine, a DECstation 3100, about 0.10 seconds to both calculate the LWT and

to compute the data-flow dependence vectors. The efficiency of our algorithm makes it

feasible to use array data-flow analysis in program optimizations.

In the following, we first concentrate on finding the array data-flow information

between a pair of read and write operations in a loop nest with affine loop bounds. To

explain the algorithm, we describe our observations on two degenerate cases: when a

write access touches the same locations in all instances and when a write access touches

all different locations in different instances. We then show how we can use these ideas

as building blocks to develop an algorithm applicable to many of the cases found in

practice. We will back up the claim of its generality by some empirical evidence. Finally,
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we describe how we handle multiple write operations and discuss ways to expand the

domain in which this algorithm applies.

4.4.1 Loop Independent References

We say that a statement is loop-independent if it refers to the same location on every

iteration. For example:

do il = 11 to 15

do i2 = 11 to 15

... = a

a = ...

end do

end do

every write iteration writes to the same location being read. To find the last dependent

write before the read, we merely need to compute the last write before the read. In

the first iteration, we are reading an uninitialized value. In every other iteration, the

last write before the read is one iteration before the read. In Figure 4.a, we show a

graphical representation of the iteration space ordering for the example. From the figure

we can see that if i42 is not at its minimum value, 11, then one iteration before the read

is (i• 1 , iZ2 - 1). Otherwise, one iteration before the readI is (il - 1,15). We show the

corresponding LWT in Figure 4.b.

In general, assume we have a loop-independent read and write, accessing the same

location and perfectly nested in n common loops. If the write statement comes lexically

before the read, then our solution is i,• = Z'. If the read statement comes lexically before

the write statement, then we create a tree similar to the one in the example using a simple,

recursive procedure. We start our recursion with the innermost loop, corresponding to

loop index i,. At any level k in the recursion, we create a subtree with the root "if

irk > LBk" were LBk is the expression for the lower bound of iZ,, and where 7'k refers

to the k'th component of Z,. If we are working on the outermost loop, k = 1, we set
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Figure 4: LWT for loop-independent references

the false child of the subtree root to _1. Otherwise, we set the false child to the iesult of

applying the recursive step to level k - 1. We set the true child of the subtree root to be

the solution node Z., k-1.. -= irl.k_1, iw = irk - 1, Zk+l.... = UBk+l...,, where each UB, is

the upper bound for iZ. If an upper bound is a constant, we simply set iw, to its value.

Otherwise, if the loop is trapezoidal, we substitute in the values of the other components

of ZW to find its value.

If the loops are not perfectly nested, the write statement may be nested in m loops

where only the outer n loops are common. The values of the extra inner loop indices do

not affect the relative ordering between the write and read instance. Therefore for every

non-I solution, we set iw,, .I-- ZWi, to be as large as possible, their upper bounds.

In the above, we have implicitly assumed that our loops are not degenerate. We say

that a loop is degenerate if it is possible that no iterations of the loop will be executed.

There are two types of degeneracies: full and partial. In a full degeneracy the loop will

either always have iterations or never have iterations depending on the values of the

symbolic constants. For example:
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do i = 1 to 10

do j = 1 to m

end do

do j = 1 to n

a= ...

end do
end do

If n > 1, the write loop will always have at least one iteration and will therefore

never be degenerate. If n < 1, the loop will never execute and will therefore always be

degenerate. If the write loop is degenerate, every read will read an uninitialized value,

and the correct LWT will be I_.

Ancourt has developed an algorithm for loops with affine loop bounds based on

Fourier-Motzkin elimination that can be used to detect possibly degenerate loops [5].

For full degeneracies, we can use the algorithm to derive the conditions under which a

degeneracy will not occur, i.e. n > 1 in the above example. We merely insert these

conditions at the top of our LWT. If a loop is degenerate, there is no write before the

read and the solution is 1. Otherwise, we proceed as before.

In a partial degeneracy, a loop may be degenerate in some invocations but not in

others. For example:

do i1 = n to 15

do 12 = 12 to i1
... -- a

a =- ...

end do

end do

The inner loop is degenerate whenever il < 12. The algorithm we described above

does not work in the presence of partial degeneracies. The boundaries of the iteration
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space are no longer equal to the loop bounds. Assume for example that n < 12. The

first executed iteration of the loop occurs when iI = 12 and i2 = 12. Therefore the last

write before i, = 12, i42 = 12 should be 1. Yet, since iz1 > n, the LWT constructed by

our algorithm would find a solution with i, = 11,i, , = UB 2 = iw, = 11.

We can use Ancourt's algorithm to rewrite the loop bounds to eliminate the partial

degeneracy. For the example, we can eliminate the degeneracy by replacing the lower

bound of i1 with the value max(n, 12). We must modify our LWTs to allow min's and

max's in our constraints and solutions. If this is not desirable, min's and max's can

always be expanded out. For example, i < max(n, 12) can be expanded into the two

nodes i < n and i < 12. After eliminating partial degeneracies in this manner, our

original algorithm works correctly.

Partial degeneracies may lead to a serious compli~dtion. If the read and write state-

ment are not perfectly nested, after eliminating the partial degeneracies, the bounds for

the write statement may be different from the bounds for the read statement, even in the

common loops. For example:

do i1 = n to 15

a

do i2 = 12 to i1

en do..

end do
end do

Ancourt's algorithm will change the lower bound of the index for the outer loop for

the write to iZ1l = max(n, 12), but the lower bound of the index for the read loop, iz,

does not change since the read is never partially degenerate in the example.

Different bounds for the write and read greatly complicate the LWT. Our algorithm

implicitly assumed that we can always set a particular write index, Z, = z. This is

no longer possible if i*, is within the read loop bounds but not the write loop bounds.

Similarly, the fact that iZ, > LB, no longer guarantees that there exists an i•,w such that

i,= - 1. Therefore for the cases where Ancourt's algorithm sets the write bounds to
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be different from the read bounds, we believe that Feautrier's algorithm should be used.

As we shall show, this type of degeneracy is extremely rare.

4.4.2 Writes That Do Not Self-Interfere

We now consider the opposite scenario where a write operation accesses a different

location in each iteration. We say that such a write does not "self-interfere". For example:

do i = 11 to 20

a[i] =

end do

do Z = 11 to 20

a[31 =

end do

In the first loop, we are writing to different locations in each iteration so the write

statement does not self-interfere, but in the second loop, we are writing to the same

location, a[3], in each iteration so the write statement does self-interfere.

A write that never self-interferes will write at most one value into any location. Since

each read iteration is associated with only one location, given a read iteration, there can

only be at most one dependent write instance before the read instance. Thus, computing

all the dependent writes before the read is equivalent to computing the last dependent

write before the read, and we can easily modify our affine memory disambiguation system

to generate the LWT.

For there to be a dependence, the read and write must refer to the same location.

Using our array reference functions, for every dependence we know that Fz,,T = Fir.

To simplify the presentation, we first assume that we are interested in real solutions and

that F•, is invertible. Then, we know that 1, = F;IF,.

For every read iteration, z,, satisfying the bounds B7 r >_ 0, the dependent write

- F; 1F,,.. Not all these writes, though, are within the write bounds Bi• > 0, and

not all these writes are before the read. The LWT template in Figure 5 ensures that these
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constraints are met for the case where the read statement is lexically before the write

statement.

Write Bounds]

I lw-< ir

F TT

I 

r\

IF 
I

Figure 5: Template LWT for non-self-interfering write

Assume that the write statement is nested in m loops, n of which are common to

the read. After expanding out the lexicographical ordering constraint and replacing in

the conditional each occurrence of Z,' with its value, iw = F,;FZ-., we get the LWT in

Figure 6. Note that our lexicographic ordering constraint is expanded into two internal

nodes for each of the n common loop indices, but our solution z, = F;' FrZ ic, a solution

for all the write loop indices , WI.. i,•, Note also that if the write statement comes

lexically before the read, the true child of the lowest intema! node, (FIFT,-),f > -•,,,

will be F;IFrf, rather than I._

Some nodes of the tree may be inconsistent. If, for example, there is no dependence

such that i•,, > i,,,, the last if clause is always false. We can prune away this node,

replacing the subtree rooted at iz, > i4, with its false child. We can find the inconsistent

nodes by testing each of the n nodes for consistency. Checking all the nodes of the tree

for consistency is similar to testing for a memory disambiguation dependence once at

each dependence level, a subset of standard memory disambiguation.

In the general case, we are interested in integral solutions instead of real ones, and

the matrix F•, is not always invertible. The Smith normal form [44] can be used to

solve Fw1 = Frzi in the general case. In a process similar to the extended GCD Test

[8], which is similar to an integral version of LU decomposition, we can find matrices

P, Q and S such that PFWQ = S, P and Q are unimodular matrices and S is of
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Figure 6. LWT for non-self-interfering write
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the form where D is a positive diagonal matrix. The initial system has an

integer solution if and only if there exists an integer vector t such that SF = PFZri.

Since D is a diagonal matrix, the constraint St = PFZT is equivalent to the set of

constraints D = (PF-),. An integral t., satisfying this constraint exists if and only

if (PFi7 ).%D.,, = 0 where % is the integer modulo operation.

If there exists an integral solution, then the solution is given by Tw = QT. If there

are no zero diagonal elements in S (S = D), we can solve for Tin terms of Z.. D-1 is

simply the diagonal matrix such that (D-1)j.j = l/Di,i and F= D-1PF_,..

To create the LWT, we merely add to our tree the nodes (PFr.z)•%DXX = 0. If

these conditions are not met, there is no dependent write, otherwise we create a tree as

before, replacing 1W = F;•'Fr- with Z,' -_ QD-'PF,~.-

Figure 7 shows the resultant tree.

If S has a 0 in the diagonal, it is not possible to eliminate all the t variables. That

is, there are multiple values of 1,W for each Z' that satisfy FSZ = F1'7 . However, for the

write to qualify as not self-interfering, the loop bounds must impose sufficient additional

constraints on the problem to reduce the solution to at most one single value of ZiW for each

i•. For these rather uncommon cases, we can use a memory disambiguator to determine

the unique t values [40].

