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CHAPTER 1
INTRODUCTION

1.1 Overview

This thesis is an investigation into the use of different types of Global
Positioning System (GPS) data together with different types of bias sources. The
intent was to examine their relative effect on the determination of the position of
the receiver and the accuracy of the retrievable information. Selected inputs were
processed through a simulation software package, "Multimode Simulation for
Optimal Filter Estimation (MSOFE)" (Carlson and Musick, 1990). GPS users
and researchers continually attempt to analyze the effects of data and
measurement biases to increase the quality of information gained from the
system. In this thesis, pseudorange and phase range data, together with various
estimated and ignored measurement biases, were simulated and then processed
through the optimal estimation software package. The output of the software--
optimal estimations of the desired quantities--provided insight into the

consequence of the virtually endless combinations of data.
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1.2 Basic Statement of Problem

Figure 1 is a graphic representation of the underlying principle behind this
thesis. What happens to our ability to recover positions when the most-simple,

ideal situation is augmented with other forms of data and perturbed by biases?

REAL
WORLD | NON-IDEAL WORLD  NON-IDEAL WORLD
BIASES | SIMPLE MODEL COMPLEX MODEL

NO
MEASUREMENT | IDEAL WORLD IDEAL WORLD
BIASES | SIMPLE MODEL COMPLEX MODEL

PSEUDO RANGE —p PSEUDO & PHASE RANGE
FIGURE 1
PRINCIPLE BEHIND THESIS

The preliminary stage utilized only the most basic GPS measurement type,
the pseudorange, which is known to about one meter. The second stage, the

incorporation of the phase range, known to about a millimeter, attempted to

4
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3
increase the accuracy of the results. Minus any biases or errors, these
combinations comprised the two "ideal" cases. To these ideal cases,
perturbations in the form of biases! will be added piecemeal. The biases will fall

into three different categories:

a. station-dependent biases--i.e., station coordinates in x, y, and
z; and receiver clock biases?;

b. observation-dependent biases--i.e., tropospheric delay, iono-
spheric delay, and phase integer ambiguity biases; and

¢. satellite-dependent biases--i.e., satellite clock and radial orbit

biases.

The study of adding additional data and biases will be accomplished with
the MSOFE software package. This software provides for Kalman filtering--a
sequential, recursive, mathematical data adjustment procedure designed to
provide optimal estimation of errors within a linear system. Gelb (1992)
describes an optimal estimator as that which is generated by

a computational algorithm that processes measurements to deduce a
minimum error estimate of the state of a system by utilizing: knowledge

of system and measurement dynamics, assumed statistics of system noises
and measurement errors, and initial condition information.

In this thesis, the term "bias” will be used for those random effects on the measurement which
must be modeled (systematically) and corrected for in order to obtain an accurate GPS range
measurement (Wells, 1987).

2Although these quantities are typically estimated in a GPS adjustment, they are considered biases
here because they influence the GPS measurement and must be accounted for as such.

&
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4
Gelb further states that this form of estimation has some distinct advantages.
First, the data processor (here, the computer program) is able to minimize the
estimated error in a well-defined, statistical sense. Second, the processor is able
to utilize all measurement data along with any a priori knowledge about the
system (Gelb, 1992). This estimator is said to be used in a "filtering” capacity
when the time at which the information is desired is the last available
measurement epoch. That is, no future data are available for use in determining

estimates at a desired epoch.

1.3 Research Approach

The basic approach to this research took many steps. First, attempts were
made to learn the inputs and output of the MSOFE software. This program was
actually the Kalman filter "shell" into which the proposed system designs had to
be integrated. The filter design procedure began with the development of
mathematical models to describe the actual physical system, the measurement
system, the disturbance process, and the measurement error process (Musick,
1978).  In the strict context of the MSOFE program, the program's
documentation distinguishes between the "truth” and the "system" (Carlson and

Musick, 1990) as follows:

Truth: Defined as all real-world states related to the filter
estimation process. This model is the starting point, from which
less significant states are systematically eliminated in an effort to

implement a more (computationally) practical system.

hM



System: A subset of the “"truth," defined by all significant real-
world states affecting the filter estimation process. Included are the
actual values of the filter states themselves plus higher-order

measurement error states that significantly affect the filter states.

Within this software, the "truth" is deemed the full-order representation of
the real world, the "filter" is the first-order representation, and the "system” is
the second-order representation’. The program, MSOFE, requires adequate
mathematical representation of both the "system" (also called the "system truth")
and the "filter" models. The main focus in this thesis was to examine the effects
on the "filter" performance due to higher-order error sources present in the
"system truth” model (absent in the simplified "filter" model). The challenge
was to develop a "filter” model that contained a sufficient number of states and
sufficient measurement information to represent adequately the physical
phenomenon of interest, here the GPS process and measurement models. Thus
the model used for filtering was a much simpler model/subset of the system truth.
Four station-dependent bias sources (the station coordinates x, y, and z; and the
station clock) were maintained within the "filter" model. An addition of
ambiguity unknowns was added when satellite phase data were also considered.
The "system,"” which represented the real world, contained combinations of the

three different bias types listed above.

3Here, the "real world" refers to the world as is seen from day to day--a state of being which is
impossible to accurately model. Subsequently, the term "real world" will be used to define the
model corrupted by biases (versus the "ideal world” with no biases). The distinction will be made
again later for clarity.

r @ &




The first step in writing software code to utilize the MSOFE program, once
the details of the program were deciphered, was to develop the system model and
the correct measurement model for the GPS pseudorange and phase range
measurements. Recall that both the "system" and the "filter” models had to be
distinguished between for MSOFE to appropriately estimate the desired

quantities.

The incorporation of biases into the pseudorange and phase range
measurement models was a step-wise procedure. The "filter's" state vector--the
vector of estimated quantities--contained the four error sources inherent in any
application of GPS: the station-dependent biases, listed above. Augmenting
these basic four, biases were added to the "system truth" state vector to better
represent the GPS case. First added were the observation-dependent biases and

integer ambiguities.

Next, tropospheric delay models were added for phase and range
measurements. The model for calculating the delay was taken from a currently
used Hopfield model (Goad and Goodman, 1974). The delay caused by the
ionosphere was next. Values for this bias source came from the model defined
by the GPS receiver Interface Control Document (ICD), the model taking its inputs

from the information within the broadcast ephemeris (Leick, 1990).

In an attempt to examine different measurement weightings, next was

created a measurement noise model which depended on the elevation of the

i 500t SRR



7

satellite with respect to the station. Two different models were used: first, with
the measurement noise dependent on the tropospheric delay of each satellite, and
second, on the ionospheric delay of each satellite*. The models weighted each
error source based on the satellite's elevation, the lower satellites contributing
less weight than the higher ones. Based on the mathematical model, the four

station-dependent unknowns required the presence of [at least] four satellites to

’
estimate uniquely their values. However, only the addition of redundant satellites
would affect the outcome using this elevation-dependent model. Results were
expected to change only after the addition of a fifth satellite, because the
J
weightings for the four-satellite case have no influence due to the lack of
redundancy.
’ o
The next iteration explored the use of pseudorange and phase range
measurements using an equal measurement uncertainty of +1 meter.
’
Next, the satellite-dependent biases were added to the model.
Corresponding states in the state vector were (per satellite) two trigonometric
coefficients and one satellite clock error term. ,
%
Finally, the issue of cycle slips was investigated by introducing a simulated
cycle slip into the set of "filter” equations. R
4Both tropospheric delay and ionospheric delay are functions of the satellite's elevation. These »
models will be called "elevation-dependent” models.
|
»
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The measurement data and biases in this thesis were all simulated: each piece

of information was calculated at each epoch. Attempts were made to derive
measurement values that emulated actual observations as closely as possible. Input
for calculating the data came from actual GPS broadcast ephemeris information and
common error model schemes. The actual time tags "seen" by the broadcast
ephemeris in generating orbit information were incremented in order to simulate the
movement of the satellites during the test time. After every new iteration, the
outputs of the filter were examined. Interest lay in the effects of these iterations on
the position uncertainty of the station/receiver. Therefore, the results were
presented in the form of graphs showing the receiver's position uncertainty versus
time, where the uncertainty was presented as an wnscaled dilution of precision
(DOP) in meters®. The results from each iteration were compared to the ideal cases
and similar combinations of biases. Details, results, and further information are

presented in Chapter IV, Research and Conclusions.

5 Actually, this uncertainty is the square root of the trace of the filter's error estimation
covariance matrix (covariance of estimated-minus-true states). DOP's, as such, are in units of
"meters per meter,” and are defined as the square root of the trace of the filter's error estimation
covariance divided by the uncertainty of the measured variable. Thus, here, the uncertainty was
presented in meters.

o -
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CHAPTER II
THE EXTENDED KALMAN FILTER

2.1 Overview

This chapter is designed to provide a review of Kalman filtering definitions,
techniques, and applications to this thesis topic. Some fundamental knowledge (by
the reader) of Kalman filters is assumed. The Kalman filter theory, as it pertains to
the software package employed in this thesis research, will also be addressed. If
further details about the Kalman filter are desired, the reader may obtain helpful

information in the textbooks by Brown (1983), Gelb (1992), and Maybeck (1979).

2.2 Introduction to the Kalman Filter

According to Maybeck (1979), a Kalman filter is an "optimal recursive data

processing algorithm”"! . The definition may be broken up into parts to help clarify

it.

IThe concise definition of a Kalman filter differs from book to book. Fundamentally, the Kalman
filter must be thought of as a concepr and not as a tangible item such as an algorithm. Maybeck's

definition expounds upon this idea by implying that the algorithm is the means by which the
concept is carried out.




"Optimal" implies that the filter can incorporate all information
provided to it. It processes all available measurements to
estimate the variables of interest to the developer. "Optimal"
also means that errors are minimized, in some respect.
According to Maybeck, the filter is able to utilize knowledge of
system and measurement dynamics, statistical descriptions of
any noises and biases, and initial conditions of the variables of

interest (ibid).

"Recursive" implies that the filter algorithm does not require the
storage of huge amounts of data. As the data are processed,
the updates are made, and then the processed data are not
needed for any subsequent updating. Information pertaining to
the past data is maintained sequentially within the update

process2.

"Data processing algorithm" implies that the filtering procedure
is realized through the incorporation of discrete-time
measurement data, rather than continuous time inputs. The
Kalman filter not-so-aptly shares its name with the type of
"black box filter" known to the electrical engineer, but here, the

filtering process is generated more typically by a computer

10

*

ZRecursive adjustment of data is also called "sequential” adjustment, in which measurements are
incorporated sequentially, as they become available. This method is in contrast to the "batch”
adjustment, in which all available measurements are used together, processed all at the same time.

R IR IR e e s
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program. However, the main idea behind the two types of
filters is the same--imperfect inputs are processed into outputs

which are optimized, with respect to the model assumptions.

Figure 2 shows the typical application for a Kalman filter (Maybeck, 1979). A
system is driven by control variables, which are affected by errors and/or biases.
The difficulty in "solving" the problem at hand is that knowledge of the system

inputs and outputs may be the only information the user has to determine

! SYSTEM ERROR SOURCES |
1 i
| i
| ! |
| CONTROLS i A PRIORI
1 ]
| SYSTEM '. INFORMATION
1
! '
| : |
| SYSTEM ! KALMAN | SYSTEM
! STATE !
E 5 FILTER ESTIMATE
! ; 7 }
| :
; [MEASUREME !
| OBSERVATIONS
| T i
| !
i MEASUREMENT BIASES |
FIGURE 2

TYPICAL APPLICATION OF A KALMAN FILTER
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the state of the system. The variables of interest will be called the system "states"
and may or may not be directly measured. The measuring devices are the means for
using collectible data to solve the problem of finding the estimates of the variables.
Several different measuring devices may be available, as well. However, these
measurement devices are also affected by error sources, usually in the form of biases
and noises. The observations, together with the knowledge (current and prior) of
the system and measurement devices, are combined in the Kalman filter. Prior
knowledge may include the a priori knowledge of the system description and the
measurement models. The output--the desired results--are optimal estimates of the
variables of interest, more accurate than the estimates based on the individual

measurements (Stacey, 19°1).

