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»
July 15,1993 ’
Dr. Ralph Alewine
Advanced Research Projects Agency
3701 North Fairfax Drive
Arlinton, VA 22203-1714 ’

Dear Dr. Alewine,

The attached report fulfills the first quarterly progress repornt requirement

for the period from the start of this contract to June 30, 1993 as contained in the »
ARPA Grant No: MDA972-93-1-0004 entitled "Real Time System for Practical
Acoustic Monitoring of Global Ocean Temperature" issued by the Contracts
Management Office. The United States Government has a royaity-free license
throughout the world in all copy rightable materia! contained herein. Additional
copies of this report will be mailed to the distribution list contained in Attachment
Number 2 of the Grant. Ttis report was delivered to Mr. E. Craig of RPI, Inc. for
further delivery to you.

As was agreed upon at the GAMOT Executive Committee meeting held in
Seattle, WA on June 6, 199C which you attended, financial status reports will be
submitted separately from this report. Woods Hole Oceanographic Institution, as »
the Grantee, will submit all financial reports directly to you.

The information contained in this report represents the inputs and opinions
of the entire GAMOT team; Woods Hole Oceanographic Institution, the
Pennsylvania State University, the Applied Research Laboratory, the Florida
State University, University of Alaska, University of Texas and NRL-Stennis. If ’
this report generates any questions, please do not hesitate to direct your
questions or comments to the Principal Investigators or the Program Manager.

John L. Spiesberger Daniel M. Frye ohn M. Kenny
Principal Investigator Principle investigator Program Manager
WHOI/PSU WHOI ARL
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July 15, 1993

GAMOT EXECUTIVE SUMMARY

Work commenced on all Tasks as described in ARPA Grant No: MDA972-93-1-
0004. All work is on schedule with the exception of Task D, the autonomous
mooring, which is currently 45 days behind schedule awaiting the long term
source description from ARPA.

- Task A. Work completed includes the algorithms which calculate the
loss for geometric and diffracted rays. An algorithm was written which does not
generate extraneous eigenrays. Work on the calculation of acoustic travel times
using ocean models is also on schedule. All Task A work required to support the
Task C work, SSAR development, has commenced and is on schedule.

- Task B. Multi-year runs of the wind driven equatorial Pacific mode! have
been completed, allowing for the extraction of the Kelvin wave signal. Remote-
forced NE Pacific (NEP) model runs have been completed for 1961-1991. Two
main features appear in these calculations. 1)When realistic bottom topography
is included, cyclonic eddies form on the American coast, and slowly propagate
westward. 2)Kelvin waves from El Nino events produce Rossby waves with
amplitude much larger than in non-Ei Nino years and therefore should
significantly effect acoustic travel times. Algorithms for calculating the travel time
from acoustic source to receiver have been developed for great circle paths.
Preliminary estimation of travel time anomaly due to variations in upper layer
thickness are comparable to observations. A thorough study of this commences
this quarter.

- Task C. All elements of the SSAR development are well underway and
moving smoothly towards the September 1993 prototype tests. The array design
(spacing and number of hydrophones) is complete, as is the optimum depth
determination.

- Task D. Work is on hold and cannot commence until the long term
source specifications are provided.

» Meetings. The first Executive Committee meeting was held on June 6 in
Seattle followed by the ARPA Program review on June 7. Informal program
reviews were held at WHOI on May 20 and July 1. The next Executive
Committee meeting is scheduled for September 15 at WHOI and will be followed
by the Program Review on September 16-17 which GAMOT is hosting.

+ Outside Interest. GAMOT's program was described in various press

Week and International Business Week. The status of the program was briefed
to various offices at ONR and the Oceanographer of the Navy.

anticles, the most notable of which were the short articles contained in Business r—-——[_?—!
.l
0

* Issues and Concerns. There are two issues: b
-Lack of source specifications for the autonomous mooring.
-Acoustic interaction of cabled sources with the bottom slope on

which they are mounted. g
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TASK A
TOMOGRAPHIC DATA ANALYSIS

All Task A work is on schedule.

We wrote computer programs to help us quantitatively examine the tradeoffs of
placing the subsurface element of the SSAR at different depths. Based on these
simulations, this depth was selected to be at 500 m. As discussed in the Task C
section, computer programs were also developed to determine the optimal
number of array elements was well as element spacing.

Work on the development of the SSAR signal processing softwa're is progressing
smoothly and is on schedule.

We wrote computer programs to calculate the travel times of sound through
ocean models. Variations in the speed of sound are caiculated from model layer
displacements using (6.11.17) from Atmosphere Ocean Dynamics (Gill 1982).
These programs will be used to compare with travel time data collected by
Spiesberger in the 1980's. This work in being done in conjunction with Task B.