Note that degenerate loops are not a problem for this case. If a particular solution

for 1W is invalid due to a degeneracy, one of the bounds constraints will fail, and our

solution will be I_.

4.4.3 Computing LWT Efficiently

We have shown how to construct LWTs for pairs whose write statements do not self-

interfere and for pairs with loop-independent references. Both of these cases, by them-

selves, are not very interesting. When write statements do not self-interfere, LWTs contain

no more information than standard memory disambiguation. The advantage of data-flow

dependence analysis is to eliminate dependences that are covered by other writes. Also,

not many writes are loop-independent. We can, though, use our algorithms for these two
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cases as building blocks for an algorithm that is both simple and widely applicable.

Domain of Algorithm

To specify the domain of our algorithm precisely, let us first introduce the notion of

unused loop indices. We define a loop index to be unused if it does not appear in the

array reference function of the write, F,, nor in the bounds of any used loop index. An

unused index may be used by the read statement. A loop-independent write corresponds

to the degenerate case when all the loop indices are unused by the write. The loop indices

i and j in the code below are considered unused:

do i = 11 to 20

do j= 11 to 20

do k = 11 to 20

a[k] =...

=.... a[k-l] + a[Zi+j]

end do

end do

end do

Our algorithm can generate the LWT exactly and efficiently if eliminating the unused
loop indices reduces the write access into a non-interfering one and if Ancourt's algorithm

to eliminate partial degeneracies does not introduce read bounds that are different than

the write bounds in any of the removed loops. To assess the generality of our algorithm,
we performed the following experiment. We inserted a pass in our SUIF compiler to

examine all of the array writes in the PERFECT Club programs that have affine array

index expressions and are nested in at least one loop. After eliminating the unused

indices, we checked to see if each write statement self-interfere 1. This is equivalent to

checking for an output memory disambiguation dependence from the write to itself with

a non-0 direction vector component. Table 12 shows that after removing the unused

indices, in 2,501 out of 2,567 writes, over 97%, the writes do not self-interfere.
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Table 12: Number of writes that self-interfere after removing unused indices

Self-Interference (SI)

AP CS LG LW MT NA OC SD SM SR TF TI WS TOT
SI 0 2 0 0 013 39 0 0 0 012 0 66
NSI 424 84 36 36 74 316 75 142 124 430 233 10 517 2,501

It may not be that interesting to evaluate the applicability of our algorithm on all

the array writes. As we saw in Chapter 3, memory disambiguation fails for about 15%

of the array pairs; the pairs which have true dependences but not true data-flow depen-

dences. Nonetheless, memory disambiguation does succeed for most pairs. Memory

disambiguation is usually sufficient because most array writes do not self-interfere, even

without eliminating the loops corresponding to the unused indices. While we can handle

such writes, handling them gives us no more information than standard memory disam-

biguation. In Table 13, we eliminate these writes. Looking only at the writes that do

self-interfere, we show how many still self-interfere after removing the unused indices.

Even only looking at these problematic writes, we are able to handle 566 out of 632 or

about 90% of the cases.

Table 13: Number of self-interfering writes that self-interfere after removing unused
indices

Self-Interference

AP CS LG LW MT NA OC SD SM SR TF TI WS TOT
SI 0 2 0 0 0 13 39 0 0 0 0 12 0 66
NSI 66 19 1424 14 49-36 16 87 82 9 8 142 566

We then did a simple check to look for partial degeneracies. Pr.rial degeneracies can

only occur in trapezoidal loops. For each trapezoidal loop, we performed a simple and

efficient substitution step to try to prove that the trapezoidal loop can not be partially

degenerate. For example:
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do ij = 1 to n

do i2 = 1 to i1

By substituting in its lower bound, we know that il > 1 and the inner loop can never

be partially degenerate.

Our substitution algorithm was able to prove that 98% of the writes in the PERFECT

Club were not nested in any partially degenerate loops. Of course, our simple experiment

was too restrictive. The use of symbolic variables might force our substitution algorithm

to assume that a partial degeneracy exists when it does not. Also, we do not differentiate

partial degeneracies in the used loop indices from partial degeneracies in the unused

indices, and we do not check if partial degeneracies would cause Ancourt's algorithm to

set the write bounds to be different from the read bounds. Thus our algorithm should be

even more applicable.

Our Algorithm

The outline of our algorithm is as follows:

1. Apply Ancourt's algorithm to eliminate partial degeneracies.

2. Remove the loops corresponding to those loop indices that are unused by the write

statement. We treat the unused loop indices remaining in the read statements as

symbolic constants.

3. Check if the write in the reduced system self-interferes. If the write self-interferes,

the algorithm is not applicable. Otherwise:

4. Construct the LWT for the reduced system using the non-self-interfering algorithm.

5. Construct the LWT for the original system by restoring the unused loop indices.

We will describe this step in detail below. If Ancourt's algorithm has set any of the

wvrite bounds in the unused loops indices to be different from the corresponding read

bounds, this step of our algorithm is not applicable, and we must use Feautrier's

algorithm to restore the unused indices.
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Note that even when our algorithm does not apply because of self-interference, our

LWT is only inaccurate in that it conservatively describes more dependent writes than

just the last write before the read. Thus in cases where there is reuse in some of the

loops corresponding to used indices, but not all, our algorithm might still be useful in

pruning some of the false data-flow dependences.

Restoring Unused Variables

Given an LWT for a reduced system with the loops corresponding to the unused write

indices removed, we need to be able to construct the LWT for the original system.

We assume that Ancourt's algorithm has been applied to eliminate all the partial loop

degeneracies. This step may have introduced min's and max's into our loop bounds.

We restrict our scope to the case when the common loop bounds of the read and write

statement are equivalent. We also use Ancourt's algorithm to find the conditions that

guarantee no full degeneracies. These conditions are placed at the top of our tree.

We will restore one unused index at a time starting with the innermost index. We

need to show that at each stage, our algorithm generates the correct tree for the partially

reduced system with all loops corresponding to the not yet restored variables removed.

Recall that the values of the non-common indices do not affect the ordering between

the read and write. Therefore, for any non-I solution node, we should set all non-

common, unused write indices to their upper bound, and we should set all the non-

common, used indices to their corresponding component in the solution, QD-IPF4:.

We can ignore the non-common loops for the remainder of our discussion.

We now describe the algorithm to restore the index corresponding to the k'th outer

loop. Assume that before this restoration, the LWT for our system is T and that our

restoration process is creating a new tree, T'. Each internal node in an LWT merely

partitions the domain of our LWT function. A given value of 1T and a given value of the

symbolic variables map into one and only one leaf. The corresponding solution, 1W, is

the solution found in that leaf. Thus, when creating T', we must merely insure that each

leaf contains the correct solution for all the reads in its read iteration set.

First let us consider the non-I leaves in T. For every read in the read iteration set

of a non-I leaf in the fully reduced system there was one write to the same location
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and that write preceded the read. Since by definition the unused indices do not affect the

location being written, in the full system the location being written in i,•, will be the same

as the location read in Z" if and only if the solution for all the used indices in the full

system is the same as the solution for all these indices in the reduced system. Thus to

restore the unused index, 7'k, to the leaf in T, we merely need to set the unused indices

so that 1W, is the last write before the read.

Each non-I leaf in T has a level, 1, corresponding to the minimum index such that

Z,, < irl. If no such index exists, then Zi = i7 in T, and we shall define I = n + 1 where

n is the number of common loops in the original, full system. Assume first that I < k.

Since we are restoring the innermost unused indices first, and since index 1 appears in

T, we know that iZ., corresponds to a used index. Since the restoration process cannot

change the value of a used index, we know that iw, < ir in T'. Whatever value we give

.k in T', the write will come before the read. We therefore set i•.k to be as large as

possible, the upper bound for loop index 1k, UBk(i,,,,... . i,1Wk_1). If the upper bound is a

constant, we simply set i'Ik to its value. Otherwise, if the loop is trapezoidal, we can use

a simple substitution step to find its value. Note that we must insure that any previously

restored variable retains its correct value throughout the restoration process. Since any

previously restored variable, 1,W, has m > k, we know that m > I and therefore im has

previously been set to its upper bound, which is still its correct value.

Now assume that I > k. Since in T, z-< •', we must have iZ,, = it,..., _ = r-1

for all the existing indices in T. If we set iwk to be larger than ik, then the write instance

will be later than the read so we set iZ - irk* This is always possible since the bounds

on the read are equivalent to the bounds on the writes. Now consider once again each

previously restored variable, iZ,,. Our restoration process has not changed the level of

the leaf; it is still 1. Since the value of i,,. was determined solely by the relative values

of m and 1, the value for 1,W in T is still the correct value for i, in T'.

Thus for every non-I leaf in T, we can compute the solution in T'. Now let us

consider the -L leaves. From Figure 7, we see that in the reduced system, there are

three different types of I leaves: those corresponding to out of bounds writes, those

corresponding to read iterations with no write iterations referring to the same location

and those corresponding to read iterations with no preceding write iterations accessing
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the same location. For the ._ leaves corresponding to out of bounds writes, in T' the

writes will still be out of bounds. For the I leaves corresponding to reads without any

writes referring to the same location, since the unused indices do not affect the locations

being written, in T' there can also be no dependent writes. Thus we leave all such I_

leaves in T as I leaves in T'.

For the I_ leaves corresponding to reads with no preceding dependent writes, though,

the fact that there was no preceding dependent write in T does not necessarily imply that

there is no preceding dependent write in T'. For all the reads in the read iterations set of

these I_ leaves, in the fully reduced system each read, 2'r, had one dependent write, ZW,,

but that write was after the read. We can divide these I1 leaves into two sets depending

on the value of that later dependent write, iZ,. First, assume that in the fully reduced

system there exists an I < k such that i2t > Z,,. Since 1 < k, regardless of the value

of iwk or any of the other previously restored indices, the write will still come after the

read and these leaves remain 1 leaves in T'. Now assume that no such 1 exists. This

implies that i, 1 = i,..., ik = irk-, for all the existing indices in T. In this case,

as long as iZk < 2r,, there is a preceding dependent write in T'. Since our read and

write bounds are identical, if irk is greater than its lower bound LBk(iT1,..., Zrk_•), such

a write exists, and the latest write occurs when iwk = irk - 1. If zik is equal to its lower

bound LBk(i 1 , .... , z7k_)I there is no 2,k < irk and we must again retain the _L leaf.

