
AD-A267 979

US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

ACE: LESSONS LEARNED
Vol. 1

T I_

E•LECT E$

'AUG 12,1993.

I September 30, 1992'

AIRMICS
115 O'Keefe Building 93-18873.-
Georgia Institute of Technology II l l1llli l lllll, I " ;
Atlanta, GA 30332-0800 \ -9

SECURITY CLASSIFICATION OF THIS PAGE Form Approved

REPORT DOCUMENTATION PAGE xNo. 07040 31881986

1 a. REPORT SECURITY CLASSIFICATION o. RESTRICTIVE MARKINGS
UNCLASSIrIED2 NONE

2a. SECURITY CLASSlFICAION AUTHORITY 3. DISTRIBUTION/AVAILIBILTY OF REPORT

NIA
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A

NIA
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQB-GC-92-023 N/A

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AIRMICS (If applicable)

I ASGB-GCN N/A
6c. ADDRESS (City, State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800 N/A

8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AIRMICS I ASGB-GCN
S8. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.

Atlanta. GA 30332-0800 DYIO 07-03
11. TITLE (Include Security Classification)

ACE: LESSONS LEARNED Vol. 1 UNCLASSIFIED

12. PERSONAL AUTHOR(S) Gerald McCoyd, Adrienne Raglin

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day 15. PAGE COUNT
FROM _ TO September 30, 1992

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block numberl

FIELD GROUP SUBGROUP ACE, Rapid Prototyping, Rapid Development, ETIP

19. ABSTRACT (Continue on reverse if necessary and Identify by block number)

This report describes AIRMICS involvement with the development of three prototypes using AT&T's
Application Connectivity Engineering (ACE) Tool. The prototyping tool, ETIP, and the communica-
tions and file transfer tool, ESCORT, were used. This report includes the lessons learned dur-
ing this project. The principle lesson learned was that success in using ACE demands an envi-
ronment that provides the programmers with a wide array of tools to simplify and coordinate
their work. In this report summaries of the experiences we had with ACE are included, as well
as, presenting the tools that we developed and those which were supplied to us by other organi-
zations, most notable Information Foundation. This report is intended primarily for programmers
who are familiar with ACE.

20. DISTRIBUTIONN/AVAILIBILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Q UNCLASSIFIED/UNLIMITED-- SAME AS RPT. [] DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(include Area Code 22c. OFFICE SYMBOL

Adrienne J. Raglin (404) 894-3136 ASGB-GCN

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.
AD other edItions are obsolete. SFCURITY CLASSIFICATION OF THIS PAGE

This research was performed under contract DAKF11-91-C-0081 for the Army Institute for
Research in Management Information, Communications, and Computer Sciences (AIRMICS), the
RDT&E organization of the Army's Information Systems Engineering Command (ISEC). This
report is not to be construed as an official Army position, unless so designated by other authorized
documents. Material included herein is approved for public release, distribution unlimited. Not
protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Jo Gowens, Cýhief J R. Mitchell
C(unications Network Director

a ystems Division AIRMICS

Executive Summary

This report describes AIRMICS involvement with the
development of three prototypes: Central Issue Facility (CIF),
TRADOC Resource Manager's Information and Decision System-Test
(TRMIDS), and Publications Support System (PUBSS) using ATT&T's
Application Connectivity Engineering (ACE) Tool. The ACE
prototyping tool, ETIP, and the communications and file transfer
tool, ESCORT were used. The principal lesson we have learned from
this experience is that success in using ACE demands an environment
that provides to the programmers a wide array of tools to simplify
and coordinate their work. In this report we are summarizing our
experience with ACE, presenting those tools which we have developed
and those which have been supplied to us by other organizations,
most notably Information Foundation.

tAooesstoD For

NTIS GRA&I
DTIC TAB El
WUannounced C1

IA-vaT/1 t (W,611

IDist S pecial

Zj- Q,-,ý~j r f7,ZSPE TD.

ACE: LESSONS LEARNED

Vol. 1

U.S. Army Institute for Research in Management Information,

Communications, and Computer Sciences

Georgia Institute of Technology

Atlanta, Georgia 30332-0800

Introduction ... 1
Purpose of This Report ... 1
AT&T's Application Connectivity Engineering Tool .. 1
Our Experience ... 2

Lessons Learned ... 3
Prototype Decom position ... 3
Configuration Control ... 3
Non-graphical Display of Logic .. 3
Data Inconsistency .. 4
Difficulty of Editing Form s ... 4
Limitation of Shell Scripts .. 5
Need For Robust ESCORT Scripts ... 5
End-user Participation ... 5

Configuration M anagement .. 7
Clean Files .. 8
Description of Associated Code ... 9

appl.set.up .. 9
appl.dump ... 10
appl.restore .. 10
m odify a program m er's .profile ... 10
newproto .. 10
bundle .. 1I
newclean ... I I
rm proto ... I I
testproto .. I I
tesm ewcopy .. I I
stripclean .. 12

The Integration Tool ... 13
Single Load M odule .. 13

The Subm enu Tool .. 16
Procedures ... 16

To create and maintain submenu files: 16
To attach a submenu file to a form field 17

Description of Associated Code ... 17
modsubslcl.sh ... 17

The Form Tool .. 18
Form Descriptor Files ... 18

currX ... 19
m stX ... 20
mrgX ... 20

Remarks .. 22
Description of Associated Code ... 22

form fields.sh ... 22
modform slcl.sh ... 23
mrgfrm fld.sh ... 23
mrgttom st.sh .. 23

ii

splitcurr.sh ... 23
splitform s.sh .. 23
validm st.sh ... 23

The H elp Tool ... 24
Procedures ... 24

Create and maintain help screen text 24
Create form atted help files ... 25
Create help objects in the prototype .. 26
Attach the formatted help files to the help objects 26

D escription of A ssociated Code ... 26
cleanhelp.sh ... 26
form athelp.sh .. 26
genhelp.sh ... 27
hlpobjlst.sh ... 27
linkhelp.sh .. 27
m nufrm dat.sh .. 27
m nufim lst.sh ... 27
m odhlplcl.sh ... 27

ETIP D atabase Structure ... 29
ETIP Im port-Export Tool ... 29
ETIP U nloaded D atabase .. 29

O bject line .. 29
M enu Item Line ... 32
Return Code Branch Line ... 33
Field Line .. 34

Reuse of Code in ETIP Applications ... 36
Cut and Paste ... 36
Description of A ssociated Code ... 36

extr.proto.sh ... 36
m erge.proto.sh .. 37

Reusing ETIP Objects From A Library ... 37
Database Interactive Application Library (DIAL) .. 42

Library Functions .. 44
ETIP Form Field Population Guidelines .. 44
Creating Custom Screen Labeled Keys (SLKS) in ETIP 45
Description of A ssociated Code ... 46

blankoutform .. 46
lock cursor .. 46
unlock cursor ... 47
lockcursorset .. 47
unlockcursorset ... 48
fill-field .. 48
update-fields ... 48
update-field-flags ... 48
m astercontrol-pushl slks ... 49
m astercontrolclearslks .. 49

Wi

Appnix Environmental Variables ... 50
Volume H - ACE: Rapid Development Lessons Learned

iv

Acknowledgment

The following persons have contributed to this report: Gerard McCoyd (AIRMICS), Adrienne
Raglin (AIRMICS), Reginald Hobbs (AIRMICS), Cyndy Whitman (SDC-A), Ardie Dempsy
(SDC-A), Vaniesa Davis (MBRI), Paul Ofori (MBRI), Sirin Wangspa (MBRI), Byron Jeff (GT),
Kit Kamper (GT), Murali Shanker (GT), Joachim Ungruh (GT), Angela Teachey (AT&T).

Introduction

Purpose of This Report
For the past two years, AIRMICS has been involved in the

development of three prototypes using AT&T's Application
Connectivity Engineering (ACE) Tool. We have used the prototyping
tool, ETIP, and the communications and file transfer tool, ESCORT.
The principal lesson we have learned from this experience is that
success in using ACE demands an environment that provides to the
programmers a wide array of tools to simplify and coordinate their
work. In this report we are summarizing our experience with ACE,
presenting those tools which we have developed and those which have
been supplied to us by other organizations, most notably
Information Foundation. This report is intended primarily for
programmers who are familiar with ACE.

AT&T's Application Connectivity Engineering Tool
The AT&T ACE (Application Connectivity Engineering)

technology has been developed as a rapid prototyping tool. The ACE
tool consists of ETIP and ESCORT software which run on a AT&T 3B2,,
600 (or higher).

The AT&T ETIP Designer1 is a software tool that provide'-
application programmers a fast way to develop user interfaces. ET:
(Extended Terminal Interface) is a set of screen management library
routines. The AT&T ETI-Prototype Designer, which is referred to as
ETIP produces code that makes calls to the ETIP library routines
and supports the development of experimental user interfaces fcr
an application. ETIP creates objects which can be: edited without
exiting ETIP, connected together to form executable prototypes, ana
executed to test the branching, appearance, and overall design of
the application. ETIP Shell and C objects provide the capability
of calling executable programs from either the shell or compiled C
programs.