The filtering process, as was indicated above, attempts to derive the optimal
estimates from data obtained from the real world--a typically noisy and error-laden
environment. The filter is designed to propagate the conditional probability density
of the desired quantities, meaning the shape and location of the function depend on

the measurements taken (Maybeck, 1979).

A further assumption with respect to the Kalman filter is that the system be
described by a linear model, and the system and measurement noises are white and
Gaussian (ibid)®. The "linear" requirement may be expanded to a non-linear system,

provided the set of system equations is linearized about some nominal point or value

3 These two requirements are necessary for the maximum likelihood interpretation of the optimal
estimate to hold true.

®)
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not too far away (relatively) from the truth. This linearized model then becomes an

error model, and filter process outputs will yield error estimations.

The "whiteness" of the noise means that the noise is not correlated in time--
knowledge of the noise at any time, 7, will not allow the user to predict the noise at
time, #+1. The actual concept of the "whiteness” of noise is just an idealized means
for visualizing the noise's "wideband" behavior in a "narrowband" system.
"Gaussian,” on the other hand, pertains to the amplitude of the probability density,
taking on the shape of a bell-shaped curve, called the normal probability density
JSunction. The first- and second-order statistics of a noise process--namely the mean

and variance--define the Gaussian density.

2.3 The Kalman Filter Models

Gelb (1992) states that before the filtering process can be successfully applied,
proper modeling and realistic performance projections must be addressed. Three

steps must be incorporated into the practical application of estimation theory:

a. design and computer evaluation of the "optimal" system
behavior;

b. the design of suitable "suboptimal” system with cost constraints,
sensitivity characteristics, computational requirements, meas-

urement schedules, etc.; and
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c. the construction of and test of a prototype system, making final

adjustments or changes as warranted.

2.3.1 Basic Statistical Definitions

The expectation of a random variable, x, is defined as the sum of all values the
random variables may take, where each value is weighted by the probability density
with which the value is taken (ibid). Also called the mean value of x, the

expectation of x is given by
E[x] =/*2 x f{x) dx (2-1)
where f{(x) is the probability density function. In a probabilistic sense, the

expectation is the value to which the average of a number of observations of x will

tend to become as the number of observations increases.

The mean squared value, describing the distribution of x, is the expectation of

x?, written as
E[x?] =2 x* fix) dx (2-2)
and the root-mean-square (rms) is the square root of the estimated E[x?]. The

variance (c*) of x is defined as the expectation of the deviation of the random

variable from its mean (ibid):

*)

{ L

»
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o’ =" (x - E[x])*f(x)dx (2-3)
= E[x*]- E[x]?

The square root of the variance is called the standard deviation of the random
variable. One should note that the rms value and the standard deviation are

comparable only for the zero-mean random variable.

The covariance, the measure of how the error in one random variable is
related to the error in another, is the expectation of the product of the joint

deviations from their respective means, written as:

E[(x - E[x))y - EyD] = I'Z I'Z (x - E[x])(y - Ely]) £, (x.y) dx dy
= E[xy] - E[XJE[y] (2-4)

where f,(x,y) is the joint probability density function of two random variables, x

andy.

The normal probability density function, which characterizes the "Gaussian"

process, is expressed as

(x—p)’

fx)= cs/lﬁ expl- 2¢? ]

(2-5)
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where u is the mean and o is the standard deviation of the random variable x. One

may write the n-dimensional Gaussian vector X as in Equation 2-6*.

1~N@u %) (2-6)

Equation 2-6 represents the standard notation for the random, Gaussian (normal)

vector, X, with mean p and covariance matrix Z.

2.3.2 Kalman Equations
This section will outline the equations common to the Kalman filter
mathematics and practical application. These equations are employed by MSOFE.

2.3.2.1 Transition Matrix

The dynamics of a continuous system may be represented by the first-order
differential equation’

x(® = Fx(®.) x(®) + Gx).)w(t) + Lx(),1) u(t) (2-7)

where x(t)

random state vector

w(t)

random forcing function

4The holdface notation indicates a matrix, while the underline notation indicates a vector.

3As all these vectors and matrices are time-dependent, the reference to time t will be dropped from
subsequent equations, unless needed for clarity.

e @,m @_'
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u(t) = deterministic (control) input vector
F(x(t),t) = homogeneous state dynamics matrix
G(x(t),t) = system process noise mapping matrix

L(x(t),t) = control input matrix.

Typically, the relation underlying Equation 2-7 is a non-linear ordinary differential
equation, which must be linearized to be utilized in this context. This equation must
be known together with stochastic prior information used in the linearization
process, if Equation 2-7 is derived from a non-linear equation, in order for the
process of Kalman filtering to hold (more about the linearization of this equation
later). In this thesis, the GPS problem did not demand any controlling inputs, so the

deterministic control term Lu = 0, and Equation 2-7 for this case becomes

x = Fx +Gw (2-8)
Further, the mapping matrix G is typically represented as the identity matrix I, as
dictated by the prior information used for linearization of the differential equation (if
necessary). When G = I, the system noise remains unaltered (unscaled) as white.

Such is the case here. Therefore, Equation 2-8 is written as

x =Fx+w 29

The differential equation given above must be sufficiently general such that any

motion can be described through one of its solutions. If the state vector and forcing

i

@ &




18
functions in Equation 2-9 are defined at time t, then the states at any other time can

then be predicted.

As an example, one may substitute into Equation 2-9 a particular dynamics

matrix D for F and a particular white noise w' for w to get Equation 2-10.

X =Dx+w (2-10)

Descritizing Equation 2-10 and then through rearranging, one obtains:

Km —lt - DE + ﬂl (2_11)
At
X —X, ~Dx At+ w' At (2-12)
X =X, +Dx At+ w' At (2-13)
~(T+DAt)x + W At
= Xa= (D(H'l’[) X, ty (2'14)

where u, is the integrated noise vector and ®(t+1,t) represents the transition
matrix. The transition matrix is used for approximating the state vector at time t+1

by having prior knowledge of the state vector at time t. Equation 2-9 is actually the

R
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equivalent to Equation 2-14; the former the continuous representation, and the latter

the discrete representation®.

2.3.2.2 Measurements

Gelb (1992) equates the importance of measurements to the observability of
the system. According to Gelb, Gauss defines the observable system as one which
possesses the number of observations that are absolutely required for the
determination of the unknown quantities. The basic measurement equation may be

seen in Equation 2-15.

z=Hx +v (2-15)

where z = z(t) = the measurement vector

= H(x(t),t) = matrix that linearly relates x to z (observation matrix)

white measurement noise vector.

i<
i

6The distinction between continuous and discrete must be made. Although the system process is a
continuous one, the sampling of information (measurements, bias determinations, etc.) is
conducted at specified, discrete time intervals (Brown, 1983). In this thesis, the sampling times
are intentional and under the control of the programmer. As the system is considered continuous,
the Kalman filter equations will be modeled for a continuous-time linear system with discrete
measurements.
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2.3.2.3 Errors

Recall Equation 2-9, assumed now to be a linear differential equation having
been written in terms of the "whole value" state variables. However, the models
employed in this thesis are non-linear and must be linearized, forming error models.

Thus, the state vector written in terms of the error state variables, becomes

ox = Fox+w (2-16)

where F; = 'ZL Likewise, for the "whole value” measurement model, Equation 2-
X

J

15, the measurement error model becomes

0z =HOXx+ ¥ 2-17)

where H;, = —-.
}oox

In Equation 2-18, one sees the representation of the error in the estimate
vector (with the "tilde" ~) in terms of the estimated (with the "hat" A) and the

actual state value.

(2-18)
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The covariance matrix Pof ¢, will therefore be

P = E[g,¢, (2-19)

assuming that x is an unbiased estimate of X. To cite a small example from Gelb

(1992), given the error estimate as the two-state vector in Equation 2-20,

g, =[ . 1] (2-20)

the covariance P will be (under the assumption that the expectation of each

respective state is zero)

E[€]] E[&z,]

Eee,] EE] | 21

An important item to note is that the square root of the trace of P is the rms length

of the uncertainty of the estimated state vector X.

The covariance for the white noise forcing function Gw is defined as (Gelb,

1992)

E[(G,w G . w )] =G QG d(t-1) (2-22)
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where Q is the process noise strength matrix and 8 is the Dirac delta function.
Information for Q comes from the prior information used for the linearization of
Equation 2-8. If one lets the process noise distribution matrix G be the identity

matrix, Equation 2-22 becomes

E{w,w]]=Q35(t-1) (2-23a)
T Q for t =t
:>E[w(t,)w(tj) 1={ 0 for t %t (2-23b)

which i1s now the covariance matrix of the white noise w. One can also write that

the mean of this white noise vector is

K, =E[w]=0 (2-24)

Likewise, for the white measurement noise vector v, one can write that the mean is

(Maybeck, 1979), assuming proper modeling in Equation 2-15,

u, =E[v]=0 (2-25)

and the covariance is

R for t, =t

E[!(t.)‘_/(t,')rlz{ 0 for t #t

(2-26)

. @
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One should also note that no correlations occur between w and v, as seen in
Equation 2-27.

E[w(t;)v(t;)]=0 (2-27)

2.3.2.4 Update Equations

The process of the Kalman filter is designed to "propagate" (by numerical
integration) the error state vector and its covariance from the instant in time
immediately following the most recent measurement update t' to the instant in time
immediately preceding the next measurement update t;,, (Stacey, 1991)’. The
values for the state vector and covariance matrix at t_, are the predicted values
from which the next updates are made (using the measurements). The following
differential equations used in this integration are given (without proof) in Equation

2-28 and 2-29 (Maybeck, 1979).

x = F& (2-28)

P = FP + PFT + GQGT (2-29)

at some time t; with the initial conditions

"The notation "super -" indicates the condition prior to the measurement update (the predicted),
and the "super +" indicates the condition after the update.
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X =Xx(t))

P=-P) (2-30)

as provided by the measurement cycle at time t,.

After propagation, the estimates of X and P are updated, meaning that state
estimates are revised based on new information (Stacey, 1991). Recall Equation 2-

15 for the measurement model. One can write the updated state vector as

X" =x"+KAz (2-31)

where Az is the measurement residual and K represents the time-varying Kalman
filter gain matrix, an integral element in the update equations (to be explained later).

The measurement residual may be written in terms of the state prior to the

measurement update (x~, thought of as the predicted state vector), changing

Equation 2-31 to Equation 2-32:

x"=x" +K(z-Hx") (2-32)

Substituting in the measurement z, written in terms of the actual state at the time t,

Equation 2-32 becomes

X" =x" +K[(Hx +v)- Hx"] (2-33)

@j
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By letting Equation 2-34 represent the error of the state based on the prior value of

the state,

8x” =x"-x

then Equation 2-33 may be written as

X" =x" +K(-Hdx" +v)

Subtracting x from each side and defining

ox" =x"-x

as the error of the state based on its updated value, one gets

dx" =8x™ +K(-Héx™ +v)

(2-34)

(2-35)

(2-36)

(2-37)

Rearranging Equation 2-37 gives the equation for the state error vector update:

§x" = (1-KH)5x™ +Kv

Then, the covariance of this updated state's error is

P' =(I-KH)P (I-KH)" +KRK"

(2-38)

(2-39)

@
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where R is defined in equation 2-25 and P~ is the predicted covariance matrix prior

to the measurement incorporation.