Source location chosen by ATOC and the associated bottom interaction problems
may cause a problem for the SSARs. This potential problem is discussed in
detail in the Issues and Concerns section.

GAMOT published five scientific papers and submitted one manuscript to a
journal in support of the ARPA program.

Tidal signals in acoustic transmissions need to be accounted for and removed, if
possible, to better detect climatic changes in the ocean's temperature. The first
study of tidal signals in basin-scale acoustic transmissions found that barotropic
models of tides are often inadequate for predicting the change in acoustic travel
time (Headrick, Spiesberger, and Bushong, 1993). We found that a baroclinic
model for the tides must often be added to barotropic model! of tides to account
for tidal signals in the acoustic travel times. Within 100 km of seamounts, and
other bathymetric features, internal tides are generated by the barotropic tidal
currents. The internal tides move the water vertically and the associated
temperature variations change the acoustic travel time by as much as plus or
minus .02 seconds due to the barotropic tidal currents. We discovered some of
these internal tides generated by guyots in the Moonless Mountains. We also
estimated that the world's seamounts account for about 4% of the dissipation of
barotropic tidal currents at the principal lunar semi-diurnal tidal period. In the
context of GAMOT's program, tides will not present any major obstacles for
mapping ocean temperatures with autonomous moorings with sources or with the
SSARs.

An accurate algorithm for the speed of sound in seawater is important for
estimating the ocean's temperature with sound. Two years ago, Spiesberger and
Metzger, using acoustic tomography, discovered that the international standard




algorithm for sound speed was too fast at depths below 1 km. Present analysis
indicates that another aigorithm based on De! Grosso's work is more correct than
the international standard algorithm (Spiesberger, 1933).

Ray trace algorithms are used to predict where the sound went in the ocean prior
to using inverse techniques to map climatic temperature changes in the ocean.
We have written a new ray trace program which removes spurious arrivals and
can thus be automated for mapping ocean temperatures in near real time
(Bowlin, Spiesberger, Duda, and Freitag, 1993). This is the first program we are
aware of that automatically generates reliable predictions for the multipaths in
cases of sound speed varying with depth and range and in cases where the
bottom depth is not constant. The agreement is excellent between data and
predictions from this new program for a 3000 km section in the northeast Pacific
(Spiesberger, Terray, and Prada, 1993).

One paper was published describing the cost advantages of monitoring global
ocean temperatures with sound using GAMOT's SSAR and autonomous source
mooring (Spiesberger, 1993). This is the first study of the economics of
deploying acoustic tomography instruments for mapping ocean temperatures.
The analysis indicates that GAMOT's instruments will map ocean temperatures
about eight times cheaper than possible with sources and receivers cabled to
shore. Even if these cost estimates are imperfect, GAMOT's instruments will
undoubtedly be less expensive than cabled systems.

A paper was published describing a new telemetry scheme to remove travel time
variations in real time caused by wander of an acoustic source attached to an
autonomous mooring (Spiesberger and Bowlin, 1993). The scheme is robust and
does not require any battery energy over and above that expended in past
tomography experiments. The paper describes how both the horizontal and
vertical positions of the source are telemetered to fixed or drifting receivers. The
GAMOT group will test this scheme as part of Task D.

During the next quarter, we expect to accomplish the following scientific
milestones:

» Data processing algorithms for the SSAR.

» Determine if Dr. Fred Tappert's Parabolic algorithm is suitable for
calculating acoustic travel time from basin to global scales in the ocean. Dr.
Tappert will be working with Dr. Spiesberger at Penn State this summer.

« Start work on the forward modeling from Spiesberger's 1987 basin scale
transmissions in the Pacific. This work leads toward an analysis of the seasonal
cycle in the northeast Pacific.

» Start work on integrating our new ray trace program in Cornuelie's
existing inverse program.

Figure:
A.1 Task A Schedule
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TASK B
OCEAN MODELING

We have completed running a two layer model of the equatorial Pacific from 20S
to 25N and 120W to 75E with a spatial resolution of 1/12 degree (1/6 between
like variables) and time steps of 20 minutes. The medel! includes reaiistic land
and bottom topography at resolutions of 1/6 degree. “e model was initialized
with a 20 year "spin up"” driven by climatological wincs. The Florida State
University winds were then applied tor 1961-1991 and the coastal Kelvin signal
was extracted. That is, the upper layer thickness (ULT) at the easternmost point
in the Pacific -ean that overlaps the southern border of the NE Pacific (NEP)
model is recorded.

The NEP model has the same resolution as the equatorial model, but with a time
step of 10 minutes. The forcing is remote, being driven at the south-easternmost
point using a Kelvin wave constructed from the height record of the equatorial
model. The zonal structure of the incoming Kelvin signal is simulated with an
exponential envelope decaying from the forced location. There is no spin-up in
these experiments.