Because of our non-self-interfering write algorithm, it is easy to find all the leaves

where no such 1 exists. We merely search T for the node with the constraint i, V ,Ir/,,

where k' is the last used index less than k. We call this node our dividing node. If there is

no used index, k' < k, our dividing node is the last dependence node, (PFr*) D =

0, the parent of the first lexicographic node in T. From the context of this node, we know
that i•,1 = i•... , Z~k_. = ii for all the existing indices in T. Since every node inherits

the context of its ancestors, these equality conditions are true for every 1 node that is a

descendent of the true edge of the dividing node. Thus, for any descendent 1 node of the

true edge of our dividing node, no such I exists. We therefore replace all such descendent

_L nodes with the subtree whose root is the condition "if izk > LBk(ir ,..., iTk_ )" and

whose false child is a _L node. The true child is the solution node with zwk =zk - 1, every

other unused variable set to its respective upper bound and every used variable set to its

I
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corresponding component in the solution, QD-'PFA.. Note that the subtree we have

described is the same as the tree generated by our loop-independent algorithm for the case

of a read statement followed by a write statement nested in one loop. Loop-independent

references correspond to the case when all variables are unused.

Note that in the worst case, the size of the resultant LWT can be exponential. Nonethe-

less, in practice we have found that the size of most LWTs we construct is close to linear

in the nesting level of the loops, and our algorithm appears to be very efficient in practice.

Example of Restoring Unused Variables

We shall illustrate our restoration algorithm with an example. Assume we have a write

statement nested in three loops; Z',, i,, and iw3. Assume that the read statement comes

lexically before the write statement in the program text. Assume that index iZ is unused

and has constant bounds LB2 < i, 2 < UB 2. The k mentioned in our algorithm is

therefore equal to 2. Assume that after removing the second loop, the write in the

reduced system does not self-interfere. The LWT for the reduced system is shown in

Figure 8. We label some of the internal nodes No, N, and N2 to aid in the discussion.

Consider first the two non-I leaves. The dependence level of the lower left leaf is

1 which is less than k = 2. We therefore set iZ = UB 2 for this leaf. The dependence

level of the upper right leaf is 3 which is greater than k = 2. We therefore set iu, = 1,2

for this leaf.

Now consider the I leaves. Node No represents the condition that iZ,1 _ i,. It is the

dividing node. For any _L node descended from its true edge, we know that i,• = i .

There are two such _L leaves: the false child of N, and the true child of N 2. We replace

both _L leaves with the subtree whose root is the condition "if iz2 > LB 2", whose false

child is a _L node and whose true child has the standard partial solution and i• = iU2 - 1.

We show the resultant LWT for the full system in Figure 9.

4.5 LWTs for Multiple Reads and Writes

We have described an algorithm to calculate an LWT for a single pair of read and

write statements. For multiple read statements we can construct an LWT for each read
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statement and treat them as separate problems. This is not possible when dealing with

multiple writes. Take, for example, the code in Figure 10. Comparing only the first write

statement to the read, we must assume that there is a true data-flow dependence because

it appears that in each iteration we are reading a value that was written in the previous

iteration. In fact, there is no true data-flow dependence. In each iteration, the second

write statement overwrites, or covers, the location written by the first write statement in

the previous iteration. The value read by the read statement was written by the second

write statement in the same iteration as the read.

do i = 1 to 10
a[i+l] =

a[i] .
... = a [i]

end do

Figure 10: Multiple writes

In general, handling multiple writes requires us to intersect LWTs. Assume we have

two write references and have constructed the LWTs for each reference separately. In-

tersecting greater than two references can always be accomplished by intersecting two

references at a time. Take a leaf of the first tree at level 11. Because of the second ref-

erence, the solution for the leaf might no longer represent the last write before the read.

Any level 12 > 11 leaf from the second tree represents a later dependent write instance

for any read instance common to both read iteration sets. Any leaf from the second tree

with level 12 = 11 might represent a later dependent write for the common read instances

if the solution for the second reference is later than the solution for the first.

The algorithm to intersect two trees, T' and T, is as follows. Assume that the write

reference for T' comes lexically after the write reference for T in the program text. We
visit every leaf in the first tree, T'. Assume the level of a visited leaf is 1, and the

solution is s'. We wish to replace s' with all the later writes from the second reference.

For simplicity, assume first that the second tree, T, does not contain any level l leaves.

Let T, contain only the level k > I dependences of T. Given T, we construct T, by
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replacing any level k < I dependence in T with I. Any non-I- solution in T, represents

a dependent write that occurs later than s'. Any I node in T, represents reads for which
there is no later write from the second reference; the last write of the two references is

s'. We therefore replace s' in T' with T, after first replacing all I- nodes in T, with s'.

Now we consider the case when T may also contain level I leaves. Given a level I

solution, s, in T, s is the latter write if and only if s >- s'. Therefore, before replacing
s' with the modified T1, we first replace any level I solution in T, with the subtree "if

(s >- s') then s else s' ". Note that since s and s' are at the same dependence level, the

lexicographic constraint s >- s' is equivalent to the linear constraint, sl > s'4.

In Figure 11 we show two LWTs for the examples in Figure 10. We wish to intersect

the second tree, T into the first tree, T'. We first visit the I nodes in T' and construct
To. For any tree, T, To = T. Therefore, we replace every I node in T' with a copy

of T. Next, we visit the level 1 leaf in T'. Since the only dependence in T is at level

2, T, is also equivalent to T. Thus we replace the level 1 leaf in T' with a copy of T

after first replacing each I in the copy of T with the solution from the level 1 leaf in

T', i, = - 1.

In Figure 12, we show the resultant intersected tree. Recall that the second write

statement completely covers the first write statement, and the read only sees writes from

the second write statement. Therefore, the LWT for the second reference is in fact a

valid LWT for the intersection of the two trees. if we eliminate redundant constraints

and rearrange some other constraints, we can see that the tree in Figure 12 is equivalent

to the LWT of the second write statement.

Note that our intersected tree is more complicated than either of our original trees.

The complexity of our resultant tree and therefore the complexity of our algorithm grows

exponentially with the number of write statements. It might be expensive in general

to intersect all the LWTs corresponding to all the write statements. There are, though,

two special cases that we believe are very common and that we can handle without

general tree intersections. If two write statements write to identical locations in every

iteration, then the latter write statement overwrites the writes of the earlier statement.
The intersection of the writes is then simply the LWVT for the covering write. If the loops

are perfectly nested, we can simply check to see if the two write reference functions are
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a[i+l] = ... a[i] = ...

Figure 11: LWT for two writes

exactly equivalent. Otherwise, we can use a simple range based summary represemtation

for the non-common loops to detect if the two writes write to identical locations in every

iteration of the common loops.

The other simple case is when the two writes write to non-overlapping locations.

This can be detected using standard affine memory disambiguation. Given a particular

read iteration, Z,, with its particular access location, at most one of the trees may contain

a last dependent write for iteration 1'. Let T' be the LWT for the first write statement,

w'. Let T be the LWT for the second write statement, w. We start with T' as cur

prospective LWT. If Z, is dependent on a write in statement u,, our tree is correct for

this read instance. Otherwise, Z" will map to a I node in T'. Since &' and w refer to

non-overlapping locations, in order for z, to be dependent on a write instance of the other

write statement, w, z, must not be dependent nor anti-dependent on any write instance

of statement w'. Thus one of the bounds constraints, B,,QD-'PF,1 >_ 0, or one of the

dependence constraints,(PF ZFr,%Di,, = 0, in T' must be false for •. Therefore, to

generate our LWT, we simply replace all the I nodes that are false childs of a bounds
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Figure 12: Intersection of two LWTs
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or of a dependence constraint with a copy of T.

4.6 Array Privatization: An Optimization

We will demonstrate the necessity of more powerful data dependence representations with

the array privatization example. As we have mentioned, recent research by Eigenmann et

al. [13], by Singh and Hennessy [47], and by us [38] has shown that array privatization is

a critical transformation in the suite of parallelizing transformations. To privatize arrays,

traditional data dependence techniques are not sufficient; data-flow dependence vectors

are required.

In this section we will outline a compiler algorithm for array privatization in the

domain of loop nests that contain no IF statements, no subroutine calls and no non-affine

terms. Our intention is to illustrate the necessity and sufficiency of data-flow dependence

analysis for array privatization in this domain. A more detailed and formal description

of our algorithm is found in [36].

Consider the example in Figure 13 extracted from the PERFECT Club benchmark

program OCS. We will use this example throughout this section to illustrate the array pri-

vatization problem. Every iteration of the outer loop reads and writes the same elements

of the array work. It can be shown in general that any loop, k, can be parallelized using

privatization if the loop has no level k data-flow vectors. In this example, the data-flow

distance vector between any two references to the work array is (0). There is no level

1 data-flow dependence, and therefore the loop can be parallelized with privatization.

Using memory disambiguation, a system would detect a dependence across the iterations

of the outermost loop. The outermost loop would therefore not be parallelizable.

Privatizability implies that no communication is necessary between iterations of the

loop, but each processor may need to initialize its private copy and to copy back some

data from the private copy to the original variable at the end of the execution. We refer

to the former process initialization and the latter finalization.