The Kalman gain matrix K should be discussed. This gain is a means for
weighting new information as it becomes available to the system. This new added
information can be thought of as causing the difference between the actual
measurement and the filter's estimate of this measurement (Stacey, 1991). The
Kalman gain matrix is designed to improve the estimate of the state vector by using
information contributed by the observations. The gain matrix uscs knowledge of
measurement noise statistics and filter-computed covariances from previous epochs
to make the updates. Without proof, the Kalman gain matrix for a continuous

system/discrete observation model is (Gelb, 1992)

K=P (H) [HP (H) +R]" (2-40)

where H™ = H(X™). This value of K is the precise value that minimizes the trace of
the P* covariance matrix (ibid). Substituting Equation 2-40 into Equation 2-39, one
gets the optimized value for the updated estimation error covariance matrix, seen in

Equation 2-41.

P =(I-KH)P~ - (2-41)

r @
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2.3.2.5 Updated Equations with Real-World Errors

The previous section described the update procedure when standard
measurement models (with noise only) are used. However, in the real world, the
measurement models and state equations should include biases due to real-world

problems3. The more realistic measurement model may be written as

z=Hx-My +v (2-42)

where ¥ = the vector of additional random error states (here, called biases),

M = corresponding mapping matrix, and

the negative sign is used only as a convention.

The update of the state vector may now be written, as in Equation 2-31, as

x"=x"+K(Hx-My +v-Hx")
=x~ +K(-Héx" —My_+g) (2-43)

Following the same procedure as in Section 2.3.2.4, one can write the state error

vector update equation as

8x” =(I-KH)3x" —~KMy +Kv (2-44)

8Recall the definition of "bias” here is not defined in the statistical sense, but implies a random
influence on the GPS measurement which must be modeled (systematically) and accounted for.
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»
and the covaniance of this updated state's error is x
P* = (I-KH)P"(I-KH)" +KRK " + KMP M'K" (2-45)
»
where P, is the covariance of the error/bias (real-world) vector; E[y] = 0; and no
correlations exist between y and v or w, respectively.
»
One should note a very important point in Equation 2-45. The last term
represents the addition to the state vector's uncertainty due to the presence of the
»
unmodeled errors in the observation equations. MSOFE enables the user to look at
both of the following?:
» ®
a.  The output of the filter, i.e., the filtering process's estimate of
the error it commits in estimating the entire filter state vector
(represented by Equation 2-39); and
»
b. The "true" state vector estimation error, i.e., the "true"
covariance of error in the filter-computed state as a random ,
process driven by the true, real-world system state (represented
by Equation 2-45).
>
Furthermore, one must assume here that the y vector is a vector of "random
biases" which affect the GPS measurement and does not contain quantities to be
| 9The distinction here is one strictly imposed by MSOFE. Recall that MSOFE distinguishes »
between the "system truth” (or equivalently "system”) and the "filter" state vectors.
|
»
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estimated by the filtering process. In turn, the covariance matrix, P,, will be

considered bounded. This assumption will allow one to consider only defined

covariances and ignore the unique situation when P, becomes unbounded (i.e,

approaches infinity).

4

N

@




CHAPTER 111
GLOBAL POSITIONING SYSTEM

3.1 Basic Theory

In this chapter, some of the basic concepts behind the Global Positioning System
(GPS) will be summarized, beginning with a short background through to a summary
of the measurement model employed in the research for this thesis. A moderate
amount of information will be assumed already known by the reader. The topics
represented here play a roll in the subsequent chapter dealing with the actual research.
For further details about GPS theory, the reader may obtain helpful information from

the textbooks by Leick (1990) or Wells (1987).

3.1.1 Background

The concept for the GPS is to serve the United States' military community. The
United States Department of Defense (DOD) designed the system to be a military
navigation system based on a world-wide coverage of a constellation of 24 satellites,
or space vehicles (SV) (Stacey, 1991). The design for the satellites' orbit and earth
coverage intended to provide 24-hour weather, navigation, timing, and surveying

capabilities (Leick, 1990).

30
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The designed constellation of satellites was originally to give the best possible
coverage over the largest area of concern (in the military field, the two areas of ,
concern were the southwestern continental United States and off the northeast coast
of the United States in the North Atlantic Ocean). The satellites are positioned in
orbits approximately 20,000 kilometers above the surface of the earth. The satellites ,
have a orbital period around the earth of 12 sidereal hours. Due to the differences
between the sidereal and solar time, the satellites appear almost 4 minutes earlier each
day, the coverage advancing by approximately 30 minutes each week (Wells, 1987). ,
The average designed life span of each satellite ranges from S to 7.5 years. The
satellites are equipped with solar panels which charge batteries during periods of , °
sunlight. Some basic functions of the satellites are (ibid) :
(a) To receive and store information transmitted by the system operators; ,
(b) To conduct limited data processing using an on-board microprocessor;
(c) To maintain accurate time by means of several highly accurate oscillators;
(d) To .ransmit information to the user through propagated signals; ,
(e) To maneuver using thrusters controlled by the system operators.
Due the height of the orbit of the satellites, approximately three times the radius ,
of the earth, any particular satellite may be visible to the user for approximately 5
hours each revolution. Based on the configuration, time of day, and location on the
earth, the user may "see" 4 to 10 satellites above the horizon at any one time (ibid). ,
However, due the geometry of the satellites with respect to the station (user), the
>

k———-—-——-——-—-—-—-—-——-———————-—-———-—-——d



. .
s
®
32 N
ability to recover positions will vary from time to time. In fact, the geometry of the x
satellites with respect to a receiver plays a major role in the user's ability to recover '
station position accurately. Think of the satellites in the sky and the receiver on the R
ground forming a polyhedron; the larger the volume of the polyhedron, the smaller
the recovered position uncertainty (the ideal geometry or positioning of the satellites
over the receiver places one satellite overhead and the other three on the horizon, 120 )
© apart in azimuth. This geometry (ideally) allows for the best recovery of the
receiver's position (ibid)). As the satellites move through the sky, this geometry will
change, as will the volume of the "polyhedron" and the recovered position )
uncertainty.
3.1.2 Signal Structure
g ’ [
The fundamental frequency for transmission of information by the satellites is
defined as f, = 10.23 MHz. Each satellite transmits two carriers at two different
)
frequencies:
L, =154 f =157542MHz 3-1)
]
L, =120f, =1227.60 MHz (3-2)
The L, is modulated with two types of code (P-code and C/A-code), and the L, is ,
modulated with only one type of code (P-code); both contain the navigation message.
The codes are called pseudo-random noise (PRN) codes and consist of a series R
of +1's and -1's emitted at particular frequencies. If the code value is -1, the carrier
>

 ————————— e
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phase is shifted by 180°; if the code is +1, the carrier is unchanged. The phase shift of

the signal may be seen in the following picture, indicated by the arrow in Figure 3.

Y

AT

FIGURE 3
REPRESENTATION OF PHASE SHIFT OF CARRIER PHASE

The C/A-code (or coarse/acquisition code, also more recently called Standard
Positioning Service (SPS)) is the code available to the civilian community. The C/A-
code is a relatively short code of 1023 bits, with a duration of 1 millisecond (msec)
and an emission (chipping) rate of 1.023 Mbps (megabits per second) (Spilker, 1980).
The chipping rate may be thought of as the rate at which the phase is shifted, the
means for determining the beginning of a piece of data (e.g., the navigation message).
Each satellite transmits mutually exclusive C/A codes, making it possible to
distinguish signals received simultaneously from the satellites (Leick, 1990). The

C/A-code is only available on the L, carrier.

Considering the speed of light, ¢ = 3 x 10° mVs, the length of the C/A signal is
approximately 300 meters. One can expect the uncertainty in position associated with

this code to be approximately 1% of the code length, or ~ 3 meters (ibid).
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The P-code (or precise code, also more recently called Precise Positioning
Service (PPS)) emits signals at 10.23 Mbps, repeating itself every 37 weeks (267
days). This code is initialized at the beginning of each week (the "GPS week" is
defined as the time from midnight Saturday to Sunday (ibid)), but is not mutually
exclusive as is C/A code. However, each satellite is assigned its own weekly portion
of the code, and some weeks will not be utilized, because there are less than 37
satellites in the GPS. The P-code is available on both the L, and the L, carriers.
With an approximate code length of 30 meters, the uncertainty of the position

recovery is ~ 0.3 meters = 30 centimeters.

A third type of code, the Y-code, is similar to the P-code, but is classified by the
DOD and is usable only to those users who have access to the encryption key. The
intent of this type of code is to provide a secure code to which other users cannot

deny its access. This method of selectively providing access to users is called anti-

spoofing (AS)L

Both carrier frequencies transmit the navigation message. This message is a 50-
Hz stream of data designed to notify the user of the position and other pertinent
information about the satellite. The message contains information on the ephemerides
of the satellites, the GPS time, the behavior of the clock, and any system status

messages.

! This type of code will not be addressed further in this thesis. but is mentioned only as background
information.
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The DOD has chosen to maintain controls on the users of the GPS by a method
called selective availability (SA). When desired, the Master Control Station (the
central location for updating broadcast and satellite orbit information) located in
Colorado Springs, Colorado, will transmit degraded information. The broadcast
information may include "orbit perturbations" which will lead to degraded

ephemerides. The atomic clock times may also be perturbed (dithered)2.

3.1.3 Pseudorange

The first and most common type of measurement which can be made by the
GPS receiver is the psendorange. In the simplest terms, the range is the distance
between the satellite and station (receiver). As this measurement is impossible to
explicitly measure with ordinary measuring devices (due to the motion of the satellites
and the possible motion of the receiver), the GPS receiver uses the timing of signals
to arrive at the satellite-station distance. The time the signal takes to travel from

satellite to station is given by

At=t, —t°, (3-3)

where the "R" and "S" denote "receiver" and "satellite,”" respectively. Its equivalent
"distance" would be cAt, where c is the speed of light. This value would be the exact
range if neither the clock in the satellite nor the clock in the receiver were in error.

Alas, this exactness does not exist in the real world. We expect both clocks to be in

2Sclective availability scrves to degrade instantancous, real-time position calculations, but post-
processing methods could allow a more accurate determination of positions.
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error by some amount, so neither clock contains the correct time. The measured
* .
time, t, on either the satellite clock or receiver clock can be given by ‘
]
t=1t*+3t (3-4)
where t* = the correct (true) time, without errors, and
)
8t = the correction necessary due to the inaccuracies in the clocks.
Therefore, the actual range measured by the GPS receiver, barring any other
L
error sources or biases and using the definition for range above, will be
R=ct, —ct’ (3-5)
) |
= R =c(t} +8ty ) —o(t® +5t°%)
= c(t}, —t%") + ¢ty — bt
’
= p +cbt, — 8t (3-6)
with p representing the true geometric distance between satellite and receiver. The
’
value, R, is called the psendorange because of the presence of clock errors and their
3 addition into the calculation of the range. To be more precise, Wells (1987) defines
the pseudorange as the
’
time shift required to line up a replica of the code generated in the
receiver with the received code from the satellite multiplied by the
speed of light
»
’

R —
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where the "time shift" is the difference between the time of the received signal and the
emitted signal, measured in the receiver's and the satellite's time frames, respectively.
The navigation message from each satellite contains the necessary information for the

evaluation of the satellite clock offset, 5t°, in Equation 3-6.

