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Abstract

Design replay presents a possible enabling technology to the Knowledge-Based Soft-
ware Assistant specification maintenance and implementation rederivation approach to
software development. More generally, design replay can also be applied to derivations
between a variety of different software description abstraction levels. Radical changes
to a software artifact cannot generally be addressed by design replay as they require
new design input. Evolutionary changes are more amenable to design replay and often
involve incremental changes to derived artifacts. This report outlines an approach to
rederivation that exploits the incrementality of evolutionary maintenance changes, de-
scribes the state at which the implementation of this approach is at. and what remains
to be done to test this approach.

1 Introduction

The problem we are exploring is the insertion of a design replay capability into Rome
Lab's Knowledge-Based Software Assistant (KBSA) [1]. The KBSA is composed of a number
of facets that roughly correspond to activities in a standard waterfall life-cycle model. These
facets include requirements, specification, and development. Note that the KBSA does not
force a waterfall development, in fact it is based on a new paradigm of software development
involving maintenance of specifications and rederivation of implementations. Each facet
assists in a design activity producing increasingly formal descriptions of a desired system.

Each facet can be viewed as taking a transformational design approach. El
Our task is constrained by two important requirements. First, we wish to provide a design [

replay utility that can be used by any, and all of the facets. Thus, we are likely to take an ..............
approach reminiscent of the Joshua system's [2] "protocol of inference." We are interested
in designing a protocol that a design tool can use to record the: decisions it is making,

alternatives it is considering, goal structure of its problem solving, and data dependencies
25

1yi QUAUTY!1:3PCTEal



between actions it takes and artifacts created. This protocol should permit capture of the
information necessary to permit application of incremental redesign techniques.

Second, we want to be able use incremental replay from the currtnt state of the code
artifact to reconstruct the code for a modified design. (In this context. thp use of the word
code should be qualified as referring to the output artifact of a particular facet. This artifact
may be source code, but it could be specification, requirements or other descriptions.) We
do not want a strategy that requires replay of an entire design.

To explain an important difference between software design problems and other areas
amenable to replay technology, planning for example. particularly with respect to this sec-
ond requirement, an analogy to the blocks world is helpful. In blocks world planning there are
two artifacts of particular concern: the plan to achieve the desired goal and the actual con-
figuration of the blocks (before and) after executing the plan. In software, the corresponding
artifacts are the design (plan) to produce the code and the code itself (block configuration).
Incremental replanning techniques [3] assist in the creation of a new plan/design., bul not
in the formation of a rew block configuration/code from the state left by the original plan.
This latter capability is critical in software construction where the design has already been
applied to yield code.

Maintenance must proceed from this existing code for a number of reasons. The design
process is likely to have been quite long. e.g., 10,000 transformations [4] for a medium-sized
problem, and on average might only be 907( automated. Therefore. replay of an entire design
would require user assistance in remaking 10'X of the design decisions. e.g.. 1,000 decisions,
many of which may not even have been affected. Even if the process were 99% automated,
100 decisions would still have to be remade by the user. Also, depending on the efficiency
of the transformation system, even fully automatic replay of 10,000 transformations may
be something to avoid. In essence, there are two incremental modification problems to
be considered simultaneously in software design, that of modifying the design and that of
modifying the source code.

The next section describes our approach to design replay. Following this are sections
describing the state of our implementation and related work.

2 Incremental Rederivation

A major complication in design replay is the so called correspondence problem '5, 6]: es-
tablishing a correspondence between the components of the original initial specification and
the changed initial specification. This problem is both difficult and necessary to solve for
replay to occur: the original set of transformations need to be replayed on the components
of the changed initial specification that correspond to the components of the original initial
specification which the set of transformations were originally applied to. An interesting as-
pect of the incremental rederivation approach is that it finesses this correspondence problem
to a large extent. The input to the replay capability consists of: an original initial specifica-
tion, a transformational development and its associated dependency information as described
below, a solution artifact, and a delta to the original specification. The required output is a
new solution artifact that reuses as much of the initial solution as possible and minimizes its
interaction with the underlying design performance system/agent. Correspondence is no* a
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significant issue under this problem definition because the change is localized to an area of

"the original specification and the dependency structure identifies and propagates the other

correspondences in the transformational development.
To explore this further, we need to look at an initial simple definition for transformations

and a basic artifact representation. The transformation representation we are concerred
with is derivative from 17] and is meant to capture only the simplest syntactic properties of

"a transformation. Similarly, the artifact representation, which must be facet independent to

"a large extent, captures only basic syntactic properties.

