Soft X-ray Emission from Alexandrite Laser-Matter-Interaction

P. G. Burkharter

Dynamics of Solids Branch
Condensed Matter & Radiation Sciences Division

D. J. Harter

Allied Signal, Inc.
Morristown, NJ 07960

E. F. Gabl
P. Bado

MXR, Inc.
Dexter, MI

D. A. Newman

SFA, Inc.
Landover, MD

July 15, 1993

Approved for public release; distribution unlimited.
Soft X-ray Emission from Alexandrite Laser-Matter-Interaction

X-ray spectroscopy was used to quantify the plasma generated by a focused, Alexandrite laser as a potential alternative source in proximity lithography. An x-ray emission efficiency of 2 - 11% was determined by analysis of spectral data (10 - 14Å) from transition-metal targets.
SOFT X-RAY EMISSION FROM ALEXANDRITE LASER-MATTER-INTERACTION

Accession For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution /

Availability Codes

Dist | Avail and | or Special
 | A-1 | | Special

DTIC QUALITY INSPECTED 3

Manuscript approved June 6, 1993.
EXPERIMENTAL

A compact (table-top), focused Alexandrite (750 nm) pulsed-laser system generated soft x-ray emission from planar-metal targets. Quantitative x-ray spectroscopy (active and passive detection) and pinhole imagery were used to characterize the 10 - 14 Å region that is important for resist exposure in proximity x-ray lithography. X-ray data was collected from transition metal targets. The spectra, acquired on film, were densitometered and computer processed to obtain line intensities from the L-shell transitions in highly-ionized copper and iron plasma. Spectral data was also acquired from K-shell transitions in aluminum in order to compare the effects of less than 8 Å spectral wavelengths (>1.5 keV energy) as the more energetic x-rays have greater penetration in the lithographic process.

The 10 Hz Alexandrite laser system at Allied Signal employs a Ti: sapphire oscillator, a pulse-stretcher (grating-pair), and a three-stage Alexandrite regenerative amplifier stage. The laser can generate chirped pulses (0.75 ns) up to 1 joule. These pulses can be recompressed to shorter pulse widths with an additional grating pair. Spectral data was acquired with both single laser pulses and a train of widely-spaced (8-ns) laser pulses.
1 Joule, 1 ns, 10 Hz alexandrite laser
5 to 3 amplifiers

Stretcher

15 mJ 1x D.L.

Ti:sapphire Oscillator

50 mJ 1x D.L.

Alexandrite amplifier #1

250 mJ 2x D.L.

Alexandrite amplifier #2

1.0 J 6x D.L.

Alexandrite amplifier #3

x-ray lithography,
DARPA, MXR
ALEXANDRITE FOCUSED LASER

ALLIED-SIGNAL Corp.
Morristown, NJ

Wavelength: 800 nm
Pulse Energy: 1 J
Pulserwidth: 3/4 ns
Repetition Rate: 10 Hz
X-RAY PINHOLE IMAGES

for

ALEXANDRITE LASER
X-RAY EXPOSURE
UNIFORMITY

Curved-Channel Plate Array Camera
SPECTRA
from
ALEXANDRITE LASER
Neon-like Copper
Cu XX

Intensity(eV/sr-Å)

Wavelength(Å)

2p-6d 2p-5d 2p-4d 2s-3p 2p-3d 2p-3s

10/1/92:2030, Allied Signal, Cu Disk, 500mJ, 300sh
Neon-like Iron
Fe XVII

Intensity (eV/sr-Å)

Wavelength (Å)

10/1/92:2200, Allied Signal, Fe target, 250μJ, 300sh
Table I. X-Ray Spectral Intensities Generated by Alexandrite Laser.

<table>
<thead>
<tr>
<th>Target Material</th>
<th>Shot Sequence</th>
<th>Number of Shots</th>
<th>Spectral Range Angstrom</th>
<th>Integrated Intensity eV/sr</th>
<th>Output Joules into 2π</th>
<th>Output mJ/shot into 2π</th>
<th>$\eta, %$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>10/1/92:1400</td>
<td>400</td>
<td>7-14</td>
<td>$1.89 \cdot 10^{18}$</td>
<td>1.9</td>
<td>4.8</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>10/1/92:1500</td>
<td>270</td>
<td>7-14</td>
<td>$3.74 \cdot 10^{18}$</td>
<td>3.8</td>
<td>14.1</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>10/1/92:1630</td>
<td>300</td>
<td>7-14</td>
<td>$3.75 \cdot 10^{18}$</td>
<td>3.8</td>
<td>12.7</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>10/1/92:2030</td>
<td>300</td>
<td>7-14</td>
<td>$4.98 \cdot 10^{18}$</td>
<td>5.0</td>
<td>16.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Fe</td>
<td>10/1/92:2130</td>
<td>300</td>
<td>9-18</td>
<td>$7.86 \cdot 10^{18}$</td>
<td>7.9</td>
<td>26.3</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>10/1/92:2200</td>
<td>300</td>
<td>9-18</td>
<td>$8.54 \cdot 10^{18}$</td>
<td>8.6</td>
<td>28.7</td>
<td>11.5</td>
</tr>
</tbody>
</table>
X-RAY SPECTRAL DATA
for LASER PULSE TRAIN
Soft X-Ray Output