ETIP consists of three toolkits: user interface (UI) toolkit,
the ETIP host connectivity toolkit, and the ETIP relational
database toolkit. The user interface toolkit is for creation of the
user interfaces for the prototype under construction. This is a
mandatory toolkit. This provides a fairly quick way for the
programmer to create screens, menus, forms, etc., and to link these
screens with one another and with processing objects, like C
programs, Ada programs, and SQL scripts. The other toolkits are

1. ETIP Designer is a Trademark of AT&T.

optional, but are needed if the application will have host
connectivity or relational databases. The relational database
toolkit is for application developers to generate software with
embedded Standard Query Language (SQL) statements for data
manipulation in a relational database manager. All data
manipulation statements are permissible, such as storage,
retrieval, and modification of tables.

The ETIP host connectivity toolkit is for application
programmers to generate software that supports interactive
communication between a local distributed system and a remote host
system. The AT&T ESCORT/3270 is the application host connectivity
tool for ACE. Escort is a programming interface with English like
commands based on the UNIX operating system that simplifies and
automates access to the host. ESCORT which runs in conjunction with
AT&T SNA/3270 or BSC/3270, allows the programmer to access up to
four synchronous host sessions, four asynchronous host sessions and
two local sessions. ESCORT programming interface provides an
effective approach for automated multi-host connectivity. ESCORT
applications can check and verify the data entered, automatically
update the mainframe applications, review batch output, verify its
completion, and generate progress reports. Using ESCORT one can
develop simple user screens, evaluate prototype interfaces,
perform local editing, send error messages, and capture data from
any host application.

Our Experience
There are three applications on which we used ACE: the TRADOC

Resource Manager's Information and Decision System - Test (TRMIDS-
T), the Publication Support System (PUBSS), and the Clothing and
Issue Facility (CIF).

TRMIDS-T purpose is to collect, coordinate and analyze
resource data from many databases throughout the Army. The
application used shell scripts for the processing objects, and made
heavy use of ESCORT. There were no database interactions.

PUBSS is the support for Army's publications management and
distribution system. All processing objects were C programs except
for interaction with an INFORMIX database which was accomplished
with SQL objects.

CIF is the system for maintaining records of equipment issued
to individual soldiers. It was written originally by Software
Development Center Atlanta in INFORMIX/4GL, and we assisted them
in converting it to ACE. All processing objects, including database
interactions, were implemented in C programs.

2

Lessons Learned

During the course of developing these systems, we identified
many characteristics of the ACE environment which required
different ways of working or the development of software tools.
This document covers eight areas where tools were developed to add
to the capacity of ETIP.

Prototype Decomposition
In the early stages of development, we discovered that only

one user could effectively access a given prototype for
developmental purposes at any given time. Unfortunately, this
constraint limited the time and productivity advantage available
through team development.

To take advantage of team development, we decomposed the
application into several ETIP prototypes along functional lines,
and created an integrating tool to integrate them at the end of the
development; these separate prototypes were then integrated into
the final system.

Configuration Control
Even when we decomposed the application, we still needed more

than one programmer working on an ETIP prototype so it became
necessary to establish a configuration control mechanism to
preclude simultaneous attempts at updating the same prototype.

For this purpose, we developed the concept of clean files from
which the entire prototype could be reproduced. Used in conjunction
with lock files, which restricted effective access to the clean
files to only one programmer at a time, these clean files gave us
complete control over changes to the prototypes no matter how many
programmers were involved.

Non-graphical Display of Logic
The programmer must maintain control of the flow of the

prototype during development. The display logic function of ETIP
can be used to itemize and display the line structured flow of the
objects in the prototype. This function details which screens are
associated with what menu items, then outlines the flow of the
objects created within the structure. Although a usefti tool, this
function was not designed for the average prototype developer since
it is complicated to follow if the application is large.
Additionally, it cannot be used for any type of presentation or
documentation purpose. As the system grows in size and becomes more

3

integrated and complicated, it becomes necessary to maintain a
written control of the flow of the system, not only for reference
purposes but also as a communication tool with the functional
users.

Using information in the display logic, flowcharts were
created by using a drawing tool on the Apple Macintosh ITx
computer. It would be helpful to have available on ETIP a more
readable flowcharting capability with graphical interface.

Data Inconsistency
During the development of any prototype, it is necessary to

either have access to the data to be used before development begins
or to have accurate documentation of the lengths of the fields. It
is important when developing a prototype system that involves data
collection and storage that the field lengths outlined match the
maximum length of the actual data to avoid data errors and to give
a realistic representation of production data. If the fields
represented do not match the lengths outlined in the documentation
or are not greater than the length of the data, it can cause a
misrepresentation of the data to occur at run time.

In order to eliminate the inconsistency, the data fields
should be extended to the length of the longest record to avoid
truncation of data. This may involve making some minor preparatory
corrections to the data fields or, in some cases, redesigning the
data storage files or tables. Making changes to either the data
files or the tables is easier if a realistic report of the maximum
data lengths is available at the beginning of the development.

Difficulty of Editing Forms
Once a form has been created and linked to a data table, it

becomes increasingly difficult to make even minor corrections to
field attributes. Once a correction is made, each remaining field
in the form has to be reexamined for subsequent changes that may
have occurred. All fields may not have their attributes altered,
but each field must be checked individually for changes, a task
which is both time consuming and ineffective.

One way to handle this problem is to make sure during the
specification and design phase of the project that the forms that
involve data entry are created exactly as they should be with the
correct data specifications. However, this frustrates one of the
advantages of rapid prototypes, that we can get user feedback after
we have shown the user the consequences of the current design. To
preserve this advantage, we developed a method for associating
attributes with field forms in files external to the ETIP database.

4

A procedure run at make time then assigns these attributes after
ETIP has generated the C code for the form.

Limitation of Shell Scripts

Shell scripts, although useful, do not provide all of the
features needed to design a more advanced system. Basic UNIX shell
scripts can be used to insert, update or review data in a prototype.
But as the request demands more of the data manipulation, or if the
designed prototype should ever be used for more than just a
prototype, a more advanced method of programming is needed. Shell
scripts in some cases do not allow for all of the necessary
functionality needed, especially if a system is to be used in a
production environment. In addition, shells may not adequately
address programming system security and multi-user access.

To obtain the needed functionality in the prototypes, C
programs were used to develop programming tasks beyond the
capability offered by shell techniques.

Need For Robust ESCORT Scripts
ESCORT scripts enable programs to retrieve data frcm

interactive applications with no human intervention. In order t
build an ESCORT script you must have a model of the behavior of t:..
interactive application. Generally, the interactive applicat•..
will not be under the control of the organization which is runn.. -
the ESCORT script, in fact that organization may not even be on t:-
mailing list for changes. However, the behavior of an interact--..
application is not always completely specified in the documentatI :
and if it is used frequently there tends to be slow but continuc¢..
modification. Whenever the model built into the ESCORT scrl.-
becomes erroneous, either because it is incomplete or because tr.-
application has been changed, the ESCORT script is in danger :
crashing or wasting money and time before the problem is detectea.

We ran into a lot of problems like this and we found the on'.*.
effective way to overcome them is to require the script to veriJ.
at each step that it has reached one of the interactive screer.
that it knows about. Whenever it detects an unknown screen,
should put a copy of the screen in a log file and terminate.

End-user Participation
A useful way to ensure fewer system design related concerns

is to solicit the input and participation of the functional end-
users throughout the design phase. Even when the end-users have
designed or assisted in designing the specification, there is an
awakening process that takes place when the product is actually

5

viewed on the screen. The earlier within the development this joint
review begins, the less the time involved later in making
corrections or additions to the system. Editing a screen when it
has only been formatted is much easier than changing it after it
has been integrated with shell scripts and other objects.

The development team should set up periodic check points for
design review. At each check point, the functional users should be
given the opportunity to evaluate how well the prototype meets
their functional and aesthetic requirements.

The following sections will discuss the different procedures
and tools that were developed to address the limitations we
discovered.

Configuration Management

In any development environment, there is a level of
subdivision of the code at which two programmers cannot
simultaneously make changes to the code. In a C environment this
would occur at the C source module level, in Ada at the package
level. In ETIP this occurs at the level of the prototype. The ETIP
Designer manages a prototype as an integrated unit which can be
accessed by one call to the Designer. For each prototype, there are
two directories used by the ETIP Designer. One of these is
informally called the working directory. It must be the current
directory when the designer is invoked with the name of the
prototype. The working directory contains all the source code
generated by the designer for this prototype and it contains the
subdirectory <prototype-name>:UT. The :UT directory contains all
the information which the designer maintains about the prototype.

In order that more than one programer can work on an
application, it is desirable to decompose the application into
prototypes along functional lines. To maintain control over the
prototypes, we have created a set of procedures that must be used
by programmers.

The configuration management environment consists of a set of
directories which will be referred to by environmental variables
all of which are defined in an ENVIRON file. The environmental
variables are described in the Appendix.

Many of these directories contain a subdirectory for each
prototype, e.g. for an application with two prototypes, X and Y,
the directory NEWPROTO would contain subdirectories X and Y. We
will not always refer explicitly to the following subdirectories,
although the procedures will require their existence.

EDIT contains the master copy of every static file used in
CHOICES submenus. See the description of the Submenu Tool.