The distance could also be found by calculating the length of the vector from

satellite to receiver in Equation 3-7,

P8 = —x )+ (Y —y ) + (25— 7). (3-7)

where pf( = range from satellite, S, at epoch t° to receiver, R at epoch tz; and
X, Y, z (normally) denote the earth-centered, earth-fixed coordinates of the

satellite and receiver. Therefore, including clock errors, the pseudorange becomes:
R} =pj +cdt, —cdt’ +€5 (3-8)

where pj is found using Equation 3-7,
cdt, —cBt® is the clock correction term from Equation 3-6, and

€x is the noise term.

3.1.4 Phase Range

The second type of measurement we can extract from a GPS receiver is the
phase. According to Wells (1987), the carrier beat phase is "the phase of the signal

which remains when the incoming Doppler-shifted carrier is differenced (beat) with
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the constant frequency generated in the receiver." In simple terms, the phase is the
&
number of cycles the carrier travels from satellite to receiver3. The phase range is
therefore the phase converted to an equivalent distance in meters (by multiplying by
»
the wavelength of the signal). Here, phase range measurements will be used. Just as
with the pseudorange, the phase range is impossible to measure explicitly. The
equation for the phase range measured by the receiver is
’
(szz(tk)':(ps(t'r)_(pg(tn) (3'9)
’
where t, = the time at the receiver, and
t; = the time at the transmitter = t; - % where p = the distance traveled in
a vacuum and ¢ = the speed of light. » PS
This equation for phase ranges differs from that of pseudoranges because the
latter uses the differences between times, and the former differences phase range )
values at the satellite and receiver. The phase is made up of a whole number of
wavelengths between satellite and receiver plus the fraction of wavelength remaining.
It is this fraction which is actually measured by the receiver; the whole number )
(integer) is the more difficult value to determine. Therefore, one may think of the
phase range as (without the presence of any other biases)
)
s _ .S s
0r(tr) = 0 (t1) — 0x (tz) - Py (3-10)
’
3However, this is not what is measured on the GPS receiver. This will be explained later.
»
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where the first two terms represent the non-synchronicity of the two clocks expressed
in wavelengths, and p} is the geometric range from Equation 3-7. If the clocks were
perfectly aligned, the measured phase range would exactly equal the geometric range

(barring the presence of any other biases or errors).

Recall the values for the frequencies of the carrier and the two codes. The
carrier wavelength is much shorter than either of the codes' wavelengths. Using the
same logic used above for pseudoranges, one can expect the precision of the phase
ranges to be much better (higher) than that of the pseudoranges. For the L, carrier,
the wavelength is approximately 19 cm. Using the typical value of 1%, the phase
measurements can be made to approximately 1% of the wavelength, or approximately
0.2 cm =2 mm. As good as this appears on the surface to the potential users, special

problems plague the phase measurement technique, as will be mentioned a bit Jater.

3.2 Measurement Biases

Because the real world is continually plagued with imperfections, the
measurements attained from the typical GPS receiver will not be representations of
the exact range between satellite and receiver. Three types of biases* will be covered

in this thesis:

4Recall that this thesis dcfines the "bias" as any random effect on the GPS measurcment which must
be (systematically) modeled and correct for in order to obtain an accurate range measurement. This
definition may conflict with others' notation for the "bias” as a non-random quantity. The reader
must keep these differences in notation in mind.

A . ettt
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a. Station-dependent biases,
b. Observation-dependent biases,

c. Satellite-dependent biases.

3.2.1 Station-Dependent Biases

As was mentioned above in Section 3.1.3, the receiver clocks contain some
error. One must account for this error to ensure the clock's bias does not affect the
range values. Similarly, the data file taken from the receiver gives only preliminary
information about the coordinates of the station; these coordinates are just
approximations. In fact, these four values (station clock and the three station

coordinates) are frequently the desired quantities to be extracted from a series of data.

3.2.2 Observation-Dependent Biases

Three observation-dependent biases exist which cause much consternation in the
GPS community: tropospheric delay, ionospheric delay, and carrier phase integer
ambiguity. All three types will be addressed in this thesis. The first and second types

exist because of the presence of the GPS signal's propagation media.

3.2.2.1 Propagation Media

Electromagnetic radiation, regardless of its source, is affected by the
propagation medium. Based on the governing laws of rays through a medium, the

rays, in this case the satellites' signals, are said to refract due to the presence of the




a1
medium. This bending is accompanied by a delay in the travel time of the rays. The
bending action, per se, does not effect the GPS community as much as the time delay
in the signals. The presence of the media physically lengthens the true path of the
signal with respect the geometric distance from the satellite to the receiver, seen in
Figure 4 (Goad and Goodman, 1974). The lengthened path means the signal has
taken a longer amount of time to reach the satellite than would have been taken in a
vacuum. This time delay biases the GPS measurements and must be modeled to

remove, or at least suppress, the effects.

FIGURE 4
RANGE VECTOR VERSUS TRUE PATH

Effect of Propagation Media on GPS Signals

The propagation media for a typical GPS signal are the mroposphere and the

ionosphere. The troposphere is the portion of the atmosphere extending from the
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earth's surface to about 40 km. The ionosphere extends from approximately 50 km to
1000 km in altitude (Wells, 1987). The two media's effects on the GPS signals are

quite different, as are the means for modeling them. Both will be discussed here.

3.2.2.1.1 Troposphere

For frequencies below 30 MHz, the troposphere is said to behave as a
nondispersive medium. A nondispersive medium is one in which the refraction of the
signal is independent of the frequency of the signals being transmitted through it
(Leick, 1990). This delay is very dependent on the pressure, temperature, and
humidity of the medium (ibid). Because the true path is lengthened (the transmission
time of the signal has increased), any correction due to the bias must be subtracted

from the observed GPS measurement (pseudorange or phase range).

The troposphere, as in any atmospheric medium, is made up of a dry and a wet
part. Both parts are modeled to predict the medium's effect on the signal. The dry
portion of the troposphere makes up about 90% of the total refractive effect. This
portion is commonly estimated using surface pressure and temperature data and is

known to an accuracy of about 2% (Goad and Goodman, 1974).

The wet portion, although only 10% of the total refractive effect, is much more
difficult to model. This portion is dependent on the conditions along the transmission
path of the signal, often independent of the surface conditions. The model must
include information about the water content of the atmosphere, the temperature, the

altitude, and the elevation angle of the signal--some of which are very difficult to

@
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model. The major problem with the modeling of the wet part lies in having accurate
knowledge of the water vapor content. Localized water "pockets” in the atmosphere
along with atmospheric turbulence create more problems in the modeling of the wet
contribution. Various models exist which model this component, taking all the above

difficulties into account.

The overall model for the contribution of the troposphere to the GPS signal is a
combination of the wet and dry parts. Based on the information found in three
different studies, the average correction for the troposphere based on the satellite's

elevation with respect to the station may be found in Table 1 (ibid).

TABLE 1
AVERAGE TROPOSPHERIC CORRECTION
Based on Elevation Angle
Elevation Angle (degrees)  Average Correction (meters)
90 2.40
45 3.39
30 4.78
20 6.95
10 13.34
7.5 17.34
5 2452
2 45.61
0 88.28

5The three studies referred to arc those of Saastamoinen, Saastamoinen/Marini. and Hopficld.
Complete references may be found in Goad and Goodman (1990).
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3.2.2.1.2 Ionosphere

In the earth's ionosphere, the sun affects a fraction of the gas molecules by
ionizing them with ulira-violet radiation, causing the release of free electrons. Just as
with any electromagnetic signal propagating through an ionized medium, the GPS
signals are affected by the non-linear dispersive characteristics of the medium. Unlike
the nondispersive characteristic of the troposphere, the ionosphere is frequency-
dependent, and the modulations on the carrier and the carrier phases are affected

differently.

The dispersive effects of the ionosphere may be visualized by examining the

dispersion curve in Figure 5 (Wells, 1987).

«

rad/sec

w2

ionospheric

wl fluctuations

phase velocity

lonospheric propagation wave number # rad/m

FIGURE 5§
IONOSPHERIC DISPERSION EFFECTS OF THE MEDIUM

Ionospheric Propagation Wave Number vs. Angular Frequency
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‘ At any point in the curve, the slope of the line joining the origin to that point is the
phase velocity, v, =4 B where o = 2nf is the angular frequency of the signal in the ,
ionosphere, and B = 2% is the ionosphere propagation wave number. The group
velocity, v, = &%B’ is found by the local tangent slope at the point. The
‘ ’
} corresponding indices of refraction are
i
| \ v
n, = % and n = % (3-11) ,
where ¢ = speed of light in the vacuum. The respective indices of refraction for the
ionosphere are (in a first-order approximation) ’ PY
n zl—gy— and n = 1+ﬁ (3-12)
» fl 1] fz
]
where N = ionospheric electron density in electrons/m’ at the time and place of
evaluation and a = constant (Wells, 1987). The change in path length due to the
]
ionosphere is given by
Ap=](n-1)ds (3-13)
’
which represents the integration along the propagation path. The GPS signals are
dependent on the group index of refraction, so the ionospheric group delay is
’
’

D ——
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Ap, =+—= 3-14a
P, T ( ) &
The effect on the phase measurements is opposite in sign to the range effect seen in ’
Equation 3-14a; the ionospheric phase delay, is, therefore,
aN, ’
Ap, =~ p (3-14b)
where N, in both equations is the total electron content along the propagation path in ,
electrons/m*.
The ionospheric effect also sees daily variations, the minimum between midnight ) ®
and early morning, and the maximum around local noon, dependent on the activity of
the sun (Leick, 1990). Depending on these factors, the total ionospheric effect could
range from centimeters to tens of meters (Wells, 1987). )
To reiterate, the most important effects of the ionosphere on the GPS signal are
(Leick, 1990) )
a. the retardation of the modulation on the carrier wave (i.e., the
ionospheric time delay), causing an increase in the apparent path )
of the signal (pseudorange); and
b.  the advancement of the carrier phase, causing a decrease in the
apparent phase of the signal (phase range). )
’

_
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3.2.2.2 Carrier Phase Integer Ambiguity

When the GPS receiver is first turned on to take measurements, the cycle
counter will read some arbitrary initial integer value. If the satellite's signal is
continually received by the station during the measurement period (i.e., no "loss of
lock" occurs to disrupt the flow of information from satellite to receiver), this integer
will not change. Think of the phase range measurement Equation 3-10 as now

possessing an ambiguity bias, shown in Equation 3-15,

@5 (t) = 0°(t:) — @R (t ) —pj +NA (3-15)

where NA is the integer times the wavelength of the carrier. If the world were ideal,
the clocks would be synchronous, and the two quantities [q)s(tT)—(pR (tg)] and @}
(the reading on the GPS receiver) would equal zero. The geometric distance,
therefore, would exactly equal the integer ambiguity, NA. The term, NA, represents
the integer number of counts between the satellite clock and receiver clock.
However, the receiver measures the fractional portion of the signal, only this

fractional part is meaningful to the GPS user.

Actually determining the integer ambiguity value can be very difficult, if not
impossible. It is difficult to locate the exact cycle of the carrier whose phase is being
measured (Wells, 1974). Although not meaningful, this integer value must be
resolved to properly process phase data. One way tc eliminate its contribution is to
difference two measurements which have the same ambiguity value, possibly at

consecutive epochs, canceling out the ambiguity from the problem, altogether.

>
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3.2.3 Satellite-Dependent Biases

Two types of satellite-dependent biases exist: orbit representation biases and
satellite clock biases. Clock errors are present due to biases in the models for the
clocks in the broadcast message (e.g., it is impossible for the clocks to be perfectly
aligned to GPS time). Orbit biases exist because of the errors inherent in the satellite
ephemeris information (e.g., the satellite is not where the broadcast message indicates
that it is). Errors in the ephemeris may be eliminated by access to better orbit
information. The GPS user is not often lucky enough to receive the most accurate
information, and as such, must compensate for these biases. Forces not under the
user's control continually act on the satellites, rendering what information the user
does have as inaccurate. These forces are also very difficult to measure from any

location on the earth's surface.