In our example, every work location read is initialized in the loop. There is no need

for an initialization phase. We could modify the example slightly so that some of the

data being read is initialized outside of the loop. For example:
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do j = 1 to NI by 2
do i = 1 to N2P

ii=i+i

work [ii-1] = AJi] [j]
work[ii] = A[i] [j+1]

do i = I to N2P
A[i] [j] = work[i]
A[i] [j+I] = work[i+N2P]

Figure 13: Code from PERFECT Club benchmark OCS

work[O] = 0

do j = 1 to NI by 2

do i = 1 to N2P

ii=i+i

work[i - 1 = A[i] [j]

work(ii] = A[i] [j+1]

do i = 0 to N2P

A[i] [j] = work[i]

A[i][j+I] = work[i+N2P]

In the modified example, location work [0] is written before the start of the loop.

It is still legal to privatize; the only data-flow dependence vector within the loop is still

(0). Now, though, we must initialize each processor's local value of work [0] with the

global value of work [ 0 ].

To calculate the locations that need to be initialized, we use the following algorithm

based on LWTs. Any array element read for which the last write before the read is not

in the same iteration, must be initialized. Assume we are privatizing loop i. We must

initialize all locations corresponding to level 0... i- 1 dependences. We find all the level

0... i - 1 leaves and find the union of all the array locations described by the leaves. For

initialization, we can always be conservative and initialize more than necessary. Being
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conservative does not limit parallelization although it does slightly increase the overhead

of privatization.

For both the original example of Figure 13 and the modified version, we must copy

some of the values from the local arrays back to the global after executing the loop.

For these examples, the only values seen after the loop are written in the last iteration,

j = NI. Thus, we can strip the last iteration and have the processor assigned to this

iteration write to the global array rather than to its local array. It can be shown that when

all the reuse is in the loops corresponding to the unused loop indices, stripping the last

iteration is always sufficient for finalization.

We have implemented our algorithm in the SUIF compiler system. Our parallelizer

marks all the parallelizable loops and privatizes arrays when needed. It privatizes using

our efficient algorithm for calculating LWTs.

In Figure 14 we show, as an example, the output of our compiler on the code from

Figure 13. Besides parallelization and privatization, the SUIF optimizer has to first

perform loop normalization, constant propagation and induction variable identification on

the code. The code to be run by every processor is shown. To simplify the presentation,

we do not parallelize the inner loops although they can be parallelized using standard

techniques.

Note that it is not easy to discover that initialization is unnecessary for this example.

Each read gets part of its data from each write. Therefore, we can not simply look

at pairs of references. The effects of the two writes must be combined by intersecting

the two individual LWTs. Since the two writes write to non-overlapping locations, our

system efficiently determines that initialization is unnecessary. As for finalization, since

all the iterations of the loop write to the same locations, the final values of the array are

determined only by the last iteration. Since no initialization is needed, the last processor

can directly operate on the original copy of work and no synchronization is necessary.

4.7 Related Work

Several other researchers have worked on computing data-flow information for array

elements. We have compared our work throughout this paper to Feautrier's because
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LowBound = 0
UpBound = divfloor (N1 - 1,2)
BlkSz = divceil (UpBound - LowBound, NumProc)
/* Body */
if (PID!-=NumProc -1) then /* not the last processor */

do j = LowBound + PID * BlkSz to LowBound + (PID + 1) * BlkSz - 1
do i = 1 to N2P /* _work-priv is a local array */

-work-priv[2*i-l] = A (1 [2*j+l]
-work-priv[2*i] = A(Z] [2*j+2]

end do
do i = 1 to N2P

A[i] [2*j+1] = _work-privli]
Aj[i] [2*j + 2] = _work-priv[iZ+ N2P]

end do
end do

else /* last processor */
do j = LowBound + PID* BlkSz to UpBound

do i = 1 to N2P
work[2*i-1] = A[i] [2*j+1]
work[2*i] = A[i] [2*j+21

end do
do i = 1 to N2P

A[i][2*j+1] = work[i]
A[i] [2*j+2] = work [i+N2P]

end do
end do

end if

Figure 14: Resultant privatized code
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Feautrier's algorithm is exact for his domain. No one else is able to compute exact

information for all inputs in his domain. As we have shown, we are as accurate as

Feautrier in most cases, but we are much more efficient. Since, we know when we

are exact, we can also always use Feautrier's algorithm as a backup in the rare cases

when we fail. Several other researchers have worked on similar problems. Brandes

[9], Ribas [42] and Pugh and Wonnacott [41] take similar approaches to us in that they

extend memory disambiguation techniques to compute data-flow dependence information.

Brandes's approach does not apply if dependence distances are coupled or if the loop is

non-rectangular. Ribas only discusses constant-distance dependences in perfectly nested

loops. Pugh's and Wonnacott's algorithm is inaccurate when their Omega Test generates

disjunctions of constraints. It will have difficulties in some cases that we can handle such

as when a read statement is covered by write instances from multiple dependence levels.

In addition, it may have difficulties when the array reference function contains holes (i.e.

a reference such as a [2i] ).

Several other researchers have approached the problem from the scalar data-flow

framework [19][20][43]. Instead of representing an array with a single bit, the set of data

touched within a region/interval in the flow graph is approximated by an area descriptor.

These approaches handle arbitrary control flow, which we can not, but their accuracy is

limited by the precision of the summary information. As a simple example:

do i = 0 to n

a[2*i = ...

... = a[i]

end do

This loop can be parallelized in our framework with copying, a special case of array

privatization. A direct summary approach would say that the write and the read sometimes

refer to the same location. More information is needed for parallelization. As another

example consider the PERFECT Club code fragment from Figure 13. If the summary

representation is not detailed enough to describe the fact that each write only writes every

other location, then parallelization would not be possible.



CHAPTER 4. DATA-FLOW DEPENDENCE ANALYSIS 93

Li has used a similar approach in developing an algorithm specifically for the array

privatization problem [30]. His algorithm handles more general control flow than ours

but less general array references.

We believe that the best solution is to develop an integrated framework that combines

our approach with summary based ,pproaches. This could allow us to combine the

accurate array reference analysis of our approach with the more accurate control flow

analysis of summary information.

4.8 Future Work

We have given an efficient algorithm for calculating LWTs in the domain of loop nests that

contain no non-affine terms, no goto statements, no subroutine calls and no conditional

write statements. We have shown that our algorithm is almost always completely accurate

in this domain. If desired, we can use Feautrier's algorithm as a backup. Thus, we can be

completely accurate while retaining efficiency since Feautrier's algorithm would rarely

have to be executed.

While our domain is the same as Feautrier's and richer than the domains of some of

the other works we have mentioned, we believe that this domain must be extended in

order to be useful for real programs. In Table 14, we looked at all the do loops in all the

PERFECT Club programs and checked how many loops meet these domain restrictions.

In a nested loop, we counted each loop separately since it might be possible for example

to analyze and optimize the inner but not the outer loop of a doubly nested loop. We

see that 1,143 out of 2,812, over 40% can not be analyzed. While we do not know the

percentage of the dynamic execution time of the programs that is spent in these failure

loops, we do have at least an indication that we must extend our domain restrictions.

In Table 15, we show how many of the bad loops are due to each reason: non-affine

loops or non-affine array writes, gotos inside the loop, subroutine calls that write array

data and conditional write statements. Note that the columns add up to more than the

number of bad cases in Table 14 since a single loop can have more than one problem.

Our largest class of failures is due to the affine conditions. In Chapter 3, we showed

evidence that the affine restriction is sufficient for standard memory disambiguation.
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Table 14: Number of do loops that meet domain restrictions
Domain Restrictions

Program Good Bad Total
AP 195 105 300
CS 180 134 314
LG 44 115 159
LW 25 31 56
MT 58 25 83
NA 156 113 269
OC 85 76 161
SD 169 93 262
SM 56 248 304
SR 210 20 230
TF 147 49 196
TI 35 43 78
WS 309 91 400
TOTAL 1,669 1,143 2,812

Table 15: Number of each type of domain failure
Domain Failures

Program Non-Affine Gotos Subroutine Calls Conditional Writes
AP 37 72 35 32
CS 114 60 47 4
LG 86 40 40 22
LW 21 12 7 1
MT 13 18 7 3
NA 93 38 11 8
OC 71 12 12 8
SD 64 26 23 9
SM 235 51 22 31
SR 12 10 2 4
TF 33 19 1 7
TI 37 20 5 0
WS 43 45 33 2
TOTAL 859 423 245 131
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This is not because array refe, -nces are always affine, it is because the lack of a true

dependence can sometimes be proven without using the non-affine terms. Memory dis-

ambiguator, can gracefully deal with non-affine information by conservatively ignoring a

loop bound or an array dimension. Data-flow dependence analyzers cannot always make

conservative approximations. Our current algorithm requires that all terms be affine. In

the future, we believe that this can be extended. If, for example, we have a loop-constant,

non-affine symbolic expression for a loop bound, we can treat the expression as a new

symbolic variable. Also, if the non-affine terms are the same for each iteration of a loop

corresponding to an unused index, we will still write the same locations in each iteration

of the loop, and we should be able to conservatively ignore the non-affine terms.

Our second largest class of failures is due to goto statements inside loops. Our

methods cannot handle arbitrary control flow as easily as summary based methods. We

believe that we can extend our approach to other limited forms of control flow. For

example, restructurers can sometimes eliminate goto statments. In the general case, we

believe that combining our approach with the summary approaches should give the ideal

solution.

Our domain can also be extended interprocedurally by utilizing summary information.

This can lead to a loss of accuracy in the rare cases when read and write operations are

interleaved across subroutine boundaries. We discuss interprocedural analysis in greater

detail in the next chapter.

Finally, IF statements whose conditions are affine functions of the loop indices and

symbolic constants can be easily incorporated into our framework. The IF statement

would merely impose additional constraints on our memory disambiguator. For more

general IF statements, we would have the same problem. and solution. as with arbitrary

gotos.

4.9 Chapter Conclusions

Standard data dependence abstractions techniques are not sufficient for the more advanced

optimizations being considered today. In particular, scalar optimizers have long used both

data-flow and alias information to analyze programs. Parallelizers traditionally use only
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data dependence analysis or, more precisely, affine memory disambiguation of array

locations. A read statement is assumed to be dependent on a write if the read and write

statements access overlapping locations. Data-flow analysis on individual array elements

allows for more powerful optimizations.