HELP and FMTHELP contain the text files for each help screen
in the prototype. See the description of the Help Tool.

CLEAN contains the current baseline of the prototype.

LOCK implements a locking mechanism so that two programmers
cannot simultaneously be attempting to modify a prototype.

NEWCOPY contains the new version of a prototype after it has
been changed and tested by the programmer, but before it has been

returned to CLEAN.

FORMS contains a description of every field in every form of
the prototype including prompts, associated choices files, and edit

7

criteria. See the description of the Form Tool.

REASON contains the reason that a prototype was taken out of
the CLEAN area for modification.

REPORTS contains the report generator code for all reports
generated by the prototype.

TESTNEWCOPY provides a place to test the version of the
prototype as it exists in NEWCOPY.

INTEGRATE provides a place where all the prototypes can be
integrated into the application.

INCLUDE contains application specific .h files.

There may also be an application specific environment. This
would be defined in the file APPL/ENVIRON which will be invoked by
/usr/ACE/ENVIRON.

The core of these directories is the clean directory; the
other directories support this directory. The following section
discusse the files maintained in the clean directory.

Clean Files
We maintain the baseline of the application in ASCII files,

not in ETIP databases. This gives us both a flexible way to control
the configuration and an easy way to transport the development
environment.

The CLEAN files contain, in ASCII format, the most recent
version of a prototype and a record of past versions. CLEAN
contains for each prototype, say X, the following files:

X.exp - a complete unloading of the ETIP data bases with delimiter I

X.saf - a complete unloading of the ETIP data bases with delimiter

X.src - a shar file of all the files in the :UT directory that are
not part of the ETIP data base

X.txt - a shar file of all the .txt, and H files in the :UT
directory. These files are also included in X.src.

X.fil - a shar file of the files listed in the working directory
file BUNDLEFILES. This list should contain all the files in
the working directory which are needed for the application,
but are not generated by ETIP. That is the .c, .0, .sh, .txt
files do not belong on this list; they are taken care of by
the .exp, .txt, and .src files. BUNDLEFILES should contain the
names of awk scripts, lists of constants, and other programmer
generated files which reside in the working directory and
which are referenced. It should also contain BUNDLEFILES.

8

For each prototype, there is also a set of files X.exp.o,
X.saf.o, X.src.o, X.txt.o, and X.fil.o which contain a cumulative
copy of past versions of X. Each time the procedure newclean is
executed, the file X.exp is appended to X.exp.o and the file
NEWCOPY/X.exp becomes the new X.exp, and similarly for X.saf, etc.
A line containing the string "NEW VERSION" and the date separate
successive versions of the prototype in all the .o files. In
addition, the .exp.o file also contains the reason for which the
new version was created.

Description of Associated Code
The following are the procedures that are called to interact

with the clean files.

aRRl.set.up

This must be used to initialize an ETIP application.

In developing an application, we must allow several
programmers to access and modify the files. However, each
ETIP application should have a control user, i.e. a user
with sole authority to modify the sensitive directories
like CLEAN, EDIT. The login name of this control user
should be stored in the file /usr/ACE/CONTROL which can
be accessed by CONTROL.

To set up an ETIP application, the application
administrator or the control user must:

1. Create a base directory for the application. This
should be accessible for reading and writing by everyone
who will work on the application.

2. Create .profile in the base directory with the control
user as the owner and sole writer.

3. Have the ETIP administrator enter the login name of
the control user into CONTROL. This will authorize the
control user to make changes to the application's
baseline, i.e. update the CLEAN areas.

4. Enter the following lines into .profile in the base
directory:

APPL=X; export APPL

MYENVIRON=Z; export MYENVIRON

/usr/ACE/ENVIRON

X is the full path of the application's base directory.
Z is the name of a special environment; right now, pubss
and embed are the only special environments.

9

5. Enter . .profile, or log in again, to set the
application environment

6. Enter appl.set.up which will create all the required
directories.

apoldump
appl.dump makes a copy only of the essential files of an
application and not the total application. It takes two
parameters: the home directory of the application, and
the path of the directory where the application is to be
stored. It copies the following from the home directory
of the application: .profile, CLEAN, EDIT, HELP, FORMS,
REPORTS, INCLUDE.

a•pl.restore

appl.restore is the inverse of appl.dump. It restores an
application. It is not necessary to run appl.set.uo
before running appl.restore.

modify a proarammer's .profile

Before working on an application, the programmer must
insert the following lines into his/her .profile file:

APPL=X; export APPL

MYENVIRON=Z; export MYENVIRON

. /usr/ACE/ENVIRON

X is the full path of the application's base directory.
Z is the name of a special environment; right now, pubs.
and embed are the only special environments. Then.
whenever the programmer logs on, he/she will be ready
work on the application.

A programmer wishing to work on a prototype, say X, moves
into the work area, NEWPROTO/X which we shall refer t:
as the working directory, and issues the commanr.
"newproto X". If the file LOCK/X exists, the programmer
will be told that someone else is working on the
prototype. If the file LOCK/X does not exist, it will be
created and it will contain the identity of both the
programmer and the working directory. The programmer
will be prompted to enter the reason for opening the
prototype. This will be entered in the file REASON/X, and
the prototype X will be built up in the working directory

10

from the files in CLEAN. All the .edt files in EDIT will
be linked into the working directory. newproto can be
issued only in the directory NEWPROTO/X.

bundle

After the programmer has finished modifying and testing
the prototype in NEWPROTO, the command "bundle X" should
be issued. This command will create the files X.exp,
X.saf, X.fil, X.src, and X.txt and store them in NEWCOPY.
It will NOT touch the file LOCK/X.

newclean

The command "newclean X" must be issued to return the new
version of the prototype to the CLEAN directory. This can
only be done by CONTROL. This will take the current copy
of the X files in CLEAN and append them to the history
files X.exp.o, etc which are also maintained in CLEAN.
The words NEW VERSION and the current date and time will
be appended to each of the .o files, and the reason for
modifying the prototype will be appended to the X.exp.c
file. The files in NEWCOPY will be copied into CLEAN,
they will be removed from NEWCOPY, the directory X:UT
will be removed from the working directory, and the x
file will be removed from LOCK.

rmnprotQ
If at any time after the newproto and before the
newclean, the programmer issues the command "rmproto X",
the X:UT directory in the working directory, the X files
in NEWCOPY, and LOCK/X will be removed. No change will
be made to CLEAN.

At any time, anyone can issue the command testproto X t:
create a copy of the current CLEAN version of X. This is
a scratch copy, since any changes made to it cannot be
saved in CLEAN. The command testproto can be issued
anywhere except in NEWCOPY.

testnewcopy

testnewcopy X will create a copy of the version of X
which is in NEWCOPY. This is useful for testing the
changes made to X after it was bundled into NEWCOPY.
Again, any changes made to this copy cannot be saved in

11

CLEAN. The command testnewcopy can be issued only in
TESTNEWCOPY/X.

strioclean

stripclean can be used to trim the .o files in CLEAN by
removing the older versions. This can only be executed
by CONTROL.

12

The Integration Tool

Decomposing an application into separate prototypes along
functional lines is useful and perhaps essential for development.
However, these prototypes must be integrated in order to produce a
complete application. We know of three ways to accomplish this:

1. Integrate the prototypes at the ETIP level, i.e. merge the
separate ETIP :UT directories into a single :UT directory. We have
not tried this method, but we think that Information Foundation has
some experience with it.

2. Integrate the prototypes into a single load module by
linking the object modules from all the prototypes. We used this
approach on the PUBSS system. See Single Load Module below.

3. Integrate the prototypes by means of a front-end prototype
which implements a top-level tree structure for the application,
and branches to the appropriate load module depending on the user' s
selections in this tree. We used this approach with the CIF system.
It is fairly straightforward except that the screen must be
refreshed whenever the user causes control transfers between load
modules.

Single Load Module
In order to combine several independently developed

prototypes into a single load module, it is necessary to create a
make file for the entire application which is built up from the
makefiles for the separate prototypes. The integration tool
accomplishes this task. The following simple example will
illustrate the integration tool.

The application FINAL, illustrated on the next page, consists
of an introductory C object, C, whose purpose is to open up the
databases, a main menu, M, and two subordinate menus, Ml and M2,
each of which is the root of a tree. If there is no interaction
between the objects in these trees, then we can decompose the
development into three prototypes: Subtop, Sub_1 and Sub_2.

In addition to the objects, like Ml, FI1, and F12, which are
part of the application, each of the prototypes must have
additional objects to make them complete prototypes. Sub 1 and
Sub_2 must each have an initial object to open its databases and
do other initialization; and Subtop must have stubs MIS and M2S
to provide bridges to Sub 1 and Sub_2. The integration tool
requires that these stubs be C objects, but their variable names
must be the same as the variable names of the objects whose place
they are holding.

13

FF22

Final

-C

Sub-ýtop

Subj1 Sub-2

14

To integrate Subtop, Sub_l and Sub_2 into Final, we must
eliminate MIS, M2S, Cl and C2, and link M with Ml and M2. The links
from M to Ml and M2 have been established implicitly by giving MIS
and M2S the same variable names as Ml and M2. Elimination of MIS,
M2S, Ci and C2 is accomplished by the integration tool under the
direction of the file integrate.data.