Typical ULT variations in the NEP model are 15 m (compared to a mean depth of
roughly 150 m ) with maximum due to El Nino events with ULT changes of 50 m
(see figure B.1). Stable cyclonic eddies form around 28N and 40N and slowly
propagate westward. These are more clearly seen than when the climatological
Kelvin signal is used to drive the NEP model.

Preparations have been made to compare observed changes in acoustic travel
time with predictions based on changes in ULT in our NEP model. New software
has been written and validated that extracts the ULT along great circle paths.
Total travel times from acoustic sources to receivers along the great circle paths
are estimated using a sound speed estimate (Roed 1993)

¢ =co B Ap (@A)~1 (h-H)

where cg is the mean sound speed, f is the local derivative of the Coriolis term,
Ap is the density difference between upper and lower layer, o is a thermal
expansion coefficient, L 1S a geometric constani, h is the upper layer thickness
(ULT), and H is its mean thickness. Travel time is then

T=[clds
where ds is the segment along the great circle path from source to receiver.
Using the results of our modeling efforts, estimates of T (travel time) can now be
made for any observation taken during the integration period 1961-1991. This

will allow direct comparison of estimated and measured T and this comparison
will commence this quarter.




Work in this quarter will also involve comparing influences of wind-driven and
remote-forced ULT anomalies in the NEP results. We hope to demonstrate that
changes in travel times result from changes induced in the ULT by equatorial
signals, with only a small contribution from locally forced wind-driven structures.

Figures:
B.1 ULT Variation due to Ei Nino color graph
B.2 Task B Schedule
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Figure B.2
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TASKC
SSAR DEVELOPMENT

Three prototype SSAR mechanical designs have been developed. They are:
*Option One: the Snubber
*Option Two: the Standard, and
*Option Three: the Cobra.

The first two options are the most promising and component procurement and
fabrication of these designs has commenced. The third option will be fabricated
only if the first two options fail to perform as expected. Accelerated life testing of
key components has been delayed pending delivery of rubber hoses and
electromechanical cable and has been rescheduled for the end of August.

The design of the prototype SSAR instrumentation system is also underway.

This design includes instrumentation to measure the torces on key components,
to monitor the motion and attitude of the surface buoy and the acoustic array, and
to monitor system performance in a variety of sea conditions. Data collected
during the prototype sea triais will be recorded in situ with some data telemetered
by ARGOS satellite.

Final design of the electronic system for the operational SSARs is nearing
completion. Designs for the surface buoy electronics package, GPS system and
ARGOS system, the array r ‘ocessing system, the battery power supplies, and
the inter-module communications links have been completed. Design work
continues on the acoustic navigation system and the acoustic data processor
software. Testing of these electronic subsystems will begin this quarter.

Based on computer simulations, the tradeoffs of placing the SSAR acoustic array
at different depths was quantitatively examined and an array depth of 500 m was
determined to be optimal. Computer programs were also developed to help
design the number and spacing of the array elements. Based on this analysis, a
six element array of approximately 53 m length was selected. This array design
provides two advantages over a single element receiver. First, the signal-to-
noise ratio is improved with beamforming. Second, the vertical arrival angle of
each multipath can be estimated, thereby adding confidence to the identification
of the multipaths.

A computer program, DXMOOR , was developed to calculate the drift speed, the

shape and the stress distribution, from top to bottom, of free drifting instrumented
lines immersed in ocean currents. The SSARS' reactions to shear currents were

investigated with this program and the results used to design the surface flotation
of the Snubber and Cobra options.

At-sea testing of the SSAR prototypes begins with a one week deployment
offshore Bermuda beginning about September 13 followed by retrieval about
September 20. A second short deployment is planned for about October 24 with
retreival about November 3. A long term test will begin in the Pacific following the




short term tests. The schedule for the long term test will be developed this
quarter.

Figures:

C.1 SNUBBER Design

C.2 STANDARD Design

C.3 COBRA Design

C.4 Test Buoy Surface System Electronics Block Diagram
C.5 Test Buoy Bottom Electronics Block Diagram

C.6 Surface System Electronics Biock Diagram

C.7 Subsurtace System Electronics Block Diagram

C.8 Task C Schedule
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TASK D
THE AUTONOMOUS MOORING

The autonomous mooring work has been delayed until an appropriate source can
be identified as the source to be used on the mooring. Key questions that need
to be answered before significant work can be done on this task include:

« Source size and weight

« Source depth limitations and pressure compensation volume

« Specifications of the power ampilifier

» Specifications of the input waveform

* Source efficiency, power output, MTBF

* Any other important considerations such as duty cycle

allowable, temperature concerns, warm-up time, cooling

requirements, vibration/shock specifications, etc.