In this chapter, we propose a new framework for data-flow dependence analysis

using the abstraction of data-flow dependence vectors. We show how to derive data-

flow dependence vectors from last write trees (LWTs), a general representation capturing

the complete results from array data-flow analysis. Most array references are simple.

Our empirical results suggest that most arrays either exhibit no reuse, or the array reuse

occurs within those loops whose indices are unused by the array write reference function.

This observation leads to an algorithm that can efficiently generate a last write tree and

data-flow dependence vectors for these common cases.

As an example, we demonstrate the application of array data-flow analysis in array

privatization. Using data-flow vectors and LWTs, we can easily integrate array privatiza-

tion into parallelization. Replacing data-dependence vectors with data-flow vectors, the

spurious dependences due to the reuse of the array locations are eliminated.

This chapter lays the foundation for new compiler optimizations that use sophisticated

data-flow analysis on array elements. In addition to array privatization, our analysis tech-

niques can also be used for other loop transformations based on dependence vectors, such

as unimodular loop transformations and tiling or blocking. The need for data-flow analysis

techniques is even more obvious in the compilation for message-passing machines. The

high corommnication cost on these machines makes it absolutely necessary to minimize

communication. Critical optimizations include reducing total communication volume by

eliminating redundant data movements and reducing start-up overhead per message by

blocking the communication. Such optimizations again need data-flow information on

individual array elements.



Chapter 5

Interprocedural Analysis

In the previous chapters, we have described techniques for computing the dependences

between pairs of references. To successfully parallelize programs, we need to compute

the dependences between all array statements. To compute distance and direction vec-

tors, we need to compare every array reference with every other reference to the same

array, a process that could require O(n 2) dependence tests. Computing data-flow depen-
dence vectors is even worst. In the worst case, the cost of computing all the data-flow

dependence vectors might grow exponentially with the number of array statements.
We showed in Chapter 2 that the cost of calculating distance and direction vectors

between all array reference pairs in a subroutine is quite reasonable. To calculate all the

dependence relations interprocedurally, we would have to fully inline the program. As
we will show, this is completely infeasible.

An alternative approach is to summarize array accesses. We will describe several

summary approaches. These summary algorithms approximate the array access behavior.

Using approximate summary information, if we fail to parallelize a loop, it is not possible
to know if the loop is inherently serial or if our summary was forced to make a conserva-

tive approximation. In addition, even a perfectly accurate summary is not sufficient for
more advanced optimizations. While an accurate summary is sufficient for determining
whether a loop can be run in parallel without modification, more information is required

for array privatization and for loop transformations.

In this chapter, we introduce an approach that combines summary information with

97
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subroutine inlining. We summarize whenever we can guarantee that our summary exactly

represents the area of the array being accessed. If we cannot guarantee the exacmess of

our summary, we inline. Thus with the goal of parallelizing loops that contain subroutine

calls, we are able to obtain the accuracy of inlining without the cost of inlining every

subroutine call. In addition, because we are able to use inlining in cazes of failure, we

are able to use a very simple summary representation that can easily be calculated. In

the end of the chapter, we discuss how to extend our approach to the more advance

optimizations of array privatization and loop transformations.

5.1 Subroutine Infining

With subroutine inlining, we replace every subroutine call with the body of the called

subroutine. Using full inlining eliminates the interprocedural optimization problem by

replacing the program with one very large subroutine.

In Fortran, inlining can result in some loss of information. For example:

program prog

do i
c.all f red (1)

end do

end

subroutine f red (i)

dimension loc (100)

return

end

Subroutine fred accesses the local array loc. Each invocation of f red accesses a

new local array and therefore there is no communication between the different iterations

of the i loop in the main program. If we are not careful, after inlining, we may lose the
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information that loc was local to fred, and we might unnecessarily sequentialize the

loop.

Fortran allows for the reshaping of arrays across subroutine calls. Each subroutine

accesses its arrays according to the locally declared shape. For example:

subroutine sub (a, n)

dimension a (10 * n)

call fred (a,n)

end do

end

subroutine f red (a, n)

dimension a (n, 10)

do i= 1 to 10
do j = 1 to n

a(ji) =Z

end do

end do

return

end

After inlining we must transform the two dimensional array reference to a in subrou-

tine f red into the equivalent one dimensional reference in subroutine sub. In this case,

the affine reference a (j, 1) in f red gets transformed into the non-affine a (ni + j).

Some careful modifications to the inlining problem can reduce the amount of infor-

mation lost. It is possible, for example, to note after inlining that the array loc is local

to the scope of the loop body. Some of the other problems with inlining also exist with

summarizers. Summarizers can also not deal with arbitrary array reshaping. We there-

fore feel that the main difficulties with inlining are its costs and not its accuracy. For the

remainder of this chapter, we will consider inlining to be effectively completely accurate.
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5.1.1 Full Inliijing

In terms of accuracy, we consider full inlining to be the ideal solution. Full inlming,

though, greatly increases the size of the program. In addition, the effects of this growth

can be much larger than just the growth of the total program size. Most compiler analysis

techniques work on each subroutine individually. Full inlining results in a program with

just one subroutine. Even if the total program does not grow, the size of the average

subroutine might grow tremendously. Table 16 gives several measures for the effects of

full inlining on the PERFECT Club programs. In the first column, we show the ratio

between the size of the inlined program and the size of the initial program. While for

some programs, there is not much growth, for others the growth is huge. CSS and

SMS, for example, grow by about a factor of 100 each. In the second column, we

show the growth in the average subroutine size. While subroutine size growth is an

intuitively appealing measurement, we feel that the ratios in the next two columns are

more meaningful. Most analysis techniques cost O(n2 ) in the size of the subroutines in

the worst case. In practice, most techniques cost O(n log n). For the third column, we

sum up n log n over all the subroutines, where n is the size of each subroutine, and we

show the ratio between this sum in the inlined and this sum in the original program.

In the fourth column, we sum up the square of the size of the subroutines. This is an

estimate for the worst case effect of inlining. We believe that the n log n column gives

the most reasonable figure for the effect of inlining on efficiency. It is clear from this

that full inlining is not realistic. Note that because of memory and time limitations,

the experiment did not actually fully inline these programs, but given the size of each

subroutine and the call graph, it is straightforward to calculate the effects of inlining.

Our experiment may slightly exaggerate the effects of inlining. Hall argues that scalar

optimizers reduce the size of inlined object code by eliminating dead code and creating

more specialized code [22]. She compares how much optimizers reduce object code size

for inlined programs versus uninlined program. In her best examples, the optimizer is

able to shrink inlined code by about 10% more than it was able to shrink uninlined code.

While this is impressive, it is certainly not enough when programs grow by a factor of

100. In addition, the optimizer that shrinks the code must itself operate on the unreduced

inlined code.
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Table 16: Growth in PERFECT Club programs after full inlining
Growth After Full Inlining

Program Total Program Average Subroutine n log n n'
AP 11.5 112.5 22.5 3,136.1
CS 94.8 2,445.1 197.7 292,946.0
LG 11.1 200.5 20.2 1,576.3
LW 1.6 27.4 2.3 21.4
MT 3.8 51.8 6.4 260.8
NA 1.6 23.2 2.4 37.3
OC 6.5 117.4 10.4 215.3
SD 2.1 19.1 3.6 86.9
SM 125.6 3,641.5 231.4 99,049.6
SR 1.4 18.1 2.1 30.9
TF 2.1 72.0 3.2 53.2
TI 1.0 2.0 1.1 2.0
WS 19.8 160.6 38.4 8,324.8

5.1.2 Restricted Inlining

It is clear that one cannot fullly inline a program. Thus all practical inliners must be

restrictive and not inline every call. Hall utilizes two approaches [22]. For certain

optimizations she restricts inlining based on the size of the code; large subroutines are

not inlined. For other optimizations, she uses goal directed inlining; she attempts to

inline sites that are likely to aid further optimization. Both these approaches might be

very reasonable. Hall is able to, for example, eliminate most call statements within loops.

Nonetheless, these approaches are very difficult to evaluate. It is not possible to know

how much more parallelism would have been discovered if an uninlined site had instead

been inlined.

An alternative approach is to not inline sites where we can prove that inlining is not

beneficial. For example, we are only interested in parallelizing loops. If a call statement

is not directly inside a loop nor in a subroutine that is called from inside a loop higher

up in the call graph, then there is no point in irmining the call. In Table 17, we repeat

the experiment of Table 16 but only inline calls inside for loops. A for loop is a SUIF
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representation for non-while loops.

Table 17: Growth in PERFECT Club programs after inlining calls not inside for loops
I - Growth After Loop Restricted Inlining

Program Total Program Average Subroutine n log n
AP 9.1 14.2 15.8 1,044.5
CS 4.0 4.4 5.2 60.2
LG 9.6 18.1 14.7 248.9
LW 1.6 2.5 1.9 6.0
MT 3.8 8.2 5.6 87.3
NA 1.1 1.3 1.2 1.4
OC 1.7 1.7 2.0 6.2
SD 1.2 1.9 1.4 2.5
SM 125.6 331.0 231.3 98,948.1
SR 1.0 1.2 1.1 2.3
TF 1.0 1.0 1.0 1.0
TI 1.0 1.3 1.1 1.7
WS 19.7 41.3 34.2 2,315.7

Using loops to restrict inlining reduces the expansion in subroutine size from inlining.

Assume, for example, that a user is willing to allow inlining to increase compile time by

a factor of about four or less. Using full inlining, eight of the thirteen programs have their

n log n ratio increase by at least four, rounding to the nearest integer, most substantially

more. With the loop restriction, six programs have such large n log n ratios.

Still, this is not good enough. No user is willing to have compile time increase by a

factor of 200 for some programs, even if it barely increases for other programs. Memory

utilization by the compiler is also a function of subroutine sizes. Even if the user is

willing to wait, the compiler might run out of memory.