The format of the contents of integrate.data is as follows:

a) Comment lines are added by putting a # in the first
column.

b) All other lines must be in the following form:

<directory name> [<list of objects to be left out
of final prototype>]

where the directory name is the path to the directory
where the prototype was developed, and the optiona.
object list is a space separated list of object files nct
to be included in the final prototype. This is primarily
to eliminate any unnecessary setup objects (especially
SQL database opens) in the prototypes.

c) The first directory listed must contain the main
program.

To simplify integration, the tool automatically drops
types of files:

1) The main.o from all sub-prototypes except the one fr:-
the first directory listed.

2) All C objects from the main directory. However, if a C fi
is put in the optional drop list of the main directory, it will -
INCLUDED in the integrated prototype.

For this example the integrate.data file looks like:

.. /subtop c.o

* ./sub_1 Cl.o

.. /sub_2 C2.o

With this guidance, the integration tool will leave C in th-
prototype, and eliminate C1 and C2. Following its default rules,
it will also eliminate MIS and M2S since they are C objects.

15

The Submenu Tool

Whenever the valid data for a form field consists of a
discrete set of values, a choices submenu attached to the field
provides the simplest way for the user to enter the desired value,
and for the programmer to validate the data. The field attributes
F_REQUIRE and FMONLY guarantee that only values in the submenu set
will be accepted.

There are, however, several problems with using submenus
within the ETIP Designer. Because ETIP requires unique labels as
well as unique variable names for all objects, two choices submenus
defined using the ETIP Designer must have different labels even if
they contain the same data. This forces the programmer to maintain
a list of alternate labels for the same submenu. The programmer
must also type in the prompt for the submenu, and since these
prompts are usually of standard form, this leads to the problem of
consistency among submenus.

The submenu tool simplifies the use of submenus by providing
the following capabilities:

1. Maintain the texts of static choices submenus external to the
ETIP :UT directory. This has the advantage of concentrating
the maintenance of these files in one place.

2. Insure that all static choices submenus have the same prompt.

3. Permit a submenu to have the same label wherever it appears. The
submenu tool assigns the label by modifying the generated
code, so there is no longer a requirement for uniqueness.

Procedures

To create and maintain submenu files:

All submenu files for the application are maintained in $EDIT.
Each file bears the extension .edt. In the same directory, there
is a file called labelmap which associates a label with each ediz
file. A sample labelmap file follows:

chkcode.edtICHECK CODES

class.edtiCLASSIFICATION

component.edttCOMPONENTS

dastatc.edtIDA STATUS CODES

ddislev.edt DA DISTRIBUTION LEVELS

gslevel.edtiGS LEVELS

idistlev.edtIDISTRIBUTION LEVELS

16

location.edtILOCATIONS

locstatc.edtILOCAL STATUS CODE

maintlev.edtiMAINTENANCE LEVELS

mdislev.edtIMACOM DISTRIBUTION LEVELS

par.edtIPAR CODE

states.edtiSTATES

subacctc.edtISUB ACCOUNT CODES

subacctc.lclISUB ACCOUNTS

untissf.edtIUNIT OF ISSUE FOR FORMS

untissp.edtiUNIT OF ISSUE FOR PUBS

userpermit.edt USER PERMISSIONS

yesno.edtIYES/NO

To attach a submenu file to a form field

In ETIP, choose sub menu for a field and enter the edit file
name, say states.edt, under File. Nothing else is required. The
submenu label and the prompt will be automatically generated during
the make process by the procedure modsubslcl.sh.

Description of Associated Code
The following procedure is called to interact with the edit

files.

modsubslcl.sh

modsubslcl.sh modifies the generated C code adding the
standard prompt and the labels defined in labelmap. It should be
called as part of the make process.

17

The Form Tool

With the ETIP Designer it is easy to create and modify the
appearance of a form. However, it is awkward and tedious to
maintain the properties of the fields in the form. For example, the
addition of a new field to a form erases the characteristics of all
fields which follow the new field.

The form tool provides a mechanism for maintaining the field
attributes of forms in files that are external to the ETIP
database. This provides two advantages:

1. It is easier to modify the data in the form tool files using
a text editor with search and replace capabilities, like vi, than
it is to step thru the ETIP editor screens to make the same
modifications.

2. The addition of new fields to a form will no longer erase
the characteristics of other fields that have already been defined
but that follow the new field in the left to right, top to bottom
sequence.

Using the form tool, you can specify the prompt, pathname of
the choices menu, the field attribute flags, and the regular
expression for all fields in a form. The only property of a field
that cannot be assigned by the form tool is the field branch.

These are the static properties of the field, i.e. the
properties assigned to the field at compile time. The form tool
assigns these properties by modifying the generated C code for.the
form; it does not change the ETIP data base.

Form Descriptor Files
The form tool stores the field properties in form descriptor

files which are used in the make process to modify the generated C
code.

A formdescriptor file has the following structure:

Object name - "Add/Change/Delete User"

Variable name - "FACDU"

Field: 1 (Row,Col): (0,1)

Label: "Login Name: "

Width: 10

FIELDFLAGS: 0 I FCLEARIT

PROMPT: ""

REGEX:

18

EDITS: "I'

Field: 2 (Rc.-w,Col) : (0,2)

Label: "Permissions: 11

Width: 20 FIELDFLAGS: 0 1 FCLEARIT I FMONLY

PROMPT: "

REGEX:

EDITS: "userpermit .edt"

There will be a field entry for each field in the form. The
field number as in Field: 1, is the sequence number of the field
in a left to right, top to bottom ordering.

The row refers to the actual row in which the field appears,
but the column is a macro column, i.e. the first, second, etc. field
in the row.

Label is the field caption.

Fieldflags are the field attributes.

Prompt is the prompt.

Regex is the regular expression that will be applied to the
data. If a regular expression is specified, than FREGEX must also
appear as a fieldflag.

Edits is the name of the file, in $EDIT, to be used as the
choices submenu. If there is an edits file, then usually the
fieldflag F_MONLY will be present.

The lines Field, Label, and Width are generated from the ETIP
database, as will be explained below. They should not be changed
or else there will be an inconsistency between the form descriptor
files and the ETIP data base.

The remaining lines specify attributes of the field which may
be modified within the form tool.

There are three form -descriptor files for each form. They
reside in that subdirectory of $FORMS, which has the same name as
the prototype. To illustrate the purpose of the three files,
suppose we have a form with variable name X and that the form has
two fields. Then we will have three files, currX, mrgX, instX,
and they might look like:

Object name - "Enter State and Zip"

Variable name -"X

Field: 1 (Row,col): (1,1)

19

Label: "State:"

Width: 2

FIELDFLAGS: 0 I FUSHIFT I FMONLY I FREQUIRE I FCLEARIT

PROMPT: "Enter the Unit State: Use CHOICES"

REGEX: ""

EDITS: "states.edt"

Field: 2 (Row,Col) : (1,2)

Label: "Zip:"

width: 10

FIELDFLAGS: 0 I FREQUIRE I FCLEARIT

PROMPT: "Enter the Unit Zip-code: nnnnn-nnnn"

REGEX:

EDITS: ""

Object name = "Enter State and Zip"

Variable name - "X"

Field: 1 (Row,Col): (1,1)

Label: "State:"

Width: 2

FIELDFLAGS: 0 I FUSHIFT I FMONLY I FREQUIRE I F_CLEARIT

PROMPT: "Enter the Unit State: Use CHOICES"

REGEX: ""

EDITS: "states.edt"

Field: 2 (Row,Col) : (1,2)

Label: "Zip:"

Width: 10

FIELDFLAGS: 0 I FREQUIRE I FCLEARIT I FREGEX

PROMPT: "Enter the Unit Zip-code: nnnnn-nnnn"

REGEX: "[0-9]{51-[0-9]{4)"

EDITS: ""

Object name - "Enter State and Zip"

20

Variable name - "X"

Field: 1 (Row,Col): (1,1)

Label: "State:"

Width: 2

FIELDFLAGS: 0 1 F_USHIFT I FMONLY I FREQUIRE I FCLEARIT

PROMPT: "Enter the Unit State: Use CHOICES"

REGEX: ""

EDITS: "states.edt"

Field: 2 (Row,Col): (1,2)

Label: "Zip:"

Width: 10

FIELDFLAGS: 0 1 FREQUIRE I F_CLEARIT I FREGEX

PROMPT: "Enter the Unit Zip-code: nnnnn-nnnn"

REGEX: "(0-9]{5)-(0-9](4)"

EDITS: "

curr X is produced by formfields.sh and splitcurr.sh. I1
contains the description of the fields from the ETIP database. Note
that the flag F REGEX is not set and there is no data in REGEX,
because there is no way to assign regular expressions within ETI?.

mst X is essentially a copy of currX that has been modifie-
to indicate how we want the form to behave. It is used to modiy.
the generated C source code at make time. This is the only way
get regular expressions into the application.

mrg_X is produced by mrgformfields.sh which merges the dat3
from currX and mstX. This merger is needed to insure consistency
between the ETIP database and the mst X file which will be used t:
modify the generated C code.