Orbital biases may naturally be expressed in the form of radial, along track, or
out of plane, as seen in Figure 6. Using orbital data provided by the broadcast
ephemeris, satellite positions can expect a typical accuracy of about 10-20 meters

(Wells, 1987).

v R —
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RADIAL

SATELLITE ALONG TRACK

ORBIT OUT OF
PLANE
RECEIVER
EARTH
FIGURE 6
ORBITAL BIASES

Here, the orbital bias introduced into the measurement models will be a
combination of the three different types. The combined bias may be thought of a
periodic oscillation of the satellite along its orbit. These oscillations are fractions of
the sine and cosine of the angular position of the satellite as a function of time,
defined by the satellite’s Keplerian elements, as in Equation 3-16. The value for Ar
indicates the change in the radius of the orbit based on the trigonometric oscillations

of the satellite.

Ar = Ssin$ + Ccosd (3-16)
where ¢ = argument of perigee (©) + true anomaly (f)

S and C = coefficients
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The argument of perigee and the true anomaly place the satellite in the orbital plane

at a particular epoch, as seen in Figure 7.

Vernal
Equinox

Orbit

FIGURE 7

PLACEMENT OF THE SATELLITE IN THE ORBITAL PLANE
As Defined by the Keplerian Elements
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3.3 Models

Each of these biases will be incorporated into the measurement model for use in
this research. Biases often affect the pseudorange and phase range measurement

differently, as will be shown below.

Recall that this thesis is a simulation of measurements and biases. The initial,
imperfect values of the desired quantity will be termed the "nominal" value.
Typically, corrections are applied to the nominal value to reach the "true" value. In

Equation 3-17, the relationship between these three quantities is shown.

truth = nominal + correction (3-17)

This nominal value is the value inserted into the measurement models, based on the

theory of MSOFE and its unique requirements for setting up the problem at hand.

Therefore, in all cases, the desired value will be corrected as

desired (nominal) = truth - correction (true correction) (3-18)

where the correction will be the entry in the state vector, as applicable. As the person

setting up the simulation, I shall supply the "truth" from which the nominal is found.

The [best estimate of the] correction will be the output of the filter.

w
g @J
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3.3.1 Model for Pseudorange Measurements

The final model for the pseudorange (in linear units) is given by Equation 3-19,

I +S"sin ¢+ C" cosd + cAt® +€ose  (3-19)

2

PR=p" +c(ty —t5)+T" +

range

where
p‘ = \/[xs —(xg "SXR)]z +[ys -y —6)'51)]2 +[ZS —(z -9z, )]2

= geometric distance between satellite at t* and receiver at t

c(ty —t°) = speed of light * clock differences due to clock inaccuracies
where t," =t —8t,
T" = tropospheric correction from Hopfield model = T ~3T

CI%: = speed of light * ionospheric correction, scaled by the square of the

frequency of the carrier (in MSOFE, nominal = c(I - 8I))
S* = arbitrary coefficient of the sine term =S - 8S
C’ = arbitrary coeficient of the cosine term = C - 5C
¢ = location of the satellite in the orbital plane based on Keplerian elements
=@+f
cAtS = speed of light * satellite clock correction
where AtS = AtS + §t°

€ .o = MeEasurement noise (uncertainty).

pseudo
range

The "8" in all cases represents the correction to the nominal.

&
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3.3.2 Phase Range Measurement Model
The final mode! for the phase range (in meters) is given by Equation 3-20,
PR=p" +c(ty -t°)+T - CIZ +(NA)" +S"sin ¢+ C cosd+cAt> + € phase (3-20)

range

where
p" = Ix° = (xg 8% +[y® = (¥ =By ) +[2° —(z — 82,

= geometric distance between satellite at t* and receiver at t,

c(ty —t%) = speed of light * clock differences due to clock inaccuracies
where t,* =t -t
T" = tropospheric correction from Hopfield model = T - 8T

clyf: = speed of light * ionospheric correction, scaled by the square of the

frequency of the carrier (in MSOFE, nominal I = c(1 - 8I))
(NA)" = integer ambiguity * wavelength of the carrier
S’ = arbitrary coefficient of the sine term = S - 8S
C" = arbitrary coefficient of the cosine term = C - §C
¢ = location of the satellite in the orbital plane based on Keplerian elements
=@+f
cAt® = speed of light * satellite clock correction

where AtS = At + 5t°

€ e = Measurement noise (uncertainty)

phase
range

The "8" in all cases represents the correction to the nominal.



CHAPTER IV
RESEARCH AND RESULTS

4.1 Overview

This chapter is a summary of the research leading to this thesis. Descriptions
of the measurement and bias models will be presented, as well as the state equations
used to define the MSOFE "system" and "filter" models. The output of MSOFE
will show the effects of different measurement and bias combinations on the "filter"
performance due to higher-order error (random bias) sources present in the "system
truth” model. Results will be presented as plots of the receiver's position uncertainty

as a function of time.

This chapter will present the equations/models used by the computer program,
MSOFE, for the implementation of the Kalman filter techniques. The problem-

specific input required by MSOFE were!:

TRecall that MSOFE is a "shell" of an optimal Kalman filter processor. It consists of FORTRAN
code divided up into a main program and 84 subroutines. Only 14 of these 84 were required to be
changed to meet the special necds of the current user; these user-specific subroutines defined the
state equations and measurement models for the system and filter. Other subroutines were written,
as nceded. to augment MSOFE and ensure all necessary information was available.

54
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a.  state dynamics (differential) equations,
b. measurement models,
c. partial derivative matrices (used in the linearization of the meas-
urement models), and
d.  the matrix to link the true value of the "filter" state vector to the
"system truth" state vector model (called the "linear filter/system

mapping matrix") (Carlson and Musick, 1990).

4.2 "System' versus "Filter"

The distinction between the "system" and the "filter" must be addressed for a
complete picture of the processes behind MSOFE. As stated in Chapter 1, within
MSOFE, the "filter" is the first-order representation of the real-world, and the
"system” is the second-order representation. One may also think of the "filter" as an
under-parameterized version of the over-parameterized "system." This thesis set out
to examine the effects on the "filter" performance due to higher-order error/bias
sources in the "system truth” model. One could think of the "system," in the context
of MSOFE, as the truth or real-world model, perturbed by random effects with
covariance P. The "filter" is the simpler model of the truth, containing a sufficient
number of states to adequately represent the physical phenomena of interest. The a
priori covariances within the "filter" will be much greater than those of the
"system"; the purpose of the Kalman technique is to optimize the values for the
desired quantities (i.e., states in the state vector) with the help of properly modeled

measurements.
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4.3 State Equation Models

The state equation formulation for input into MSOFE began with Equation 2-
16, the (linearized) homogeneous differential equation of the error states with the
presence of a noise input (recall from Section 2.3.2.1 that the system process noise

matrix G = I), seen in Equation 4-1.

dx = Fox +w (4-1)

Matrix F in Equation 4-1 is the homogeneous state dynamics matrix, 8x is the
random system error state vector, and w is the white noise vector. The GPS system
modeled in this thesis was modeled as a random walk (Gelb, 1992), therefore,

Equation 4-1 becomes

(B
il
I€

(4-2)

where F = [0}, i.e., one assumes no knowledge about the dynamics of the problem.
A random walk may be thought of as a system which makes fixed-length steps in
arbitrary directions (ibid). Both the system truth and the filter models were modeled
in this fashion. The noise vector w, as Q = E[ww"], was used by MSOFE in the
covariance propagation equation for the operational Kalman filter, presented as

Equation 2-282. The Q matrix for the "system truth” was the zero matrix because

*Within MSOFE, the state and covariance dynamics equations are solved using a singte-step
numerical integrator that uses a Runge-Kutta type method.

(G~ R R R R S S e T e
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the system was modeled as close to ideal (the truth) as possible and did not receive
any deviations due to insufficient knowledge of the approximation process used in
linearization. The "filter", on the other hand, was modeled with a process noise
matrix. The presence of this matrix indicated that the filter output at time t+1 did
not depend on the output at time t. In other words, the presence of the process
noise indicated that the time sequences of the state vector and covariance contained
insufficient information to predict their respective values from epoch to epoch. Only
the states corresponding to the station position and clock contained process noise,
implying that these four states were the unknown values to be determined by the
filter. The "system truth" was modeled with extremely small a priori covariances

(relative to the filter model), as these states are considered known.

The "system" and “filter" error state vectors initially will be identical (equal
number of states in each). As biases are incorporated through the course of the
research, the size of the system state error vector will grow, augmenting the "real-
world" interpretation of the model. The mapping vector, mentioned above, will map
the like states in the system error vector to the corresponding frue values of the

filter states in a one-to-one manner (Carlson and Musick, 1990), i.e., the mapping

matrix will be defined by A, in Equation 4-3.

X, =ALX 4-3)

fs =s

x;
)
¢
L2}
)
&
)
»
)
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)
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Matrix A, will be of dimensions (number of filter states) x (number of system
states). This matrix, in this research, will be defined as that matrix with elements

A(n,n) =1, and all other elements = 0.

4.4 Measurement Models

As stated before, two measurement types were used in this research:
pseudorange and phase range. The most basic measurement type in GPS work is
the pseudorange measurement. Therefore, all iterations of the program began with
the baseline using pseudorange measurement data. To examine the effect of adding
a more precise measurement type, the iterations were repeated using pseudorange
and phase range together through the Kalman filter. Therefore, two measurement
models were necessary. Table 2 shows the measurement models for the
system/filter pseudorange and phase range®. The symbol "8" indicates an entry in
the "system" state vector (frue error), and the "3 hat” indicates an entry in the
"filter" state vector (estimate of the error). Measurement noise, v, (uncertainty) for
the pseudorange measurements was set to +1 m, and measurement noise for the

phase range measurements was set to + I mm.

As mentioned previously in Chapter 3, because of MSOFE's unique approach
to Kalman filtering, the "whole value" quantity supplied by the user is the "true"

value; the state vector corrects this truth to become "nominal" (linearization takes

3 Note that the measurcment biases were added piecemeal, and the effect (output) was examined
after each addition.
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TABLE 2
GPS MEASUREMENT MODELS
e Measu "Syst uth"” Mod
ry =1° — (15 = 0rg) relative position from satellite (S) to receiver
(R), R corrected for true error
p= |13 | geometric range from S to R
R, = p+c[(Aty - Ot )~ AL%) pscudorange measurement, time corrected for
true error
R, = R,+ T[scale - 0(scale)] pseudorange plus tropospheric delay,
corrected for true error
R, = R,+ [[scale - §(scale)] pscudorange plus ionospheric delay, corrected
for true error
R, =R;+ (A -0A)sing + (B - 0B)cos ¢ + c (A"T - 81) pseudorange plus
| orbit biases, all corrected for true error
|
|
1 R; =R ,+ (v, *Av,) pscudorange plus measurement noise, scaled
| by a normal, Gaussian random number
‘ generator
u e t " : " e
Cp=1°—(r, -6r, + 55,) relative position from S to R, corrected for

truc error and best estimate of error

geometric range from Sto R



TABLE 2, continued

R, =p+c[(Atg - Oty +6t) - At°]  pseudorange measurement, time corrected for
true error and best estimate of error

R, = R, + T[scale] pseudorange plus tropospheric delay

R, = R,+ [[scale] pseudorange plus ionospheric delay

SAT

R, =R; +Asingp+Bcos¢p+ cAt pscudorange plus orbit biases

R;=R, +v, pseudorange plus measurement noise
hase Range Measurement, "Svste uth" Mod

rp=r°- (rg - 0rg) relative position from S to R, corrected for
true error

p=|r;| geometric range from S to R

P, = p+c[(Atg -3ty ) - At¥] phase range measurement, time corrected for
true error

P, = P, + [NA - 8(NA)] phase range plus integer ambiguity, corrected

for true error

P, = P, + T[scale - 8(scale)] phase range plus tropospheric delay,
corrected for true error

P, = P, + I[scale - 3(scale)) phase range plus ionospheric delay, corrected
for true error

P; =P+ (A-dA)sing + (B- 8B)cos ¢+ c (AT - 81) phase range plus orbit
biases, all corrected for true error

e
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TABLE 2, continued
P, = P+ (v,*Av,) phasc range plus measurement noise, scaled
by a normal, Gaussian random number
generator
P Measu t, "Filter"
Iy =1° -(z, -0r, +0r1,) relative position from S to R, corrected for
true error and best estimate of error
p= | x| geometric range from S to R

P, = p+c[(Aty -dtg +8t,)~At’]  phase range measurement, time corrected for
true error and best estimate of error

P, =P+ [NA - 0(NX) + 5(N)\)] phase range plus integer ambiguity, corrected
for true error and best cstimate of ¢rror

P, = P, + T[scale] phase range plus tropospheric delay
P, = P, + I[scale] phase range plus ionospheric delay

SAT

P, =P, + Asing+ Bcos ¢+ c Al phase range plus orbit biases

P =P+v, phase range plus measurement noise
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place around the nominal value). Recall Equation 3-18 which shows the relationship
between the "truth”, the "nominal". and the “"correction". Using this logic, the
"system" measurement model in MSOFE will correct the desired quantities as in

Equation 4-4, and the "filter" measurement model as in Equation 4-5.