We had hoped to find additional effective pruning techniques that would have made

restricted inlining sufficient by itself. Unfortunately, we were not able to find any that

were sufficiently successful.
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5.2 Summary Information

Summary information provides a method to reduce the number of dependence tests per-

formed. We partition all the references. For each partition, we replace the set of refer-

ences in the partition with a structure that summarizes the effects of all references in the

partition. Rather than comparing every array reference with every other, a dependence

analyzer need only compare every summary with every other.

We may use any criteria to partition the references. We might, for example, want to

summarize all references within a single loop nest. Typically, though, we partition the

references at the subroutine level. We summarize all the references within one subroutine.

In this way, summarizing is an alternative to inlining. Rather than inlining a call, we

annotate the call with the summary for the inlined subroutine.

There are many alternative summary representations. At one extreme, inlining can

be regarded as a perfectly accurate summary that summarizes a subroutine with the code

for the subroutine. At another extreme, we may use a scalar summary that denotes which

variables are read and written in a subroutine. For example:

program prog

dimension a (100)

do i

call fred (a,i)

end do

end

subroutine f red (a, i)

dimension a (lO0)

a[i] = a[i]+l

return

end

Our summary for f red might contain the information that array a is both written

and read. This loop can be executed concurrently since in each iteration of the i loop,
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subroutine f red accesses a different region of the array. Such a conservative summary,

though, would require us to assume that the whole array is accessed in each iteration and

parallelization would be impossible.

Many summary representations, with varying degrees of accuracy have been proposed.

Hall uses a variation of regular section descriptors, RSDs [22][11][23]. In this variation

of RSDs, each dimension of each array is summarized separately. Each dimension is

represented by either a constant symbolic expression; a range consisting of a lower

bound, upper bound and step size; or -L, signifying that the entire dimension is accessed.

Balasundaram advocates simple sections [6]. A simple section is a convex polytope

with simple boundaries. A simple boundary is a hyperplane of the form xi = c or

xi ± xj = c. Thus a simple boundary is either parallel to a coordinate axis or at a 45

degree angle to a pair of coordinate axes.

Triolet advocates a more accurate approach. He finds the convex hull of all the array

references [51]. While this approach is more accurate, handling convex hulls can be

considerably more expensive than the other two approaches.

All three of these approaches approximate the accessed regions. The regions described

may be larger than the actual regions accessed. While these approaches are fairly accurate

when describing single array accesses, even the convex hull approach may be inaccurate

when describing the union of more than one fairly simple access pattern.

In Figure 15.a we show the region accessed by two array references; one of which

accesses a row of the array and the other of which access a column. In Figure 15.b we

show the resultant convex hull. For this example, the approximation could easily prevent

parallelization.

As with approximate affine memory disambiguators, it is not possible to know when

these algorithms approximate, and therefore it is very difficult to evaluate the effectiveness

of these approaches in practice. If a loop is not parallelized, it is not possible to know if

the loop is inherently serial or if the summarizer was too inaccurate.

As an alternative approach, Burke and Cytron keep a list of all the different array

accesses [10]. They do not find the union of different accesses to the same array. While

possibly as accurate as inlining, this approach could be just as inefficient. The number

of array references should grow just as the object size grows with inlining.
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a. two accesses b. resultant convex hull

Figure 15: Inaccuracy of convex hulls

5.3 Combining Summary Information and Inlining

Our approach is to combine summary information with inlining. We use a simple sum-

mary, which we guarantee to exactly describe the regions accessed. If we are not able

to exactly represent a region with our summary, we mark the summary as bad. Any

subroutine call to a subroutine containing a bad summary will be inlined. We will show

that our summary is applicable in enough of the common cases to prevent the large code

growth of inlining. Thus our approach is as accurate as inlining while still retaining the

efficiency of simple summarizers. By using inlining as a backup, we are able to use

a very simple summary representation. It does not matter if our representation cannot

accurately summarize a fairly common access pattern as long as our representation can

accurately summarize most patterns.

Note that our exactness guarantee is flow insensitive. If, for example, subroutine

f red is never called dynamically, we might incorrectly say that f red accesses a certain

region while in fact the correct summary is that f red does not access any data. Most

intraprocedural dependence analyzers are flow insensitive as well so we do not feel that

this is unreasonable.
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5.3.1 Multidimensional Rectangles

We chose as our summary representation, multidimensional rectangles. Each array vari-

able has two such rectangles, one for the read accesses and one for the write accesses.

Each dimension of the rectangle is represented with a minimum and maximum value. We

only summarize when every element in the range is accessed and when the summaries for

each dimension are decoupled. Thus, triangular or other non-rectangular shapes are not

allowed. In Figure 16, we show a typical array reference with its associated summary.

doi = I lto510 [1 to 10][2 to 6]

do] = 1 to 5

Figure 16: Example of multidimensional rectangle

In Figure 17, we show several examples of array references that cannot be summa-

rized exactly by our algorithm. The presence of any such array reference forces us to

inline. Figure 17.(a) shows a simple triangular region. Figure 17.(b) shows a diagonal

region. Each dimension in the reference is separately summarizable, but the coupling

of the two dimensions makes accurate summary impossible. In Figure 17.(c), we show

a reference with a step size of two. Only half of the elements in the rectangle are ac-

cessed. Figure 17.(d) shows two rectangular references. Each reference can be accurately

summarized, but the union of the two is not rectangular.

Multidimensional rectangles are similar to Hall's variation of RSDs. We've made

a few simplifying restrictions. Hall allows general constant symbolic expressions. We

restrict each side of our range to include at most one constant symbolic variable. Thus

we could summarize the range [n to 2m], but we could not summarize the range [1 to

n + m]. This restriction both simplifies the union operation and cuts down on the amount

of storage required to store the summary. Hall's ranges also contain a step size. Thus,
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a)doi= I to 10
doj= 1 toi

a[i][jj]

b)doi= Ito 10
a[i][i]

c) doi= i to 10

a[2i]

d)doi= I to 10
a[i][1], a[10][2]

Figure 17: Examples of non-rectangular regions

for example, she can represent the range [Il to n by 2]. We do not allow arbitrary steps

in our representation. As a compromise, we allow conjugate pairs; pairs of ranges with

a step size of two with each range offset from the other by one element. After the union

operation, the step will be eliminated. For example:

do i = 1 to n by 2

a (i)

a(i+ 1)

end do
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Each reference accesses every other element, but the two references together access

every element. We summarize the two references together by [1 to n + 1]. This can be

easily implemented. If necessary, this can be easily generalized to any non-unit constant

step size.

Our goal with multi-dimensional rectangles is not to have a completely accurate

summary. Our goal is to make our interprocedural analysis as accurate as sophisticated

intraprocedural affine analyzers. For example:

call f red

subroutine f red

do / 1 to n2

a (i)

end do

The upper bound of the loop is not affine. As described, multidimensional rectangles

cannot accurately describe this reference. We could inline the call to f red, but there is

no benefit to inlining. Our intraprocedural affine memory disambiguator would ignore the

non-affine term. Rather than marking the summary as bad, which would force inlining,

we instead allow the value unknown in our range. Thus, we would say that this reference

accesses locations [1 to unknown]. This captures the same information that is used by

our intraprocedural analyzer.

The use of unknown ranges could easily be abused. We could mark every unsum-

marizable case as [unknown to unknown]; eliminating all inlining. Therefore, we are

very careful to only use unknown ranges when using them does not result in any loss

of information to our interprocedural analyzer. We only introduce them in three cases.

First, we use unknowns if there is a non-affine term in either the array reference or

the bound. Second, we use unknowns if either the reference or the bound refers to a

non-constant symbolic variable. For example:
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if (condition) then

n=3

else

n=n+3

end if

do i = I to n

a (i)

end do

The variable n is not a constant variable. Our scalar optimizer was not able to express

n as a function of other variables. Thus, we say the reference accesses locations [1 to

unknown].

Finally, we allow unknowns when the step size is unknown. Normalizing such loops

for dependence analysis will introduce non-affine terms.

In all other cases, we do not allow unknown ranges, and we mark any other types of

unsummarizable ranges as bad. For example, non-rectangular regions, ranges with mul-

tiple symbolic constants and references with arbitrary constant step sizes are all marked

as bad. In addition, unknown ranges are never introduced when calculating the union

of two rectangles or when processing a subroutine call.

5.3.2 Union of Multidimensional Rectangles

For each subroutine, we must find the union of all the write and all the read references

to the same array. The presence of symbolic variables complicates this process. For

example:

do i = 1 to n

a (i)

end do

a(n+ 1)
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Looking at the references individually, we get the two summaries [1 to n] and [n + 1

to n + 1]. It is fairly clear that the desired summary for the union is [1 to n + 1], but

what if n < 1. For example, say that n is 0. Since, n < 1, the first loop is never

executed. The second reference is executed so the correct dynamic summary is [0 to 0].

The summary [1 to n + 1] does not exactly describe the accessed region. Even worse, it

is not conservative. The location [0] is accessed but is not covered by our summary.

There are two solutions to this problem. The first is to set the summary to bad in

such cases. We do not feel that this is the right decision. All these cases are dynamically

degenerate. A programmer does not often write loops where the upper bound is smaller

than the lower bound. We should not sacrifice parallelism in the typical case because of

problems with degenerate cases.

Instead, the approach we take when calculating unions is to assume that the upper

bound of the loop is at least as big as the lower. Of course, we do not generate incorrect

code, even for degenerate cases. Each time we make such an assumption, we are restrict-

ing the value of symbolic variables. We must remember these assumptions, propagate

them upwards and check them at run time. We feel that this is reasonable. A practical

parallelizer must already check variables dynamically to avoid parallelizing loops that

are too small.