The merge process c.pies curr X into mrg_X, and then
overwrites FIELDFLAGS, PROMPT, and REGEX with the values in mst X.
It reports an error if Field, (Row,Col), or Label differ in curr X
and mstX, because this indicates that modifications have been made
to the form within ETIP. Before mstX can be used to modify the
ge'erated C code, manual changes to mst X will be required to
restore consistency between it and the ETIP database.

The following procedure should be followed to generate form
descriptor files for an application:

If there are no mst X files,

a. run formfields.sh to create currformfields.

21

b. run splitcurr.sh to create the cur X files.

c. copy currformfields to mstformfields.
d. run splitforms.sh to create the mst X files.

e. modify the mstX files to the desired values of field
attributes, prompts, and regular expressions.

f. run validmst.sh to validate the correctness of the mstX files.

If there are mst X files,

a. run formfields.sh to create currformfields.

b. run splitcurr.sh to create the cur X files.

c. run mrgfrmfld.sh to generate the mrg_X files and the mrg.ERR
files.

d. working on the mrg_X files, correct any inconsistencies revealed
between the cur X and mst X files.

e. copy the mrg_X files to mstX files, using mrgtomst.sh.

f. modify the mst X files to the desired values of field
attributes, prompts, and regular expressions.

g. run validmst.sh to validate the correctness of the mst X files.

The form descriptor files, mstX, produced by this process
will be used by the make process, testmake or lclmake, to modify
the generated C code.

Remarks
In its present form, the form tool does not modify the submenu

labels or prompts, this is done by the submenu tool. These tools
should be combined.

Description of Associated Code
The following procedures are called to interact with the files

that manipulate and update the forms.

formfields.sh

formfields.sh creates the currformfields file for an
application. This is a preliminary step in creating the
cur X files. The currformfields file contains a form
description for each form in the application, i.e. a list
of the attributes of the fields in all forms of the
application. The file is created in the $FORMS directory
for the application. If there is a prototype in the
current directory whose name matches $1, it is used as
the source; else the version in $CLEAN is used.

22

modformslcl.sh

modformslcl.sh changes the .c files for the forms in the
current directory of the application. It is run as part
of the make process.

mrafrmfld.sh

mrgfrmfld.sh merges the data in each cur X file with the
data in the corresponding mstX file to create a mrg_X
file for each form in a prototype, where X is the
variable name of the form. It reports in mrg.ERR the
following error conditions:

NOMST - there is a curX form but no corresponding
mstX form

NEWCURR - cur X and mstX differ in names and/or
locations for one or more fields.

mrattomst.sh

mrgtomst.sh replaces each mst file for an application
with the corresponding mrg file.

sylitcurr.sh

splitcurr.sh decomposes a currformfields file into cur X
files, one for each form in the currformfields file.
splitcurr.sh removes all files of the form cur * in
$FORMS/$1. Then it reads the current forms file,
currformfields, and creates a file named cur name for
each form in the application, where name is the variable
name for the form, e.g. F_ACDUI.

splitforms.sh

splitforms.sh is used only once for each application. It
is used to create the initial set of mstX files. Before
running splitforms.sh, the cuurformfields file should be
copied into a new file called mstformfields. Then
splitforms.sh decomposes the mstformfields file into
instX files, one for each form in the mstformfields file.

validmst .sh

validmst.sh checks the mst X files for valid data, such
as prompt lengths.

23

The Help Tool

The help tool provides the following capabilities:

1. Maintain help screen texts external to the ETIP :UT
directory. This has the advantage of permitting persons who are not
familiar with ETIP to maintain the help screen text.

2. Ensure that all help objects return control to the object
from which they were invoked, and do so through the return branch.
This frees the ETIP programmer from one easily overlooked task.

3. Concentrate in one procedure, currently an awk script, the
specifications for help screen appearance, such as the prompts at
the bottom of each frame.

4. Enable a single help screen to be used in more than one
place in an application with each help object that uses it still
returning control to the object from which it was called.

Procedures

Create and maintain help screen text

All help screen text for a prototype, say X, will be
maintained in a subdirectory of $HELP. The subdirectory will have
the name of the prototype, i.e. $HELP/X. The files in $HELP/X will
be called help files.

A help file should have the same name as the variable name of
the ETIP object with which it will be associated. Since menu items
do not have variable names, help files associated with them should
be given the variable name of the menu with a subscript equal to
the sequence number of the item within the menu.

There are two potential problems associated with these virtual
variable names for menu items:

The first occurs when an additional item is inserted in a
menu. This is a real problem and it will require renaming the help
files for all items following the insertion.

The second problem concerns the limit of 10 characters to a
menu variable name. By appending one or two characters to the menu
name to create the virtual menu item name, we could exceed this
limit. This limit was imposed because ETIP appends .txt to the
variable name when creating the help file text. Since we never
create a file with the extension .txt we never exceed the limit on
file name lengths.

To assist in assigning names to these files, the procedure

24

call "mnufrmlst.sh X" will create in the local directory a list of
all forms, menus, and menu items in the prototype X along with their
variable names, internal id's, labels, and the internal id's of
associated help objects.

Here is a sample mnufrmlst file generated for a small
prototype.

List of Menus and Forms for sysadmin in /usr2/isms/pubscntl/NEWCOPY

Var Name ID Label Help ID

F "F_ACDU" 1:5 "Add/Change/Delete User" 1:29
F "F_ACDUB" 1:16 "Add/Change/Delete User Browse" 1:30

M "M_SAM" 1:27 "System Administration Menu" 1:31

"MSAMI" 0:16 "1. Add/Change/Delete User Menu" 1:32

Notice that the forms are preceded by the letter F and the
menus by the letter M, and the menu items have been given fictitious
variable names. The names in the Var Name column must be given t3
the help files. In other words, if you want to attach a help screen
to the menu object M-SAM, you create a file called MSAM
directory $HELP/X and insert the help screen text into this fi>-.

The final column shows, by printing the ID number, whether
not there is a help object associated with the form or menu.

When creating a help text file, center the title on the t:
line (no margins) and type in up to 72 characters per line of tex.:"
Do not include margins or navigation directions or prompts (i.e.,
"Press RETURN to continue" at the bottom.) The help tool will
these help files to generate the code needed for ETIP and to insert
the standard margins and prompts.

If the same text is to be used in two or more help objects,
simply link the help files together. There will be multip>--
formatted help files and help objects but they will all contain :•-

same text, and the text needs to be maintained in only one place.

Create formatted held files

The procedure call "formathelp.sh X" will make a copy i
$FMTHELP/X of each help file in $HELP/X. This formatted copy wil-'
be properly spaced for display in an ETIP frame, and it will contain
the appropriate prompts, such as "Press RETURN to continue.". The
formatted files will bear the same names as the help files except
that the first character of the name will be H rather than F or M.

25

The formatted files in this area should never be modified except
thru the formathelp.sh procedure.

Create help objects in the prototype

If the prototype X is in $NEWCOPY, the procedure call
"genhelp.sh X" will create an ETIP help object for each form, menu,
or menu item for which there exists a help file in $HELP/X. It will
link the object to the help object by way of the help branch, and
it will link the help object back to the object by way of the return
branch. If there exist in the ETIP prototype any multiple
references to a help object, i.e. more than one object whose help
branch references the same object, it will remove ALL these
redundant references. All of these changes will be made to the
X.exp file in $NEWCOPY.

Note: The formatted help files will not be associated with
these help objects at this time, that association will be made at
compile time. So after genhelp.sh has been applied to a prototype,
a subsequent call on ETIP2 will show the existence of the help
objects, but will not open them up for inspection since there will
be no corresponding text files in the :UT directory.

Attach the formatted hel2 files to the hel2 objects

After doing a save C on a prototype to which we have adde:
the help object HXXX, we will find there is a generated file calle-
HXXX.c but no HXXX.txt, since no formatted file has yet beer.
associated with the help object. However, there is a reference :
HXXX.c to the file "HXXX.txt". The procedure "modhlplcl.sh X"
when run in the directory containing HXXX.c will rewrite H XXX.
replacing "H_XXX.txt" with "path/X/HXXX", where path will be th.
value of the environmental variable $FMTHELP.

Description of Associated Code

The following procedures are called to interact with the he--
files.

cleanhelR.sh

cleanhelp.sh modifies a .exp file in NEWCOPY to insure
that no help frame is referenced by more than one object

formathely.sh

formathelp.sh converts the files in $HELP/X to the
standard format for help files and inserts them into
$FMTHELP/X. It invokes mnufrmdat.sh to determine which
of the files in $HELP are actually help files; and it

26

modifies their names from FX or MX to HX before inserting
them into $FMTHELP

genhelp.sh

genhelp.sh modifies a .exp file in NEWCOPY to include
help objects for each help file in $HELP/$l where $1
identifies the prototype

hlpobilst.sh

hlpobjlst.sh creates a list similar to varlist, but
limited to help text objects. The list contains the id,
label, and associated file name for each object to which
a help branch refers. It takes as input the mnufrmdat
file and the .exp file for the application. If the
prototype exists in $NEWCOPY, it uses that .exp file;
else it uses the .exp file in $CLEAN

linkhelp.sh

linkhelp.sh modifies a .exp file in NEWCOPY to insure
that all help frames pass control back to the frame from
which they were called, and that they do this when the
user presses RETURN.

mnufrmdat.sh

mnufrmdat.sh creates a file to be read by genhelp.sh and
genhelp.aw. This file contains the same data as
mnufrmlst, i.e. the variable name, id, label, and-help
id for each form, menu, and menu item in the prototype.
However, mnufrmdat is in a form to be read easily by an
awk script. Each line, except the last, is a "V"
delimited line containing the variable name, object id,
and the help branch id of one form, menu, or menu item.
The last line contains the next object id to be used for
making additions to the .exp file. If the prototype
exists in $NEWCOPY, it uses that .exp file; else it uses
the .exp file in $CLEAN.

mnufrmlst.sh

mnufrmlst.sh creates a list similar to varlist, but
limited to menus and the items associated with them. If
the prototype exists in $NEWCOPY, it uses that .exp file;
else it uses the .exp file in $CLEAN.

modhlplcl.sh

27

modhlplcl.sh modifies the .c files for help objects in
the local working directory so that they reference the
formatted help files in $FMTHELP.