SYSTEM: nominal = truth (whole value) - true error (4-9)

FILTER: nominal = truth - true error + best estimate of the error (4-5)

Data used in the measurement models were simulated. All efforts were made
to recreate as realistic a measurement value as possible. Twenty-eight possible
satellite numbers were examined for each measurement type, for a total of 56
possible measurements. Obviously, all 28 satellite numbers did not contribute to the
update, as information on every satellite was not included in the broadcast
ephemeris. Not knowing in advance which satellites were listed in the ephemeris,
provisions were made for all possible satellite combinations. Briefly summarized,
here is a list of steps taken to generate the necessary information with which the

range data were created within the software:

a.  Broadcast ephemeris file was read [by the computer program] to
calculate the nominal satellite position coordinates (per epoch),
ionospheric correction coefficients, and the location of the
satellites within the orbital plane (argument of latitude, ¢).

b. Receiver data file for the corresponding broadcast ephemeris

was read to return the nominal station coordinates.
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c.  Elevation of each satellite was calculated (per epoch). x
d. Tropospheric delay of each satellite was calculated (per epoch),
based on the elevation. ,
e. Ionospheric delay of each satellite was calculated (per epoch),
based on the elevation.
f  Orbital errors for each satellite were calculated (per epoch), ,
based on ¢.
A point must be made concerning the epochs used in the research. Time tags ,
of each epoch were incremented by MSOFE in order to update the state vectors and
covariances. Updates were made every "second" (from 0 to 100 seconds), meaning
that each "second," measurements were faken;, at that time, an update was made. ) ;
Time tags used to generate the measurements were updated each time a
measurement was needed. In order to see a distinct movement of the satellites from
the ephemeris file information, the time sent to the computer program's subroutines )
to calculate the measurements was incremented by 30 "seconds.”" In other words,
the time used by MSOFE and that used by the measurement-generation routine were
different, but they were each transparent to one another. The important aspect of ,
the time definitions was to ensure that MSOFE and the measurement-generation
routine conducted updates at the same instant--their relative times were, as such,
unimportant. )
]
’
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In all cases, the station coordinates and the station clock correction were

included in the filter and system state vectors. The a priori value for the standard
deviations (in meters) of these quantities may be seen in Equation 4-6 and 4-7.

[ Osx Osy O On ]sTyslcm =

[+1x107 +1x10*  +1x10™* +1x10°]" (4-6)

T
[cax Os Os, On ]ﬁlter_

[+1x102+1x107  +1x107 +1x10?] )

For iterations containing phase range data, the integer ambiguity situation had
to be addressed. The integer was considered an arbitrary number, so any value for
an initial integer would have sufficed; an arbitrary value of 1x10° was chosen for
each satellite. The a priori standard deviation (in meters) of the integer ambiguity
was chosen as +1x10™ for the system and +1x10* for the filter. This bias was
present in both the "system" and "filter" state vectors, but only when phase

measurements were pl’OCCSSCd.

The model for the tropospheric delay was taken from the Hopfield model

(Goad and Goodman, 1974). The model creates the inverse relationship between

the satellite's elevation and the correction due to the troposphere--the higher the
satellite with respect to the station, the less the delay due to the troposphere. This
inverse relationship is logical when one thinks of how the troposphere spans away
from the earth's surface. If the satellite were high over the station, the GPS signal

would travel less through the propagation medium to reach the receiver than if the
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satellite were located on the horizon. The scale for the delay was -hosen as 1.0.
The entry in the state vector contained the uncertainty of the scale, as shown in
Table 2. The a priori value for the standard deviation of the scale in the system
model was chosen as +2 percent* (ibid). This bias was not included in the "filter"

model.

The model for the ionosphere was taken from the ICD for the standard GPS
receiver (Leick, 1990). This model, too, shows the inverse relationship between the
elevation of the satellite with respect to the receiver and the amount of ionospheric
delay. The scale for the delay was chosen as 1.0. The entry in the state vector
contained the uncertainty of the scale, as shown in Table 2. The a priori value for

the standard deviation of the scale in the system model was chosen as +50 percent

(ibid). This bias was not included in the filter model.

The model for the orbit biases was taken from current theory of the
perpetuation of errors in the orbit. This model constitutes a "once-per-revolution”
effect of the perturbations of the Keplerian elements, which define the orbit of the
satellite. The periodic oscillations of the satellite as it travels along its orbit and the
deviation of the satellite clock are modeled in Equation 4-8. This model represents
the change in the satellite-receiver range due to orbital biases. The argument of
latitude () places each satellite in its respective orbit. The clock term represents the

deviation of the satellite clock from predicted models in the broadcast ephemeris

4Found by rms error of the Hopfield model divided by the average correction.
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Ar = Asin ¢ + Becos¢ + At (4-8)

information. Coefficients A and B represent the strength of each oscillation. In
MSOFE, the coefficients were set to zero; the a priori value for the standard
deviation of covariance of the coefficients was 10 m (initially, but other iterations
were made with a deviation of +1 m, for comparison). The standard deviation of

the satellite clock bias was initially set to +1 ns. These biases were only present in

the "system" state vector.

As stated above, the computer program allowed for as many as 28 different
satellite numbers. Therefore, 28 different measurements were possible when
processing pseudorange data, and 28 were possible when processing phase range
data. For the satellite-specific biases (integer ambiguity and the orbital biases), the
state vector had to account for one state per possible satellite. Table 3 shows the
size of the "filter" and "system" state vectors as the number of measurement biases
changed. The integer ambiguity bias was not present in the state vectors for

iterations using pseudorange data only.

The last condition investigated was that of cycle slips. As mentioned before, a
cycle slip occurs witen the signal from satellite to receiver is--for whatever reason--
disrupted. This disruption often stems from an actual, physical blocking of the
signal from, for example, a tree or building, or perhaps the GPS receiver on an
aircraft is blocked from the signal's path by the plane's own maneuvering. In the

filter, the cycle slip was simulated by setting up a flag to look for Satellite #3 during



67
epochs 3, 20, and 70. When these times occurred, a large value for Q, the process
measurement noise, was inserted in the program associated with Satellite #3. The
large noise value told the program that this value was now unknown (at those state

epochs), and the effect of the slip was analyzed on output of the filter.

TABLE 3
STATE VECTOR ENTRIES PER INPUT

BIAS SYSTEM VECTOR FILTER VECTOR

x coordinate 1 1

y coordinate 1 l

z coordinate 1 1
recciver clock 1 1
integer ambiguity 28 28
troposphere 1 not present
ionosphere 1 not present
orbit (sine term) 28 not present
orbit (cosine term) 28 not present
satellite clock 28 not present
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4.5 Results

This section will present the results of the iterations through the Kalman filter
program as measurement type and biases were varied. The presentation of the
output will be categorized by bias type. Then, comparisons will be made between
the pseudorange and pseudo/phase range combinations. The different system state
vector input combinations for each output graph may be seen in Tables 4, and 53.

The reader is referred to the end of this chapter for all output figures.

4.5.1 Geometry and Dynamics

An important aspect of GPS theory is the relationship of the satellites to the
respective receiver. The geometry of one with respect to the other plays a major
role in the user's ability to recover the receiver's position. Recall that the broadcast
ephemeris was incremented in time to simulate the movement of the satellites. Two-
dimensional plots of the satellites' location relative to the receiver may be seen in
Figures 8, 9, 10, and 115. The figures show the satellites' relative locations at four
instances in the time interval of study. Without the presence of any other anomalies,
the relative spacing of the satellites at times 1 and 60 seconds (Figures 8 and 9,
respectively) would indicate a better possibility for recovering one's position with

greater certainty. Further, the presence of a fifth satellite at t=60 sec further

3Not all combinations of biases and measurement types are presented here. Ofien, changing a
variable did not appreciably change the output--these plots were not included because they did not
offer any significant findings.

SStation and satellite coordinates were presented in the fopocentric system.
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increases the station/satellite polyhedron's "volume" (mentioned in Chapter 3),
possibly leading to an even better position recovery. Figures 10 and 11 show the
geometry begin to degrade as the satellites move topocentrically away from the
receiver. One would expect, in an ideal situation, the position uncertainty to

increase as the geometry degrades.

In addition to the geometry of the satellites and the receiver, the elevation of
the satellite with respect to the receiver is also an important issue. The reader is
referred to Figures 12 and 13, plots of the satellites’ elevation and elevation versus
azimuth, respectively, over the study interval. This plot was generated using the
information from the broadcast ephemeris’. As stated above, the amount the GPS
signal is affected by the propagation media is inversely proportional to the sine of
the satellite's elevation. One may expect the position uncertainty to increase as the

elevation angles decrease due to the larger bias affecting the measurement.

The data reduction through MSOFE began with the non-practical case of a
non-moving receiver with non-moving satellites. In this case, station and satellite
approximate coordinates were hard-programmed into MSOFE (were not taken from
the ephemeris, as on subsequent runs). The purpose was to examine the uncertainty
of the station's position when pseudorange measurements only were processed, with
no external influences. Next, the consequence of adding phase range measurements

was examined. Figure 14 shows the results. The plot of pseudorange only shows a

The satellite numbers shown are those with data present in the ephemeris whosc clevation was
greater than a pre-defined cut-off value of 0 degrees.
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steady uncertainty, logical because the station and satellite were stationary. The
addition of the phase ranges immediately improves the overall uncertainty of the

position; the phase bias for each satellite contributes a standard deviation at the rate

of %/; where »n is the number of measurements made.

In Figure 15, the station and satellite coordinates were taken from the
broadcast ephemeris, varied with time. Due to the degradation of the geometry, the
uncertainty of position using the pseudoranges-only model increases from t=0 to
about t=83. The slight “glitch" at t=58 is due to the addition of the fifth satellite.
The uncertainty of position decreases for (1-2 seconds) a small amount due to the
added redundancy®, but the low elevation of this fifth satellite and the further
degradation of the geometry is counter-productive in keeping the uncertainty to
within acceptable levels. The incorporation of the phase range clearly enhances the
system, and the position uncertainty at the end of the study time approaches the
millimeter level. The continued rising of satellites #12 and 16 (see Figure 12) past

t=83 helps to further reduce the uncertainties.
4.5.2 Propagation Media

The next stage of study was to add the effects of the propagation media. Four

iterations were made for each type of measurement--with and without tropospheric

#Recall that the quantities being estimated are the station coordinates and the station clock
correction. A minimum of four satellites are requircd to solve for the four unknowns. Any
satellites beyond the required four create a redundant situation and should decrease uncertainties,
providing all other variables (clevation, propagation media delay. etc.) are also acceptable.
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biases, and with and without ionospheric biases. Table 6 shows the four
combinations and their other names that will be used interchangeably throughout

this thesis.