Artifacts will be represented as abstract syntax trees (AST). This provides a level of rep-
resentation above the purely textual but without facet specific semantic concepts.' Transfor-
mations, at this initial level of description, consist of an input pattern that matches pieces of
the base AST and an output modification to the AST. The section of the AST to be modified
must be included in the input pattern. The parts of the AST matched by the input pattern

are called the input span of the transformation and the modified sections comprise the output
spa n.

2.1 Macro-Level Rederivation

Given an input specification SO consisting of disjoint sub-components (.51. 5 2 ... 5,),

and a solution artifact Sf consisting of disjoint sub-components (Sf1 . Sf 2 ... Sf,), and a
transformational development histury with input and output span information preserved,
changes to the input specification can be propagated at a macro-level as follows: given 2 a

change to a particular S, we can compute a partition of Sf into two sets of subcomponents,
those that are definitely unchanged and can therefore be reused intact and those that are
possibly changed.

This macro-level rederivation is a form of impact analysis that in itself can be useful
in large systems under the assumption that many of the maintenance changes made to a

specification only have relatively local effects in the solution artifact. This assumption is
restrictive but consistent with the typical maintenance profile where the difficult problem is

reliably identifying the relatively small percentage of the code that needs to be changed to
respond to a maintenance request.

Given the set of possibly changed Sf,, we can attempt to replay the transformational
history to rederive new solution sub-components. For each transformation that we might
consider replaying however, there is a spectrum of possibilities from redo (and possible rein-
vocation of the design system/agent) to having extracted finer-grained transformation depen-

dencies that permit more precise control of reinvocation of a transformation or dependency-
directed reinvocation of that transformation. This finer level of dependency information is
discussed in the next section.

Two goals in keeping this dependency information should be recalled here. First, we have

IFacet specific semantic concept! can be helpful in rederivations but are excluded for now because their
use will vary from one facet and system to another.

2 These various inputs are provided by a design tool interacting with the replay component through the
defined information and dependency protocol. Thib protocol defines the data a design tool must record about
its ongoing design process in order to make use of the replay facilities. The protocol will not be discussed
further in this paper.
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the goal of essentially performing impact analysis through the dependency structure. This
analysis gains us timeefficiency by both not replaying entire huge derivations (which is traded'
off in space required for the dependencies) and not interacting with a person for manual
information extraction. Second, we wish to be able to closely analyze those transformations
that are possibly affected by new input requirements. Most transformations, in general, will
be unaffected and therefore not require replay. Those that are affected and still applicable
will often be modifiable through the dependency structure. If a transformation is no longer
applicable and the design program needs to be reinvoked, then it is likely that rederivation of
the entire subsolutien will be necessary. If an appropriate impact analysis is supported, then
this will be more efficient as fewer valid solution components will be needlessly rederived.

2.2 Micro-Level Rederivation

Before discussing finer-grained dependency information, we need to refine our represen-
tation of transformations. \Ve have stated that transformations consist of an input pattern
and an output modification. Following Balzer in [7]. a transformation also consists of a
set of local bindings (used to compute partial substructures) and a set of constraints to
be verified. All data accessed in the constraints. bindings, or output modification must be
accessed by the input pattern. i.e.. the input span of a transformation must identify all data
depenidencies.

An input pattern implicitly embodies two kinds of constraints, i.e.. equality to a constant
and equality between substructures (use of the same named pattern variable).

Bindings can perform arbitrary computation but we make a few assumptions about them.
First, we assume all data accessed by the binding computation is functionally indicated in
the binding calculation call. This implies that a binding calculation is time invariant, i.e.,
a calculation always returns the same result on the same arguments and does not access
internal state. Second, we assume none of the bindings are dead/unused. XWe could attempt
to compute this and, in fact, dead bindings should not affect the ultimate propagation
through the dependency structure.

Constraints may also perform arbitrary computation, perhaps accessing a reasoning sys-
tem to check properties of the input pattern. As with bindings, we assume all these compu-
tations are also functional.