28

ETIP Database Structure

Many of the procedures for modifying ETIP prototypes depend
on a knowledge of the structure of the ETIP database. When you
create a prototype using ETIP, all the information you supply is
stored in the :UT directory. There are two types of files in this
directory: process object scripts, and ETIP database files. The
process object scripts contain the scripts for C objects, shell
objects, text objects and SQL objects. They are created using an
editor like vi, and they can be read and modified using the same
editor. The ETIP database files have names like etip.datl. They
cannot be read or modified by use of a text editor, but they can
be unloaded into ASCII files using the ETIP import-export tool.

ETIP Import-Export Tool
This tool is supplied by AT&T as an adjunct to ETIP. It

consists of the executable files expetip2, impetip2 and impetip2.r
all of which are in $ETIPETC along with a documentation file
expimp.man. This tool uses the comma as the default field separator
in the unloaded files. However, in our awk scripts we use the
vertical bar "I" as the field separator, so we have added another
executable file, impetip2.bar which generates unloaded files with
"I" as the separator.

ETIP Unloaded Database
An unloaded ETIP database is a flat file which contains all

the information needed to reconstruct the database. Each line in
the file is a "," or "I" separated collection of fields. There are
four different types of lines describing respectively the structure
of an ETIP object, an item in a menu, a return code branch, or a
field in a form. The field structure of each type of line is shown
below together with an indication of the function of each field to
the extent that we have been able to determine these functions.

Oblect line

window_01 char(8),

constant = hwin

object id_02 char(5),

format 1:n, where n is unique within this type

29

all references to this object are made using this id

parent_objid_03 char(5),

if this object is a submenu, NULL

for all other objects, 0:1

the constant 0:1 seems to imply a primordial menu from
which the prototype has been selected

firstobj_04 char(5),

if this object is the first object, then 0:1

for all other objects, NULL

parentfield id_05 char(5),

if this object is a submenu, then its parent field is
entered here

since submenus are attached to fields, they use parent
fields not parent objects

objectname_06 char(42),

the string which is displayed in the top border of the
object

var name_07 char(12),

the variable name given to this object in the header

this is the name of the generated .c file, and a.-
references to this object which appear in C programs a:r
based on this name

FIELD_08 integer,

obj_type_09 integer,

70 = FORM

77 = MENU

83 = SHELL

84 = TEXT

285 = SQLOBJECT

797 = COBJECT

FIELD_10 integer,

FIELD_11 integer,

FIELD_12 char(5),

FIELD_13 integer,

FIELD_14 char(16),

save brnch_15 char(5),

30

object to which control is passed upon KEYSAVE or
KEY ENTER

cmd-mnu-brnch_16 char(5),

object to which control is passed upon KEY-COMMAND

helpbrnch_17 char(5),

object to which control is passed upon KEYHELP

datastring_18 char(62),

for a c object the name of the first function to be
executed

prompt_19 char(62),

the prompt displayed when this object is the active
object

file name_20 char(62),

for a C, SQL, or shell object, the name of the source
file in :UT

for a form or menu object, the name of the data file usea
to fill the object

multiple_select_21 integer,

0=no; 1=yes

number columns_22 integer,

number of columns in the menu

slk label_23 char(10),

slk label_24 char(10),

slk label_25 char(10),

slk label_26 char(10),

slk label 27 char(10),

slk label_28 char(10),

the strings used as labels on the second set of SLKs

FIELD 29 char(20),

FIELD_30 char(20),

slk brnch_31 char(5),

slk brnch_32 char(5),

slk brnch_33 char(5),

slk brnch_34 char(5),

slk brnch_35 char(5),

31

slk brnch_36 char(5),

the objects to which control is passed when one of the
second set of SLKs is depressed

FIELD_37 char(5),

FIELD_38 char(5),

close after use_39 integer,

89=yes; 78=no

top_left x 40 integer,

top_lefty_41 integer,

window width 42 integer,

window_height_43 integer,

the position and size of the window for this object

FIELD 44 char(20)

Menu Item Line

menu item_01 char(8),

constant = hmitrk

object id_02 char(5),

format 0:n, where n is unique within this type

all references to this item are made using this id

parentmenu id_03 char(5),

the object to which this menu item is attached

FIELD_04 char(5)

NULL

item label_05 char(62),

the string displayed in the menu for this item

item-branch_06 char(5),

object to which control is passed upon selecting this
item

FIELD_07 char(5),

NULL

itemhelp_08 char(5),

32

object to which control is passed upon KEY HELP

FIELD_09 integer,

FIELD_10 integer,

FIELD 11 integer,

FIELD_12 integer,

FIELD_13 char(5),

FIELD 14 integer,

FIELD_15 char(16)

Return Code Branch Line

rc branch_01 char(8),

constant = hmitrk

object id_02 char(5),

format 0:n, where n is unique within this type

all references to this item are made using this id

FIELD_03 char(5),

NULL

parent_processid_04 char(5),

process to which this return code branch is attached

FIELD_05 char(62),

FIELD_06 char(5),

NULL

return branch_07 char(5),

object to which control is passed when the parent process
returns the value in return code_09

FIELD_08 char(5),

NULL

return code_09 integer,

return code value which triggers this branch

FIELD_10 integer,

FIELD_11 integer,

FIELD_12 integer,

33

FIELD_13 char(5),

FIELD_14 integer,

FIELD_15 char(16)

Field Line

form field 01 char(8),

constant = hfield

object id_02 char(5),

format 2:n, where n is unique within this type

all references to this field are made using this id

parentid_03 char(5),

the object to which this field is attached

field label 04 char(62),

the string used as a label, caption, for this field

field-prompt_05 char(62),

the string which appears as prompt when this field is
active

field row_06 integer,

<= 19; the window row in which this field occurs

label column_07 integer,

the window column in which the label begins
field column_08 integer,

the window column in which the field begins

field width_09 integer,

<= 76; the width, i.e. number of characters, of the field

field type_10 integer,

the attributes of the field, e.g FPROTECT, FNUMERIC,
etc.

FIELD_12 char(16),

FIELD_13 char(16),

FIELD_14 char(5),

FIELD_15 integer,

34

FIELD_16 char(5),

FIELD_17 integer,

FIELD_18 char(16),

datastring_19 char(30)

a description of the data set elements used to fill this
field

35

Reuse of Code in ETIP Applications

Efficiency in developing and maintaining applications depends
on the ease with which we can reuse code that has already been
written and tested. In ETIP this usually means the ability to reuse
objects or linked groups of objects since the ETIP object
represents the lowest level of functional decomposition.

There seem to be three ways to accomplish this reuse:
physically copying the ETIP objects from one part of the
application, or a different application, to another; invoking a set
of objects which have been created and linked using the ETIP
Designer and then stored in a common library; or generating and
linking the ETIP objects by an automated process. The first methcd
usually involves some modifications to the copied code at the ETI?
Designer level, it is described under Cut and Paste. The second
method would be used when we want the linked set of objects tc
behave the same way every time we call them, but we want to call
them from various places within the application, it is describec
in Reusing ETIP Objects From A Library. The third method is
described under DIAL

Cut and Paste
Often when a programmer needs to include a certain functicn

in the code, he finds an implementation of that function in so:-e
other program, copies it into the current program, and modifies
as needed. We have written two procedures which can be used
implement such a cut and paste operation in ETIP.

Description of Associated Code

extr.proto.sh

extr.proto.sh extracts from a CLEAN.exp and .src file the
description of all objects which can be reached from a
specified object, called the base of the extraction. IT
creates a new set of CLEAN.exp and .src files containing
all those objects which have been extracted. These files
are created in the current directory.

extr.proto.sh has three parameters. The first is the name
of the prototype from which the objects are to be taken.
The second is the object name of the specified object.
It should be enclosed in double quotes if it contains
embedded blanks The third, optional, parameter is the
name to be given to the files created by extr.proto.sh,

36

i.e. if the third parameter is X, then the files X.exp
and X.src are created. The default name for these files
is EXTR.

merae.2roto.sh

merge.proto.sh merges a pair of .exp and .src files into the
:UT directory of an ETIP prototype. The first parameter is the name
of the .exp and .src files to be merged. These files must be in the
current directory. The second parameter is the name of the ETIP
prototype, which must be in the current directory. During the
merge, merge.proto.sh will prompt the user for new names, both
object and variable, for ETIP objects, and for new file names,
whenever the old names in the source prototype conflict with names
in the target prototype.