In addition to problems with degenerate cases, there are problems in deciding the

order in which to calculate the union of multiple regions. When calculating the union

of multiple regions, we require that each intermediate union be representable with mul-

tidimensional rectangles. It is possible that each individual region is representable, that

the total union of all the regions is representable, but that the union of a subset of the

regions is not representable. Take for example the four regions in Figure 18. Each of

the four regions is a rectangle. The four regions taken together form a rectangle, but

the union of any three regions does not form a rectangle. Assume that we first calculate

the union of regions 1 and 2. To calculate the union of the four regions while keeping

each intermediate region rectangular, we must next calculate the union of regions 3 and 4

and then calculate the union of the two intermediate unions. Finding the correct order to

calculate unions is nontrivial. Sorting is not sufficient. Assume we sort the four regions

in the order (1,2,3,4). After calculating the union of regions 1 and 2 together, how do we
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know to next calculate the union of 3 and 4 rather than the union of 3 into the union of

I and 2? In general, finding two elements out of n that have a valid union might require

0(n2 ) attempts. Each successful union reduces by one the number of regions. Therefore,

to calculate the union of all n elements might require O(n 3) attempts. We felt that O(n 3)

might be too inefficient. Instead we developed some sorting heuristics that require fewer

comparisons but might unnecessarily force us to set the union to bad.

1 2

3 4

Figure 18: Union of several regions

5.3.3 Union of Subroutine Calls

When processing a subroutine call, we must calculate the union of the called subroutine

with the summaries in our calling routine. Every summary implicitly depends on the

context of its subroutine. Array a in the callee may no longer be array a in the caller.

At each call, we must first convert the summary in the callee to match its new context

and then we must calculate the unions of all the converted summaries in the callee with

the summaries in the caller. This can be accomplished with the following four steps.

e Convert array names
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"* Convert symbolic variables

"* Array reshaping

"* Union of summaries

Converting Array Names

We must convert the name of each array, a, in the callee into the corresponding name in

the caller. If array a is a global array, the name does not change. If a is a parameter, we

must substitute the corresponding actual parameter for the formal. We do not summarize

local arrays. Local arrays are reallocated at every subroutine invocation and therefore do

not affect parallelization higher up the call graph. If the array a in the callee is converted

into a local array in the caller, we throw out the corresponding summary.

Converting Symbolic Variables

The symbolic variables in the callee's summaries must also be converted when processing

subroutine calls. For example, say that the summary for an array is [1 to n]. If n is a

global variable, no conversion is necessary. If n is a parameter, we must substitute the

corresponding actual parameter for the formal. All symbolic variables in our summaries

must be subroutine constants. After converting n to, say, m, we must check if m

is a subroutine constant. If it is, we are done. Otherwise, we check to see if m is

an induction variable. If it is, we try to substitute its range for the summary. For

example,

program prog

do rn -1 to 10

call fred (a,m)

end do

end
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subroutine fred (a, n)

a(n+ 1)

return

end

Our summary for array a in subroutine f red is [n + 1 to n + 1]. When summarizing

prog, we convert n to m, an induction variable that ranges from 1 to 10. Our summary

for a in prog is therefore [2 to 11].

If the resultant region is non-rectangular or if m is neither a subroutine constant nor

an induction variable, we set the summary of the calling subroutine to bad.

Array Reshaping

Fortran allows for arbitrary array reshaping across subroutines. Each array is in effect

a pointer to a memory location. When accessing an array element, the array access is

converted into a memory location using the dimension sizes of the array. For example,

given the reference a (m, n) where a is declared with dimension a (adiml, adam2 ), the

location accessed is the base location of a + nadir• + m (Fortran uses column major

ordering). The various dimension sizes and even the number of dimensions may vary in

different subroutines. For example:

program prog

dimension a (m, n, o)

call fred(a)

end

subroutine f red (a)

dimension a (n, m)

return

end
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The main program accesses a as an m x n x o array while the subroutine accesses

a as an n x m array.

In addition, in Fortran one does not have to pass a pointer to the first element of the

array; one can pass a pointer to any arbitrary location. For example, the following code

passes an array starting at the fourth element of a to the subroutine.

program prog

dimension a (m)

call fred (a [4])

end

subroutine f red (a)

dimension a (mn)

return

end

To summarize the main program, we must calculate the union of all its references

to a with all of the subroutine's references to a. Before we can do this, we must

reshape all of the subroutines summaries to take into account the new shape of a in the

main program. Rectangular regions do not necessarily map into rectangular regions after

arbitrary reshaping. For example:

program prog

dimension a (2,5)

call fred(a)

end
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subroutine fred (a)

dimension a (00)

do i = 1 to 3

a (i)

end do

return

end

Subroutine f red accesses the representable region [1 to 3]. In terms of the main

program's shape, though, the accessed region is not rectangular; it is in fact one and a

half columns. We cannot accurately summarize the main program. Even in cases where

the mapped region would remain rectangular, it is not always easy to discover this.

We restrict the type of reshaping we can summarize to a few common styles that

can be easily handled. For the types we allow, multidimensional rectangles always map

into multidimensional rectangles, and the mapping between the two shapes can be easily

computed. Any mapping that cannot be handled will force us to set the resultant summary

to bad.

For simplicity, let us first assume that the number of dimensions in the calling and

the called subroutine agree. Any reshaping can be described in general by the following

code fragment:

program prog

dimension a (dpi, dp2,..., dp)

call fred (a (o0,02,..., o,))

end

subroutine f red (a)

dimension a (dfl, df2,..., df )

return

end
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The last dimension of the array sizes, dp, and df,•, do not affect the shape of the array.

They are not used by the array reference functions. We therefore place no restrictions

on their value. We require that all other dimension sizes match across the two routines,

dpi = dfl,dp2 = df2,...,dp._j = df,•_l. We also restrict the values of the offset,

Ol ... o,. Setting o,, to x, for example, allows one to offset the array by x columns. The

only restriction we place on o,, is that it be representable in our format. For example it

cannot contain more than one symbolic constant. When any of the other offset variables

is anything but one, a pointer is being passed to somewhere in the middle of a column.

Therefore we require that o0 = 1,o2 = 1,... , o, I = 1. With these restrictions, given a

summary for subroutine f red of [ll to h1][12 to h2]...[l, to h,,], to reshape the summary

we merely need to add the offset into the last dimension to give us the resultant summary

[11 to hi][12 to h2 ]...[lU + on - 1 to h. + o, - 1].

In general, we do not require the number of dimensions to agree. Given the following

general code fragment:

program prog

dimension a (dpi, dp2,... , dp,)

call fred (a (ol, o2 ,...,o,))

end

subroutine f red (a)

dimension a (dfl, df2,..., dfm)

return

end

First, let us assume that the caller's array has more dimensions than the callee's,

n > m. This style is frequently used by programmers to pass a column (or a multi-

dimensional slice) into a subroutine. We restrict dimension sizes I ... m - I as before,
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dpI = df 1, dp2 = df2 ,.., dp,.-, = dfm- 1. The dimension size m will no longer be the

last dimension after reshaping. Thus, we must also require df, = dpm. The extra di-

mension sizes dpm+ I... dp, are unrestricted. We restrict the first m offsets as before,

ol = 1,..., o,_- = 1, and o, is unrestricted. The extra offset dimensions om+1 ... o,

are used to select the slice. They are also unrestricted. With these restrictions, given a

summary for subroutine f red of [11 to hl][12 to h2]...[lm to hm], our reshaped summary

is [l1 to hi]...[lm + om - 1 to hm + om - 1][om+, to o,+i]...[o,n to o,'].

Now, let us assume that the callee has extra dimensions, m > n. The only case we

handle is when the extra dimensions are of size one. Such a dimension is artificial. For

example:

program prog

dimension a (dj)

call fred(a, 1)

end

subroutine f red (a, d2 )

dimension a (dj, d2 )

end do

return

end

Array a in routine f red is two dimensional, but when called from prog the second

dimension size is one. A dimension whose size is one is an artificial array dimension.

Whenever a callee has m - n extra dimensions, we check to see if there are m - n

dimensions of size one. If there are, we eliminate these artificial dimensions from the

summary and reshape as if the two dimension sizes were equal. While, this is applicable

when any m - n dimensions are equal to one, for simplicity we only check the first and

last m - n.
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Union of the Summaries

After doing the conversions and the reshaping, the context of all the summaries in the

called subroutine is equivalent to the context in the calling subroutine. For our last

step, we calculate the union of each summary region in the called subroutine with the

corresponding summary in the calling subroutine.

5.4 Experimental Results

We have implemented our multidimensional summary algorithm and applied it to all the

programs in the PERFECT Club. As our approach is as accurate as inlining, we judge its

effectiveness by how much inlining is eliminated. In Table 18, we repeat the experiment

of Table 17 but in addition to the loop pruning, we only inline when our summary is bad.

Table 18: Growth in PERFECT Club programs after inlining unsummarizable calls inside
for loops

Growth After Summary and Inlining
Program Total Program Average Subroutine n log n n2

AP 1.6 1.8 1.8 7.6
CS 3.2 3.3 3.9 33.0
LG 2.1 2.6 2.6 8.5
LW 1.2 1.3 1.3 2.3
MT 2.1 2.6 2.6 16.6
NA 1.0 1.0 1.0 1.0
OC 1.0 1.0 1.0 1.0
SD 1.1 1.4 1.2 1.6
SM 2.7 4.4 3.4 23.6
SR 1.0 1.2 1.1 2.3
"TF 1.0 1.0 1.0 1.0
TI 1.0 1.1 1.1 1.7
WS 18.3 21.3 31.5 1,989.9

Our results have improved significantly. Only one program, WSS, has unacceptable

growth. We looked at program WSS in detail. Two leaf subroutines that are called many



CHAPTER 5. INTERPROCEDURAL ANALYSIS 119

times, FFA99 and FFS99, linearize all their array accesses. In the comments, the array

accesses are described in their multidimensional form. References that would be sum-

marizable in their original form are not summarizable when linearized. To measure the

effects of this linearization, we eliminated these subroutines and repeated our experiment.

After eliminating these subroutines, the n log n entry for WSS only grows by a factor

of 1.7. The square entry grows by a factor of 6.7. Thus if we were to implement the

delinearization optimizations described in Chapter 3, we should be able to handle all the

benchmarks in the PERFECT Club.