<table>
<thead>
<tr>
<th>Data Group</th>
<th>Energy on Copper Target</th>
<th>Number shots</th>
<th>X-Ray Intensity (eV/sr)</th>
<th>Pulse Shape</th>
<th>Emission Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct.</td>
<td>1/2 J</td>
<td>300</td>
<td>4.8×10^{18}</td>
<td>a)</td>
<td>unity</td>
</tr>
<tr>
<td>Dec.</td>
<td>1 J</td>
<td>120</td>
<td>1.1×10^{18}</td>
<td>b)</td>
<td>less by 2x</td>
</tr>
<tr>
<td>Dec.</td>
<td>2/5 J</td>
<td>120</td>
<td>0.46×10^{18}</td>
<td>c)</td>
<td>less by 4x</td>
</tr>
</tbody>
</table>

a) single pulse 3/4 ns width
b) train of pulses with 1 J leading edge
c) train of equal-intensity pulses separated by 8 ns
X-RAY SOURCE TRANSMISSION
for LITHOGRAPHY

A. X-RAY MASKS + SUBSTRATE
B. X-RAY RESISTS
Transmission of Thin Membranes

Transmission

Photon Energy (eV)

- 0.5 μm C₃H₆
- 0.5 μm Si
- 0.5 μm SiC
- 0.5 μm Diamond
- 0.5 μm Si₃N₄
- 8.46 μm Be
Soft X-Ray Spectral Transmission

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Region</th>
<th>Source Strength</th>
<th>Helium Path</th>
<th>Substrate Mask, SiC</th>
<th>Helium Path & Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Å)</td>
<td>(eV/sr)</td>
<td>1 atm 20-cm</td>
<td>1-µm</td>
<td>2-µm</td>
</tr>
<tr>
<td>Cu L</td>
<td>7-14</td>
<td>$4.0 \cdot 10^{18}$</td>
<td>84%</td>
<td>63%</td>
<td>40%</td>
</tr>
<tr>
<td>Fe L</td>
<td>8-17</td>
<td>$9.9 \cdot 10^{18}$</td>
<td>71%</td>
<td>43%</td>
<td>18%</td>
</tr>
</tbody>
</table>
X-Ray Transmission for PMMA with 15% ZnI₂ Added

Resist Thickness (μm) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>5.0</td>
</tr>
</tbody>
</table>

Photon Energy (eV)

Transmission

0.0 0.2 0.4 0.6 0.8 1.0

22
X-Ray Transmission for Multilayer Resists

![Graph showing X-ray transmission for multilayer resists. The graph plots transmission against photon energy (eV). There are multiple curves representing different resist formulations: PMMA alone, PMMA + C₆H₅Si, PMMA + C₆H₅BrSi.](image)
<table>
<thead>
<tr>
<th></th>
<th>Resist PMMA (μA/cm²)</th>
<th>Mask Substrate (μA/cm²)</th>
<th>Source Emission (μA/cm²)</th>
<th>Target Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.022</td>
<td>0.024</td>
<td>0.037</td>
<td>Aluminum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Copper</td>
</tr>
<tr>
<td></td>
<td>0.324</td>
<td>0.415</td>
<td>0.648</td>
<td>Iron</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II. Soft X-Ray Transmission.
<table>
<thead>
<tr>
<th>Target Material</th>
<th>PMMA (J/cm²)</th>
<th>+15% ZnI (J/cm²)</th>
<th>Multilayer (J/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resist Exposure (J/cm²)</td>
<td>4.84 \times 10^{-4}</td>
<td>8.45 \times 10^{-4}</td>
<td>1.23 \times 10^{-3}</td>
</tr>
<tr>
<td>6.00 \times 10^{-5}</td>
<td>2.29 \times 10^{-4}</td>
<td>4.67 \times 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1.04 \times 10^{-3}</td>
<td>3.63 \times 10^{-4}</td>
<td>9.23 \times 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1.68 \times 10^{-3}</td>
<td>5.72 \times 10^{-4}</td>
<td>7.13 \times 10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>

Table III. Soft X-Ray Absorption.
SUMMARY

The diagnostic instrumentation included filtered-PIN diodes, a diffraction-crystal spectrograph, and a film-recording x-ray pinhole camera. The x-ray spectrograph utilized a curved-KAP crystal.

An x-ray spectrum was recorded from a copper target. The most distinct and intense lines originate from transitions to the L-shell in neon-like copper. Spectral lines occur in the 8 - 14 Å region; however, the strongest lines are 2 - 3 level transitions in the 10 - 14 Å range from fluorine-like Cu XXI and Neon-like Cu XX. For the iron data, the same spectral transitions as in copper are generated but are shifted 3 - 4 Å to longer wavelength.

The x-ray output energy was determined assuming uniform emission over 2π for the plasma generated at the surface of the planar targets. The soft x-ray conversion efficiency of the focused-laser beam was found to range from 1.9% at $\frac{1}{4}$ J to 3.2% at $\frac{1}{2}$ J integrated over the 10 - 14 Å spectral region with an average efficiency of 2.5% for both copper and iron plasma. The total x-ray emission read in the 7 - 18 Å region is stronger for the iron targets by a factor of 3 because of the intense emission between 14 and 18 Å in neon-like Fe XVII. A soft x-ray conversion efficiency of greater than 10% was recorded for a $\frac{1}{2}$ J iron target shot.
CONCLUSIONS

- **SOURCE STRENGTH**

 Alexandrite laser yields highest efficiency from iron target (L-spectrum) and lowest from aluminum (K-spectrum); however, copper has good L-shell spectral output in the 10 - 14 Å region.

- **LITHOGRAPHIC CONSIDERATIONS**

 Soft X-ray spectral transmission and absorption calculations revealed that the energy deposition into high-Z loaded PMMA resists can achieve greater than 45% soft x-ray deposition for copper and iron L-spectrum but only 20% for the energetic aluminum spectral distribution.