Given this finer-grained transformation representation, it is now possible to either com-
pute the fact that a delta to a transformation's input pattern actually has no effect on the
validity of the output modification or, more likely, that the output modification can be up-
dated via an incremental recomputation not requiring reinvocation of the transformation.
To understand how this will work, we must look at the kinds of changes that can occur in
the input span of a transformation and how they propagate through the transformation.

2.3 Replay Delta Calculus

To enumerate the space of deltas that can affect a transformation, we shall step through
the computation of whether a transformation is still applicable (see figure 1). A delta to
a piece of an AST is postulated and the macro-level dependency mechanism identifies a
transformation as having an input span that is possibly affected by the delta. First. the
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input pattern must be matched against the changed AST and the delta localized to the

affected portions of the input pattern. 3

lir2t Pattern: Constants (k) and Varlabie, (v)

Bindings (b) . t~v)

Constrslints (c) 9 (v~b)

Output Pattern = h(k,vb)

Figure 1: Propagating a Delta Through a Transformation

If the change in the input pattern is in a constant portion of the pattern, then the
transformation is no longer applicable. If the transformation is to a variable portion of
the pattern then we continue examining the change. Next, we compute a delta set on the
bindings from the delta set of the input pattern. Then we compute a possibly delta set for
the constraints (and any equality constraints implicit in the input pattern) based on the
delta bindings and variables. For each possibly changed constraint, we reevaluate its truth.
If any constraint is false, the transformation is no longer applicable. If all the constraints
are still true, we move on to computation of the new output pattern.

The output pattern of a transformation may not be changed if all deltas simply affect
triggering conditions. The output pattern is changed if it incorporates any of the changed
inputs or bindings. At this point, we could simply recompute the new output pattern by
recomputing the output modification of the transformation. However, it is also possible to
propagate the deltas through the output pattern instead of performing a full recompute.
This has the advantage of not requiring reinvocation of the transformation and permitting
localization of the deltas to parts of the output pattern.

The possible actions in an output pattern include: creating a constant subcomponent
(this is unaffected by deltas in the input), copying a variable in as a subcomponent, or
copying a binding in as a subcomponent.

3The original match of the input pattern to the AST could be kept as part of the dependency structure
and then a delta to a piece of the AST could be mapped directly to the affected part of the input pattern.
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The possible deltas that affect the output pattern include:

1. A change in an input constant component.

2. A change that occurs in a single output subcomponent that is ,j*ed from a once

occurring input variable or binding.

3. A change_ that occurs in a single output subcomponent that is copied from a multiply
occurring input variable.

4. A change that occurs in multiple output subcomponents that arc copied from a once

occurring input variable or binding.

5. A change that occurs in multiple output subcomponents that is copied from a multiply

occurring input variable.

A type 1 change will (as discussed) render a transformation inapplicable. In the other

change types. if an output subcomponent is tested in some way (for example. asking if it is

of a certain type or value), the transformation may be rendered inapplicable.
In the case where a change occurs to a pattern that appears multiple times in the input.

it may be the case that there is an unintentional violation of an implicit program design

equality constraint between the multiply occurring subcomponents. Before continuing with

replay. we may want to consult the user to verify the intentions.

In the case where a change occurs in multiple output subcomponents versus a single

subcomponent, we have a measure of the expanding versus local impact of change.
The output deltas identified from one stage of propagation now form the input deltas for

the next stage of propagation which continues until all affected transformations are processed.

2.4 A Simplification Example

The best example of how these techniques work would involve a large derivation and a

typical maintenance change affecting only a small part of the implementation artifact. For

example, in a database access system consisting of data storage and retrieval routines, data

indexes, report generators, and other ""1.ations, a u1c, might make : change to an output

specification that simply resulted in the alteration of a few constants in the report generation

routines. Due to space limitations, we will consider a smaller self-contained example that

illustrates how incrcmental rederivation works.
Suppose we view the development of a small program to compute a formula as a trans-

formational development in which the main activities are the application of simp!ification

rules. Starting with an input formula specification of

(P/P * X)/(P + 0)

the derivation proceeds through the following stages using the obvious simplification trans-

forms: (1 * X)/(P + 0). X/(P + 0). X/P. Suppose now that a renaming of variables, a
typical kind of maintenance change, is proposed as an input delta. i.e., change P to Q.