TABLE 6
PROPAGATION MEDIA COMBINATIONS

COMBINATIONS ALTERNATE NAME
ERROR-FREE TROPOSPHERE IDEAL CASE
ERROR-FREE IONOSPHERE (IDEAL/ DUAL-FREQUENCY )
ERROR ON TROPOSPHERE

ERROR-FREE [ONOSPHERE DUAL-FREQUENCY CASE

ERROR-FREE TROPOSPHERE

ERROR ON IONOSPHERE < NONE >
ERROR ON TROPOSPHERE REAL-WORLD CASE
ERROR ON IONOSPHERE (SINGLE-FREQUENCY CASE)

The "ideal" case contains no propagation media errors. The dual-frequency case is
so named because with a dual-frequency GPS receiver, it is possible to eliminate the
linear affects of the ionosphere using post-processing measurement models (due to
the dispersive characteristics of the ionosphere). The third combination is not

practical in the real world--the effect due to troposphere cannot be eliminated while
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the ionospheric effect remains. This combination was produced for comparison
purposes only and will not be discussed in detail’>. The "real-world" case is so
named because it contains errors on both media. It is also known as the single-
frequency case because both biases will be present with a single-frequency receiver

(neither can be eliminated without further information).

Figure 16 shows the effect of the propagation media on the model containing
only pseudorange measurements. The ideal case (no errors on either) is the same
plot as seen in Figure 15. The effect of adding the troposphere, known to 2%, to
get the dual-frequency model only increases the uncertainty by less than 0.1 m,
shown in Figure 1719, However, adding the ionospheric bias with a standard
deviation of 50% increases the uncertainty by approximately 2.5 m. In the single-
frequency plot, the "glitch" at t=58 sec is more pronounced than that in the plot void
of these biases, more clearly seen in Figure 18. Recall at t=58 that the elevation of
the fifth satellite rises to above O degrees and enters into the filtering process. The
low elevation contributes a large amount of delay to the measurement (about 84 m
tropospheric correction and 21 m ionospheric correction). The redundancy of the
additional satellite is not enough to counteract the large contribution of the
propagation media, so the uncertainty rises by approximately 2 m. Contrast this

jump in uncertainty to the slight decrease of uncertainty in the ideal case, where

This combination typically showed little difference from the ideal case due to the small (+2%)
uncertainty on the tropospheric delay.

IONOTE: The graphs with and without the tropospheric bias (with the same ionospheric biases)
were essentially the same. The plots were offset slightly on the plot so that the four plots could be
distinguished from onc another.
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elevation does not play a role in determining the uncertainty. Subsequent to t=58,
the degrading geometry somewhat blends with the effect of elevation, i.e., satellites
#3, 17, and 26 are sufficiently high above the receiver so to not degrade the

uncertainty, despite the geometry.

The addition of phase ranges to the pseudorange measurements may be seen in
Figure 19 for all four combinations of propagation biases. The ideal case is the
same plot as seen in Figure 15. Despite the mm-level measurement noise of the
phase range measurements, the addition of the tropospheric bias creates a
pronounced increase in the position uncertainty. From t=0 to t=58 sec, the ideal
case and the dual-frequency case are identical at the millimeter level (see Figure 20
for a clearer look at the two graphs). With the addition of the fifth satellite, the
redundancy cannot make up for the fow elevatic_)n and the associated large
uncertainties imposed on the measurements. Figure 21 shows the ideal case versus
the real-world case. The addition of tropospheric and ionospheric biases to the
combined pseudo/phase range model greatly increases the uncertainty of the
receiver's position. The redundancy of one satellite cannot correct for the large
contribution the satellites' elevations pay toward the uncertainty. The three setting
satellites and the low (redundant) satellite contribute too much uncertainty to the

problem.

Figure 22 provides a look at the comparison between the two measurement
types. Between t=0 and t=58 sec, the pseudo/phase range combination provides

better results than the pseudorange-only model. After t=58 sec, the pseudorange-
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only case is comparatively unaffected by the poor geometry and low elevation angle
of the redundant satellite. However, the pseudo/phase range model shows a greater
reaction to the elevation-dependent biases. Recall from Chapter 3 that the
ionosphere affects the phase and pseudorange values in opposite directions. The
combination of the two measurement types actually magnifies the effect of the bias
on the recovered position uncertainty. As the fifth satellite rises to a more
acceptable level (around 10 degrees elevation), and the maintenance of three other
satellites at acceptable elevations, the pseudo/phase range and the pseudorange-only

cases approach the same level of uncertainty.

4.5.3 Elevation-Dependency

Due to the results of the propagation media models in the previous section,
another model was developed--the elevation-dependent model. Two models were
developed: one based on the tropospheric correction values and one based on the
ionospheric correction values. In these models, the measurement noise was
weighted to give less emphasis to those satellites with low elevation angles and more
emphasis to those with higher elevation angles. The new uncertainty may be seen in
Equations 4-9 and 4-10 for the tropospheric-dependent and ionospheric-dependent

models, respectively,

O revset = Y Crnamt )’ + (Opo )’ = (O o )* +(0.02T)’ (4-9)

O revned = VO e )* (O )* = V(O )* +(0.51) (4-10)

Ny
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where T and I are the calculated values for the tropospheric and ionospheric
corrections, respectively, and the o, is the standard deviation of the measurement
(phase range or pseudorange). Using these models, one can see that the combined
deviation will be greater than that of just the measurement deviation. The standard
deviation of the measurement noise will be used to calculate the filter updates per
the Kalman update equations and will have an overall effect of R (inverse of the
measurement noise matrix, see Chapter 2) on the update. Therefore, satellites with

large tropospheric/ionospheric corrections will contribute less to the process.

Because the problem requires four satellites to determine uniquely the four
unknowns, no change in the output of the filter should be expected when only four
satellites are present. Therefore, the weightings will only come into play with the
addition of the redundant satellite(s). One would expect, therefore, to see little
change in the uncertainty curves (with and without the model) up to t=58 sec, and

the addition of Satellite #12 beyond t=58 should improve the uncertainty results.

4.5.3.1 Dependency Based on Troposphere

Figure 23 shows the pseudorange-only uncertainty curves with the
measurement noise dependent on the tropospheric corrections.  As expected, the
uncertainty curves for the real-world cases with and without the elevation
dependency do not differ when only four satellites are visible above the horizon.

However, with the addition of the fifth satellite, the position uncertainty does
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decrease, albeit only slightly. The small uncertainty of the troposphere correction

(only +2%) does not play an extensive role in the weighting of the measurement

noise, and not much improvement is noted.

Figure 24 shows the pseudo/phase range uncertainty curves with the
measurement noise dependent on the tropospheric corrections.  As expected, there
is no change in ti.e un~ertainty curves with and without the elevation-dependent
model through t=58 sec. Dramatic results occur, however, after t=58. The large
spike in the uncertainty after the addition of the fifth satellite does not occur in the
elevation-dependent model. Instead, the uncertainty curve is smooth; the weighting
of the lowest (in elevation) satellite's measurement plays down the importance of
this measurement. The dip in the elevation-dependent curves at approximately t=86
sec occurs near the point where Satellites #12 and #16 reach equal elevations. The
weighting tends to create a non-optimal geometry by de-emphasizing the
measurements from the satellites with the lowest elevation. Past t=86 sec, the
measurement from Satellite #12 is de-emphasized. If one recalls Figure 10, the
geometry of the station and satellites, one can see the effect on the geometry of
(essentially) removing Satellite #12. The "polyhedron" is greatly reduced in size,
thereby increasirg the position uncertainty. Past t~95 sec, the measurement for
Satellite #16 is de-emphasized; one can see from Figure 11 the effect on the
geometry of eliminating Satellite #16 at this time. Here, the implementation of the
elevation-dependent measurement noise model does not produce optimum

uncertainty results. The three setting satellites and the degrading geometry cannot
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be compensated for in the elevation-dependent model, and the elevation-independent

model yields more realistic results.

4.5.3.2 Dependency Based on Ionosphere

Figure 25 shows the elevation-dependent measurement noise model, based on
the ionospheric correction, in the pseudorange-only measurement. Just as for the
troposphere-dependent model in Figure 23, the elevation-dependent and
independent models are identical prior to t=58 sec. Subsequent to t=58, in the
presence of the redundant satellite, the uncertainty increases. Clearly, there is a
trade-off between weighting of the measurements and the uncertainty of the
position. By giving less weight to the lowest (elevation) satellite, the geometry is

degraded, and the uncertainty increases.

In Figure 26, the elevation-dependency is based on the ionospheric correction
model, and the measurement model is the pseudo/phase range combination. Here,
the presence of the phase range measurements slightly increases the uncertainty (less
than 1 m) for epochs prior to t=58 sec. However, after t=58 sec, the elevation-
dependent model yields improved results. There is still some trade-off in the
geometry at epochs greater than 97 sec, but overall, the uncertainty is improved
with the elevation-dependent model. The addition of phase ranges adds to the

improvement over the case seen in Figure 25.
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4.5.4 Orbital Biases

The orbital errors were added in two different ways. First, the trigonometric
coefficients were given an a priori standard deviation of +10 m. Second, the
trigonomettic coefficients were given a standard deviation of +1 m. In both cases,

the satellite clock was given an a priori standard deviation of +1 ns. Each way will

be addressed.

Figure 27 shows the pseudorange-only case for the 6 = +10 m case. The
measurement models with and without the orbital errors are contrasted. The figure
clearly shows that the large uncertainty of the orbit contributes to the increased
uncertainty of the position of the station. The increase in uncertainty is
approximately ten-fold at its peak, at approximately t=83 sec. In Figure 28, the
standard deviation of the orbital bias coefficient is set to +1 m. Obviously, knowing
the coefficients ten times better serves to reduce the uncertainty in the position by

approximately the same amount at its peak (around t=83 sec).

Figure 29 shows the real-world model using pseudoranges only and an
elevation-dependent measurement noise model, based on the ionosphere. Curves
with both values for and without the orbital bias are shown. The addition of the
elevation-dependency model in concert with the orbital bias problem did not change
the plots from those seen in Figures 27 and 28. The presence of the orbit error was
significant enough to override the weighting of the lower satellite. No significant

value was gained by using the elevation-dependency model in this case.
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In Figure 30, the addition of phase ranges to the "filter" observation model
vastly improves the uncertainty over the pseudorange-only case of Figure 27. In
Figure 30, the orbit bias using a coefficient 6 = +10 m, through t=58 sec, is
identical to the uncertainty curve of Figure 27 (pseudorange only). With the
addition of the redundant satellite, the uncertainty drops markedly and follows the
same shape as the model without the orbital errors. In contrast to the curve void of
orbital biases, the uncertainty curve with the orbital bias differs by only as much as 9
m at its largest point, a stark improvement from the comparison shown in Figure 27.
Although the orbital bias adds uncertainty to the position of the station, the addition

of phase ranges improves the results overall.

In Figure 31, the curves found using 6 = +1 m are all virtually identical prior
to t=58 sec. The addition of the orbit errors subsequent to that time yields results
which parallel those of the no-orbit-bias curve. The presence of the redundant
satellite does not counteract the presence of the tropospheric, ionospheric, and

orbital biases.