Reusing ETIP Objects From A Library
To create a reusable group of ETIP objects we create the

objects and link them in a separate prototype using the ETIP
editor, do a save C to create the generated .c files, create a C
program to act as the entry object for the group, and insert them
into the library.

As an example consider the following problem. We want to be
able to generate reports from anywhere in the application using the
same group of ETIP objects each time. The user is to be presented
with the form

Make Report

Report To Generate:

Print Report (Y/N):

Account Number:

Subaccount:

probably as a result of a menu selection.

Valid data for the first item are to be chosen from a submenu
which depends on the user's id and the place in the application
where the report is being generated. Thus there will be in the $EDIT
directory several files that might be used as submenus here.

Print Report (Y/N) determines whether the report is to be

37

displayed on the screen or sent to a printer.

Account number and Subaccount denotes the account whose data
is to be reported. For some users the account number will be fixed
and for them this field must be protected.

The first three fields will involve data validation
implemented by submenus and the field attributes FREQUIRE and
FMONLY.

The report will actually be generated by the DBMS report
writer and the appropriate report writer command files have already
been built in $REPORT.

To prepare a library function with these properties, we
created an ETIP prototype called util in which we created three
objects: Make Report/FMR, Make Report Init/CMRI, and Make Report
Execute/CMRE with the flow of control: CMRI to FMR to CMRE to
C MRI.

As can be seen in the accompanying source code, C MRI moves
the cursor to the top of the form, blanks out all field, and
modifies the submenu file name for the first field and the
protection attribute for the third field. Notice that it tests the
boolean function opened(formrectptr->panel) before invoking
update fields and update fieldflags. If these functions are
called when the form is closed, the application will crash.

MRI()

formrec *formrecptr;

fieldrec *fieldrecptr;

formrecptr 1 (formrec *)FMR.scstrk;

fieldrecptr 1 (field rec *)formrecptr->fields;

/* move cursor to top of form */

settop_of_form(formrecptr);

/* insert blanks in all fields of the form */

blankoutform(formrecptr);

/* the make-report choices submenu file defaults to hldrpts.edt, the reports

which are available to holders; if the user is a manager, then the choices

38

submenu Must be mgrrpts.edt */

if (hasypermission(P_-ACCTMGR)

strcpy (msOFMR.sc-file,"1mgrrpts.edt1)

else

/* if the user is a holder, then only the curr -accnum can be chosen *

strcpy (fieldrecptr(2].value,curr-accnum)

fieldrecptr[2).flags I- FPROTECT;

if (opened(formrecptr->panel)

update-fields (formrecptr);

update-field f lags(formrecptr);

The source code for CMRE contains the code needed to invoke
the report writer for the DBMS. This C object needs a frame if the
report writer is interactive.

execute-report form (argv)

char **argv;

register char *p;

char command(8O];

char reportpath[120];

for(p-argv(O];*p 66 *p I- '-;p++);

for(p--;*p -- ' -)

p++;

*P- 0;

if (argv(lJ (0] -- 'N')

printf ("The report will pause after each screen\n");

printf ("At the colon (:) prompt press RETURN to continue.\n'");

printf ("Press RETURN to receive report.\n");

fflush(stdout);

getcharo;

/* sprintf(comnmand,"echo \"%s\\012%s\" \1 sacego /usr2/isms/pubscntl/

39

report/%s I pg",argv[2],argv(3],argv(0); */

sprintf(cormand,"echo \"%s\\012%s\" \1 sacego %s/%s I
pg", argv [2], argv [3], getenv ("REPORTS"), argv [0]);

system(conmand);
)

else {

/* sprintf(conmand,"echo \"%s\\012%s\" \I sacego /usr2/isms/pubscntl/
report/%s I Ip",argv(2],argv[3],argv(0]); */

sprintf(command,"echo \"%s\\012%s\" \I sacego %s/%s I
ip",argv[2],argv[3],getenv("REPORTS"),argv[0]);

system(comrand);

printf("Report Printed. Press RETURN to continue.\n");

fflush(stdout);

getcharo;

)

Next we issue the ETIP save c command and move the generated
C source files for all three objects into the source file for our
library. Each of these files contains the line #include "test.h'"
which ETIP always inserts in the generated C code to enable crcss
references among the objects in the prototype. However the test.7.
file which ETIP generates in response to the save c command w-i
not be present in the library source directory. So we must delete-
the #include lines and include the following declarations.

extern screen FMR;

extern screen CMRE;

extern screen CMRI;

extern screen msOF_MR;

The fourth line will not be found in the generated test.-
file. It makes visible the submenu for the first field in the form.
Submenus are defined as screens but ETIP does not include them in
the test.h file. In this case we need an external declaration since
CMRI modifies the file name of the submenu attached to the firs:
field in F MR. The need for this declaration would show up as a
compile time error.

Finally, we need a function to serve as the point of entry for
our package. Notice that it opens a window for CMRI and
establishes a link back to the current object, which of course is
unknown at the time this code is inserted in the library. When the
user depresses the CANCEL key, control will return to the object

40

from which makereport was invoked.

make report ()

I

openwindow(getcurobj(),&CMRI);

So the complete package to be inserted in the source file for
the C functions library looks like this.

extern screen FMR;

extern screen CMRE;

extern screen C MRI;

extern screen msOF_MR;

makereport()
{

openwindow(getcurobj(),&CMRI);

}

the complete F MR.c file exclusive of the include test.h line

the complete CMRE.c file exclusive of the include test.h line
the complete CMRI.c file exclusive of the include test.h line

This report generator can be called from anywhere in the
prototype by creating one C object as follows

ETIP C object Description

Label: Make Report

Variable name: C MR

Frame for C: No

Function: makereport()

41

and linking to that object whenever we want to generate a report.

Database Interactive Application Library (DIAL)
Every ETIP application we have generated so far has required

"a fair amount of information management. We found that integrating
"a Database Management System (DBMS) to ETIP can be tedious,
repetitive and error prone. In addition the speed of the built-in
DBMS left quite a bit to be desired.

We found the most efficient way of incorporating DBMS
functions into an ETIP application was to use the Embedded SQL
(ESQL) package contained with the Informix DBMS. ESQL allowed us
to write SQL statements and manipulate database information with
reasonable speed and accuracy.

Using ESQL unfortunately precluded us from using any of the
built-in features of ETIP, such as data strings for filling form
fields. So we started making calls directly to the ETIP library to
fill in ETIP fields and edit flags.

As we progressed we found that in a typical application we
repeated the same type if ESQL code over and over again for
displaying and updating database information from ETIP
applications. This repetition increased the final application code
size, and often introduced errors in the repeated and copied code.

As a result we finally developed the Database Interface
Applications Library (DIAL). DIAL has the following functions:

1. DIAL allows an ETIP applications programmer to quickly
specify the interface characteristics between a database and an
ETIP form.

2. The library takes that specification and at execution time
allows the user to specify selection criteria for a portion of the
database.

3. The library retrieves the selected database information and
transfers it to an ETIP form which is then displayed in a multipage
format.

4. The user can modify the data on the ETIP form and request
that the updated information be saved to the database.

5. The library will save any updated information into the
database and leave the ETIP form.

As a result of incorporating these features into DIAL we have
found the following positive effects:

1. Since the applications programmer generates a minimum of
code many of the errors that are generated from repetitive code are
eliminated.

42

2. Because the library in included in the application only
once a great decrease in code size is often realized.

3. All of the ESQL code necessary to perform the library's
function is incorporated into the library. As a result the
applications programmer has no need to learn ESOL resulting in a
faster turn around time for ETIP applications.

43

Library Functions

ETIP includes several libraries and for two of them, libEc.a
and libEt.a, it provides the source code and a Makefile. We have
added a number of functions to these libraries, mostly for the
purpose of controlling the action of ETIP forms. We describe below
the functions we have added as well as some of the functions in the
ETIP distribution libraries.

ETIP Form Field Population Guidelines
One of the basic operations in ETIP applications is form field

population. However the ETIP designer provides only a single
option, data strings, for populating fields with information from
the data base or C objects. However, in general, it's awkward and
unmanageable.

A much better method of populating form fields is through the
ETIP library's set of C routines. These provide a relatively
painless and more easily manageable way to populate form fields.

The ETIP header file Et.h must be included in any C object
used to populate forms. Two structure definitions of interest are
found in the header file, the form rec and the field rec. These
structure definitions (shown below) are used by the ETIP library
functions to populate form fields.

Form and field structure definitions

typedef struct (
char *name; /* field name */
int row; /* field row */
int ncol; /* name column
int fcol; /* field column
int len; /* field length
int flags; /* field flags
char *value; /* field value (initial/return) */
menu rec *menu; /* optional menu pointer */
char *prompt; /* field prompt *1
char *rptr; /* reserved pointer */
char *uptr; /* user pointer *1
funcptr init; /* initialization call-back
funcptr term; /* termination call-back
char *str; /* reserved (for reg. exp., etc)*/
FIELDTYPE **ftype; /* ETI field type */
int maxlen; /* max length for scroll-field */
} fieldrec;

typedef struct

44

char *label; /* form label */
int flags; /* form flags */
int y; /* desired window y-coordinate */
int x; /* desired window x-coordinate */
field rec *fields; /* fields */
field rec *dfield; /* current field */
slkrec *slks; /* pointer to desired slks */
FORM *form; /* pointer to ETI FORM
PANEL *panel; /* pointer to ETI PANEL
char *rptr; /* reserved pointer */
char *uptr; /* user pointer */

formrec;

Each form rec has an array of field rec structures which
describe each field in the form. C objects can change the value,
flags, and str fields of the field rec structures.