The dependency structure facilitates this incremental rederivation as follows. The trans-

formation that simplified P/P would be identified by the macro-level propagation as possibly
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* affected. The micro-level analysis would, however, show the transformation to still be appli-
cable and would further show the output as not dependent on the input variable (i.e.. i,\A
equals 1 for all non zero X. assumed in this case). Propagation of this part of the input
change would stop. The transformation that simplified P + 0 would also be identified by th•
macro-level propagation as possibly affected. Still applicable, this transformation s output
modification would itself be modified substituting Q for P in the final output.

Instead of rerunning the three transformations, incremental rederivatioii perinits pin-
point updating of only those affected areas of the program. For such a small derivation

history, the gains are not significant. For larger derivation histories and those where individ-
ual transformations are time consuming. this incremental strategy minimizes the amount of
work required to obtain a new artifact.

2.5 The Dependency Structure

Each transformation in a derivatior' sequence cause> a delta to part of ilie software
artifact under construction. The AST for an artifact consists of a set of attributes arid
keywords organized according to the syntax of the relevant artifact source language.

In recording the transformational development, two views of the artifact are maintained:
the original base artifact and the current transformed version. The current version is simply
a caching of the results of tracing the transformational development from the original artifact
through to the current time. The derivation history is captured as a set of extra-linguistic

annotations on the AST rooted initially at the original AST. Thes, annotations capture
transformation applications as a tuple of [ input- pan. output-span. transform, time-stamp I
(arid necessary cross-references). The input-span and output-span are identified as sub-trees
in the AST. The derivation history annotations include copies of the output-span results of
each transformation. The current transformation dependency structure can be traversed by
starting at the original base artifact and following the transformation annotations through

the structure as ordered by the tini-stamp attribute.
Storing this dependency structure will take an amount of memory proportional to how

large the input and output components of individual transformations are and the actual
number of applied transformations. It is clear that this structure can grow quite large. It

can also stay of manageable size. e.g., imagine a 10,000 line program and a 10,000 transfor-
mation derivation each of which touches on average 1/107 of the code, 10 lines. This will
result in an overhead proportional to 10 times program size.4 It is clear, however, that the
dependency structure will continue to grow as the design process proceeds and thus strate-

, compressing this structure must be considered. Use of these strategies will be driven

by experiments regarding the actual memory overhead.
A drastic compression strategy would involve discarding the current start state SO and

creating a new start state from some intermediate point in the derivation. Essentially this
would discard the ability to roll back a derivation to the original input artifact state. A more
moderate strategy would involve keeping the dependency trail for macro-level rederivation.
but eliding information necessary for micro-level recomputation. A compromise strategy
would involve computing the transitive closure of a sequence of transformations and thus

4This is the same size as the estimate given by Neighbors for DRACO(8]
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Figure 2: The AST for (f (g x) y) (+ r y)

compress the information about that sequence into a single virtual transformat ion.

3 Implementation

So far. our implement at ion efforts have coricentrated on inacro-level rederivat ion: wheni

all iniput specificat ion is altered. see which parts of a transformational derivat ion are detini ely

unchanged and which plart.s mia' he chaig(ed. At pres et the implementation replays all-

transformation 'whose applicab1ility depends oil a part that tia\ have chaiitd.

This section of the rePoli describIes the following aspects of t hie cilirrentli inpFlenent at ion:

1. background.

2. recording the derivation hi.ltorv.

3. marking which parts of t he history might be altered when chianging part of thl original

artifact.

4. finding the version of the artifact that is produced as a result of all the unaffected

I ransforms.

5. finding and replaying the possibly affected transforms.

3.1 Background

The implementation is written in REFINE [161. At present. we have a grammar for a

simple Lisp-like syntax.5 As a result, an initial artifact (specification) needs to be given

using a Lisp-like syntax. REFINE will use the grammar to parse an initial artifact to form

an abstract syntax trcc (AST) for that artifact. This AST and its variants are what the rest

of the implementation depends on for recording what is going on: in other words, an AST is

assumed to be the common level of representation.
An example of an AST is that the lisp file (with 2 top level lists) xf (g x) y) (+ x YC*

will get parsed into the AST shown in figure 2.

5The only composite obj,'cts allowed are files of lisp objects. lists of lhst otjects, and a quoted lisp object
The implementation described in this report does not deal with quoted lisp objects.
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A derivation is assumed to be a sequence of transformations applied to the initial AST.