Our understanding is that the long term source being developed under the ATOC
program was envisioned as an appropriate source for the autonomous mooring
by ARPA. It has become clear, following our June program meeting in Seattle,
that the long term source will not be available in time to meet our schedule for
Task D. To meet our schedule we need to have a source in hand by the end of
1993. Unfortunately, the ATOC source will not be available until the end of 1994
at the earliest.

We have examined several alternate solutions to this problem and these
solutions are presented for consideration in the Issues and Concerns section of
this report.

Figures:
D.1 Task D Schedule
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ISSUES AND CONCERNS

There are two issues which will be addressed in this report. They are:

» Acoustic interaction of cabled sources with the bottom slope on which
they are mounted.

« Lack of source specifications for the autonomous mooring.

CABLED SOURCES ON THE BOTTOM

The principal concern is related to that fact that the program sources will in all
likelihood have transmissions influenced by local acoustic interactions with the
bottom slope on which they are mounted. In January 1993, it was agreed that
the program sources would be placed on slopes of about 18 degrees to avoid
bottom interaction difficulties. However, it was revealed at the June Program
Progress Meeting in Seattle that source locations on slopes of less than 18
degrees are now being considered.

Bottom interaction is or may be a major problem for SSARs because the
transmission path changes for each different SSAR position and the bottom
interaction is typically not known well enough to accurately predict its effects.
Bottom interactions are not as much of a problem for fixed receivers because the
changes in travel time are unaffected by interactions with the bottom.

Even if bottom mounted sources are placed on 18 degree slopes, that slope is
only 18 degrees in a direction straight out from the siope. At bearing angles
perpendicular to that direction, the effective bottom slope is O degrees. Thus,
bottom mounted sources are not the most effective way to insonify a wide sweep
of bearing angles into the ocean and avoid bottom interactions.

One solution is to locate sources where they are free from bottom interaction
problems. Autonomous moorings for acoustic sources can solve this problem and
offer several advantages over cabled sources:

* Moored autonomous sources are free from any local bottom interaction
aberrations.

* Moored autonomous sources can be placed away from islands so they
insonify a 360 degree sweep without blockage by local islands. In other words,
instead of installing two cabled sources on both sides of an Hawaiian Island to
insonify the North and South Pacific, one moored source can be placed to project
into the entire Pacific.

* Moored autonomous sources can be deployed from standard research
vessels and do not require cable laying ships.

* These three advantages of moored autonomous sources may offer
tremendous cost savings over cabled sources in some situations.

Moored autonomo. s sources have the potential to operate for two years between
servicing as demonstrated by the efficiency of the Slavinsky and Bogolubov's
electronic sources. These sources were successfully tested by members of the
GAMOT group in 1992. This 225 Hz source has an efficiency of about 50% and




has the desired source level. In principal, this source could be made to operate
at 70 Hz with similar efficiency characteristics.

IDENTIFICATION OF A SOURCE FOR THE AUTONOMOUS MOORING

As discussed in the Task D Section, the autonomous mooring work is being
delayed because an appropriate source has not been identified for the mooring
and the long term source may not be appropriate and will not be available until
well after it is needed to complete this important aspect of GAMOT's work prior to
June 30,1995.

We would like to suggest.several alternatives: - ..

1. Utilize an existing higher frequency source such as an HLF-5or a
Slavinsky source to demonstrate the concept. This would require some
modification to the SSAR processing software and hardware, but would provide a
more rigorous test of the drifting receiver concept than the lower frequency
source. The Navfac stations would not need modifications. e

2. Commission the fabrication of a 70 Hz source suitable for use on a
mooring. Slavinsky may have a suitable candidate. This would have to be done
quickly to meet our schedule, but would offer the advantage of providing the
program with a second candidate source (specifically designed for moored
applications) for the follow on program.

3. Modify an existing source for 70 Hz operation. This is not attractive for
several reasons:

+ The existing source (HLF-6) is inefficient and not well
suited for battery powered operations.

- It would be difficult to pressure compensate and the
engineering effort would be wasted since future 70 Hz
sources would not use this compensation system, and

» The HLF-6 has demonstrated less than adequate
reliability.

Alternative 2 is the best choice if cost and schedule constraints can be met.
Alternative 1 can be accomplished in the least time, at the least cost, and with the
least risk. A decision as to which alternative to pursue needs to be made in the
near future.
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DELIVERABLES

One deliverable was due and it was delivered this quarter:

* The statement of completion of the 1980-1991 equatorial wind field
model.

There are three deliverables due at the end of this quarter:

+ Extract the coastal Kelvin signal from the equatorial model and drive the
mid-latitude model from 1980 to 1990 and provide a video of the solution.

* Integrate the model solutions between Hawaii and the West Coast and
provide a graph of travel time difference as a function of time and great circle
paths.

« Deliver two prototype SSARs.

Figure:
GAMOT Deliverable Master Schedule
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