In the generated C code both the form structure and the field
array are given names based on the C variable name of the form.

The C variable name of the form structure is the C variable
name preceded by a lowercase z (i.e. if the C variable name iJs
F-myform then the form structure name is zF_myform).

Similarly the name of the field array is the C variable ha-.e
preceded by a lowercase f (i.e. fFmyform in the previous example)

In addition a pointer to the field array is always stored
the form structure in field "fields", so fFmyform a.
zFmy'form.fields have the same value and can be u S
interchangeably.

Be aware that labels in the form, such as titles, a:--
considered to be fields with a field width of 0. These label-onr.
fields must be accounted for when populating forms.

Creating Custom Screen Labeled Keys (SLKS) in ETIP
ETIP has default SLKS for menu, form, and text objects.

Unfortunately many of the functions available on the default SLF3
are not necessary for most screens. Also in many screens a usef.'
feature could be encoded on an SLK. This file describes how ::
create and maintain custom SLKS.

The default SLKS are defined in the ETIP library. Each SLK is
represented by a label and an associated key. There are two arrays
defining the 8 available SLKS for each menu, form, and text object.
The C variable names are as follows:

Label KeyFile

45

Menu (No mark) mlsys_slks mlsys_reqs tsubs.c

Menu (with mark) m2sys_slks m2sys_reqs tsubs.c

Forms fsysslks fsys_reqs tsubs2.c

Text tsys_slks tsys_reqs tsubs3.c

In the default ETIP library, these arrays are statically
defined. To make Custom SLK sets it's necessary to make the above
variables mobile. To do this simply define them as C pointers. Then
these variables can be pointed at different SLK definitions at run
time. See the PUBSS ETIP library for an example.

Managing a custom SLK by hand is tedious work because of the
need to restore a custom set of SLKS each time control is returned
to a screen object. A couple of functions can help facilitate
managing custom SLKS. The basic idea is to maintain a stack of
screens and the SLKS associated with them. Each time a new screen
is displayed, the SLKS information about the that screen is pushed
on a stack. When the current screen is removed the SLKS from the
screen underneath are restored from the information about it in the
stack. In PUBSS these functions are implemented in the object
"DA12;Master Control;Clear SLKS;C". They are currently implemented
only for forms but the idea is extensible to menu and text objects.

Description of Associated Code
The following procedures are called to handle for-

manipulation.

blank out form

blankoutform(form rec *) can be invoked within any
object. It will replace each field in the form with
string containing one blank character This differs frc-'
the ETIP supplied function clr form which replaces eacr
field by a null string. The difference between these J7
apparent when you have both FMONLY and FREQUIRE on a
field. If the field contains null then it will te
populated by the first item in the choices menu file. :'
it contains a blank string, it will be left blank but an
error message will appear indicating invalid data and the
availability of choices.

lock cursor(form rec *; field rec *) will lock the
cursor on the field identified by its arguments. The
cursor will remain locked on that field until unlocked
by unlock cursor (see below). Multiple locking of a

46

screen has no adverse effects because all lock calls
after the first are ignored.

THE FORM THAT IS LOCKED MUST BE VISIBLE ON THE SCREEN.
LOCKING NONVISIBLE FORMS WILL CAUSE THE APPLICATION TO
CRASH!

N.B. Note that pointers are used for both the form_ptr
and fieldptr parameters. Do not pass a structure to
lock-cursor.

unlock cursor

unlock cursor(form rec *) restores the screen to its
original state. Multiple unlocks have no effect upon the
screen.

THE FORM THAT IS TO BE UNLOCKED MUST BE VISIBLE ON THE
SCREEN. UNLOCKING NON VISIBLE FORMS WILL CAUSE THE
APPLICATION TO CRASH!

N.B. Note that pointers are used for the form_ptr
parameters. Do not pass a structure to unlock-cursor.

lock cursorset

lock cursor set(form rec *; int *) will lock the cursor
within the-field set whose array is pointed to by
unlock set. The cursor will remain locked within that
field set until unlocked by unlock cursor set (see
below). Multiple locking of a screen has no adverse
effects because all lock calls after the first- are
ignored.

The lock set is specified by an integer array that
contain the indexes of the fields that are not to be
locked. So if the 5th and 6th field of a form are not to
be locked then 5 and 6 must be in the lock set array. The
array is terminated by a negative integer. An integer
array was used in order to facilitate initialization at
compile time. Pointers cannot be initialized at compile
time.

N.B. The current field of the form when lock cursor set
is called cannot be locked. It will remain unlocked even
if it isn't included in the unlock set.

THE FORM THAT IS LOCKED MUST BE VISIBLE ON THE SCREEN.
LOCKING NON VISIBLE FORMS WILL CAUSE THE APPLICATION TO
CRASH!

N.B. Note that pointers are used for both the form_ptr

47

and fieldptr parameters. Do not pass a structure to
lock-cursor.

unlock cursor set

unlock cursor set (form rec *) restores the screen to
its original state. Multiple unlocks have no effect upon
the screen.

THE FORM THAT IS TO BE UNLOCKED MUST BE VISIBLE ON THE
SCREEN. UNLOCKING NON VISIBLE FORMS WILL CAUSE THE
APPLICATION TO CRASH!

N.B. Note that pointers are used for the form_ptr
parameters. Do not pass a structure to unlock-cursor.

fill field (field rec *; char *) will populate the
given field value with the given string. It makes a copy
of str. It can be used at any time in an application. If
the form is not on the screen then the values filled in
by this function will appear the next time the form is
opened. However if the form is currently visible it is
necessary to call updatefields (see below) to change the
values on the screen to match the filled values.

N.B. A pointer to the field is passed as the first
argument, not the field structure itself!

update fields

updatefields (form rec *) copies the field data from
the internal ETIP form data structure to the on-screen
form.

THIS FUNCTION CAN ONLY BE USED WHEN THE FORM IS CURRENTLY
ON THE SCREEN! IT WILL CAUSE THE APPLICATION TO CRASH IF
THE FORM IS NOT VISIBLE!

N.B. A pointer to the form is passed as the first
argument, not the form structure itself!

update field flaas

updatefieldflags (formrec *) copies the field flags
data from the internal ETIP form data structure to the
on-screen form. Field flag data can be manipulated
directly in the field structures. But like the field
values they won't take effect on the screen if it's
currently visible.

48

THIS FUNCTION CAN ONLY BE USED WHEN THE FORM IS CURRENTLY
ON THE SCREEN! IT WILL CAUSE THE APPLICATION TO CRASH IF
THE FORM IS NOT VISIBLE!

N.B. A pointer to the form is passed as the first
argument, not the form structure itself!

master-control gush slks

mastercontrolpush_slks (slk_rec *; int *; screen *

pushes the current default label, key, and screen
information onto the stack and sets the default label and
key pointers to the parameters. When the screen is
subsequently displayed the labels and keys defined will
be used for the SLKS

mastercontrol clear slks

master control clear-slks() removes the screen on the
top of the stack from view and restores the default label
and key pointers to the values on the top of the stack.
The stack is popped. This action restores the label and
key definitions from the previous screen. Since this
function has no parameters, it can be called as a C
object. The Cancel function of screen with custom SLKS
calls clear slks.

49

Appendix - Environmental Variables

Environmental variables, unix variables that allow string
substitutions, were used to navigate through the areas as we set
up the working environment for the applications and configuration
control.

The following environmental variables are used in our
procedures.

ETIPDIR - the root of the ETIP libraries, /usr/ACE/ETIP

ETIPETC - the directory which contains most of the scripts and
programs used to manage applications

ETIPLIB - the libraries used in compiling and linking

ETIPSRC - the source code for ETIPLIB

EtipInc - the include code for both ETIPLIB and the application
specific code

CLEAN - this directory must be present in each application. It
contains a complete but transportable, i.e. ASCII, copy of
each prototype in the application. It also contains several
previous generations of each prototype.

NEWPROTO - the newproto directory is the working area where
modifications are made to prototypes. It contains a suz-
directory for each prototype in the application.

LOCK - the lock area is a directory which contains a file f:r
each prototype currently in the newproto area. These !z:
files prevent simultaneous attempts to modify a prototype.

NEWCOPY - the newcopy directory contains the latest version of
prototype after the programmer has completed makir-,
modifications to it but before the application administrator
has restored it to the clean area.

EDIT - the edit area contains the master files for all choices
submenus in the application.

HELP - the help area contains the source files for all help
text objects in the application.

FMTHELP - the format help area contains the data to be displayed
in all help objects. Each file contains the data from one file
in $HELP but modified to include paging and prompting
information.

FORMS - the forms area contains the files needed to define all
the fields in the forms of the applications.

50