A transformation can be anything that can be applied to a list of AST nodes. We have been

using REFINE rules (named. parameterized transforms). The implementation's requirements
for a transformation are as follows: It should take I or more arguments. The first argument
will be the AST node that may be changed by the transformation."; The other (if any')

arguments are AST nodes that will not be modified by the transformation. but can be used

to provide information to determine if the first node should be modified and/or how to modify
that node. A final requirement is that if the transformation modifies the first argument, the

transformation needs to set the global variable *xformcd-nod * to point to the result of the
modification.

7

An example transformation is the rule

rule po•-abs (abs-expr: user-object. pos-expr: user-object)
at,-i', (a,: ux)' & pos-expr = "(> _y 0)' & term-equal."x.y)

--- > (replace abs-expr by x) & ('xformed-node' < - X)

This r.:', simplifies the expressions that have form of the absolute value of some sub-
expressionl to just that sulb-expression when that sub-expression is declared to be non-
niegal ive. The rule's namne is po.,-at.,. The AST node it may modify is called ab.,-txpr in
1ie rule. and the other ASI node it examines is called pom-(xpr. The rule states that if

1. abs-e'xpr corresponds to an expression of the form (abls o). wiltre o is any expression

"2. po.-Cxptr correspond.- to an expression of the form (? 3 0). where 3 is any expression.
anid

3. n and 3 are equivalent expressions (have ASTs that "look the same")

t(hen

1. replace abs-cxpr withn the node corresponding to a ("simplify" ab.s-x.pr),. and

2. make the variable *xformfd-nodc* point to that node also

3.2 Recording the Derivation History

The hlistory is started by adding attributes to the initial artifact's AST and making a
copy of that AST. One copy serves as a description of the current artifact. The other copy
will record the history of derivations. The nodes in the 2 copies have attributes that point
to the corresponding node in the other copy.

To keep the history current. all transformations are carried out via the procedure apply-
rulk-to-nod. This procedure takes in the name of the transformation and the arguments
for that transformation. The arguments should be nodes from the AST that is serving as a

6For now, if one wants to transform more than 1 node at a time. one can either use as the first argument
the nearest node that is a common ancestor to all the nodes to be altered, or write a group of transformations
that each alter I of the nodes to be altered.

7This is trickier than it sounds. Sometimes a node is modified by modifyirig sone of its attributes. But
sometimes a node is "modified" by" replacing the current object representing the node with a new object.

9



History AST Current Artifact AST

a bs g1 abs g 9

BEFORE

History AST Current Artifact AST
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FILE

LSLIT9 LIST

4---- - -- - - --- "

AFTER

Figure 3: AST's before and after the ab,,-cxpr transformation of (abs 9)

description of the current artifact. apply-rulk-to-nod( will apply the transformation to those
arguments (possibly modifying/updating the current artifact AST in the process) and then
update the AST that is recording the histor'.

A major difference between the AST describing the current artifact and the AST recording
the history is in how apply-rulk-to-nod( updates them. The node being transformed in the
current artifact AST is either modified or replaced to reflect the results of that transformation.
The corresponding node in the history AST is neither modified nor replaced. Instead, after
transforming that current artifact AST node, a copy of the updated (transformed) node
is made (call the copy X) and attached to that corresponding node in the history AST by
making X the value of the xformrnd-into attribute of the history AST node. Then the updated
current artifact node's corresponding history node is updated to be X.

Figure 3 shows what happens to the 2 AST's when applying the abs-expr transform
(shown in subsection 3.1) to the node for the expression/list (abs g) if the original artifact
is a file with the 2 lists (abs g) and (> g 0). With the presence of the expression (> g 0),
the transformation converts (abs g) into g. The solid lines without arrowheads show the
sub-expression/parent-expression relationships among the nodes. The solid line with an
arrowhead indicates that (abs 9)'s xformcd-into attribute points to a g node. The dashed
lines link the ASTs' corresponding nodes for the expression (abs g) both before and after the
transformation. To prevent clutter, the links for the ASTs' other corresponding nodes are
not shown.