Figure 32 looks at the situations already shown in Figures 30 and 31, except
with the presence of the elevation-dependent measurement noise model based on the
ionosphere. The combination of the uncertainty in the ionosphere together with the
ionospheric, tropospheric, and orbital biases creates a situation which produces an

unacceptable uncertainty curve when compared to other schemes.
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Figure 33 investigates the contribution of one satellite, here Satellite #3,
infected with orbital biases, where the orbit coefficients' a priori ¢ = +10 m for
Satellite #3, and 6 = +1x10 m for all other satellites. The overall uncertainty
curve found from a biased Satellite #3 is seen to contribute approximately 10 m to

the case without orbital biases.

4.5.5 Equal Measurement Noise

The next situation examined was that of equal measurement noise. Both the
pseudorange and phase range measurements were assigned a measurement noise of
+1 m in the filter model. Figure 34 may be compared to Figure 21. In Figure 34,
the presence of the equal measurement noise does not improve the uncertainty from
the beginning for the ideal case. For the single-frequency model, the curve in Figure
21 and Figure 32 are identical up until t=58 sec. Although the "spike" from Figure
21 does not appear after that time, the equal-noise case does not lead to the
improved uncertainty in the face of the degraded geometry as time approaches

t=100 sec.

In Figure 35, the elevation-dependent (based on the ionosphere) model is
examined. There is definitely a trade-off past t=58 sec in the uncertainty curves for
the elevation-dependent and -independent models. As the geometry degrades, the
uncertainty improves with the former model; the latter model sees the better results

as the redundant satellite rises in the sky, but before the geometry degrades. As in
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Figure 34, the equal measurement noises do not serve to improve the overall output

of the filter, hence the uncertainty of the station's position.

In Figures 36 and 37, the orbital errors are introduced (¢ = +10 and +1 m,
respectively). The uncertainty curve resembles those in Figures 27 and 28,
respectively, for the pseudorange-only case. The uncertainty in Figure 36 at its peak
is slightly better than in Figure 27, possibly due to the increased number of
measurements in the pseudo/phase range situation and the differences in the
measurement models for each case. The same case could be made for Figures 37

and 28.

Figure 38 shows the case in Figure 36 with the elevation-dependent (based on
ionosphere) model. This curve resembles that of Figure 32, but this curve peaks at a

smaller uncertainty value, for the reasons mentioned above.

4.5.6 Cycle Slip

One final iteration was made for this problem. The issue of cycle slips, or
losses of lock, was analyzed. Figure 39 shows the results of placing a simulated
cycle slip at t = 3, 20, and 70 seconds. When only four satellites are visible, the
cycle slip has no affect on the uncertainty curve. By introducing a cycle slip, the
program is being told of another unknown state. This fifth unknown cannot be
resolved until such time as a fifth satellite comes into view, making the system

solvable. The cycle slip, because it is introducing an uncertainty in the integer

r @ &
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ambiguity value, causes an increase in the overall uncertainty of the position. The
effect of the slip at t=70 seconds can clearly be seen in the single-frequency case.
The uncertainty curve for the ideal case, that without tropospheric and ionospheric

delay biases, is not effected by the slip.
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CHAPTER YV
CONCLUSIONS

5.1 Overview

This thesis examined the uses of different types of GPS data together with
different types of biases. The primary theme was to investigate the incorporation of
phase range measurements into pseudorange measurements with the use of the
MSOFE software package. Iterations of the program were made using
combinations of a variety of bias sources (integer ambiguity, tropospheric delay,
ionospheric delay, orbital biases, and cycle slips) and different miscellaneous models
(equal measurement weightings, elevation-dependent measurement noise models).
This chapter outlines the findings of this research. Areas for future research will

also be addressed.

In this research, the simulation scenario for data generation utilized a specific
broadcast ephemeris, station location, and satellite track. Exact results will be
impossible to duplicate under different satellite/station geometries, elevations, and
ephemeris information. The findings in this research indicate the effects of the
different combinations of influences and may be used to surmise the effects on

scenarios other than the one used here.
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5.2 Summary )f Results

By examining the results of the research, one important conclusion is clear:
the incorporation of phase range data (known to a millimeter) along with the meter-
level pseudorange measurement data vastly improved the overall knowledge of the
recovered position of the receiver. With the addition of the phase range

measurement, the uncertainty of the position decreased (per epoch) on the order of

%/ﬁ’ where n is the number of measurements.

The addition of unmodeled biases in the "filter" model affects one's ability to
recover the station's position. In all cases, the bias-laden models generated a
position uncertainty greater than the ideal case with no biases present. Biases in the
troposphere did not increase the uncertainty level over the ideal case by as great a
magnitude as the ionospheric bias did, because the tropospheric delay was known to

98% and the ionospheric delay only to 50%.

The elevation-dependent model, based on the troposphere, showed little
change in the uncertainty when only pseudoranges were used. The (troposphere)
elevation-dependent model did, however, indicate an improvement over the
elevation-independent model for the pseudo/phase range combinations. The large
rise in position uncertainty in the latter model due to the redundant satellite was
absent in the former model, due to the adequate weighting of the low (in elevation)

satellites. For the ionosphere elevation-dependent model, the pseudorange-only
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measurement model did not see improvement due to the redundant satellite. The
uncertainty actually rose due to the trade-off between the weighting of the low
satellites and the unfavorable geometry caused by essentially omitting the fifth
measurement. The pseudo/phase range combination, again, showed an
improvement over both the pseudorange-only model and the pseudo/phase range
model without the elevation-dependency. However, the degrading geometry due to

omitting the redundant satellite could cause a problem in the position recovery.

The presence of the orbital biases served to increase the uncertainty in both
measurement models. The greater the a priori uncertainty in the orbital bias
coefficients, the greater the uncertainty in the receiver's position. As the a priori
uncertainty of the bias increased to +1 m, the overall uncertainty curve from the
filter approached that of the single-frequency model which was void of orbital

biases.

When the measurement noises of the pseudoranges and phase ranges were
equal, the station's position uncertainty for the five-satellite epochs was improved
over the unequal-noise case (with presence of no other biases). However, as the
geometry degraded due to the movement of the satellites, the equal-noise case could
not recover the position to an uncertainty as good as the unequal-noise case. The
latter case, using the phase ranges good to +1 mm, produced better results in

epochs with poor satellite/station geometries.
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When orbital errors were incorporated into the equal-measurement-noise
model, the uncertainty curves resembled those of pseudorange-only models. The
worst uncertainty of all was discovered in the single-frequency, equal-measurement-
noise, elevation-dependent (based on ionosphere) case. The uncertainty approached
126 m at its peak and showed no signs of improvement as the redundant satellite

came into view.

Overall, the incorporation of mm-level phase range measurements into the m-
level pseudorange measurements served to reduce the uncertainty in solving for the
unknown variables in the state vector. As more corruption was introduced into the
measurement model, the ability to recover accurately the receiver's position was
degraded. Often, the elevation-dependent measurement noise model further reduced
the uncertainty of the station position, providing that the satellite/station geometry
created from omitting a measurement was sufficient enough for adequate recovery.
Certainly a trade-off exists in reducing the weighting of a measurement if the
geometry of the remaining satellites cannot support the rest of the system. This
research set the elevation cut-off at the horizon (0 degrees). Better results could be
achieved if the cut-off were raised to a greater level, e.g, 15 degrees. The
ionospheric and tropospheric delays at 0 degrees were often prohibitive in one's

ability to recover positions to an adequate level.
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5.3 Areas for Future Research

This thesis concentrated on the single-frequency GPS receiver to mode! the
measurements. The dual-frequency receiver may serve to provide better results. In
the dual-frequency receiver, biases such as the ionosphere (with a +50%
uncertainty) could be eliminated from the problem altogether by combining in a
particular way the two measurements at the respective frequencies. This
combination, however, has the drawback of amplifying measurement noise. The
resulting noise value is scaled up by approximately 3 times the original L, or L,
noise value!. The trade-off may well be worth the added noise, because the
ionospheric delay is very difficult to model, and all attempts to model the
ionospheric effects will probably result in errors very much greater than a three-foid

increase in measurement noise.

Further research in this area also could include the incorporation of Doppler
measurements (time rate of change of phase (ranges)) into the filter process
augmenting the pseudoranges and phase ranges. As seen in this research, the
inclusion of better-known information serves well to increase the accuracy of the
recovered information. An added plus to including Doppler measurements is that

there are no integer ambiguity problems to contend with. A trade-off must occur,

1The noise on the L, carrier is amplified by 2.5 times, and the noise on the L, is amplified by 1.5
times. The overall effect on the standard deviation, o, is

6" =0,,,.V.5+25 =290,
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however. Using Doppler measurements, one must attempt to solve for the rate of
change of clock drift (i.e., another unknown must be added to the state vector to
account for the clock). One might "solve" this situation by increasing the precision
of the clock to, perhaps, that of a rubidium clock, known to 1 part in 10'>. This
way, the unknown frequency drift of the clocks could be "controlled" and act as a

stabilizing influence in recovering the position of the receiver.

One final issue must be addressed--the issue of an updated Kalman gain matrix
for the augmented, "real-world" situation. Recall from Chapter 2 that, with and
without the presence of real-world errors, the covariance update equations take on
different forms (see Equations 2-45 and 2-39, respectively). The program MSOFE,
however, did not update the Kalman gain matrix (Equation 2-40) to account for the
additional vector of errors. In all cases, the Kalman gain used by MSOFE in the

update process was the usual filter gain, shown in Equation 4-11.

K=P (H ) [HP (H )" +R]" (5-1)

However, this value did not take into account any of the additional real-world
error states. Solving for the Kalman gain matrix based on augmented predicted

residual variances, one gets

K ugnenea =P (H” Y[H P (H) +R+MP7MT]‘l (5-2)

which incorporates the covariance of the error states into the update process.
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Further study should examine the accuracy of the results using MSOFE
together with this augmented gain matrix. In MSOFE, the Kalman gain matrix in
Equation 4-11 was employed. The R matrix was a diagonal matrix due to the lack

of correlation of noise between states. By adding the vector of "real-world" errors,

¥, to the system, one gets an augmented measurement noise, seen in Equation 4-13.

R = R+MP M’ (5-3)

augmented

This matrix is clearly no longer diagonal. Here, the noise becomes correlated
between states--a condition ignored by MSOFE, which assumed the same systematic
effects for all states. If the same systematic effects did occur epoch after epoch, one
could investigate including these Y states in the "filter" model to attempt to balance
the "system" and "filter" models properly in order to gain better information about
them. Although MSOFE's methods were satisfactory for investigating the topics in

this thesis, they were by no means optimum.

The issue of the P, matrix should also be addressed. In Chapter 2, we

assumed that this covariance matrix remained bounded. However, one should not
ignore the situation where some states in P, become unbounded. As mentioned
above, one may desire to treat some states in the y vector as unknowns and attempt

to solve for them?2. This situation may set up a condition whereby the covariance

values increase rapidly (i.e., P,—> ). In this case, the augmented R matrix from

2 Techniques concerning the elimination of parameters may be found in the work by Prijatna,
1992.
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Equation 5-3 will also become unbounded (for those states), and the Kalman gain
matrix will approach zero (for those states). One cannot easily predict the exact
effect on R and K that an unbounded covariance matrix will have; one may or may
not be able to solve for the desired states in the Yy vector. Further, if the gain matrix
approaches zero, then the states will not be updated from the current states (i.e., one
would not see a reduction in P from P~ toP*). Further research in this area could
investigate the effect of this situation on the outcome of the nncertainty of the
unknowns and determine if this situation is detrimental to the adjustment procedure

and the recovery of accurate information.
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