The cost of our approach must also take into account the time necessary to compute

the summaries. In Table 19 we measured the amount of time it took, given a call graph, to

summarize the programs. We compared this number to a standard interprocedural scalar

optimizing compiler (f77 -03). These number were taken on a DECstation 5000/200. The

numbers for f77 -03 are smaller than those in Chapter 2 because of the faster machine.

The entries labeled * could not be measured due to bugs in version 1.31 of the MIPS

Ultrix Fortran compiler. As can be seen, summarizing does not add significantly to the

compile time.

Table 19: Total time of summarizing
F- _ Summarizing Time

Program Summarizing Time (in secs) f77 -03 (in secs)
AP 2.9 109.7
CS 61.9 *
LG 1.4 41.6
LW 0.8 19.6
MT 1.5 26.8
NA 2.6 79.5
OC 1.0 *

SD 0.9 37.0
SM 20.5 63.8
SR 2.5 75.4
TF 2.3 73.7
TI 0.1 6.0
WS 2.9 68.5
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5.5 More Advanced Optimizations

Summary information allows us to detect parallelism in and compute direction vectors for

all loops enclosing the summary. Summary information therefore enables us to parallelize

outer loops that could not otherwise be parallelized. As described, summary informa-

tion is not sufficient for calculating data-flow vectors. In addition, more sophisticated

optimizations such as loop transformations require more than array summary information.

5.5.1 Interprocedural Data-flow Dependence Analysis

As we have described it, our approach is not sufficient to compute data-flow dependence

vectors interprocedurally for two reasons; control flow analysis and the interleaving of

reads and writes. Data-flow dependence analysis requires must information. An exact

summary model such as ours is required, but in addition, we need to know that every write

reference is in fact executed in every loop iteration. Control flow greatly complicates this

analysis. Our simple data-flow dependence model in Chapter 4 does not handle control

flow. We could easily extend this interprocedurally by marking each write summary that

might be inexact due to control flow, but when our data-flow model is expanded to handle

some control flow analysis, we may have to further enhance the summary information.

In addition, data-flow dependence analysis requires different information than simple

dependence analysis. Take, for example, the following code fragment.

program prog

do i

call fredlo)

end do

do i

call fred2()

end do

end
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subroutine fredl ()

do j

a(j) =

= a(j)

end do

return

end

subroutine fred2 ()

do j

= a(j)

a(j) =

end do

return

end

In the loop that calls fredi, there are no data-flow dependences carried by the i

loop since every location read is first written. In the loop that calls fred2, the read

statement comes lexically before the write, and the data-flow dependences are carried by

the i loop. Both versions of f red generate the same summary information.

To compute data-flow dependences, we do not simply need to know which locations

are read. Rather, we need to know which locations are read uninitialized. In addition,

we still need to know which locations are written. When the write and read operations

are not interleaved, it is easy to compute which locations are read uninitialized. Given

a multidimensional rectangle for the locations read, we need to subtract the multidimen-

sional rectangles for all the earlier writes. With multidimensional rectangles, subtractions

is as easy as calculating unions. For example:

doZ = 2to10

ae (i) . ..
end do
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do i = to 10
-...a(i)

end do

The first loop writes locations [2 to 10], the second loop reads locations [1 to 10].

Subtracting the first region from the second, we calculate that location [1 to 1] is read

uninitialized. In general, for interleaved reads and writes, we must use the last write tree

algorithm to find all the uninitialized reads.

As we mentioned in Chapter 4, we believe that in general our LWT algorithm from

Chapter 4 must be combined with a data-flow summary algorithm. In regions of the

program where our domain is applicable, the LWT algorithm is sufficient. In the presence

of subroutine calls or control flow, we must integrate our LWT algorithm with summary

based approaches.

5.5.2 Interprocedural Loop Transformations

Summary information is not sufficient for performing more advanced loop transformations

useful in enhancing parallelism. For example:

program prog

do i

call fred()

end do

end



CHAPTER 5. INTERPROCEDURAL ANALYSIS 123

subroutine f red ()

do j

do k

a(j,k) = a(j,k)*c

end do

end do

return

end

As written, the outer loop cannot be run in parallel, but the two inner loops can. For

execution on a parallel machine, we would prefer to run the outer loops in parallel. It

could be useful to interchange the loops:

program prog

do j

call fred()

end do

end

subroutine f red ()

do k

do i

a(j,k) = a(j,k)*c

end do

end do

return

end

After summarizing f red, we have lost the information that loops j and k exist. We

only know that in each iteration of the i loop, the array is being rewritten and reread,
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generating a direction vector (*). Even summarizing the loop structure is not sufficient.

For example:

program prog

do Z

call fred()

end do

end

subroutine f red ()

do j
do k

a(j,k) = a(j,k)*c

end do

end do

a(fl(i),l) = a(f2(i),l)*c

return

end

These loops cannot be interchanged because of the extra array statements in f red

after the loops. Assuming that the original writes and reads accessed the entire array,

both example access the same locations and have me same loop structures. No summary

is sufficient. We need to know the exact relationship between the array accesses and the

loops.

The amount and the nature of the information required is highly dependent on the

optimization. In general, anything short of full inlining may be insufficient if we want

to support every possible optimization. We see two possible approaches. Hall develops

interprocedural loop transformations such as loop embedding that move loops across

subroutine calls [22]. Once all the loops are moved, further loop transformations can be

performed intraprocedurally. Alternatively, current loop transformation techniques tend

to apply only in situations that are much more restrictive than simple parallelizafion.
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Hence, it might be possible to inline all the locations where these transformations might

be applicable without greatly increasing the resultant program size. Of course, this is

highly dependent on the applicability of the loop transformations.

5.6 Chapter Conclusions

In this section, we have presented a new approach that combines inlining with summary

information to accurately enable parallelization interprocedurally. Previous approaches

have tended to rely only on either inlining or summary information. We have shown that

full inlining is not practical since for some benchmarks, it vastly increases the program

size. Restricted inlining either sacrifices potential parallelism or remains impractical.

On the other hand, summary information sacrifices potential parallelism because of its

inaccuracy.

By combining a simple summary scheme with inlining, we are able to retain the full

accuracy of inlining for parallelization for a very reasonable cost. The exactness of our

summary information allows us to consider using our approach for data-flow dependence

analysis. We describe the extensions required when computing data-flow dependence

information. Finally, we describe the complications that arise when performing interpro-

cedural loop transformations and suggest two possible approaches.



Chapter 6

Conclusions

6.1 Contributions

This thesis has presented a new comprehensive approach to solving the data dependence

problem. Specifically, we have made the following contributions. Much previous work

has concentrated on solving the affine memory disambiguation problem. We have shown

that it is possible to solve the affine memory disambiguation problem exactly and effi-

ciently in practice. We have developed and implemented a suite of algorithms for this

purpose. Solving the affine memory disambiguation problem has allowed us to develop a

methodology for judging the effectiveness of the affine memory disambiguation domain

restrictions. Any failure in our system is due to the limitations of the affine memory

disambiguation model. By comparing our system to a dynamic, trace-based system that

solves the data-flow dependence problem exactly, we have shown that data-flow de-

pendence analysis is the key limitation to traditional data dependence analysis systems.

Guided by these results, we have introduced a new approach for efficiently calculating

data-flow dependence information. Finally, we have developed a new approach for inter-

procedural data-dependence analysis. By once again making our approximations explicit.

we are able to develop an efficient algorithm that retains the accuracy of full inlining.
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6.2 Future Work

6.2.1 Effectiveness of Parallelization

In Chapter 3, we studied the effectiveness of affine memory disambiguators in analyzing

pairs of references. In reality, we are not interested in proving pairs independent, we

are interested in parallelizing loops. Given a loop with 1,000 independent pairs, if our

system was able to correctly prove 999 of the pairs to be independent, our experiment

would say that our system was very successful. Nonetheless, we would have failed to

exploit any of the available parallelism. In the future, we need to redo the experiment,

using some measure of parallelism rather than the number of independent pairs. This is

a much more difficult problem. It is clear what is meant by an independent pair. It is

much less clear what is meant by a parallel loop. Is a loop with a reduction that can

be partially parallelized considered a parallel loop? Parallelizability is heavily tied in

with transformations. Measuring parallelizability does not depend only on analysis. It

also depends on the suite of allowable transformations: reductions, privatization, loop

distribution, etc. Much care will have to be taken in categorizing the failure cases to

distinguish between failures in dependence analysis and weaknesses in the transformation

system.

6.2.2 Data-Flow Analysis Domain

As we discussed in detail in Chapter 4, the domain of our data-flow dependence analysis

algorithm is too narrow. We need to be able to extend our approach to handle non-affine

terms, control flow and interprocedural analysis. With the extensions we described in

Chapter 4, we believe that we can greatly increase the applicability of our approach.

6.3 Concluding Remarks
Data dependence analysis is the key step in parallelizing scientific codes in imperative

languages. To parallelize loops, we must understand the array references inside loops.
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In this thesis, we have used the data dependence problem to illustrate two key princi-

ples in compiler development. First, compiler optimizations can be driven by experimen-

tal results. For example, data dependence analysis is a difficult problem. Even the simpler

problem of affine memory disambiguation is NP-Complete. Nonetheless, most problems

seen in practice are much simpler than those conceived by theoretical limits. Using ex-

perimental results as a guide, we are able to tune our algorithms to be exact and efficient

for the large majority of cases seen in practice. In addition, our experimental efforts have

allowed us to focus on the key areas that limit parallelization. Theoretically, affine mem-

ory disambiguation has many limitations. Without performing the effectiveness study in

Chapter 3, we might have concentrated our efforts on more thorough symbolic analysis

rather than on the key problem of data-flow dependence analysis discussed in Chapter 4.

The second key principle is that it is important to make approximations explicit. Many

algorithms have bcen proposed for the affine memory disambiguation problem. Different

algorithms are advantageous for different types of inputs. By making our approximations

explicit, by knowing when we approximate, we are able to effectively combine multiple

algorithms. By making our approximations explicit, we are also usually able to guarantee

that our algorithm returns exact results. The more advanced optimizations, such as array

privatization, are not able to utilize conservative information. They need exact guarantees.
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