When a node in the current artifact AST is transformed. not only does the corresponding
history node store the results of the transformation. that latter node also stores the name
of the transformation. how many transformations have been performed so far on the current

10



artifact AST, and what supporting nodes might have been used by the transformation to
transform the node the way it did.8 An example of a supporting node is the node for the
expression (> g 0) in each of the ASTs: that node is needed by the pos-obs transformation (as
the second argument to the transformation) to tell the transformation that g is non-negative.,
so it is okay to simplify (abs g) into g.

3.3 Marking History Possibly Altered by Changes

After deriving the final artifact, one will often want to change one or more parts of the
original artifact (specification). Then one needs to figure out which parts of the derivation
might be affected by these changes and which parts are definitely not affected by these
changes.

When given a history node to mark as being possibly affected by a change, the routine in
the implementation that does this basically marks that nod( as possibly being affected and
then goes on to recursively mark in a similar fashion

1. the node(s) corresponding to expressions that contain this nod(

2. the node(s) that were created (directly or indirectly,) as a result of transforming this
node (recurse down the zformed-into attributes, and also the sub-expression ]links of
the nodes which were the values of those attributes)

3. the node(s) that were created (directly or indirectly) as a result of transformations that
were supported by (depended on) this node in some way (recurse down the inverted
support links, and also the sub-expression links of the nodes which were the values of
those inverted links)

3.4 Finding the Derivation Results Unaffected by Changes

Once all the changes to the initial artifact have been made, the incremental rederivation
system needs to find the parts of the derivation that wer,! definitely not affected by the
changes and show what the results are from all those unaffected parts. This process is what
saves one from having to replay all the transformations after changes are made to the initial
artifact.

Before going into how the current implementation uses the history to determine what the
results are from unaffected parts of the derivation, the following should be mentioned: the
part of the implementation that actually makes the changes to the initial artifact has yet to
be written. The implementation assumes that those changes are also made to the derivation
history, so that after the changes are made, the derivation history will be in an "in-between"
state: it will reflect the new initial artifact, but still also reflect the (now partially invalid)
original set of transformational derivations applied to the original initial artifact.

To determine the results of the unaffected parts of the derivation, the implementation
performs the following procedure on the top node in the history (call it o). which corresponds
to the top level expression in the now changed initial artifact:

'The supporting nodes also store what transformations might have needed them.
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* Examine a for the following:

1. a is not marked as possibly affected by the changes,

2. a has been transformed at some point (call the resulting node 3). and

3. 3 is also not marked as possibly affected by the changes.

* If all 3 conditions are satisfied, a has been transformed and the transformation is known
not to be affected by the changes made to the original artifact. The transformation
result j3 is now of more interest than a, so the implementation will restart this procedure
with 3 in place of a via a recursive call and return the results of this recursive call.

e If it is not the case that all 3 conditions are satisfied, then either a has not been
transformed. or the transformation has been possibly affected by the changes to the
initial artifact. Now the implementation will make a copy," of a. replace the subexpres-
sion nodes in that copy with the results of recursive calls of this procedure on those
subexpression nodes, link the copy to the original node (the copy is considered the
"current artifact" version of the original node, which is a history node) and return the
now altered copy.

The result of calling this procedure on the top history node is an AST representing the
changed initial artifact after it has been transformed by all the transformations known not
to be affected by the changes to the initial artifact. This AST is now considered the current
artifact. The tendency of this procedure is to recurse down the subexpressions of the initial
artifact copying those subexpressions' nodes to the extent the procedure is not diverted by
some transformation that is known not to be affected by changes to the original artifact
(in other words, known to have the same results both before and after the changes to the
original artifact).

3.5 Finding and Replaying the Possibly Affected Transforms

After the effects of the unaffected transformations have been accounted for, the trans-
formations that may have been affected by the changes need to be found and replayed in the
relative order in which they were originally run. At the end of replay, the current artifact
and history AST's will have been updated with the replayable transformations, and a list of
the unreplayable transformations (if any) will exist. For the most part, finding such trans-
formations just involves searching through the history AST to look for all transformations
that have been marked as possibly affected by the changes.

A complication of this search process occurs when part (call it P) of the result of one
possibly affected transformation (call it a) is used as part of the input to another trans-
formation (call it /3).9 The complication is because at the time /3 is replayed, a will have
already been replayed, so P, which /3 needs, may no longer be there.

The way that the implementation handles this complication is that when replaying /3,
the implementation substitutes P with whatever positionally corresponds to P in the result
of replaying a. So for example, if P is the 2nd element of the 3rd element in the result

93 will also be possibly affected because if nothing else, it is dependent on a, which is possibly affected.
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from the original use of a, then when replaying 3. substitute P with the 2nd element of the
3rd element of the result from replaying a. If this part of the result cannot be obtained for
some reason (e.g.. a cannot be rerun or the result of rerunning o does not have at least 3
elements), then 13 is labeled as unreplayable.

4 Related Work

Concentrating on rederivation in maintenance applications is an interesting simplification
to adopt since it finesses the correspondence problem that occurs in other reuse strategies
such as applications of derivational analogy. Adopting a dependency-directed impact anal-
ysis approach obtains the benefits of typical serial replay approaches without incurring the
overhead of manual requerying and dead-end derivation adaptation while trading the serial
replay time cost for a memory cost.

The replay work in the KIDS system [5] emphasizes a derivational analogy approach [9]
to reuse concentrating on the correspondence problem. This approach is particularly useful
in reusing a previous solution to solve a new but similar (analogical) problem. In our work,
we are assuming the problem is more than similar but in fact substantially identical except
for a defined delta corresponding to a maintenance update.

Baxter takes an approach to reusing lengthy design histories [4] that involves propagating
maintenance deltas through the design history to obtain a reordering of the history into a
prefix sequence that is unaffected by the maintenance delta (or at least reusable) and the
balance of the history that is no longer appropriate. The reusable prefix is then rerun and
problem solving proceeds from that point. This is done taking the goal structure of the design
history into account. We take a maintenance delta approach, like Baxter, but propagate a
delta through a transformation dependency structure instead of the design history. PRIAR
[10, 11] also takes into account the dependency structure of a derivation, in this case a plan,
to find a maximally reusable plan. As in Baxter's work, the unnecessary parts of a reused
plan are removed and new parts are added to establish unmet goals. Other approaches
for reusing maximal parts of a design history and then reinvoking a performance program
include the REMAID [12] experiments.

Feather's work on parallel elaboration via evolution transformations and merging [13,
14, 15] points to a transformational development methodology that should yield highly
replayable derivation histories. Elaboration of parallel design considerations allows non-
interfering parts of a development to emerge separately. Where the parallel paths need to
be merged, the merge process will identify dependencies. Feather assumes a serial replay
process as one mechanism to achieve merging. Our dependency-directed approach does not
seem initially applicable to achieving merge via replay since the nature of the merge process
is to resolve undocumented dependencies. However, the dependency-driven approach should
be highly effective on the resulting replayable derivation histories.

5 Status and Conclusions

We have defined the requirements for our replay capability, have designed the supporting
representations and some of the algorithms, and will be developing the protocol of interac-
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tion for design tools desiring to use this replay service. Most of the implementation for the
macro-level rederivations has been written and tested for "correctness". The exception is
(as mentioned in subsection 3.4) that the part that actually makes alterations to the ini-
tial artifact has yet to be written. The portion of the implementation for the micro-level
rederivations also has yet to be written.

Beyond completing the implementation. it needs to be tested on some decently sized
examples of transformational developments to see how useful the idea of storing all this
history information is. We recently attended KBSE '92, where we met some people who
may be able to supply us with such examples, including Elaine Kant, Henson Graves, Toru
Yamanouchi,1 ° Y. Ledru, and Lawrence Markosian. One critical measure of evaluation of
this approach is memory overhead, which we will need to monitor closely.

The incremental dependency-directed rederivation approach we have described is an ex-
cellent match to maintenance type artifact modifications in which the most difficult part of
the problem is identifying impacted areas. Having performed this impact analysis, mainte-
nance can proceed on only those areas affected. Micro-level rederivation strategies will allow
us to limit those areas even further. The replay delta calculus approach defines the possible
impacts of a maintenance delta.

The KBSA style of program development via rederivation is different than today's code-
based maintenance approach. This style will pose new requirements on software development
tools, a replay capability being just one of those requirements. Another area to be addressed
is a new form of complexity metric beyond. for example, the McCabe metrics [17], to assess
program complexity. The replay delta calculus may permit the assessment of the modifia-
bility of a derivation history which could serve as just the metric required. measuring the
modifiability of the program via the modifiability of its design.
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